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Figure 1:  Kelly vehicle. 
 

1  INTRODUCTION 
 
The object of this work was first to find a controller that stabilizes a spe-
cific interconnected system, and then to do simulations to adjust the para-
meters and thus further optimize the performance. 
The specific case setup consists of six vehicles on The Caltech Multi- 
Vehicle Wireless Testbed (MVWT). Each vehicle (named Kelly vehicle) 
has a rectangular shaped form seen from above with two fans used to 
control its motion, see figure 1. The MVWT arena is a restricted flat 
rectangular surface of approximate dimension 6.7 m × 7.3 m. 
The task was to obtain and maintain the vehicles on a formation modelled 
in two dimensions, with the only information available to each vehicle j, 
being the distance to vehicle j - 1 and the distance to vehicle j + 1. 
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2  PRELIMINARIES 

2.1  MATRIX ALGEBRA 
The Kronecker product for two matrices A and B is defined as 
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For a set of N matrices } ..., ,{ 1 NMM  of size r × s, we define the direct 

sum as the Nr × Ns block diagonal matrix M̂  whose r × s diagonal blocks 
are the matrices NMM  ..., ,1  (in this order), and the other entries are zero, 
which we write as 
 

∑
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N

i
i

1

ˆ MM  

 
For a given N × N matrix Q, define a Nk × Nk matrix )(kQ  by the 
equation 
 

kk IQQ ⊗=)( , 
 
where kI  is the k × k identity matrix. So, we have simply replaced each 
element of Q by the same element times the k × k identity matrix. 

 

2.2  GRAPH THEORETICAL APPROACH TO OUR 
SYSTEM 
This chapter contains an explanation of graph theory and how it is con-
nected to the rest of this thesis. Most of the information comes from 
Gattami et al [1] and Fax et al [2]. 
Our system constitutes of six identical vehicles, all undergoing circular 
motion around the same point. Consider each vehicle as a dot in this 
section. Now if vehicle i can sense information from vehicle j, an arc 
directed towards vehicle i connects the vehicles. 
As already stated, for our case each vehicle can sense information from its 
two index-wise closest neighbours, i.e. vehicle 3 for instance can sense 
vehicle 2 and vehicle 4. 
The graph for our system can look like in figure 2. 
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Figure 2: System graph 

 

 
Figure 3: The weighted signal iz  

 
Each vehicle senses two neighbour vehicles. Now to make it easier to 
control the formation, we want these two sensed signals for each vehicle 
to be merged into one signal. We choose an equally weighted sum of the 
two signals to be our merged signal. Expressed in vectors we let the 
merged signal for vehicle i be represented by the mean value of the vector 
connecting vehicle i-1 with vehicle i, and the vector connecting vehicle 
i+1 with vehicle i. This merged signal iz  for vehicle i equals half the 
vector connecting vehicle i with a formation reference point, see figure 3. 
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We now have a graphical representation of our interconnected system. To 
be able to control the system we need a mathematical representation of our 
interconnected system: 
 
Let the dynamics for each vehicle i be described on state space form by 
 

BuAxx ii +=&  
 

ii Cxy =  
 
where iy  represents the 2D-spatial coordinates for vehicle i. From this, we 
want to extract our weighted measurement iz , which as already mentioned 
is the mean value of the vector connecting vehicle i-1 with vehicle i, and 
the vector connecting vehicle i+1 with vehicle i. Or mathematically: 
 

)(
2
1)(

2
1

11 +− −+−= iiiii yyyyz    

 
From (2) we can now build our interconnection matrix H, satisfying  

 
Hyz = : 
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This matrix is essential for this work, and is really the one thing that 
makes the work deviate from classical control. 
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Figure 4: The interconnected system. 

 

3  THE UNDERLYING MATHEMATICS 

3.1  PROBLEM SETUP 
This chapter contains a problem setup for the interconnected system used 
in this thesis. A lot of the stuff is taken from [1], which I recommend 
reading for a better understanding of interconnected systems. 
Consider our set of six identical plants, P(s), and its controllers, K(s). 
Since each plant possesses two fans and two spatial coordinates, P(s) has 
two inputs and two outputs. Now to get the correct dimension of the con-
troller, also K(s) has two inputs and two outputs. Let 
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i
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and 
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1
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Now consider the interconnected MIMO system given as in figure 4, 
where H(s) is the interconnection matrix function with proper dimensions. 
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To obtain stability we use a theorem from [1]: 
 
Theorem 1.     Z(s))(s)(UKU(s) ref −= ˆ  stabilizes the system 
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iff the Nyquist plot of 

 
               )]()()(det[ sKsPIn siλ+  

 
for each iλ  makes p anti-clockwise encirclements of the origin, where iλ , 
i=1..N, are the eigenvalues of H(s) and p is the number of unstable poles 
of 
 

)]()(det[ sKsPiλ . 

 

3.2  THE INTERCONNECTION MATRIX 
To find a K̂  that stabilizes the system, we first need expressions for P̂  
and H. We first look at H: 
 
The interconnection matrix was computed in 2.2 is repeated here: 
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The eigenvalues of this matrix are: 
 

01 =λ , 5.02 =λ , 5.03 =λ , 5.14 =λ , 5.15 =λ , 26 =λ . 
 
