
ISSN 0280-5316
ISRN LUTFD2/TFRT--5757--SE

Greybox Identification and
Control Design with Dymola

Marco Bracci

Department of Automatic Control
Lund University
September 2005

Document name
MASTER THESIS
Date of issue
September 2005

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRNLUTFD2/TFRT--5757--SE
Supervisor
Sven Erik Mattsson at Dynasim in Lund
Anders Robertsson and Karl-Erik Årzén at Automatic
Control in Lund

Author(s)
Marco Bracci

Sponsoring organization

Title and subtitle
Greybox Identification and Control Design with Dymola (Gråboxidentifiering och Reglerdesign med Dymola)

Abstract
This Master Thesis has been done at the Department of Automatic Control, Lund Institute of Technology, and Dynasim
AB, in Lund. Dynasim develops the simulation software called Dymola (Dynamic Modeling Laboratory). With the
upcoming release 6, they have introduced the opportunity of interfacing their software with an optimization tool called
MOPS (Multi-Objective Parameter Synthesis). This work shows how the application of this new feature to Greybox
Identification and to the design of parameterized controllers subjected to some constraints on their performance, can
provide excellent results. The procedures requested to perform identifications or control designs are carefully explained,
step by step, with examples.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
95

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden Fax +46 46
222 42 43

Acknowledgments

I would like to begin saying that I’ve spent, in Sweden, one of the most beautiful

and interesting periods of my life. So I thank Sweden and its people to have

received me with their kindness in a marvellous place. I will miss Lund a lot...

Then I would like to thank the people which have helped me there. I will

start with all the people at Dynasim AB, the company where I’ve spent the

most of my studying time. I will never forget Sven-Erik (who helped me a

lot in every kind of matters with my work), Hilding (the boss who helped me

a lot, as well), Hans, Dag, José (with whom I spoke in Italian), Per, Jonas,

Mats, Hubertus and Jessica. They have been very kind to me.

After that, I would like to thank all the people at Control Department of

LTH for their courtesy and support. A special place in my memories belongs

to Dr. Anders Robertsson, for the continuous help and encouragement he gave

me in every situations. I would like to thank, then, Professor Rolf Johansson

for his kind welcome at LTH and for his precise supervising to my work.

Special thanks go to my Italian supervisors Professor Edoardo Mosca and

Ing. David Angeli which helped me a lot with the last matters of my work

when I came back to Italy.

I would like to thank, then, my old friends and the new friends I’ve met in

Sweden with which I’ve enjoyed my time there and I’ve learned a lot of new

things (“I learn, I learn, I learn” was my motto). Special thanks go to my

friend, flatmate, guru, and “stylist” Lorenzo and to my “little sister” Clara:

they encouraged me very much and we were a very nice group of friends in

Lund.

Finally, I would like to show my gratitude to my family. I’ve been able to

live this very interesting and beautiful experience only thanks to their contin-

uous support and efforts.

Contents

1 Introduction 4

2 Software 8

2.1 Modelica . 8

2.1.1 Overview . 9

2.1.2 Dymola . 12

2.2 MOPS . 14

3 Theory behind this work 16

3.1 Persistent Excitation . 17

3.1.1 Finite Impulse Response Model 17

3.1.2 Transfer Function Models 18

3.1.3 Other Methods . 19

3.1.4 Persistently exciting signals 20

3.1.5 Some remarks about Persistent Excitation 21

3.2 Identifiability . 23

3.3 Sensitivity . 24

4 Case Study 26

4.1 Furuta Pendulum . 26

4.1.1 Presentation of the System 26

4.2 Experiments . 27

4.2.1 Device . 27

4.2.2 Execution of the Measurements 30

4.2.3 Data Adjustments . 35

4.3 Choice of the Parameters . 36

1

Contents 2

4.4 Modeling . 39

4.4.1 Simple Mathematical Model (without Friction) 39

4.4.2 Linearized Model . 40

4.4.3 First MultiBody Model 41

4.4.4 Second MultiBody Model 44

4.5 Optimization . 46

4.5.1 Setting up the Optimization 46

4.5.2 Results for the First MultiBody Model 54

4.5.3 Results for the Second MultiBody Model 55

4.5.4 Comparison between the two Models 57

5 Control Design 65

5.1 Overview . 65

5.1.1 Simple Linear System . 65

5.1.2 Multi-Criteria Design . 67

5.1.3 Multi-Case Optimization 72

5.2 Case Study . 75

6 Conclusions 79

6.1 Comments . 79

6.2 Future Works . 81

A MoCaVa 82

B Used Dymola Classes 84

B.1 World . 84

B.2 Actuated Revolute Joint . 85

B.3 Rigid Body . 86

B.4 Bearing Friction . 86

B.5 Spring & Damper . 87

B.6 Angle Sensor . 87

B.7 Transfer Function . 88

B.8 PID . 88

B.9 Overshoot . 89

B.10 Settling Time . 89

Contents 3

B.11 Rise Time . 90

B.12 Pole-Placement Controller . 90

Bibliography 91

Chapter 1

Introduction

The Master Thesis that we are going to present here is the result of six months

of studies in Lund, Sweden. This work has been done at the Department of

Automatic Control, Lund Institute of Technology (Lunds Tekniska Högskola,

LTH) and Dynasim AB, the company that has developed Dymola (Dynamic

Modeling Laboratory), the simulation software that we have used all through

this project.

The subjects of this work are Modeling and Identification. A good descrip-

tion of the meaning of modeling and identification is given in [18] and it is

briefly reported subsequently.

Identification is the process of constructing a mathematical model of a dynam-

ical system from observations and prior knowledge.

A model can be used in a lot of different fields of science and technology: for

example scientific modeling helps to increase understanding of some mecha-

nism by finding the connections between observations relating to it. Modeling

is also used for Diagnosis of Faults and Inadequacies because of the eventuality,

using it, of discovering shortcomings and anomalies; another fields of applica-

tion are Simulation and Operator Training because it is generally more secure

and, above all, less expensive exploiting a simulator in place of a real device;

then it is often impossible, for diverse reasons, to have direct access to the real

system: the system could be too delicate (and performing experiments on it

could be too hazardous or expensive), not reachable (too far, too small, too

dangerous, etc...) or even it could be also possible that the system does not

4

CHAPTER 1. INTRODUCTION 5

just exist, yet: this is a common case in the design of prototypes where some

things must be tried before the actual construction of the object.

A curious and interesting fact that could happen during the study of models

is, without any doubts, Serendipity which is that phenomenon for which one

stumbles across something when looking for something entirely else: this often

happens in astronomy, where realizing mismatches between the behaviour of

the model and the behaviour of the real system, often makes it possible to

make discoveries.

However, above all, the important fact is that Modeling and Identification are

fundamental in our field of studies that is Automation. They are used for

Prediction that helps in feed-forward control1, where a disturbance is detected

early in its progress through the system and is fed forward, suitably shaped

and inverted, to cancel its effects further on; prediction is required also in self-

tuning control which recalculates the control input to the system periodically

by reference to a periodically updated prediction model of the effect of that

input. Another important role of modeling in automation is State Estimation

which is tracking variables which characterise some dynamical behaviour, by

processing observations afflicted by errors, wholly or partly random.

The main issue of modeling is, then, to build a model that behaves, as

much as it is possible, like the real system. Generally we have not a complete

knowledge of the system because it is often hard knowing all the physical re-

lations that the system has inside. Also having a deep cognition of it, that is

a cognition of all the main features, it is impossible to have a complete knowl-

edge of the “minor characteristics” such as frictions or less important physical

relations between the internal components, etc. So we can have different ap-

proaches to the matter of modeling, depending a lot on our knowledge of the

system: with a great cognition we could directly write the physical equations,

otherwise we could try to think to a possible structure of the system and build

some possible transfer functions. However it does not happen so frequently to

have all the required parameters of these relations, so we must find them in

some way. Here the theory of Parametric Identification gives help to us with

all its methods. This subject is divided in two different branches: Blackbox

Identification and Greybox Identification.

1also known as open-loop control

CHAPTER 1. INTRODUCTION 6

Blackbox Identification is applied to systems with a complex unknown in-

ner structure: for this kind of systems it is difficult to describe the relations

between their internal parts. In this situation it is unproductive to study

these parts and, instead, we consider it as a closed box2 and we think about a

probable a priori structure which we must find the parameters of.

For systems with a simple or a well known internal structure, instead, it

is utilized the Greybox Identification3: with this approach a so-called a priori

information about the system and the presence of random disturbances are

needed. The procedure begins in developing the models of the single system

components (whose equations are known or have been obtained studying them

as they were Blackbox systems) and the relations between them (these are the

above a priori information), then we try to find the values of the parameters

that we do not know through Calibration: it is for this task that disturbances

are important; actually their presences makes the calibration and validation

tasks different from a simple comparisons of the responses of model and system

to known inputs (see [2]).

In this thesis we use the Furuta Pendulum as a case study. For this process

we have a lot of a priori information and physical modeling can be used to

capture the dominating nonlinear dynamics. Greybox Identification has been

preferred to the Blackbox one: we have the a priori information, that is our

knowledge of the device components (bars and joints) and of the relations

between them; then we have also the required disturbances, that are frictions,

the only unknown parts of the system.

What we have done in this work is therefore, performing a Greybox Iden-

tification through a modeling software called Dymola. The usage of this soft-

ware is recommended for the opportunity of modeling by means of Modelica,

a object-oriented modeling language, and of its very convenient MultiBody

Library that permits to design models via a graphical user interface. Iden-

tification, then, has been made possible by the new upcoming feature of the

software, that is the opportunity of interfacing itself with the optimization tool

MOPS (Multi-Objective Parameter Synthesis). This has been used to min-

2the name comes just from the fact that in a black box one cannot see anything inside
3grey, in this case, means opaque: we have a box which we can see almost all in, except

for some “little” things

CHAPTER 1. INTRODUCTION 7

imize the difference between the behaviours of the analyzed system and our

model.

Moreover, it has been shown how the same tool can be used for the key

task of Automation, that is Control Design: this use is possible because of the

similarities between Greybox Identification and the design of a parameterized

control which we already know the structure of.

This thesis has the following outline: Chapter 2 introduces the softwares

that have been used for the identification, Chapter 3 regards the theory behind

this work and identification in general, Chapter 4 shows our case study and

Chapter 5 has examples about the usage of optimization in Control Design.

Finally, in the last chapter, there are comments and conclusions about this

work.

Chapter 2

Software

In this chapter we are going to make a brief introduction to the computer tools

which have been used for this work.

Modelica is an object-oriented modeling language that permits to model

complex systems with a reasonable easiness and velocity. The power of this

language is exploited through the software Dymola, a tool that first makes the

modeling even easier through the possibility of using Drag & Drop and then

it offers a complete environment for simulation and analysis of the system.

MOPS is a powerful optimization software which now has the possibility

to be interfaced to Dymola: this feature permits to this simulation software to

be used also for Model Calibration and Design Optimization.

2.1 Modelica

Modelica is a freely available object-oriented modeling language for large, com-

plex and heterogeneous physical systems. Its design was started in 1996 by

Hilding Elmqvist and a lot of developers have joined in this effort during the

years. Nowadays Modelica is developed and promoted by the Modelica As-

sociation [4], a non-profit, non-governmental organization that has its seat in

Linköping, Sweden.

Tools and environments have been presented to make easier the use of this lan-

guage and to capitalize its numerous capabilities; Dymola (see Chapter 2.1.2),

the software used in this thesis, is one of those.

8

CHAPTER 2. SOFTWARE 9

2.1.1 Overview

Modelica has a lot of interesting characteristics that suggest the utilization of

it.

One of the most important features of Modelica is the fact that this lan-

guage, differently from others, describes physical systems through equations

and not through algorithms. This feature is very convenient since it gives the

language a high level of abstraction, that means a more comprehensible and

easier way of using it: the user has only to write the equations characterizing

the system in their differential, algebraical or discrete forms, then there are

some tools which translate these equations into very efficient code; Dymola is

one of those.

An example, taken from [12], of what we have just said can be seen here be-

low, where a model of a simple LC-oscillator written in Modelica language is

shown:

model LC_oscillator

parameter SI.Capacitance C = 1;

parameter SI.Inductance L = 1;

SI.Voltage u;

SI.Current i;

equation

L*der(i) = u;

C*der(u) = -i;

end LC_oscillator;

The model declaration starts with the keyword model and the name of the

model, and ends with the keyword end and the name. Subsequently parameters

(using the keyword parameter) and variables1 are declared. At the end, after

the keyword equation we find all the equations that describe the system.

