
ISSN 0280-5316
ISRN LUTFD2/TFRT--5759--SE

Lifetime Monitoring
of Wind Turbines

Lars Nilsson

Department of Automatic Control
Lund University
November 2005

Document name
MASTER THESIS
Date of issue
November 2005

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRNLUTFD2/TFRT--5759--SE
Supervisor
Rolf Johansson at Automatic Control in Lund
Florian Krug at General Electric Global Research in
München.

Author(s)
Lars Nilsson

Sponsoring organization

Title and subtitle
Lifetime Monitoring of Wind Turbines (Livstidsövervakning av vindkraftverk)

Abstract
The aim of this thesis was to design and implement a lifetime monitoring system for a GE Energy wind turbine.
Monitoring the loads on the main components of a wind turbine makes it possible to keep the lifetime of the components
monitored. This information can be used to enable more flexible planning of a wind turbine’s maintenance. Knowing the
estimated remaining lifetime makes it possible to change the components before they break. This increases both the
security and availability of the wind turbine. The information from the lifetime monitoring system could possibly also be
used directly by the wind turbine’s main controller in order to optimize the operation of the wind turbine regarding its
components lifetime and the turbine’s energy capture. Several load-cycle counting methods were investigated and
compared to each other and the rainflow counting method was found to be the most suitable. It was adapted, implemented
and tested on a PLC (Programmable Logical Controller) mounted to a HITL (Hardware In The Loop) real-time simulation
system that simulated the behavior of a GE 1.5 s/sl wind turbine. A method for calculating the fatigue, using the result
from the rainflow counting, was implemented. The whole monitoring system was designed and implemented to work
online, i.e., continuously calculating and displaying the lifetime of the monitored components. In order to realize an online
rainflow counter, a novel approach for classification of the data-series was developed. A prototype of the system was
installed on a GE Energy wind turbine in Salzbergen, Germany. Several tests were here performed in order to validate the
system and to compare the simulated results with the measured results.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
83

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden Fax +46 46
222 42 43

Acknowledgment

This work was carried out for the Department of Automatic Control at the Lund In-
stitute of Technology, Sweden, in cooperation with General Electric Global Research in
Garching, Munich, Germany.

First of all I would like to thank Professor Rolf Johansson from the Department of
Automatic Control at the Lund Institute of Technology, for his helpful advices and tips
for my master thesis.

Thanks, to my supervisor Dr.-Ing. Florian Krug, GE Global Research, for believing
in this project and always giving me the necessary support.

I would also like to thank Dipl.-Ing. Christian Schram for his encouragement and for
the very helpful technical brainstorming sessions.

A special thank you to Wilhelm Feichter, GE Global Research, for the outstanding
collaboration and all the technical help.

Thanks, to Thorsten Honekamp for his useful help in questions regarding rainflow
counting and classification.

Thanks, to Friedrich Loh, GE Energy, for his assistance during the prototype instal-
lation in Salzbergen.

Thanks, to all my colleagues at GE Global Research for the friendship, the inspiring
atmosphere, and the pleasant coffee-breaks.

Last, but not least, I would like to thank my girlfriend Natalie Terenya for her un-
yielding support and love.

iii

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Aim . 2
1.3 Outline . 2

I Methods 3

2 Cycle Counting 5

2.1 Approach Analysis . 5
2.2 Rainflow Counting . 5

2.2.1 General . 5
2.2.2 Recursive Algorithm . 6
2.2.3 Non-Recursive Algorithm . 8
2.2.4 Rainflow Matrix . 9
2.2.5 Residual . 12
2.2.6 Processing Succeeding Sequences 15
2.2.7 Preprocessing Functions . 15

2.3 Conclusions . 19

3 Fatigue Analysis 21

3.1 General . 21
3.2 Damage Calculation . 22
3.3 Conclusions . 24

4 Wind Turbine Setup 27

4.1 Structure . 27
4.2 Sensors . 28

5 Hardware Setup 33

5.1 Hardware In The Loop . 33
5.2 Development Setup . 35
5.3 Prototype Setup . 35

v

Contents

5.4 Conclusions . 38

6 Developed Software 39

6.1 Development Environment . 39
6.2 Program Organization Units . 39
6.3 Design . 40

6.3.1 First Design Approach . 40
6.3.2 Second Design Approach . 41

6.4 Developed POU’s . 42
6.4.1 Program Lifetime_calc_main . 42
6.4.2 Function Block Filter_max_min_REAL 43
6.4.3 Function Block Filter_max_min_INT 44
6.4.4 Function Block Filter_max_min_REAL_v2 44
6.4.5 Function Block Rfc . 44
6.4.6 Function Block Rfc_v2 . 44
6.4.7 Function Block Damage_calc . 46
6.4.8 Function Block Matrix_2_file . 46

6.5 Developed GUI’s . 46
6.6 Matlab Implementation . 46
6.7 Real-time Requirements . 47
6.8 Conclusions . 48

II Results and Validation 49

7 Simulation using HITL 51

8 Calculations for a Measurement 59

III Conclusions and Perspectives 63

9 Summary 65

10 Quality Assessments 67

11 Future Work 69

Bibliography 70

vi

List of Figures

2.1 Example of how recursive rainflow counting works 7

2.2 Cycles found by the rainflow method (marked with circles) and the re-
maining residual . 8

2.3 Hystereses cycles in the stress-strain plane 9

2.4 Rainflow counting example, steps 1 - 3 10

2.5 Rainflow counting example, steps 4 - 6 11

2.6 Rainflow matrix defined in two ways . 12

2.7 Residual’s part in rainflow counting when several succeeding data series
are to be taken into account . 13

2.8 Rainflow counting of the residual . 14

2.9 Description of a high and low resolution rainflow matrix 17

3.1 Example of a SN-curve . 22

4.1 Model of a GE 1.5s/sl wind turbine [GEWE04] 27

4.2 Cross section of a wind turbine blade describing how the pitch-angle, the
flap direction, and the edge direction should be interpreted 29

4.3 Description of the positioning of the strain gauge sensor on the blade
[Feic05] . 30

4.4 Description of the positioning of the strain gauge sensors on the main-
shaft [Feic05] . 30

4.5 Description of the positioning of the strain gauge sensors on the tower . . 31

5.1 Block diagram of an embedded system connected to a HITL-simulator . . 33

5.2 HITL system architecture [GEGR04] . 34

5.3 System overview of the development setup [Feic05] 36

5.4 System overview of the prototype setup [Feic05] 37

6.1 Software flowchart for the first design approach 40

6.2 Software flowchart for the second design approach 42

6.3 Flowchart for the maxima and minima filter algorithm 43

6.4 Flowchart for the rainflow algorithm . 45

vii

List of Figures

6.5 GUI showing the total damage that has been calculated for the monitored
sensors . 47

7.1 The four time frames obtained from the simulation 52
7.2 Development of the high resolution rainflow matrix, for the blxMe sensor,

during four time frames . 54
7.3 High resolution rainflow matrix calculated by the monitoring system, us-

ing internal classification, for a time frame from the blxMe sensor 55
7.4 Rainflow matrix calculated with the signal processing tool FAMOS, for a

time frame from the blxMe sensor . 56
7.5 Rainflow matrix calculated with the Matlab toolbox WAFO, for a time

frame from the blxMe sensor . 57
7.6 SN-curve for the first time frame in the simulation 58

8.1 The recorded 10 minutes time frame for flapwise loads at one of the blades 60
8.2 High resolution rainflow matrix calculated by the monitoring system, us-

ing internal classification, for a time frame from the blxMf sensor 61
8.3 Rainflow matrix calculated with the signal processing tool FAMOS, for a

time frame from the blxMf sensor . 62

viii

List of Tables

3.1 Damage exponent m-I and -II for different materials 22
3.2 Designed maximum DEL for different components and m exponents [GEWE05] 24

4.1 Listing of the sensors used . 28

7.1 Simulation specifications . 51
7.2 Comparison between the results received with the monitoring system,

FAMOS, respective WAFO for the first time frame in the simulation . . . 53

8.1 Measurement specifications . 59
8.2 Comparison between the results received with the monitoring system and

with FAMOS . 60

ix

Chapter 1

Introduction

1.1 Motivation

During the last two decades, wind turbines have evolved tremendously. The efficiency,
size and complexity have all increased. More and more plants are being built off-shore in
order to take advantage of the higher average wind speeds there. These put very tough
demands on the components of a wind turbine. Off-shore wind turbines specifically calls
for very reliable components and systems given that maintenance costs are much higher
off-shore than on-shore.

Estimating the components remaining lifetime enables easier and more flexible plan-
ning of needed service of the wind turbine. By replacing the components before they
break, costs can be reduced. The costs are reduced since the interruption time, caused
by replacing the component, is minimized. Also the insurance costs are assumed to
decrease due to the improved security achieved when installing a condition monitoring
system. For instance, Allianz Versicherungs-AG requires its customers to change bear-
ing, gearbox, generator and blades after 40.000 hours (about 4 1/2 year) of operation.
However, in the case of present condition monitoring systems in wind turbines, more
favorable agreements can be reached [Wind03].

This thesis has been a part of the LUM1 project from GE Global Research. The
overall aim of the LUM project was to make it possible to have a measuring system
and a monitoring system installed on a single wind turbine in a wind park. Via a
mathematical model it should then be possible to transfer the results from these systems
to the other wind turbines in the wind park. The advantage with this approach would be
that the expensive measuring and monitoring equipment would only have to be installed
in one single turbine per wind park. This thesis has focused on developing the lifetime
monitoring system. Future work should be invested in finding a suitable mathematical
model to transfer results achieved from one wind turbine to another.

1 LUM: Lead Unit Monitoring

1

Chapter 1 Introduction

1.2 Aim

The aim of this thesis was to develop a cost efficient and easy-to-integrate lifetime
monitoring system for wind turbines. This task can be subdivided into the following
subtasks:

• Monitoring the loads that the main components of a GE 1.5 s/sl wind turbine is
exposed to

• Implementing a suitable method to extract the load-cycles, from the monitored
loads, online

• Implementing a function that calculates the damage due to the fatigue, that the
main components has suffered from, with the help of the result from the cycle
counting method

• Visualizing the measured damage against the designed damage for each component

• Performing simulations, with a HITL real-time simulation system, in order to
validate the functionality of the developed condition monitoring system

• Installing the prototype-system in a real wind turbine. Performing test measure-
ments and evaluate the results

1.3 Outline

This thesis consists of three main parts: Methods, Results and Conclusions. The chap-
ters of the main part, Methods, are briefly described as follows:

Chapter 2 Firstly, this chapter gives a short overview of different cycle counting
methods. The rainflow counting algorithm, the cycle counting method used in this
thesis, and its associated preprocessing functions are here thoroughly explained.

Chapter 3 In this chapter, the approach for calculating the fatigue damage for the
monitored components, by using the result from the rainflow counting method, is
described.