For our specific case: 
 

22n IHHH ⊗== )()( , 
 
because each vehicle has two spatial coordinates. 
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iZ  now equals an equally weighted sum of the distances from vehicle i to 
its index wise two closest neighbours. (This does not necessarily mean that 
those two vehicles are the spatially closest ones). 
 
This particular H is exactly the Laplacian matrix L, which originates in 
graph-theoretical aspects of the interconnection. For more information on 
the Laplacian see [2]. 
 

3.3  THE SYSTEM MODEL 
To achieve our P, in (1), we need to start examining physical equations 
that describe the dynamical behaviour of our vehicles. 
Basically, all the derivations and computations used for the actual 
dynamical behaviour of a Kelly vehicle, (in other words section 3.3 
excluding 3.3.2) were already known, and were taken right off from 
Cremean et al [3] and Gogh [4]. Here follows a brief summation of the 
system model equations and the thoughts behind.  
 
The simplified equations of motion (assuming perfect sensing and act-
uation, no delays, no disturbances, and linear friction) in cartesian coor-
dinates for the vehicle are listed in equation (2). See figure 5 for reference. 

 
θµ cos)( LR FFx      xm ++−= &&&    
θµ sin)( LR FFy      ym ++−= &&&                   (2) 

fLR rFF      J )( −+−= θϕθ &&&    
 

These equations include four physical parameters: the mass m, the mass 
moment of inertia J, and the linear and rotational viscous friction coef-
ficients µ and φ. The geometric parameter fr  is the distance between the 
centre of mass of the vehicle and each fan axis. x and y are the positional 
coordinates, θ is the orientation and RF  and LF  are the fan forces, see 
figure 5. 
 

3.3.1  Linearization. 
A linearization of equation (2) is not controllable around any of its 
equilibria. To achieve controllability, we can consider, for example, the 
error dynamics around a constant velocity and heading. That would give 
us a way to track a straight line path. However, because of the spatially 
constrained testbed, a more suitable vehicle motion would be tracing a 
circular path with a constant radius and a constant angular velocity. 
  



 10 

�

�� �� �

��

�
 

Figure 5:  Kelly vehicle in a cartesian coordinate system. 

 

 
Figure 6: Kelly vehicle in a polar coordinate system. 

 
 
Such motion is most easily analyzed when the model in equation (2) is 
written in polar coordinates (see figure 6): 

 
)cos()()( 2 βθµβ −++−=− LR FFr      rrm &&&&   

              )sin()()2( βθβµββ −++−=+ LR FFr      rrm &&&&&               (3) 

        fLRc rFFr      J )(2 −+−= θµθ &&&   
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A state vector suitable for this motion would be x, see below. A reference 
equilibrium state, rx  representing circular motion of constant radius ρ and 
angular velocity ξ&  is also described below: 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

θ
β

θ
β

&

&
&r

r

x ,  

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ξ
ξ

θξ
βξ
ρ

θ
β

θ
β

&

&

&

&

&

&

& 0
0

0

r

r

r

r

r

r

r

r

t
t

r

r

rx . 

 
Linearization of equation (3) around the reference state rx  results in the 
following system on state space form: 
 

BuAee +=&    (4) 
    CeYe = , 
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and 
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The actual linearization is not listed here, but is carried out in [4]. 
 

3.3.2  LQR Control. 
Using the notation in equation (1) we have for our particular system, for 
each vehicle: 
 

⎥
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=
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and 
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In order to make the formation controller s'K  “job easier”, more intuitive 
and also its structure more simple, we want each component of Z  to affect  
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Figure 7: A general interconnected system. 
 
 

 
Figure 8: LQR stabilized plant. 

 
only its corresponding component of Y . Now if we look at figure 7, how 
do we accomplish this goal? 
The way chosen here was to set )(sK  on the form 
 

)(sK  = ⎥
⎦

⎤
⎢
⎣

⎡
)(f0

0)(f

2

1

s
s

, 

 
where 1f  and 2f  are any arbitrary transfer function, and )0(P  on the form 
 

)0(P  = ⎥
⎦

⎤
⎢
⎣

⎡
10
01

.  (5) 

 
This should guarantee that each component of Z , at least in stationarity 
(after long time) only affects its corresponding component of Y. 
As a first step to achieve this, each plant described by equation (4) was 
stabilized with a LQR controller, LQRK , according to figure 8. 
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T is here calculated to have 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

e

er
βeY  

 
follow u statically and to have each component of eY  only be affected by 
its corresponding component of u in stationarity (i.e. to satisfy (5)): 
 

11 )))((( −−+−= BBKACIT LQR2  
 
u is the output of the formation controller K. 
 
The weight matrices used for the LQR were optimized for a radius of 2.0 
m and an angular velocity of - 0.2 rad/s, see appendix B computeKlqr. 
 