The major thing, however, is Reusability : Modelica is a an object-oriented

language which implies that a model is defined as a class, and so it can be

extended or just used, as an object, together with others to design a larger

1using the keyword parameter or constant a variable cannot be modified during the
simulation

CHAPTER 2. SOFTWARE 10

Figure 2.1: LC Oscillator

one. This is a very interesting and convenient fact because it means that, in

designing, we can use works done by others, without having the need to restart

everything from the beginning. For example, the model seen before could be

described in this new way:

model LC_oscillator

capacitor C1;

inductor L1;

equation

connect(C1.p, L1.n);

connect(L1.p, C1.n);

end LC_oscillator;

We can see that now our oscillator is composed by two other models connected

together: the one of the capacitor and the one of an inductor. The connection

is created in the equation section where the function connect() generates the

equations at the component pins.

The differential equations of the previous model are now part of the models of

the two components:

model capacitor

SI.Voltage u;

SI.Current i;

parameter SI.Capacitance C = 1;

CHAPTER 2. SOFTWARE 11

pin p;

pin n;

equation

C*der(u) = i;

u = p.u - n.u;

0 = p.i + n.i;

i = p.i;

end capacitor;

In this model there are two variables declared of pin type. pin is not a

model here, but it is defined as a connector, which is an entity that contains all

the quantities needed to describe connections between components: connectors

are connection interfaces between models. The declaration of a connector

starts with the keyword connector and ends with the keyword end both of

them followed by the name of the connector.

connector pin

SI.Voltage u;

flow SI.Current i;

end pin;

Being an object-oriented language, Modelica has also the feature of Inher-

itance that is the feature of extending the properties of a class. This feature

is very convenient because it enhances the possibilities of reusability and it

makes code thinner and then easier to understand and to maintain.

All these elements can be found in the Modelica Standard Library, a package

containing constants, types, connectors, partial models and model components

for various subject matters.

Another significant library, that has been used for this thesis, is the Multi-

Body Library. In [5] it is explained that this library helps the modeling of

multi body systems, that are systems of rigid bodies connected to each other

with certain degrees of freedom. A multi body system model consists of an

inertial system, joints, massless bars and bodies with mass, connected together

with the Modelica connect statement (see Figure 2.2). Every model must have

exactly one instance of the class Inertial. This object defines the global co-

ordinate system and gravitational force. All other objects are in some way

CHAPTER 2. SOFTWARE 12

connected to the inertia system, either directly or through other objects. In

order to build a rigid body with several joints connected to other bodies at

different points, massless bars are used to put distance between the connec-

tion points. A body object is then connected at some point, defining the mass

properties of the rigid body (see Figure 2.3).

Figure 2.2: MultiBody Library

2.1.2 Dymola

Dymola is the Simulation Environment for Modelica utilized in this work.

Modelica needs a translator to transform the model, that is the equations

which describe it, into a form that can be efficiently simulated, that is a form

which can be integrated with standard methods. Such translators are really

complicated, so they require a lot of knowledge and implementation work.

Dymola is developed by Dynasim whose CEO, Dr Hilding Elmqvist, started

the design of Modelica in 1996.

The tool contains a Modelica translator that can handle real time applica-

tions and systems with more then one hundred thousands equations.

It comes with a graphical editor that allows modeling just with the use of

CHAPTER 2. SOFTWARE 13

Figure 2.3: Example of a MultiBody Project (Manutec r3 robot)

Drag & Drop. This is a very convenient feature that permits to design models

without any knowledge of the Modelica language.

Then, and this is the most important part, there is a simulation environ-

ment that has the task to translate the equations into efficient code and then

to resolve them. This part manages also the visualization of the dynamic be-

haviours of the system, that is it deals with the plots of the time-response of

variables (see Figure 2.4(a)). Another interesting feature, likewise linked to

this environment, is the opportunity of viewing a 3D animation of the system

moving: this is possible because when we design a model, we can also add

attributes regarding the shape and the colors of the utilized components (see

Figure 2.4(b)).

It is also very interesting and useful with the possibility to link Dymola to

Matlab and Simulink through simple interfaces. That is very convenient since

we have the opportunity of using all the analysis and design capabilities that

Matlab offers.

CHAPTER 2. SOFTWARE 14

(a) Plots regarding Manutec r3 robot (b) Animation of Manutec r3
robot

Figure 2.4: Analysis of Manutec r3 robot

2.2 MOPS

MOPS [6] is an optimization software developed at DLR (Deutsches Zentrum

für Luft- und Raumfahrt) which has been in use and applied to challenging

industrial problems since years. MOPS is an acronym that stands for Multi-

Objective Parameter Synthesis.

It supports the design engineer in setting up hisher design problem as a prop-

erly formulated multi-objective optimization task. To this end, MOPS offers a

basic control system criteria library, a generic multi-model structure for mul-

tidisciplinary problems and a generic multi-case structure for robust control

law design, as well as visualization tools for monitoring the design progress.

MOPS also supports, and this is the feature mainly utilized in this work, pa-

rameter estimation in identification problems.

The first step in an optimization is the definition of the criteria: MOPS

criteria library provides a complete set of basic functions for the most com-

monly used time and frequency domain criteria: this library may serve as a

basis to define more application-oriented design criteria.

Since realistic control law design is a multidisciplinary task, it involves

the simultaneous minimization of many design criteria in the presence of vari-

ous constraints. Typically, the different criteria and constraints are evaluated

using computational models developed for different engineering disciplines or

resulting from different modelling formalisms. MOPS explicitly supports the

CHAPTER 2. SOFTWARE 15

usage of different models from multiple disciplines (multi-models) to evaluate

the design criteria. To each analysis model (e.g. non-linear simulation model,

frequency domain models, etc.) a set of criteria is associated.

The optimization problem, that is the multi-objective/multi-model design

problem, is then mapped to a weighted min-max optimization problem, which

is solved in MOPS by using one of several available powerful optimizers, im-

plementing local and global search strategies.

Chapter 3

Theory behind this work

In this chapter we are going to show some useful results that the theory about

Identification has reached.

In the first section, the one about Persistent Excitation, we will show some

results that are really useful when we are starting to prepare an identification

experiment: we will discuss, doing some examples, about the most suitable

input signals to give to our system for a correct parameter identification. In fact

Persistent Excitation condition is sufficient to obtain consistent estimates for

the least-squares method and maximum-likelihood identification. An accurate

explanation of this topic can be found in [11].

The second section is about the concept of Identifiability : leaving out prob-

lems in the identification originated by lack of excitation that is the aspect

largely discussed in Section 3.1, we discuss the aspect of identifiability regard-

ing parameters, that is the uniqueness of the parametrization of a model. This

part is covered in detail in [16] and [17].

The last section is about Sensitivity that is a very convenient “tool” which

helps in the choice of parameters through the analysis of the behaviour of the

minimization criterion as the parameters or their number change.

16

CHAPTER 3. THEORY BEHIND THIS WORK 17

3.1 Persistent Excitation

3.1.1 Finite Impulse Response Model

Let us consider a Finite Impulse Response (FIR) Model, that is a system with

the impulse response that goes to zero and may then be truncated; this can

be described by the following equation:

y(t) = b1u(t− 1) + b2u(t− 2) + · · ·+ bnu(t− n)

or

y(t) = ϕT (t− 1)θ

where

θT = [b1 . . . bn]

ϕT (t− 1) = [u(t− 1) . . . u(t− n)]

We must impose some conditions on the input signal, otherwise we could

be not able to determine the parameters of this model: for example, if we took

zero as input, we would not be able to determine any parameters.

Theorem 3.1 in [11] says that the condition for uniqueness of the least-squares

estimate is that the matrix

t∑
k=n+1

u2(k − 1)
t∑

k=n+1

u(k − 1)u(k − 2) . . .
t∑

k=n+1

u(k − 1)u(k − n)

t∑
k=n+1

u(k − 1)u(k − 2)
t∑

k=n+1

u2(k − 2) . . .
t∑

k=n+1

u(k − 2)u(k − n)

...
...

...
...

t∑
k=n+1

u(k − 1)u(k − n)

t∑
k=n+1

u2(k − n)


(3.1)

has full rank (excitation condition).

We can see that introducing

Φ =

 ϕT (n)
...

ϕT (t− 1)



CHAPTER 3. THEORY BEHIND THIS WORK 18

matrix 3.1 is equal to ΦT Φ.

For long data sets the end effects are negligible so we can take k from 1 to t

and we have:

Cn = lim
t→∞

1

t
ΦT Φ =


c(0) c(1) . . . c(n− 1)

c(1) c(0) . . . c(n− 2)
...

...
...

...

c(n− 1) c(n− 2) . . . c(0)

 (3.2)

where c(k) are the empirical covariances of the input, that is:

c(k) = lim
t→∞

1

t

t∑
i=1

u(i)u(i− k)

Thus, we come to the following definition:

Definition 3.1 (Persistent excitation) A square summable signal u is called

persistently exciting (PE) of order n if the matrix Cn given by Eq. 3.2 is pos-

itive definite.

and to the following theorem:

Theorem 3.1 (Consistency for FIR models) Consider least-squares esti-

mation of the parameters of a finite impulse response model with n parameters.

The estimate is consistent1 and the variance of the estimates goes to zero as

1/ t if the input signal is persistently exciting of order n.

3.1.2 Transfer Function Models

Let us now consider a dynamical system described by the model:

A(q)y(t) = B(q)u(t)

or

y(t) + a1y(t− 1) + · · ·+ any(t− n) = b1u(t− 1) + · · ·+ bnu(t− n)

1consistency is the property for which an estimate converges to the true parameter value
as the number of observations increases towards infinity

CHAPTER 3. THEORY BEHIND THIS WORK 19

where A and B are polynomials of order n and n-1, respectively. The se-

quence of inputs {u(1), u(2), . . . , u(t)} has been applied to the system and the

corresponding sequence of outputs {y(1), y(2), . . . , y(t)} has been observed.

Introducing the parameter vector

θT = [a1 . . . an b1 . . . bn]

and the regression vector

ϕT (t− 1) = [−y(t− 1) . . .− y(t− n) u(t− 1) . . . u(t− n)]

the model can be rewritten as a regression model

y(t) = ϕT (t− 1)θ

So, the parameters can be estimated through least squares. We can assume

that disturbances are described as white noise added to the system output

x(t):

x(t) + a1x(t− 1) + · · ·+ anx(t− n) = b1u(t− 1) + · · ·+ bnu(t− n)

Determining the parameters that minimize the criterion

t∑
k=1

(y(k)− x(k))2 where y(t) = x(t) + e(t)

is a least-squares problem whose solution is:

θ̂(t) = θ̂(t− 1) + P (t)ϕ(t− 1)ε(t) (3.3)

P (t) =
1

λ

(
P (t− 1)− P (t− 1)ϕ(t− 1)ϕT (t− 1)P (t− 1)

λ + ϕT (t− 1)P (t− 1)ϕ(t− 1)

)
(3.4)

where θ̂(t) is the estimation of θ(t) and

ε(t) = y(t)− ϕT (t− 1)θ̂(t− 1)

3.1.3 Other Methods

Least-squares estimation can be applied to all those models that can be written

as regression models y(t) = ϕT (t− 1)θ. The resulting algorithms are the same

of that described by Eq. 3.3 and 3.4 apart the fact that θ, ϕ and ε are

different for the different kinds of model. Some examples of these models are

some Nonlinear models and the Stochastic ones.

CHAPTER 3. THEORY BEHIND THIS WORK 20

3.1.4 Persistently exciting signals

Considering the model

y(t) =
B(q)

A(q)
u(t) +

B(q)

A(q)
e(t)

we have the following important result:

Theorem 3.2 (Persistently exciting signals) A square summable signal

u is persistently exciting of order n if and only if:

lim
t→∞

1

t

(
t∑

k=1

A(q)u(k)

)2

> 0 (3.5)

for all nonzero polynomials A of degree n-1 or less.

An easy calculation shows that:

lim
t→∞

1

t

(
t∑

k=1

A(q)u(k)

)2

=

= lim
t→∞

1

t

(
t∑

k=1

a0u(k + n− 1) + · · ·+ anu(k)

)2

= aT Cna

where Cn is the matrix given by Eq. 3.2.

This useful theorem gives us interesting information about the signals which

we should perform an experiment of identification with, here some examples

follow:

• Pulse: From Eq. 3.5 it follows that Cn → 0 for all n if u is pulse, so

this cannot be PE for any n.

• Step: Let u(t) a step, that is u(t) = 1 for t > 1 and zero otherwise. It

follows that:

(q − 1)u(t) =

1 t = 0

0 t 6= 0

So, a step can at most be PE of order 1. But since

C1 =
1

t

t∑
k=1

u2(k) = 1

it follows that is PE of order 1.

