ISSN 0280-5316
ISRN LUTFD2 /TFRT--5726--SE

Code Generation from
JGrafchart to Modelica

Isolde Dressler

Department of Automatic Control
Lund Institute of Technology
March 2004

. Document name
Departmept of Automatic Control MASTER THESIS
Lund Institute of Technology

Date of issue

Box 118 March 2004

SE-221 00 Lund Sweden Document Number
ISRNLUTFD2/TFRT--5726--SE

Author(s) Supervisor

Isolde Dressler Karl-Erik Arzén LTH, Lund

Eckehard Steinbach Techn. Universitit, Miinchen

Sponsoring organization

Title and subtitle
Code Generation from JGrafchart to Modelica (Kodgenerering fran JGrafchart till Modelica)

Abstract

In this thesis the possibility to use the discrete-event modelling tool JGrafchart as a front end to the object-oriented
modelling language Modelica has been studied. In this context, a code generator from JGrafchart to Modelica has been
implemented. The code generator includes the basic JGrafchart objects like steps, transitions and variables, but also
hierarchical elements like macrosteps and inlined procedure documents. The generated Modelica model imitates the
JGrafchart execution model in an algorithm section. The code generator is finally tested on an example of a controller or
at tank system.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes

English 86

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through: University Library 2, Box 3, SE-221 00 Lund, Sweden Fax +46
462224243

Contents

1 Introduction

2 JGrafchart overview
2.1 Steps and transitions L.
2.2 Variables, input and output L.
2.3 Workspaces and macrosteps,
24 Procedures. e
2.5 Object references in JGrafchart
2.6 Executionmodel L.

3 Modelica overview
3.1 The basic principleo
3.2 Composedmodels
3.3 Discrete-event modelling in Modelica

4 Code generation overview
4.1 The generated Modelica program
4.2 Error prevention during code generation

5 Code generation for JGrafchart elements
5.1 Steps
5.2 Tramsitions.
53 Variables
54 Example
55 Workspaces
5.6 Macrosteps
5.7 Procedures.o

5.8 Connectors

6 Graphics and animation in Modelica
6.1 The icon and the diagram

16
16
17
19

22
23
26

28
28
31
33
34
37
37
44
50

52

6.2 The model for hierarchical objects
6.3 Animation

7 Example: A controlled tank system
7.1 The tank system L.
7.2 The JGrafchart controller
7.3 The generated Modelica controller
7.4 Results.

8 Limitations and assumptions
9 Conclusion

A Code of the example controller

61
61
62
63
63

67

69

72

Chapter 1

Introduction

The basis of this work consists of two different simulation languages, Mod-
elica and JGrafchart. Whereas JGrafchart is designed to model sequential,
procedural and state machine oriented control applications, Modelica is very
powerful for simulating continuous multi-domain systems.

The name JGrafchart [1] refers to the graphical programming language as
well as the programming editor. JGrafchart is based on Grafcet, sequential
function charts and statecharts. It can be used both as a development tool
and as a run-time system.

Modelica is an object-oriented modelling language. Its strong point is
the simulation of continuous hybrid systems. Subsystems of different do-
mains can easily be connected to a larger system, e.g. an industrial robot,
where hydraulic, mechanical and electrical parts are aggregated. Dymola by
Dynasim is a commonly used simulation environment for Modelica. It is also
used in this thesis.

Remelhe [5] and Ferreira [6] examined the possibility of discrete-event
modelling in Modelica. Whereas Remelhe implemented a modelling environ-
ment for statecharts and sequential function charts that generates a Modelica
model, Ferreira developed a statecharts library for Modelica. This library is
based on the Petri nets library [7], which provides models for places and
transitions in order to build simple networks. However, Modelica has only
limited support for sequential, state oriented applications. Those are often
needed to model more complex control logic.

A known example for the combination of discrete and continuous mod-
elling 1s Simulink with Stateflow. A finite state machine modelled with State-
flow can easily be integrated in a Simulink diagram. Compared to Simulink,
Modelica is more suitable for multi-domain models and as its diagrams are
not necessarily directional, Modelica models are more flexible. Statechart
only implements finite state machines consisting of states and transitions

with the possibility of building hierarchies, whereas JGrafchart includes pro-
cedural programming and more advanced elements for building hierarchies.

The aim of this thesis is to investigate how JGrafchart can be used as
a front end to Modelica. With the aid of JGrafchart sequential and state
oriented control logic can then easily be modelled and used in connection with
continuous Modelica models. In this way the advantages of both programs
are combined.

The approach that is investigated is code generation from JGrafchart to
Modelica. A model constructed in JGrafchart is translated into Modelica, so
that the generated Modelica model can be used for simulations with Dymola.

