
ISSN 0280-5316
ISRN LUTFD2/TFRT--5749--SE

Code Generation from
JGrafchart to ATMEL AVR

Ana Llorente

Department of Automatic Control
Lund Institute of Technology

January 2005

Document name
MASTER THESIS
Date of issue
January 2005

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRNLUTFD2/TFRT--5749--SE
Supervisor
Karl-Erik Årzén at Automatic Control in Lund

Author(s)
Ana Llorentes

Sponsoring organization

Title and subtitle
Code Generation from JGrafchart to ATMEL AVR. (Kodgenerering från JGrafchart till ATMEL AVR).

Abstract

This master thesis has been development at the Department of Automatic Control in Lund University between October
2003 and February 2004 under the supervision of Karl-Erik Årzen.The topic of this master thesis has been to
investigate and implement the code generation for an AVR Mega8 microcontroller from JGrafchart, program
development by the Department of Automatic Control.This project concerns two items. The first is the code generation
for a subset of JGrafchart. The main goal is to obtain a C program that can be compiled for an ATMEL AVR Mega8
processor using the cross-compiler avr-gcc. The obtained program will follow the same execution model as JGrafchart.

The second goal was to achieve a bidirectional communication between the host machine, a PC running JGrafchart,
and the target machine, the AVR microcontroller. The on-line communication is necessary in order to provide
animation of the execution in the target on the host and to provide user interface possibilities from the host to the target.
To achieve the animation, a new execution model will be created in JGrafchart. Both, the code generation and the on-
line communication have been development in Java language as part of JGrafchart.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
71

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden Fax +46 46
222 42 43

ACKNOWLEDGMENT
I would like to express my gratitude to Karl Erik Årzen for receiving under his

supervision and for his help, always giving me a bit of his time to answer my questions.

Thanks to Bo Lincoln, PhD in the Department of Automatic Control, for
answering all the questions about the AVR microcontroller. Without his help it would have
been more difficult to understand this device. I would like also to thank Leif Andersson,
Johan Åkesson and Anders Blomdell for his help during the development of this master
thesis.

I want to thank the entire friends in Sparta for the great time we enjoy and to my
parents and brother, Roberto, who always believed and supported me no matter what
happened.

I want to dedicate this work to the people who help me in the difficult times during
the development of this project, especially at the beginning. Thanks, Iván.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

1

1. INTRODUCTION... 3

1.1. Outlines of the report ... 4

2. JGRAFCHART ... 5

2.1. Introduction... 5
2.2.1. Graphical Function Chart Elements ... 6
2.2.2. Types and Variables... 10
2.2.3. Grafchart Textual Language .. 10

2.3. JGrafchart Graphical Editor... 11

3. ATMEL AVR...13

3.1. General Features... 13

3.2. AVR ATMega8 Pin Configuration.. 14

3.3. Pin Assignments for the AVR serial I/O Board ... 15

3.4. Interrupts and handlers ... 15
3.4.1. Overview.. 15
3.4.2. Periodic execution.. 17

4. CODE GENERATION...20

4.1. Code Generator... 20
4.1.1. Steps and Initial Steps .. 20
4.1.2. Transitions.. 22
4.1.3. Variables .. 24
4.1.4. Input and Output .. 25

4.2. AVR Program ... 28
4.2.1. Execution Model .. 28
4.2.2. AVR Program Structure... 30

4.3. Compiling the C Program.. 31

4.4. AVR Memory Constraints ... 31

5. COMMUNICATION JGRAFCHART – AVR33

5.1. Communication Parameters .. 33

5.2. JGrafchart AVR Mode... 33

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

2

5.3. Bidirectional Communication.. 35
5.3.1. Establish communication ... 35
5.3.2. From AVR to JGrafchart.. 37
5.3.3. From JGrafchart to AVR.. 40

6. EXAMPLE...43

6.1. JGrafchart Program... 43

6.2. AVR Program ... 44

7. IMPROVEMENTS AND FUTURE DEVELOPMENT....................49

7.1. Improvements.. 49

7.2. Future Development ... 49

8. SUMMARY AND CONCLUSIONS ...50

9. REFERENCES..51

APPENDIX I: REGISTER DESCRIPTION..52

A) Analog to digital converter .. 52

B) USART... 55

C) TIMER/COUNTER0.. 60

D) TIMER/COUNTER1.. 61

APPENDIX II: AVR IO PORTS...66

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

3

1. INTRODUCTION
An embedded system is a large or small system that is built into a product, a piece

of equipment or another computer system, and that performs some task useful to the
product, equipment or system. It consists of a computer system that is programmed to
perform a particular task. The embedded system is programmed to perform its task from
the time it is powered up until it is shut down.

An embedded control system consists of a compact microchip integrated in an
electronics package, which is built into a mechanical or electrical device for the purpose of
controlling that device.

The use of embedded control systems is growing rapidly. Nowadays we can find
advanced control systems in consumer products such as cars, aircrafts, washing machines
and home stereo equipment. In our everyday life we more and more depend on computers
for assistance. Embedded systems must function at a high degree autonomy, which puts
strains on the software since it must be designed not only to handle the most common
scenarios but also breakdowns and unexpected failures.

This thesis project concerns two goals. The first one is C code generation for a
subset of JGrafchart, a Sequential Function Chart editor and run-time system developed by
the Department of Automatic Control in Lund University. The code obtained will be
compiled for an ATMEL AVR Mega8 processor. This task allows the user to program the
AVR processor using a graphical language. The new features of JGrafchart will facilitate
the programming of the device removing all the problems that involve the programming
though a low level language. Any user, without any knowledge of the features or
architecture of the AVR microcontroller is able to program the chip.

The second approach, relating to the communication between the host machine (a
PC running JGrafchart) and the target machine (the AVR processor), provides the
possibility to display the execution of the program, that is running in the AVR processor,
in JGrafchart. Besides supporting animation, this new mode provides user interface
possibilities from the host to the target.

This thesis provides a new feature for JGrafchart that could be consider as a tool to
simplify the programming of an AVR microcontroller allowing the execution of models
created in JGrafchart in the AVR processor and showing the state of the execution in the
graphic. Both parts, the code generation and the communication, are implemented in Java
as part of JGrafchart.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

4

1.1. Outline of the report

• Chapter 2 presents JGrafchart giving a brief description of the elements, features
and textual language for expressing step actions and transitions. A graphical
editor overview is also enclosed.

• Chapter 3 presents the ATMEL AVR Mega8: general features and pin
configuration. It also explains how the interrupts and handlers work in the
microcontroller. Handler interrupts to control the periodic execution and handler
interrupts to read from an analog input are also explained at the end of this
chapter.

• Chapter 4 describes how the C code for AVR is generated from the graphical
model in JGrafchart. It also includes the execution model and the structure of the
generated program. The steps that have to be followed to compile and load the
obtained program are detailed.

• Chapter 5 deals with the communication between JGrafchart and ATMEL AVR
Mega8. It begins with the communication parameters and then explains the new
execution model in JGrafchart created to allow the communication and how this
communication takes place: establish the communication, data reception, data
transmission, data format…

• Chapter 6 shows a simple example of a JGrafchart program and its corresponding
commented generated C code.

• Chapter 7 mentions some possible improvements and further developments of the
master thesis.

• Chapter 8 contains the summary.

The report ends with two appendixes. First an explanation of the used AVR
registers and its configuration including the meaning of every bit. Appendix II describes
how to control the AVR IO ports.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

5

2. JGRAFCHART

2.1. Introduction

JGrafchart is a new Java-based version of Grafchart development by the
Department of Automatic Control in the beginning of 2001.

Grafchart is the name of a toolbox for supervisory level sequence control and
procedure handling that has been developed at the department since 1991. The original
version of Grafchart was developed in G2 from Gensym Corporation. Using this platform
Grafchart was used for batch recipe control, diagnosis of mode-changing processes, alarm
filtering, implementation of operator decision support systems, and implementation of
robot cells.

JGrafchart is a graphical programming language for sequential, procedural and
state-transition oriented applications. It is based on ideas from:

• Grafcet/sequential function charts (SFC). A graphical language for representing
the sequential behavior of control system. SFC is based on a state-transition
formalism similar to what is used in state machines. It shows the states of a
system and the transitions between the states.

• Statecharts. Extend the original state machine with properties such as states in
hierarchical levels, sub-states executed in concurrent and independent way or
events broadcasted among the Statechart diagram.

• Ordinary textual programming languages. The language is state transition
oriented.

A JGrafchart program consists of a function chart that represents an activity flow.
In a more formal way a Grafcet function chart is a bipartite directed graph consisting of
steps and transitions. JGrafchart can be used for all types of discrete-event based
applications as logical control, operating procedure management, recipe-based batch
control and workflow modeling.

As well as the graphical programming language, JGrafchart is the name of the
graphical object editor for this language. The editor consists of a graphical user-interface
thought which the user creates, compiles, executes and stores function charts. Therefore,
JGrafchart is based on implementation or simulation. The implementation is based in real-
time and in connection with the external environment.

JGrafchart is implemented in Java 2 and Swing. It runs in every computer platform
that supports this environment. JGrafchart also uses a number of external software
components:

• JGo, a class package from Northwoods Corporation that supports the
development of model-view-controller based graphical object editors.

• The JavaCC parser generator

• Sun's XML parsers, in order to uses XML as the file storage format.

• Sun's JavaHelp system for on-line help.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

6

• XMLBlaster, a XML-based message-passing middleware. XMLBlaster is layered
on top of Corba and/or XML-RPC. Using XMLBlaster JGrafchart can send and
receive XML-structures.2.2. Grafchart Language

2.2.1. Graphical Function Chart Elements

JGrafchart supports the following language elements.

Steps

A step represents a state of the application. A step can be active or inactive. An
active step is represented by a token.

The step has one input port and one output port. The input port can be connected to
transitions, exception transitions, and parallel split objects. The output port can be
connected to transitions and parallel join objects. Step actions are shown in the action
block associated with the step.

The actions are expressed in a textual action language and can be performed when
the step is activated, deactivated, aborted or while the step is active.

There exists a special kind of steps, initial steps. These steps are activated when
the execution of the application starts.

Transitions

A transition represents a condition for changing from one state to another. A
transition is fired when all the immediately preceding steps connected to the input port of
the transition are active and the condition is true.

When the transition fires it’s deactivates all the steps connected at the input port and
activates all the steps connected at the output port.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

7

Exception transitions are special transitions that have priority over "ordinary"
transitions. This kind of transitions can be used only connected to certain types of steps.

Parallel and Alternative paths

In JGrafchart it is possible to express parallel and alternative paths with parallel
split and parallel join objects.

The first one is used to split up the execution in two parallel branches and the
second one to merge together the execution in two parallel paths into a single path.

