
ISSN 0280-5316
ISRN LUTFD2/TFRT--5722--SE

Hard Real-Time Control of an
Inverted Pendulum using

RTLinux/Free

Mathias Svensson

Department of Automatic Control
Lund Institute of Technology

February 2004

Document name
MASTER THESIS
Date of issue
February 2004

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD2/TFRT--5722--SE
Supervisor
Manuel Velasco Garcia, Barcelona, Spanien
Anders Rantzer LTH Lund

Author(s)
Mathias Svensson

Sponsoring organization

Title and subtitle
Hard Real-Time Control of an Inverted Pendulum using RTLinux/Free (Hård realtidsreglering av en inverterad pendel i
RTLinux/Free).

Abstract
The content of this master thesis regards the implementation of a control system in RTLinux/Free, and the use
of this for control of a straight track inverted pendulum.
A controller developed on the hypothesis that the system is sampled with the sampling time ts will perform
differently than expected if sampled with the sampling time t _= ts. If implemented in a regular operating
system, the computer will fail to meet demands of hard real-time sampling constraints, i.e. that the desired
sampling time must be the one used by the system at all times and in all situations. A computer controlled
system in this environment will thus perform di.erently than expected most of the time. Often ”di.erently” is the
same as various degrees of worse.
The underlying objectives for this project was the desire to be able to control and do research on a hard real-
time system connected to an unstable non-linear plant — the inverted pendulum. This master thesis covers the
work of creating a hard real-time platform using RTLinux/Free on which to add control features. It deals with
communication betweenhard real-time and soft real-time, kernel module programming, modelling, linear state
feedback, linearization, energy functions, friction compensation, etc.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
88

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden Fax +46 46 222 44 22 E-mail ub2@ub2.se

Master Thesis

Hard Real-Time Control of an

Inverted Pendulum using RTLinux/Free

Mathias Svensson

5th February 2004

Universitat Politècnica de Catalunya
Departament d’Enginyeria de Sistemes
Automàtica i Informàtica Industrial
Director: Manel Velasco Garcia

Lund Institute of Technology
Department of Automatic Control
Supervisor: Prof. Anders Rantzer

Contents

1 Introduction 1
1.1 Structure . 2
1.2 Definitions of Terms Used . 2

2 What is Real-time? 3
2.1 Definition of Real-time . 5

2.1.1 Soft vs. Hard Real-time . 6
2.2 Real-time and Automatic Control . 7
2.3 Real-time Characteristics for Regular Operating Systems 8

2.3.1 Main Goal of Operating Systems 9
2.3.2 Latency Test for Standard Linux 10
2.3.3 How to Achieve Hard Real-time in Linux 10

3 RTLinux 12
3.1 The Real Time Kernel . 12
3.2 Latency Test for RTLinux . 14

4 The Process 16
4.1 Pendulum Description . 16
4.2 Hardware Communication . 16
4.3 RT-DAC4/PCI Drivers . 17

5 The Program 19
5.1 Program Overview . 19
5.2 RT-DAC4/PCI Drivers . 19
5.3 The Kernel Modules . 20

5.3.1 Calculation of Derivatives . 21
5.3.2 Faster Floating Point to Integer Conversions 21
5.3.3 Input-Output Latency and Computation Time 22
5.3.4 Dummy Module . 24

5.4 The Java Program . 24
5.5 Putting Everything Together . 25

6 Model of Pendulum 27
6.1 Mathematical Model of Pendulum . 27
6.2 Equilibrium Points . 29
6.3 Linearization in Up-position . 30
6.4 Linearization in Down-position . 30
6.5 State Space Description . 31

i

6.6 Finding the Parameters . 32
6.6.1 Center of Gravity of Pendulum 32
6.6.2 Moment of Inertia for Pendulum 32
6.6.3 Pendulum Friction . 33
6.6.4 Cart Friction . 33
6.6.5 Numerical Matrixes . 34

7 Controlling the Pendulum 35
7.1 Control Objectives . 35
7.2 Discretization . 35
7.3 State Machine Description . 36
7.4 Calibration and Assumptions . 36
7.5 State Feedback . 38

7.5.1 Stabilizing Control Up . 39
7.5.2 Stabilizing Control Down . 41

7.6 Model vs Real Pendulum . 42
7.7 Swing-Up and Swing-Down . 42
7.8 Cart Control . 46

7.8.1 Software Spring . 47
7.9 Friction Compensation . 47

8 Deterministic Disturbance 51
8.1 Variable Sampling Time . 51
8.2 Variable Disturbance . 53
8.3 Possible Future Tests . 54

9 Result and Summary 55

A User Manual 56

B Miscellanous 57
B.1 RT-DAC4/PCI Driver API . 57
B.2 Latency Test Diagrams . 58
B.3 Screen Dump of the Java Program . 60

Bibliography 61

ii

Acknowledgements

I wish to thank the following persons for their help with this master thesis project. It
is always a privilege to work with intelligent people.

Dr. Ricard Villà and PhD Student Manel Velasco for your warm welcome and your
constant support, tips, and interest. It was very nice to work with you!

Dr. Josep M. Fuertes for all clever questions, funny tests of my skills in Catalan
(which I never passed), and your cheerful mood.

Prof. Anders Rantzer and PhD Student Johan Åkesson for your support via mail
from Sweden.

PhD Student Miquel Monroig for good collaboration.

Magnus Bäck for your expertise within LATEX and with every computer related
question I seem to be able to ask.

Marcus Bellander for the thorough proofreading of this report.

I also would like to express my gratitude towards the following persons whose contri-
bution was not directly related to the project, but nevertheless very important:

Thank you Pilar ”Pili” Aldana Alfaro for your great company and for all nice cups
of cortado and magdalenas. I will miss you in Sweden.

Carlos and Dulce for the nice trip to Castelldelfels and Garaf and for the nice ap-
partment we rented.

All the nice visitors from Sweden.

Most of all

Thank you Katja for being so supportive and for taking so good care of me!

Chapter 1

Introduction

In the process of converting a continuous description of a controlled system into the
discrete-time equivalent, the system is observed at equidistant samples and the dy-
namic relations of the states and the input signals are derived. Different time dis-
tances between two consecutive samples (sample time) result in different discrete time
systems. A controller developed on the hypothesis that the system is sampled with
sample time ts will perform differently than expected if the system is sampled with a
sample time t �= ts. If implemented in a regular operating system, the computer will
fail to meet demands of hard real-time sampling constraints for a number of reasons.
The perhaps most important reason for this is that the scheduler in a regular operat-
ing system does not have real-time as its main objective, but instead throughput. A
computer controlled system in this enviroment will thus perform differently — often
worse — than expected.

The objectives for this master thesis were to implement a hard real-time control
system, and to use this for control of a straight track inverted pendulum. The priority
was higher for getting the control program to work than actually getting the control to
work perfect using it. If the program worked satisfying, desired control could always
be achieved later. The inverted pendulum is a process with many interesting features,
of which the most interesting for this project are:

� Stable in down-position and unstable in up-position

� Non-linear

� Contains friction

The pendulum in question was delivered with drivers and software for use in a
Windows MATLAB system, but for many reasons it would be interesting to control it
in a true real-time system.

It was desired to use Linux as a base for the controller, since Linux in many ways
is interesting. It is free software, well established, and offers a nice way of customizing
every individual system. The operating system used was RTLinux/Free, an operating
system released under GPL v21 by the company FSM Inc2. RTLinux offers a nice way
of combining the well tuned soft real-time features of standard Linux with true hard
real-time constraints on selected parts of the system.

1GNU General Public Licence version 2, (www.gnu.org)
2Finite State Machine, (www.rtlinux.org)

1

1.1 Structure

The structure for the thesis is as follows:

Chapter1 Introduction.

Chapter 2 explains the meaning of real-time and why it is interesting to study. This
chapter also introduces basic terms related to real-time and it gives example of
that standard operating systems are unsuitable for hard real-time.

Chapter 3 introduces RTLinux and explains the fundamental difference compared
with standard Linux.

Chapter 4 describes the process to control — the inverted pendulum.

Chapter 5 explains how the program is put together. Figures illustrate the sepa-
ration of hard real-time and soft real-time, and the general composition of the
different parts.

Chapter 6 derives a model for the inverted pendulum and gives suggestions of how
to find various parameters.

Chapter 7 describes the procedure for swinging the pendulum up and controlling the
pendulum using state feedback.

Chapter 8 is dedicated to test the control when it is disturbed in different controlled
ways.

Chapter 9 Discussion of the result and possible future work.

1.2 Definitions of Terms Used

A Process may contain a number of different tasks. Each process typically runs in
its own protected memory space.

A Task takes care of something that has to be done. A task may contain/be zero or
more threads, allthough it is most common that each task is implemented as one
single thread.

A Thread executes periodically or by interrupts, and often shares the same memory
space with different threads belonging to the same task/process. A thread is also
known as light weight process.

2

Chapter 2

What is Real-time?

It is important to describe the meaning of real-time. Without this knowledge it is
difficult to understand this report and its purpose.

Typical for real-time systems (and for computers in general) is that they must respond
to events. An event could be the user pressing a key on the keyboard, a camera
being connected to the USB, or a connected transmitter indicating that something
has happened. These are all examples of non-periodic events, but events may also be
periodic, i.e. the event occurs at times t, 2t, 3t, etc. Examples of periodic events are
the timer event of the internal clock and the time for execution of a periodic task. The
timer events of the internal clock are very important for the computer. These events
are actually the core driving factor for the computer’s extreme versatility.

The time from when an event occurs to when the computer becomes aware of it and
responds is of major interest in real-time. Depending on the application, the demand
of knowing how long time it will take until the computer responds to an event will
vary.

An easy way to implement the part of the system that deals with events would be
to use a loop that runs at a high frequency. Every revolution of the loop would go
through a list of things, checking if anything has happened that requires action. An
algorithm of this kind is said to be based on polling and may for instance look like
this:

while(true) {
...
if(transmitter signal above threshold)
then (take action)

else if(time for thread x to execute)
then (execute thread x)

...
else if(any key on keyboard down)
then (...)

...
}

An implementation like this will quickly get large, complex and difficult to overview.
This strategy has many negative features, and a few of the ones that relate to real-time
are the following:

3

� The time from when an event occurs to the time when action is taken depends
among other things on the current position of the loop execution, and on what
the actions for the other events may be.

� It is impossible to set priorities to different tasks. For instance, it may be very
much more important that the system responds to the transmitter signal than
send a file to the printer. In this case it would be nice if there were a guarantee
that the action for the transmitter signal would be taken before anything else,
i.e. it will be given highest priority. A guarantee like that cannot be given using
polling.

� Adding events will make the response times longer.

In the early age of computers polling was the way to solve event problems, but
today most computers use interrupts instead. The polling loop is then replaced by an
implementation that waits for interrupts that are associated with events, and while
waiting the CPU is free to execute other tasks. This is a much more economic way
of solving the problem, and using this strategy it is also possible to set priorities
on different tasks, which is particularly important in real-time. The fundamental
difference between polling and the use of interrupts, is that in polling it is the computer
that has to check if something has happened, but using interrupts it is instead the
environment that informs the computer.

Whenever an event occurs, the current execution is stopped and the interrupt
service routine (ISR) related to that particular event is launched. If the event happens
to be related to the highest priority task among the group of tasks that want to execute,
it gets to execute immediately.

With the invention of interrupts it became possible to separate large and complex
processes that deal with many things into smaller parts — one for every individual
task. This is called multitasking and has proven to be a powerful paradigm for struc-
turing real-time, interrupt driven systems. The basic idea is to break down a large
problem into smaller ones, and then let every problem be solved by a number of indi-
vidual interrupt driven tasks. Consider for instance the surveillance system for a large
manufacturing industry. Instead of using a program based on a polling loop similar to
the one shown above, the program is instead separated into smaller parts, i.e. threads
with the following pseudo functionality:

...
init();
...
while(running) {
wait_for_interrupt()

// Do work

}

On a system with only one CPU the different tasks must share this single CPU.
In fact, as soon as the situation occurs that there are more tasks then CPUs, these
CPUs must be shared. Whenever things must be shared there must be a supreme
thing that decides how this sharing is performed. Without this there would be chaos.
This supreme thing, the scheduler, tries to satisfy all demands and make the computer

4

run in a nice way. There are many scheduling algorithms that a scheduler can use, of
which algorithms based on the democratic algorithm Round Robin probably are the
most common ones.

2.1 Definition of Real-time

Many people assume that real-time means really fast. This is not true. The constant
development of computers and CPUs does not by itself push us closer to the limit
of real-time, and a slower computer is not by nature worse on real-time applications
than a faster one. In the same manner it is not always important that the response is
extremely fast, although fast is in general preferable before slow.

The definition of real-time is instead deterministic and fast enough. Fast enough
is, as many things, subjective without further explanation, and therefore it is vital to
explain what it means. Later on the different extents of deterministic times will be
discussed.

Example 1 Consider a person filling water into a bath tub. Filling a normal bath
tub takes a while and in the most common case the level only have to be ”high
enough”to make the bather happy. The strategy for controlling the level of water
is to open the tap, keep it open until the desired level is reached, and then close
the tap. Most people open the tap, leave the room and then check the level on a
regular basis until the tub is full. This regular basis is approximately once every
minute, and at maximum once every 30 seconds. If we would use a computer for
this purpose it would therefore be sufficient to take samples (checking the current
water level) once every 30 seconds. To check the water level 10 times a second
would not make the bather happier, and would only be a waste of time since
this time probably can be used more efficiently. On the other hand, checking the
water level once every 5 minutes would highly increase the risk of finding the tub
overfilled. For this control, the first computer ever constructed would be equally
good as the latest X GHz on the market.