Modelica and JGrafchart have been examined and the differences in se-
mantics between the two languages studied. The behaviour of the JGrafchart
model is analysed in order to find out the specifications for the Modelica
model. By looking into Modelica the limitations of the code generation are
examined and a subset of JGrafchart is identified that can be translated into
Modelica code.

On this basis the code generator is then implemented. The model’s be-
haviour should be the same in both environments. In that context it is
also investigated under what conditions a non-working Modelica model is
generated and in how that can be avoided. Furthermore, the possibility of
integrating animation in the case of real-time simulation in Dymola is exam-
ined.

In addition the code generator and the resultant model are tested in an
example application.

In the following chapter an overview over JGrafchart is given including
the relevant elements and the execution model. In the third chapter the basic
principle of Modelica is explained together with the structure of composed
models. In Chapter 4 through 6 the code generator and the generated pro-
gram are presented. After an overview of the generator and the program, the
code generation for the different JGrafchart elements is explained in detail.
Then the graphical appearance and animation of the Modelica model is dis-
cussed. In Chapter 7 an example application is presented and the resulting
Modelica model discussed. In Chapter 8 the limitations and assumptions of
the code generation are resumed and in Chapter 9 a summary of the project
is given and the conclusions are presented.

Chapter 2

JGrafchart overview

JGrafchart 1s a graphical programming language for sequential, procedural
and state-oriented applications [1]. It is based on Grafcet, sequential function
charts and statecharts. JGrafchart handles sequences and hierarchical state
machines. It is both object-oriented and procedural. The graphical object
editor, that is also named JGrafchart, can be used as a modelling environ-
ment as well as a real-time execution system. It can have a connection to
an external environment. JGrafchart is implemented in Java 2 and Swing
together with some external software components.

2.1 Steps and transitions

The basic two elements of JGrafchart are steps and transitions. Steps repre-
sent the possible states a system can have. Transitions model the conditions
on which the system can change its state.

step_0 |

=|=0

=0

Figure 2.1: Example network with steps and transitions

step_1

By connecting these two elements alternately, a network is built that
represents the state model of a system (see Figure 2.1). In JGrafchart the
expression “document” is adopted for the compound of objects the model
contains. During simulation this model is traversed. The execution of the
simulation is based on an algorithm that is executed periodically with a
specified scan cycle.

A JGrafchart network can only be traversed in one direction, each object
has an input and an output port. A transition has an attached boolean
condition. If this condition is true and the preceding step is active, the
transition fires. Then the preceding step is deactivated and the following step
activated. The active steps are marked with a token during simulation. In
one scan cycle, a token cannot traverse more than one transition. A transition
can be connected to exactly one step at each port, whereas a step can be
linked to more than one transition per port. If more than one transition
condition becomes true at the same time, all the corresponding transitions
will fire and activate their following step. This behaviour is deterministic,
but it can be avoided by making the transition conditions mutually exclusive.

As a transition can only be connected to one step at each port, special
objects have to be used to connect a transition to two or more network
branches. They are called parallel joins and parallel splits (see Figure 2.2).
In the case of a parallel join both preceding steps have to be active in order to
fire the transition and for a parallel split both succeeding steps are activated.

step_A step_B

CPIn

Figure 2.2: Network with parallel split and join and connection posts

To facilitate the overview of long extended networks, those can be discon-
nected and the corresponding ends connected to a pair of connection posts
(see Figure 2.2). These objects create connections without direct graphical
link.

There is also a special type of step called initial step. These steps are
activated at the begin of a simulation. They are distinguished by a double
frame.

A step can have actions. An action consists of an action qualifier that
specifies when it is executed and the action itself. An action can contain an
assignment or a method call.

Action qualifier Description

S Entry action: executed in the scan cycle the step be-
comes active

P Periodic action: executed every scan cycle while the step
1s active

X Exit action: executed in the scan cycle the step is deac-
tivated

N Normal action: the state of the step is assigned to a
variable

A Abort action: executed if the step is aborted

Table 2.1: The different action qualifiers

For example, if the variable height is to be initialized with the value 0
every time a specific step is entered, the action of this step would look like
that:

S height = 0;

For every JGrafchart object a dialog window can be opened, where its
properties can be specified, like the condition for transitions or the actions
for steps.

For steps three different methods are available. Two of them give back
the time a step has been active or 0 if it is deactivated, step.s in seconds
and step.t in scan cycles. The method step.x gives back the state of the
step.

Several other methods exist that can be used in actions or transition
conditions. A major part of them sets or reads graphical or geometrical
properties of the JGrafchart objects. Also mathematical functions like sine

5 num = 0;
step_0 . F num = num + 1j

step_0.s>2

Int 1%

num

Frnum = num - 1;

4 step_1.5>2

Figure 2.3: Example network

step_1

or square root are available. Other methods enable the access to objects, e.g.
writing a value into a list.