Macro Steps

Macro steps are steps that contain an internal function chart. A macro step
represents a hierarchical step containing a substructure of steps and transitions on the
subworkspace of the macro step.

When the macro step is activated the enter step of the internal function chart is
activated. When the execution in the internal function chart has reached the exit step, the
transition after the macro step is enabled.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

8

An exception transition is a special type of transition that may be connected to a
macro step. The exception transition is connected to the exception port on the left-hand
side of the macro step. An ordinary transition connected to a macro step does not become
enabled until the execution of the macro step has reached the exit step. An exception
transition, however, is enabled all the time while the macro step is active. When the
transition is fired the execution inside the macro step is aborted and the step succeeding the
exception transition becomes activated. Exception transitions have priority over ordinary
transitions in cases where both are fireable. Macro steps have history. When an exception
transition aborts the execution of a macro step, the execution state is saved. The macro step
can be resumed in this saved state if a transition connected to the special history port of the
macro step is fired. The history-input port is located on the right hand side of the macro
step.

Procedures

Step-transition sequences that are used in several different contexts can be
represented as procedures.

A procedure has a procedure body stored on the subworkspace of the procedure.

The body begins with an enter step and ends with an exit step in the same way as for macro
steps. Procedures are reentrant and may be recursive. Procedures may have parameters. All
internal variables within the procedure can be used as parameters. Parameters can be
assigned values both using call-by-value and call-by-reference. A procedure can be called
in three different ways:

• Directly from the procedure object.

• Through a procedure step.

• Through a process step.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

9

When a procedure is called from a procedure step, the transition(s) after the
procedure step does not become enabled until the execution has reached the exit step of the
procedure. Hence, this corresponds to an ordinary procedure call.

When a procedure is called from a process step the transition(s) after the procedure
step is enabled immediately. Conceptually, the procedure call is spawned and executed in a
separate execution thread. The same thing happens when the procedure is called (started)
from an action.

Workspace Objects

Workspace objects are objects that contain a subworkspace. The subworkspace
may contain arbitrary language elements.

Workspace objects can be used for three main purposes:

• As a way of structuring large applications.

• As a compound variable comparable to a C struct,

• As a way of representing objects that have attributes and methods

When a workspace object is used as a structuring element it is possible to
programmatically enable and disable it. It is also possible to have a workspace object being
executed at a longer scan-cycle than the rest of the application.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

10

2.2.2. Types and Variables
JGrafchart supports four basic types of variables: integer, boolean, real and string.

For each basic type there is a corresponding variable.

The variables are either input variables, output variables or internal variables. Input
variables are represented in JGrafchart as Inputs. They are connected to an input channel
and receive their values from the external environment. They can be connected to I/O
cards, input sockets, etc. Inputs may be digital or analog. Output variables are represented
in JGrafchart as Outputs. Output variables at are connected to a output channel and receive
their values from JGrafchart and transmit these values to a external environment. They can
be connected to I/O cards, output sockets, etc. Outputs may be digital or analog.

2.2.3. Grafchart Textual Language
JGrafchart contains also textual language elements. The textual format is used for

expressing step actions and transition conditions.

A step action consists of two parts: an action qualifier and the action. The action
qualifier decides when the action should be executed. Five types of qualifiers are available:

• Enter actions (Stored actions) are executed when a step becomes active or when a
button is pressed.

• Exit actions are executed once immediately before the step is deactivated.

• Periodic actions are executed periodically while the step is active.

• Abort actions are executed once when a step is aborted due to the firing of an
exception transition.

• Normal actions are used to associate the truth-value of a boolean variable or a
digital output with the activation status of the corresponding step. The value
becomes true when the step become active and becomes false when the step
becomes deactivated. If the step becomes deactivated and activated in the same
scan-cycle the boolean variable remains true.

The “action” in the syntax definitions can be of two different types:

• Assignment: “variable expression” = “expression”

• Method call: “object expression”. “methodname”(arg1,…, argn)

The action language is also used to express transition conditions. A transition
condition is represented by an expression, which is evaluated, as a boolean expression.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

11

2.3. JGrafchart Graphical Editor

The JGrafchart editor consists of a graphical user-interface through which the user
creates, compiles, executes, and stores function charts.

 Menu bar

The editor consists of the following main parts:

• The menu bar contains pull-down menus containing menu choices by which the
user controls the editor.

• The tool bar contains tool buttons that provide shortcuts to some of the menu
choices available from the menus in the menu bar. The toolbar also contains a
message menu. The message menu contains compilation error and warning
messages. It is also possible for an application to write messages to the message
menu and to clear the message menu. The message menu is implemented as a
pull-down menu. It works as a stack where new messages are pushed on top of
the stack and shown at the top of the menu. The toolbar can be removed and
added using menu choices,

Tool Bar

Workspace
Area

Palette

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

12

• The palette is a five-tabbed pane containing the different language elements in
JGrafchart. The user creates an application by drag-and-drop from the palette into
a workspace. The five tabs are named: SFC (the default palette), VAR, IO, XML,
and GUI. The SFC palette contains the basic JGrafchart language elements, e.g,
steps, transitions, procedures, etc. The VAR palette contains JGrafchart variables
and lists. The IO menu contains input and output objects. The XML palette
contains objects for communication using XML. The objects in this menu assume
the availability of the CCOM infrastructure. This is not available in all
distributions. The GUI palette contains graphical objects, e.g., texts, rectangles,
icons, etc. It also contains plotters, browsers, and buttons. In addition to the drag-
and-droppable objects the GUI palette also contains two mode buttons: the line-
mode button and the spline-mode button. By clicking on these buttons the
mouse-behavior changes from the standard select-object mode to a line-drawing
mode. The palette can be removed and added.

• The workspace area is the area where the user application workspaces are shown.
The workspaces are implemented Swing internal frames. They can be
maximized/minimized, iconized, deleted, scrolled, and panned using standard
window operations.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

13

3. ATMEL AVR
The microcontroller chosen for the development in this master thesis is an ATMEL

AVR MEGA8 processor. ATMEL´s AVR microcontrollers have RISC architecture, and
supports internal oscillators, timers, UART, SPI, pull-up resistors, ADC, analog
comparator, and watch-dog timers.

3.1. General Features

ATMEL AVR Mega8 is a low power CMOS 8-bit microcontroller based on the
AVR RISC architecture. By executing powerful instructions in a single clock cycle, it
achieves throughputs approaching 1MIPS per MHz, allowing the system designer to
optimize power consumption versus processing speed.

The AVR has 32 general purpose registers. All the registers are directly connected
to the Arithmetic Logic Unit (ALU).

The AVR Architecture has two main memory spaces:

• Program memory space. The program memory space contains 8KByte on-chip
reprogrammable flash memory for program storage.

• Data memory space. The data memory space is consists of a 1 KByte SRAM.

In addition, AT Mega8 contains 512 bytes of data EEPROM memory that is
organized as a separate data space.

AVR provides 23 general purpose I/O lines. These lines are divided in three 8-bit
bidirectional I/O ports.

Other main characteristics of the AVR Mega8 are as follows: three flexible
timers/counters with compare modes, internal and external interrupts, serial programmable
USART, a byte oriented two-wire serial interface, a 6 channel ADC where four channel
have 10-bit accuracy and two have 8-bit accuracy. It also includes a programmable
watchdog timer with internal oscillator, a SPI serial port, and five software selectable
power saving modes.

The Flash Program memory can be reprogrammed through an SPI serial interface,
by a conventional non-volatile memory programmer, or by an on-chip boot program
running on the AVR core.

By combining an 8-bit RISC CPU with a self-programmable flash on a monolithic
chip, the ATMEL Mega8 is a powerful microcontroller that provides a cost effective
solution for many embedded control applications.

The Atmel AVR comes with a full suite of programming and system development
tools, including C compilers, macro assemblers, program debugger/simulators, in-circuit
emulators, and evaluation kits.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

14

3.2. AVR ATMega8 Pin Configuration

Pin Description

• VCC : Digital supply voltage

• GND : Ground

• PORT B: an 8-bit bi-directional I/O port. PB6 and PB7 can be used to perform
others functions as input and output of the inverting oscillator amplifier or input
for the asynchronous timer/counter2.

• PORT C: a 7-bit bi-directional I/O port. PC6 can be used as reset input.

• PORT D: an 8-bit bi-directional I/O port.

•

• PORT B, PORT C and PORT D are also used for various special features of the
ATmega8.

• AVCC : Supply voltage pin for the A/D converter, PORT C (0..3) and ADC
(7..6)

• AREF : Analog reference pin for the A/D Converter

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

15

3.3. Pin Assignments for the AVR serial I/O Board

The pin assignments in the board used by the Department of Automatic Control are
the following:

PortB XTL XTL do2 do1 d05 ao1 ao0 do0
 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PortC do4 do3 ai1 ai0 ai3 ai2
 PC5 PC4 PC3 PC2 PC1 PC0

PortD di5 di4 di3 di2 di1 di0 TXD RXD
 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0

As can be seen in the table above this pin configuration allows:

• 6 digital inputs
• 6 digital outputs
• 4 analog inputs
• 2 analog outputs.

The number that identifies the input or the output is associated with the channel in
the graphic representation of inputs and outputs in JGrafchart. The code generation
assumes the pin assignment above. If this configuration is changed it is necessary to
rewrite parts of the code generation to associate the correct pin with the correct IO.

3.4. Interrupts and handlers

This part describes the interrupts and their handlers in AVR. First an overall
description of the AVR interrupt vector is given. The following parts deal with the
interrupts and handlers used in the AVR C program to ensure periodic execution, read the
analog inputs and the serial communication.

3.4.1. Overview
The AVR provides several interrupt sources. These interrupts and the reset vector

have a separate program vector in the program memory space. All the interrupts are
assigned individual enable bits which must be written a logic one together with the global
interrupt enable bit in the status register in order to enable the interrupt.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

16

The complete list of interrupts is shown in the following figure. This list also
determines the priority level of each interrupt so RESET has the higher priority.

VECTOR
NUMBER SOURCE DEFINITION

1 RESET External Pin, Power-on Reset and Watchdog reset
2 INT0 External Interrupt Request 0
3 INT1 External Interrupt Request 1
4 TIMER2 COMP Timer/Counter2 Compare Match
5 TIMER2 OVF Timer/Counter2 Overflow
6 TIMER1 CAPT Timer/Counter1 Capture Event
7 TIMER1 COMPA Timer/Counter1 Compare Match A
8 TIMER1 COMPB Timer/Counter1 Compare Match A
9 TIMER1 OVF Timer/Counter1 Overflow
10 TIMER0 OVF Timer/Counter0 Overflow
11 SPI, STC Serial Transfer Complete
12 USART, RXC USART, Receive Complete
13 USART, UDRE USART Data Register Empty
14 USART, TXC USART, Transmission Complete
15 ADC ADC Conversion Complete
16 EE_RDY EEPROM Ready
17 ANA_COMP Analog Comparator
18 TWI Two-wire serial interface
19 SPM_RDY Store Program Memory Ready

The lowest addresses in the Program memory space are by default defined as the
Reset and Interrupt vector. Both can be moved to the start of the boot Flash section.