Example 2 Now change the bathroom to a nuclear power plant and change the bath
tub to the reactor holding the radioactive rods. Instead of filling the tub with
water, the control objective is instead to control the activity of the nuclear re-
action underlying the electric power delivered by the plant. This activity must
be within a range that is much more specified than ”high enough”, as for the
water in the previous example, and the computer that measures the activity
must perhaps measure 1000 times a second to be able to correct1 any deviation.
The high sampling rate is due to the unstable process — a chain reaction like
this increases its activity exponentially without control. To control this would
require a computer which is much faster than the previous one. It is likely to
believe that the requirements on the computer would be very different as well.

However, not even example 2 qualifies as an example requiring an extreme sampling
time. Consider instead the process of controlling the laser of a DVD which requires a
sampling rate close to 100 kHz. This demands a very fast computer.

1Activity is often controlled by moving the rods in and out of a ”shell” that absorbs the radioactive
radiation and hence slow down the chain reaction.

5

These examples demonstrate that the definition of fast enough depends on the
system to be controlled. It is important to find2 a sample time which is suitable for
every individual case.

Besides being fast enough, the response also have to be deterministic. To which
extent the response have to be truly deterministic depends on the situation. Next sec-
tion deals with the fact that some applications demand a truly deterministic response
time, whereas it is enough with a more vague determinism in other cases.

In non-real-time systems the correctness, λ, of a result depends only on its value,
i.e. λ = f(value), but in a real-time system it also depends on the time at which it
was produced, i.e. λ = f(value, time). To rely on old information, in the belief that
it is new, could be dangerous.

The two examples also, in a natural way, bring us to further definitions – the
division of real-time into hard real-time and soft real-time.

2.1.1 Soft vs. Hard Real-time

The division of real-time in to hard and soft real-time is also important to understand.
It is important to know to what kind of real-time a system belongs. The circumstances
to this separation is the question of what the consequence will be if the computer fails
to perform an operation (e.g. take a sample) on time. If the sample would be extremely
delayed in the first example, the bather may face the fact of water on the floor, money
spent on more water than we needed and perhaps the small frustration of even more
water on the floor when he gets in the tub, since it is full to the top. If the sample
would be moderatly delayed, it would not make any different to the final result at all.

In the second example, on the other hand, failure to measure the temperature even
for just a moment may result in catastrophic consequence. Furthermore, it is likely to
believe that it is very important that the true sampling times really are the expected
ones. Using fast sampling, it does not take much time delay to rapidly decrease the
phase margin. This is where the importance of deterministic response times comes in.
If the response times are truly deterministic, i.e. it is beforehand possible to get a
maximal value of the response time, then the control system may be tested with this
delay to be proven stable or not.

The requirements on the equipment are very different in the two examples. In the
first one it would be sufficient with a normal computer that would start up nicely a
few times a week, run for about 15 minutes and then shut down. The computer that
controls the power plant must run perfectly 24 hours a day for a long period of time.
It must not, by no manner of means, fail to do its job even for a split-second.

Soft real-time is when the system has to do its job on time, but if it fails now and
then it is not that important. The program or system may still work as expected,
and the ”on time” demand is more of a goal than true requirement.

Hard real-time 3 is when failure to do the job on time means total failure. One
single delay is as bad as if the program had not started at all.

Described in terms of correctness, λ, if assumed the delivered value in some sense
is correct, so that the correctness depends on the time, the separation yields

2Finding this time is not always a trivial task.
3It is debated whether hard real-time is in turn separated into critical and non-critical hard real-

time.

6

λsrt(value, t) =
{

true if t ≤ tdeadline

δ(t) if tdeadline < t � ∞

λhrt(value, t) =
{

true if t ≤ tdeadline

not valid if tdeadline < t

where δ(t) depends on the individual application. It may have a very steep slope
towards ”not valid” in e.g. video conference systems, and a very flat slope in for
instance a web browser.

The performance is often measured in latency. The general definition of latency is
the time from that an event occurs to the computer reacts and launches the related
ISR. For instance, the latency4 for a periodic thread is the difference between when
it is supposed to execute (internal timer interrupt) and the time when it really does,
i.e. the first line of code starts to execute. This latency is of special important in this
report.

When using soft real-time it is entitled to look at the average of the performance.
If the latency is distributed in a nice way it make sense to look at the mean of this
distribution. If a web server fails to deliver pages in time now and then, or the user
must have to wait a few seconds longer then usual once in a while, then the web server
is still considered to be functioning. These are situations in which the average is of
greater interest.

When using hard real-time, the average performance is instead of low interest. The
absolute focus is on one thing – the worst case performance. If everything that can
disturb the system disturbs it at the same time, what is the performance then? Will
the system fulfill its demand? This is the main focus in hard real-time. A superb
average can not make up for a bad worst case time, no matter how unlikely (positive
probability (> 0), though) it is that it occurs.

2.2 Real-time and Automatic Control

Most control processes are continuous by nature, but almost every modern controller is
discrete by nature. Why is this? To get information about the process, the computer
has to take samples on a more or less regular basis. No matter how fast the computer
samples the process, it will still lack information of what is going on between the
samples. Hence, it will not have a continuous function describing the process but
instead a discrete series of numbers. By definition, it is thus discrete.

The way to ”implement” a continuous controller on a computer is to calculate
its discrete time equivalence, and implement this instead. This is done by assuming
equidistant observations of the process and then derive the discrete description of
the relation between the input to the system and the output, i.e. the discrete time
dynamics.

In the process of converting the continuous system to the equivalent discrete one,
the ”mathematics” without further ado relies on that the sample times demanded are
the ones that actually are being used. If this is not the case, the equivalence is broken,
and the computer controlled system is not the expected one. It is therefore of greatest
interest that the demanded sample times are the ones that actually are being used, or
at least that the deviation from these are sufficiently small.

4Also known as jitter.

7

Most control applications do not qualify as hard real-time applications, and are in
fact developed to be robust to various latency in the sampling time, whereas a small
number actually qualify as hard real-time control systems, e.g. aircraft, spacecraft and
surgical assistance within medical care.

2.3 Real-time Characteristics for Regular Operating
Systems

Before going further, it is important to state that jitter often has its origin in two
different sources: in the programmer’s code and in the real-time limiting factors of the
operating system and the hardware. The former is easier to minimize using different
sources of information — there is a lot of good litterature about real-time program-
ming. The latter, however, is not that easy to remove. This thesis deals with these
latter limitations.

The pendulum at UPC was delivered with drivers and program to run in a Windows
system. The program was an add-in to MATLAB which worked quite well when the
computer did not have to do many other things at the same time. Why not settle
with this? The program works just as expected and it both brings up the pendulum
to up-right position and stabilizes it when there.

In the control-loop that controls the pendulum, the program measures certain val-
ues of the pendulum and then uses these to tell the motor how to run to make the
pendulum stand up. To be able to control it nicely this program takes samples with
a frequency of 100 Hz. When developing the controller it is therefore assumed that
the sampling time is 10 ms, but for many reasons the time between two consecutive
samples will instead be distributed according to a certain distribution of which the
average is expected to be close to 10 ms. However, the standard deviation of this dis-
tribution may vary quite a lot. Since the controller is optimized for the sampling time
of 10 ms, every time the true sampling time is different, the controller will perform in
a suboptimal way. In an operative system like Windows or Linux the controller will
perform in a suboptimal way most of the time. Due to the fact that the controller is
robust to errors like this and the process is quite nice, the controller still works and it
is not until we provoke the computer that we will se really bad performance. Try for
instance to drag a window slowly over the screen while running the controller. This
will spread the true sampling times far away from the desired, and the worse behavior,
made up mainly by two different effects, is clearly visible. One effect is that when-
ever the samples are delayed, the controlled process, which is non-linear, runs in open
loop longer than expected, and the risk of the process moving into areas in which the
behaviour of the developed (linear) controller is undefined increases. The other effect
comes from the mathematical conversion from continous time to discrete time. Due
to the math, the controller ”knows” that a certain deviation from the reference (angle,
angular velocity, etc) measured over one sample, corresponds to a certain error and
thus a certain control signal. If the same deviation would occur during a time which is
longer than one true sample time, the controller would overcompensate for this, and if
the same deviation would occur during a time which is smaller than one true sample
time, the controller would undercompensate for this.

Windows may be many things, but clearly not real-time. In Linux, the results
would have been more or less the the same.

8

2.3.1 Main Goal of Operating Systems

A normal operating systems like Windows or Linux does not have real-time objectives
as its main goal. Instead the main goal is throughput. This makes these operative
systems perfect for normal use, and even rather good at soft real-time, but not suitable
in the situations requiring hard real-time.

The basic scheduler, typically based on Round Robin, lets a task run for a short
period of time5, then suspends it and lets another task run for a short period of
time. The ability for a high priority task to suspend a low priority task which has
not finished its time slice is called preemption. Most schedulers in normal operative
system use priorities and support preemption, and this is one of the reason why they
are suitable for soft real-time.

In hard real-time the system must perform an operation in a well-defined time,
but for a number of reasons normal operating systems can not, even though they use
relative priorities and supports preemption, set an upper limit on this time. Some of
the reasons why standard Linux is not suitable for hard real-time are:

� Kernel system calls are not preemeptible. Once a process enters the kernel, it
can not be preempted by a higher priority process until it is ready to leave the
kernel. If an event occurs that in normal situations would preempt the running
process, it simply has to wait.

� The process of paging6 is very difficult to predict. It is almost impossible to
know how long it will take to get a page off a disk, and therefore also impossible
to set an upper bound for the time a process may be delayed due to this.

� The Linux scheduler is based on ”fairness” with a primary goal of throughput.
Thus, a low priority process that has been waiting for a long time may be chosen
to execute even though a high priority process is ready to run.

� Linux reorders I/O requests from multiple processes in order to make more effi-
cient use of the hardware. A low priority hard disk read request may be given
precedence over a read request from a high priority one to minimize the move-
ment of the disk head.

� ”Course Grained” synchronization of data access means that there are long in-
tervals where one task has exclusive use of some data. The opposit is called
”Fine Grained” synchronization, and this uses more specific synchronization to
the price of more overhead. Standard Linux uses Course Grained synchroniza-
tion, but real-time would prefer the Fine Grained one. This is one of the essential
points where it is obvious that a well functioning compromise between real-time
and non-real time objectives is difficult to find.

Keep in mind that all of these ”features” are very smart and exist for good reasons.
They just do not go hand-in-hand with hard real-time.

5This ”time slice” is sometimes referred to as quantum.
6If the RAM is fully used, parts of the RAM content (pages) has to be written to disk to make

room for more. When the information written to disk later on is needed, it has to be read from the
hard disk to the RAM again, which in terms of I/O speed is a slow process.

9

Std No load Std load Impr. No load Impr. load

Min (�s) −2210 −9615 −3823 −6164
Max (�s) 1301 83388 3836 27510
Mean (�s) -0.3 46.7 -0.5 5.63
Std deviation 46 1999 103 448

Table 2.1: Distribution parameters

2.3.2 Latency Test for Standard Linux

To measure the periodic latency of a standard Linux process a simple test program was
written. This program enters a periodic loop where it just before sleep calculates the
time when it is supposed to wake up, and when it wakes up it measures the deviation
from this time and writes the value to a file. The program was being executed for
60 seconds at two different conditions. In the first execution, the system is under no
load (nothing else is done except running this program), and in the second execution
there is system load (start/stop programs, read from disk, etc). The period time was
chosen to be 10 ms, since this is a sampling time often used when controlling inverted
pendulums. Table 2.1 and table 2.2 show data from the test. The plotted distributions
are shown in Appendix B. When the system is under no load, the mean value is very
close to zero, but of and on the latency either increases or decreases with several milli
seconds. The behavior is the same — but amplified — when the system is under load,
and latencies of instead several tens of milli seconds are not unusual. Clearly this is
not suitable for hard real-time.

In the next test, the periodic process has been modified to hopefully improve the
latency. The process has been given a high priority and has been locked in the RAM
so that it cannot be paged out. This is a ”standard” way of improving the real-time
performance of a Linux thread. Surprisingly enough the latency seems to be worse
with the improved process when there is no load on the system, but better when there
is load. Especially the maximum latency has been decreased with approximately 70
%. The standard deviation for the latencies has also been considerably reduced for
the improved process. However, these latency-times are not suitable for hard real-time
due to the lack of deterministic behavior. It is still not possible to get a specification
on the worst case latency time except by running tests, and who knows if the tests will
simulate all possible real-life scenarios?

As mentioned above, a normal sampling time for controlling inverted pendulums
of reasonable size is 10 ms. Even using the improved way of programming there is a
high risk of getting deviations in this sampling time of up to 275%. Imagine the effect
if a process requires even faster sampling for efficient control.

2.3.3 How to Achieve Hard Real-time in Linux

Responsible for handling I/O requests, interrupts, scheduling, etc, and hence respon-
sible for the fact that standard Linux is not suitable for hard real-time is the kernel.
If this is where the problem come from, then this is the thing that must be modified
to make the real-time performance better. There are at least two different approaches
to give Linux a more deterministic behavior.

Preemption Improvement of the standard kernel. It is possible to change the

10

(ms) Std No load Std load Impr. No load Impr. load

−∞ ≤ Lp < −10 0 0 0 0
−10 ≤ Lp < −5 0 28 2648 1
−5 ≤ Lp < 0 2619 2826 3352 2887

0 ≤ Lp < 5 3381 3107 0 3111
5 ≤ Lp < 10 0 31 0 0

10 ≤ Lp < 20 0 4 0 0
20 ≤ Lp < 30 0 2 0 1
30 ≤ Lp < 50 0 0 0 0
50 ≤ Lp < ∞ 0 2 0 0

Table 2.2: Data from the latency tests

standard kernel to make it more deterministic, by e.g. making kernel system
calls preemptible. From kernel 2.4 it is possible to patch the standard kernel to
get this feature.