In the example in Figure 2.3 you can see a simple network with two
steps and two transitions. The upper step, step_0 is an initial step that
1s currently active. When the condition of the following transition becomes
true after two seconds, the token will enter step_1. The actions are visible
in the action block. When step_0 is entered, the variable num is set to 0 and
then increases by 1 each scan cycle. When step_1 has been activated, num
decreases by 1 each scan cycle.

2.2 Variables, input and output

There are four different types of variables in JGrafchart: boolean, integer,
real and string. A variable can have an initial value that it takes at the
start of the simulation. Otherwise it keeps the last assigned value or has the
standard value 0 for real and integer variables and false for booleans. If the
attribute constant is set to true, it cannot be changed by any actions during
simulation. Figure 2.4 shows a boolean variable with its object dialog.

These four types are also available as lists. The basic difference to an
array known from e.g. the programming language C is that elements can be
added or deleted during simulation, i.e. the size of a list is not fixed. There
are different methods for lists to change, add, read or delete elements.

Internal Variable A x

Initial value:
Bool O

Yar

[C] Constant

| Ok | | Cancel

Figure 2.4: Boolean variable with object dialog

In order to communicate with a real process, there are different forms
of input and output. Communication with input or output channels can
be achieved with digital and analog input or output elements. Furthermore
there are socket input and output elements for the basic four variable types.
Figure 2.5 shows the boolean socket input and output elements. With the aid
of these TCP messages can be sent to or received from a server. In addition
objects to exchange xml-messages exist.

5] [

sln S0ut

Figure 2.5: Boolean SocketIn and SocketOut

2.3 Workspaces and macrosteps

Workspaces and macrosteps enable the construction of hierarchies in JGraf-
chart.

A workspace (see Figure 2.6) is only a repository for a sublevel document.
It has no state or actions itself. The workspace has no connection to the upper
level network. The scan cycle of the sublevel model can be modified to an
integer multiple of the top level scancyle. Additionally, the workspace can
be disabled so that the transitions of the sublevel document will not fire and
except the entry actions of initial steps no actions are executed.

[workspace_1 :

[}

workspace_1

%—o

Figure 2.6: Workspace

A macrostep (see Figure 2.7) is another hierarchical element. It contains a
model as well as it is a step that can have actions. In contrary to a workspace
it 1s a part of the upper level network.

A macrostep can have several entries and exits. Every entry/exit is con-
nected with an enter/exit step in the inner document. A macrostep like this
can be entered by more than one port at the same time and have more than
one active step inside. The macrostep itself is active as long as there is an
active step inside. To enable the transition connected to a specific outport of
a macrostep, the exit step corresponding to this output port has to be active.

idtE [H

Macrostep_example

<3 <

Exception outport

History Inport enterstep_1 enterstep_2
7~/
~|I—b L
0 Macrostep_example == 0 ==0

N A

exitstep_1 exitstep_2

[¥]

Figure 2.7: Example of a macrostep

10

When a macrostep is entered, the entry actions of the macrostep are
executed before those of the enter step inside. When the macrostep is left,
first the exit actions of the exit step inside are executed and then those of
the macrostep. The periodic actions of the macrostep are executed after the
inner steps’ ones.

A macrostep always has two special ports. By leaving the macrostep
through the exception outport, the whole macrostep including all inner steps
is deactivated. Then the abort actions of the macrostep and the steps that
have been active are executed. This port has to be connected to a special
form of transition, an exception transition. The exception transition is not
connected to a specific exit step inside the macrostep. It is sufficient that
the macrostep is active to enable the firing. The exception transition has
priority over the transitions inside the macrostep. If the exception transition
fires, none of the inner transitions can fire in the same scan cycle.

If the macrostep once has been aborted, its state is stored and can be
resumed by entering the macrostep through the history inport. Then the
inner steps that have been active before the abortion are entered again and
their enter actions are executed. This only works correctly if the macrostep
has been aborted before.

2.4 Procedures

A procedure (see Figure 2.8) is an element containing a sublevel document
with one enter and one exit step. It cannot directly be connected to transi-
tions but can be entered by a procedure call in different ways. Procedures
are reentrant, i.e. they can be entered through different ways at the same
time. Then an independent copy of the procedure is entered in each case.

The most common way to call a procedure is from a process step or a
procedure step (see Figure 2.9). However, you can also call a procedure
directly via the procedure dialog or with the action method spawn.

A procedure can have parameters. They are represented by variables
in the procedure document. During the procedure call, parameters can be
handled as “called by value” (indicated by a “V”) or “called by reference”
(indicated by an “R”). The object dialog in Figure 2.9 shows an example of
the two different parameter calls. In the first case, the parameter will take
a specific value when the procedure is entered. The value is given by an
expression that is evaluated at the time the procedure is called. The “call by
reference” connects the parameter with a variable outside the procedure in
such a way that a change on the inner variable affects the outer one.