To conclude, the closed system from u to Ye is our P in section 3.1, see 
figure 2. It is straight forward calculations to calculate P because all the 
parts in figure 8 are known. The result is a 2 by 2 transfer matrix, (cal-
culations carried out by Matlab): 
 
P(s) = 
 
Transfer function from input 1 to output... 
              0.1414 s^4 + 1.253 s^3 + 6.065 s^2 + 6.665 s + 1.79 
 #1:  -------------------------------------------------------------------- 
      s^6 + 8.891 s^5 + 26.06 s^4 + 37.26 s^3 + 28.84 s^2 + 11.49 s + 1.79 
  
                   0.308 s^4 + 2.164 s^3 + 3.879 s^2 + 1.57 s 
 #2:  -------------------------------------------------------------------- 
      s^6 + 8.891 s^5 + 26.06 s^4 + 37.26 s^3 + 28.84 s^2 + 11.49 s + 1.79 
  
Transfer function from input 2 to output... 
                 0.1636 s^4 + 1.543 s^3 + 1.742 s^2 + 0.5532 s 
 #1:  -------------------------------------------------------------------- 
      s^6 + 8.891 s^5 + 26.06 s^4 + 37.26 s^3 + 28.84 s^2 + 11.49 s + 1.79 
  
              0.3564 s^4 + 2.708 s^3 + 5.285 s^2 + 4.829 s + 1.79 
 #2:  -------------------------------------------------------------------- 
      s^6 + 8.891 s^5 + 26.06 s^4 + 37.26 s^3 + 28.84 s^2 + 11.49 s + 1.79 

 
We right away see that this matrix fulfils 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

)0(P . 
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Figure 9: Our interconnected system. 

 

4  FINDING A FORMATION CONTROLLER 
 
Adding together all the different pieces from the previous section results 
in the block schematics for the interconnected system shown in figure 9. 
The following section contains a description of the Simulink model used 
throughout this work. For this, a K is needed. I will here list the controller 
used in the final version: 
 

2IK ⋅++= )
2
11( s
s

 

 
Simulations, stability and choice of K are treated in 4.2. 
 

4.1  THE SIMULINK MODEL 
The Simulink model SimForm and its two subsystems (VehicleSubsystem 
and Compute T) are on continuous form and are listed in figure 37-39 in 
appendix A. 
The model is very similar to the block schematics of figure 9, on all but 
two points: 
The first one being that the plant-, LQR-controller- and T-matrices vary 
with the reference radius and reference angular velocity in the Simulink 
model which gives a better approximation of the model in comparison to 
constant matrices that are only adequate at points close to the point of 
equilibrium. 
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Figure 10:   Figure 11: 

 
The second point being the internal angle θ. To be able to reproduce the 
position and direction of each vehicle at every time in the animation of a 
vehicle formation (see chapter 5), in addition to r and β, also θ needs to be 
continually stored to Matlab workspace. 
Three Matlab function blocks are used to compute the A-, B- and LQRK -
matrices at every sample point; ComputeA, ComputeB and ComputeKlqr. 
Their Matlab code is listed in appendix B. 
 

4.2  SIMULATION AND STABILITY 
Before a simulation can be executed, the m-file InitForm (appendix B) 
needs to be run. It sets start values for r, β and θ as well as regulator 
parameters. It also defines the interconnection matrix and the offset 
reference positions refZ . 

4.2.1  Simulation Case 1: Hexagon Formation. 
The initial conditions and refZ  used for all the simulations in 4.2.1 are set 
to the values in InitForm.m simulation case 1 (appendix B). A view of the 
vehicles in starting position is shown in figure 10 and a view of the 
vehicles in the sought after position described by refZ  is shown in figure 
11 (hexagon). 
Now to perhaps the most interesting part of this work, the choice of K. 
Remember what was said in 3.3.2; we want )(sK  on the form 
 

)(sK  = ⎥
⎦

⎤
⎢
⎣

⎡
)(f0

0)(f

2

1

s
s

, 

 
where 1f  and 2f  are any arbitrary transfer function. The most logical K to 
start off with seemed to be what can be compared to the standard propor-
tional controller in terms of a regular control system: 
 

2IK ⋅= K , 
  1=K     (6) 
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Figure 12: 5.0=λ  

 
 
seemed natural to start off with. 
To check for stability using this controller, theorem 1 is used. When 
checking the Nyquist diagram of  
 

)]()()(det[ 2 sKsPI siλ+ , 
 
P is the closed system transfer matrix from u to Ye, see figure 8. The 
values of iλ  were calculated in 3.2 and are repeated here: 

 
01 =λ , 5.03,2 =λ , 5.15,4 =λ , 26 =λ . 

 
So in essence there are only three Nyquist plots needed to be checked:  
 

5.0=λ , 5.1=λ  and 2=λ  
 
for each simulation case, because there are two double poles. For us to 
have stability each of the plots has to have a summation of zero en-
circlements of the origin, according to (1). 
The m-file that is plotting the Nyquist diagram is StabilTest.m see appen-
dix B. 
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Figure 13: 5.1=λ  

 

 
Figure 14: 2=λ  

 
 
 

The plots in figure 12-14 show no encirclement of the origin and we have 
stability. 
 