Interrupt Abstraction by replacing the standard kernel with a small deterministic
real-time kernel. The real-time kernel is placed between the standard kernel
and the hardware, and acts as an intermediary for the interrupts. The term
”interrupt abstraction” comes from the fact that the real-time kernel abstracts
the true hardware interrupts so that the standard kernel does not know that it
is not communicating directly with the hardware.

Both ways has drawbacks and advantages. However, after having improved the
standard kernel the improved kernel is still too big and advanced to give the true
deterministic behavior hard real-time demands. It is a fact that it is difficult to com-
promise hard real-time with non real-time in a satisfying way. For that reason, and for
several others, the way this project achieved hard real-time performance was using in-
terrupt abstraction. There are two major implementations of the interrupt abstraction
approach:

RTLinux 7, developed at the New Mexico Institute of Mining and Technology un-
der the direction of Victor Yodaiken. RTLinux exists both as open source
(RTLinux/Free) and as a proprietary version (RTLinux/Pro) offered by FSM
Labs, Inc.

RTAI 8 is by some considered to be an enhancement of RTLinux, although they
have similar performance. RTAI is developed at the Dipartimento di Ingeneria
Aerospaziale, Politecnico di Milano under the direction of Prof. Paolo Man-
tegazza.

For this project RTLinux/Free was chosen. This decition was taken only because
more information was found about RTLinux than about RTAI at an early stage. Later
information about RTAI did not encourage me to change my mind. However, based on
e.g. information in tbe nice book ”Linux for Embedded and Real-Time Applications”,
by Doug Abbot, I am quite sure that similar results to the ones achieved in this report
using RTLinux/Free would have been achieved with RTAI as well.

7www.rtlinux.org
8www.rtai.org

11

Chapter 3

RTLinux

In standard Linux the kernel is placed between the hardware and the different kind
of user processes, and hence separate the user-level tasks from the hardware. User
level tasks have to communicate with the hardware through kernel calls, and any time
the kernel disables interrupts, signals from and to the hardware are blocked. In the
non-real-time world this works fine, but this protection prevents programs from having
the total control and access to the hardware that hard real-time requires.

Figure 3.1: The role of the standard Linux kernel.

3.1 The Real Time Kernel

RTLinux is a hard real-time operating system based on interrupt abstraction. The
RTLinux kernel, RTCore, has the ability to run a secondary operating system (Linux)
as a low priority thread, and in the mean time run hard real-time threads with strict
timing constraints. The idea for this separation begun with the experimental operating
system called MERT about 25 years ago.

12

In RTLinux the RTCore places itself as an intermediary between the standard
Linux kernel and the hardware. A far as the standard kernel is concerned, nothing
is different. This is possible since RTLinux simulates the true hardware interrupts by
software interrupts. Hardware interrupts not related to real-time activities are held
and passed to the standard Linux kernel as software interrupts when the RTCore is
idle, and interrupts related to real-time result in start of appropriate ISR. At all times,
the hard real-time threads, running as kernel modules, are privileged, i.e. they have
direct access to hardware, and they do not use virtual memory and hence can not be
paged out.

Figure 3.2: The role of the RT Linux kernel.

The RTCore itself is nonpreeptible, but unpredictable delays are eliminated by its
small size and limited operations.

Often it is only a small part of a real-time program that has to run in hard real-
time, while the timing demands on the other tasks do not categorize as hard real-time.
In this case it is useful to be able to split the program into two parts: the hard
real-time which runs as a module in the RT kernel, and the soft real-time that runs
under standard Linux. This is precisely what RTLinux offers. The RT modules can
communicate with standard Linux processes using either FIFOs or shared memory.

The RTLinux scheduler is a priority driven scheduler that either uses Round Robin
or FIFO algorithms. It supports preemption and priority inheritance. The normal
scheduler, FIFO, always lets the highest priority thread execute, and if more than one
thread has the same priority the FIFO-law is put into practice. With the Round Robin
scheduler, the highest priority group of threads execute for a certain time quantum
each until all threads are blocked, then lower priority groups get to execute. Other
schedulers may be implemented, and, during compilation, it is possible to choose to
include an earliest deadline first scheduler (EDF). Unfortunately I did not have time
to test this one. The priority range is 0 (lowest) to 100000 (highest). There is no limit
in the number of running threads, but one should be aware of that the scheduling
cost is proportional to the number of threads. Current scheduler code is designed to

13

efficiently handle a low number of threads (around 10).
An installation guide for RTLinux/Free is written as part of the user manual en-

closed to the thesis. For more information about RTLinux, read for instance The
RTLinux Manifesto by Victor Yodaiken or find information on the FSM Labs Inc.
webpage (www.fsmlabs.com).

3.2 Latency Test for RTLinux

To test whether the periodic latency was improved with RTLinux, a similar program
used in the test of standard Linux was implemented and executed. During the execu-
tion the system was under heavy load; a large file was being copied, many programs
were being started at the same time and a rather large compilation was also executed
during the 60 second execution time. Figure 3.3 shows the highly improved distribution
for the period latency.

Figure 3.3: Periodic latency distribution in �s for a 10 ms RTLinux thread during
heavy system load.

� RTLinux with load

– Minimal latency: 8.9 �s

– Maximal latency: 36.8 �s

– Mean latency : 14.2 �s

– Standard deviation: 2.85 �s

These numbers are very nice from a real-time point of view. According to specifica-
tion the worst case periodic latency is around 40 �s using the current equipment, and
not surprisingly the maximal latency during the 60 second execution was below this
value. Notice that, due to the nature of Linux being a low priority task in RTLinux,
the system load during the test does in fact not effect the result. It is possible that

14

the results would have been a little bit worse if the test would have been performed
with many parallel real-time threads since the scheduling time is proportional to the
number of threads.

15

Chapter 4

The Process

4.1 Pendulum Description

The pendulum at UPC (figure 4.1), delivered by the Polish company Inteco1, is a wall-
mounted, regular one where the pendulum is mounted on a cart in such a way that the
pole can swing freely only in the vertical plane. The cart moves on a straight track,
attenuated by a DC-motor using a belt for transmission. For the sake of balance, two
identical pendulum rods and loads are attached to the cart according to figure 4.2.
Two optical incremental sensors are connected to the system; one for the pendulum
angle, and one for the cart position. Using these signals a computer may compute and
set signals to the DC motor so that desired control is achieved.

The pendulum is a process often used in control problems due to its nature of
being both a stable process (pendulum down) and an unstable process (pendulum up).
Furthermore, it is highly non-linear and often involves practical non-linear phenomena
such as friction, saturation and limited displacement for the cart2.

4.2 Hardware Communication

The pendulum system (pendulum, cart, rack, sensors) is connected to the computer
by a combination of a PWM3 and cable interface (I will refer to it only as PWM),
which then is connected to a RT-DAC4/PCI card in the computer. On the PCI card
there is an FPGA4 which converts the optical sensors’ pulses to a signal which may be
used in the computer. The main purpose for the PWM is to set a PWM-signal to the
DC-motor which is proportional to the signal from the computer. The FPGA holds
this signal constant until it is changed by the computer, i.e. it uses zero order hold.

The optical sensor for the angle measures 4096 pulses on a complete revolution for
the pendulum, and hence the resolution in angle is 2π/4096 radians. Furthermore,
the optical sensor for the cart measures 18877 pulses on the length of the track which
is 1.00 m long. The resolution in cart position is therefore 1/18877 = 5.30 · 10−5 m.
Both signals are delivered as incremental unsigned two-byte values. The signal to the

1www.inteco.cc.pl
2This is not true when the pivot point moves in a circular orbit. This type of pendulum is called

Furuta pendulum and is also common in control research.
3Pulse Width Modulator
4Field Programmable Gate Array

16

Figure 4.1: Photo of the actual pendulum.

DC motor must be set by using signals from 0 (min) to 1024 (max), which implies a
resolution in the output signal of Outputmax/1024.

4.3 RT-DAC4/PCI Drivers

RT-DAC4/PCI is a multifunctional programmable PCI-card which is very suitable
for control purposes. Unfortunately it was only delivered with drivers for use under
Windows 95/98/NT/2000 and despite attempts to find drivers for Linux using various
sources (internet, PCI providers) there were none to be found. It is of course absolutely
conclusive to be able to communicate with the pendulum in order to control it, so
another solution had to be found. The solution was to write the drivers needed. This
was not an easy task since I was totally inexperienced in this area before. Despite this,
after having found information of how to write Linux device drivers and knowing how
the PCI card worked I managed to get the drivers working. They have been updated
with small changes along the way, and there have not been any problems using them
at all.

According to technical specifications for the PCI-card, the output demanded by
the computer will be redirected to the PWM within 6 �s, and signals sent from the
PWM to the PCI-card will be available for reading within 1.6 �s.

17

Figure 4.2: Photo of the pendulum rod and load.

Figure 4.3: Schematic picture of the total system.

18

Chapter 5

The Program

The computer used for control was a Pentium III 1 GHz with 256 MB SDRAM running
Linux Debian 3.01 on top of RTLinux/Free 3.2 pre2.

5.1 Program Overview

The program is roughly made up by three different parts:

The Driver communicates with the PCI card in hard real-time. The driver registers
itself as a new device on which it is possible to perform read/write methods
that are executed with the same priority as the calling thread. It is also possible
to change other settings according to the API which follows.

The Kernel Modules execute in hard real-time. This is where the main control-
loop is implemented. All reading of input signals, computation of output signal
and later on writing of these are performed in hard real-time.

The Graphical User Interface (GUI) executes in soft real-time in standard Linux.
Its core is a periodic loop that handles the communication with the hard real-
time using a number of FIFOs1. This is where the state information is displayed
and the user can operate the control program.

5.2 RT-DAC4/PCI Drivers

The drivers for the PCI card had to be written to be used with RTLinux. The PCI
card contains an FPGA that converts the pulses from the optical sensors to two 16 bits
incremental signals written in the memory of the card. It also reads the output signal
from a memory card and sends this information to the PWM for further treatment.

Standard Linux drivers register a device under /dev to which a process can open
a connection and perform standard operations, i.e. read, write, open, close, etc.
The driver for the RT-DAC4/PCI card does the same thing. When inserted in the
module, using insmod, the driver registers a device /dev/pms2 to which later on the
module for control may open a connection. Using this connection the control module

1Byte oriented pipe which is implemented as a FIFO (First In - First Out).
2The device name happens to be my unfortunate initials.

19

Figure 5.1: Schematic program overview.

may read the states and set signals to the DC-motor. It may also use some additional
features as resetting the sensors and changing the frequency of the PWM. The driver
is written in C and offers the following API (a more complete API list is provided in
the Appendix):

open(...) // Open a connection to the device

close(...) // Close the device

read(...) // Read position of cart and angle of pendulum

write(...) // Set signal to the DC motor

ioctl(..., 1) // Reset the incremental encoders

ioctl(..., 2) // Set new frequency for the PWM

5.3 The Kernel Modules

The real-time tasks run in kernel space (runlevel 0). This is both good and bad.
Response times in kernel space are very short. Interrupt response and task switching
times are normally below 10 �s, but the bad thing is that the protection in kernel
space is little or none, and that errors in a real-time task may bring down the whole
system. Unfortunately I experienced this many times during the implementation of

20

the control module. The kernel modules are also written in C and are being started
and stopped using the commands insmod and rmmod.

The structure of the control module is as follows:

init_module() // Initialize the module. Create and start the thread,
the semaphores, etc.

cleanup_module() // Remove the module from the kernel. This is where
any necessary ’’cleanup’’ is done.

thread_code() // Code assiciated with the started thread
which contains the main control loop.

handler_code() // Code associated to certain FIFOs. This is being
launched whenever anything is beeing written to
the FIFOs.

5.3.1 Calculation of Derivatives

The module uses the signals for the angle and the cart position to calculate their
respective derivatives. The method used is Backward Euler, i.e. the derivatives are

θ̇(k) ≈ θ(k) − θ(k − h)
h

ẋ(k) ≈ x(k) − x(k − h)
h

The variable h is the true system time between two consecutive samples and not
the ”expected” sampling time. Depending on the sampling time different resolutions
in the derivatives will be available. With a sampling rate of 100 Hz the resolution in
angular velocity is 2π/4096/0.01 = 0.153 radians per second and the resolution in cart
velocity is 1/18877/0.01 = 0.0053 meters per second.

5.3.2 Faster Floating Point to Integer Conversions

The use of floating point operations is avoided as much as possible in any code that
has speed as a main goal, but to not use floating point operations in the controller
would make the code highly complicated and very difficult to overview, so not to use
floating point operations at all was therefore not an option. However, what can be
improved is the cast from a double (or float) to an int, which for example has to be
done to set the calculated control signal to the DC motor. Use of standard C cast, i.e.

integer_value = (int) double_value;

invokes among other things the assembler function fldcw (FPU load control word).
Whenever the FPU (Floating Point Unit) encounters this instruction it flushes its
pipeline and loads the control word before continuing operation. The FPUs of modern
CPUs like the Pentium III, Pentium IV and AMD Athlons rely on deep pipelines to
achieve higher peak performance.

A solution is to instead use the operation

21

integer_value = lrint(double_value);

which instead of truncating the double value (which the standard cast does) rounds it
according to standard rounding rules. The (possible) loss of precision is accepted in
this case. The change from standard C cast to instead use lrint reduced the average
computation time by 3 %.