Like macrosteps, procedure and process step also have their own actions.

11

[Procedure_1

<

51

§ Int 0

param_1

Procedure_1

Real 0.0

52

pararn_2

[v]

Figure 2.8: Procedure

However instead of containing a document, they call a procedure. In the
dialog the procedure name or a string variable that specifies the name of the
procedure can be indicated. By using a string variable a procedure or process
step can call different procedures during the simulation run. You also specifiy
the parameters of the procedure call and the way they are called, “by value”
or “by reference”.

The order in which the entry and periodic actions of the procedure step
and the inner steps of the procedure are executed corresponds to macrosteps.
The difference between procedure and process steps consists in the way they
are deactivated. A procedure step can only be left when the exit step of the
procedure is active. The actions of the exit step are executed in the same
way as in the case of a macrostep. A process step can be deactivated as soon
as the transition condition is true, independent of the procedure’s status.
The procedure document is traversed until the exit step is entered. Then the
entry actions of the exit step are executed and the procedure call is ended.
The periodic or exit actions of the exit step are not executed. In contrast to
procedure steps, a process step is consequently able to call a procedure anew
before its last procedure call is ended.

A procedure step has, like a macrostep, an exception outport that may
be connected to an exception transition, but no history inport.

The common characteristics of procedure and process steps are easy to
explain looking at the Java classes. The class ProcessStep inherits the class
ProcedureStep. ProcedureStep in turn inherits the class MacroStep.

12

2P rocedure e

Procedure:

Procedure_1
Procedure Parameters:
Frocedurestep param_1 = outer_variable_1; |
R param_2 = outer_variable_2;

Processstep

Figure 2.9: Procedure step with object dialog and process step

2.5 Object references in JGrafchart

In JGrafchart an object reference can be global or local. A global reference
contains the whole path of an object, beginning at the top level workspace
and naming every hierarchy level seperated by a dot. For example, the global
reference to variable in Figure 2.10 is J1.macrostep.variable. A local
reference contains only a part of the global path, mostly only the object
name. JGrafchart looks for the object beginning in the actual workspace
and going to upper levels until an object with the given name is found or the
top level workspace i1s reached. Therefore the transition in macrostep can
refer to number only with its name, whereas the transition in the top level
workspace has to refer to variable inluding the name of the macrostep.

£ Top 11 =8
[T

|| iy SR R ! (B
Int o == macrostep.variable
number

") macrostep = number>2

wvariable
% 1

Figure 2.10: Illustration of references

13

2.6 Execution model

The execution of a JGrafchart model is based on a periodical algorithm.
Every scan cycle the following operations are performed.

1. First the digital and analog input channels are read.

2. Then all the transitions are checked for firing. In the first pass those
that should be fired are only marked. Only in the second pass the
marked transitions are actually fired. For the neighbouring steps exit
or entry actions are then executed and their state is updated. A step
has two variables for its state, x and newX. At that time only newX is
updated.

3. Then all the steps in the model are traversed. Now newX is assigned
to x and the step timer is updated. Periodic actions are executed if
the step has been active in the last scan cycle and is not deactivated
in the actual one, normal actions are executed if the state of the step

has changed.

In the first scan cycle, the initial steps are entered and their stored and
normal actions are executed.

The following example illustrates the chronology of the different actions
and how the timer of a step is updated. In Table 2.2 an overview for the
example network in Figure 2.11 is given. For the timer of the steps the
already updated value is specified.

ms
<L
50
in
s0.t>2
7 N Jrl int>1
- -
ms
N/
Bx
ms.ex.t>1
-
4 B

Figure 2.11: Example network
14

Scan cycle Executed actions Timer s0 Timer ms Timer in Timer ex

Entry action s0 0 0 0 0
Periodic action s0 1 0 0 0
Periodic action s0 2 0 0 0
Periodic action s0 3 0 0 0
Exit action s0

Entry action ms

Entry action in 0 0 0 0
6 Periodic action in

Periodic action ms 0 1 1 0

U W N —

7 Periodic action in

Periodic action ms 0 2 2 0
8 Exit action in

Entry action ex

Periodic action ms 0 3 0 0
9 Periodic action ex

Periodic action ms 0 4 0 1
10 Periodic action ex

Periodic action ms 0 5 0 2
11 Exit action ex

Exit action ms

Entry action s0 0 0 0 0

Table 2.2: Execution of the example network

The example shows that it is only in the scan cycle after a step has been
activated that periodic actions are executed and the timer increased. Periodic
actions are executed one more time as one could think at first looking at the
transition conditions. But that can be explained since the step is only left
when its timer is greater than the indicated value.