Chapter 4 Here, the target wind turbine is described in means of specifications, phys-
ical structure, and sensors.

Chapter 5 In chapter five, the hardware setup of the developed monitoring system
is explained. The simulation environment as well as the prototype setup are here
considered.

Chapter 6 The structure and functionality of the designed and implemented software
is explained in this chapter.

2

Part I

Methods

3

Chapter 2

Cycle Counting

2.1 Approach Analysis

There are several methods available for cycle counting, for example level-crossing count-
ing, peak counting, simple-range counting and rainflow counting.

All cycle counting methods reduce the amount of data coming from the load sequences.
By this reduction, the information about the order of the cycles and the frequency
content, gets lost [WeZe88]. Since fatigue is rate independent, see Section 3.1, this is of
less interest for fatigue-analysis. By studying how the fatigue is calculated, see (3.4),
it can also easily be found that the order of the load cycles is of no relevance for the
fatigue. These assumptions about the fatigue are valid for most, but not all, materials.

According to the knowledge of today, the rainflow counting method is the best method
to use when acquiring information, from a load sequence, relevant for fatigue-damage
calculation [Johb99, WeZe88]. Contrary rainflow counting, most other methods can only
start to process when the whole load history is known [DoSo82]. This is in many cases
very inconvenient because it makes online calculations impossible. For this thesis, it
was a requirement that the monitoring system should perform its calculations online.
Rainflow counting is also a two-parametric counting method. It saves range-mean or
from-to values for the found load-cycles (see Section 2.2). Usually, the cycle counting
methods are only of one parameter, i.e., saving only the range of the loads.

Because the rainflow counting method fulfills all the prerequisites from the lifetime
monitoring system, for a cycle counting method, it was chosen to be used throughout this
work. The fact that the rainflow counting method is the state-of-the-art cycle counting
method used in the industry further encouraged the use of this method.

2.2 Rainflow Counting

2.2.1 General

The rainflow counting method together with a damage accumulation model can be used
to relate a load sequence to the damage it causes to the material. It allows tracking

5

Chapter 2 Cycle Counting

both slow and fast variations of the load by finding cycles that pair maximal loads with
minimal loads even if they are separated by intermediate extremum values.

The rainflow method was originally developed by T. Endo, see [Endo74], in the late
1960 as a complicated recursive algorithm. In 1987, the first non-recursive algorithm was
presented [Rych87]. A variant of this algorithm will be used throughout this work. In
the following section is a description and an illustrative example of the original recursive
method. This part can without loss of context be skipped by the reader in order to go
directly to the non-recursive algorithm in Section 2.2.3. The recursive algorithm has also
been included to assist the reader who wants to learn more about the original rainflow
algorithm and how it has developed.

2.2.2 Recursive Algorithm

By turning the time-axis downwards, in the time-stress/strain diagram, the rainflow
counting can be thought of as counting raindrops rolling down the roofs of a pagoda
(Chinese tower). Each part of the load-curve that lies between two extremum values is
a roof. Following rules are given for rainflow counting [NaAm03]:

• On the upper side of each roof a counting process is started

• A counting process is ended when:

1. the process was started from a minimum and reaches a minimum of the same
magnitude or greater

2. the process was started from a maximum and reaches a maximum of the same
magnitude or greater

3. the process reaches the path of another raindrop

4. the process reaches the end of the time series

In Fig. 2.1, a load sequence is given. This sequence is to be used as an example for
how rainflow counting is performed.

In the example, the first counting-process is initiated at A and goes on the upper side
of the curve to the maximum B. After reaching B it continues, without increasing the
amplitude, until it meets the path C-D and joins it (rule 3). The second process starts
at B, carries on to C, and then ends at time 3 because D has a larger maximum than
B (rule 2). The third process starts at C, joins the flow from A-B and then reaches D
where it continues parallel with the time-axis. The flow then stops at time 4, since the
minimum E is smaller than the minimum A (rule 1). The half-cycle A-D is therefore
stored in the residual. From D, the fourth flow is started. It first goes to E, then joins
with F-G and subsequently it flows parallel with the time-axis until time 11. Because
L has a larger maximum than D, the flow is terminated here (rule 2). The half-cycle
D-G is therefore stored in the residual. The fifth flow goes from E via F and ends at

6

2.2 Rainflow Counting

Figure 2.1: Example of how recursive rainflow counting works

time 6 since G has a smaller minimum than E (rule 1). Flow number six begins from
F and then unites with the earlier mentioned flow D-E (rule 3). The seventh flow goes
from G to H and then connects with I-J (rule 3). Process eight is H-I. It stops at time
9, because J is larger than H (rule 2). Flow nine, I-J, connects with G-H and continues
together with flow 10 (rule 3), K-L, until time 13 where the sequence is terminated (rule
4). The half-cycle G-L is therefore stored in the residual. Flow eleven, J-K, cancels at
time 11 since the maximum L has a larger maximum than J (rule 2). Also the last two
flows, L-M and M-N continue without interruption to the end-time 13 (rule 4) and are
therefore also stored in the residual.

The resulting residual is A D G L M N and can be seen in Fig. 2.2. The extracted
cycles are B-C, E-F, H-I, J-K.

The rainflow method syntax differs between standing (positive) and hanging (negative)
cycles. A standing cycle starts with a minimum and ends with maximum. For a hanging
cycle, it is the other way around, i.e., starting with a maximum and ending with a
minimum. In the example above, E-F is a standing cycle and B-C, H-I, and J-K are
hanging cycles. There is no difference in the treatment of standing and hanging cycles,
it is only a notation. Each extracted cycle leads to an increment in the rainflow-matrix.

7

Chapter 2 Cycle Counting

Figure 2.2: Cycles found by the rainflow method (marked with circles) and the remaining
residual

The above original recursive description of the rainflow method is quite complex.
However, in general it can be seen as simply counting hysteresis cycles for the loads in the
stress-strain plane [Johb99]. Fig. 2.3 shows that every cycle from a load sequence leads
to a hysteresis cycle in the stress-strain plane. The surrounding cycle is the remaining
residual after the rainflow counting. This, of course, does not necessarily have to be
closed. That is only the case if the first and last value in the residual are the same.

2.2.3 Non-Recursive Algorithm

The non-recursive rainflow counting algorithm used here comply to the standardization
presented in [AGRB94].

The rainflow algorithm takes a sequence of maximum minimum load values, extracted
from the complete load sequence as explained in Section 2.2.7, as an input. In order
to extract the cycles from the sequence four successive points are needed (S1, S2, S3,
and S4). From these, three consecutive stress ranges are determined: dS1 =| S2 − S1 |,
dS2 =| S3 − S2 |, and dS3 =| S4 − S3 |. If dS2 ≤ dS1 and dS2 ≤ dS3 then:

1. cycle S2 − S3 is extracted and stored in the rainflow matrix,

8

2.2 Rainflow Counting

Figure 2.3: Hystereses cycles in the stress-strain plane

2. the two points S2 and S3 are discarded from the sequence,

3. the two remaining parts of the sequence are connected to each other.

If this condition is not fulfilled, the next point is considered and the test is repeated,
now with the points 2, 3, 4 and a new one. The procedure is continued until there are no
new points and no more cycles can be extracted. This method can be performed online
or offline. In Fig. 2.4 and 2.5, an example of how the non-recursive rainflow algorithm
operates is presented. It demonstrates how load cycles are found and extracted from the
data series and it also shows the resulting residual.

The rainflow algorithm follows the same rules as mentioned in Section 2.2.2, but
expressed in a non-recursive way. The description of the recursive rainflow counting
method can be seen as a theoretical approach and the algorithm above as a practical.
The non-recursive algorithm is visualized in Fig. 6.4.

2.2.4 Rainflow Matrix

The rainflow-matrix is the result of the rainflow counting method. All extracted cycles
are stored in the rainflow-matrix. The matrix can be defined in several different ways,
depending on how one wants to use the matrix. Fig. 2.6 shows two different rainflow
matrices that corresponds to the cycles extracted in the example of the non-recursive
rainflow counter in Fig. 2.4 and 2.5. One possibility is to define the rainflow matrix
as being from class x to class y, like the example matrix to the right in Fig. 2.6, i.e.,
the cycle starts in class x and ends in class y. Another definition states that the axes
of the matrix are equal to the range of the cycle (maximum - minimum) and its mean
(| maximum + minimum | /2) shown as the second example in Fig. 2.6. Either
way, the matrix contains the same information. A range-mean matrix can therefore be

9

Chapter 2 Cycle Counting

(a) First cycle to be extracted

(b) Second cycle to be extracted

(c) Third cycle to be extracted

Figure 2.4: Rainflow counting example, steps 1 - 3

10

2.2 Rainflow Counting

(a) Fourth cycle to be extracted

(b) Fifth cycle to be extracted

(c) Resulting residual

Figure 2.5: Rainflow counting example, steps 4 - 6

11

Chapter 2 Cycle Counting

transformed in a from-to matrix and vice versa. For every cycle, with a certain range-
mean or from-to, the corresponding cell in the matrix is increased by 1 [AGRB94].

Figure 2.6: Rainflow matrix defined in two ways

In the examples in Fig. 2.6, only four different cycles are represented. As more cycles,
with the same properties, are found, the corresponding cells in the rainflow matrix are
increased. Hence, the cells in the rainflow matrix may of course also have discrete
values other than 1. When performing rainflow counting on a long load time series,
the rainflow-matrix starts to show symmetric characteristics. For example, if one uses
the range-mean rainflow matrix, the matrix will probably be fairly symmetric around
a certain mean value since most components have a natural state around which most
oscillations occur.

2.2.5 Residual

The rainflow counting has been completed for a whole data series when there is no more
cycles to extract. The remaining maxima and minima, turning points, are then already
stored in the residual. That is because the residual works as a buffer (see Fig. 6.4)
where turning points are stored by the rainflow counter as long as they have not yet
been paired up with another turning point and stored in the rainflow matrix. Except
from the very beginning, the residual will always contain at least two data points. The
last turning point in the residual will vary during the rainflow counting process but at
the end of each sequence it will always be the last turning point from the sequence. The
first turning point in the residual will always be the very first turning point from the
first time frame. This special property for the first and last data points in the residual
depends on the structure of the rainflow counting algorithm. As mentioned in Section
2.2.3 the rainflow counting algorithm needs at minimum four data points to search for
a cycle. That is why the very first and last turning points can never be extracted as a
part of a cycle.

When several succeeding data series are to be processed in the rainflow counter, the
residual from the previous data series continues to the next cycle in the rainflow counter

12

2.2 Rainflow Counting

together with the new incoming data series. It can then be possible to form cycles from
data points from different sequences, enabling detection of low-frequency load cycles
that occur over a time frame limit.