5.3.3 Input-Output Latency and Computation Time

The periodic latency shows almost exactly the same distribution as for the test program
used for testing RTLinux, i.e. it has a worst case value of less than 40 �s.

The core functionality of the control module is to run the pseudo-loop

while(true) {
readStates();
calculateOutput();
setOutput();
updateStates();
misc();

}

The time from the reading of input signals (states) to the control signal is set
to the DC motor is often referred to as input-output latency (IO latency). If this
time, TIO, is not taken into account when designing the controller (which is not the
case), it is important to make it as short as possible, since any time delay reduces
the phase margin. This is done by optimizing the code as much as possible, by for
instance updating state information after the output has been set and precalculating
loop factors when they are changed only. The values for the IO latency during an
execution which involved all modes was distributed according to figure 5.2. Using the
maximum value, the IO Latency is below 0.65 % of the sampling time at 100 Hz.

� Input-Output Latency

– Minimal IO Latency: 42.5 �s

– Maximal IO Latency: 64.6 �s

– Mean IO Latency: 45.6 �s

– Standard deviation: 4.2 �s

The time for a complete revolution in the loop, i.e. the time from that the thread
wakes up to that it goes back to sleep, is called computation time, TC . This time
is of importance when scheduling many tasks which are to run in parallel, and it is
in general of interest to keep this short. This time is TIO plus time for execution of
additional code, e.g. update states, write to user space, and write to log. Everything
that can be done in user space should be done there. For instance, the recording of
data is not written to a file in the module, but instead dumped in a FIFO so that the
user space code writes it to a file when the RT kernel is idle. The distribution for TC

during an execution which involved all modes plus recording of data was as follows.
Notice that during none of the tests, the possibility to use cache memory, etc have
been disabled. Therefore the results can not be used as ”true” worst case times, and
their purpose are only for comparison.

22

Figure 5.2: Average Input-Output latency distribution.

� Computation Time

– Minimal Computation Time: 52.8 �s

– Maximal Computation Time: 106.0 �s

– Mean Computation Time: 60.5 �s

– Standard deviation: 11.0 �s

Figure 5.3: Average computation time distribution.

If the control module was the only running RT thread, it would be possible to
sample, with equally strict timing constraints, at sampling rates as high as 4.8 kHz

23

before the CPU load would reach 50%. I believe this is impossible to with a normal
operating system.

5.3.4 Dummy Module

Besides the control module, a module for dummy real-time threads was written. This
was to be able to disturb the real-time control program in a deterministic way. Using
this module, hard real-time threads with various period time and computation time
may be started and stopped. It is also possible to set different priorities on the started
threads. Chapter 8 gives some examples of tests. With minor changes in the code it
is possible to use these threads to test different scheduling algorithms. However, even
though this is an interesting topic, it was not part of this project so no tests have been
done in this area.

5.4 The Java Program

When designing the GUI, flexibility was a main goal. Personally I like to choose
for myself whether to have a lot of information on the screen or not. The GUI (see
Appendix B.3) is written in JAVA Swing, and is made up by several parts:

The main control window connects to the kernel modules and starts/stops them.
It is designed for state feedback in up/down position, but can easily be changed
for other controllers. The state feedback vector can be set for the controller in
up-mode and for the controller in down-mode. The reference signal for the cart
is as default in the middle, but can also be changed.

The State and Control Viewer gives continuous information about the four states
and the control signal. The user may freeze any number of plotters and save the
image to disk. The user may also freeze all current plotters at the same time and
save them as one single image. The axis of the plotters can be modified while
running and it is possible to choose any composition of displayed plotters. The
time used for the time coordinates is the time used by the RT scheduler. To
produce nice and smooth plots, buffers are used. I also made a slight change in
the class library se.lth.control.plot3 which allows more control of when the
plotters are invoked. Besides the obvious signals, the cart reference is plotted in
red as well as the calculated output signal, which is plotted in the same plotter
as the friction compensated signal (black).

The RT Thread Table gives the user the possibility to start different real-time
threads. These threads are dummy threads with a period time, computation
time and a priority. This feature gives the possibility to measure control perfor-
mance in the case when the controller is disturbed in a controlled way.

The Control Settings set a number of control related parameters, e.g. sampling
time, static friction, swing-up gain, etc.

The Device Settings contains information to which devices the program connects.
It is useful if some devices are busy and need to be changed.

3Developed at the Department of Automatic Control at LTH.

24

The Data Recorder records full state information and information about latency,
current priority, reference signal, computation time and control signal during a
period of max 60 seconds with an optional step of size Y cm in the cart reference
at time Z.

Figure 5.4: UML diagram over Java Program

The main functionality for the Java program is to read the FIFOs containing infor-
mation about the states, control signal, etc. This is done periodically with a frequency
of 33 Hz. To avoid a visual delay due to the lower frequency than the control module,
the loop tries to read up to 5 data points every time. With these settings, sampling
rates up to 165 Hz (6 ms sample time) are possible in the control module without
visual delay. It is of course easy to change these values if faster sampling is required.
To save CPU the plotters only print 50 data points per second. More information of
how to use the program and how to achieve additional information (Javadoc) is found
in Appendix A.

5.5 Putting Everything Together

As mentioned in chapter 3, communication between the real-time kernel and the soft
real-time user space can either be done using FIFOs or shared memory. I choose to

25

use FIFOs for communication both from user space to the real-time kernel and vice
versa.

The rather simple protocol for communication from user space to the real-time
kernel has an upper limit of 215 parameters set with double precision (64 bits), and
possibility to use 215 different modes. The protocol from the real-time module to user
space also has an upper limit of 215 parameters but only with integer precision (32
bits). All parameters are protected by semaphores since there is a possibility that they
are being accessed at the same time by the control module and the handler connected
to the FIFO that the user space writes to.

The dummy module has an upper limit of 215 possible threads each having 215

parameters of integer precision. It is however unlikely that any of the modules will
require many more parameters than they currently use. All parameters are protected
by semaphores, and semaphores are also used to start/stop the real-time threads as
well as the control module.

As default, Java uses network byte order4 while C uses host byte order5, so any
communication must consider this.

Since the signal for angle measurement is incrementing and delivered as a signed
byte, the signal will be discontinuous at some point. An extra function (invoked when
reading the states) converts the signal to a continuous one.

When the control module is running at the sampling rate 100 Hz and the Java
program is running without the plotters, the CPU load according to top is less than
4%. Depending on the number of plotters running the CPU load may increase to up
to 95%.

Besides from a randomly appearing bug when going from ”OFF No Plotters” to
”OFF Run Plotters”, the program runs stable and without any problems in the control.
It does not appear to have any memory leaks and has been controlling the pendulum
for full days without problems. The Java program is somewhat less stable, and the
graphics show some unpredictable behaviour occasionally. This is however not a prob-
lem that effects the control. Due to the separation of the different software parts, it is
actually possible to close the Java program by force (ctrl + c), restart it and re-connect
to the module without disturbing the ongoing control.

When changing the parameters while controlling the pendulum, there is a risk of
increasing the different latencies the same amount of time as the protecting semaphores
may be locked by the changing code. This time is however extremely small.

4Also known as Big Endian
5Also known as Small Endian

26

Chapter 6

Model of Pendulum

To later be able to control the pendulum, it is important to have a description of
the system dynamics. These dynamics are often described as a number of transfer
functions from various inputs to outputs. There are at least two ways of finding these
transfer functions — either theoretically, or by system identification. I personally like
the theoretical approach, so this report uses the first method. Furthermore, I believe
that the theoretical derivation gives a greater understanding of the process then by
using system identification. Using system identification may however reveal behavior
caused by unmodelled dynamics.

6.1 Mathematical Model of Pendulum

Parameter Description

xp X-coordinate for center of gravity of pendulum
yp Y-coordinate for center of gravity of pendulum
xc X-coordinate for center of gravity of cart
yc Y-coordinate for center of gravity of cart
ypp Y-coordinate for pivot point
l Distance from pendulum center of gravity to pivot point
θ Pendulum angle from positive Y-direction
m Mass of pendulum (load and rod)
M Cart mass
F Force applied to cart
V Vertical reaction force from pendulum
H Horizontal reaction force from pendulum
Ip Moment of inertia for pendulum with respect to pivot point
fp Viscous friction for pendulum at pivot point
fc Dynamic friction for cart

Basic trigonometry applied to figure 6.1 shows that

27

Figure 6.1: Schematic picture of the pendulum and cart.

Xc = x

Ẋc = ẋ

Ẍc = ẍ

Yc = y = 0
Ẏc = 0
Ÿc = 0

Xp = x + l sin θ

Ẋp = ẋ + lθ̇ cos θ

Ẍp = ẍ + lθ̈ cos θ − lθ̇2 sin θ

Yp = Ypp + l cos θ

Ẏp = −lθ̇ sin θ (Ẏpp = 0)

Ÿp = −lθ̈ sin θ − lθ̇2 cos θ

Sum of forces in the X-direction:

F = H + MẌc + Ẋcfc where H = mẌp (6.1)

Sum of forces in the Y-direction:

V = mg + mŸp ⇔ V = mg − ml(θ̈ sin θ + θ̇2 cos θ) (6.2)

since Ẏc = Ÿc = 0.
Sum of torques around the pivot point Xc, Ypp:∑

τ = Ipθ̈ (6.3)

Equation 6.1 yields

28

F = MẌc + fcẊc + mẌp

= Mẍ + fcẋ + m(ẍ + lθ̈ cos θ − lθ̇2 sin θ)
�

(M + m)ẍ = F − ml(θ̈ cos θ + θ̇2 sin θ) − fcẋ

Equation 6.3 yields

Ipθ̈ + fpθ̇ = V l sin θ − Hl cos θ

= (mg − mlθ̈ sin θ − mlθ̇2 cos θ)(l sin θ) − m(ẍ + lθ̈ cos θ − lθ̇2 sin θ)(l cos θ)
= m(gl sin θ − l2θ̈(sin2 θ + cos2 θ) − ẍl cos θ)
= m(gl sin θ − l2θ̈ − ẍl cos θ) since sin2 θ + cos2 θ = 1
�

(Ip + ml2)θ̈ = mgl sin θ − mlẍ cos θ − fpθ̇

The dynamic relations for the cart position and the pendulum angle are thus

ẍ =
F − ml(θ̈ cos θ + θ̇2 sin θ) − fcẋ

(M + m)
(6.4)

θ̈ =
mgl sin θ − mlẍ cos θ − fpθ̇

(Ip + ml2)
(6.5)

6.2 Equilibrium Points

The non-linear equations 6.4 and 6.5 describe the system with the four states x, ẋ, θ, θ̇.
An equilibrium is defined as a point (or curve) at which all states remain unchanged,
i.e. their derivatives are zero. It is interesting to investigate whether such a point
exists when the system’s input signal is zero (F = 0);

After ẍ in 6.5 has been substituted for by 6.4 and vice versa for θ̈, a new system
of equations appears:

βẍ = (Ip + ml2)(F + mlθ̇2 sin θ − fcẋ) − ml cos θ(mgl sin θ − fpθ̇)

βθ̈ = (M + m)(mgl sin θ − fpθ̇) − ml cos θ(F + mlθ̇2 sin θ − fcẋ)
β = (M + m)(Ip + ml2) − (ml cos θ)2

The conditions ẋ = 0, θ̇ = 0 and F = 0 give

βẍ = −ml cos θ(mgl sin θ) = 0
βθ̈ = (M + m)(mgl sin θ) = 0

Since β �= 0 the only points satisfying these equations are θ = 0 and θ = π. This
result makes sense; the pendulum can hang straight down and remain here (states not
changing) and the pendulum can also (at least in theory) stand straight up and remain

29

here if nothing disturbs it. Notice the fact that there are not any restrictions on x,
the cart position. The pendulum may find it self in an equilibrium anywhere on the
horizontal bar.

Without the conditions ẋ = 0 and F = 0 there exist infinite many equilibrium
trajectories. It is in theory possible to keep the pendulum at any angle by applying a
constant acceleration. Each possible angle would then result in a constant acceleration
and hence a trajectory for ẋ to follow. The pendulum in this report is very limited in
terms of displacement of x, so the only equilibrium points of interest are (x, ẋ, θ, θ̇) ∈
{(x, 0, 0, 0), (x, 0, π, 0)}.

6.3 Linearization in Up-position

To be able to use normal stabilization theory equation 6.4 and 6.5 must be linearized.
In up-position it is natural to chose the equilibrium point (θ0 = 0, θ̇0 = 0) and linearize
around this. This is the region in which the stabilizing control will be applied, and if
this works satisfying the deviation from (θ0 = 0, θ̇0 = 0) is small, and hopefully the
linearization is therefore valid.

Define θ as the deviation from θ0 = 0. This does not differ from the previous
definition due to the choice of linearization point. Linearization using Taylor series
results in:

sin θ ≈ sin θ0 +
d

dt
sin θ0

∣∣∣∣
θ0=0

· θ + ε ≈ 0 + 1 · θ = θ (6.6)

cos θ ≈ cos θ0 +
d

dt
cos θ0

∣∣∣∣
θ0=0

· θ + ε ≈ 1 + 0 · θ = 1 (6.7)

where ε means higher order terms. Around (θ0 = 0, θ̇0 = 0) the linearized versions
of equation 6.4 and 6.5 therefore are

ẍ =
F − mlθ̈ − fcẋ

(M + m)
(6.8)

θ̈ =
mglθ − mlẍ − fpθ̇

(Ip + ml2)
(6.9)

6.4 Linearization in Down-position

In down-position the control will be focused in the area of (θ0 = π, θ̇0 = 0) (the other
equilibrium point), and it therefore makes sense to linearize around this point. Define
θ as the deviation from θ0 = π.