15

Chapter 3

Modelica overview

Modelica [2] is an object-oriented modelling language. It has been and is
developed by the Modelica Association [3], a non-profit organization founded
for this purpose. Its aim is to facilitate simulations for complex multi-domain
applications. Dymola [4] is a commercial implementation of Modelica, which
is used in this thesis.

3.1 The basic principle

A Modelica model consists basically of a declaration part and an equation
section. There can also be an algorithm section instead of, or in addition to,
the equation section.

The characteristic of Modelica is the equation section. Every physical
system can be described by a system of equations; differential, algebraical or
discrete ones. Instead of converting the equation system into an algorithm,
the equation system can be represented directly in Modelica. An advantage
of this is that the unknowns are not fixed, so that the model is more flexible.

In contrast to the equation section, the algorithm section contains as-
signments. Through an assignment, a variable is assigned the value of an
expression, whereas an equation has to be fulfilled, each variable can vary
to achieve that. In the equation section it does not matter in which order
the equations are written, whereas in the algorithm section the order of the
assignments 1s important.

During the simulation run, the system of equations and assignments is
solved for every simulation step. Unless an if clause restricts the validity of
an equation or assignment, it has to be fulfilled during the whole simulation
time. The algorithm section is executed every simulation step.

The model has to contain exactly as many equations or assignments as

16

variables, otherwise the equation system is under- or over-determined. As-
signments to the same variable do not count several times. But an assignment
is counted even if an if clause restricts it in such a way that it will not be
executed during the simulation. While you can have unused variables in
JGrafchart, Modelica is very strict in this point.

The following model specifies a simple LC-oscillator. A model always
starts with the keyword model and its name, and ends with end and the
name. In the first part the variables and parameters are declared. By using
the keyword parameter or constant a variable cannot be modified during
simulation. The equation section contains the two differential equations de-
scribing the oscillator.

model LC_oscillator
SI.Voltage u;
SI.Current 1i;
parameter SI.Capacitance C = 1;
parameter SI.Inductance L = 1;
equation
Lxder(i) = u;
Cxder(u) = -i;
end LC_oscillator;

Figure 3.1: LC oscillator

3.2 Composed models

Modelica is an object-oriented language. Reuse of declared models is advan-
tageous. Thus, in order to build a model, small reusable parts of the model
are declared and then joined to a larger model.

17

According to this the oscillator model would look like:

model LC_oscillator
capacitor C1;
inductor L1;
equation
connect(Cl.p, Li.n);
connect(L1.p, Cl.n);
end LC_oscillator;

Here the oscillator is put together of a capacitor model and an inductor
model. The two components are connected in the equation section. The
function connect () generates equations that equate the currents and volt-
ages at the components’ pins. The differential equations of the former model
have disappeared, they are now part of the capacitor and inductor model.

In order to allow the connections, the models of capacitor and inductor
have to contain variables that refer to voltage and current at the pins. These
are assembled in another element, a connector.

model capacitor
SI.Voltage u;
SI.Current i;
parameter SI.Capacitance C = 1;
pin p;
pin n;

equation
Cxder(u) = i;
u=7p.u-n.u;
0 =p.1i+mn.i;
i=np.1i;

end capacitor;

connector pin
SI.Voltage u;
flow SI.Current i;
end pin;

These elements are also available in the Modelica Standard Library. The
library is to a large extent based on reusable elements, e.g. all components
with two pins are based on a general one port component. A class can inherit
another class by specifying the parent class with “extends parent class;” in

18

the child class. In addition to that the models contain code for graphical
annotations to enable a graphical construction of systems.

A model can have an icon that represents this model in the diagram of an
upper level model. In the diagram the relations between the sublevel parts
of a model are shown through graphical connections between the different
icons. In order to create a graphical connection between two icons, those
must have terminals.

If the signal direction between the different parts of a model is to be
considered, a block can be used instead of a model and the variables in the
connectors specified with the keywords input and output. The resulting
model is then similar to a model known from e.g. Simulink.

There are more classes available in Modelica. Different models can be
assembled in a library with package. If several variables shall be assembled,
arecord can be used. A function can be declared for recurring calculations.
New variable types can be declared with type, new classes with class.

3.3 Discrete-event modelling in Modelica

Discrete-event models can be implemented based on equations, like e.g. the
Petri nets library [7], as well as based on algorithms and functions [5] [8]. The
first case shows synchronous behaviour between the discrete-event and the
continuous model parts, as all equations are evaluated at every time instant.
In the second case asynchronous behaviour can be modelled. When a discrete
event occurs, the integration of the equation part is halted until the algorithm
part of the model is completely executed. The code generator implements
the model with algorithms; in the following some Modelica elements that are
useful in this context are explained.