When an interrupt occurs all the interrupts are disabled. However it is possible to
enable nested interrupts. This means that all enabled interrupts can interrupt the current
interrupt routine. When AVR exits from an interrupt, it will always return to the main
program and execute more instruction before any pending interrupt is served.

AVR provides two instructions to enable and disable interrupts: SEI and CLI .

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

17

3.4.2. Periodic execution
In order to ensure periodical execution of the AVR program with the correct rate a

timer is needed a timer and an interrupt handler for this timer. The timer chosen for this
purpose is TIMER/COUNTER0 that is a general purpose, single channel, 8 bit
Time/Counter module.

The interrupts of this timer are enabled through the Timer Mask Interrupt
(TIMSK) and the interrupt request signal is visible in the Timer Interrupt Flag Register
(TIFR).

The counter direction of this timer is always up and the counter simply overruns
when it passes its maximum 8-bit value (MAX=0xFF) and restarts from the bottom (0x00).
During normal operation the Timer/Counter Overflow interrupt is executed each time the
counter becomes zero.

With all of this it is possible to ensure periodic execution of the code by just
setting a bit to indicate to the main program that it is time to execute a new scan cycle:

while (1){
while (not bit is set){
//busy wait
}

reset bit;
}

This bit is set by the interrupt handler when the number of times this handler has
been executed corresponds to the number of times indicated by the parameter Thread Sleep
Interval given by JGrafchart.

SIGNAL(SIG_OVERFLOW0){
 static int i=0;
 int times=ThreadSleepInterval*7.2;
 i++;
 if (i==times){
 bit=true;
 i=0;
 }
}

Here, times is determined by the JGrafchart parameter and the number of interrupts
per millisecond. This value is calculated through the clock frequency, in this
microcontroller 14,7456 Mhz, and the clock source. For this purpose the configuration
selected for the clock is preescaler 8. With these values the number of interrupts is 7,2 per
ms.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

18

3.4.3. Analog Input
The Atmega8 features a 10-bit successive approximation Analog Digital Converter

(ADC). The ADC is connected to an 8-channel analog multiplexer which allows eight
voltage inputs.

The analog input channel is selected by writing to the MUX bits in ADMUX. The
ADC is enabled by setting the ADC Enable bit ADEN in ADCSRA. The result of the
conversion is presented in the ADC Data Registers, ADCH and ADCL. For single ended
conversion the result is:

Vref
VinADC 1024*

=

where VIN is the voltage on the selected input and VREF the selected voltage
reference, in this case 2,56V.

The ADC has its own interrupt, called SIG_ADC, which can be triggered when a
conversion completes. This interrupt is used to read the analog inputs. For this purpose, at
the beginning of the code the ADC is configured as:

ADCMUX=0xC0;
ADCSRA=0xEF;

The first line indicates the Voltage Reference Internal 2.56V with external
capacitor at AREF pin, ADC conversion in the ADC Data Register (left adjust) and selects
the first MUX channel in order to connect the ADC0 analog input to the ADC. The second
line configures the ADC to enable the conversion, start the conversion, enable the ADC
interrupt and the operating mode Free Running. In this mode the ADC samples and
updates the Data Registers continuously.

As was mentioned before the analog inputs are read through the interrupt handler
of SIG_ADC. In this handler the values of the Data Registers are read and depending on
which MUX channel that is connected, the value is assigned to the variable which has the
corresponding channel in JGrafchart. So, if a new analog input is read and the MUX
channel selected in this moment is channel 0 (ADC0) the variable updated will be the
variable that has channel 2 in JGrafchart.

SIGNAL(SIG_ADC){

 static unsigned channel=0;
 short readed;
 readed = ADCL | (ADCH<<8);
 if (channel==2){
 AIn=readed;
 }
 if (channel==1){
 AIn2=readed;
 }

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

19

channel = (channel + 1)%4;

 ADMUX = (0xC0) | (channel);
 ADCSRA=0xEF;
 }

Above is an example of an interrupt handler to read the analog inputs. AIn and
AIn2 are integer variables that represent two analog input of JGrafchart whose channels
are respectively 0 and 3. Each time the interrupt handler is executed the MUX channel is
incremented module 4 in order to pull in all the possible inputs.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

20

4. CODE GENERATION
The first item of this master thesis is automatic C-code generation for a subset of

JGrafchart. The goal is to generate a C program and cross-compile it for an ATMEL AVR
Mega8 processor. The C code obtained is compiled with the cross-compiler avr-gcc using
the avr-libc standard library.

The code generation is integrated within JGrafchart. As a consequence the function
in charge of the generation is implemented in Java. The code obtained follows the same
execution model as JGrafchart.

4.1. Code Generator

As mentioned before, the code generation is written as a part of JGrafchart. The
main function responsible for it is named codeGenerationAction() and is contained in the
class Editor. This method is responsible for writing the generated code into a file. First, all
the code that is common to any AVR program such as type definitions, interrupt handlers,
device configuration, etc is generated after this, all the elements in the JGrafchart program
are traversed and identified. Once the elements are identified, the proper code is generated.
The followings points explain the code that has to be generated for each element. The code
will be written in the result file in the correct order at the end of the method
codeGenerationAction().

4.1.1. Steps and Initial Steps
Before generating any code for a step or a initial step we have to decide how to

represent this element in the AVR C program. Both, steps and initial steps, are represented
by a structured variable:

struct step{
 int x;
 int newx;
 int t;
}

This structure contains three attributes to control the execution: the first one, x,
determines if the step is active in the current scan cycle. Newx is true if the step should be
active in the next scan cycle. Finally, t contains the number of scan cycles since the step
last was activate.

So, each step will be declared as a struct containing these fields and identified by
the name that the step has in JGrafchart. Not all steps have a name in a JGrafchart model.
In this case a unique name for the step is automatically created in order to identify this
structure in the C program. In addition to being declared before use, each step must be
initialized. An initial step has to be initialized in such a way that it is active, at the
beginning of the execution. Therefore, initial steps should have both, x and newx, as true.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

21

struct step S0={1,1,0};
struct step S1={0,0,0};

This is an example of declaration and initialization of two steps. The first one, S0,
is an initial step.

The state and the timer of the steps have to be updated during the execution. These
actions are performed at the end of each cycle. The state of every step is updated by
assigning to the attribute x the value contained in the attribute newx:

S0.x = S0.newx;
S1.x = S1.newx;

The time for every step is also updated at the end of the cycle. If a step is activated
in the current cycle, the value of its timer is incremented by one. In other cases the value
for the timer is set to zero:

S0.t = (S0.t + S0.x) * S0.x;
S1.t = (S1.t + S1.x) * S1.x;

Whenever code is generated for a step, the functions to generate the code for
periodic and normal actions are called. Both, normal and periodic actions are generated in
the same way. First, the condition is written and then the action is extracted from
JGrafchart, and put into the code of this condition. When doing this, all the actions of the
step are parsed looking for the correct action qualifier: “N” for normal actions and “P” for
periodic actions.

 The periodic actions are executed when the step is active in the current scan cycle
and will remain active. So, the code generated for these actions is:

if (S0.x) && (S0.newx){
 //Periodic actions for step S0
}

Normal actions are used to associate the truth-value of a boolean variable or a
digital output with the activation status of the corresponding step. The value becomes true
when the step become active and becomes false when the step becomes deactivated. If the
step becomes deactivated and activated in the same scan-cycle the boolean variable
remains true. This behavior is obtained by checking the value of the attributes x and newx:

if ((S0.x)&&!(S0.newx)){
 Variable or digital output = false;
}
else{
 if (S0.newx){
 Variable or digital output = true;

}
}

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

22

During the code generation for initial steps, in addition to generating the code for
periodic and normal actions in the same way as forthe other steps, the enter actions for this
type of steps have to be generated. These actions are located at the beginning of the C
program immediately before the loop that controls the periodic execution. These actions
will be executed only when the program begins the execution. The enter actions for an
initial step will be generated in the way explained in the following chapter.

The last action performed for a step is to update the vector used to send
information from AVR to JGrafchart. The value of the attribute x is written in the proper
position of the vector.

4.1.2. Transitions

Similar to steps, transitions are represented as a variable structure. In this case, this
struct only contains one field that determines if the transition is marked for fired. The value
of this attribute is true if the condition evaluates to true and all the preceding steps are
activated.

struct transition{
 int markedforfired;
}

Whenever a transition is detected, the first task is to declare it. Transitions, in
JGrafchart, do not have any identification. Therefore, it is necessary to generate a name in
order to identify them. This unique name is formed by the prefix TR and a number. In
addition to being declared, the transition must be initialized:

struct transition TR0 = {0};
struct transition TR1 = {0};

Before generating the code in charge of evaluating the conditions and mark for
fired a transition, it is necessary to build two lists containing the succeeding and preceding
steps of this transition. So, the method compileStructure() of the class GCTransition is
called. This method looks for the steps connected to the transition and adds them to an
array.

When the lists of succeeding and preceding steps are built, it is time to generate the
code that evaluates the conditions that are necessary to fire a transition. Besides the
transition condition, it is necessary to check all the preceding steps in order to know if they
are active. It means the attribute x must be true. If the two requirements evaluate true the
transition have to be marked for firing.

if (all the preceding steps are active && transition condition = true) {
 transition.markedforfired=true;
}

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

23

Figure 4.1

The code generated for the example showed in Figure 4.1 will be:

if (S0.x && (S0.t>25){
 TR0.markedforfired=true;
}
if (S1.x && (S1.t>2)){
 TR1.markedforfired=true;
}

The next task for a transition is to generate the code for a transition that has been
marked for firing. The first step of this is to generate the condition to check if the attribute
markedforfired is true. When a transition complies with this condition, the following
actions have to be generated:

• The code to set the attribute markedforfired to false.

• The attribute newx of all preceding steps have to be set to false and the exit
actions of these steps will be generated.

All the steps belonging to the structure precedingSteps generated by the method
compileStructure are traversed setting their attribute newx to false and parsing
their actions looking for the actions with qualifier “X”.

• The attribute newx of all succeeding steps will be set true and all their enter
actions will be written in the C file.