As above, linearization using Taylor series results in:

sin θ ≈ sin θ0 +
d

dt
sin θ0

∣∣∣∣
θ0=π

· θ + ε ≈ 0 − 1 · θ = −θ (6.10)

cos θ ≈ cos θ0 +
d

dt
cos θ0

∣∣∣∣
θ0=π

· θ + ε ≈ −1 + 0 · θ = −1 (6.11)

30

Around (θ0 = π, θ̇0 = 0) the linearized versions of equation 6.4 and 6.5 therefore
are

ẍ =
F + mlθ̈ − fcẋ

(M + m)
(6.12)

θ̈ =
−mglθ + mlẍ − fpθ̇

(Ip + ml2)
(6.13)

6.5 State Space Description

To get equation 6.8 and 6.9 into valid linear state space, and get the state space
description in up-position, they must be functions of lower order terms only. Hence ẍ
must be substituted for in 6.9 by 6.8 and vice versa for θ̈.

Equation 6.8 in 6.9 result in

θ̈(Ip + ml2)(M + m) = (M + m)(mglθ − fpθ̇) − ml(F − mlθ̈ − fcẋ)
⇔

θ̈((Ip + ml2)(M + m) − m2l2) = (M + m)(mglθ − fpθ̇) − ml(F − fcẋ)
⇔

θ̈ = (M + m)(
mglθ

α
− fpθ̇

α
) + ml(

fcẋ

α
− F

α
)

after introducing α = (Ip +ml2)(M +m)−m2l2. In the same way 6.9 in 6.8 results
in

ẍ(M + m)(Ip + ml2) = (Ip + ml2)(F − fcẋ) − ml(mglθ − mlẍ − fpθ̇)
⇔

ẍ((M + m)(Ip + ml2) − m2l2) = (Ip + ml2)(F − fcẋ) − ml(mglθ − fpθ̇)
⇔

ẍ = ml(
−mlgθ

α
+

fpθ̇

α
) + (Ip + ml2)(

−fcẋ

α
+

F

α
)

Using the state vector

X = [x, ẋ, θ, θ̇]

the linearized system in up-position is described by{
Ẋ = AupX + BupU
Y = CX + DU

with

Aup =

0 1 0 0
0 − (Ip+ml2)fc

α −m2l2g
α

mlfp

α
0 0 0 1
0 mlfc

α
(M+m)mgl

α − (M+m)fp

α

31

Bup =

0
(Ip+ml2)

α
0

−ml
α

 C =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 D = 0 U = F

In a similar manner it is possible to show that the state space description in down-
position is {

Ẋ = AdownX + BdownU
Y = CX + DU

with

Adown =

0 1 0 0
0 − (Ip+ml2)fc

α −m2l2g
α −mlfp

α
0 0 0 1
0 −mlfc

α − (M+m)mgl
α − (M+m)fp

α

Bdown =

0
(Ip+ml2)

α
0

ml
α

 C =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 D = 0 U = F

6.6 Finding the Parameters

The dynamics of a model of the system is described in algebraic terms. To be able
to use the model all these algebraic terms must be given numerical values. Some of
the parameters were given in the technical specifications of the pendulum, while other
call for experimental determination. Parameters that were given were the mass of the
cart, pendulum rod, and the pendulum load.

6.6.1 Center of Gravity of Pendulum

The pendulum is made up of a rigid pole of aluminium and has a load attached at the
end. By using math and physics it is possible to describe the center of gravity, but the
easiest way to find the center of gravity is to use a simple experiment:

With the pendulum dismounted from the system, balance it horizontally on a sharp
edge and find the point of balance. This point is the location of the center of mass.

6.6.2 Moment of Inertia for Pendulum

The moment of inertia with respect to a point can be calculated by taking careful
measurement of the object and knowing the density of the containing parts. As in the
previous example, there is an easier way.

When the pendulum swings back an forward with a small angle, it may be treated
as a simple harmonic system, i.e. the force that brings the pendulum back to its
equilibrium is proportional to the distance from this point. Such a system is said
to move in a simple harmonic motion producing an oscillation with period τ . The
expression for the period is

32

τ = 2π

√
I

mgD

with I being the moment of inertia with respect to the pivot point, m the equivalent
mass of the pendulum (pole + load) and D being the distance from the pivot point to
the center of gravity of the pendulum. Rearranging the expression yields

I =
τ2mgD

4π2

The only thing need to be found is thus the period time. This is simply done by
counting the number of periods during a certain amount of time. If this time is chosen
sufficiently big, this will give a very good estimate of the moment of inertia. Notice
that the period time approximately1 remains the same even though it will decrease in
amplitude due to friction.

During 60 seconds the pendulum made 49 periods, yielding T = 1.225. This gives
an estimated value of the moment of inertia for the pendulum with respect to the pivot
point of 0.0116 kg/rad.

6.6.3 Pendulum Friction

If the pendulum hangs straight down and is pushed away from its equilibrium, it
will exhibit simple harmonic motion. The decay of the oscillation is described by the
function f(t) = ae−bt, with a as an initial condition and b ≥ 0 depending on the
viscous friction. Pushed away from the equilibrium the pendulum will oscillate and
decrease in amplitude by a factor 0.5 during a period of 60 seconds. This results in

0.5a = ae60b

⇔
b =

ln(0.5)
60

= −0.01

Thus the viscous friction for the pendulum is 0.01 Ns/rad. The static friction is
assumed to be small enough to be neglected.

6.6.4 Cart Friction

When trying to move the cart on the track it is obvious that there is a level of force
that must be reached to get the cart to move at all. This force is due to static friction,
fsc which is often referred to as stiction. If an increasing force is applied to the non-
moving cart, the stiction is equal to the force applied in the moment the cart starts to
move. After calibration of the output signal so that the unit is in Newton the stiction
was measured at several points of the track. Unfortunately the stiction varied quite
significantly depending on the position on the track, so instead of a static friction being
a function of material factors only, it is also a function of the position. The stiction is
not included in the model of the pendulum, so this has to be taken in account when
controlling it. Typically this is done using some sort of friction compensation (see
section 7.9).

1Valid in the area where sinθ ≈ θ.

33

Besides stiction there is a friction force which depends on the speed of the cart. A
heuristic proof for this is the observation that with a constant signal to the DC-motor,
which in turn affects the cart with a constant force, there is not a constant acceleration
of the cart, but instead a more or less constant speed that depends on the input signal.
Without a speed depending friction there would be a constant acceleration instead. A
common model (at low speeds) for this friction force is that it is directly proportional
to the speed of the cart. This implies that the friction on the cart may be expressed
as

fc(x, ẋ) = fsc(x) + fkcẋ

For simplicity, the static friction fsc is approximated with an average of the mea-
sured values along the track. This have to be compensated for to get the resulting force
on the cart applied by the motor. When this assumption is made, an approximation of
the kinetic friction can be made by measuring the cart speed at different input signals.
At constant speed of the cart, the resulting force is zero and thus the kinetic friction
is equal to the input force. So with a known input force, F , and a measured speed, ẋ
the expression for the kinetic friction coefficient is

fkc =
(F − Fsc)

ẋ

This value was measured at different speeds and the final approximation of the
kinetic friction coefficient is an average of these values.

6.6.5 Numerical Matrixes

After having found all parameters, the following table may be presented:

Parameter Value Unit

l 0.260 m
m 0.120 kg
M 0.572 kg
Ip 0.0116 kg/rad
fp 0.01 Ns/rad
fc 1.1 Ns/m

This yields the following numerical system description:

Aup =

0 1.00 0 0
0 −1.71 −0.75 0.02
0 0 0 1.00
0 2.71 16.70 −0.55

 Bup =

0
1.56
0

−2.46

Adown =

0 1.00 0 0
0 −1.71 −0.75 −0.02
0 0 0 1.00
0 −2.71 −16.70 −0.55

 Bdown =

0
1.56
0

2.46

34

Chapter 7

Controlling the Pendulum

7.1 Control Objectives

The control objectives were the following:

� To get the pendulum from down-position to up-position using a Swing-Up.

� To stabilize the pendulum in the up-position. It must be able to deal with load
disturbances and impulses without falling down. The desired closed loop natural
frequency was set to approximately 40 rad/s.

� To stabilize the pendulum in down-position, i.e. Crane Control.

� To get the pendulum from the up-position to the down-position in a fast and
smoth way using a Swing-Down.

� In all situations and modes also control the position of the cart. The track is
limited, and it is desired to keep the cart from ”hitting” the endpoints.

7.2 Discretization

The continuous model of the plant is described by the matrixes

Aup =

0 1.00 0 0
0 −1.71 −0.75 0.02
0 0 0 1.00
0 2.71 16.70 −0.55

 Bup =

0
1.56
0

−2.46

Since computer control is used, the model of the plant has to be discretized. To
do so, the sampling time and the principle method for the D/A has to be known. The
D/A for the pendulum (FPGA and PWM) uses zero order hold for setting signals to
the DC motor, i.e. the signal is constant between the sampling times.

The sampling time was chosen to be 10 ms (100 Hz). This is often sufficient for
a system with a natural frequency of 1 Hz, and with the desired closed loop natural
frequency of 40 rad/s this is in line with the rule-of-thumb saying that 0.1 ≤ ωch ≤ 0.6,
h being the sampling time.

Based on this information the discret time state space description in the up-
position, calculated in MATLAB using the command c2d, is

35

Θup =

1.00 0.01 0 0
0 0.98 −0.01 0
0 0 1.00 0.01
0 0.03 0.17 1.00

 Γup =

0
0.02
0

−0.02

where, with h being the sampling time,

Θup = eAuph Γup =
∫ h

0

eAuph dsB

In the same manner the discrete system in down position is described by

Θdown =

1.00 0.01 0 0
0 0.98 −0.01 0
0 0 1.00 0.01
0 −0.03 −0.17 1.00

 Γdown =

0
0.02
0

0.02

The eigenvalues of Θup (1.00, 0.98, 0.96, 1.03) indicate an unstable system, just as
expected, and the eigenvalues of Θdown (1.00, 0.98, 0.99 + 0.04i, 0.99 - 0.04i) indicate
a stable but higly oscillating system without asymptotic stability on the cart position.
These values seem resonable.

7.3 State Machine Description

The fact that an intermediate mode is needed to get the pendulum from down-position
to up-position, and that it probably is not a good idea to get it from up-position to
down-position without using some kind of ”slow-it-down” procedure, i.e. Swing-Down,
justify that the pendulum is treated as a state machine according to figure 7.1. A
further motivation for this is that the controllers, which are developed in belief that
the system can be considered linear in a small area of the linearization points, will
have uncertain behaviour if used in areas that clearly are far away from these points.
Therefore it would be unsuitable (and perhaps dangerous) to use them here. Figure
7.2 show e(θ) = θ − sin θ as a function of the angular deviation from the point of
linearization. The error is rapidly increasing for any angular deviation larger than 1
radian.

A state machine description also facilitates the computer implementation of the
controller.

7.4 Calibration and Assumptions

Before control can begin, the signals have to be calibrated so that they are given and
set according to SI1-units, since the model is described in these. The scale for the
angle and the cart position is given by the technical specification, and this is beeing
corrected for in the module when reading the inputs. What remains to be calibrated
is the output signal to the DC motor, which has to result in a force on the cart in
Newton. Before this is done an important decition has to be taken.

If the sub-system consisting of the DC motor, the rotational axis connected to the
gear wheel, and the the rubber belt is treated as a system of its own (S1), the process
description in which C is the controller and P the process in figure 7.3 is given.

1Le Systeme international d’Unites

36

Figure 7.1: Pendulum system regarded as a state machine.

Figure 7.2: Linearization error for θ = sin θ as a function of θ.

It is clear that S1 contains much dynamics — there is a transfer function from
voltages to torque due to the characteristics of the DC motor, and there is a transfer
function from torque to output force on the cart due to ”spring” behaviour of the
rubber belt. The decision of whether to include these dynamics in the model or not,
has to be taken. Based on the following, I chose not to include them:

� The states for S1 (current, speed of gear wheel, and change in length for the
rubber belt) are not given directly, and therefore have to be estimated using
e.g. an observer. I find it unlikely2 that such an observer would give sufficient
estimations of the states fast enough for them to do more good than bad. Besides,
measuring the parameters of the DC motor (resistance and inductance) would
require surgical operation on the process which, given the price of the equipment,
would have been more fun for me than for UPC.

� The speed of the gear wheel will at stabilizing control be very low. Its effect on
2Not an engineerish way to do it. Unfortunately I did not have time to test it.

37

Figure 7.3: Block diagram of the computer controlled system.

the dynamics in terms of EMF 3 hence is minimal, and also the effect in terms
of friction torque is minimal.

� The effect from the inductance is very fast, and since the EMF is assumed to
be neglectable, a steady-state situation (U = RI), is rapidly reached. In this
situation the output current (which in turn is directly proportional to the torque)
is just a scaled version of the input voltage.

� The rubber belt seemed less elastic than to be able to disturb the control (this
was however later on proven to be wrong).

Using these paragraphs the assumption was made that S1 ≈ k during the circum-
stances for control. The parameter k was given by measuring the output force (taking
into account the stiction) on the cart given a certain signal to the DC motor. This
was measured for several different input signals and the final approximation of k was
an average of the different values, resulting in k = 0.0145 N per signal unit.

7.5 State Feedback

For the stabilizing control in up-position and down-position state feedback was used.
State feedback is an intuitive and powerfull control strategy which is well astablished
by now. It is also quite easy to implement in a computer. The control law is

u = −LX = −[k1 k2 k3 k4]

xref − x
ẋref − ẋ
θref − θ

θ̇ref − θ̇

 (7.1)

The angle and the cart position are given directly from the pendulum, and the
angular velocity and the cart velocity are approximated by Backward Euler in the
kernel module. In the first attempt no further observation of the derivatives are done,
and it is assumed that all states are given.