The algorithm section of a model or a function contains assignments which
are always evaluated in the same calculation order.

variable := expression;

If an assignment depends on a condition, several Modelica language ele-
ments can be used. In a conditional assignment statement, an assignment 1s
executed according to a condition.

variable := if condition then ezpressionl else ezpression?;

Another possibility to express the above statement is to use an if clause.
The content of an if clause i1s only evaluated while its condition is true. The
different parts of an if clause have to contain the same number of assignments
on the same variables.

19

if condition then
assignments
else
assignments
end if;

The content of a when clause is evaluated at the moment the condition
becomes true. Contrary to an if clause, the assignments are only executed
once in a period in which the condition is continuously true.

when condition then
assignments
end when;

The following example shows the difference between an if and a when
clause. In the first case variablel always has the same value as variable2.
In the second case variablel is assigned the value of variable2 once at
the simulation start. So even if variable2 changes, variablel remains
constant.

if time>=0 then
variablel := variable2;
end if;

when time>=0 then
variablel := variableZ2;
end when;

A when clause can always be transformed into an if clause with the aid
of the edge() operator. It gives back the value “true” at the moment the
expression in the brackets becomes true, else it gives back “false”. The follow-
ing if clause is equivalent to the when clause in the example above. Instead
of edge(time>=0), initial() is used here. It is true at the instant the
simulation starts and false otherwise.

if initial() then
variablel := variableZ2;
end if;

In Modelica, variables can have different variabilities. Besides a constant
or a parameter, a variable can also be discrete. Since boolean and integer
variables have a piecewise continuous solutions in any case, the discrete

20

keyword is intended to be used for real variables. Real variables are consid-
ered as continuous unless they are declared as discrete. An assignment to
a variable inside a when clause has the same effect as declaring the variable
as discrete. Discrete variables may not be mixed with continuous expres-
sions. To avoid problems arising from the mixture of continuous and discrete
variables, when clauses are not used in the generated Modelica model.

When time-discrete behaviour is modelled, the sample operator is used
in conjunction with an if or when clause. It produces a periodical boolean
pulse beginning at a specified time instant.

sample(starttime, sampleperiod)

In this way, the statements inside the if or when clause are executed in
regular intervals. With the sample operator, periodical algorithms can be
implemented or, like in the following example, a continuous signal can be
sampled.

when sample(0, 0.01) then
sampled_signal := continuous_signal;
end when;

21

Chapter 4

Code generation overview

The code generator is implemented in the JGrafchart editor. The menu
“Execute” contains the item “Modelica”, which opens a dialog to enter the
filename for the Modelica model. The code is generated by traversing the
JGrafchart model and the generated Modelica model is saved under the given
name.

The function modelicaAction, which is started by the menu item, is
part of the class Editor. First a filename to store the Modelica model in is
obtained through a dialog window. After the model has been compiled and
checked by the function checkDocument for structures that would lead to a
non-working Modelica model, the document is coded by calling the function
codedocument.

When the JGrafchart model is compiled, a list of all elements is created.
In the function codedocument this list is traversed and code is generated for
every element according to its properties. For elements that contain them-
selves documents, like e.g. macrosteps, codedocument is called recursively.
The generated code is then printed into the specified file.

There are several smaller functions that are called by codedocument or
other functions. The most important is probably drawmodel. It builds a
purely graphical model for hierarchical elements like macrosteps in such a
way that the inner documents can be displayed in the Modelica diagram.
Figure 4.1 gives an overview of the structure of the code generator. Recursive
function calls are not marked. Table 4.1 gives a short description of the
functions in Figure 4.1.

22

void modelicaAction

String checkDocument String[] codesocket String[] codedocument
—= void giveNames int countsocketin String drawlcon
+—={ void checkNames int countsocketout String storehistory
—=| String checkElements String enterhistory

String codeexception

String codestate

. String
initializeprocedure

String drawModel

boolean
searchexception

Strin
codeNormgHXctions

Figure 4.1: Function structure of the code generator

4.1 The generated Modelica program

As a state machine is no typical application for Modelica, the generated
program differs from a typical Modelica model. First of all, the model does
not contain an equation section, but an algorithm section. The algorithm
imitates exactly the behaviour of the JGrafchart execution model.

All the hierarchies in JGrafchart are translated into flat code, except for
the graphical models. These have, however, no contribution to the function-
ality of the model. To avoid name conflicts, all elements receive in Modelica
a name that contains the global reference in JGrafchart without the top level
workspace. The different levels are seperated by an underscore instead of
a dot. For example, the step stepl inside the macrostep macrostepl will
get the name macrostepl_stepl in Modelica. Most of the functions of the
code generator have a string with the name of the actual workspace as input

23

Function

Description

checkDocument
giveNames
checkNames
checkElements
codesocket
countsocketin

countsocketout

codedocument
drawlcon

storehistory
enterhistory

codeexception

codestate
initializeprocedure

drawModel
searchexception

codeNormalActions

Calls several other functions in order to check the
model for non-translatable elements