For each simulation case, the poles of the closed system transfer function 
 

( ) )()()()()()( 1
2 sKsPsKsPI ss ii λλ −+     

 
were calculated in Matlab for each iλ . Of course all of the poles have to 
be in the left half plane for stability. Only the result will be listed, not the 
actual poles. This was done to complement and verify the stability check 
using (1). 
 
Also worth mentioning is that plotting the Nyquist curves and calculating 
the poles required frequently usage of the Matlab commands zpk and 
minreal (see StabilTest.m). 
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Figure 15: P 

 
For the proportional controller (6), all of the poles were in the left half 
plane for each iλ , which is in agreement with the Nyquist plots. 
 
The result of a simulation using controller (6) is shown in figure 15. When 
analyzing the simulation results it helps to have figure 3 in mind, and to 
think of each iZ  described in polar coordinates (r, β). 
The large vertical lines depend on the fact that β is modulated by 2π. The 
outcome is surprisingly good, considering the simplicity of the controller. 
Remember the goal is a hexagon, so we want equal r’s and distributed, 
equally distanced β’s. 
There is indeed compensation in all of the r’s and β’s, while they however 
do not satisfy the stationary values set by refZ , i.e. there is in stationarity 
six different values of the r’s instead of one, and non equally distanced 
β’s. 
What is interesting is that this fulfils a common characteristic of the P-
controller of a regular system, i.e. some compensation but a stationary 
error. 
Now the next step to take in a regular control system when you are using a 
P-controller but are getting stationary error is to add an integrator part to 
the controller to get rid of the error (PI). So it seems a natural thing to try 
on our system as well: 
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Figure 16: 5.0=λ  

 
 

2IK ⋅+= )
sT

1K(1
i

 

 
Using 
 

1=K , 
(7) 

1=iT . 
 
results in a Nyquist plot shown in figure 16 for 
 

)]()()(det[ 2 sKsPI siλ+ , 
 
where 
 

5.0=λ . 
 

So what does this diagram tell us? There is a clear counter clockwise 
encirclement of the origin, which might lead one to conclude instability. 
However we don’t see the whole picture. The Matlab command Nyquist is 
simply not good enough to show what happens to the curve for small 
frequencies. We need to investigate what the curve looks like outside of 
the diagram. 
As we know, the Nyquist diagram is the result of mapping a curve C onto 
the actual transfer function, where C consists of a large semi-circle with 
infinite radius encircling the right half plane, a small semi-circle with 
infinitely small radius encircling the origin in the right half plane, and the 
positive and negative complex axes. Of these, the plot of the Nyquist 
command above shows the mapping of all parts of C but the small semi-
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circle. So we need to look closer on how the small semi-circle is mapped. 
The expression  
 

)]()()(det[ 2 sKsPI siλ+  
 

was calculated in Matlab and can for the values it takes on for the small 
semi-circle be approximated by 
 

2s
J , 

 
where J is a constant. The small semi-circle mapped on this function 
would then look like 
 

ϕier
J
22 ,   (8) 

 
where r is the radius of the small semi-circle and φ its argument. Let 
 

0→r , 
 

2
0

2
: ππϕ →→−  

 
Expression (8) is then a curve with infinite radius, and argument: 
 

ππϕ −→→− 0:2  
 

This corresponds to a circle with infinite radius directed in a clockwise 
manner. Applying this circle manually to figure 16 results in plot shown in 
figure 17. 
This curve encircles the origin once CCW and once CW so that the total 
number of encirclements of the origin is zero, and so 5.0=λ  does not 
contribute to instability.  
 
It turns out that the determinant 
 

)]()()(det[ 2 sKsPI siλ+  
 

can be described by 

2s
J  
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Figure 17: 5.0=λ  

 

  
                Figure 18: 5.1=λ           Figure 19: 2=λ  

 
 
on the small semi-circle for all the remaining cases treated in this thesis. 
Applying the “manual semi-circle” method on the cases 5.1=λ  and 

2=λ  yields the plots in figure 18 and 19. 
The 5.1=λ  case shows a zero net encirclement of the origin, and does not 
contribute to instability.The 2=λ  case on the other hand encircles the 
origin a total number of twice in the CW direction, which means the 
system is unstable for the controller (7). 
A check of the poles for the closed system using (7) shows four poles in 
the right half plane for 2=λ  and again we conclude: Using (7) yields an 
unstable system. 
A simulation result using the controller (7) is shown in figure (20) for 
demonstrative reasons (knowing the result will be unstable). 
 
We have to adjust our controller parameters, we try 
 

1=K , 
(9) 

2=iT . 
 
Again using the “manual semi-circle” method gives us the Nyquist curves 
in figure 21-23. 
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Figure 20: PI, 1=K  1=iT  

 

 
Figure 21: 5.0=λ  

 

  
Figure 22: 5.1=λ  

 

 
Figure 23: 2=λ  
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Figure 24: PI, 1=K  2=iT  

 
As we can see none of these curves have any net encirclement of the 
origin and we have stability using the controller (9). 
Calculating the poles for the closed system resulted in all poles being in 
the left half plane for all iλ , which verifies the result of the Nyquist plots. 
A simulation result using controller (9) is plotted in figure 24. The 
improvement is huge. The error is gone, we are however to some extent 
experiencing oscillations. 
 