Due to limitations in the DC motor the output signal will saturate at a given value.
The maximum force on the cart is limited to 12.86 N according to specifications.

To be able to use state feedback without limitation in possible states to reach, the
system has to be reachable. Reachability is given by the rank of the reachability matrix

Wc =
[
Γup ΘupΓup ... Θ3

upΓup

]
(7.2)

3Electro Magnetic Force

38

It is easily verified that the rank of Wc = 4 which is the order of the system. Hence
the system is reachable (which implies controllability) and, in theory, any desired closed
loop behaviour is possible to acheive by applying the corresponding control vector L.

Given the desired positions of the four poles, it is possible to solve the linear
system of equations that may be set up and get the corresponding control vector L.
It is however convenient to use the command place4 in MATLAB for this.

7.5.1 Stabilizing Control Up

Aware of the fact that the model has its limitations, the goal of the pole placement
based on the model was to get reasonable behaviour, and then later fine tune on the real
process. Since the swing-up controller at this point was not implemented, the control
was tested by keeping the pendulum at up-right position and starting the controller.
Poles chosen as |z| < 0.9 gave very aggressive behaviour with saturated control signals
and, although stable, not a pleasant show. When the theoretical poles were moved
closer to the unit circle the pendulum behaved much better.

In the testing phase some strange result came up. Allthough the pendulum ap-
peared to be stabilized correctly, a high frequency component seemed to be picked up
during the control. This frequency increased in amplitude until the pendulum eventu-
ally fell down. The strange thing about this was that the frequency was significantly
higher than the natural frequency of the pendulum. Figure 7.4 show the behavior of
the pendulum. The strange look of the plots at t ≈ 3197 is due to a the programming
”error” which has been corrected later on. The control was stopped at t = 3204.

This behaviour was very confusing. When the feedback gain on the angular speed
was reduced significantly, the behaviour was better, but only in the sense that the high
frequency increased slower — after a while it still made the pendulum fall down.

Soon it became clear that the oscillation must have its origin in some of the un-
modelled dynamics. From analyzing plots of the behaviour (figure 7.4) the disturbing
oscillations seemed to have a frequency of around 16 Hz. It seemed more likely that
the transmission, being a rubber belt, had something to do with this than that the
DC motor was involved. The rubber belt can be treated as a spring, and therefore
its behaviour can be described by its spring constant and the mass of the load it is
moving. By applying a force of 30 Newton the belt expanded approximately 6 mm,
hence the spring constant is kt = 30/0.006 = 5500 N/m. The cart has a weight of
M = 0.572 kg, and this yields the differential equation

ẍM = xkt (7.3)

The solution to this equation has a resonance peak at 100 radians/second ≈ 16
Hz. This explained from where the oscillation came. However one thing remained to
explain — why did this frequency get amplified by the system? The pendulums natural
frequency was much lower, but yet it was clearly affected by the 16 Hz oscillation. The
answer was to be found by analyzing the pendulum closer. It is true that it had a
natural frequency close to 1 Hz, but it also had another ”natural” frequency — the
frequency due to the fact that the aluminium rod is not perfectly stiff. By attaching
the pendulums end to a screw vice and measuring the displacement of the end when
a certain force was applied, the ”spring constant” of the pendulum, assumed it can
be treated undertaking harmonic motion, can be estimated. The spring constant was
measured at three different lenghs of the pendulum: 0.45, 0.40, and 0.35 m. By

4Use ”help place” to get mor information

39

Figure 7.4: State plots when the high frequency oscillation was present.

finding the moment of inertia with respect to the pivot point for the different lenghts
(see chapter 6 on Modelling), a differential equation similar to equation 7.3 may be set
up:

ẍIp = xkp (7.4)

with Ip being the estimated moment of inertia for the different pendulum lenghts and
kp being the different spring constants.

Plotting the bode diagrams for the different cases in the same diagram as the bode
diagram for the transmission revealed what was expected. When the pendulum has a
length of 0.45 m, which it initially had, it has a natural frequency due to the aluminium
which is very close to 100 radians/second. This explains the scenario. In some way
frequencies close to 16 Hz was generated by the control law and was picked up by the
transmission. These frequencies was then picked up by the pendulum and feedbacked

40

(fed back) in to the control law. When the control law later on started sending signals
to the DC motor with this frequency, all components that make up an unstable system
were present. Figure 7.5 show the different bode plots.

Figure 7.5: Bode plots for transmission and pendulum at different lenghts.

By changing the tension of the belt just a little bit, and at the same time making the
pendulum shorter (by changing the point where it was attached) the natural frequency
of the transmission was separated from the natural frequency of the pendulum. After
recomputing the value of the moment of intertia and finding a new feedback vector in
MATLAB the controller worked much better. The estimated values in chapter 6 are
the one from using the shorter pendulum. After tuning the parameters manually, the
best feedback vector was found to be L = (−9,−8,−48,−4), but ironicly, using this
feedback vector the controlled system’s theoretical poles are (1.0003 + 0.09i, 1.0003 −
0.09i, 0.99+0.01i, 0.99−0.01i), and thus indicate an unstable system. Figure 7.6 shows
the states and control signal with two impulses in either direction on the pendulum
angle.

7.5.2 Stabilizing Control Down

When hanging straight down, the pendulum system has an stable equlibrium. With
the viscous friction of the pendulum present, the equilibrium is asymptotically stable,
which would not be the case if the viscous friction of the pendulum would have been
zero. When perturbed, the pendulum will thus return to quiet after a certain amount
of time. Due to poles at −0.3± 4.1i the system is poorly damped, and faster damping
is desired. Using the feedback vector L = (25, 15, 35, 0.1) the poles of the theoretical

41

Figure 7.6: State plots with two impulses on angle when stabilizing in up position.

closed loop system are (0.81, 0.96, 0.99 + 0.02i, 0.99− 0.02i), and this resulted in much
better performance. Figure 7.7 shows the states and control signal with two impulses
in either direction on the pendulum angle at times t = 62 and t = 69. The closed loop
natural frequency is however probably lower than 40 rad/s, which was the approximate
objective.

7.6 Model vs Real Pendulum

To test whether the model behaved similar to the real pendulum a simple test was
set up. The model of the controlled pendulum was implemented in Matlab Simulink
according to figure 7.8.

The simulation time was 10 seconds with an impulse in the control signal after 2
seconds. The model starts in stabilizing mode using the same feedback vector, and to
make the simulation more realistic, white noise was added to the control signal. This
was compared with the real process and a quite large impulse on the cart. An impulse
direct on the cart is more or less the same as an input on the control signal. The
simulated states are shown in figure 7.9 and 7.10, and plots from the real process are
shown in figure 7.11. Except for the small oscillation for the cart in the real process,
the behaviour of the states are very similar.

7.7 Swing-Up and Swing-Down

A common way to get the pendulum from down-position to up-position is to use a
controller based on the energy for the system. The basic idea is that the pendulum must
”slow down” and eventually hang quiet if the system’s energy constantly is decreasing,
and show the opposit behaviour if the energy is increasing. Often a simplified model
of the pendulum is adequate for using this approach.

42

Figure 7.7: State plots with two impulses on angle when stabilizing in down position.

If the dynamics of the cart and the friction of the pendulum is neglected, the
equation for the pendulum motion is described by

θ̈ =
mgl

Ip
sin(π − θ) − ml

Ip
u cos(π − θ) (7.5)

with u beeing the force on the pivot point (moving the cart).
The kinetic energy (Ek) and the potential energy (Ep) of the pendulum are

Ek = mgl(1 − cos(π − θ))

Ep =
Ipθ̇

2

2

and Et = Ek + Ep is thus the total energy of the pendulum, defining Ek as zero when
the pendulum hangs straight down. The time derivative of Et is

43

Figure 7.8: Matlab model of the controlled pendulum

Figure 7.9: Simulated angle with an impulse on the control signal.

Ėt = Ipθ̇θ̈ + mgl(−(− sin(π − θ)(−θ̇)))

= Ipθ̇θ̈ − mgl sin(π − θ)

= Ipθ̇(
mgl

Ip
sin(π − θ) − ml

Ip
u cos(π − θ)) − mgl sin(π + θ)

= − θ̇ml

Ip
u cos(π − θ)

Thus, by choosing

u = ksusign(θ̇ cos(π − θ)) ⇒ Ėt ≥ 0 (7.6)
u = −ksdsign(θ̇ cos(π − θ)) ⇒ Ėt ≤ 0 (7.7)

with ksu ≥ 0 and ksd ≥ 0, it is possible to force the total energy to either increase or
decrease. For Swing-Up input according to equation 7.6 is used, and for Swing-Down
input according to equation 7.7 is used.

To avoid getting a system energy which results in a angular velocity being too high
to later on catch the pendulum, a control signal in Swing-Up is only set if the total
energy Et = Ek + Ep ≤ 1.2Eup, with Eup being the energy of the pendulum standing

44

Figure 7.10: Simulated cart position with an impulse on the control signal.

Figure 7.11: Real process with an impulse on the cart.

up having zero angular velocity. If the energy is higher than the threshold a zero-signal
is set to the DC motor.

In the points where the stabilizing controllers take over, there are certain conditions
based on fuzzy control that must be fulfilled. In general, the switching to a stabilizing
controller is allowed if the pendulum angle is within a predefined area at the same
time as the angular velocity is within a predefined range. Close to the endpoints, there
are additional conditions to avoid ”hitting” the endpoints. The rules are roughly that
a swith is only allowed to take place if the stabilizing controller initially will stabilize
by moving to the center of the track. 0.4 radians as maximum allowed angle together
with 4.0 radians/second as the maximum allowed angular velocity resulted in reliable
switchings.

An efficient Swing-Up is a trade off between getting the pendulum up fast and to
keep the cart away from the endpoints. From the pendulum being quiet, the normal
time for the Swing-Up to swing it up and catch it is less than four seconds. Figure
7.12 show a typical scenario. The Swing-Up is initialized at t = 0, and at the same
time the angle zero is changed from initialy being straight down to instead straight
up. For every turn of the cart, the pendulum angle increases (closer to 0) until it, at
t = 3.4, switches to stabilizing control.

To get the pendulum from up position to stabilizing down position takes about the
same amount of time, which is shown in figure 7.13. At t = 42.8 the Swing-Down is

45

Figure 7.12: State plots of a switch from Swing-Up mode to stabilizing control in Up
mode.

initialized and the pendulum falls freely until the angle is larger than π/2. Then the
energy absorbing control is activated until the switching to stabilizing control down
is taken place at t = 45.3. When the user orders the controller to get the pendulum
down, the reference angle is changed from being zero straight up to being zero straight
down to avoid not seeing the new reference angle in the plotter window. Without this
information, the plotts may seem confusing. Compared to the inverted pendulums in
litterature, these times seem to be quite good. Notice that it will take a few extra
seconds to get the cart to the cart reference.

7.8 Cart Control

The objective of keeping the cart away from the ends is rather easily obtained when the
pendulum is in stabilizing mode either up or down, due to the feedback of cart position
error and cart velocity error. An example of a reference step in the cart position, and
thus an example of the performance of the cart control, is shown in figure 7.14. Notice
that the cart initally moves in the wrong direction, which implies a non-minimum
phase transfer function from input to cart position.

The difficult part is to avoid hitting the ends in Swing-Up mode and in Swing-Down
mode. In these modes the control signal is only based on the angle and the angular
velocity, and without further cart control the cart will hit the endpoints sooner or
later. One solution to the problem is to send any output signal through a ”filter” of
rules. Most of the rules are based on simple logic — find the critical areas and find
the rules to either avoid these or, in worst case, get the cart out of these. Next section
explains one way of implementing such rules.

46

Figure 7.13: State plots of a switch from stabilizing control up via Swing-Down to
stabilizing control down.

7.8.1 Software Spring

At the endpoints small shock absorbing pads are mounted to stop any wild cart. How-
ever, these pads are quite small and it is prudent to add some extra safety. Instead
of adding more shock absorbing material the system will at all control modes be pro-
tected by a software spring. Any time the cart enters an area protected by the spring,
i.e. close to the endpoints, a force, uspring, proportional to the distance of entrance is
applied in the opposit direction. The total signal to the DC motor is thus

u = uc + uspring (7.8)

As an extra security, the last 10 cm on each side of the track are protected even
more. If, in control mode, the cart enters these areas, maximal signal is set to get
the cart out of there. This length is not possible to change from the GUI — only by
changing it in the code. Figure 7.15 shows the function for uspring.

The software spring works satisfying, but in systems requiring extra protection it
is of course inadequat to rely on protection like this. If the program would hang with
the latest signal to the DC motor set as a high value in either direction, all that is left
for protection are the two shock absorbing pads.

7.9 Friction Compensation

The model for the friction on the cart is

fc(x, ẋ) = fsc(x) + fkcẋ

with fsc being the stiction and fks being the friction depending on the cart velocity.

47

Figure 7.14: Change of Reference for the Cart Position.

Depending on the cart’s position on the track, the stiction varies between 0.75 N
and 1.2 N. A common consequence of friction is the limit circle phenomenon. This is
a non-linear phenomena which is explained using describing function analysis.

The velocity depending friction is included in the model, so this does not require
any friction compensation. An easy way to reduce the effects of the stiction is to use
a friction compensation according to the following:

output =
{

sc + fsc if sc > 0
sc − fsc if sc < 0

where sc is the calculated control signal and fsc is the average stiction force on the
track. Using this compensation the limit circle, which else is very obvious, is signifi-
cantly reduced. Figure 7.16 show plots from the stabilizing control. At time t = 981
the friction compensation is activated.