All the steps belonging to the structure succedingSteps generated by the method
compileStructure are traversed setting their attribute newx to true and parsing
their actions looking for the actions with qualifier “S”.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

24

Continuing with the example showed in Figure 4.1, the code generated
corresponding to these actions will be:

S0 is the initial step. As was commented in the previous chapter, the enter actions
for this kind of step are generated also when the the code for the initial step is generated.

4.1.3. Variables
Concerning variables only code for integer and boolean variables will be

generated. This feature is due to the limitations of the AVR microcontroller. So, if the type
of a variable is different from integer or boolean a warning window informs the user about
this.

During the code generation, when the element detected is identified as an internal
variable, the first action to perform is to check the type of the variable: normal or AVR
variables. The AVR variables will be explained with more detail in the chapter relating to
communication between AVR and JGrafchart. Basically, the main difference between
these variables is that the AVR variables will be not sent from AVR to JGrafchart. Then, it
is necessary to distinguish the two types of variables in order to add the variable to the
proper structure. The way to differentiate the variables is the name: AVR variables are
named with the prefix “AVR” follow by the name of the variable.

The vector containing the normal variables will be used by the method in charge of
reading the values of the variables from the serial port and animating the graphic, whereas
the second structure will be consulted during the generation of the interrupt handler to read
the values of the serial port from the AVR program.

If (TR0.markedforfired){
 TR0.markedforfired = false;
 S0.newx = false;
 VarBool=0;
 S1.newx = true;
}

if (TR1.markedforfired){
 TR1.markedforfired = false;
 S1.newx = false;
 VarBool = 1;
 S0.newx = true;
 VarInt = 1;
}

Exit action of step S0

Enter action of
succeding step S0

Exit action of
preceding step S1

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

25

Another difference is that for normal variables it is necessary to generate the code
to update the vector that contains the value of the variables. This vector will be used to
send the variables at the beginning of the cycle.

if (AVRVariable)
 Add the variable to AVRReferences2.
else{
 Add the variable to AVRReferences.
 Update the vector writing the value of the variable.
}
Declare and initialize the variable

Both, AVR variables and normal variables have to be declared and initialized.
JGrafchart allows to have variables with the same name. Whenever it occurs, the code
generator must detect it and warn to the user about it with a window error reporting that
there are two variables with the same name. The code generator is stopped until this error
is corrected. Besides, is checked that the name of the variable do not match up with a
reserved word in the C language (“int”, “volatile”, “union”,…)

If there is no problem with the names, the variables are declared and initialized.
Both, integer and boolean variables are declared as volatile int. They are declared as
volatile since the variables will be used or updated in several parts of the program. The
variables are initialized taking the initial value from JGrafchart. If they have no initial
value defined, they are declared with default initial value zero. It means false for the
boolean variables.

 4.1.4. Input and Output
JGrafchart allows three types of input and output: digital, analog and a special IO

in which the top-level workspace can act as the client in a TCP socket connection. This
communication is called Socket IO and supports four basic data types. However, only code
for analog and digital IO will be generated. In JGrafchart, digital IO has two versions:
ordinary and inverse logic.

Both input variables and output variables will be represented in the C program as
variables. Before generating the code to declare and to initialize these variables, three
verifications have to be done:

• In JGrafchart the name of the elements can be the same, as the variables. So, it is
necessary to check for repeated names and give advice about this to the user.
This is performed in the same way as for the variables.

• The AVR microcontroller allows a limited number of inputs and outputs (6
digital outputs, 4 analog inputs,) so, during the code generation; every time an
input or output is detected it is necessary to check if the maximum number of this
type of elements has been exceeded. This event is communicated to the user
through a window containing a message.

• It is necessary to check that two or more IO variables of the same type do not
have the same channel (e.g. two digital input reading from the channel 1)

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

26

When these verifications have been checked, it is time to declare and initialize the
variables. All are declared as int and only the analog input will be volatile. This is due to
the analog input will be read through an interrupt handler and then these variables will be
used in several parts of the C program. Both analog input and analog output in JGrafchart
are real variables with double value, however in the AVR program they will be represented
as integers which take values from 0 to 1024 for input voltages between -10 V and 10 V.

Inputs are initialized with the values taken from JGrafchart whereas the outputs are
initialized with the value zero since these elements cannot be changed by the user.

Next, the code corresponding to the reading and the writing will be explained in
more detail. In both cases the range of the channels must be checked. If the channel for an
input or an output taken from JGrafchart is not in the range of channels allowed the user
receives a message containing the range allowed.

Digital Input and Digital Output

AVR allows 6 digital outputs and 6 digital inputs, so the range of channels allowed
is from 0 to 5 in both cases. As mentioned before there are two possibilities for digital IO:
ordinary and inverse logic.

The functions that generate the code for these purposes take the channel from
JGrafchart and then they identify if the digital IO is ordinary or inverse logic. Using the
channel the method is able to assign the IO variable with the correct pin following the pin
assignments showed in the Figure 3.

The code generated for reading and writing these digital inputs and outputs is
showed below. The code to read will be at the beginning of the cycle and the code to write
at the end.

DIn= !(PIND & BV(PIND3));
DInInverseLogic= (PIND & BV(PIND4));

PORTB= (PORTB & (~(1<<0)) | (DOut ? (1<<0):0));
PORTC= (PORTC & (~(1<<5)) | (DOutInverseLogic ? 0:(1<<5)));

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

27

Analog Output

The number of analog outputs that is supported by the AVR is two, so the range of
channels is from 0 to 1. The analog output writing is performed using the
TIMER/COUNTER1. With a suitable configuration of it, it is possible to give the output in
the OCR1A/B registers. It uses AVR´s Timer1 in mode 10bits Fast PWM:

TCCR1A=0xA3;
TCCR1B=0x09;

As the generation for digital IO, the function in change of generating this code
takes the value of the channel and assigns the value of the variable to the proper OCR1A/B
register.

The code to write the value to an analog output is showed below. This code will be
at the end of the main program:

OCR1A = AOut;
OCR1B = AOut2;

Analog Input

The AVR board supports four analog inputs with a possible range of channels from
0 to 3. The analog inputs are read through the interrupt handler of the signal SIG_ADC.
So, the code generated by the function will be located in this interrupt handler. This code
assigns the data to the proper input variable according to the channel.

The interrupt handler generated to read from these analog inputs will be the

following. Only the part corresponding to the checking of the channel and assigning the
read value to the proper variable is generated by the method called when a analog input is
detected. The other code is generated at the beginning of the main function.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

28

SIGNAL(SIG_ADC){
 static unsigned channel=0;
 short readed;
 readed = ADCL | (ADCH<<8);
 if (channel==0){
 AIn1=readed; //ADC3
 }
 if (channel==1){
 AIn2=readed; //ADC0
 }
 channel = (channel + 1)%4;
 ADMUX = (0xC0) | (channel);
 ADCSRA=0xEF;
 }

4.2. AVR Program

4.2.1. Execution Model
The execution model follows by the C program generated is the same as the model

used by JGrafchart. So, the AVR main program that executes a scan cycle, executes the
same actions in the same order as the execution performed by the function executeOnce
belonging to the class GCDocument in JGrafchart.

In order to ensure periodic execution, it uses a timer and an interrupt handler
associated with this timer. This handler will indicate to the main program when it is time
to execute a new scan cycle. Then, at the beginning of the cycle, the execution thread have
to sleep until the start of the next scan cycle. The period of the execution is determined by
the JGrafchart parameter “Thread Sleep Interval” that can be set in the dialog “Workspace
Properties”. This value is the period of the execution thread associated with the top-level
workspace. This field is taken by the code generator and declared as a constant in the C
code.

After the wait, the code to execute one scan cycle begins. In every scan the
following operations are performed:

• Read from inputs. However, only digital inputs are read in this point of the
execution. Analog inputs are a special case and they are read through the
interrupt handler commented in the previous chapter.

• All the transitions are traversed. The state of all preceding steps (State.x) and the
transition condition are checked. If the preceding steps are all active and the
condition evaluates to true the attribute of this transition
(Transition.markedforfired) is set. It means the transition is marked for firing.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

29

• Again, the transitions are traversed. In this case, evaluating for each transition, if
it is marked for firing (markedforfired=true). If this condition is satisfied, the
following actions will be performance:

1. The state of the transition will be set to false.

2. For each preceding step, the newx attribute is set to false and all the exit
actions of these steps are executed.

3. For each succeeding step, the newx attribute is set to true and all the enter
actions of these steps are executed

• After this, all the steps that contain periodic actions, are traversed evaluating the
attributes x and newx in order to test if the step is active in the current scan cycle
and will remain so also in the next scan cycle. In this case, periodics actions of
the step are executed.

• Steps that contain normal actions are evaluated in order to determinate if the
activation status of the step has changed since the last scan. If the step becomes
active then the boolean variable or the digital output is set to true. The value of
the boolean variable or the digital output is set to false if the step becomes
deactivate.

• The attribute t, that counts the number of cycles since the step last was activate,
is updated for all the steps.

• The state of each step is updated by assigning newx to x.

• Outputs are written. Both, digital and analog outputs are written.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

30

4.2.2. AVR Program Structure

Include header files and constants declaration
Declaration types and variables

• Definition of struct variables
• Declaration of steps and transitions
• Declaration of internal variables
• Declaration of IO variables

Interrupt handlers and function
• SIG_ADC Interrupt handler – Read analog inputs
• SIG_OVERFLOW0 Interrupt handler – Periodic execution
• SIG_UART_RECV Interrupt handler – Receive from serial port
• Function send (char c) – Send data to serial port

Main program

Configuration of ADC, USART and Timers
Configuration Output Ports
Declare communication vectors
Enter actions of initial steps

while(){
 If (is time of a new scan cycle){
 If (is time to send)
 Send steps status and variables value

Read inputs
 Evaluate condition transitions
 Fire transitions
 Periodic actions
 Normal actions
 Update time of steps
 Update state steps
 Write outputs
 Update communication vectors
 }
}

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

31

4.3. Compiling the C Program

Once the C program has been generated, it is time to compile it. The cross
compiler avr-gcc is used. A cross-compiler is a compiler that runs on one machine and
produces object code for another machine. In our case, the compiler runs on a PC and
generates code that will be executed on another platform, the AVR microcontroller.

AVR-GCC C complier is made available through the GNU project under the GNU
public license. A C library function implemented in the avr-libc standard library is
available for the ATMEL AVR microcontroller family. This standard library provides,
among others, the definition of symbols for the interrupt vectors, routines to handler
interrupts, IO register set and their respective bit values as specified in the Atmel
documentation.

The necessary header files are included in the first lines of the C program:

#include <avr/io.h>
#include <avr/signal.h>
#include <avr/interrupt.h>

The first one includes the IO register definitions for the AVR microcontroller used
and several macros for IO access. Signal.h and interrupt.h contain the symbols for the
interrupt vectors that are stored at the beginning of the flash memory and functions to
enable and disable interrupts.