To get a more damped system the obvious choice is to add a derivative 
part to our controller: 
 

2IK ⋅++= s)T
sT

1K(1 d
i

 

   
The derivative parameter dT  is set to 1 so that we have 

 
 1=K , 

       2=iT ,   (10) 
 1=dT . 

 
Looking at stability for this case, the Nyquist plots are shown in figure 25-
27. 
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Figure 25: 5.0=λ  

 

 
Figure 26: 5.1=λ  

 
 

 
Figure 27: 2=λ  

 
 

As we can see none of these curves have any net encirclement of the 
origin and we have stability using the controller (10). 
Calculating the poles for the closed system resulted in all poles being in 
the left half plane for all iλ , which verifies the result of the Nyquist plots. 



 26 

 

 
Figure 28: PID 

 
A simulation result using controller (10) is plotted in figure 28. This plot is 
showing no large drawback. We have stability, the error is gone, we have 
a well damped and fairly fast system. Also the controller (10) was the best 
combination of parameters I was able to find for the PID case. The result 
is satisfying and we settle with this controller. 

 

4.2.2  Simulation Case 2: “Hand of a Clock” Formation 
A different problem in terms of initial conditions and refZ  was considered: 
Here we start where we finished off in the previous experiment, i.e. six 
vehicles spread out on a circle with equal angular distances. The sought 
after formation is here a hand of a clock (of course circulating the origin at 
a constant angular velocityξ& ) of vehicles. (See InitForm.m simulation 
case 2 appendix B.) 
Using the PID regulator (10) (these controller parameters proved to be the 
best ones found also for this case) resulted in a simulation plot shown in 
figure 29.  
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Figure 29: PID 

 
Basically everything looks good; we have equally distributed r’s and equal 
β’s in stationarity. 
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Figure 30: Reference positions on Kelly vehicle used in AnimForm.m 

 

5  ANIMATING THE FORMATION DYNAMICS 
 
The file AnimForm.m (see appendix B) generates an animation of a 
specific simulation. Each vehicle is modelled as a 0.4 m side square, with 
two small squares of diagonal 0.1 m in two of the corners of each vehicle 
to represent the two fans, see figure 30. 
So how is it really done? Well the task was to make a film sequence of the 
vehicles changing formation. Simulink simulates this change of formation. 
Running the Simulink file SimForm.mdl stores each vehicle’s position and 
angle to Matlab workspace at a number of sample points. 
Now drawing all the vehicles at a given sample point gives us a momen-
tary picture of the formation at that point in time. Doing this for all the 
sample points in a sequence, starting at the first sample point, renders a 
film clip or an animation of a simulation.  
The actual drawing is done by the Matlab command fill. It draws the 2D-
polygon specified by the corner coordinates that you feed as input 
parameters to the command. Using fill one time to draw the vehicle and 
two more times to draw its fans, then repeating the procedure for the other 
five vehicles we get the whole picture. 
 
Here follows a description of the notation used in AnimForm.m: 
 
The local variables xref1(i,j) and yref1(i,j) correspond to the x- and y-
coordinates at sample point i for vehicle j at position ref1, while theta(i,j) 
denotes the internal angle at sample point i for vehicle j. 
The positions ref2 and ref3 correspond to two of the corners of the vehicle 
according to figure 30. 
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         Figure 31: t = 0     Figure 32: t = 5             Figure 33: t = 10 
 

   
        Figure 34: t = 15    Figure 35: t =20             Figure 36: t = 25 
 
“Before” and “after” shots of simulation case 1 taken from an animation 
using AnimForm.m is shown in figure 10 and figure 11. 
A series of shots forming a sequence for simulation case 2, “Hand of a 
clock” is shown in figure 31-36. 
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6  RESULTS AND FUTURE WORK 

6.1  RESULTS 
A controller was found that renders a stabile system, performing well in 
simulations. This controller K̂  , (see figure 4 for reference) looks like 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

K
K

K
K

K
K

K

00000
00000
00000
00000
00000
00000

ˆ , 

 
where each K represents a localized controller for each of the six vehicles: 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

PID
PID

K
0

0
, 

 
where the first PID controls the radius of its vehicle relative the two 
neighbour vehicles radii, and the second PID controls the positional angle 
of its vehicle relative the two neighbour vehicles positional angles. Each 
PID in turn equals 
 

s)T
sT

1K(1 d
i
++=PID , 

 
where 
 

1=K , 
2=iT , 
1=dT . 