CHAPTER 3. THEORY BEHIND THIS WORK 21

• Sinusoid: Let u(t) = sin ωt, we have that:

(q2 − 2q cos ω + 1)u(t) = 0

This implies that a sinusoid can at most be PE of order 2. Since

C2 =
1

2

(
1 cos ω

cos ω 1

)

it follows that a sinusoid is actually PE of order 2.

• Periodic Signal: Let u(t) be periodic with period n. It then follows

that:

(qn − 1)u(t) = 0

So the signal can at most be PE of order n.

• Random Signals: Consider a mean square ergodic stochastic process

with nonvanishing prediction error. Since the signal cannot be predicted,

it follows that Eq. 3.5 holds. The signal is thus PE of any order.

3.1.5 Some remarks about Persistent Excitation

It is important to tell some facts about the topic of this section, that is Per-

sistent Excitation.

The main matter is that the results of this theory are valid as time goes to

infinity that is, when we cannot see the transitory effects anymore. Otherwise

taking advantage of those effects we can properly identify parameters even with

signal of a smaller Persistent Excitation order than the number of parameters.

For example, a step, with its transitory effect, is not bad at all for identifi-

cation, and it can identify well more than one parameter. In Figure 3.1 we can

see the result of this kind of experiment. We have taken a simplified version

of the model used for our case study (see Chapter 4) and we have added some

noises to generate “experimental data”, then with these data we have tried

to identify two parameters of the model, more exactly the inertias of the two

pendula.

CHAPTER 3. THEORY BEHIND THIS WORK 22

Figure 3.1: Identification of two parameters through a Step

The nominal values of the two parameters are:

Pendulum Inertia = 0.0008 kg ·m2

Arm Inertia = 0.02 kg ·m2

Here inertia is meant with respect to the center of mass of the bar.

Performing an optimization along the first 3 seconds of the simulation and

starting with a guess of 0.0007 for Pendulum Inertia and 0.005 for the Arm

one, we have obtained the following values, that are really good if compared

with the nominal ones:

Pendulum Inertia = 0.000833446 kg ·m2

Arm Inertia = 0.0199541 kg ·m2

On the contrary the results obtained in the same conditions with a sinu-

soidal signal have not been that good. This can exactly be explained with

the good transitory effects of Step signal and with the validity of persistent

CHAPTER 3. THEORY BEHIND THIS WORK 23

excitation only for time that goes to infinity, that is when transitory effects

are finished.

3.2 Identifiability

Identifiability is a fundamental concept in identification problems. This mat-

ter can be simply explained saying that a system is identifiable if it exists a

procedure that brings to an unique value of the parameter vector θ and to a

resulting model with the same behaviour of the real system. The main aspects

that regard this issue are two: the first involves the suitable choice of the ex-

perimental conditions, that is we want to know if our data set is informative

enough to discriminate between nonequal models; the second aspect, instead,

assuming that our experiments are suitable, studies the possibility to find a

unique parameter vector θ.

We omit, now, the experimental problem, which we have already discussed in

Chapter 3.1 and we want to concentrate only on the lack of identifiability due

to the parametrization problem: the so-called structural identification problem.

We must notice, as written in [18], that the identification of an usable model

does not always require structural identifiability.

Considering a set of models M , where each model M(θ) is described by its

own parameter vector θ: the parametrization is said to be unique only if, for

two parameter vectors θ1 and θ2, it holds that

M(θ1) = M(θ2) ⇒ θ1 = θ2

So, avoiding poor identifiability due to lack of excitation, we say that we

have identifiability if a unique a priori system representation exists and it is

independent of the experimental procedure.

One example of non structural identifiability is given in Figure 3.2. That

picture shows two transfer functions that could describe the same system:

actually the second one differs from the first, which is co-prime instead, only

for a constant that multiplies both the numerator and the denominator.

While the first system is structurally identifiable, the second one is not, because

for example any value of the parameter k fits the model.

CHAPTER 3. THEORY BEHIND THIS WORK 24

Figure 3.2: Example of non structural identifiability

3.3 Sensitivity

Sensitivity is an important aspect that we need to evaluate when we are de-

signing a model. It can help us in the choice of the parameters, telling us

which ones are relevant and which ones are not.

Sensitivity studies the effects of parameter variations on the value of the

criteria function.

The simplest way of studying Sensitivity is to investigate the criteria function

with respect to the parameters: we could vary slightly the value and see what

happens; a great variation of the value of the criteria function means which

that parameter is relevant in the identification, otherwise if the variation is

small, it means that parameter is not influential.

Figure 3.3: Plot of a Criteria Function

That is illustrated in Figure 3.3 where we can see this method applied to

the case study analyzed in Chapter 4. The figure shows the value of the criteria

CHAPTER 3. THEORY BEHIND THIS WORK 25

function with respect to Jc, that is the inertia of the arm with respect to a

vertical axis through the center of mass, and to m that is the mass of the arm.

Being rc the distance between the point of rotation and the center of mass and

being Ja the inertia of the arm with respect to the point of rotation, we have

the following relation:

Ja = Jc + m · r2
c

From the picture we can notice that there is a valley where the function is

minimum and constant: which means that there are several couples of values

of Jc and m for which the criteria function is minimum. We can also see that

the function increases when Ja decreases; this implies that Jc and m cannot

be estimated separately, while the parameter that can be estimated is actually

Ja.

Another possible way to investigate the sensitivity of the criteria function

is calculating the Sensitivity Matrix that is the Hessian of the minimization

problem.

Let us assume rc = 0.1225 and known, then let us assume the nominal

values Jc = 0.0014 and m = 0.165. As we can see in [13] the sensitivity matrix

is: (
431064 6456.3

6456.3 97.0671

)
Its eigenvalues are 431161 and 0.37 where the second can be considered zero

considering the numerical accuracy. The eigenvector having the large eigen-

value is {0.99989, 0.01498} that means a large sensitivity in the direction

{0.99989, 0.01498} · {Jc, m}

Recall Ja = Jc + 0.01501 · m which shows that the criterion is sensitive for

variations in Ja. Since a symmetric matrix has real eigenvalues and orthogonal

eigenvectors, {−0.01498, 0.99989} is orthogonal and being its eigenvalue very

close to zero, it means that the measured behaviour is insensitive in that

direction as confirmed by Figure 3.3.

Chapter 4

Case Study

In this chapter we are going to present our case study: the so-called Furuta

Pendulum. After a short introduction about the system and its advantages

followed by a quite detailed description of the device used for our experiments,

we talk about all the process of identification and validation that has been

conducted: the experiments performed, the simulations made and the final

results obtained.

4.1 Furuta Pendulum

4.1.1 Presentation of the System

In this section we will speak about a system known as “Furuta Pendulum”.

This denomination comes from the name of its creator, Professor Katsuhisa

Furuta.

It is a simple variation of the classical inverted pendulum: it consists of an

inverted pendulum connected to the end of an actuated horizontal bar, also

known as Arm; this one has a servo-motor attached roughly to one of its ends

and it has the task to balance the un-actuated pendulum attached to the other

its end.

There are some advantages that make the use of this kind of device more

interesting in respect to the classical inverted pendulum on a cart. The first

one is just that we haven’t the cart so we do not need of a lot of space to

make it move: the cart moves on a guiding rail and if this is too short, the

26

CHAPTER 4. CASE STUDY 27

experiment does not work; moreover we have not problems regarding wheel

slippage anymore and finally, in the Furuta Pendulum there are not any motors

to move with all the advantages that it implies1.

Nonetheless, in this system, there is also the disadvantage of the introduction

of big rotational nonlinearities into the dynamics and thus into a possible

control law.

4.2 Experiments

4.2.1 Device

The experiments have been performed in one of the laboratories of Lund In-

stitute of Technology where we can find an instance of the system. The de-

vice can be seen in Figure 4.1. This device is connected, through a 12 bit

Figure 4.1: Furuta Pendulum in LTH Lab

1there are, however, instances of the inverted pendulum with and without the motor on
the cart

CHAPTER 4. CASE STUDY 28

AD/DA-converter board, to a standard Pentium PC running Linux. Matlab

with Simulink is used for acquisition and storage of the measurements.

The interface manages twelve signals: one for the Ground, one for the

Control Signal, four of them required by a joystick and the others regarding

the four states of the system (Table 4.1). The joystick would be used to

generate a reference trajectory, but it is not interesting for these experiments.

To notice that the signals used for the state of the pendulum are four instead

of two because there are two more sensors for a better measurement around

the upright position2 in view of a possible stabilization and velocity control.

I/O Connection Pendulum Signal

AI2 Pendulum Angle (Top)

AI3 Pendulum Velocity (Top)

AI4 Arm Position

AI5 Arm Velocity

AI6 Pendulum Angle (360 degrees)

AI7 Pendulum Velocity (360 degrees)

AO0 Control Signal

Ground Ground

Table 4.1: Signals regarding the two Pendula

Once started the simulation, the signals are acquired and then transformed

from Volt to Radian by the complex Simulink diagram in Figure 4.2. Since the

angle of the pendulum, θ, is defined to be zero when the pendulum is in the

upright position and to be positive when the pendulum is moving clockwise,

an offset is added to each signal and then, what we obtain is multiplied for a

gain to have a range of 2π rad for the angles of the two pendula, a value of 0

rad for the pendulum angle in the upright position, a value of π rad for the

vertically downward position and a value of 0 rad/s for the velocity of the two

pendula when they are standing still.

So, after some transformations we obtain the six signals. Thus, in order

to have, in the end, only the four needed measures corresponding to the four

states of the system, the six signal are propagated to a Simulink block (see

2these measurements are indicated in Table 4.1 with Top

CHAPTER 4. CASE STUDY 29

Figure 4.2: Conversion of Inputs

Figure 4.3) which has the task to select between the two measurements of the

sensors that are the one for the entire range of angles (360 Degrees) and the

one for the upright position (Top).

Figure 4.3: Simulink Block switching between sensors

CHAPTER 4. CASE STUDY 30

4.2.2 Execution of the Measurements

Once illustrated the utilized device, we can now explain how the experiments

have been performed. We will start with all the steps needed to run the

simulation:

1. Switch on the computer and, after the boot, run Matlab3

2. Load the Simulink diagram called simuldiagram.mdl typing

open ’simuldiagram’ in Matlab

3. Click on Simulation in the just opened Simulink window, then on Sim-

ulation parameters... and, finally, set Stop time to 50 sec that is about

the time that pendula need to stop. Leave the other parameters to their

default values (Figures 4.4 and 4.5)

4. In the simuldiagram window (Figure 4.4), double-click on the block Scope

and after, in the new opened window, click on Parameters4, then on Data

History and set parameters as seen in Figure 4.65. Leave the others

unchanged.

5. Click again on Simulation, then on Start (Figure 4.4) and, finally, let the

pendulum swing

We must notice that the file simuldiagram.mdl is an adjustment of the file

pendlib.mdl that can be found at [7]; in this version the block Conversion of

Inputs is changed: we have added some connections so to have also the raw

data in the outputs (see Figure 4.2).

After having described how to run a simulation, we must explain which

experiments have been performed.

At the beginning we made all those procedures concerning the setup of the

device. We have found the right values for the gains and the offsets needed in

3on the LTH Lab computer type matlab -R12.1 -nojvm in the command shell
4the second icon on the left
5the interface for MOPS in Dymola requires that the name of the matrix of the data in

the Matlab file is Data (with the first letter in upper case). Besides data must be stored in
Array format

CHAPTER 4. CASE STUDY 31

Figure 4.4: Simulink Diagram used for simulation

the Simulink diagram of Figure 4.2. The gains are estimated making the pen-

dulum turn 360 degrees and looking then at the range of the raw data (Figure

4.7): the gain is 2π divided by the range of the raw data. Since the sensor does

not reset itself after a full turn, we must make the pendulum turn exactly 360

degrees and so we had to put some landmarks to indicate the place where we

started turning the pendulum. As landmark, it can be taken any object with

an opportune shape. This calibration has not been so easy to perform because,

also with the landmark, it was difficult to stop the pendulum precisely in the

right place because of the swinging of the pendulum itself. The offsets, instead,

have been found forcing the conditions mentioned in Section 4.2.1 that is, the

constraints on angles and angular velocities of the two pendula.

All these parameters have to be changed in the Matlab initialization file called

CHAPTER 4. CASE STUDY 32

Figure 4.5: Parameters of the Simulation

pendinit.m6 that contains the values of all the parameters used in the file

simuldiagram.mdl.

Moreover, we have looked also at the voltage of the pendulum standing still, to

have an estimation of the noise in our measurements. It is important to notice

that all these parameters should be re-tuned whenever we perform new exper-

iments because of the interaction of the device with the external environment

that brings to the changing of its parameters.