Generates names for nameless steps

Checks the model for name conflicts

Checks the model for non-translatable elements
Writes annotations for connector terminals and de-
clares connectors

Gives back the number of SocketIn elements in the
model

Gives back the number of SocketOut elements in
the model

Writes the main part of the Modelica program
Writes code to place an icon in the Modelica dia-
gram

Declares variables for the abortion of a macrostep
Writes code to enter a macrostep through its his-
tory port

Writes code for the abortion of a macrostep
Writes code to update the state of a macrostep
Writes code to assign the initial values to variables
inside a procedure if the procedure is left
Generates a graphical model for hierarchical ele-
ments

Checks if there i1s an exception transition con-
nected to the exception outport of a macrostep
Declares variables and writes code for the execu-
tion of normal actions

Table 4.1: Function overview

value. Thus, the right names can be generated in recursive function calls by
adding the element name to the workspace string.

Dymola does not implement string variables.

to specify the procedure name by a string variable, a process or procedure
step can only have one corresponding procedure. Procedure calls are inlined

and procedure or process steps are directly associated with a model of their
corresponding procedure.

In order to facilitate the communication between the generated model
and another Modelica model, connectors can be generated. This is done

24

Without the possibility

using SocketIn and SocketOut elements, which lose their original purpose in
the code generation.

The generated Modelica program consists mainly of two parts. The dec-
laration part contains general declarations of different records corresponding
to the JGrafchart elements and declarations of the actual elements. In the
algorithm section the JGrafchart execution sequence is periodically executed
with the JGrafchart scan cycle.

The following lines give an overview over the Modelica program structure:

model example
protected
declaration of element types (records)
declaration of the actual elements the model contains
public
declaration of scan cycle
declaration of parameters and variables
algorithm
if initial() then
entry actions of initial steps
normal actions of initial steps
end if;
if sample(scancycle, scancycle) then
update transition conditions
fire transitions
update time functions for steps
periodic actions
normal actions
update state of steps
end if;
graphical annotation for icon and diagram
end example;

The different element types and the actual elements are declared as pro-
tected, so that they can only be accessed from inside the model. In JGrafchart
it is possible to read the timer of a step from outside a model. This possibil-
ity is abandoned in Modelica. Variables and parameters are public, so that
they can be read and modified from outside the model like in JGrafchart.

Conventional Modelica models are continuous. To get a time-discrete
model, the function sample(starttime, period) is used. It produces a
periodical boolean pulse starting at a specified time. In conjunction with an
if clause it encloses the whole algorithm.

25

In JGrafchart, the initial steps are entered and their stored and normal
actions are executed in the first scan cycle. Since initial steps are already
active at the simulation start in Modelica, the periodic algorithm may only
begin in the second scan cycle in Modelica. Therefore the starting time of the
sample() function is not “0” but “scan cycle”, the second scan. In Modelica
the entry and normal actions of the initial steps are encircled by an if clause.
They are executed when initial() is true, at the instant the simulation
starts.

Compared to the original JGrafchart algorithm, the state of the steps is
updated later in Modelica. This is necessary because the execution of periodic
and normal actions is depending of the old value of the state. How this works
exactly will be explained in the context of code generation for steps. However,
this does not affect the results of periodic and normal actions, as the new
value is nevertheless available for them.

While the JGrafchart model is traversed during code generation, different
pieces of code have to be added at specific locations. In order to maintain the
program structure, the code is stored in a string array. The elements of the
array correspond to the different parts of the Modelica program structure.
The structure can like this easily be assured while traversing the object list
and in recursive function calls. Together with some declaration parts, that
every generated model contains, the elements of the string array are printed
into the Modelica file. Table 4.2 shows the different string elements of the
program.

4.2 Error prevention during code generation

Before the JGrafchart model is translated into Modelica, it is checked for
constructs that would lead to a non-working Modelica model. For this pur-
pose the function checkDocument calls several other functions that look for
different sources of error.

In contrary to JGrafchart, Modelica requires a name for every element of
a model. Therefore the function giveNames traverses the model looking for
nameless elements. Objects without name receive an automatically generated
name.

In the case that a name appears several times in the same document,
JGrafchart only gives out a warning. In Modelica this would lead to an
error. The function checkNames looks for names that appear several times
or are reserved in Modelica (e.g. “time”). If the function detects a name
conflict, 1t gives out a warning and the code generation will not be executed.