 

6.2  FUTURE WORK 
I can think of a number of different topics for future work. If we at first 
restrict ourselves to the MVWT, i.e. the vehicles on a testbed in this work, 
there are a few things that come to mind: 
Simulating time delays, different kind of disturbances and motion different 
from circular. One can also try to make more accurate Simulink models, 
i.e. models that lie closer to reality. Building in collision avoidance would 
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be interesting. Theta (i.e. how each vehicle is directed around its own axis) 
controlling could be worth taking a look at, even though it is closely 
connected to beta (i.e. the angular position for each vehicle in a global 
coordinate system) in stationarity. 
Looking in a broader perspective, expanding the model to 3D-space 
describing for instance unmanned air vehicles or satellite systems is of 
course interesting. 
I think at this stage only your imagination sets a limit for what you can 
come up with for future work in this area. 
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APPENDIX A:  SIMULINK MODEL 

 
Figure 37: SimForm.mdl 

 
Figure 38: SimForm/Vehiclesubsystem 1 

 
Figure 39: Simform/VehicleSubsystem 1/Compute T 
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APPENDIX B:  M-FILES 
 
The physical parameter values used in the m-files are taken from the file 
lqr_circles.m by L. Cremean and B. Dunbar at Caltech, California used to 
gainschedule a Kelly vehicle. 
 
ComputeA.m:  
 
function [sys] = ComputeA(u); 
 
% physical parameters for new Kelly vehicle 
r_c = 0.108;    % distance from center of mass to caster, m 
m = 5.158;      % mass, kg 
J = 0.050;      % rotational moment of inertia, kg*m^2 
mu = 4.5;       % linear viscous friction coefficient, kg/s 
psi = mu*r_c^2; % rotational viscous friction coefficient, kg*m^2/s 
r_f = 0.123;    % lateral distance from ctr of mass to fan axis, m 
 
rho = u(1); 
xidot = u(2); 
         
A = [zeros(3) eye(3);... 
    [xidot^2   mu*rho*xidot/m -mu*rho*xidot/m; 0 xidot^2 -   xidot^2; 0 0 
0]... 
    [-mu/m 2*rho*xidot 0; -2*xidot/rho -mu/m 0; 0 0 -psi/J]]; 
 
sys = A; 
 
 

ComputeB.m: 
 
function [sys] = ComputeB(u); 
 
% physical parameters for new Kelly vehicle 
r_c = 0.108;    % distance from center of mass to caster, m 
m = 5.158;      % mass, kg 
J = 0.050;      % rotational moment of inertia, kg*m^2 
mu = 4.5;       % linear viscous friction coefficient, kg/s 
psi = mu*r_c^2; % rotational viscous friction coefficient, kg*m^2/s 
r_f = 0.123;    % lateral distance from ctr of mass to fan axis, m 
 
rho = u(1); 
xidot = u(2); 
alpha0 = atan(m*xidot/mu); 
        
B = [zeros(3,2)  
     -sign(xidot)*sin(alpha0)/m -sign(xidot)*sin(alpha0)/m  
     -sign(xidot)*cos(alpha0)/rho/m -sign(xidot)*cos(alpha0)/rho/m 
     r_f/J -r_f/J]; 
         
sys=B; 
 
 

ComputeKlqr.m: 
 
function [sys] = ComputeKlqr(u); 
 
% physical parameters for new Kelly vehicle 
r_c = 0.108;    % distance from center of mass to caster, m 
m = 5.158;      % mass, kg 
J = 0.050;      % rotational moment of inertia, kg*m^2 
mu = 4.5;       % linear viscous friction coefficient, kg/s 
psi = mu*r_c^2; % rotational viscous friction coefficient, kg*m^2/s 
r_f = 0.123;    % lateral distance from ctr of mass to fan axis, m 
 
rho = u(1); 
xidot = u(2); 
alpha0 = atan(m*xidot/mu); 
 
% LQR design 
Q = diag([10,10,3,4,4,2]); 
R = diag([1,1]); 
A = [zeros(3) eye(3);... 
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    [xidot^2   mu*rho*xidot/m -mu*rho*xidot/m; 0 xidot^2 -xidot^2; 0 0 
0]... 
    [-mu/m 2*rho*xidot 0; -2*xidot/rho -mu/m 0; 0 0 -psi/J]];    
B = [zeros(3,2)  
    -sign(xidot)*sin(alpha0)/m -sign(xidot)*sin(alpha0)/m  
    -sign(xidot)*cos(alpha0)/rho/m -sign(xidot)*cos(alpha0)/rho/m 
    r_f/J -r_f/J]; 
         
% Assume full state feedback - designed with rho = 2.0, xidot = -0.2. 
[Klqr,S,E] = lqr(A,B,Q,R); 
         
sys=Klqr; 
 
 

InitForm.m simulation case 1: 
 
% Initialize formation simulation 
clear; 
   
r_0_1 = 0.5; 
r_0_2 = 1.0; 
r_0_3 = 1.5; 
r_0_4 = 2.0; 
r_0_5 = 2.5; 
r_0_6 = 3.0; 
 
omega_ref = 0.2; 
 
beta_0 = 0; 
 
beta_0_1 = beta_0; 
beta_0_2 = beta_0; 
beta_0_3 = beta_0; 
beta_0_4 = beta_0; 
beta_0_5 = beta_0; 
beta_0_6 = beta_0; 
 
theta_0 = 0; 
 
theta_0_1 = beta_0_1; 
theta_0_2 = beta_0_2; 
theta_0_3 = beta_0_3; 
theta_0_4 = beta_0_4; 
theta_0_5 = beta_0_5; 
theta_0_6 = beta_0_6; 
 