After the setup we have started performing the experiments. To prevent

measurement errors and also to have data for the validation task, those have

been repeated several times. The chosen initial conditions are: pendulum in

the upright position, in the horizontal position, that is parallel to the ground,

and some other “random ones”, where random means not naked-eye deter-

minable angles; for each one of these initial conditions we have taken at least

three measurements.

6also this file can be found at [7]; this file can be loaded from the Matlab prompt just
typing its name without extension

CHAPTER 4. CASE STUDY 33

Figure 4.6: Parameters of the block Scope

It is very difficult to perform experiments manually: at the beginning we

have to start the log of data and then we have to release the pendulum; it is

impossible to do these two things at the same time, so after the experiment

we have to edit the file with measurements and cut out the relevant part (see

Section 4.2.3). Those troubles caused also initial conditions different from the

“nominal7” ones so that we always had a velocity different from zero and a

starting angle quite different from the “nominal” one.

Besides, the lightness of the pendulum body, combined with the quite big

freedom of its joint not only on the x-axis, but even along the z-axis, causes

a lot of vibrations on this last axis. Likewise, probably because of vibrations

and excessive freedom of the joint, the arm seems to get stuck and to move

jerkily.

All these considerations will bring us to the idea of adding, to our model,

another joint for the z-axis (see Chapter 4.4.4).

7the exact horizontal or upright position

CHAPTER 4. CASE STUDY 34

Figure 4.7: Range of Arme Angle

After the experiments we find, in the Matlab Workspace, a matrix with

thirteen columns. The first one is time: we have chosen a sampling time of

0.01 seconds because a shorter one would have been quite useless and it would

have led to a very big amount of data; the second and the third are respectively

Pendulum Angle and Speed and the fourth and the fifth are Arm Angle and

Speed. The remaining eight columns are raw data and they are ordered as in

Table 4.1.

The matrix exists only in the Matlab Workspace, at the moment. We must,

then, save it on a file to be able to recall it with Dymola or to open it again in

the future. To succeed in opening a Matlab file, Dymola requires that this is

saved in Matlab 4 format. This operation can be performed with the following

Matlab command: save filename -v4.

CHAPTER 4. CASE STUDY 35

4.2.3 Data Adjustments

In performing measurements and processing data we have had to use some

practical tricks.

For example we have noticed that, when the sensors start to measure, the

very first value of these measurements, is completely wrong, being, this, very

distant from the values that follow it. Furthermore, performing the experi-

ments alone, it was impossible for me to release the pendulum and start the

data acquisition at the same time. The release itself was troublesome: holding

the pendulum with my hand or with a pen implied, when I left the pendulum

swing, that I impressed a certain force on the bar, so to have a certain ini-

tial acceleration of it. This difficulties have been partially solved starting the

acquisition of the data some seconds before releasing the pendulum.

All these things have meant that we have cut the first instants of the mea-

surements, obtaining, again, starting angles quite different from the “nominal”

ones. This action has been carried out in Matlab with some swaps of matrix8.

We have then adjusted the offset in the measurement to obtain a value of π rad

for the angle of the pendulum in the vertically hanging downward position and

a value of 0 rad/s for the velocity of the two pendula when they are standing

still.

After, we have chosen to focus only upon the first three seconds of the

measurements because the behaviour of the two pendula is more distinctive

and interesting here. Specially the motion of the arm is very hard to follow

during the first seconds of the experiments.

Moreover raw data have been left out to obtain a smaller and more man-

ageable file being the optimization a very CPU-stressing and memory-greedy

task.

At the end of all these procedures, we have chosen which experiments to

use for our tasks. We have decided to perform our calibration on one of the

experiments with the pendulum starting in the “horizontal position” (the file

is called HorLight.mat) and the validation on one of the experiments with the

pendulum starting in the “upright position” (the file is called Up3Light.mat).

The real initial conditions in these files are showed in Table 4.2.

8in addition to cutting the data, we must also reset the time in the matrix

CHAPTER 4. CASE STUDY 36

HorLight.mat Up3Light.mat

Arm Angle (rad) -0.0122 -0.0851

Arm Speed (rad/s) -0.0635 -2.1246

Pendulum Angle (rad) 1.6803 -2.0698

Pendulum Speed (rad/s) 1.7812 -8.7596

Table 4.2: Real Initial Conditions of experiments

4.3 Choice of the Parameters

A very important problem in this work is the choice of the parameters. This

choice is problematic because we have to decide which and how many parame-

ters to take.

Too many parameters imply, maybe, a very good, almost perfect, fit for

the calibration task but, probably, a very bad behaviour during the validation

process: this is the real issue, because the model, of course, should work well

in every situations, otherwise this would be useless for any tasks regarding

controls and automation. Actually, also a perfect estimation of the model pa-

rameters could be useless for those tasks: it is not important that the values

of the found parameters are equal to the actual ones in fact, due to simplifica-

tions and approximations in the model, model parameters are often the result

of a combination of a lot of real parameters; the important thing, the goal of

identification, is instead having a model that works well in every conditions,

so that it can almost supersede the real system.

Speaking about the physical parameters, we can say that there are several

papers that examine the Furuta Pendulum in the lab. Some of those relate

values of the real system parameters slightly different from those which can be

found in [9], that is our most important reference about the real device. The

values that can be found in this paper are:

mpa 0.02 kg Mass of pendulum

M 0.015 kg Mass of pendulum weight

lp 0.421 m Pendulum length

r 0.245 m Arm length

rcm 0.44 m Distance from center of rotation to center of mass of

arm

CHAPTER 4. CASE STUDY 37

ma 0.165 kg Mass of the arm

Jm 0.0000381 kg ·m2 Moment of inertia of motor and tachometer, from da-

ta sheet

Since we are not completely sure about these values, we have decided to

trust only to those which can be easily measured by ourselves. Considering the

fact that the only values that can be easily measured, without dismantling the

device, are lengths and that the only length that we have used in our model

is the Arm one, the sole parameter that we are going to consider known is the

length of the Arm, whose value is really r = 0.245.

Regarding the Arm, it has been made the approximation that its center of

rotation corresponded with its center of mass and that it was at the beginning

of the bar, which is the origin of our coordinate system: this has been made

setting Arm.r CM = {0, 0, 0}, where Arm.r CM is the vector from the be-

ginning of the bar to the center of mass of itself.

The other parameters of the Arm are its mass and its inertia; since they can-

not be estimated distinctly (as we can see in [13] and in Chapter 3.3), we

have taken the inertia as a parameter and imposed the mass as seen above.

Since the arm rotates around the y-axis, it is only the inertia with respect to

that axis that influences the movements of the system. So the only not null

element of the inertia tensor is I2,2 which has been set as a parameter to find

(Arm.I 22 = inertiaarm as we can see in Figure 4.8).

Figure 4.8: Choice of Arm Parameters

Concerning the Pendulum, the parameters that have been picked for opti-

mization are its inertia, its mass and the position of its center of mass.

The inertia with respect to all axes is perpendicular to the pendulum length

axis (Pendulum.I 22 = 0) and it has been assumed equal

(we have set Pendulum.I 11 = Pendulum.I 33 = inertiapendulum) as shown

CHAPTER 4. CASE STUDY 38

in Figure 4.9(b)).

For the pendulum it is also possible to estimate the position of its center of

mass (we have set Pendulum.r CM = {0, l, 0}) and its mass (Pendulum.m =

pwmass), depending, the inertia sensed by the arm, on the angle of the pen-

dulum (see Figure 4.9(a)).

It is important to notice that, connected to the pendulum, there would be

also a small weight: it could be considered as a point-mass object. Since this

is directly attached to the pendulum bar, it is impossible to estimate its own

mass, so, simplifying, we have preferred to remove this object from the model

and considering it as if it was part of the pendulum itself. Thus, the pendulum

mass is actually the pendulum mass plus the weight mass.

(a) Parameters regarding
Mass

(b) Parameters regarding Inertia

Figure 4.9: Choice of Pendulum Parameters

All these parameters are, of course, subjected to the constraint to be strictly

positive due to the fact the inertias and masses cannot be negative. Then, the

parameter l, which is the position of the pendulum center of mass, other than

having to be positive, must also be smaller than the length of the pendulum

because the center of mass cannot stay out of the pendulum bar.

About the choice of the parameters regarding the friction it will discuss

when we will extensively analyze the MultiBody Models, that will be in Chap-

ters 4.4.3 and 4.4.4.

CHAPTER 4. CASE STUDY 39

Figure 4.10: A schematic picture of the Furuta Pendulum

4.4 Modeling

4.4.1 Simple Mathematical Model (without Friction)

In Figure 4.10 we can see a simple scheme of this device. Let the length of

the pendulum be l, the mass of the weight M , the mass of the pendulum m,

its moment of inertia J and the moment of inertia for the arm Jp. The length

of the arm is r. The angle of the pendulum, θ, is defined to be zero when in

upright position and positive when the pendulum is moving clockwise. The

angle of the arm, ϕ is positive when the arm is moving in counter clockwise

direction. Further, the central vertical axis is connected to a DC motor which

adds a torque proportional to the control signal u.

We are not going to examine here the complete derivation of the Furuta

pendulum dynamics. This matter, based on Lagrange theory, has been dis-

cussed by Gäfvert in [14] and brings to these nonlinear equations describing

the behaviours of the two pendula:

(Jp + Ml2)(θ̈ − ϕ̇2 sin θ cos θ) + Mrlϕ̈ cos θ − gl(M + m/2) sin θ = 0

Mrlθ̈ cos θ −Mrlθ̇2 sin θ + 2(Jp + ml2)θ̇ϕ̇ sin θ cos θ + (J + mr2 + Mr2+

+ (Jp + ml2) sin2 θ)ϕ̈ = u

CHAPTER 4. CASE STUDY 40

For simplifying, we can take:

a = Jp + Ml2 b = J + Mr2 + mr2

c = Mrl d = lg(M + m/2)

So, the equations can be rewritten:

aθ̈ − aϕ̇2 sin θ cos θ + cϕ̈ cos θ − d sin θ = 0

cθ̈ cos θ − cθ̇2 sin θ + 2aθ̇ϕ̇ sin θ cos θ + (b + a sin2 θ)ϕ̈ = u

4.4.2 Linearized Model

We can try to linearize the equations around an equilibrium point and see

what we obtain.

We take the following state:

x = (θ θ̇ ϕ ϕ̇)

and linearize around this point:

x = (0 0 0 0)

which is the upright position of the pendulum with zero velocity. We obtain:

ẋ = Ax + Bu =


0 1 0 0
bd

ab−c2
0 0 0

0 0 0 1
−cd

ab−c2
0 0 0

x +


0
−c

ab−c2

0
a

ab−c2

u

We can now calculate the characteristic polynomial of the system that is the

determinant of (A− λI):

p(λ) = det(A− λI) = det


0 1 0 0
bd

ab−c2
0 0 0

0 0 0 1
−cd

ab−c2
0 0 0

− λ


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 =

= det


−λ 1 0 0
bd

ab−c2
−λ 0 0

0 0 −λ 1
−cd

ab−c2
0 0 −λ

 = λ4 − bdλ2

ab− c2

CHAPTER 4. CASE STUDY 41

This polynomial becomes zero for the following four values of λ:

λ = ±
√

bd
ab−c2

and λ = 0 (twice).

So the linear system has a pole with a positive real part and then the equilib-

rium point, for Lyapunov, is surely unstable.

4.4.3 First MultiBody Model

The first presented MultiBody model is simply composed by two Actuated

Revolute Joints9 and two Rigid Bodies10: the one that we call “Arm” rotates

standing parallel to the ground; on the contrary, the other, that we call “Pen-

dulum”, rotates around the arm. Thus, being the arm parallel to the ground,

the joint to which it is attached spins around the y-axis and the other joint,

the one to which the pendulum is attached, spins around the x-axis since the

pendulum hangs down vertically.

Figure 4.11: First MultiBody Model (2 Joints)

The two pendula, rotating, are subjected to a friction force that we have

9the Modelica class used is Modelica.Mechanics.MultiBody.Joints.ActuatedRevolute (see
Appendix B.2)

10the Modelica class used is Modelica.Mechanics.MultiBody.Parts.BodyShape(see Ap-
pendix B.3)

CHAPTER 4. CASE STUDY 42

modeled as a Bearing Friction11. This element describes Coulomb friction in

Figure 4.12: Parameter Choice for the BearingFriction element

bearings, and it has, as we can see in Appendix B.4 or in Figure 4.12, at least 3

parameters to set (tau pos[:,:], peak and w small, where the first one is actually

a table, so in general we have more than 3 parameters). In this first model we

have taken the force with a linear dependence on velocity, so we have decided

to leave w small to its default value (w small = 1) and to choose tau pos[:,:]

and peak as parameters of the optimization. Since, as we have just said, the

frictional torque in this model has a linear dependence on velocity, we have

taken tau pos[:,:] like in Table 4.3.