Despite tuning the parameters and the friction compensation, I could not remove
the small oscillation which remained and at the same time retain the same control per-
formance. The oscillation decreased if the feedback on the cart velocity was increased,
but in my oppinion this deteriorated the control of impulses. I also experienced that

48

Figure 7.15: Different areas for the software spring.

the oscillation was marginally reduced if the zero limit in the implemented filter was
set to a lower value, but then the pendulum was more ”fiery” than before. A good
compromize was therefore to set the zero limit to 3 signal units and the static friction
to 73 signal units (1.06 N).

49

Figure 7.16: Friction compensation activated at t = 981.

50

Chapter 8

Deterministic Disturbance

As an extra feature, besides writing a program for hard real-time pendulum control,
another kernel module was implemented. This module gives the possibility to start
other hard real-time threads, i.e. dummy threads, that run in parallel with the control
thread. The dummy threads each have the following parameters:

Period Time set in micro seconds.

Computation Time set in micro seconds. The dummy thread’s ”computation” is a
simple time conditioned while loop.

Priority set according to the RTLinux priorities, i.e. from 0 (minimum) to 100000
(maximum).

By setting the priority of a dummy thread higher than the priority of the control
thread, the control can be disturbed in a deterministic way. This feature was not used
nearly as much as it could have been if extra time would have been availabe, so this
chapter will only work as an introduction to the many tests that can be done.

When hard real-time is not available, it is left to computer simulations to prove
any theoretically derived result. I expect it to be useful to perform practical tests as
well.

This chapter gives example of two different test:

� Evaluate the control when the sampling time is different than the sampling time
the controller was developed for.

� Measure the control error when the controller is being disturbed by a RT thread
with different parameters.

8.1 Variable Sampling Time

The controller developed in chapter 7 is intended to be used at the sampling rate 100
Hz (10 ms sampling time), and it is interesting to investigate how the controlled system
behaves if this controller is used at sampling times different from 10 ms. By recording
data from different control session which uses the same controller but different sampling
times, it is possible to compare and get a visual overview of how much the control is
destroyed by wrong sampling time. If the data from the different sessions are going to

51

be compared, it is important to have as similar conditions as possible. To get similar
conditions the data recording feature of the control program was used with the same
settings through all tests. Every control session was executed for 20 seconds with a 10
cm step in the cart reference reference set after 2 seconds. All sessions were started
from the center of the track with the pendulum being as stabilized as possible with
the original sampling time. Figure 8.1 shows the weighted sum of the state errors as
function of sampling time. This sum is the absolute values of the errors weighted in
some sense after their respective importance. The weights used were (10, 1, 20, 1) using
the state error vector (xerr, ẋerr, θerr, θ̇err). The weighted sum of the errors when using
the original sampling time is set to zero, and all the others are presented relative to
this, i.e. the plotted points are tsi, (

∑
Etsi

− ∑
E10 ms)/

∑
E10 ms.

Figure 8.1: Weighted sum of state errors as function of sampling time.

Somewhat surprising, the results in figure 8.1 indicate that the controller would
work marginally better if used at the sampling time 15 ms, and dramatically worse
if the sapmling times are smaller than 10 ms. The results from the latency tests for
standard Linux show that it is common with too short sampling times as well as too
long. It is interesting that the same deviation from the true sampling time obviously is
more harmful when it shortens the sampling time than makes it longer. It is also clear
that in a non-real-time operating system, it will require burst errors of long delays
of the sampling time to really jeopardize the stability of the pendulum. However, in
a critical situation, e.g. if the pendulum would face a direct impulse just after the
control signal had been set, and this would have been followed by long delays, then the
width of the delay burst required to jeopardize the stability would of course increase.

The small peak at 20 ms is likely due to some unmodelled dynamic. At this
sampling rate the entire rack is vibrating, and with more firm attachment to the wall
it is possible that this peak would have disapeared. Notice that the control signal is
not included in the error since the control signal used in control always is below 50 %
of its maxium and thus much power is available. Also notice that these test does not
measure the ability to restrain disturbances that affects the pendulum directly. Even

52

though the sampling times 10, 15 and 25 ms seem to be equally good, it is possible
that tests that involve impulsed directly on the pendulum (similar to the argument
above) would be advantageous for the faster sampling time

8.2 Variable Disturbance

The CPU utilization is defined as

U =
∑

i

Ui =
∑

i

TCi

TPi
(8.1)

with TC and TP being the computation time and period time for the different tasks.
If the control module is executed at the same time as the RT thread, the utilization is

U = Ucontrol + URT + ULinux =
100

10000
+ URT + ULinux (8.2)

since the worst case computation time for the control module is approximately 100 �s
and the computation time is 10 ms. It is assumed that the kernel overhead, i.e. CPU
required to schedule the different tasks, is zero. The CPU utilization for Linux will
not disturb any tests since it runs with the lowest of RT priorities.

It is interesting to investigate whether the same CPU utilzation for a RT thread dis-
turbs the pendulum differently depending on its composition of pairs of (TC , TP)|TC/TP =
URT . The pairs used in the tests were URT = TC/TP | (TP , TC) ∈{(1.00, 0.20),
(0.80, 0.16), (0.6, 0.12), (0.4, 0.08), (0.2, 0.04)}, i.e the CPU utilization for the RT
thread was always 0.2. It is not useful to lower the computation time below 0.01 s,
since the controller then (with a worse case computation time of approximately 100 �s
would be able to perform control once every 10 ms anyway.

There exist at least two different hypotheses about the outcome of the tests:

� If the plant would be truly linear, one possibility would be that the different pairs
would result in approximately the same error, assuming the errors was added for
a sufficiently long time. The argument for this is that a large computation time
for the RT thread, and hence the same long time for the controller to run open
loop, would be compensated for by performing normal control for a long time in
between. This would be compared to the situation when the computation time
for the RT thread instead would be small, but when normal control almost never
could be applied since the time between the open loop races would be small,
i.e. the control would be disturbed (almost)at all time. However, the theoretical
function of this type of disturbance on linear plant would probably result in a
curve with an ”optimum”, i.e. point where the control was least ”destroyed”,
instead of a constant error.

� With the knowledge that the plant is non-linear, and that the approximation
of the pendulum being linear only is valid for small deviations from the angle
of linearization, the probable outcome is instead that the control will perform
worse the longer it will have to run in open loop. The longer time the control
runs in open loop, i.e. the feedback is broken, the larger is the probabilty that
the pendulum will fall outside the ”linear”area and to correct this would be more
and more difficult.

The practical result are most likely a combination/superposition of the two effects
(and perhaps several more).

53

Figure 8.2: Weighted sum of state errors as function of period time for U0.2 disturbing
thread

8.3 Possible Future Tests

With very small changes in the code for the dummy-modules and for the control module
it would be possible to do the following tests:

� Let the computation time for the RT thread come from a known random distri-
bution.

� Let the sampling time for the control module be ts + tr where ts is the original
sampling time and tr is from a known random distribution.

� Let the sampling time for the control module depend on current CPU status
and/or control error, and use a look-up table to choose control law.

� Control two pendulums (or other processes) in parallel. This was done very
briefly at the end of the project with very encouraging results.

� More thoroughly investigate if desired control may be achieved using lower sam-
pling rates. The test with variable sampling time indicate that this may be
possible, and with the ongoing work of trying to control the pendulum with
computer vision (video), this is highly relevant.

54

Chapter 9

Result and Summary

The general results were very good. The objectives were to be able to control the
plant in hard real-time, and these have been accomplished. Also, the control results
were good with satisfying results in all the control modes. More simulations could
have been done before the actual implementation on the controller, but due to the
main objectives, it would have been wrong to start with simulations before the control
platform was finished. The priorities of hard real-time control were higher than on
simulations. However, I stongly recommend to begin with simulations in any other
case, and preferably keep running simulations in parallel with the real implementation
as the work advances.

This is version 1 of the program. The first version always contains hidden errors
which will be found when other people start to use it. If this is the case, please let me
know. Furthermore, Java Swing is slow and there are most likely things that could
have been improved here as well. I do not consider myself being a good programmer
of GUIs. I think this is tricky and it is more difficult to find out how to actually get
something the way you want it, than to come up with the idea. The programming I
like is the absolute opposite. Despite this, the GUI works and offers good and usable
features and the freedom to choose what kind of information to be displayed.

It is clear that it is possible to gain very good results with a much simpler model of
the pendulum. Both the pendulum friction and the viscous friction of the cart could
have been neglected. This would have resulted in easier computations of the different
transfer functions.

Future work on the program could involve the use of EDF scheduling of the real-
time tasks, adding code so that it would be possible to visualize the different threads
executions, and using the program for controlling different plants. To visualize the
execution of different RT threads would have been especially interesting to combine
with real process control performance and the use of other schedulers, e.g. EDF. As
mentioned in the report, it is possible to sample with rather high sampling rates with
the same strict real-time contstraints on the sampling time, and therefore control of
(much) faster processes is possible.

55

Appendix A

User Manual

The user manual is enclosed at the end.

56

Appendix B

Miscellanous

Information about the project, source code, Javadoc, etc. may be downloaded from
www.efd.lth.se/˜d98mse/

B.1 RT-DAC4/PCI Driver API

/**
* Open a connection to the specific device
*/
open(struct rtl_file *filp)

/**
* Close the connection to the specific device
*/
close(struct rtl_file *filp)

/**
* Reads angle value and cart position as two incremental
* unsigned two byte values. The values are being written
* to buffer buf.
*/
read(struct rtl_file *filp, char *buf,

size_t count, off_t* ppos)

/**
* Write the two byte signed value in buffer buff to the
* DC motor.
*/
write(struct rtl_file *filp, const short *buff,

size_t count, off_t* ppos)

/**
* request = 1: Reset encoders
* reguest = 2: Set frequency l as new PWM frequency
*/

57

ioctl(struct rtl_file *filp, unsigned int request,
unsigned long l)

B.2 Latency Test Diagrams

Figure B.1 and B.2 show the distribution for the periodic latency of a normal thread
executed in standard Linux.

Figure B.1: Periodic latency distribution in �s for a 10 ms standard Linux thread
without system load.

Figure B.2: Periodic latency distribution in �s for a 10 ms standard Linux thread
during system load.

58

Figure B.3 and B.4 show the distribution for an improved thread when executed
in a no-load situation and in a situation with load in standard Linux.

Figure B.3: Periodic latency distribution in �s for a 10 ms high priority Linux thread
locked in RAM without system load.

Figure B.4: Periodic latency distribution in �s for a 10 ms high priority Linux thread
locked in RAM during system load.

59

B.3 Screen Dump of the Java Program

Figure B.5: Screen dump of the Java program.

60

Bibliography

[1] Michael Barabanov
Getting Started with RTLinux
2001

[2] Victor Yodaiken
The RTLinux Manifesto
Department of Computer Science
New Mexico Institute of Technology

[3] Matt Sherer
Writing Applications with RTLinux
FSM Labs, Inc.
2002

[4] RTLinux Installation Instructions
FSM Labs, Inc.
2001

[5] Introduction to Linux for Real-Time Control
National Institute of Standards and Technology
Intelligent Systems Division

[6] Doug Abbott
Linux for Embedded and Real-time Applications
Elsevier Science (USA), 2003

[7] Karl-Erik Årzén
Real-Time Control Systems
Department of Automatic Control
Lund Institute of Technology, Lund 2001

[8] Jean-Jacques E. Slotine / Weiping Li
Applied Non-Linear Control
Prentice-Hall Inc., 1991

[9] Helmut Kopka & Patric W. Daly
A guide to LATEX
Addison Wesley, Great Britain, 1999

[10] Steven Holzner
C++ Black Book
The Coriolis Group, 2001

61

[11] Karl J Åström / Björn Wittenmark
Computer Controlled Systems, theory and design, third edition
Prentice Hall, 1997

[12] Torkel Glad / Lennart Ljung
Reglerteknik - Grundläggande teori
Studentlitteratur, Lund, 1989

[13] Erik De Castro Lopo
Faster Floating Point to Integer Conversions
Version 1.1, 2001/11/02
http://www.mega-nerd.com/FPcast/

62

Manual

V.1.2

Real-Time Control Program for Pendulum

using RTLinux/Free

Mathias Svensson

UPC / LTH

Contents

1 Preface 3

2 Installation of RTLinux 5
2.0.1 Kernels . 5
2.0.2 Patching and Compilation of Kernels 5

3 Settings before Starting 7
3.1 Load the RTLinux Modules . 7
3.2 Set User Rights . 7
3.3 Installation of Java . 8
3.4 Compilation and Loading of RT Modules 8

3.4.1 rtl pcidriver . 8
3.4.2 rtl modules . 9
3.4.3 Java Program . 9

4 To Use the Program 10
4.1 To Control the Pendulum . 10
4.2 To Use the RT-threads . 14

2

Chapter 1

Preface

This manual is primarily intended to help with the installation and set up of the
RTLinux/Java control program for the Inteco Pendulum at UPC/ESAII. Some of the
paragraphs are specific to the computer used at UPC, whereas the other paragraphs
may work as a general RTLinux installation guide. It is difficult to write a manual that
will cover every possible scenario in the installation, and for that reason is assumed
that the user of this manual is familiar with Linux and with kernel compilation, etc.
If this is your first experience with Linux, then please ask someone for help, otherwise
it might be difficult.

The cd contains the following:

• java

– javalib

– j2sdk-1 4 2 02-linux-i586.bin

• kernels

– linux-2.4.20.tar.bz2

– rtlinux-3[1].2-pre2.tar.bz2

• program

– java

– rtl modules

– rtl pcidriver

– set fifo rights

• graphics driver

• docs

If there is an excisting installation of Linux then it is possible to use this one with the
RT-kernel as base.