% Regulator parameters. 
Kp=1; 
Ti=2; 
Td=1; 
 
% Interconnection matrix. Each vehicle senses the distances to its 
% two index-wise closest vehicles without any delay or disturbance 
% (the Laplacian). 
L=[1       -1/2       0           0        0       -1/2  
   -1/2    1          -1/2        0        0       0     
   0       -1/2       1           -1/2     0       0     
   0       0          -1/2        1        -1/2    0 
   0       0          0           -1/2     1       -1/2 
   -1/2    0          0           0        -1/2    1]; 
 
% Compute H kronecker I2 
HxIn=kron(L,eye(2)); 
 
% Parameter used in low pass filter 1/(1+w) 
w=0.001; 
 
% Offset reference position 
Z_r=[0 
    pi 
    0 
    0 
    0 
    0 
    0 
    0 
    0 
    0 
    0 
    -pi]; 
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InitForm.m simulation case 2: 
 
% Initialize formation simulation 
clear; 
r_0 = 2; 
   
r_0_1 = 1.0*r_0; 
r_0_2 = 1.0*r_0; 
r_0_3 = 1.0*r_0; 
r_0_4 = 1.0*r_0; 
r_0_5 = 1.0*r_0; 
r_0_6 = 1.0*r_0; 
 
omega_ref = 0.2; 
 
beta_0 = 0; 
 
beta_0_1 = 1*2*pi/6 + beta_0; 
beta_0_2 = 2*2*pi/6 + beta_0; 
beta_0_3 = 3*2*pi/6 + beta_0; 
beta_0_4 = 4*2*pi/6 + beta_0; 
beta_0_5 = 5*2*pi/6 + beta_0; 
beta_0_6 = 6*2*pi/6 + beta_0; 
 
theta_0 = 0; 
 
theta_0_1 = beta_0_1; 
theta_0_2 = beta_0_2; 
theta_0_3 = beta_0_3; 
theta_0_4 = beta_0_4; 
theta_0_5 = beta_0_5; 
theta_0_6 = beta_0_6; 
 
% Regulator parameters. 
Kp=1; 
Ti=2; 
Td=1; 
 
% Interconnection matrix. Each vehicle senses the distances to its 
% two index-wise closest vehicles without any delay or disturbance 
% (the Laplacian). 
L=[1       -1/2       0           0        0       -1/2  
   -1/2    1          -1/2        0        0       0     
   0       -1/2       1           -1/2     0       0     
   0       0          -1/2        1        -1/2    0 
   0       0          0           -1/2     1       -1/2 
   -1/2    0          0           0        -1/2    1]; 
 
% Compute H kronecker I2 
HxIn=kron(L,eye(2)); 
 
% Offset reference position 
Z_r=[-1.4 
    0 
    0 
    0 
    0 
    0 
    0 
    0 
    0 
    0 
    1.4 
    0]; 
 

StabilTest.m: 
 
clear; 
% System parameters: 
 
m=5.05;             % 5.05+-0.05 kg 
rf=0.123;           % distance between center of mass of vehicle and fan 
axis 
J=0.050;            % 0.050+-0.005 kg m2 
my=4.4;             % linear friction 3.3 .. 5.5 kg/s (different for each 
vehicle)  
                    % reference radius 0.1 .. 3 
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wr=0.2;             % reference angular velocity 0.1 .. 1 rad/s 
ny=0.0565;          % rotational friction 0.049 .. 0.064 kg m2/s 
rc=sqrt(ny/my);   
a0=atan(m*wr/my);   % internal angle 
rr=2; 
 
% System matrices: 
         
             A=[0       0           0             1        0        0 
                0       0           0             0        1        0 
                0       0           0             0        0        1 
                wr^2    my*rr*wr/m -my*rr*wr/m   -my/m     2*rr*wr  0 
                0       wr^2       -wr^2         -2*wr/rr -my/m     0 
                0       0           0             0        0       -
rc^2*my/J]; 
         
             B=[                    0             0 
                                    0             0 
                                    0             0 
                      sign(wr)/rr*[-rr*sin(a0)/m -rr*sin(a0)/m 
                                   -cos(a0)/m    -cos(a0)/m   ] 
                                    rf/J         -rf/J        ];          
 
             C=[1       0           0             0        0        0 
                0       1           0             0        0        0];  
             
Q = diag([10,10,3,4,4,2]); 
R = diag([1,1]); 
[K,S,E]=lqr(A,B,Q,R); % LQR controller used to stabilize the individual 
vehicles. 
 
rank([B A*B (A^2)*B (A^3)*B (A^4)*B (A^5)*B]); 
T=eye(2)/(C*((-A+B*K)\B)); 
 
G_cl=ss(A-B*K,B*T,C,0); % Reference radius och reference positional angle 
are the inputs 
P=zpk(G_cl); 
PP=tf(G_cl); 
s=zpk('s'); 
poles_of_stabilized_P=eig(G_cl); 
 