Joint N

ω τ

0 tauN1

1 tauN2

Table 4.3: tau pos[:,:] for Joint N

11the Modelica class used is Modelica.Mechanics.Rotational.BearingFriction (see Appen-
dix B.4)

CHAPTER 4. CASE STUDY 43

We can see in the graph of Figure 4.13 that (0,tauN1) and (1,tauN2) are the

points which the straight line, representing the trend of the frictional torque

in respect to the angular velocity, passes for. In fact we have that for ω = 0,

won the initial static friction given by peak · tauN1, the joint starts rotating

subjected to a dampening torque that at the beginning is equal to tauN1

and grows as (tauN2 − tauN1)ω. The first Joint R1 is then connected to

Figure 4.13: Frictional Torque for Pendulum Joint

an element called World12: this component, as we could understand from its

name, represents the outside world for our model, in fact it gives to the model

a global coordinate system fixed in ground and a gravity field.

Furthermore an “ideal” sensor13 is linked to each joint to measure the angles

of the two pendula that will be used in comparison with the measured response

of the real device to calculate the criteria function which will be used for the

12the Modelica class used is Modelica.Mechanics.MultiBody.World (see Appendix B.1)
13the Modelica class used is Modelica.Mechanics.Rotational.Sensors.AngleSensor (see Ap-

pendix B.6)

CHAPTER 4. CASE STUDY 44

optimization: our criteria function is a weighted sum of the integrated square

difference with respect to measured value for each variable. The sensor has

been said “ideal” because it actually measures the angle of a model and not of

a real system, that is it is a result obtained from a simulation. To notice that,

though we have also the measurements of the angular velocities, we have relied

only on pendulum angles which are actually the integrals of those velocities:

practically we have decided to trust in the measurements of the angle sensors

leaving out the others, that would not add further knowledge on the system.

4.4.4 Second MultiBody Model

This model is an evolution of the previous one. We have observed that, when

we let the pendulum hang down, there are a lot of vibrations of the pendu-

lum. These vibrations obviously interfere with the movements of both pendula.

Then we have decided to model, in some way, these chatters to see if it helps

with the identification of the system.

Figure 4.14: Second MultiBody Model (3 Joints)

All the things have been left as in the previous model except for the inser-

tion of an extra joint to the pendulum that rotates around the z-axis. A spring

CHAPTER 4. CASE STUDY 45

and a damper14 are linked to this joint, instead of a Bearing Friction element,

as in the other cases; this because, with these vibrations, the pendulum seems

really to behave like it was connected to a spring.

Also the model of the friction is changed. The behaviour of the arm was

not completely satisfying, so we have tried with something different for it. The

matters regarding the pendulum, whose behaviour was almost perfect, have

on the contrary been left unchanged except, obviously, for the value of the

parameters which has been changed by the new optimization. We have left

the same Bearing Friction elements, but, for the arm, we have added some

parameters to make the model of its own friction more realistic. In this case

the frictional torque has not a simply linear dependence on angular velocity,

but, instead, a Piece Wise Linear (PWL) dependence15 (see Figure 4.15).

Figure 4.15: Frictional Torque for Arm Joint

To have such a trend for the torque we have added some parameters for the

14the Modelica class used is Modelica.Mechanics.Rotational.SpringDamper; this element
is composed by a spring and a damper connected in parallel (see Appendix B.5)

15Dymola currently supports only linear interpolation in the table

CHAPTER 4. CASE STUDY 46

making of the tau pos[:,:] table: we have added new points of interpolation in

the torque curve to reach a final number of four points, two more in respect

to the previous model. It must also be noticed that, aside from the first point

that requires only the ordinate, all the other points have abscissa and ordinate

as parameters while the linear dependence of the previous model required

only ordinates being required only two points (that can have any abscissa) to

identify a straight line. The insertion of these new five parameters produces

the Table 4.4.

Joint 1

ω τ

0 tau11

point0 tau01

point1 tau05

point2 tau12

Table 4.4: tau pos[:,:] for Joint 1

Further experiments have been conducted adding some more points of in-

terpolation in the torque curve, but results have been almost the same, so

to justify our choice not to add other parameters which would increase use-

lessly the computational time and some possible behaviour problems in the

validation.

The new element introduced in this model and called SpringDamper is a

Spring with a Damper in parallel, so to have a dampened vibrating effect on the

pendulum. This element has three parameters: c (the spring constant), phi rel

(the unstretched spring angle) and d (the damping constant); we have left the

second to its default value (phi rel = 0) and taken the others as variables.

4.5 Optimization

4.5.1 Setting up the Optimization

After the description of our physical system and our models, in this section we

will discuss about the main part of this work: the optimization process.

CHAPTER 4. CASE STUDY 47

Figure 4.16: Parameter Choice for the SpringDamper element

In the last versions of Dymola a simple optimizer called Basic Optimizer

was present, but now, for the upcoming release of Dymola 6, Dynasim is

working on a GUI16 that links Dymola to the much more powerful optimizer

called MOPS. Thus, being this GUI still in a development phase, it is possible

that some of the operations described here could be slightly different from those

which will be needed for working with the final release of the software17. On

the other hand, since MOPS will be totally integrated with Dymola, the whole

installation procedure will not be needed anymore and it will be completely

skipped.

Installing MOPS needs two files named package.mo and mops.dll. Called

16Graphical User Interface, that is a tool that eases the utilization of a software: in this
case it also links the optimizer to Dymola

17we are using Dymola 5.3a+

CHAPTER 4. CASE STUDY 48

path the directory where we have installed Dymola18, the first file has to be

placed in a new directory called path\Modelica\Library\MOPS and the second

in path\bin. After having copied the files in their respective directories the last

step for the installation of MOPS is to insert it in the Dymola Library Menu

so to be able to call it from the program of modeling. To do this, we have to

open the file path\Insert\dymodraw.ini and to add optpackage MOPS MOPS as

explained in this comment taken from the file itself:

--

SETTING UP LIBRARY AND DEMO MENUS

--

Definitions for building the File/Libraries menu.

#

Syntax for packages found in MODELICAPATH:

#

package <packagename> <description>

#

For optional packages:

#

optpackage <packagename> description

Once restarted Dymola, we have to go in Simulation Mode19 and to type

Hidden.Dymola6=true; at the prompt to activate some hidden features that

will be present in the new Dymola 6.

Now we are ready for the optimization:

1. Open the model (come back to the Model Editing Mode20 and click on

File → Open, or, more quickly, type Ctrl+O and, finally, choose the file

and click on the Open button)

2. Translate the model21 (come back to the Simulation Mode and click on

Translate button on the Toolbar)

18the default directory for a common Windows machine is C:\Program Files\Dymola
19click on the Simulation tab or Ctrl+F2 as well
20click on the Modeling tab or Ctrl+F1 as well
21the translation of the model is required for the selection of the parameters in the GUI

CHAPTER 4. CASE STUDY 49

3. Load the MOPS Library (return to the Model Editing Mode and click on

File → Libraries → MOPS)

4. Set up the optimizer (in Packages click on CalibrateModel → Call Function

as seen in Figure 4.17)

Figure 4.17: Calling MOPS

After all these steps, let us concentrate on the setup of MOPS. At the

beginning, we find a dialog box as the one in Figure 4.18. We can see that the

Figure 4.18: The initial dialog box of the MOPS GUI

function CalibrateModel has setup as unique argument. It would be possible to

fill in this box directly by hand, inserting the right value of the argument, but

it is very difficult because that argument is usually very long and complicated,

so we are going to use the whole potentiality and easiness of the GUI.

CHAPTER 4. CASE STUDY 50

Then, we have to click on the small grey square called Edit on the left of the

text box, and the dialog box of Figure 4.19 will appear. This dialog box shows

the most important aspects of the configuration of the optimizer: we must

choose the parameters to optimize, the data which we are going to use for

calibration and validation and finally we have also to configure the integrator

and the optimizer about tolerances, precision, utilized algorithm, etc.

Figure 4.19: The main dialog box of the MOPS GUI

• Model: Insert the name of the model between quotations marks (”)22.

• tunerParameters: Choose the parameters that we want to optimize23.

A window like the one in Figure 4.20(b) is opened, the table is now empty

and we should click on the Select button to fill in it. After clicking on

Select, a window like the one in Figure 4.20(a) appears: here, we can

tick the check boxes to select the parameters to optimize24. Then our

previous empty table becomes very similar to the one in Figure 4.20(b),

except for the fact that, all the cells in the two columns called min and

max, are set to their default value that is ±1E100 that here is used in

place of ±∞. These two columns set respectively a lower and a higher

22it is very important, in Dymola, that every strings are inserted between quotation
marks

23at the beginning, also the parameters that we want to optimize, must have a value from
which the optimization can start

24this example refers to the first MultiBody Model that have been discussed in Chapter
4.4.3, so we have ten parameters to check off

CHAPTER 4. CASE STUDY 51

bound on the values of the parameters in the quest for the optimum25.

The first column, instead, represents the name of the parameters and

the third, the initial value of those. The other two columns active and

autoScale must be left unchanged.

(a) Window for the se-
lection of the parameters
to optimize

(b) Chosen parameters with constraints for the optimization

Figure 4.20: Selection of the parameters to optimize

• freeStartValues: Select the initial conditions to estimate. In this way,

Dymola tries to estimate also the initial conditions that fit better with

the measured data.

• calibrationCriteria: Pick the variables for the criterion used in the

calibration task. In this part, we choose the variables of the model that

will be compared with the real data that are the ones which we can

measure by means of our sensors26, in fact our criterion is a weighted

sum of the integrated square difference with respect to measured value

for each variable. We have to fill in the table shown in Figure 4.21(b) by

25as seen in Chapters 4.4.3 and 4.4.4 all the parameters are positive and l, peak1 and
peak2 have an upper bound

26in this case, these variables are the angles of the two pendula

CHAPTER 4. CASE STUDY 52

ticking the chosen variables in the window reproduced in Figure 4.21(a)27.

The first column represents the names of the variables, the third tells to

Dymola in which columns of the matrix in the Matlab files to find the

real measured data of the respective variable28 and, finally, the fourth

column shows the weights used for the calculation of the criterion29.

(a) Window for the se-
lection of the variables
for the criterion

(b) Chosen variables with weights

Figure 4.21: Selection of the variables for the criterion

• calibrationCases: Select the set of data for calibration and validation.

As we can see in Figure 4.22, this time there a lot of things to set:

– experimentNames: In this dialog we tell to MOPS in which Mat-

lab files it can find the data of measurements: as we can see in Fig-

ure 4.23(a), we have chosen, this time, two files called respectively

HorLight.mat and Up3Light.mat.

27here AngleSensor1.phi is the variable relative to the Arm angle, while
AngleSensor2.phi is relative to the Pendulum angle

28these file will be indicated in the calibrationCases window as we will see in a while;
we have also to recall, as said in Chapter 4.2.2 that the Matlab files must contain a matrix
called Data (with the first letter in upper case)

29here the Arm variable has a weight of 2.5 because the range of it is about 2.5 times
littler than the Pendulum variable

CHAPTER 4. CASE STUDY 53

Figure 4.22: Dialog box for calibrationCases

– task: Here we choose which files, of the one picked before, to

take for calibration or for validation. In Figure 4.23(b), we see

that the file HorLight.mat has been used for Calibration30, while

Up3Light.mat has been utilized for Validation31.

(a) Window for the selection of files to use for
calibration and validation

(b) Window for the assignment of
tasks to the files

Figure 4.23: Selection of the files for calibration and validation

– parameterNames: In this dialog we choose the parameters which

we change the value to, through the experiments that are repre-

sented by the different Matlab files. This feature has not been used

301 in the vector of Figure 4.23(b) means Calibration
312 in the vector of Figure 4.23(b) means Validation

CHAPTER 4. CASE STUDY 54

in this work so we have had to create an “empty vector” with 0

rows: the vector, to understand, is actually a matrix 0×0, that has

neither rows nor columns.

– parameterValues: The same matter as in the previous paragraph:

here we have to assign values to the parameters taken before. Since

we have two experiments, but we have not chosen any parameters,

we must create an “empty matrix” with 2 rows and 0 columns32.

– Optimizer: This window allows to change the advance setting of

the optimizer. For our work, the only parameters that we could

want to change are tolerance and maxEval33 that are fundamental

for the end of the optimization. Of course to obtain better results

it is advisable to take a smaller tolerance. It is also best to choose

a large value for the maximum number of evaluations of the crite-

ria function not to risk to terminate the optimization before having

reached the optimum: we should say that there is actually the pos-

sibility that MOPS stops anyway, so it is advisable restarting the

optimization from the parameter values found in the last run opti-

mization and repeating this procedure until these values remain the

same.