Figure 2.7: Residual’s part in rainflow counting when several succeeding data series are
to be taken into account

If an interruption in, or between, a time frame occurs, a special treatment of the
residual is required since the time series then contain a discontinuity. In this thesis, the
half-cycles that are still present in the residual when an interruption occurs are counted
as full cycles. This gives a conservative treatment of the load-sequence, i.e. a worst case
scenario of the amount of damage that these loads could have caused.

To extract the half-cycles from the residual as complete cycles, the residual is simply
added to itself and then processed by the normal rainflow counting algorithm, as seen
in (2.1) [AGRB94]. Therefore, no changes have to be made to the rainflow algorithm in
order for it to process the residual, which is a big advantage of this procedure.

[residual] + [residual]
rfc
→ [residual] + {cycles} (2.1)

When joining the residual with a copy of itself, special care has to be taken if the
number of elements in the residual is odd. In this case, the last element in the original
residual or the first element in the copy have to be removed in order to avoid those
two maxima or minima ending up as neighboring elements. Such an occurrence would
corrupt the result of the rainflow counting algorithm. The rainflow algorithm only allows
an input sequence of alternating maxima and minima.

In Fig. 2.8, an illustrated example is given, describing how the residual is processed.
Since this residual, which originates from the example in Fig. 2.5, has an even number

13

Chapter 2 Cycle Counting

(a) A copy of the residual is concatenated with the residual
itself

(b) The half cycles from the residual and its copy have founded
full cycles which can be extracted by the rainflow counting al-
gorithm

Figure 2.8: Rainflow counting of the residual

of elements, no extra work has to be performed on the last element in the first residual.
After concatenating this residual and its copy, the rainflow counter processes them. In
this example, two cycles are extracted. Once again, the residual itself ends up as the
remainder.

14

2.2 Rainflow Counting

2.2.6 Processing Succeeding Sequences

If rainflow counting is to be performed on a signal that consists of several succeeding load-
sequences, the result formed by summation of the results from the individual sequences
does not, in general, correspond to the result generated when all sequences are considered
together at the same time [AGRB94]. A cycle could for example originate from an
extremum in one sequence and another extremum from a second sequence. In order to
have the rainflow counting result for several individual sequences to comply with the
global result, the following steps have to be added to the rainflow algorithm [AGRB94]:

1. Perform rainflow counting for each sequence and let the results be represented by
the tuple (cycles, residual)

2. Create a sequence by merging the residuals of each sequence, in the same order as
they occur in the global signal

3. Take the resulting sequence and split it up in cycles, according to the rainflow
method

4. The global result of the rainflow counting is then reached by adding the extracted
cycles from step 3 with the cycles from the individual sequences in step 1

The above steps are for rainflow counting that is performed offline. For online pro-
cessing the sequences and residuals are not calculated separately. Instead, the residual
from the rainflow counting for the previous sequence is concatenated with the present
sequence and then put into the rainflow counter, as in Fig. 2.7. When concatenating the
residual with the sequence, special care has to be taken to the last value in the residual
and the first value in the sequence. Since it is not for certain that they are real turning
points1 an extra evaluation has to be performed for these two data points. Here, it is
determined if these two data points are turning points or not. If they are not turning
points they are removed from the sequences.

2.2.7 Preprocessing Functions

Classification

As seen in Fig. 2.1 and 2.2, the load-axis has been divided into classes. This discretiza-
tion is done to suppress noise, reduce execution complexity and to give the rainflow
matrix a more uniform appearance, independent of which sensors that are used. The
classification is performed by calculating the range between the global maximum and
minimum value in the time series, splitting this range in classes and then giving each
data point a class-number instead of its real value. The number of classes used depends
on the desired resolution, the available calculation performance and/or the amount of

1 See the Maxima and Minima Filter in Section 2.2.7

15

Chapter 2 Cycle Counting

available memory. If a larger number of classes can be used, a higher accuracy can be
achieved. In the work presented here, 164 classes were used since this has shown to be
good practice by the tests performed by GE Energy. The limitation of the number of
classes was due to finite memory size on the PLC2 where the program was executed.
The rainflow matrix is very memory demanding since the memory on the PLC could
only be statically allocated and every cell in the matrix has to be able to store an integer
value that ranges up to about 108, assuming the worst case number of cycles. If the PLC
would have had dynamic memory it would have been possible to change the declared
variable size during execution, making the memory handling much more efficient and
flexible.

Since the rainflow counter implemented in this thesis is to be used online, the definitive
maximum and minimum value from the time series are not known in advance3. This is
a considerable challenge since the maximum and minimum have to be known in order
to make an optimized layout of the classes. To solve this, one can use experimentally
found extremum values instead of the real maximum and minimum. These extremum
values can be achieved by letting the wind-turbine run in normal mode and then force an
emergency stop. An emergency stop exposes the wind turbine to extreme loads. It is not
likely that the wind turbine will suffer from larger loads than those during emergency
stop. A disadvantage of this method would be that the classes are spread over a value-
space probably much larger than needed, since such extreme loads are very rare. This
results in a bad resolution and makes the method less accurate. Another approach would
be to ignore the extreme loads, or at least to classify them in the highest class possible,
in order to increase the accuracy for the smaller and more frequent loads. However,
according to [Joha99] the largest loads, even though the number of them is marginal,
constitute a majority of the total damage and therefore these loads can not be neglected.

The chosen solution was to use two rainflow matrices instead of one. One of these
rainflow matrices was defined to be used for a limited value-space, offering a high resolu-
tion in this area. All normal loads will be represented in this matrix. Every cell in this
matrix is defined to be able to store an integer value with 32 bit resolution. Also the
number of the most common cycles should therefore fit in this matrix, considering an
operational lifetime of the system of 20 years. For derivation of the worst case number
of cycles see Section 3.2. Extreme loads that do not fit in the value-space covered by the
high resolution rainflow matrix are stored in the low resolution rainflow matrix. This
matrix covers a very large value-space, however it has a low resolution since it also uses
the same number of classes as the first matrix. The loss of accuracy in the low resolution
matrix is of less importance since there are only a handful of cycles that will be stored
there. Therefore, it is only of significance to store the approximate range and mean
of these load cycles. Each cell in the low resolution matrix is only defined to store an

2 PLC: Programmable Logic Controller
3 For an offline rainflow-counter the definitive maximum and minimum value from the time series are

known

16

2.2 Rainflow Counting

Figure 2.9: Description of a high and low resolution rainflow matrix

integer value with 16 bit resolution, which is expected to be more than enough. The
low resolution matrix covers a value space ten times as large as the one covered by the
high resolution matrix. For simplicity reasons, the low resolution matrix also covers the
value-space of the high resolution matrix, even though this part of the matrix will always
be empty since it is already represented. The real value-space that the low resolution
matrix covers is for the mean-axis symmetrically located around the high resolution ma-
trix and for the range-axis it starts right after the end of the high resolution matrix’s
value-space. The proportions between the high- and low-resolution rainflow matrices can
be seen in Fig. 2.9. If the high resolution would be used over the entire value-space it
would result in a data amount of about 11MB per rainflow matrix. With the suggested
solution presented here, only 160KB of memory is needed, i.e. about 1.5% of 11MB. For
every monitored sensor, the monitoring system needs a separate rainflow matrix. This
means that the amount of needed memory for the rainflow matrices would increase fast
when the number of monitored sensors increase. Therefore, it was important to keep
the representation of the rainflow matrix as memory efficient as possible.

When performing classifications, every turning point is discretized to one of the classes
u1 < u2 < ... < un. That means that the turning points can only be associated with n
different values. Two ways of performing the classification are presented here: [Johb99].

1. Each turning point is classified to the closest class, i.e.

17

Chapter 2 Cycle Counting

xd
k = ui if ui −

ui − ui−1

2
≤ xk < ui +

ui+1 − ui

2
(2.2)

(where u0 = −∞ and un+1 = ∞, i.e. the outermost borders of the first and the
last class are open). The classification may cause successive values to take the
same discrete class. This is dealt with by the maxima and minima filter.

2. A minimum is classified to the nearest lower value from the classes u1 < ... < un−1

and a maximum to the nearest higher value from the classes u2 < ... < un.

The advantage with the first method is that the classification errors are smaller than
in the second method. This leads to smaller errors when calculating the damage. The
second method, on the other hand, gives a conservative classification but with less ac-
curacy. The reason why the second method is conservative is that it always represents a
turning point that lies between two class levels as the largest one when the turning point
is a maximum and as the smallest one when the turning point is a minimum [Johb99].
The damage calculations then gives a larger or equal damage result compared to if the
first classification method is used. From a safety aspect, it is of course essential that the
life meter always shows at least as much damage as the component has actually suffered
and it must for no cases show less. For theses reasons, the second method was chosen
to be used throughout this work.

Within a class, all noise will be suppressed because every value within the class gets
classified as the same class. Noise occurring on a limit between two classes would on
the other hand cause oscillations between those classes. In order to suppress this noise,
a reset level, also called hysteresis, is introduced. With the reset level, the rainflow
algorithm will only count a cycle if it is larger than the reset level. In this thesis the
reset level was set to the size of one class, i.e. only cycles with a range larger than one
class are counted. The reset level has been chosen to one class since practical experience
has shown that this gives good noise filtering without loss of important information.

Maxima and Minima Filter

As mentioned in Section 2.2.3, the rainflow counting algorithm takes only the extremum
values of the entire load sequence as an input. Therefore these have to be extracted
from the rest of the data points. This is done by the max/min filter. This filter only
extracts all real extremum values, i.e. no saddle-points are considered.

The first data point, in the series of turning points, will not be a turning point, but the
first data point from the first input sequence. This is because it can not be determined
if the first data point is a maximum or minimum since there are no previous values to
compare it with. Therefore, the very first and last data point from the sequences will
always be included to the series of turning points in order to be on the safe side, i.e. in
order not to have any turning points neglected.

18

2.3 Conclusions

2.3 Conclusions

The rainflow counting method was chosen for extraction of load cycles from the load
sequences. Best practice has shown to use the rainflow counting method when acquiring
relevant information from a load sequence in order to monitor the lifetime of a compo-
nent. The rainflow counting method can also be used for online processing, which was a
requirement for this thesis. A non-recursive version of the rainflow counting algorithm
was selected for implementation.

In case of a discontinuity in an incoming time frame, the residual has to be processed,
by the rainflow counter, and be reset in order to keep the overall result valid. With this
feature implemented, the system becomes very robust to handle outer disturbances to
the sensors and/or the data acquisition system.

The classification of the data points in the time frames were performed in a conser-
vative manner. The conservative classification method was chosen before the least-error
method in order to ensure that the damage calculated is always larger than in reality.

To make online rainflow counting possible, a new approach had to be found for the
layout of the classes. By having two rainflow matrices, one with high resolution for
a small value-space and one with low resolution for a large value-space, all necessary
information from the rainflow counting could be stored. This was also a very memory
efficient solution, demanding only a fraction of the memory needed for other possible
solutions.