If instead a clean installation is going to be performed. Begin with the installation
of any Linux distribution. The system is tested with Debian 3.0 r1, but should perform

3

equally good with any other distribution. The installation of RTLinux will however
be slightly different. I recommend using a journaling file system, e.g. ext3.

From this point it is assmued that a standard Linux distribution is installed and
functioning with the most common programs, e.g. make, gcc, patch, etc. Compiling
the kernel and loading modules require root-rights, so make sure you either have this
or the possibility to use ”su”.

4

Chapter 2

Installation of RTLinux

2.0.1 Kernels

Download a fresh copy of a Linux kernel and a fresh copy of RTLinux to /usr/src.
Unpack and unzip them. Make sure that the version of RTLinux contains patches for
the chosen kernel.

The cd contains Linux kernel 2.4.20 and RTLinux-3.2 pre2 which has been tested
together. Copy these from the folder /cdrom/kernels to /usr/src. Unpack and unzip
them. The program bunzip2 is needed for unzipping files in .bz2 format.

Put the cd in the cd-reader and start up a terminal window. Mount the cdrom so
that the cd can be used.

>> mount /cdrom
>> cp /cdrom/kernels/* /usr/src
>> cd /usr/src
>> bunzip2 rtlinux-3[1].2-pre2.tar.bz2
>> tar -xvf rtlinux-3[1].2-pre2.tar
>> bunzip2 linux-2.4.20.tar.bz2
>> tar -xvf linux-2.4.20.tar

This will create two new folders, ”rtlinux-3.2-pre2” and ”linux-2.4.20”.

2.0.2 Patching and Compilation of Kernels

The following is valid using the kernels that came with the cd. If other versions are
used, the directories will have different names.

>> cd /usr/src/rtlinux-3.2-pre2
>> ln -s ../linux-2.4.20 linux
>> cd /usr/src/linux-2.4.20
>> patch -p1 < /usr/src/rtlinux-3.2-pre2/patches/kernelpatch-2.4.20...
>> make mrproper
>> cd /usr/src/linux-2.4.20
>> make menuconfig (or make config or make xconfig)

Configure the kernel as wanted, but make sure not to enable APM (Automatic Power
Management), and make sure to enable Joliet support under File systems. The two
following paragraphs (make dep, make bzImage) may take several minutes to complete.

5

>> make dep
>> make bzImage
>> make modules
>> make modules_install
>> cp arch/i386/boot/bzImage /boot/rtzImage

Now edit /etc/lilo.conf and add the following lines below the lines with a similar
structure:

image=/boot/rtzImage
label=RTLinux
read-only

also change

propmt

to

propmt

Save the file and inform LILO of the changes.

>> lilo (or /sbin/lilo)

Restart the computer (init 6). The boot-choice ”RTLinux”should appear. Choose this.

*** VALID FOR COMPUTER AT UPC BEGINS ***
If the graphics driver did not load properly (no graphical login) the drivers have to be
installed. Use the following:

>> mount /cdrom
>> cp /cdrom/graphics_driver/NVIDIA-Linux-x86-1.0-4496-pkg2.run /usr/src
>> cd /usr/src
>> chmod 755 NVIDIA-Linux-x86-1.0-4496-pkg2.run
>> sh NVIDIA-Linux-x86-1.0-4496-pkg2.run

Just answer ”yes” to everything. When this is done use

>> /etc/init.d/xdm restart

This will get the graphics back.
*** VALID FOR COMPUTER AT UPC ENDS ***

Continue to set up the RTLinux kernel.

>> cd /usr/src/rtlinux-3.2-pre2
>> make menuconfig
>> make dep
>> make
>> make devices
>> make install

Restart the computer (init 6)and choose ”RTLinux”. If everything went ok, RTLinux
is now installed but NOT ready to be used. Continue to next section.

6

Chapter 3

Settings before Starting

Mount the cdrom so that the cd can be used.

>> mount /cdrom

Copy the folder /cdrom/program to any destination on the disk. This manual will
use /usr/local/pendulum/ for that folder. The folder /cdrom/program contains three
folders and one script. The names should be self-explanatory.

>> mkdir /usr/local/pendulum
>> cp -r /cdrom/program/* /usr/local/pendulum

3.1 Load the RTLinux Modules

To load the modules require root-rights. Either log in as root or use ”su”when needed.
Make sure that the rtlinux modules have been loaded.

>> rtlinux status

If not started (minus sign after the modules) use

>> rtlinux start
>> insmod /usr/src/rtlinux/debugger/rtl_debug.o

It is convenient to have the rtlinus modules loaded at start. If this is desired, use the
script ”load rtlinux”. This will copy a script which loads the modules upon boot.

>> cd /usr/local/pendulum/
>> ./load_rtlinux

3.2 Set User Rights

The devices used for communication must be set so that the user who starts the Java-
program has right to read and write on the devices. The script ”set fifo rights” fixes
this.

>> cd /usr/local/pendulum/
>> ./set_fifo_rights

7

3.3 Installation of Java

Copy the file ”j2sdk-1 4 2 02-linux-i586.bin” to the directory to which will contain the
installation of Java. This directory could be anyone, but consider /usr/local/ as an
option. Installation in this directory require root rights. Move to the chosen directory.

>> cd /usr/local
>> cp /cdrom/java/j2sdk-1.4.2_02-linux-i586.bin .
>> chmod 755 j2sdk-1.4.2_02-linux-i586.bin
>> ./j2sdk-1_4_2_02-linux-i586.bin

To be able to compile and run the Java control program the ”PATH” have to include
the Java binaries.

>> export PATH=$PATH:/usr/local/j2sdk1.4.2_02/bin/

Also Java must be informed that the java library on the cd is going to be used. Copy
the folder /cdrom/java/javalib/se to anywhere you want. Consider the folder ”lib” in
the installation folder for Java.

>> cp -r /cdrom/java/javalib/se /usr/local/j2sdk1.4.2_02/lib
>> chmod -R 755 /usr/local/j2sdk1.4.2_02/lib/se
>> export CLASSPATH=.:/usr/local/j2sdk1.4.2_02/lib/

Do not forget the ”.”. Ask the system administrator how to make the changes upon
boot.

3.4 Compilation and Loading of RT Modules

Each folder except the Java folder contains a make-file that contains compilation in-
formation. ”cd” to the correct folder and write ”make” to compile the .c file(s). On
success this will produce a .o file(s). Although, read more before doing it.

3.4.1 rtl pcidriver

The I/O base address for the PCI card has to be known. Use

>> cat /proc/pci

This gives a list of PCI information. Look for the text:

Bus 0, device 9, function 0:
Bridge: PCI device 10b5:2497 (PLX Technology, Inc.) (rev 1).
IRQ 5.
Non-prefetchable 32 bit memory at 0xe7001000 [0xe700107f].
I/O at 0xd800 [0xd87f].
I/O at 0xdc00 [0xdcff].

This means that the I/O base address of the PCI card is 0xdc00. This must be set in
the code for ”rtl pendmodule.c” Change the line

#define BASE_ADDRESS 0xdc00

8

to the new (perhaps same) I/O base address.
If any changes have been done, or if it is the first time the driver is being used,

write

>> cd /usr/local/pendulum/rtl_pcidriver
>> make clean; make
>> insmod rtl_pcidriver.o

3.4.2 rtl modules

>> cd /usr/local/pendulum/rtl_modules

If any changes have been done, or if it is the first time the modules are beeing
loaded, write

>> make clean; make

IMPORTANT! Place the cart to the left of the track and wait until the pendulum
is hanging straight down. The first thing ”rtl pendcontrol.o” does is to calibrate the
cart position and the angle value. Make sure the PWM is switched on and started
(red button). When the cart is to the left and the pendulum is not moving write

>> insmod rtl_pendmodule.o

And if the RT dummy threads are to be used write also

>> insmod dummy_module.o

To later remove the modules write

>> rmmod rtl_pendmodule
>> rmmod dummy_module

Notice that the extension ”.o” is removed. The system will not allow the removal of
the module if it is used, i.e. the Java program is using it. Stop and close any programs
using the module before removing it.

3.4.3 Java Program

Compile the program by writing

>> cd /usr/local/pendulum/java
>> javac rtlcontrol/rtlpend/*.java

9

Chapter 4

To Use the Program

It is possible to use the features independant of each other, i.e. it is possible to use
the RT-thread feature without having to connect to the control module, allthough it is
primarily developed to test the behaviour of the controller when it is being disturbed
in a controlled way. It is in fact possible to use the the RT-thread feature without even
having the pendulum driver or the pendulum hardware connected to the computer.
For that reason the user manual is separated in two parts: The use of the control
feature, and the use of the RT-thread feature.

4.1 To Control the Pendulum

Due to the separation of the programs it is possible to close the Java program using
force (ctrl + c) without disturbing any started control. Therefore, if the Java program
for some reason would hang during control, it may be savely closed and restarted.
Move to the folder for the file ”RunPend.class”. To start the program write

>> java RunPend

This will start up the main control window.

Figure 4.1: Main control window

Initially the Java program will not be connected to either the control module or the
dummy module.

1. Make sure that the module ”rtl pendmodule.o” is loaded before continuing. Click
on the connect-button to connect to the RT control module. If the connections
was set up properly the window will change to figure 4.2

10

Figure 4.2: Main control window connected to the RT control module

Upon connection the program syncronizes all settings to the RT control module.
The predefined values is proven to be good.

2. Click ”Menu” and choose ”Control Settings”. This will bring up the window

Figure 4.3: Control Settings

This is where the basic control settings are set. The following settings are avail-
able:

Sampling Time The sampling time for the RT control module expressed in
micro seconds.

Thread Priority The priority of the RT control module. The priority range
is 0 (min) to 1000000 (max). The priority 0 should in theory execute the
thread at the same priority as standard Linux.

11

Static Friction The minimal force to move the cart (i.e. stiction) expressed in
signal unit (su). With the current DC motor the scale is 1su = 0.0145 N.
This is added (with respect to sign) to all control signals.

Zero Limit Any control signal less than this is treated as zero. This is to spare
the DC motor from noice.

Output Limit Maximal control signal to the DC motor.

Software Spring Length Length in cm for the software spring. When the cart
is within an area covered by the software spring, a force proportional to the
distance within the spring-area is applied in direction towards the center of
the track.

Software Spring Value Maximal Spring Force.

Swing-Up Gain The control signal used in the Swing-Up.

Swing-Up Max Velocity Maximal allowed angle velocity for the pendulum
when switching from Swing-Up to stabilizing control in radians/second.

Swing-Up Max Angle Maximal allowed angle for the pendulum when switch-
ing from Swing-Up to stabilizing control in radians.

Swing-Down Gain The control signal usedn in the Swing-Down.

Swing-Down Max Velocity Maximal allowed angle velocity for the pendulum
when switching from Swing-Down to stabilizing control in radians/second.

Swing-Down Max Angle Maximal allowed angle for the pendulum when switch-
ing from Swing-Down to stabilizing control in radians.

For security reasons many of the fields have limited input ranges.

3. Click ”Menu” and choose ”View States/Signals” to launch the window with the
different plotters (figure 4.4).

Left-click in a plotter will immediately freeze the plotter, and left-click again will
un-freeze it. Right click in a plotter will bring up a menu where it is possible to
do the following

Freeze All Will immediately freeze all plotters.

Save Current Plotter Save current plotter as a .png or .jpeg file.

Save All Plotters Save all plotters as a .png of .jpeg file.

Set Axis of Current Plotter Set the axis of the current plotter and hence the
desired resolution. This option is not available for a frozen plotter.

Click ”Up” to start the Swing-Up of the pendulum. Status information will be
displayed in the main control window while running. This also show the internal
modes, i.e. Swing-Up and Swing-Down. All status information comes directly
from the RT module.

It is possible to go from control in up position directly to control in down position
by clicking ”Down”. It is not necessary to use any off mode to get it down. An
energy absorbing mode, Swing-Down, will make the transition smoth and fast.

4. Click ”Menu” and chose ”Record Data” to bring up the data recorder window
(figure 4.5).

From here it is possible to record data according to the following:

12

Figure 4.4: State and Control Viewer

Record Time Time of recording in seconds. Using the current buffer setting
maximal time for a recording is 60 seconds.

Step Time Time of an optional step change in cart position.

Step Size Size of step in cm. A zero step will result in a clean recording without
any step change in cart position.

Output File Name of output file. The file will be written to the directory
holding the file ”Main.class”.

5. Click ”Menu” and choose ”Settings”. This will bring up the window for setting of
devices. Do not change anything here without making the same changes in the
RT module (Params.h).

13

Figure 4.5: Data Recorder

4.2 To Use the RT-threads

The main purpose of this feature is to disturb the control thread in a controlled way. It
is however possible to use independently, to disturb any other real-time / non-real-time
application.

Click ”Menu” and chose ”View RT Thread Table”. This will bring up the RT
Thread Table (figure 4.6) from which it is possible to start and stop threads that
execute in hard real-time in the kernel. It is also possible to change their parameters,
i.e. execution time, computation time and priority.

To connect to the module ”dummy module.o”, click ”Menu” and chose ”Connect”.
The default number of possible threads to start is 5, but it is possible to change the
two files /rtlpend/Params.java and /rtl modules/Params.h before compilation to get
up to 32767 possible threads.

IMPORTANT! It is possible (and very easy) to start RT threads which result in
a CPU load that will make standard Linux appear as ”hung”. This is due to the fact
that standard Linux at all times execute with a lower priority than any started RT
thread. Avoid this.

For security reasons it is not possible to start a thread which has an execution time
longer then the period time.

14

Figure 4.6: Real-Time Thread Table

15