When the program has been compiled properly using the avr-gcc compiler, it has
to be uploaded to the microcontroller and executed it in the target platform.

During the development of this project the compilation and uploading have been
performed by a makefile. In this file the compiler used, the device (ATMega8) and all the
commands to compile and load the program on the AVR chip are specified.

4.4. AVR Memory Constraints

The AVR architecture has two main memory spaces: the data memory and the
program memory space. In addition, the ATMega8 features an EEPROM Memory for data
storage. For program storage, the ATMega8 contains 8k bytes of Flash memory and 1Mb
of RAM Memory for data storage. As we can see the memory is small. In order to test the
capacities of these memories, several tests have been executed.

The first test will be created a simple program only with steps and transitions. The
AVR microcontroller only supports a program with 32 steps and transitions. These
elements are represented in the C program as variable struct. As it was mentioned before,
steps and transitions are represented as structs containing three and one int fields,
respectively. Each int value uses two bytes in memory, so only 256 bytes of the data
memory space are used.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

32

The second test will check the number of variables supported by the procesor. This
simple task will be performed creating a JGrafchart program that only contains variables.
The type of the variables does not play any role, since both, integers and booleans, will be
represented as int in the C program. In this case the microcontroller allows around 300
variables. So, about 600 bytes of the data memory space will be used.

If the results of the data memory occupation are examined, it is easy to realize that
the memory constraints are not given by the size of the data memory. In both tests, the
number of necessary bytes to store these elements is less than the memory capacity. So, we
can reach the conclusion that the program memory is the cause of the constraints.

When the number of elements or the number of variables grows, the size of the
program also grows. Therefore, due to the fact that the size of the memory is really small
(only 8k bytes), this memory will be full before reaching the limit of the data memory.

Finally, one can conclude that regardless of the memory that causes the constraint,
the number of steps, transitions and variables is limited. AVR allows 32 steps, 32
transitions and about 300 variables, to be precise.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

33

5. COMMUNICATION JGRAFCHART – AVR
The second goal of this master thesis was the bidirectional communication

between the host machine, a PC running JGrafchart, and the target machine, the AVR
microcontroller. The on-line communication is necessary in order to provide animation of
the execution in the target on the host and to provide user interface possibilities from the
host to the target. RS-232 is used for the communication.

5.1. Communication Parameters

The RS-232 interface is used to communicate the host machine and the target
machine. The PC and the AVR board are joined through a standard null-modem cable
connected to the serial port.

In order to achieve a correct communication it is necessary to initialize the serial
port in the correct way. Parameters as baud rate, data bit format, number of stop bits or the
type of parity generation and parity check have to be configured in the same way in both
devices, the PC and the AVR. It means that the configuration has to be the same in the
Java and at AVR code side. The values chosen for these settings are:

• Baud Rate: 38400 bauds.

• Character size for data bit format: 8 bits.

• Parity mode: disable.

• Number of stop bits: 1 stop bit.

During the communication, it is often necessary to send multibyte numbers,
integers to be precise. This is the reason why we have to choose the order of the bytes that
are going to be sent. There are two possibilities: little endian and big endian. Little endian
means that the low order byte of the number is sent before the high order byte and this it’s
the way chosen to send the integers.

5.2. JGrafchart AVR Mode

As mentioned before, the communication between the devices provides the way to
display the execution that occurs in the AVR microcontroller on JGrafchart. To achieve
this goal, a new execution model in JGrafchart is created. This new mode, called AVR
Mode, allows the user to watch the execution of the model which he has loaded before in
the microcontroller, in JGrafchart. It is also possible to send down variable values from the
PC to the AVR.

The AVR Mode provides the possibility of configuring the rate that AVR uses to
send the status of the program to JGrafchart. This integer parameter named Send Rate is
configurable in the option “Workspace Properties”, see Figure 5.1. If the value of Send
Rate is 1, the microcontroller sends the information every cycle, if 2, each 2 cycles and so
on.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

34

The animation provided by this mode includes both the steps and the variables. In the
first case, a token moves around in the graph showing the state in which the execution is in
each moment. Concerning the variables, two possibilities exist. The normal case is that the
value of a variable is displayed in the corresponding variable object in JGrafchart during
the execution of the program. However, it is also possible to define special AVR-variables.
For AVR-variables the current values are not sent periodically from AVR to JGrafchart.
Instead, JGrafchart sends an update message to the AVR whenever one of these variables
receives a new value in JGrafchart, e.g., through a step action in some other workspace or
by the user through a button. In this way it is possible to control the execution in the AVR
from JGrafchart.

Figure 5.1

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

35

5.3. Bidirectional Communication

The communication between the host and the target machine consists of two
different types or directions. In one direction, from AVR to JGrafchart, the sent
information is used by the Java program to animate the execution of the code down in
AVR. In the other direction it’s possible to send down variables values from JGrafchart to
AVR. Figure 5.3 shows the communication between the devices and the information sends
in both directions.

Figure 5.3

To establish the communication, the AVR microcontroller provides an Universal
Synchronous and Asynchronous serial Receiver and Transmitter (USART) that allows the
serial communication between the AVR and an external device. In the same way Java
provides the Java Communication API that contains support for RS232 serial ports.

5.3.1. Establish communication
The first step in the communication is to establish all the communication

parameters in both the AVR code and the Java program (JGrafchart)

USART Initialization

The USART has to be initialized before any communication. The initialization
process consists of setting the baud rate, setting the frame format, and enabling the
transmitter or the receiver.

RS232

AVRVariables

Variables value
Steps status

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

36

The Universal Synchronous and Asynchronous serial Receiver and Transmitter
accepts all 30 combinations of the following as valid frame format: serial frames with 5, 6,
7, 8 and 9 data bits, 1 or 2 stop bits, 1 start bit and no, even or odd parity bit. These
parameters of the communication are set through the register USART Control and Register
C (UCSRC):

UCSRC= 0x86;
Writing this value in this register, the communication parameters asynchronous

operation mode, no parity bit, 1 stop bit and a character size of the frame of 8-bits are
configured.

The configuration of the baud rate is generated by using the USART Baud Rate
Registers (UBRRL and UBRRHs) settings. With two parameters, the Oscillator Frequency
and the value of the bit U2X, it is possible to select the baud rate by writing the UBRRL
register with the proper value. For a clock frequency of 14.7456 MHz and the double
USART transmission speed disabled (U2X=0), the UBRR registers have to be written in
the following way to set the baud rate as 38400 bauds.

UBRRH = 0x00;
UBRRL = 23;

JAVA Communication API

The Java Communication API is centered on the class CommPort. This class
describes the methods for controlling I/O that are common to different kinds of
communication ports. In addition, this class provides general methods for receiving and
sending data from and to the communication port. The class SerialPort is a subclass of
CommPort that includes methods for low-level control of serial port. Another Java Class is
used, CommPortIdentifier. This class is the central class for controlling access to the
communication port.

First, the application uses methods in CommPortIdentifier to negotiate with the
driver to discover which communication ports are available and the select a port for
opening. It then uses methods in the CommPort and SerialPort classes to communicate
through the port.

To create the connection a new private class called SerialPortReader is created in
the class GCDocument. The interface of this class is the following:

private class SerialPortReader{
CommPortIdentifier portId;
Enumeration portList;
InputStream is;
OutputStream os;

 SerialPort serialPort;

public SerialPortReader();
}

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

37

The steps to make the connection are performed in the class constructor public
SerialPortReader():

1. Choose a port. It is necessary to know what ports are available on the computer. The
method CommPortIdentifiers.getPortIdentifiers() returns a ports list.

2. All the ports are traversed looking for the proper port. The name and the type of the port
have to be checked. For this purpose methods of the class CommPortIdentifiers are
used:

portId.getPortType () == CommPortIdentifier.PORT_SERIAL
portId.getName ().equals ("/dev/ttyS0")

3. Open the port.

serialPort = (SerialPort) portId.open ("Reader", 2000)

4. Set the serial communication parameters to their proper values.

serialPort.setSerialPortParams(38400, SerialPort.DATABITS_8,
SerialPort.STOPBITS_1, SerialPort.PARITY_NONE)

5. Construct the objects to read and write to the serial port by calling the methods of the
SerialPort object:

is = serialPort.getInputStream();
os = serialPort.getOutputStream();

With these actions, the program is ready to read and write using the serial port

/dev/ttS0 with the communications parameters mentioned in Section 5.1. When the
communication has finished, it is important to remember to close the communication using
the method CommPort.close().

5.3.2. From AVR to JGrafchart
The main goal of the information sent in this direction of the communication is to

animate the execution of the code down in AVR. The animation consists of updating the
values of the variables and the step status, a token that moves around in the JGrafchart
graph.

The AVR microcontroller sends the step status and variables at the beginning of
the execution cycle. It is important to mention that it is not necessary to send any
identification for steps and variables because the order in which this information is sent is
always known. During the code generation, the steps and the variables are stored in two
vector structures in the same order that they will be sent by the AVR code. Then, using
these vectors and knowing the number of steps and variables that are going to be sent it is
not necessary to include the variable or step identifiers in the information being sent, and
still JGrafchart will perform the animation correctly.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

38

Data Format

• Steps. For each step it’s only necessary to send one bit indicating if the step is
active or inactive. The minimum size sent is a byte, 8 bits, so a byte is sent also
when the number of steps is less than 8. For example, for a JGrafchart program
with 11 steps 2 bytes are sent:

Byte 0
S7.x S6.x S5.x S4.x S3.x S2.x S1.x S0.x

Byte 1

 S10.x S9.x S8.x

• Variables. All the variables, integer or boolean, are stored as 2 bytes. So each
variable to be sent is represented as 2 bytes. As mentioned before, the order of
these bytes is little endian; we send the low byte before the high byte.

AVR Data Transmission

The AVR program sends the step status and variables values at the beginning of
each cycle as indicated by the sendRate parameter in the AVR Mode using the AVR
USART Transmitter. The USART Transmitter is enabled by setting the Transmit Enable
(TXEN) bit in the UCSRB Register.

The transmit function used is based on polling of the Data Register Empty (UDRE)
flag in the UCSRA Register:

void send(char data){
 while ((UCSRA & 0x20)==0){}
 UDR=data;
 while ((UCSRA & 0x20)==0){}
}

The function simply waits for the transmit buffer to be empty by checking the
UDRE Flag, before loading it with new data to be transmitted. The function sends each
time a char. It means that only one byte is sent each time the function is called.