19

Chapter 2 Cycle Counting

20

Chapter 3

Fatigue Analysis

3.1 General

Fatigue, the loss of strength and other important mechanical properties as a result of
cyclic loading over a period of time, is a general phenomenon occurring in most materials
[DeJi03]. Usually, components are not destroyed by a single large load, but by the
accumulation of many smaller loads [DrHa95].

Generally, fatigue is seen as a rate independent process [Johb99]. This means that the
time interval between two loads is of no interest for fatigue, only the dimensions of the
loads effects the lifetime. Therefore, the maximum and minimum values of the loads are
the most important parameters to study.

In order to illustrate the fatigue properties of a material, a SN-curve (also called a
Wöhler curve) is often used. A SN-curve shows the relationship between stress amplitude
and cycles to failure. The SN-curve, see example in Fig. 3.1, is defined as:

N(Si) =

{

αS−m
i , Si > S∞

∞, Si ≤ S∞

(3.1)

where N is the number of cycles to failure and Si is the stress corresponding to load i.
α and m are material parameters where α describes the fatigue strength of the material
and m is the damage exponent. The higher the stress amplitude, the less number of
cycles to failure. For some materials, below a certain stress amplitude, S∞, the number
of cycles to failure approaches infinity. This is called the endurance limit of the material
and is a material property. As can be seen in the example in Fig. 3.1, it is state-of-
the-art to present the SN-Curve with the load range on the y-axis and the number of
applied load cycles on the x-axis.

In Table 3.1, the damage exponent m for different materials is presented. For some
materials, after a specific cycle limit another damage exponent with a larger value should
be used. This makes the SN-curve for higher number of cycles more horizontal. Hence,
even load cycles of a small amplitude will still have some impact, even though it is
diminutive, on the lifetime of the component since the number of cycles applied with
this amplitude is enormous.

21

Chapter 3 Fatigue Analysis

Figure 3.1: Example of a SN-curve

Material Used for m-I m-II Inflection point (nbr of cycles)

Epoxy resin Blades 10 NA NA
Crude steel Tower 3 5 5 · 106

Steel Main-shaft 4.9 7.3 7.7 · 105

Table 3.1: Damage exponent m-I and -II for different materials

Since the design lifetime for a wind turbine is mostly 20 years it has to endure about
108 cyclic loads during this time, assuming a 1 Hz oscillation [DeJi03]. This calls for
a very robust construction and design of wind turbines, making the study of fatigue
processes highly important1.

3.2 Damage Calculation

Fatigue damage d is defined as the number of applied load cycles n (in this case counted
with the rainflow counting method), of a certain amplitude, to the number of cycles to
failure N.

1 Wind turbine components are generally overdimensioned in order to ensure security. A more precise
analysis of the actual fatigue on the different components would enable a better and more economical
dimensioning of them, thus reducing material costs.

22

3.2 Damage Calculation

d =
n

N
(3.2)

Given that a component is usually exposed to cycles of different amplitudes, the
total damage can be defined by Palmgren-Miner’s rule [Mine45, Palm24], which can be
found in (3.3). Palmgren-Miner’s rule summarizes the damage from each cycle for all
different amplitudes. The accumulated damage is represented by D, and i is the discrete
numbering of all different load amplitudes. The accumulated damage is less then or
equal to the value 1. When D is larger than 1 the component has exceeded its expected
lifetime and is, at least theoretically, broken.

D =
∑ ni

Ni

≤ 1 (3.3)

Experiments have shown that components can fail, in reality, for D-values as low as
0.2 [Echt96]. This means that Palmgren-Miner’s rule has to be used with caution, e.g.
by multiplying it with a safety-factor in order to keep the fatigue-damage under the
critical limit. Recent research, see [JoSM05], shows that Palmgren-Miner’s rule can be
made conservative and secure if the SN-curve, from which the values for Ni are derived,
is estimated using variable amplitudes instead of constant amplitudes. Estimating the
SN-curve with constant amplitudes means that only one load amplitude is tested at a
time. The result is the amount of load-cycles, with a certain load amplitude, that the
component can survive before it fails. With variable load amplitudes, certain reference
load spectrums are used instead of constant load amplitudes. The values in this the-
sis, that are derived from SN-curves, all come from SN-curves estimated with constant
amplitudes.

A comfortable way of defining fatigue damage uses Damage Equivalent Load (DEL)
Seq and its corresponding reference number of load ranges, neq. The new definition of
damage is then as follows [JoSM05]

D =
∑ ni

Ni

=
∑ ni

αS−m
i

=
1

α

∑

niS
m
i =

neqS
m
eq

α
(3.4)

where

Seq =
(

∑

viS
m
i

)1/m

=

(∑

niS
m
i

neq

)1/m

(3.5)

vi is the relative frequency of occurrence of the load amplitude and neq is the reference-
number of cycles in the time frame. When the cycle-counting result is scaled up to a
time-frame of 20 years, neq is mostly chosen to be 4.74 ·108. This reference number is the
number of oscillations resulting when one takes a 1 Hz oscillation, assuming oscillations
for 20 years and taking into account an inactivity of 25 %. The inactivity comes from
the turbine’s cut-in and cut-out behaviour, i.e., a turbine operates if the wind speed is
above the cut-in level and stops if the wind speed exceeds the cut-out level. A challenge

23

Chapter 3 Fatigue Analysis

with (3.5) is that it can not be determined if m-I or m-II is to be used for the outer
exponent 1/m since it does not relate to a certain number of cycles, in opposite to the
inner exponent that always relates to a certain ni. The solution chosen was to keep
the procedure conservative by using m-I as the outer exponent because this gives larger
values for the Seq.

Component Position at Component Mechanical Load m Seq_max (kNm)

Blade 2.75m from hub center Bending, edgewise 10 1089.6
Blade 2.75m from hub center Bending, flapwise 10 979.0

Main shaft Main-shaft flange Torsion 4 110.7
Main shaft Main-shaft flange Torsion 6 192.3
Main shaft 0.1m from flange bending 90◦ 4 4197.4
Main shaft 0.1m from flange bending 90◦ 6 5212.4

Tower 91.77m height Torsion 4 562.7
Tower 6.01m height bending 0◦ − 180◦ 4 3357.6
Tower 6.01m height bending 90◦ − 270◦ 4 4199.6

Table 3.2: Designed maximum DEL for different components and m exponents
[GEWE05]

Since the designed maximal damage equivalent load, Seq_max, was given for the wind
turbine components used for the tests in the presented work, it was desirable to use
another approach to represent the fatigue-damage. In equation 3.6, damage D is defined
as the relationship between Seq and Seq_max, i.e., measured DEL against a designed
maximum DEL. It is trivial that D, also in this definition, will be less then or equal to
1 if the component is not broken.

D =
Seq

Seq_max

≤ 1 (3.6)

When comparing Table 3.1 and Table 3.2, it can be observed that the damage-
exponents m, for the main-shaft and tower, are not the same. The reason for this is that
GE Energy, who has provided the information for these two tables, only calculates the
maximum DEL for different components, positions, and for certain damage-exponents,
mostly only for even integer numbers. Since this was the case, the closest lower even
integer damage-exponent was chosen for the calculations because it gives a conservative
result when calculating the DEL’s.

3.3 Conclusions

• The fatigue properties of a component can be illustrated in a SN-curve

24

3.3 Conclusions

• With the help of the Palmgren-Miner’s rule, the accumulated damage to a com-
ponent can be calculated if the number of cycles to failure, for every possible load
amplitude, is known.

• The Palmgren-Miner’s rule has to be used with caution, for example multiplying
it with safety-factors, because components can break for damage values as low as
0.2 instead of the theorethical 1.0

• A comfortable way of representing fatigue-damage is by using DEL

• The total damage to a component is calculated as the measured DEL against the
designed maximum DEL

25

Chapter 3 Fatigue Analysis

26

Chapter 4

Wind Turbine Setup

4.1 Structure

The structure of a GE 1.5 s/sl wind turbine hub and nacelle is presented in Fig. 4.1.
This was the target wind turbine model for the installation of the prototype monitoring
system. The components regarded in this thesis were blades, main-shaft, and tower.

Figure 4.1: Model of a GE 1.5s/sl wind turbine [GEWE04]

Controlled parts in the wind turbine are the pitch angle of the blades, engine speed
and yaw angle of the top-box. The pitch angle of the blades determines the attack angle

27

Chapter 4 Wind Turbine Setup

of the blades toward the wind. 0◦ pitch angle means that the maximal area of the blades
is turned against the wind direction. If the wind gets to strong, the turbine increases the
pitch angle in order to decrease the attack area of the blades. By doing this, the turbine
can operate in higher wind speeds without exceeding the security limits by overloading.
The purpose of the yaw angle of the top-box is to keep the top-box positioned toward
the wind direction. In case of storm, the yaw angle is changed and the top-box is turned
out of the wind direction in order to avoid overloading and possible damages.

4.2 Sensors

Throughout this work, the sensors in Table 4.1 were used. These sensors were available
in both the simulation environment and in the real turbine.

Component Value Sensor Abbreviation

blade bending moment edgewise blxMe
blade bending moment flapwise blxMf

main-shaft torsion mshT
main-shaft bending 90◦ mshM90

tower torsion toT
tower bending 0◦ − 180◦ toM0
tower bending 90◦ − 270◦ toM90

Table 4.1: Listing of the sensors used

Fig. 4.2 shows how the bending moment edgewise, respectively flapwise, at a wind
turbine blade can be interpreted. The strain-gauge sensor at the blade is positioned
1.3m from the blade flange, which can also be seen in Fig. 4.3.

At the tower, the strain gauge sensors measuring the bending moments are positioned
5500mm over the fundament with 90◦ displacement to one another. Hence, the bending
moments in 0◦ - 180◦ direction1 and in 90◦ − 270◦ direction of the tower are measured.
The tower torsion sensor is placed at 9770mm from the top of the upper tower segment.
See Fig. 4.5 for a graphical description of the positionings of the sensors on the tower.

All the sensors in Table 4.1 are strain gauge sensors. Strain gauge sensors are used to
measure the deformation of an object. A strain gauge sensor consists of a flexible backing
with a metallic foil pattern, or a wire, etched upon it. As the object is deformed, the
foil pattern is also deformed, causing its electrical resistance to change. This change in
resistance, usually measured using a Wheatstone bridge circuit, can be used to calculate
the exact amount of deformation with the help of the gauge factor [Efun05]. The gauge
factor of a strain gauge relates strain to change in electrical resistance. The gauge factor

1
0
◦ is defined to be in the same direction as the entrance door, of the wind turbine, is facing

28

4.2 Sensors

Figure 4.2: Cross section of a wind turbine blade describing how the pitch-angle, the
flap direction, and the edge direction should be interpreted

GF is defined by the following equation:

GF =
△R/RG

ǫ
(4.1)

where RG is the resistance of the undeformed gauge, △R is the change in resistance
caused by strain, and ǫ is the strain. The gauge factor is usually provided by the
manufacturer of the strain gauge.