– Integrator: Here we can change settings for the integrator. Also

in this case, we have left all the parameters to their default value

except startTime and stopTime which are the starting and ending

times of the simulation. Since we have taken only the first three

seconds of our data, in our case, startTime is 0 and stopTime is 3.

4.5.2 Results for the First MultiBody Model

In this section we are going to show the results obtained with the use of the

First MultiBody Model.

322 is the number of the experiments, 0 is the number of the parameters taken, in fact
we do not have to assign any values

33this is the maximum number of evaluations of the criteria function: once reached this
number Mops stops

CHAPTER 4. CASE STUDY 55

In Figures 4.24 we can see the results of the Calibration: the graphs have

the same scale for a correct comparison. Results are quite good for both the

angles, especially for the pendulum one (Figure 4.24(b)); the identification

of the arm behaviours is, instead, slightly more imprecise (Figure 4.24(a)).

However, at the end, the important characteristics, the ones interesting for

Automation, that are period and amplitude, are well identified as we can see

in the graphs.

So, as we can see, the model fits measured data quite correctly. This, of

course, happens almost every time, unless the model is completely wrong, since

the model has been calibrated on those data. The real identification problem is

to find a model that works well also with data which it has not been calibrated

on. So we have to do a sort of control about that: we must check the validity

of our model on other sets of data. There are a lot of way to validate a model,

the one used in this work, the easiest, is to check the behaviour of the model

working on another set of data, directly looking at the resulting graphs: if the

model still fits the data quite well it means that the model is good, otherwise

we have to change it.

In Figures 4.25 we can see the behaviour of the model on the validation data.

Results are good since, also in this case, period and amplitude have been

identified quite well.

We need to know, that the pendulum angle is measured with a poten-

tiometer which has a small dead-zone: its effects can be clearly seen in Figure

4.25(b). This dead-zone has not been considered in our model, in fact, in the

same figure, we can notice that the irregularity of the data trend disappears

in the trend of the model.

Table 4.5 shows the values that have been found with calibration.

4.5.3 Results for the Second MultiBody Model

We are going to analyze now the behaviour of the second model. In this model

there is a slightly more complex modelization of the friction and the addition

of a new joint with a spring and a damper for modeling the vibrations that we

can see when the two pendula move. Thus this model has more parameters

than the other one, and then we expect a better fit to the data. The result can

CHAPTER 4. CASE STUDY 56

1st MultiBody Model

Device Parameters

Parameter V alue

Pendulum Inertia [kg ·m2] 0.000464

Arm Inertia [kg ·m2] 0.000227

Pendulum and Weight Mass [kg] 0.015102

Pendulum Center of Mass [m] 0.170544

Friction Parameters

tau11 [N ·m] 0.005485

tau21 [N ·m] 0.001670

tau12 [N ·m] 0.005420

tau22 [N ·m] 0.001443

peak1 1.249996

peak2 1.228720

Initial Conditions for Calibration

Arm Angle [rad] -0.071575

Arm Speed [rad/s] -0.083589

Pendulum Angle [rad] 1.671170

Pendulum Speed [rad/s] 1.870203

Initial Conditions for Validation

Arm Angle [rad] -0.100236

Arm Speed [rad/s] -1.620246

Pendulum Angle [rad] -1.940164

Pendulum Speed [rad/s] -7.661688

Criteria Function Value (Error) 0.014406

Table 4.5: Parameters of the First MultiBody Model

be seen in Figures 4.26. As anticipated the fit is almost perfect and the model

response can almost be overlapped to the calibration data as for the arm as

for the pendulum.

A bigger number of parameters brings to a better calibration but in addi-

tion we can have some problems with validation: in trying to follow also the

behaviour of the validation data, the fitting curve can have peculiar oscilla-

CHAPTER 4. CASE STUDY 57

tions that are sometimes very noticeable and make the model unemployable.

Thus it is often not recommended to use models with too much parameters.

Let us see then, if this is our situation, that is let us see if the addition of these

new parameters has implied troubles in the validation. In Figures 4.27 we can

see what we have obtained: there are some little oscillations in the Arm graph

(Figure 4.27(a)), but the fit is very good also with this set of data.

In Table 4.6 instead, we can see the values of the parameters that we have

found through the calibration.

4.5.4 Comparison between the two Models

In this section we will make a short comparison of the results obtained from

the two models: this will show us some important aspects of this identification.

Looking at the Tables 4.5 and 4.6 we can see that the values of the para-

meters that we have found are quite different in the two cases. These values

are also different from those shown at Page 36 which would be the real values.

This fact has been already explained in Chapter 3.2, the one on Identifiabil-

ity: the analyzed model has not this property, so there are several values of

the parameter vector θ which produce the same minimum value of the criteria

function. But, as already said in that chapter, the identification of an usable

model does not always require structural identifiability, so, since we have ob-

tained good results as in the calibration as in the validation, we can use our

models without any problems.

Another interesting thing to know is why the second model works better.

Observing the device moving we can see, as soon as we release the pendulum,

a lot of vibrations that decreased more and more as the experiment proceeds.

The idea of modeling these vibrations with a new joint linked to a spring and

to a damper comes natural.

Looking then at the trend of the frictional torque in the first model (Figure

4.28(a)), we can notice that this friction as a quite particular trend, in fact it

decreases when the angular velocity increases. Thus we have decide to slightly

change our model passing from a linear dependence with respect of angular

velocity to a piece wise linear one. The effect of this change can be seen in

Figure 4.28(b) where it is shown that, in this case, frictional torque increases

CHAPTER 4. CASE STUDY 58

when also angular velocity increases.

Thus, at the end, we can say that it is better to utilize the second model

since it gives better results and a more faithful description of the behaviour of

the device. However, we have to say that also the other model behaves well

and it can be used as well.

CHAPTER 4. CASE STUDY 59

(a) Arm Angle

(b) Pendulum Angle

Figure 4.24: Calibration of the First MultiBody Model

CHAPTER 4. CASE STUDY 60

(a) Arm Angle

(b) Pendulum Angle. We can notice the effects of the dead-zone discussed in the text

Figure 4.25: Validation of the First MultiBody Model

CHAPTER 4. CASE STUDY 61

(a) Arm Angle

(b) Pendulum Angle

Figure 4.26: Calibration of the Second MultiBody Model

CHAPTER 4. CASE STUDY 62

(a) Arm Angle

(b) Pendulum Angle. We can notice the effects of the dead-zone discussed in the previous
section

Figure 4.27: Validation of the Second MultiBody Model

CHAPTER 4. CASE STUDY 63

2nd MultiBody Model

Device Parameters

Parameter V alue

Pendulum Inertia [kg ·m2] 0.001082

Arm Inertia [kg ·m2] 0.001656

Pendulum and Weight Mass [kg] 0.040414

Pendulum Center of Mass [m] 0.238454

Friction Parameters

tau11 [N ·m] 0.005055

tau21 [N ·m] 0.004626

tau12 [N ·m] 0.034065

tau22 [N ·m] 0.003449

tau01 [N ·m] 0.010220

tau05 [N ·m] 0.020867

point0 0.130807

point1 0.468552

point2 9.011384

peak1 1.000119

peak2 1.228720

Spring Constant [N ·m/rad] 3.81909

Damping Constant [N ·m · s/rad] 0.010007

Initial Conditions for Calibration

Arm Angle [rad] -0.002626

Arm Speed [rad/s] -0.0362232

Pendulum Angle [rad] 1.677478

Pendulum Speed [rad/s] 1.640014

Initial Conditions for Validation

Arm Angle [rad] -0.106993

Arm Speed [rad/s] -1.340885

Pendulum Angle [rad] -1.785922

Pendulum Speed [rad/s] -10.443861

Criteria Function Value (Error) 0.002380

Table 4.6: Parameters of the Second MultiBody Model

CHAPTER 4. CASE STUDY 64

(a) Frictional Torque for Arm of the First Model

(b) Frictional Torque for Arm of the Second Model

Figure 4.28: Comparison between the Frictional Torques of the two Models

Chapter 5

Control Design

This chapter will show us how the interface between Dymola and MOPS can

be conveniently used for Control Design.

The idea is to choose the layout of the controller, forcing some constraints

on the system response and, finally, letting the computer find the correct value

of the controller parameters that meets the imposed requests. This way of

designing is very similar to the previous task performed in this work, that is

Identification: imposing some constraints and finding the right values of the

parameters that satisfy them through optimization, it is approximately the

same of the previously performed Greybox Identification, where the minimum

difference between the behaviours of the system and the model was found by

MOPS.

The chapter will begin with the application of this feature to a simple linear

system controlled by a PID and it will continue with the control of our case

study.

5.1 Overview

5.1.1 Simple Linear System

The system that we are going to analyze in this section is the linear system

described by the following transfer function:

G(s) =
1

s(s + 1)(s + 4)

65

CHAPTER 5. CONTROL DESIGN 66

The response of this system to a Step as input, without any kinds of con-

troller, is shown in Figure 5.1: the system response grows unbounded due to

the pole in s = 0.

Figure 5.1: Step Response of the System without Controller

Let us apply now a PID controller to the system. Setting the following

initial values for the three parameters of the PID, we obtain the Step Response

shown in Figure 5.2:

k 4 Gain

Ti 2 s Time constant of Integrator

Td 1 s Time constant of Derivative block

As we can see in that picture, the system is now stable and it follows the

reference signal.

We have however, in this case, a quite large value of the Overshoot1 (over 30%)

and the response in general could be improved.

It is in this situation that the new design feature of Dymola can be useful

to an engineer: instead of a lot of calculations which can be often long and

complicated, computer can quickly solve the design problem in place of him.

1the difference, in percentage, between the maximum value of the response and its
asymptotic response

CHAPTER 5. CONTROL DESIGN 67

Figure 5.2: Step Response of the System with a non-optimized PID Controller

In the following sections we are going to show how this task could be done.

5.1.2 Multi-Criteria Design

In this section we want to improve the step response obtained in the previous

section.

Let us impose, then, some constraints on this response. We can suppose,

for example, to want a lower value of the Overshoot and a certain value for

the Settling Time2.

Our requests could be the following:

• Overshoot = 10%

• Settling T ime (1%) = 15s

This is a typical example of Multi-Criteria Design that is the design of

a controller with the observance of some constraints or Criteria (in this case

Overshoot and Settling Time). Such a problem can be easily solved by Dymola

2the time after which the response definitively remains in a range around the asymptotic
response smaller than a certain prefixed value

CHAPTER 5. CONTROL DESIGN 68

adding some components for criteria calculation to the system diagram, as we

can see in Figure 5.3.

Figure 5.3: System Diagram with PID Controller and Criteria Calculation Compo-
nents

In this figure the Linear System is represented by the Transfer Function

block3 called LinearSystem which is controlled through feedback by a PID4 to

manage to follow the Step that we have chosen as input signal.

The two blocks called Overshoot5 and SettlingTime6 are the ones which will

permit to Dymola to find the right values of the parameters of the PID to

satisfy our requests: we need to notice that these two blocks must be activated

by the block named “Trigger”.

The operations to perform this computer aided design are pretty the same

of those explained in Section 4.5.1:

1. Open the model

2. Translate the model

3the Modelica class used is Modelica.Blocks.Continuous.TransferFunction (see Appendix
B.7)

4the Modelica class used is Modelica.Blocks.Continuous.PID (see Appendix B.8)
5the Modelica class used is Design.Criteria.Overshoot (see Appendix B.9)
6the Modelica class used is Design.Criteria.SettlingTime (see Appendix B.10)

CHAPTER 5. CONTROL DESIGN 69

3. Load the Design Library

4. Set up the optimizer (in Packages click on optimize → Call Function)

Also the optimizer setup is very similar to the one done in the section

mentioned above. The GUI, in this case, appears as in Figure 5.4.

Figure 5.4: The initial dialog box of the Optimizer GUI

For a simple Multi-Criteria Design the only interesting settings to change

are the following:

• Setup: Insert the name of the model between quotation marks (”).

• Tuner Parameters: Choose the parameters that we want to optimize.

The choice is made through a form in which we have to select the pa-

rameters of the controller to find. To comply with physical reasons or

simply to ease the task of the optimizer, it is also possibile to impose a

range for the values of the parameters.

• CaseCriteria: Select the criteria (or constraints) which have to be sat-

isfied. To notice that these criteria can be chosen from those offered with

Dymola (the most common and useful ones, such as Overshoot, Settling

Time, Rise Time, etc...) or they can be conceived by the engineer him-

self. This selection is made through the dialog box in Figure 5.5: we have

to fill the name box with the name of the variable which is our criterium

and then we must select the appropriate analysis rule of this variable in

CHAPTER 5. CONTROL DESIGN 70

the criteria menu7. About the criterionUsage, we can decide to minimize

the value of the variable or to make it equal (equality constraint) to, or

smaller (inequality constraint) than a certain requested value.