When it is time to send the step status and variables values, the function is called
once a byte has to be sent. Both the variables and the steps are stored in a vector, the steps
in a vector of char (one byte per position) and the variables in a vector of int (2 bytes per
position). These vectors are updated at the end of the cycle and are sent at the beginning of
the next cycle in the following way:

• Vector declaration

char steps[100];
int variables[100];

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

39

• Sending vectors

if(it’s time to send){
 for (int h=0;h<size(steps);h++)
 send(steps(h));
 for (int k=0;k<size(variables);k++){
 send((char)variables[k]&&0xFF); //Low byte
 send((char)(variables[k]>>8)& ~(~0<<8)); //High byte

}
}

JGrafchart Data Reception

JGrafchart receives the step status and the variables values and updates the
graphics. It displays a token in the step or steps that are active and displays the value of the
variables.

The communication is implemented through a Java Thread. The Thread API
requires a method called run() to do the body of the work for the thread and calls the
method of the thread start() to start it running independently. In JGrafchart a new Thread
subclass called SerialPortReaderThread is created. The interface of this class is:

public class SerialPortReaderThread extends Thread{
InputStream is;
OutputStream os;
SerialPort pt;

public SerialPortReaderThread(InputStream input, OutputStream

output, SerialPort sp);
public void run();
public void sendVariable(int id, int value);

}

The data reception is implemented in the method run() of the new subclass. This
method receives the bytes in the InputStream is from the class SerialPortReader, interprets
these values and updates the graph. As mentioned before, it is not necessary with any
identification of the steps or variables. This is possible due to the information updated by
the part of code generation. The number of steps, number of variables and order in which
these values will be sent by AVR are provided during the code generation. This function
updates these parameters and then these values are available during the data reception.

Once the identification of one received value is completed, the methods provided
by the classes GCStep, IntegerVariable and BooleanVariable are used to place the token in
the correct step and set the variable value to an integer or boolean.

When the AVR Mode is activated and begins the execution in JGrafchart, the
method start() of the SerialPortReaderThread is executed and the Java Virtual Machine
calls the run () method of this class.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

40

if (AVRMode) {
 SerialPortReader p = new SerialPortReader();
 serialReader = new SerialPortReaderThread(p.is,p.os,p.serialPort);
 serialReader.start();
}

At the moment the application begins the execution in AVR Mode, the program
creates a new object of the class SerialPortReader to open the connection with the serial
port and waits for new data.

5.3.3. From JGrafchart to AVR
 JGrafchart sends of the values of AVR-variables to the AVR. The AVR program

receives the values to update these variables. AVR-variables are represented with the
prefix AVR preceding the name of the variable:

JGrafchart sends these variables to AVR when they change their value. This value
can be changed by the user through a button, a step action or using the GUI options. When
the microcontroller receives these variables, it does not send the value in the other
directions. As a result of this property the AVR variables are not showed in the JGrafchart
animation.

These variables can be sent in any moment during the execution of the program
and without any preestablished order. The modification of variables is totally
asynchronous. So, it is necessary to send identification before any variable in order to
identify which variable is being modified by JGrafchart and then, which variable have to
be updated by the AVR program. The identification for both integer and boolean variables
is an integer value.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

41

Data Format

The necessity of identifying the variables to be sent implies that the number of
bytes in the communication increases. For each variable, it is necessary to send three bytes,
the first one to identify the variable in the target machine and the following two contain the
new value of this variable:

AVRVariable (ID) Low Byte High Byte

The low order byte of the variable value is sent before the high order byte so the
byte order is little endian.

JGrafchart Data Transmission

JGrafchart have to send the new AVR variable value each time the variable
changes its value During the code generation, each time an AVR variable is detected, the
reference to this variable is stored in a vector. The position of the variable in this vector is
used to generate the identification for it. This id number is the parameter given to the
function sendVariable.

The function sendVariable (int id, int value) of the class SerialPortReaderThread
is the function responsible for writing the data to the serial port. The method is called every
time JGrafchart detects a change in an AVR variable. There are two methods, one per type
of variable, that are executed:

• For integer variables, the method setStoredIntAction() belongs to the class
IntegerVariable

• setStoredBooleanAction() if the AVR variable is a boolean variable.

These methods are responsible for calling the sendVariable(int id, int value)
function with the proper parameters, the index in the references vector to identify the
variable and the new value of this variable.

AVR Data Reception

AVR receives the AVR variables and updates their values. For this purpose, the
AVR USART Receiver is used. It is enabled by setting the Receive Enable (RXEN) bit in
the UCSRB Register. Besides, the USART Receiver has one flag that indicates the
Receiver state. The Receive Complete (RXC) Flag indicates if there are unread data
present in the receive buffer. When the Receive Complete Interrupt Enable (RXCIE) in
UCSRB is set, the USART Receive Complete Interrupt will be executed as long as the
RXC Flag is set. This interrupt and its associated handler will be used to receive the
characters from the serial port; the AVR receives an interrupt every time a new byte is read
from the serial port. The interrupt handler is responsible for waiting for the three bytes

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

42

corresponding to the identification and the value, for identifying the received variable and
for updating the variable value.

SIGNAL(SIG_UART_RECV){
static int cc=0;
static char variablesJG[3];
cc++;
variablesJG[cc-1]=UDR;
if (cc==3){

cc=0;
int id=(int)variablesJG[0];
if(id==0)

AVRInt= ((int)variablesJG[1]&0xFF)+
(((int)variablesJG[2])<<8);
if(id==1)

AVRBool=
((int)variablesJG[1]&0xFF)+(((int)variablesJG[2])<<8);

}
}

This code shows an example of the SIG_UART_RECV interrupt handler included
in an AVR program that has two AVR variables, one named AVRInt and one named
AVRBool. Before the identification, it waits until three bytes have been received. Then, it
checks the first byte of the data frame and updates the variable associated with this id
number. After that, the code waits for another three byte frame.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

43

6. EXAMPLE

6.1. JGrafchart Program

This is a simple example that includes all the elements in the code generation. All
the types of actions qualifiers, one instance of each IO variable and all the possible
variables are present. The AVR variables are modified by an action button. The integer
AVR variable are modified through the button called AVRInt ++ and the action associated
with it increments the value of the variable by one, each time the button is pushed. The
other AVR variable, AVRBool, is also modified by a button. In this case the action
associated with the button sets the boolean variable to true. As was mentioned in the
chapter describing the communication, the value of these variables is not showed in the
graphics during the execution. The reason for this is that these values are not sent from the
microcontroller to JGrafchart.

Concerning the analog IO, there are two analog IO variables: one for input and one
for output. During the execution of step S2, the value from the channel 1 is being pulled,
when the value is greater than the value indicated in the transition, the transition is fired
and the step S4 is activated. Immediately before this step is deactivated, the same value
that was received from the input is put in the output.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

44

6.2. AVR Program

SIGNAL(SIG_ADC){
 static unsigned channel=0;
 short readed;

 readed = ADCL | (ADCH<<8);

 if (channel==0){
 AIn=readed; //ADC3
 }

 channel = (channel + 1)%4;
 ADMUX = (0xC0) | (channel);

 ADCSRA=0xEF;
 }

#include <avr/io.h>
#include <avr/signal.h>
#include <avr/interrupt.h>

#define true 1;
#define false 0;

const double h = 40;
const double sendRate=1;

struct step{

int x, newx, t;
};

struct transition{

int markedforfired;
};

struct step S0={1,1,0};
struct step S2={0,0,0};
struct step S3={0,0,0};
struct step S1={0,0,0};
struct step S4={0,0,0};

struct transition TR0={0};
struct transition TR1={0};
struct transition TR2={0};
struct transition TR3={0};

volatile int bit=true;

volatile int Bool = false;
volatile int Int = 0;
volatile int AVRBool = false;
volatile int AVRInt = 0;

int DInInverse = true;
int DOut = false;
int DOutInverse = false;
int DIn = false;
volatile int AIn=0;
int AOut=0;

Header files avr-libc
standard library

Execution and
communication parameters
taken from JGrafchart

Definition of struct
variables for steps and
transitions

Declaration and
initialization of steps and
transitions

Declaration and
initialization of variables.
Both, AVR variables and
normal variables

Declaration and
initialization of IO
variables. Both, input
variables and output
variables.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

45

SIGNAL(SIG_ADC){

static unsigned channel=0;
short readed;
readed = ADCL | (ADCH<<8);

 if (channel==3){

AIn=readed; //ADC3
}
channel = (channel + 1)%4;
 ADMUX = (0xC0) | (channel);

 ADCSRA=0xEF;
 }

SIGNAL(SIG_OVERFLOW0){

static int i=0;
 int a=h*7.2;

 i++;
 if (i==a){
 bit=true;
 i=0;
 }
}

SIGNAL(SIG_UART_RECV){
 static int cc=0;
 static char variablesJG[3];

 cc++;
 variablesJG[cc-1]=UDR;
 if (cc==3){

 cc=0;
 int id=(int)variablesJG[0];
 if(id==0)

AVRBool= ((int)variablesJG[1]&0xFF)+
((int)variablesJG[2])<<8);

 if(id==1)
AVRInt= ((int)variablesJG[1]&0xFF)+
(((int)variablesJG[2])<<8);

 }
}

void send(char c){
 while ((UCSRA & 0x20)==0){}
 UDR=c;
 while ((UCSRA & 0x20)==0){}
}

SIG_ADC Interrupt
handler. Read analog
input AIn, connected to
pin PC3 (ADC3)

SIG_OVERFLOW0
Interrupt handler.
Periodic execution

SIG_UART_RECV
Interrupt handler.
Receive the values
for the AVR
variables from the
serial port.