The strain gauges on the turbine blades are calibrated by halting the turbine and
putting each blade, one after another, in the vertical position. By knowing the weight
of the blade and the exact position of the strain gauge on the blade, the strain gauge
can then be calibrated since the load moment occurring at the actual position is known.
The calibration is performed manually and only at low wind speeds.

29

Chapter 4 Wind Turbine Setup

Figure 4.3: Description of the positioning of the strain gauge sensor on the blade [Feic05]

Figure 4.4: Description of the positioning of the strain gauge sensors on the main-shaft
[Feic05]

30

4.2 Sensors

Figure 4.5: Description of the positioning of the strain gauge sensors on the tower

31

Chapter 4 Wind Turbine Setup

32

Chapter 5

Hardware Setup

5.1 Hardware In The Loop

For the development of the embedded software, a HITL1 real-time simulation system, see
Fig. 5.1, was used. A HITL system simulates a real system, in this case a wind turbine.
The complete behavior of a wind turbine, from a controller-unit’s point of view, was
represented here. There was no difference for the wind turbine controller running on the
HITL and running on a real turbine. It was not necessary to perform any changes to
the controller when changing between these two working environments.

Figure 5.1: Block diagram of an embedded system connected to a HITL-simulator

The HITL simulator was built upon COTS2 hardware, a real-time operating system
(QNX) and a real-time simulation platform (RT-LAB) working with the Matlab toolbox
Simulink. See Fig. 5.2 for the entire setup structure. The system consists of a RT-
LAB command station, which is often called host PC, a QNX target, a workstation

1 HITL: Hardware In The Loop
2 COTS: Commercial-Off-The-Shelf

33

Chapter 5 Hardware Setup

for SCADA3, an interface PLC, the tested PLC and various cables for LAN4, CAN5,
RS4226, and digital and analog I/O’s7. The QNX-system runs on an industrial PC8.
All actual computations and communications takes place in this system. By using the
QNX real-time operating system, the real-time performance is ensured. VisuPro is a
SCADA system that is monitoring and controlling the Bachmann controller via a LAN.
With VisuPro, one can change the parameters of the PLC, start/stop the wind turbine,
regulate the pitch angle manually, monitoring the main parameters such as rotor speed,
wind speed, pitch angle, voltage etc. VisuPro is used for both simulation purposes and
for management of real GE wind turbines. [GEGR04].

Figure 5.2: HITL system architecture [GEGR04]

Development of the software can be performed with the HITL prior to actual field-
testing. This is a large advantage because it would be very expensive and precarious to
develop and test new software directly on a real wind turbine. It would be precarious
since errors always occur in the first few revisions of new software. When testing the
software on the HITL, it does not matter if an error appears because the HITL can
easily be stopped and restarted without any damage taking place. If the same error
would have occurred on a real wind turbine it could, if it was a serious error, put

3 SCADA: Supervisory Control And Data Acquisition
4 LAN: Local Area Network
5 CAN: Controller Area Network
6 RS422 is a serial data communication protocol
7 I/O: Input/Output
8 An industrial PC is very similar to a normal PC, but more robust and stable. It is eg. more resistant

to a harsh environment.

34

5.2 Development Setup

out a security system and push the turbine into an insecure state. Furthermore, more
meaningful tests can be performed with a HITL than with a real system. With a HITL
one can easily control all different kinds of input, which would not be the case for a
true system, thus making it possible to build up an arsenal of different test cases. These
can contain extreme conditions, which can be very hard to test in reality because they
are too rare and/or too hazardous. The test cases can easily be run through the HITL
simulator in order to determine if the developed program operates as expected.

5.2 Development Setup

Execution of the monitoring system was carried out on a Bachmann M1 Controller
System. The Bachmann M1 is a modular PLC consisting of one CPU module that can
be connected with several analogue or digital I/O modules.

The controller in the development setup, see Fig. 5.3, was an exact copy of the con-
troller that is present in the wind turbine GE 1.5 s/sl from GE Energy. This improved the
prospects of success for the later installation in a turbine of the same type. The HITL-
system substitutes all real I/O-signals that are normally connected to the controller with
simulated I/O-signals. Inputs to the controller are all sensor values. Outputs are the
control signals, to all the controlled components in the wind turbine, calculated by the
controller. Controlled components in the wind turbine are, as described in Section 4.1,
the pitch angle of the blades, the engine speed, and the yaw angle of the top-box. The
HITL-system receives the output signals from the controller and includes them in the
calculations of the new input signals.

The lifetime monitoring program runs on the LUM module CPU (as seen in Fig. 5.3).

5.3 Prototype Setup

The ambition of the hardware setup was that the new monitoring system should be
added to the wind turbine without any changes to the present system. This would be
advantageous since the monitoring system could then be added to already existing tur-
bines at rather low costs. Furthermore, performing changes to an existing wind turbine
model would force the producer of the turbine to once again carry out security certifi-
cation of the model. This would also result in large costs. Therefore, all components
from the LUM-project were formed as true add-on modules, thus avoiding the necessity
of changing the present system setup.

The already existing communication between the hub and the nacelle was carried out
over a slip ring that was located around the main-shaft. As can be seen in Fig. 5.4, the
LUM-module in the hub was connected to the nacelle module via CAN over WLAN9

9 WLAN: Wireless Local Area Networ

35

Chapter 5 Hardware Setup

Figure 5.3: System overview of the development setup [Feic05]

with a base frequency of 2.4 GHz (IEEE 802.11 b/g). The reason for using WLAN was
that all communication slots at the slip ring, on the target turbine for the prototype
installation, were already full. Using WLAN in a wind turbine had only been tested once
before by GE Energy10, although never for a permanent field bus connection. There were
doubts regarding installing a WLAN in the hub and nacelle of a wind turbine since the
hub has thick cast steel walls that could shield or attenuate the signal. Another reason
for the doubts were that there are very strong electromagnetic fields from the generator
in the nacelle, that could disturb the signal. However, since the wavelengths for a WLAN
with 2.4 GHz base frequency are

λ =
c

f
(5.1)

λb/g =
300 · 106m/s

2.4GHz
≈ 13cm (5.2)

10 GE Energy has performed a field test with WLAN in a wind turbine. The test was carried out in
2004 in Magdeburg, Germany, in the wind park Wellen II.

36

5.3 Prototype Setup

the thickness of the material between the two WLAN access points may not exceed
13cm in order not to disturb, or even block, the communication. Using WLAN was
found to be a feasible approach worth testing because there are several places at the hub
where the thickness is less than 13cm [Feic05]. In practical tests, during the prototype
installation, it turned out that the WLAN communication works very well, despite the
harsh environment.

Figure 5.4: System overview of the prototype setup [Feic05]

The LUM nacelle module was connected via a fiber optic cable, installed exclusively
for the LUM system, down to the LUM main station11. It did not use the already
existing fiber optic communication line in order to ensure that the communication from
the monitoring system does not disturb the ordinary communication between the top
box and the main controller.

The LUM main station was connected to the main controller via an Ethernet network
in order to enable the monitoring system to access some data from the main controller.
As an extension, this connection is also meant to be used the other way around, i.e.
that the main controller can access data from the LUM system in order to be used to
optimize the lifetime of the wind turbine.

11 The LUM main station was installed at the second platform in the wind turbine, about 10 m above
the turbine foundation

37

Chapter 5 Hardware Setup

5.4 Conclusions

Simulations were performed with a HITL real-time simulation system. With the HITL
system, all necessary inputs for the wind turbine controller could be simulated. The
chosen wind turbine controller was an exact copy of the one present in the GE 1.5 s/sl
turbine. The entire software development was carried out with the help of this controller
and the HITL simulator.

The monitoring system was constructed completely as an add-on in order to avoid
carrying out any changes to the existing setup of the wind turbine. This makes the
system more cost efficient and easy to install.

The communication between the modules in the nacelle and the hub, in the prototype
system, were provided by a CAN over WLAN connection. This was a new approach
that had only been tested once before by GE Energy. However, tests showed that the
communication was stable and reliable.

A new fiber optic cable between the nacelle and the main cabinet was also included
in the prototype setup. Since the monitoring system only uses its own physical com-
munication connections it could be ensured that the system would not disturb any
communication from the current wind turbine controller.

38

Chapter 6

Developed Software

6.1 Development Environment

The monitoring system was implemented with the Bachmann M-PLC 3 development
environment. This enables the programmer an easy usage of the IEC-61131-3 program-
ming languages. The system was implemented using structured text (ST), which is one
of the five programming languages defined in the IEC standard for PLC-programming.
The other four are instruction list (IL), ladder diagram (LD), function block diagram
(FBD), and sequential function chart (SFC).

6.2 Program Organization Units

In M-PLC 3, a Program Organization Unit (POU) can be a function, a function block,
or a program.

Functions normally have multiple input and only one output. Functions can only call
other functions, no function blocks or programs can be called. There is no own memory
reserved for functions.

Function blocks are much like functions but they can have no, or multiple, outputs and
can even have combined inputs/outputs. Each function block has its own memory and
therefore they have to be instanced. Having its own memory means that a function block
keeps the values of its variables, after being processed, for the next process call. Thus,
two calls to a function block, with the same input parameters, can generate different
output values. Function blocks can call functions and other function blocks. Although,
they can not call programs.

Programs are the main program organization unit. They can be globally accessed
throughout the whole software project. Therefore, they can not be instanced. Pro-
grams can be called with or without parameters. Programs can only be called by other
programs. As well as for a function block, a program also have its own memory.

39

Chapter 6 Developed Software

6.3 Design

During this thesis, several design proposals were developed and taken under consider-
ation. Two of the designs were implemented. These two designs are both described in
the following two sections.

6.3.1 First Design Approach

As can be seen in Fig. 6.1, the system takes data series as input. The data series
can be retrieved from an arbitrary sensor on the wind turbine that measures force or
moment. This thesis concentrates on the sensors measuring tower moment and torsion,
main shaft moment and torsion, and blade deflection in edgewise and flapwise direction.
These components are the most central in the wind turbine construction. The sensors
just mentioned were all given on both the HITL-system and on the real wind turbine
that was used for testing. Thus, appropriate comparison between simulations and real
measurements were possible.