Kf=[1+1/2/s+s 0 
    0 1+1/2/s+s]; 
L=[1       -1/2       0           0        0       -1/2 
   -1/2    1          -1/2        0        0       0 
   0       -1/2       1           -1/2     0       0 
   0       0          -1/2        1        -1/2    0 
   0       0          0           -1/2     1       -1/2 
   -1/2    0          0           0        -1/2    1]; 
kron(L,eye(2)); 
lambda=eig(L); 
 
PKf=minreal(P*Kf); 
 
% Checking stability: 
temp=(eye(2)+lambda(6)*PKf); 
temp2=minreal(temp\(lambda(6)*PKf),1e-2); 
poles_of_intercon_sys=eig(temp2) 
length(poles_of_intercon_sys); 
determ=minreal(temp(1,1)*temp(2,2)-temp(1,2)*temp(2,1)); 
nyquist(determ); 
 
AnimForm.m: 
 
NmbrSamplePoints = length(simout_Y.signals.values(:,1)); 
xref1 = zeros(NmbrSamplePoints,6); 
yref1 = zeros(NmbrSamplePoints,6); 
theta = simout_theta.signals.values;  
 
for i=1:6, 
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    xref1(:,i) = simout_Y.signals.values(:,2*i-
1).*cos(simout_Y.signals.values(:,2*i)); 
    yref1(:,i) = simout_Y.signals.values(:,2*i-
1).*sin(simout_Y.signals.values(:,2*i)); 
end     
 
scale=max([max(max(xref1)) max(max(yref1))])+0.5; 
    
for i=1:NmbrSamplePoints,   
    clf; 
    axis([-scale scale -scale scale]); 
    hold on; 
    set(gca,'position',[0 0 1 1],'visible','off','nextplot','add'); 
      
    % Draw vehicles 
    for j=1:6,  
         
        xref2 = xref1(i,j)+0.2*sin(theta(i,j)+pi/4); 
        yref2 = yref1(i,j)-0.2*cos(theta(i,j)+pi/4); 
        xref3 = xref1(i,j)+0.2*cos(theta(i,j)+pi/4); 
        yref3 = yref1(i,j)+0.2*sin(theta(i,j)+pi/4); 
         
        fill([xref1(i,j)-0.2*cos(theta(i,j)+pi/4) xref2 xref3 xref1(i,j)-
0.2*sin(theta(i,j)+pi/4)],...  
            [yref1(i,j)-0.2*sin(theta(i,j)+pi/4) yref2 yref3 
yref1(i,j)+0.2*cos(theta(i,j)+pi/4)],j); % Vehicle 
        fill([xref2-0.1*cos(theta(i,j)) xref2 xref2-0.1*sin(theta(i,j)) 
xref2-0.1*sin(theta(i,j))-0.1*cos(theta(i,j))],...  
            [yref2-0.1*sin(theta(i,j)) yref2 yref2+0.1*cos(theta(i,j)) 
yref2+0.1*cos(theta(i,j))-0.1*sin(theta(i,j))],'black'); % Left fan 
        fill([xref3-0.1*cos(theta(i,j))+0.1*sin(theta(i,j)) 
xref3+0.1*sin(theta(i,j)) xref3 xref3-0.1*cos(theta(i,j))],...  
            [yref3-0.1*cos(theta(i,j))-0.1*sin(theta(i,j)) yref3-
0.1*cos(theta(i,j)) yref3 yref3-0.1*sin(theta(i,j))],'black'); % Right fan 
        
    end 
     
    pause(0.2); 
  
end     
 
 
 
 
 

APPENDIX C:  A MANUAL TO SIMULATIONS 
 
Below follows a list of what you have to do to run a simulation followed 
by a movie sequence: 
 
You first of all need to make sure that you have the following files in your 
Matlab directory: 
 
AnimForm.m, ComputeA.m, ComputeB.m, ComputeKlqr.m, InitForm.m 
and SimForm.mdl. 
 
Now type in a Matlab environment: 
 

>> edit InitForm  
 

Set the initial positions of the vehicles, the regulator parameters, the 
reference angular velocity and reference positions. Save. Type 
 

>> InitForm 
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Open the Simulink model by typing 
 

>> SimForm 
 

Adjust the length of a simulation in the menue Simulation/Simulation 
parameters. Start a simulation by Simulation/Start. Open the Scope block 
to monitor the simulation. Wait until the simulation is finished. 
To run a movie sequence type 
 

>> AnimForm 
 
 
 

 

 

 

 
 
 
 
 

REFERENCES 
 
[1] Ather Gattami and Richard M. Murray. A Frequency Domain Con-

dition for Stability of Interconnected MIMO Systems. In Proceedings 
of American Control Conference, 2004. 

[2] J. A. Fax, R. M. Murray. Graph Laplacians and Stabilization of 
Vehicle Formations. 15th IFAC Congress, Barcelona, Spain, 2002. 

[3] Lars Cremean, William Dunbar, David van Gogh, Jason Hickey, 
Eric Klavins, Jason Meltzer, Richard M. Murray. The Caltech Multi-
Vehicle Wireless Testbed. 2002 Conference on Decision and Control 
(CDC). 

[4] D. V. Gogh. Development of Linearized error dynamics. Unpub-
lished paper. 