Figure 5.5: Dialog box for the selection of the Criteria

• demands: Impose the request value of the criteria i.e. the constraints

(Figure 5.6).

Figure 5.6: Dialog box for imposing constraints

Returning to our requests, we have chosen to optimize the three PID para-

meters i.e. the gain k, the time constant of integrator Ti and the time constant

of the derivative block Td.

7it depends from how the criterium is calculated. For example, in the case of Overshoot
and Settling Time blocks, we have the correct values of these quantities only at the end of
the simulations, so “FinalValue” is needed

CHAPTER 5. CONTROL DESIGN 71

Then we have started the optimization imposing our constraints and de-

ciding to minimize the value of the Overshoot and Settling Time.

It is important to know that, during the optimization, the value of the

criteria is scaled with its demand value so that every criteria are correctly

weighted and, at the end, we obtain a solution which has the characteristic

that no criterium can be further minimized without degrading at least one

other criterium (Pareto-Optimal Solution).

So our task is solving the following min-max problem:

min
k,T i,Td

(
max

(
Overshoot

0.1
,
Settling T ime

15

))
The results reached are summarized in Table 5.1.

Tuner Parameters Criteria

Name Value Name Value Scaled Value

k 5.48078 Overshoot 0.0863809 0.863809

Ti [s] 4.6697 Settling Time (1%) 12.9538 s 0.863584

Td [s] 1.41883

Table 5.1: Parameters and Results reached with minimization of both criteria

We can see that both criteria widely satisfy our requests and that the scaled

values of those are nearly the same (within computational accuracy): we would

have had to expect this last fact due to the attainment, with the optimization,

of a Pareto-Optimal solution.

Let us suppose now, that we are satisfied by a settling time of 15s but

we would want to improve the overshoot as much as possible. We must then

change our requests, setting inequality for rising time and letting minimization

for the overshoot. In this situation, our problem becomes:

min
k,T i,Td

(
max

(
Overshoot

0.1

))
subject to

Settling T ime

15
≤ 1

The new results can be read in Table 5.2, while in Figure 5.7 it is shown a

graphical visualization of them. Settling time has now reached its maximum

allowed value (in fact the scaled value is 1) and the overshoot is approximately

improved of 15% with respect to the previous optimization.

CHAPTER 5. CONTROL DESIGN 72

Tuner Parameters Criteria

Name Value Name Value Scaled Value

k 5.52434 Overshoot 0.0736137 0.736137

Ti [s] 5.93807 Settling Time (1%) 15 s 1

Td [s] 1.34739

Table 5.2: Parameters and Results reached with minimization of Overshoot and
inequality for Settling Time

Figure 5.7: Step Response of the System with an optimized PID Controller

5.1.3 Multi-Case Optimization

Let us speak, in this section, about Multi-Case Optimization.

As we can understand by the name, the optimization is performed on various

cases. This feature is very convenient to design a controller that can work in

different situations.

The parameters of a system are usually known in a range of values. If

this range is not too large and so the characteristics of the system do not vary

appreciably, we can try to use the optimizer to find a controller that can satisfy

our requests in the whole range.

CHAPTER 5. CONTROL DESIGN 73

For example, we could write our linear system in the form

G(s) =
1

(s− a)(s− b)(s− c)

and say that its parameters (its poles) are real (for simplicity) and stay in the

following ranges:

a = 0± 0.2

b = −4± 0.8

c = −1± 2

We need to notice that the real part of the first pole can become positive,

increasing the instability of the system. Furthermore, running some simula-

tions, we have found that we obtain the maximum value of the Settling Time

(23.37s) for [a = 0.2, b = −4.8, c = −1.2] and the maximum of Overshoot

(39.46%) for [a = 0.2, b = −3.2, c = −0.8].

Repeating the steps explained in the previous section and changing the

settings of the optimization as shown in Figure 5.8, Dymola tries to find a

controller that satisfies our requests.

In Figure 5.8(a) is shown the dialog box for selecting the parameters that vary;

in the dialog box of Figure 5.8(b) we have to choose the name of the different

cases, that will be defined as in Figure 5.8(c). Finally the constraints will be

imposed in a dialog box like the one in Figure 5.8(d).

So we have set the two worst cases “WorstSettlingTime” and “WorstOver-

shoot” and the nominal one “Nominal” and then, set the same constraints for

all of them. We have had also to increase the maximum number of function

evaluations in the settings of the optimizer, to allow the optimizer to finish its

task: actually it finds the optimum after a few iterations, but it needs more

than 1400 to verify that. Thus, at the end, we have obtained the results shown

in Table 5.3.

For this optimization we have decide to simply respect the Settling Time

constraint and to minimize the value of the Overshoot. Looking at the table,

we discover that our request for Settling Time has been satisfied for all the

three cases, while the Overshoot is near to our request only in the nominal

case, in the other cases, instead, it remains quite large. The same results are

CHAPTER 5. CONTROL DESIGN 74

(a) Name of the case parameters (b) Name of the cases

(c) Definition of the cases (d) Demands for the different cases

Figure 5.8: Dialog Boxes of Multi-Case Optimization

Tuner Param. Criteria

Name Value Name Nominal Settling T. Overshoot

k 5.81163 Overshoot 0.105139 0.307592 0.410065

Ti [s] 6.53286 Settling T. (1%) 14.9438 s 14.6882 s 14.4761 s

Td [s] 0.931463

Table 5.3: Parameters and Results reached with Multi-Case Optimization

graphically shown in Figure 5.9.

Since we have chosen minimization for Overshoot, it is important to notice

that these results cannot be improved unless to reduce our request on Settling

Time.

It is then up to the designer to decide if these results can be accepted or,

otherwise, trying to reduce the constraint on the Settling Time and finding a

CHAPTER 5. CONTROL DESIGN 75

Figure 5.9: Step Response of the three cases

controller with a better performance for Overshoot.

5.2 Case Study

In this section we are going to apply the above analyzed feature to a simplified

version of our case study.

The simplification regards the frictions applied to the joints8: we have re-

placed the two Bearing Friction components, which are discontinuous, with a

simpler friction model, that is a Spring and Damper component. This change

allows to linearize the system and then, to find a controller, using the Pole-

Placement technique.

The parameters of the two new blocks have been found minimizing the differ-

ence between the behaviour of the two models with a process very similar to

the one explained in Section 4.5.

Entering the Simulation Mode and selecting Simulation → Linearize,

Dymola creates a Matlab file called dslin.mat containing the linearized model

and the name and the number of the states of the model.

8the new model can be seen in Figure 5.10

CHAPTER 5. CONTROL DESIGN 76

In our case, called ϕ the arm angle, θ the pendulum angle and u the input

applied to the arm, linearizing around the equilibrium point (ϕ ϕ̇ θ θ̇) = (0 0 0 0),

we obtain the following linearized system:
ϕ̇

ϕ̈

θ̇

θ̈

 =


0 1 0 0

−0.1082 0 −25.4814 0.0255

0 0 0 1

0.0756 0 45.7597 −0.0458




ϕ

ϕ̇

θ

θ̇

+


0

1444.1

0

−1008.5

u

Once in Matlab, with the command place, we can design a controller using

the Pole-Placement technique. This approach, under some constraints on the

characteristics of the system, permits to place the poles of the controlled system

transfer function, wherever we want.

Choosing (−5, −8, −10, −14) as poles, with the Matlab command

K=place(A,B,[-5,-8,-10,-14]), we obtain a Pole-Placement controller de-

fined by the vector K = (−0.1387 − 0.0690 − 0.7345 − 0.1354). The choice

of these poles is arbitrary, excluding the fact that we must have a quite fast

controller to avoid the fall of the pendulum from the upright position. How-

ever, for the same reason, our controller must not be very strong, otherwise a

too large input would produce the tumble of the pendulum.

Figure 5.10: Simplified System with Pole-Placement Controller

CHAPTER 5. CONTROL DESIGN 77

Applying the controller9 to our system as shown in Figure 5.10, we want to

stabilize the pendulum in the upright position and drive the arm to a certain

position (in degrees) selected changing the value of the Step in the picture.

We must notice that the step has been filtered by a block called prefilterArm

that is a first order system attenuating the input not to let the pendulum fall

down. For the same reason, also the torque given by the controller is limited

to values between −0.05 and 0.05 N ·m.

(a) Step Response with non-Optimized Con-
troller (Arm Angle)

(b) Stabilization of the Pendulum with non-
Optimized Controller

Figure 5.11: Results with non-Optimized Controller

The results for this controller, shown in Figure 5.11, are quite good with

a Rise Time10 of 0.41 s and a Settling Time (1%) of 1.11 s for the Arm to

perform a rotation of 30 degrees. Regarding the Pendulum, instead, we have

an Overshoot of 5.86 deg with respect to the stabilization position that is 0

degrees. Even if the controller works, the stabilization of the Pendulum is the

most critical problem in controlling this system: a too large oscillation could

cause the fall of the pendulum itself; for this reason, thinking to apply the

controller to the real system, it could be interesting to reduce the Overshoot

value of the pendulum and so, the maximum amplitude of the oscillations of

it around its instable equilibrium position.

Not to degrading too much the arm performance, instead of choosing min-

imization, we have chosen to request an Overshoot value smaller than 3 deg

(we want to reduce the previous obtained value by 50%). It must be noticed

9the controller is described in Appendix B.12
10the time it takes for the step response to grow from 10% to 90% of its final asymptotic

value

CHAPTER 5. CONTROL DESIGN 78

that some conditions on the angle response must be obligatorily imposed, oth-

erwise the optimizer would find a solution like K = (0 0 k3 k4) that respects

the request on the Overshoot value, but that does not let the arm move.

So imposing a maximum value of 3 deg for Pendulum Overshoot and choos-

ing to minimize Rise and Settling Times of the arm we obtain the results shown

in Figure 5.12 and summarized in Table 5.4.

(a) Step Response with Optimized Con-
troller (Arm Angle)

(b) Stabilization of the Pendulum with Op-
timized Controller

Figure 5.12: Results with Optimized Controller

Tuner Parameters Criteria

Name Value Name Value

k1 -0.0330268 Overshoot (Pendulum) 3

k2 -0.0218451 Settling Time (Arm - 1%) 1.2 s

k3 -0.318308 Rise Time (Arm) 0.54 s

k4 -0.0614688

Table 5.4: Parameters and Results reached with Optimization

As we can read in the previous table, the Settling Time of the arm is increased

of 8% and its Rise Time of 35%, while the pendulum Overshoot is halved,

as requested: these results can be accepted since the degradation of the arm

performance is quite small.

Chapter 6

Conclusions

In this chapter we are going to comment the results obtained with this work

regarding identification and control design using the software Dymola.

6.1 Comments

The main purpose of this thesis has been performing Greybox Identification.

Greybox modeling is very relevant when we are working on a system whose

inner structure and physical relations are well-known, allowing the designer to

exploit some a priori information that, of course, help in the design itself and

are really useful to obtain better identification results.

The main topic of this work is however performing the two tasks of Calibra-

tion and Validation through a new feature of the modeling software Dymola

that can be interfaced to the optimization tool called MOPS with an easy to

use GUI.

Dymola is a very convenient software for modeling, since it permits the

utilization of the whole power and features of the modeling language Modelica,

without requiring the user to know such language. This fact really makes the

task of designing quicker and feasible by almost anyone. The model can, of

course, be simulated through a very efficient Simulation Environment that

allows the user to plot the values of the quantities regarding the model and

even to see an animation representing the behaviours of the model itself: these

characteristics are very useful since the designer can be helped in the valuation

79

CHAPTER 6. CONCLUSIONS 80

of his model with just a visual inspection.

The newly introduced capacity, that is the interface to MOPS, allows now

to perform Parameter Estimation and Design Optimization of parameterized

controllers, directly in the Dymola environment making this software a com-

plete tool for the whole designing process.

In this work all the steps of the Parameter Estimation and Control Design

are illustrated in details through the analysis of a case study, that is a Furuta

Pendulum.

Regarding the identification task, beginning with the setup of the physical

device, we have continued with the description of the experiments, the pre-

sentation of the two utilized models and finally the results obtained, passing

through a detailed description of the usage of the GUI.

The interface allows a lot of choices on the different settings of the op-

timization: we can set the parameters, of course, with some constraints on

their values, we can perform calibration and validation on several sets of data,

we can perform calibration even of the initial conditions of our model. Obvi-

ously also the setup of the optimizer and of the integrator can be done easily,

choosing tolerance and so on.