Figure 6.1: Software flowchart for the first design approach

The incoming data series were retrieved from the sensors, with the help of a data
acquisition system1, during a time-frame of 10 minutes. Approximately 27 Hz sampling
frequency was used, enabling detection of oscillations up till about 13.5 Hz. Thus, each
data series contain 16.384 data samples. The input data series first enters a maxima
and minima filter function block. The turning points that are extracted here continues
to the classification function block. Here, incoming data gets classified according to
the norms for conservative classification presented in Section 2.2.7. The now classified
turning points follow to a new maxima and minima filter function block that filter out
any succeeding turning points that may have been discretized to the same level by the
classification function block. This is necessary in order to preserve that only true maxima
and minima data points enters the rainflow counter. The data points that are filtered out
in the last filter are considered to be noise, since they are part of cycles occurring within
the limits of one class. The reason, why a maxima and minima filter has to be performed

1 See [Feic05] for more information on the data acquisition system

40

6.3 Design

twice, instead of once after the classification, is that the classification function needs to
know if the current turning point is a maximum or a minimum to be able to carry out a
conservative classification of it. From the second maxima and minima filter the turning
points are sent onward to the rainflow counter. The rainflow counter takes the maxima
and minima and combine them into cycles, which are then stored in the rainflow matrix.
The fatigue calculation block takes the rainflow matrix as input and uses it to calculate
the fatigue. At the end of each processing cycle, the estimated remaining lifetime is
displayed in the form of a so called life meter. After this, a whole cycle of the program,
for one sensor, has finished. The program returns to its starting state and proceeds with
the same process for any other sensor that is to be monitored. If all sensors have been
processed, the program goes to its idle state and waits for the next time frame to arrive.

The transfer of large data-blocks, e.g. rainflow matrices and time frames, between the
different function blocks gives a high processor load. To avoid this, pointers were used
at all places in the system where data-blocks of significant size were needed as input
parameters.

6.3.2 Second Design Approach

The second design approach was basically the same as the first one, but with one major
difference, namely the classification. In opposite to the first design approach, the classifi-
cation was included in the rainflow counter function block in the second design approach.
Hence, the second maxima and minima filter became unnecessary. The reason why the
classification was performed before the rainflow counting in the first approach was that
in that way more data points were filtered out before reaching the rainflow counter. This
would then lead to less execution complexity. However, by doing the classification be-
fore the rainflow counter the result becomes less accurate because the rainflow counting
method is carried out with classified values. Since the result from the classification is in
any case conservative this would not be a security issue. Although, the lifetime of the
monitored components would be decreased slightly faster than in reality. The implica-
tion of this would be increased costs. It was also found that in the already available
offline rainflow counter included in the commercial signal processing tool FAMOS, used
by GE Energy, the classification was performed internally by the rainflow counter. This
further encouraged the use of the second design approach since this made it possible
to validate the developed system by comparing with results achieved from GE Energy’s
calculations.

41

Chapter 6 Developed Software

Figure 6.2: Software flowchart for the second design approach

6.4 Developed POU’s

6.4.1 Program Lifetime_calc_main

The program lifetime_calc_main is the main program of the developed monitoring
system. This is called for every incoming time frame from every sensor. The calls come
from the main program of the data acquisition system.

In the lifetime_calc_main program there is a setting that enables the user to choose
to use the implementation with the external or internal classification when performing
the calculations. By setting the boolean variable rfc_internal_classification to TRUE or
FALSE, the user can decide which approach to use. Default value of rfc_internal_classification
is TRUE.

From the lifetime_calc_main program, all calls are made to the different function
blocks used in the monitoring system. The lifetime_calc_main program is arranged in
such a way that after every finished call to a function block it returns to the calling
program. The reason for this is to keep execution cycles short, preventing violation of
the real-time properties of the system. This means that before a time frame has been
completely processed, several calls to the lifetime_calc_main program has to be made.
First when the lifetime_calc_main program’s output is set to true is the processing of
a time frame completed.

The first task for the main program, for every new incoming time frame, is to control
the integrity of the time frame. This is done by checking the time that the time frame
contain. The time contained have to be exactly the same as expected, with millisecond
accuracy, in order to be accepted. In this system, every time frame is supposed to be 10
minutes long, thus it should contain 600 000 ms. The time frame data structure has also
an error flag that can indicate several kinds of errors. This flag is also controlled before
letting the time frame pass to the calculation function blocks. In case of a corrupt time
frame, the time frame is thrown away and the residual for the corresponding sensor is
processed by the rainflow counter, and reset, and the program goes back to its idle state
waiting for the next time frame/call.

42

6.4 Developed POU’s

6.4.2 Function Block Filter_max_min_REAL

The function block filter_max_min_REAL was used in the first implementation ap-
proach. In this implementation version, it was the first of two maxima and minima filter
function blocks. It takes a time series of floating point values as input and filters it.
The outputs from this function block are the number of turning points that the time
series contained and an array with the turning points themselves. Here, a turning point
means an extremum, maximum or minimum. All possible saddle points are also filtered
out by this function block. If several succeeding data points in the time series have the
same value and they together constitute an extremum, only one of them is kept. Thus,
the output array with turning points only contain alternating maxima and minima. Fig.
6.3 shows the flowchart of the function block filter_max_min_REAL.

Figure 6.3: Flowchart for the maxima and minima filter algorithm

43

Chapter 6 Developed Software

6.4.3 Function Block Filter_max_min_INT

The function block filter_max_min_INT was only used for the first implementation
approach. It was used as the second maxima and minima filter function block. This
function block is very similar to the function block filter_max_min_REAL. Although,
it takes an array of integer values as input instead of floating point values. It also
controls if the last value in the residual, i.e. the last value from the previous time frame,
is really a maximum or minimum by comparing with the first data point in the present
time frame. This verification has to be carried out for every time frame, because the last
data point from each time frame is automatically included to the residual, to ensure that
no possible maximum or minimum are lost. Except for controlling the last data point
in the residual, the main functionality of the function block filter_max_min_INT was
to remove possible succeeding data points with the same value that could have arisen
during the external classification process, present in the first implementation approach.

6.4.4 Function Block Filter_max_min_REAL_v2

By using the function block filter_max_min_REAL_v2, the functionality of the func-
tion block filter_max_min_REAL and filter_max_min_INT are combined. It was
constructed to filter a time frame of floating point values regarding its turning points,
as in filter_max_min_REAL, and also for controlling the last value in the residual,
as in filter_max_min_INT. The function block filter_max_min_REAL_v2 was only
used in the second system implementation, with the classification performed internally
in the rfc_v2 function block. Since the classification is performed internally, the filter
functionality does not have to be splitted into two function blocks2.

6.4.5 Function Block Rfc

The most central function block in this thesis was the rfc. The rfc function block performs
rainflow counting on the incoming turning points according to the non-recursive rainflow
algorithm presented in Section 2.2.3. The most important outputs from the rfc are the
two rainflow matrices, the high resolution rainflow matrix and the low resolution rainflow
matrix, and the residual.

6.4.6 Function Block Rfc_v2

An extended version to the function block rfc is the rfc_v2. The difference between
rfc and rfc_v2 is that rfc_v2 has the classification functionality integrated in its own
function block, according to the second design approach. This makes the results coming
from rfc_v2 more accurate than the ones from rfc. Except this, there is no difference
between rfc and rfc_v2.

2 Compare with Fig. 6.1 and Fig. 6.2

44

6.4 Developed POU’s

Figure 6.4: Flowchart for the rainflow algorithm

45

Chapter 6 Developed Software

6.4.7 Function Block Damage_calc

With the two rainflow matrices, calculated by rfc or rfc_v2, as inputs, the damage_calc
function block calculates the damage that the respective component has suffered from,
or to be more exact, the DEL3. Other inputs needed for this calculation are the material
parameters and designed maximum DEL for the component that the actual time series
originate from. The calculations are performed according to (3.5) and (3.6). The first
result is obtained by dividing the calculated DEL with the designed maximum DEL. This
gives how many percent of the total lifetime of the component that has been exhausted.
The second result is received in the same way as the first one, although scaled to 20
years. This means that the second result shows how many percent of the lifetime that
would have been exhausted in case that the present amount of damage would be scaled
to the designed maximum lifetime of the wind turbine, which is 20 years.

6.4.8 Function Block Matrix_2_file

The function block matrix_2_file was used to store the calculated rainflow matrices
onto a flash memory. The flash memory card was integrated in the CPU module on
which the monitoring system executes. For the internal continuous fatigue analysis, it
was enough to have the matrices saved on the internal PLC memory, but for external
evaluation was it necessary to save the matrices on an external memory unit.

In order to make the storage of the matrices as memory efficient as possible, a compres-
sion algorithm was developed. The rainflow matrices are usually very sparsely occupied
with values. Therefore, instead of saving the whole matrix, only the elements with values
were stored.

6.5 Developed GUI’s

In order to enable an easy usage of the developed monitoring system for the user, several
GUI’s4 were developed. In Fig. 6.5 the GUI presenting the total damage, that has been
calculated for each sensor, can be seen. This specific screenshot has been taken during
offline development mode, which explains why the damage piles all have the same size.
With a similar GUI as in Fig. 6.5, the damage scaled to 20 years can also be observed.

6.6 Matlab Implementation

For validation purposes, all POU’s implemented with the Bachmann M-PLC 3 develop-
ment environment were also translated into Matlab functions, so-called m-files. With

3 See Section 3.2 for definition of DEL
4 GUI: Graphical User Interface

46

6.7 Real-time Requirements

Figure 6.5: GUI showing the total damage that has been calculated for the monitored
sensors

these m-files, it was possible to carry out flexible comparisons and validations as well as
making graphical illustrations of the results.

6.7 Real-time Requirements

Since a new time frame arrives only every 10 minutes, the program has 10 minutes avail-
able to finish its tasks. Of course, these 10 minutes are shared with other processes, for
example those performing the calculations for the time frames from the other monitored
sensors and the data acqusition system. Therefore, the truly available execution time is
shorter. The hardest real-time requirement was that every execution cycle in the pro-
gram had to be shorter than 18 ms. The data acquisition system, running on the same
CPU, samples some sensors with as much as approximately 56 Hz, thus having about 18
ms between each sample. If these 18 ms execution time slot would be exceeded by some
part of the program, the integrity of the data acquisition would be violated. Therefore,
watch dogs that controlled and secured the integrity of the time slots are implemented
in the given data acquisition system.

47

Chapter 6 Developed Software

6.8 Conclusions

Two design approaches were implemented with the Bachmann M-PLC 3 development
environment. The first implementation was more time-efficient, and also more conser-
vative, than the second one because the classification was performed before the rainflow
counting. In the second implementation, the classification of the turning points was car-
ried out internally in the rainflow counting function block. This led to more accurate,
although still conservative, results but was also more time consuming. By changing a
parameter in the main program, the user can decide which of the two implementations
to use. Offline rainflow counting performed by GE Energy, with the commercial software
FAMOS, comply to the second implementation.

All POU’s implemented were also translated into Matlab functions in order to be used
for offline validation purposes.

48

Part II

Results and Validation

49

Chapter 7

Simulation using HITL

The simulation was carried out with the HITL real-time simulation system. It had a
duration of 40 minutes, thus 4 time frames of 10 minutes each were received, and the
specifications of it are stated in Table 7.1. The sensor monitored was the one measuring
edgewise bending moment for a wind turbine blade. The four received time frames are
plotted in Fig. 7.1.