Function send (char c)
Send a byte to the serial
port

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

46

int main() {

 char steps[32];
 int variables[350];
 int ii=0;

 Int=1;

 ADMUX=0xC0;
 ADCSRA=0xEF;

UCSRA=0x00;
 UCSRB=0x98;
 UCSRC=0x86;
 UBRRH=0x00;
 UBRRL=23;

DDRB=0x3F;
 DDRC=0x30;

 TCCR0=0x02;
 TCNT0=0x00;
 TIMSK=TIMSK | (1<<0);

 TCCR1A=0xA3;
 TCCR1B=0x09;

sei();
 while(1){

while(!bit) {
 ; //Busy wait
 }
 bit=false;

 ii++;
 if(ii==sendRate){
 int h;
 for(h=0;h<1;h++){
 send(steps[h]);
 }
 int y;
 for(y=0;y<2;y++){
 send((char)variables[y]&0xFF);
 send((char)(variables[y]>>8)& ~(~0<<8));
 }
 ii=0;
 }

Enter action Inicial Step

Configuration Analog
Digital Converter

USART configuration

Configuration Output
Ports

TIMER0 and TIMER1
Configuration

Code to send steps
status and
variables value

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

47

DInInverse= (PIND & BV(PIND3));
DIn= !(PIND & BV(PIND2));

 if (S0.x && (DIn)) {

TR0.markedforfired = true;
 }
 if (S1.x && (!DInInverse)) {

TR1.markedforfired = true;
}
 if (S2.x && S3.x && ((Int > 512) & (Bool))) {

TR2.markedforfired = true;
 }
if (S4.x && ((AVRBool) | (AVRInt > 5))) {

TR3.markedforfired = true;
}

 if (TR0.markedforfired) {

TR0.markedforfired=false;
 S0.newx = false;
 Bool=0;

S1.newx = true;
}
 if (TR1.markedforfired) {

TR1.markedforfired=false;
S1.newx = false;

 DOut=0;
 S2.newx = true;

S3.newx = true;
 Bool=1;

 }
 if (TR2.markedforfired) {

TR2.markedforfired=false;
 S2.newx = false;
 AVRInt=0;
 S3.newx = false;
 AVRBool=0;
 S4.newx = true;

}
if (TR3.markedforfired) {

TR3.markedforfired=false;
S4.newx = false;

 AOut=Int;
 S0.newx = true;
Int=1;

 }

Read digital
inputs Din
(PD2) and
DInInverse
(PD3)

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

48

if ((S0.x) && (S0.newx)) {

 DOut=1;
}
 if ((S2.x) && (S2.newx)) {

 Int=AIn;
}
 if ((S1.x) && !(S1.newx)) {

DOutInverse=false;
}
else {

 if (S1.newx){
DOutInverse=true;

 }
 }

 S0.t = (S0.t + S0.x) * S0.x;

 S2.t = (S2.t + S2.x) * S2.x;
 S3.t = (S3.t + S3.x) * S3.x;
 S1.t = (S1.t + S1.x) * S1.x;
 S4.t = (S4.t + S4.x) * S4.x;

 S0.x = S0.newx;
 S2.x = S2.newx;
 S3.x = S3.newx;
 S1.x = S1.newx;
 S4.x = S4.newx;

Write outputs. Digital: DOut (PC4) and DOutInverse(PC5). Analog:
AOut(PB1)

PORTC= (PORTC & (~(1<<4)) | (DOut ? (1<<4):0));
 PORTC= (PORTC & (~(1<<5)) | (DOutInverse ? 0:(1<<5)));

OCR1A = AOut;

 int i;
 for (i=0;i<1;i++)
 steps[i]=0;

 variables[0]=Bool;
 variables[1]=Int;

 steps[0] |=(S0.x<<0);
 steps[0] |=(S2.x<<1);
 steps[0] |=(S3.x<<2);
 steps[0] |=(S1.x<<3);
 steps[0] |=(S4.x<<4);

}
}

Periodic actions of
steps S0 and S2

Normal action of
step S1

Update state steps:
time and status

Update the
communication
vectors: variables and
steps

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

49

7. IMPROVEMENTS AND FUTURE DEVELOPMENT

7.1. Improvements

• Code optimization. As was mentioned in the chapter 4.4 the AVR memory is
really small. The memory space which causes the main problem is the program
memory space. So, a proper code optimization can achieve a smaller program
and then make it possible to execute programs containing more.

• Once the C program has been generated, the user has to compile and load the C
program using a makefile. It could be possible to add an option in JGrafchart that
compiles and load automatically the obtained program. The compilation errors or
loading problems could be shown to the user if they exist.

• The animation of the execution is showed in the JGrafchart program. This
animation includes steps and variables value. However, the transitions and the IO
variables are not included in the animation.

• Generate code for actions method call. This is only possible if there exists an
equivalent function in the avr-libc.

7.2. Future Development

• The code generator only generates code for the JGrafchart basic elements. Code
for macro steps could be implemented.

• In the present function, the generated code includes all the code relating to
communication. Two versions of C code generation could be created: one
without the communication code and other with the complete code. The first one
that not includes all the code relative to the communication could be used to
program the AVR exclusively.

• Add the possibility of generating code for more devices. Create a new Java class
with the functions responsible of the code generation. So, in this way it is easier
to replace the created class with other that generated the code for other device.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

50

8. SUMMARY AND CONCLUSIONS
The development performed as a part of this master thesis adds to JGrafchart an

extra feature: programming an ATMEL AVR microcontroller though a graphical language
and the possibility to show the execution that takes place in the processor in JGrafchart. It
also provides user interface possibilities to modify variables.

The result of the work is a C program that can be compiled and then downloaded
to the microcontroller using the avr-gcc compiler. So, all the difficulties relating to low-
level programming are removed. The program obtained runs in the AVR following the
same execution model as JGrafchart.

A new execution model is added to JGrafchart. In this model the state of the
program and the variables value can be followed directly in the graphical model, during the
execution in the device.

Not all the features of JGrafchart can be transfer to the AVR. So, the programs
developed in JGrafchart have to match the capacities that the microcontroller provides.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

51

9. REFERENCES
[1] Automatic Control Department Homepage. Lund Institute of Technology.
University

 http://www.control.lth.se

[2] ATMEL Homepage: Datasheets and documentation about the ATMega8.

 http://www.atmel.com

[3] Rich Nesswold, A GNU Development Environment for the AVR
Microcontroller, 2002.

[4] John Morton. AVR: an Introduction Course. First Edition. Newnes Publisher.
September 2002. IBSN: 0-7506-5635-2

[5] Claus Kuhnel. AVR RISC Microcontroller Handbook. Newnes Publisher. July
1998. ISBN: 0-7506-9963-9

[6] Ian Darwing, Java Cookbook. Second Edition. O’Reilly Press. August 2001.
ISBN: 0-596-00170-3

[7] Elliotte Rusty Harold. Java I/O. First Edition. O’ Really Press. March 1999.
ISBN: 1-56592-485-1

[8] John Zukowski. Programacion en Java2. First Edition. Anaya Multimedia.
December 1999. IBSN: 84-415-0948-4

[9] Java API Reference.

 http://java.sun.com

[10] Java Communication API Reference Documentation

 http://java.sun.com/products/javacomm/

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

52

APPENDIX I: REGISTER DESCRIPTION

A) Analog to digital converter

After the conversion is complete (ADIF is high), the conversion result can be
found in the ADC Result Registers (ADCL, ADCH). For single ended conversion, the
result is:

Vref
VinADC 1024*

=

where VIN is the voltage on the selected input and VREF the selected voltage
reference, in this case 2,56V.

ADC Multiplexer Selection Register – ADMUX

• Bit 7:6 – REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table I. If these
bits are changed during a conversion, the change will not go in effect until this conversion
is complete (ADIF in ADCSRA is set). The internal voltage reference options may not be
used if an external reference voltage is being applied to the AREF pin.

Table I

• Bit 5 – ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC
Data Register. Write one to ADLAR to left adjust the result. Otherwise, the result is right
adjusted. Changing the ADLAR bit will affect the ADC Data Register immediately,
regardless of any ongoing conversions.

• Bits 3:0 – MUX3:0: Analog Channel Selection Bits

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

53

The value of these bits selects which analog inputs are connected to the ADC. See
Table II for details. If these bits are changed during a conversion, the change will not go in
effect until this conversion is complete (ADIF in ADCSRA is set).

Table II

ADC Control and Status Register A – ADCSRA

• Bit 7 – ADEN: ADC Enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned
off. Turning the ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free
Running mode, write this bit to one to start the first conversion. The first conversion after
ADSC has been written after the ADC has been enabled, or if ADSC is written at the same
time as the ADC is enabled, will take 25 ADC clock cycles instead of the normal 13. This

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

54

first conversion performs initialization of the ADC. ADSC will read as one as long as a
conversion is in progress. When the conversion is complete, it returns to zero. Writing zero
to this bit has no effect.

• Bit 5 – ADFR: ADC Free Running Select

When this bit is set (one) the ADC operates in Free Running mode. In this mode,
the ADC samples and updates the Data Registers continuously. Clearing this bit (zero) will
terminate Free Running mode.

• Bit 4 – ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are
updated. The ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit
in SREG are set. ADIF is cleared by hardware when executing the corresponding interrupt
Handling Vector. Alternatively, ADIF is cleared by writing a logical one to the flag.
Beware that if doing a Read-Modify-Write on ADCSRA, a pending interrupt can be
disabled. This also applies if the SBI and CBI instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion
Complete Interrupt is activated.

• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the XTAL frequency and the
input clock to the ADC.

The ADC Data Register – ADCL and ADCH

ADLAR = 0

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

55

ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC Data Register is not updated until ADCH is read.
Consequently, if the result is left adjusted and no more than 8-bit precision is required, it is
sufficient to read ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX and the MUXn bits in ADMUX affect the way the
result is read from the registers. If ADLAR is set, the result is left adjusted. If ADLAR is
cleared (default), the result is right adjusted.

B) USART

USART I/O Data Register – UDR

The USART Transmit Data Buffer Register and USART Receive Data Buffer
Registers share the same I/O address referred to as USART Data Register or UDR. The
Transmit Data Buffer Register (TXB) will be the destination for data written to the UDR
Register location. Reading the UDR Register location will return the contents of the
Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the
Transmitter and set to zero by the Receiver. The transmit buffer can only be written when
the UDRE Flag in the UCSRA Register is set. Data written to UDR when the UDRE Flag
is not set, will be ignored by the USART Transmitter. When data is written to the transmit
buffer, and the Transmitter is enabled, the Transmitter will load the data into the Transmit
Shift Register when the Shift Register is empty. Then the data will be serially transmitted
on the TxD pin.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

56

The receive buffer consists of a two level FIFO. The FIFO will change its state
whenever the receive buffer is accessed. Due to this behavior of the receive buffer, do not
use Read-Modify-Write instructions (SBI and CBI) on this location. Be careful when using
bit test instructions (SBIC and SBIS), since these also will change the state of the FIFO.

USART Control and Status Register A – UCSRA

• Bit 7 – RXC: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared
when the receive buffer is empty (i.e. does not contain any unread data). If the Receiver is
disabled, the receive buffer will be flushed and consequently the RXC bit will become
zero. The RXC Flag can be used to generate a Receive Complete interrupt (see description
of the RXCIE bit).

• Bit 6 – TXC: USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been
shifted out and there are no new data currently present in the transmit buffer (UDR). The
TXC Flag bit is automatically cleared when a transmit complete interrupt is executed, or it
can be cleared by writing a one to its bit location. The TXC Flag can generate a Transmit
Complete interrupt (see description of the TXCIE bit).

• Bit 5 – UDRE: USART Data Register Empty

The UDRE Flag indicates if the transmit buffer (UDR) is ready to receive new
data. If UDRE is one, the buffer is empty, and therefore ready to be written. The UDRE
Flag can generate a Data Register Empty interrupt (see description of the UDRIE bit).
UDRE is set after a reset to indicate that the Transmitter is ready.