The results achieved for our case study are, as we can see in the pictures

of Sections 4.5.2 and 4.5.3, excellent, with an almost perfect fit in the case of

calibration and an optimal fit in the case of validation. The second model,

described in Chapter 4.4.4, has obtained, of course better results because of a

more complex model of the friction with a following larger number of parame-

ters: we have however to remember that, increasing the number of parameters

a lot, is not a good way of performing an identification since this brings troubles

validating the model with data different from those used for calibration.

The same explanations given for identification, have been given also for

control design: starting with a simple linear system, we have shown all the

steps needed to perform a Multi-Criteria or a Multi-Case Optimization of a

parameterized controller. Since the two issues are very similar, these steps

are not very different from the ones already seen in the case of identification.

Then, the knowledge acquired with the simple linear system, has been applied

to the Furuta Pendulum.

We can say that the results achieved in this thesis entirely satisfy the

CHAPTER 6. CONCLUSIONS 81

expectations which we thought about, at the beginning of this work.

6.2 Future Works

Regarding the identification problem in general, the work done in this thesis

could be extended with the analysis and the use of different calibration and

validation softwares such as, for example, MoCaVa that has been briefly pre-

sented in Appendix A and offers the interesting possibility to receive Dymola

designed models as inputs.

Considering, on the contrary, our case study, we could try to improve the

identification of the Furuta Pendulum using a more refined friction model as,

for example, we can see in [15], even if we can consider the already achieved

results more than sufficient for our purpose.

Thinking about the design problem, it could probably be found a more

appropriate example than Furuta Pendulum and Pole-Placement controller,

which the new feature of Dymola can be applied to.

Appendix A

MoCaVa

The MoCaVa software [2] is a tool for calibrating and validating tentative

model structures using one or more samples of discrete stimulus and response

data. The tentative model structures comprise systems of components describ-

ing the physical units or phenomena that together constitute the process to be

modelled.

MoCaVa is a “grey-box” program, so it needs, to performing identification,

an a priori information and the presence of random disturbances.

Disturbances are important because it is their presence that makes the cal-

ibration and validation tasks different from those derived from straightforward

comparisons of the responses of model and object to known stimuli.

In MoCaVa prior information is nothing else than a set of sub-models that

after will be assembled together into a simulation model for the integrated

process. Initially it is not known which of these sub-models will be in the

final, satisfying model, so the software recursively test and try to fit various

models structures starting with the simplest and most reliable sub-models (for

example the ones obtained from mass or energy conservation).

Then the structure develops through a process of “pruning and cultivation”:

the sub-models considered not suitable are eliminated from consideration,

while the others continue to be candidates for further refinement. MoCaVa

goes to the final model expanding the intermediate ones appending compo-

nents modelling separate process units or, otherwise, refining the model by

adding components that model internal physical phenomena.

82

APPENDIX A. MOCAVA 83

MoCaVa attends to the elimination of sub-models and suggests to the user

some convenient refinements to make in the next step. At this point, the user

can decide to follow the advice of the software or to choose another way: the

design of MoCaVa is based on the belief that an engineer is usually good at

amending models.

The software is composed by a great number of independent script files,

but it exist a shell that guarantees that scripts are executed in correct order.

These files are Matlab scripts: this implies portability.

MoCaVa can import models from Dymola, but they have to be of “all

continuous” type, that is, “hybrid” models cannot be processed, and neither

can models containing serious discontinuities.

Appendix B

Used Dymola Classes

In this appendix we are going to present the Modelica components that we

have utilized for the design and the control of our models.

There are components used to model the systems themselves (rigid bodies,

joints, frictions, springs, dampers and transfert functions) and the one used to

describe their external environment (world).

About control components, there will be depicted the PID controllers and

the criteria used in the optimization: in this work we have used only Overshoot,

Settling Time and Rise Time blocks, but there are others already available in

the Design library and new ones can be designed as well.

Further details on these blocks can be found in the Dymola Online Help,

from which these short descriptions have been taken.

B.1 World

Modelica.Mechanics.MultiBody.World

The component World represents a global coordinate system fixed in ground.

It is used as the inertial system in which the equations of all elements of the

MultiBody library are defined. It furthermore represents the gravity field for

a MultiBody model.

By default the gravity field is uniform and the gravity acceleration is vector g

84

APPENDIX B. USED DYMOLA CLASSES 85

is, of course, the same at every position with a value of 9.81m/s2. However, a

point gravity field can also be selected.

The other function is defining the default settings of the animation prop-

erties of the model and representing axes and gravity field in the animations.

Since the gravity field is required by all bodies with a mass, and since the

animation settings are required by almost all components, exactly one instance

of World must be present in every model. So it has to be declared with:

inner MultiBody.World world

To notice that it has to be declared as an inner variable so that it is global

and it can be accessed from all the objects in the model. This declaration

is automatic when we drag this component from the package browser into a

model.

B.2 Actuated Revolute Joint

Modelica.Mechanics.MultiBody.Joints.ActuatedRevolute

This is a joint where frame b rotates around axis n which is fixed in frame a.

The two frames coincide when phi + phi offset = 0, where phi offset is a

parameter with a zero default and phi is the rotation angle.

The revolute joint has two additional 1-dimensional mechanical flanges

(flange axis represents the driving flange and flange bearing represents the

bearing) where it can be driven with elements of the Modelica.Mechanics.Rotational

library.

APPENDIX B. USED DYMOLA CLASSES 86

B.3 Rigid Body

Modelica.Mechanics.MultiBody.Parts.BodyShape

It is the model of a rigid body with mass, inertia tensor and two frame con-

nectors. All parameter vectors have to be resolved in frame a. The inertia

tensor has to be defined with respect to a coordinate system that is parallel

to frame a with the origin at the center of mass of the body. The coordinate

system frame b is always parallel to frame a.

B.4 Bearing Friction

Modelica.Mechanics.Rotational.BearingFriction

This element describes Coulomb friction in bearings, that is a frictional torque

acting between a flange and the housing. The positive sliding friction torque

tau has to be defined by table tau pos as function of the absolute angular

velocity ω.

tau pos

ω tau

0 0

1 2

2 5

3 8

For example, the table above, gives the following value of tau pos :

tau pos = [0, 0; 1, 2; 2, 5; 3, 8]

Currently, only linear interpolation in the table is supported. Outside of

the table, extrapolation through the last two table entries is used. It is assumed

APPENDIX B. USED DYMOLA CLASSES 87

that the negative sliding friction force has the same characteristic with negative

values. Friction is modelled such that when the absolute angular velocity ω

is not zero, the friction torque is a function of ω and of a constant normal

force. This dependency is defined via table tau pos and can be determined by

measurements, that is by driving the gear with constant velocity and measuring

the needed motor torque (= friction torque).

When the absolute angular velocity becomes zero, the elements connected

by the friction element become stuck, that is the absolute angle remains con-

stant. In this phase the friction torque is calculated from a torque balance due

to the requirement, that the absolute acceleration shall be zero. The elements

begin to slide when the friction torque exceeds a threshold value, called the

maximum static friction torque, computed via:

maximum static friction = peak · sliding friction(ω = 0) (peak >= 1)

B.5 Spring & Damper

Modelica.Mechanics.Rotational.SpringDamper

They are a spring and a damper connected in parallel. It can be used to model

friction.

B.6 Angle Sensor

Modelica.Mechanics.Rotational.Sensors.AngleSensor

It measures the absolute angle phi of a flange in an ideal way and provides the

results as output signal phi.

APPENDIX B. USED DYMOLA CLASSES 88

B.7 Transfer Function

Modelica.Blocks.Continuous.TransferFunction

This block defines the transfer function between its input and its output. This

definition is made setting the numerator and denominator coefficients.

B.8 PID

Modelica.Blocks.Continuous.PID

This block defines the PID controller shown in Figure B.1.

Figure B.1: PID Controller in Additive Form

It is useful to know the following equivalences:

k = KP Gain

TI =
KP

KI

Time Constant of Integrator [s]

TD =
KD

KP

Time Constant of Derivative block [s]

APPENDIX B. USED DYMOLA CLASSES 89

B.9 Overshoot

Design.Criteria.Overshoot

This block calculates the Overshoot of the input signal with respect to the

value set by the reference parameter.

The Overshoot is provided as output signal y and it is computed as long

as the simulation runs: the value of y is updated every time that the value of

the step response of the system becomes greater than the current value of y.

All that implies that the simulation time must be long enough not to incur in

a wrong value of the Overshoot.

It is important to notice that the calculation must be activated by a boolean

signal and that y starts with an initial value defined by the parameter y0.

B.10 Settling Time

Design.Criteria.SettlingTime

This block calculates the Settling Time of the input signal which must be the

difference between the reference signal and the step response of the system.

The settling time is provided as output signal y and it is computed as long

as the simulation runs: in fact the value of y is updated every time that the

input signal has a distance from 0 smaller than the tolerance requested by the

parameter called tolAbs ; y, however, returns to its initial value initialSettling-

Time (that must be high), whenever the distance from 0 of the input signal

becomes greater than tolAbs. All that implies that the simulation time must

be long enough not to incur in a wrong value of the Settling Time.

It is important to notice that the calculation must be activated by a boolean

signal.

APPENDIX B. USED DYMOLA CLASSES 90

B.11 Rise Time

Design.Criteria.RiseTime

This block calculates the Rise Time of the input signal with respect to the value

set by the finalValue parameter. The fractions of the final value where Rise

Time starts and where it ends are set respectively with the lowValue and high-

Value parameters and the output signal is then calculated as

highV alue · finalV alue− lowV alue · finalV alue.

B.12 Pole-Placement Controller

Figure B.2: Diagram of the Pole-Placement Controller

Figure B.2 represents the diagram of a Pole-Placement Controller with four

inputs and one output. This block is not present in the Dymola libraries but

it has been designed ad hoc for this work.

The four inputs are joined in a vector u = [u1, u2, u3, u4]
T and then

multiplied for the vector K = [k1, k2, k3, k4], where the ki parameters have

been found imposing the eigenvalues of the matrix A−B ·K. Thus, the output

value of the block is U = K · u.

Bibliography

[1] www.dynasim.se.

[2] http://www.s3.kth.se/control/projects/mocava/MoCaVa.htm.

[3] http://www.modelica.org/documents/ModelicaOverview14.pdf.

[4] http://www.modelica.org.

[5] www.ida.liu.se/~vaden/teaching/modelica/lecture6/lecture.html.

[6] www.dlr.de/rm/en/Desktopdefault.aspx/tabid-401/.

[7] http://www.control.lth.se/~kursolin/labs/lab2/lab2-02/lab2.html.

[8] J. Åkesson. Safe manual control of unstable systems. Master’s thesis ISRN

LUTFD2/TFRT--5646--SE, Department of Automatic Control, Lund In-

stitute of Technology, Lund University, Lund, Sweden, September 2000.

[9] J. Åkesson. Operator interaction and optimization in control systems.

Licentiate thesis ISRN LUTFD2/TFRT--3234--SE, Department of Au-

tomatic Control, Lund Institute of Technology, Lund University, Lund,

Sweden, December 2003.

[10] J. Åkesson and K.J. Åström. Safe manual control of the Furuta pen-

dulum. In Proceedings 2001 IEEE International Conference on Control

Applications (CCA’01), pages 890–895, Mexico City, Mexico, September

2001.

[11] K.J. Åström and B. Wittenmark. Adaptive Control. Addison-Wesley,

Reading, Massachusetts, 1989.

91

BIBLIOGRAPHY 92

[12] I. Dressler. Code generation from jgrafchart to modelica. Master’s the-

sis ISRN LUTFD2/TFRT--5726--SE, Department of Automatic Control,

Lund Institute of Technology, Lund University, Lund, Sweden, March

2004.

[13] H. Elmqvist, H. Olsson, S.E. Mattsson, D. Brück, C. Schweiger, D. Joos,

and M. Otter. Optimization for design and parameter estimation. In

Proceedings of the 4th International Modelica Conference, pages 255–266,

Hamburg, Germany, mar 2005.

[14] M. Gäfvert. Derivation of furuta pendulum dynamics. Report ISRN

LUTFD2/TFRT--7574--SE, Department of Automatic Control, Lund In-

stitute of Technology, Lund University, Lund, Sweden, 1998.

[15] M. Gäfvert, J. Svensson, and K.J. Åström. Friction and friction compen-

sation in the Furuta pendulum. In Proc. 5th European Control Conference

(ECC’99), Karlsruhe, Germany, 1999.

[16] R. Johansson. System Modeling and Identification. Prentice Hall, Engle-

wood Cliffs, New Jersey, 1993.

[17] L. Ljung. System Identification—Theory for the User. Prentice Hall,

Englewood Cliffs, New Jersey, 1987.

[18] J.P. Norton. An Introduction to Identification. Academic Press Inc.,

London, UK, 1986.