Wind turbine model GE 1.5 s/sl
Mean wind speed 10 m/s
Sensor monitored blxMe
Number of classes 164

Upper limit for the high resolution sensor coverage +1300 kNm
Lower limit for the high resolution sensor coverage +600 kNm

Class size 4.2683 kNm
Samples per time frame 16 384

Simulation time 40 Min

Table 7.1: Simulation specifications

The upper and lower limits for the high resolution sensor coverage was found empir-
ically suitable. As can be seen in Fig. 7.1, none of the values from the time frames
received during this simulation, reached outside these limits.

In Fig. 7.2 it can be observed how the high resolution rainflow matrix develops during
the four succeeding time frames. Here, it can be seen how the rainflow matrix character-
istics gets more and more distinct for each processed time frame. These rainflow matrices
were calculated online by the developed monitoring system, using the implementation
version with the external classification.

In Fig. 7.3, the rainflow matrix for time series number one in Fig. 7.1 can be more
thoroughly investigated. This matrix was calculated offline with the help of the Matlab-
functions, implemented in this thesis, with internal classification. The Matlab functions
were translated from the function blocks developed with the Bachmann M-PLC 3 pro-
gramming environment. In Fig. 7.4, a rainflow matrix for the same time series, but
calculated by GE Energy with the FAMOS signal processing tool, is presented. When

51

Chapter 7 Simulation using HITL

2000 4000 6000 8000 10000120001400016000
600

700

800

900

1000

1100

1200

1300

Lo
ad

 (
kN

m
)

Sample Number

First 10 min Data Series for Sensor blxMe

2000 4000 6000 8000 10000120001400016000
600

700

800

900

1000

1100

1200

1300

Sample Number

Lo
ad

 (
kN

m
)

Second 10 min Data Series for Sensor blxMe

2000 4000 6000 8000 10000120001400016000
600

700

800

900

1000

1100

1200

1300

Sample Number

Lo
ad

 (
kN

m
)

Third 10 min Data Series for Sensor blxMe

2000 4000 6000 8000 10000120001400016000
600

700

800

900

1000

1100

1200

1300

Sample Number

Lo
ad

 (
kN

m
)

Fourth 10 min Data Series for Sensor blxMe

Figure 7.1: The four time frames obtained from the simulation

comparing these two matrices it can be seen that they have large similarities. Never-
theless, they differ slightly from each other, even though they originate from the same
time series. The difference is most likely due to the classification that is performed in
a somewhat different way. The number of load-cycles found by both calculations were
almost the same, the difference was only about 0.3%. The developed system counted 692
cycles and FAMOS counted 690. When comparing the scaled damage1, calculated with
the developed Matlab functions from these two rainflow matrices, the damage calculated
from the FAMOS rainflow matrix was found to be 0.15% higher than for the one from
the developed monitoring system.

For the purpose of validation, the result from the monitoring system was also com-
pared with the result received by using the WAFO2 matlab toolbox [WAFO00]. WAFO
include functions for offline rainflow calculations for time series. The number of cycles
achieved from WAFO for the actual time series was exactly the same as achieved from
the developed monitoring system. Although, the appearance of the rainflow matrix from
WAFO was somewhat different then from the ones generated by the monitoring system
and by FAMOS. It can also be observed that the WAFO rainflow matrix is stretched
over a larger amount of classes then for the monitoring system and for FAMOS. The

1 Damage scaled to 20 years.
2 WAFO: Wave Analysis for Fatigue and Oceanography. WAFO is a freeware Matlab toolbox developed

at the Department of Mathematical Statistics at Lund Institute of Technology.

52

reason for this is that the value-space, that should be covered by the classes, can not
be fixed in WAFO. Since WAFO was developed for offline calculations, it automatically
searches for the largest and smallest value of the time frame and split the value-space,
between these two values, in the demanded amount of classes. Hence, this generates
an optimal layout of the classes, although, this is only possible for offline mode, as dis-
cussed in Section 2.2.7. The damage calculated from the WAFO rainflow matrix was
0.45% smaller than the one calculated by the monitoring system. A comparison between
the results received from the monitoring system, FAMOS, and WAFO is presented in
Table 7.2. For all three calculations, the residual was always included and processed at
the end of the calculations.

Method Nbr of Load-cycles Scaled Damage

Monitoring System 692 0.2909
FAMOS 690 0.2914
WAFO 692 0.2896

Table 7.2: Comparison between the results received with the monitoring system,
FAMOS, respective WAFO for the first time frame in the simulation

The scaled damage calculated by the monitoring system for the first time frame in the
simulation was about 30%. This means that if the same loads, as in this perticular time
frame, would have been applied for 20 years, the total exhaustion of the blade would
have been 30% of its total endurance.

Fig. 7.6 presents the SN-curve derived from the results from the monitoring system
for the first time frame in the simulation. It can be observed that it has in some degree
a linear appearance, since the x-axis is on a logarithmic scale, which was also expected
if one considers the definition of the SN-curve in (3.1).

53

Chapter 7 Simulation using HITL

Figure 7.2: Development of the high resolution rainflow matrix, for the blxMe sensor,
during four time frames

54

20
40

60
80

100
120

140
160

20

40

60

80

100

120

140

160

0
5

10

Mean (class)

Range (classes)

N
um

be
r

of
 C

yc
le

s

Figure 7.3: High resolution rainflow matrix calculated by the monitoring system, using
internal classification, for a time frame from the blxMe sensor

55

Chapter 7 Simulation using HITL

20
40

60
80

100
120

140
160

20

40

60

80

100

120

140

160

0
5

10

Mean (class)

Range (classes)

N
um

be
r

of
 C

yc
le

s

Figure 7.4: Rainflow matrix calculated with the signal processing tool FAMOS, for a
time frame from the blxMe sensor

56

20
40

60
80

100
120

140
160

20

40

60

80

100

120

140

160

0
5

10

Mean (class)

Range (classes)

N
um

be
r

of
 C

yc
le

s

Figure 7.5: Rainflow matrix calculated with the Matlab toolbox WAFO, for a time frame
from the blxMe sensor

57

Chapter 7 Simulation using HITL

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

400

450

500

Number of cycles (10x)

Lo
ad

 r
an

ge
 (

kN
m

)

Figure 7.6: SN-curve for the first time frame in the simulation

58

Chapter 8

Calculations for a Measurement

The purpose of performing calculations on a measured time frame was to once more val-
idate the developed monitoring system, thus ensuring that the system works as expected
also for measured time frames. Thereby, the results from the HITL simulations could
also be verified.

This measurement was carried out at the Wietmarschen wind turbine in Salzbergen,
Germany. The time frame recorded came from the sensor measuring flapwise loads at
one of the blades. The calculations were performed offline with the implemented Matlab
functions, using internal classification, respective by GE Energy with the FAMOS signal
processsing tool. The WAFO Matlab toolbox, also used for validation in the last chapter,
could not be used in this case because it could not handle time frames of this size.

Since the calculations were performed offline, optimal layout of the classes could be
achieved since the absolute maximum and minimum of the time frame were known.

The residual was included and processed at the end of the calculations.

Wind turbine model GE 1.5 sl
Mean wind speed 11.15 m/s
Sensor monitored blxMf
Number of classes 164

Upper limit for the high resolution sensor coverage +2598.8 kNm
Lower limit for the high resolution sensor coverage +1043.8 kNm

Class size 9.4817 kNm
Samples per time frame 30 000

Simulation time 10 Min

Table 8.1: Measurement specifications

When comparing the results achieved from the developed monitoring system with
the ones achieved from FAMOS, see Table 8.2, it can be observed that they are in
this case, as well as in the comparison of the results from the HITL simulation, very
similar. The number of found load-cycles was in this case exactly the same for both
methods. Although, the small differences in the distribution of the cycles in the rainflow
matrix can still be seen when comparing Fig. 8.2 and Fig. 8.3. The difference in the

59

Chapter 8 Calculations for a Measurement

scaled damage, calculated for each rainflow matrix, was 0.18%. Once more, the scaled
damage calculated for the rainflow matrix from FAMOS was slightly higher than the
one calculated for the rainflow matrix from the monitoring system.

For this recorded time frame, the scaled damage was considerably higher than the one
calculated in Chapter 7. In this case, the exhaustion of the blade’s endurance was as
much as 90%. This large fluctuation can be explained by considering that the simulation
and the measurement, for which the calculations were performed, were only 10 minutes
long. Hence, a short, but large, fluctuation in the loads would have a large impact on
the scaled damage. A 10 minutes long measurement is enough to use for validation
purposes, but it is too short for making estimations of the lifetime of a component.

Method Nbr of Load-cycles Scaled Damage

Monitoring System 877 0.9002
FAMOS 877 0.9018

Table 8.2: Comparison between the results received with the monitoring system and with
FAMOS

0.5 1 1.5 2 2.5 3
1000

1200

1400

1600

1800

2000

2200

2400

2600

Sample Number

Lo
ad

 (
kN

m
)

Figure 8.1: The recorded 10 minutes time frame for flapwise loads at one of the blades

60

20
40

60
80

100
120

140
160

20

40

60

80

100

120

140

160

0
5

10

Mean (class)

Range (classes)

N
um

be
r

of
 C

yc
le

s

Figure 8.2: High resolution rainflow matrix calculated by the monitoring system, using
internal classification, for a time frame from the blxMf sensor

61

Chapter 8 Calculations for a Measurement

20
40

60
80

100
120

140
160

20

40

60

80

100

120

140

160

0
5

10

Mean (class)

Range (classes)

N
um

be
r

of
 C

yc
le

s

Figure 8.3: Rainflow matrix calculated with the signal processing tool FAMOS, for a
time frame from the blxMf sensor

62

Part III

Conclusions and Perspectives

63

Chapter 9

Summary

The aim of this thesis was to design and implement a lifetime monitoring system for the
GE 1.5s/sl wind turbine. Knowing the estimated remaining lifetime makes it possible to
change the wind turbine components before they break. This increases both the security
and availability of the wind turbine.

The rainflow counting method was chosen for extraction of load cycles from the load
sequences. It has been shown best practice to use the rainflow counting method when
acquiring relevant information from a load sequence, to monitor the lifetime of a compo-
nent. The rainflow counting method can also be used for online processing, which was
necessary for this thesis.

The classification of the data points in the time frames were performed in a conser-
vative manner. The conservative classification method was chosen before the least-error
method in order to ensure that the damage calculated is always at least as large as in
reality, in no case less.

To make online rainflow counting possible, a new approach had to be found for the
layout of the classes. By having two rainflow matrices, one with high resolution for
a small value-space and one with low resolution for a large value-space, all necessary
information from the rainflow counting could be stored. This was also a very memory
efficient solution, demanding only a fraction of the memory needed for other possible
solutions.