• Bit 4 – FE: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when
received (i.e., when the first stop bit of the next character in the receive buffer is zero).
This bit is valid until the receive buffer (UDR) is read. The FE bit is zero when the stop bit
of received data is one. Always set this bit to zero when writing to UCSRA.

• Bit 3 – DOR: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs
when the receive buffer is full (two characters), it is a new character waiting in the Receive
Shift Register, and a new start bit is detected. This bit is valid until the receive buffer
(UDR) is read. Always set this bit to zero when writing to UCSRA.

• Bit 2 – PE: Parity Error

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

57

This bit is set if the next character in the receive buffer had a Parity Error when
received and the parity checking was enabled at that point (UPM1 = 1). This bit is valid
until the receive buffer (UDR) is read. Always set this bit to zero when writing to UCSRA.

• Bit 1 – U2X: Double the USART transmission speed

This bit only has effect for the asynchronous operation. Write this bit to zero when
using synchronous operation. Writing this bit to one will reduce the divisor of the baud rate
divider from 16 to 8 effectively doubling the transfer rate for asynchronous
communication.

• Bit 0 – MPCM: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCM bit
is written to one, all the incoming frames received by the USART Receiver that do not
contain address information will be ignored. The Transmitter is unaffected by the MPCM
setting.

USART Control and Status Register B – UCSRB

• Bit 7 – RXCIE: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXC Flag. A USART Receive
Complete interrupt will be generated only if the RXCIE bit is written to one, the Global
Interrupt Flag in SREG is written to one and the RXC bit in UCSRA is set.

• Bit 6 – TXCIE: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXC Flag. A USART Transmit
Complete interrupt will be generated only if the TXCIE bit is written to one, the Global
Interrupt Flag in SREG is written to one and the TXC bit in UCSRA is set.

• Bit 5 – UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDRE Flag. A Data Register Empty
interrupt will be generated only if the UDRIE bit is written to one, the Global Interrupt
Flag in SREG is written to one and the UDRE bit in UCSRA is set.

• Bit 4 – RXEN: Receiver Enable

Writing this bit to one enables the USART Receiver. The Receiver will override
normal port operation for the RxD pin when enabled. Disabling the Receiver will flush the
receive buffer invalidating the FE, DOR and PE Flags.

• Bit 3 – TXEN: Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will
override normal port operation for the TxD pin when enabled. The disabling of the

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

58

Transmitter (writing TXEN to zero) will not become effective until ongoing and pending
transmissions are completed (i.e., when the Transmit Shift Register and Transmit Buffer
Register do not contain data to be transmitted). When disabled, the Transmitter will no
longer override the TxD port.

• Bit 2 – UCSZ2: Character Size

The UCSZ2 bits combined with the UCSZ1:0 bit in UCSRC sets the number of
data bits (Character Size) in a frame the Receiver and Transmitter use.

• Bit 1 – RXB8: Receive Data Bit 8

RXB8 is the ninth data bit of the received character when operating with serial
frames with nine data bits. Must be read before reading the low bits from UDR.

• Bit 0 – TXB8: Transmit Data Bit 8

TXB8 is the ninth data bit in the character to be transmitted when operating with
serial frames with nine data bits. Must be written before writing the low bits to UDR.

USART Control and Status Register C – UCSRC

• Bit 7 – URSEL: Register Select

This bit selects between accessing the UCSRC or the UBRRH Register. It is read
as one when reading UCSRC. The URSEL must be one when writing the UCSRC.

• Bit 6 – UMSEL: USART Mode Select

This bit selects between Asynchronous and Synchronous mode of operation (0
means Asynchronous and 1 Synchronous)

• Bit 5:4 – UPM1:0: Parity Mode

These bits enable and set type of Parity Generation and Check. If enabled, the
Transmitter will automatically generate and send the parity of the transmitted data bits
within each frame. The Receiver will generate a parity value for the incoming data and
compare it to the UPM0 setting. If a mismatch is detected, the PE Flag in UCSRA will be
set.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

59

• Bit 3 – USBS: Stop Bit Select

This bit selects the number of stop bits to be inserted by the transmitter. The
Receiver ignores this setting (USBS = 0 means 1 stop bit, USBS=1 2 bits)

• Bit 2:1 – UCSZ1:0: Character Size

The UCSZ1:0 bits combined with the UCSZ2 bit in UCSRB sets the number of
data bits (Character Size) in a frame the Receiver and Transmitter use.

• Bit 0 – UCPOL: Clock Polarity

This bit is used for Synchronous mode only. Write this bit to zero when
Asynchronous mode is used. The UCPOL bit sets the relationship between data output
change and data input sample, and the synchronous clock (XCK).

USART Baud Rate Registers – UBRRL and UBRRHs

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

60

• Bit 15 – URSEL: Register Select

This bit selects between accessing the UBRRH or the UCSRC Register. It is read
as zero when reading UBRRH. The URSEL must be zero when writing the UBRRH.

• Bit 14:12 – Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these
bit must be written to zero when UBRRH is written.

• Bit 11:0 – UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH
contains the four most significant bits, and the UBRRL contains the eight least significant
bits of the USART baud rate. Ongoing transmissions by the Transmitter and Receiver will
be corrupted if the baud rate is changed. Writing UBRRL will trigger an immediate update
of the baud rate prescaler

C) TIMER/COUNTER0

Timer/Counter Control Register – TCCR0

• Bit 2:0 – CS02:0: Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter.

Timer/Counter Register – TCNT0

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

61

The Timer/Counter Register gives direct access, both for read and write operations,
to the Timer/Counter unit 8-bit counter.

Timer/Counter Interrupt Mask Register – TIMSK

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is written to one, and the I-bit in the Status Register is set
(one), the Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is
executed if an overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the
Timer/Counter Interrupt Flag Register – TIFR.

D) TIMER/COUNTER1

Timer/Counter 1 Control Register A – TCCR1A

• Bit 7:6 – COM1A1:0: Compare Output Mode for channel A

• Bit 5:4 – COM1B1:0: Compare Output Mode for channel B

The COM1A1:0 and COM1B1:0 control the Output Compare Pins (OC1A and
OC1B respectively) behavior. If one or both of the COM1A1:0 bits are written to one, the
OC1A output overrides the normal port functionality of the I/O pin it is connected to. If
one or both of the COM1B1:0 bit are written to one, the OC1B output overrides the normal
port functionality of the I/O pin it is connected to. However, note that the Data Direction
Register (DDR) bit corresponding to the OC1A or OC1B pin must be set in order to enable
the output driver. When the OC1A or OC1B is connected to the pin, the function of the
COM1x1:0 bits is dependent of the WGM13:0 bits setting. Table III shows the COM1x1:0
bit functionality when the WGM13:0 bits are set to a normal or a CTC mode (non-PWM).

Table III

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

62

Table VI shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to
the fast PWM mode.

Table VI

Table V shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to
the phase correct or the phase and frequency correct, PWM mode.

Table V

• Bit 3 – FOC1A: Force Output Compare for channel A

• Bit 2 – FOC1B: Force Output Compare for channel B

The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-
PWM mode. However, for ensuring compatibility with future devices, these bits must be
set to zero when TCCR1A is written when operating in a PWM mode. When writing a
logical one to the FOC1A/FOC1B bit, an immediate Compare Match is forced on the
waveform generation unit. The OC1A/OC1B output is changed according to its
COM1x1:0 bits setting. Note that the FOC1A/FOC1B bits are implemented as strobes.
Therefore it is the value present in the COM1x1:0 bits that determine the effect of the
forced compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer
in Clear Timer on Compare Match (CTC) mode using OCR1A as TOP. The
FOC1A/FOC1B bits are always read as zero.

• Bit 1:0 – WGM11:0: Waveform Generation Mode

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

63

Combined with the WGM13:2 bits found in the TCCR1B Register, these bits
control the counting sequence of the counter, the source for maximum (TOP) counter value
and what type of waveform generation to be used, see Table VI. Modes of operation
supported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on
Compare Match (CTC) mode, and three types of Pulse Width Modulation (PWM) modes.

Table VI

Timer/Counter 1 Control Register B – TCCR1B

• Bit 7 – ICNC1: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise
canceller is activated, the input from the Input Capture Pin (ICP1) is filtered. The filter
function requires four successive equal valued samples of the ICP1 pin for changing its
output. The Input Capture is therefore delayed by four Oscillator cycles when the noise
canceler is enabled.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

64

• Bit 6 – ICES1: Input Capture Edge Select

This bit selects which edge on the Input Capture Pin (ICP1) that is used to trigger a
capture event. When the ICES1 bit is written to zero, a falling (negative) edge is used as
trigger, and when the ICES1 bit is written to one, a rising (positive) edge will trigger the
capture. When a capture is triggered according to the ICES1 setting, the counter value is
copied into the Input Capture Register (ICR1). The event will also set the Input Capture
Flag (ICF1), and this can be used to cause an Input Capture Interrupt, if this interrupt is
enabled.

When the ICR1 is used as TOP value (see description of the WGM13:0 bits
located in the TCCR1A and the TCCR1B Register), the ICP1 is disconnected and
consequently the Input Capture function is disabled.

• Bit 5 – Reserved Bit

This bit is reserved for future use. For ensuring compatibility with future devices,
this bit must be written to zero when TCCR1B is written.

• Bit 4:3 – WGM13:2: Waveform Generation Mode

See TCCR1A Register description.

• Bit 2:0 – CS12:0: Clock Select

Output Compare Register 1 A – OCR1AH and OCR1AL

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

65

Output Compare Register 1 B – OCR1BH and OCR1BL

The Output Compare Registers contain a 16-bit value that is continuously
compared with the counter value (TCNT1). A match can be used to generate an Output
Compare Interrupt, or to generate a waveform output on the OC1x pin. The Output
Compare Registers are 16-bit in size. To ensure that both the high and Low bytes are
written simultaneously when the CPU writes to these registers, the access is performed
using an 8-bit temporary High byte Register (TEMP). This temporary register is shared by
all the other 16-bit registers.

 Master Thesis
Code Generation from JGrafchart to ATMEL AVR

66

APPENDIX II: AVR IO PORTS
Each port pin consists of 3 Register bits: DDxn, PORTxn, and PINxn. The DDxn

bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one, Pxn
is configured as an output pin. If DDxn is written logic zero, Pxn is configures as an input
pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-
up resistor is activated. To switch the pull-up resistor off, PORTxn has to be written logic
zero or the pin has to be configured as an output pin. The port pins are tri-stated when a
reset condition becomes active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the
port pin is driven high (one). If PORTxn is written logic zero when the pin is configured as
an output pin, the port pin is driven low (zero).

The following table summarizes the control signals for the pin value.