It was found that the life meter could be represented as the quotient between Seq

and Seq_max in order to present measured damage equivalent loads against the designed
maximum damage equivalent loads. The measured damage equivalent loads should be
multiplied with safety factors in order to ensure that the components do not break before
they are expected to.

Two design approaches for the monitoring system were implemented. The first im-
plementation was more time-efficient, and also more conservative, than the second one
because the classification was performed before the rainflow counting. In the second
implementation, the classification of the turning points was carried out internally in the
rainflow counting function block. This led to more accurate results, although, it was
also more time consuming since a lower amount of data points were filtered out before
the rainflow counting function block. By changing a parameter in the main program the

65

Chapter 9 Summary

user can decide which of the two implementations to use.
All POU’s implemented were also translated into Matlab functions in order to be used

for offline validation purposes.
The monitoring system was made robust to handle outer disturbances to the sensors

and/or to the data acquisition system by having an internal error-detector and an error-
handler implemented. The error-detector can detect faults such as sensor failure or
discontinuities in or between the incoming time frames.

The validation of the lifetime monitoring system was carried out by comparing with
the results achieved from the signal processing tool FAMOS and the Matlab toolbox
WAFO. It turned out that the results matched each other very well. The difference
in the results was always less then 0.5%. This difference was most probably due to a
discrepancy between the classification methodologies used by the different systems.

A prototype of the monitoring system was succesfully installed in the Holsten-Bexten
GE 1.5sle wind turbine in Salzbergen, Germany.

66

Chapter 10

Quality Assessments

During this thesis work, several simplifications and assumptions were, of course, made.
These could make the results achieved less accurate, but are also often necessary since
it is not feasible to perform empirical investigations for all unknown quantities. In this
thesis, assumptions on the value of a few quantities have been made. E.g. the number of
classes being used in the classification of the data points in the time series was chosen to
be 164, because this had shown good practice by tests performed by GE Energy. It was a
assumed that this number of classes was enough, although no own tests were performed
for comparison and validation. On the other hand, it was also of interest to choose
similar parameters as the ones being used by GE Energy since it made comparison of
generated results possible. In this thesis, being able to do meaningful comparisons was
more important than finding and using the optimal number of classes.

Another assumption was the position of the limits between the high resolution and
low resolution rainflow matrices. The resolution needed was only approximately known.
A one month long monitoring of the loads on a real wind turbine was studied, and the
total maximum and minimum load taking place during this time were used as limits for
the high resolution rainflow matrix. All loads beyond this value-space were considered
to be rare and therefore a lower resolution was used for these loads. Only the approxi-
mate magnitude of these rare large loads was needed in order to be able to calculate a
fairly correct fatigue. The resolution of the low resolution matrix was set to a tenth of
the resolution of the high resoution matrix. This makes the total covered value space
probably much larger than it would have to be. Although, it ensures that the really
extreme loads will fit in the low resolution matrix.

To find accurate and unambiguous maximum DEL’s to use for the damage calculations
was not trivial. The maximum DEL’s had to be taken from a wind turbine with the
same specifications as the one where the life time monitoring took place. It was also
necessary to use DEL’s that had been calculated for exactly the same positions as for the
monitored sensors. The DEL’s used in this thesis were only given for different integer
values of the material parameter m (see section 3.1). To use only a integer-value for m
was an approximation since it is in reality a floating point value.

As mentioned in section 3.2, safety factors have to be multiplied to the total calculated
damage in order to be sure that components do not fail before they are expected to.

67

Chapter 10 Quality Assessments

The exact magnitude of these safety factors are not known and therefore such factors
have not been included in the damage calculations in this thesis. In order to find out the
necessary magnitude of the safety factors, several empirical tests have to be performed.

The differences between the results achieved with the, in this thesis, developed system
and the ones achieved from the FAMOS software respective WAFO Matlab functions
are most probably due to differences in the classification method used. Since the num-
ber of cycles found by each application were almost the same, it suggests that the
rainflow counting operates in the same way in all these three methods. Although, the
final fatigue calculated with the developed rainflow counter respective with the FAMOS
signal-processing tool was the same. This was the most essential result in this thesis
and therefore it was of most importance that this validation turned out positive.

Whenever an approximation had to be made in the calculations in this thesis, it was
always ensured that it was conservative. This was of high importance since the estimated
remaining lifetime of the components of a wind turbine is, for security reasons, never to
be higher than it really is.

68

Chapter 11

Future Work

The lifetime monitoring system has been designed and implemented in this thesis work.
A prototype of it has been installed into a wind turbine. Future work will now consist
of carrying out tests on the prototype system over a longer period of time, in order to
complete verification. By doing this, it will become clear if the accuracy of the system
is satisfactory or if it has to be tuned in order to achieve long term reliability.

Multiplying the results with safety-factors has not been done in this thesis. This will
also have to be considered in the future. By performing tests over a longer period of time,
and for several different wind turbines, the safety-factors needed can be determined.

With the developed system, it is now possible to monitor the lifetime of several com-
ponents of a wind turbine. A future task will be to develop new controller strategies that
take use of the information that the monitoring system delivers in order to optimize the
operation of the wind turbine regarding the lifetime of the components and the energy
capture.

69

Chapter 11 Future Work

70

Bibliography

[AGRB94] C. Amzallag, J.P. Gerey, J.L. Robert, J. Bahuaud: Standardization of
the rainflow counting method for fatigue analysis, International Journal
of Fatigue, Vol. 16, pp. 287-293, 1994

[DeJi03] S. Amarnath, A. Deshpande, P. Jindal: PP7 and Flex5 manual, version
1.0, GE Wind Energy, 2003

[DoSo82] S.D. Downing, D.F. Socie: Simple rainflow counting algorithms, Interna-
tional Journal of Fatigue, Vol. 4, pp. 31-40, 1982

[DrHa95] K. Dressler, M. Hack: Fatigue Lifetime Estimation on Rainflow Counted
Data Using the Local Strain Approach, 1995

[Echt96] A. T. Echtermeyer, et al.: Method to predict fatigue lifetimes of GRP
wind turbine blades and comparison with experiments, European Union
Wind Energy Conference, 1996

[Efun05] eFunda - Engineering Fundamentals, http://www.efunda.com/, access
date 27/09/05

[Endo74] T. Endo: Proceedings from Symposium of Mechanical Behaviour of Ma-
terials, Society of Material Science, Japan, 1974

[Feic05] W. Feichter: Real-time Monitoring for 1.5 Mega Watt Wind Turbine Gen-
erators, Bachelor Thesis, Munich University of Applied Sciences, 2005

[Flei99] K. Fleischer: LaTeX - mehr als nur schreiben, Fernuniversität Hagen,
1999

[Germ03] Richtlinie für die Zertifierung von Windenergieanlagen, Germanischer
Lloyd Wind Energie GmbH, Ausgabe 2003

[GEGR04] Hardware-in-the-loop Simulator for Wind Turbine Control, internal doc-
ument, GE Global Research, Shanghai, 2004

[GEWE04] GEWE - 3.6 Standard Europe, GE Wind Energy GmbH, 2004

71

Bibliography

[GEWE05] ADC-Report, GE Wind Energy GmbH, 27 Revision, 2005

[Joha93] R. Johansson: System Modeling & Identification, Prentice-Hall Inc., 1993

[Joha99] P. Johansson: Modelling of Random Vehicle Fatigue Loads through
Transformed Gaussian Processed, Department of Mathematical Statis-
tics, Lund Institute of Technology, 1999

[Johb99] P. Johansson: Rainflow Analysis of Switching Markov Loads, Doctoral
Thesis, Department of Mathematical Statistics, Lund Institute of Tech-
nology, 1999

[JoSM05] P. Johannesson, T. Svensson, J. de Maré: Fatigue life prediction based on
variable amplitude tests - methodology, International Journal of Fatigue,
2005

[Jürg95] M. Jürgens: LaTeX - eine Einführung und ein bisschen mehr..., Fernuni-
versität Hagen, 1995

[Kopk04] H. Kopka: Guide to LaTeX, Addison-Wesley Publishing Company, 2004

[Lamp95] L. Lamport: Das LaTeX Handbuch, Addison-Wesley Publishing Com-
pany, 1995

[MaKa05] A. Mangold, S. Kleinhansl: Load Assessment for the Wind Energy Tur-
bine GE15sl, 1.5sl 50 Hz DIBt Zone II A LM37.3P2 100m, GE Wind
Energy GmbH, 2005

[MaKb05] A. Mangold, S. Kleinhansl: Load Assessment for the Wind Energy Tur-
bine GE15sl, 1.5sl 50 Hz IEC Type Class IIIA 7.5 m/s LM37.3P2 100m,
GE Wind Energy GmbH, 2005

[Mine45] M. A. Miner: Cumulative damage in fatigue, Journal of Applied Mechan-
ics, Vol. 12, pp. A159-A164, 1945

[NaAm03] A. Natarajan, S. Amarnath: Flex5 - Theory Manual, Version 1.0, GE
Wind Energy, 2003

[Palm24] A. Palmgren: Die Lebensdauer von Kugellagern, Zeitschrift des vereins
Deutscher Ingenieure, Vol. 68, pp. 339-41, 1924

[Rix00] P. Rix: Lastannahmen zur Enron Wind 1.5sl nach DIBt WZII, Diploma
Thesis, Enron Wind GmbH, 2000

[Rych87] I. Rychlik: A new definition of the rainflow cycle counting method, Inter-
national Journal of Fatigue, Vol. 9, pp. 119-121, 1987

72

Bibliography

[Suth95] H. J. Sutherland: Effect of Cyclic Stress Distribution Models on Fatigue
Life Predictions, SED, Vol. 16, ASME, pp. 83-90, 1995

[SöKR04] H. Söker, S. Kieselhorst, R. Royo, Load Monitoring on a Mainshaft, a
Case Study, Proceedings from DEWEK, Wilhelmshafen, 2004

[WAFO00] The WAFO Group: A Matlab Toolbox for Analysis of Random Waves
and Loads, Department of Mathematical Statistics, Lund Institute of
Technology, 2000

[WeZe88] A. Westermann-Friedrich, H. Zenner: Zählverfahren zur Bildung von
Kollektiven aus Zeitfunktionen, FVA-Merkblatt, Vol. 0/14, 1988

[Wind03] Windkraftjournal, Allianz Versicherungs-AG, 3/2003

[Wind05] Positions of sensors installed on a GE 1.5sle at Bexten, WINDTEST
Kaiser-Wilhelm-Koog GmbH, 2005

73

Bibliography

74

Statutory Declaration

I do solemnly and sincerely declare that I have developed and written this enclosed Mas-
ter Thesis completely by myself, and have not used sources or means without declaration
in the text. Any thoughts from others, or literal quotations, are clearly marked. This
work has not been submitted to any other examining authority and has not yet been
published.

Garching, 31. October 2005

75