Finally, the function checkElements is called. It checks the model for

26

intro
code|0]

codel[1]
code[2]
code[3]
code|4]
code[5]
code[6]
code[7]
code[8]
code[9]
code[10]

Declaration of records, connectors, partial models for
diagram

Declarations of models for macrosteps, workspaces etc.;
private declarations of elements that model contains
Public declarations; scan cycle, variables, parameters
Initial actions: entry actions of initial steps

Initial actions: normal actions of initial steps

Update of transition conditions

If clauses for transitions

Update of time functions for steps

Periodic actions

Normal actions

Assign nextstate to state

Annotation for diagram (links, parallel split/join)

conclusion Annotation for icon, close model

Table 4.2: String composition of the Modelica model

non-translatable objects. It also checks specific translatable objects, e.g. the
procedure in a process step may not be specified by a string variable. If a
detected fault would lead to an error in Modelica, an error message appears
and the code generation is stopped. In the case that a feature is found which
cannot be translated into Modelica but will not lead to an error, only a

warning is given out and the feature is ignored during code generation.

27

Chapter 5

Code generation for JGrafchart
elements

5.1 Steps

In Modelica a step is represented by a record with three variables. There are
two boolean variables for its state, one real variable for the timer methods
(step.s etc.) and a graphical annotation for the icon. The graphical anno-
tation is not mentioned in the representation of the records below. Because
of the different start values and the different icon, initial steps have their own

record.

record step record initstep
Boolean state; Boolean state(start=true);
Boolean nextstate; Boolean nextstate(start=true);
Real active; Real active;

end step; end initstep;

The two variables for the state are necessary to decide if the state has
been changed in the actual scan cycle or the step has been in that state for a
longer time. This is necessary for periodic and normal actions. Therefore the
connected transitions assign a new value to nextstate if they fire, and not
until the end of the algorithm state is updated. Consequently periodic and
normal actions can be executed and the time function of the step updated
according to the two booleans.

The records are declared at the beginning of the Modelica model in the
string intro that every generated file contains. Every step of the JGrafchart
model is translated into an instance of these records.

28

In JGrafchart a syntax tree is attached to every step. The nodes of
the tree contain the different actions. There are different classes of nodes
corresponding to the possible action language. During code generation, this
structure is traversed in order to code the different actions. The function
traverseActionTree in the class GCStep calls the function traverse of the
topmost node of the tree. This function is declared for every node. Each
node calls traverse of its child nodes until the bottom nodes are reached.
The function returns a string at each time. The return values of the child
nodes are combined according to the properties of the actual node. Thus
the Modelica code for an action is pieced together while the action tree is
traversed.

@ ccse

|

@ ~crsaement

|

@ ActreriodicNode @ ACTNormaiNode @) ACTExitNode

SN N

@ AcTvaise @ ACTPiusNode @ ACTVaizble @ ACTVariable @) ACTNumber

variay \ + variable2 variable3 3

@ ~Acrvaiae @ ACTNumber
variablel 1

Figure 5.1: Action syntax tree

The tree above illustrates a step that has one periodic, one normal and
one exit action. In the diagram the classes of the nodes and the corresponding
action elements are indicated. In the action language the actions would look

like this:

P variablel = variablel + 1;
N variable2;
X variable3d = 3;

When the function traverseActionTree is called, a string is passed on
that specifies the kind of action that should be coded, e.g. the function

29

returns only code for the periodic actions, and disregards all other actions.
In this way it is possible to write the actions at different places in the Modelica
program according to their action qualifier. Enter, exit and abort actions are
executed when the corresponding transition is fired. Periodic and normal
actions are inserted in an if clause depending on the state of the step.

For periodic actions both state and nextstate have to be true since
in JGrafchart periodic actions are not executed in the scan cycle the step
becomes active or inactive. In that case the two variables would have different
values.

if stepl.state and stepl.nextstate then
variablel := variablel + 1;
end if;

Normal actions are executed in the scan cycle the state of a step changes.
In the algorithm section they are executed before the variable state is up-
dated, so that state and nextstate are unequal if the state has changed in
the actual scan cycle. If several steps execute normal actions on the same
variable in the same scan cycle, in JGrafchart an action which sets the vari-
able to true will have priority over one that sets it to false. In Modelica,
the last executed assignment decides the value of a variable. Since the cal-
culation order of normal actions in the generated Modelica model cannot
assure the priority of active steps, an auxiliary variable for every variable
included in a normal action has to be implemented. If a variable is set to
true, the variable variable_setHigh is also set to true. Normal actions on
a variable are only executed, if variable_setHigh is false. After the execu-
tion of all normal actions, the auxiliary variables are set to false again. In
this way, a normal action cannot set a variable to false which has been set
to true in the same scan cycle by another normal action. The code for the
normal actions is generated by traversing the syntax tree, the initialization
and declaration of the auxiliary variables is generated by calling the function
codeNormalActions in codedocument before returning the generated pro-
gram to modelicaAction. During code generation, the variables included in
a normal action have been marked, codeNormalActions only generates code
for these variables.

if stepl.state <> stepl.nextstate then
if not(variable2_setHigh) then
variable2 := stepl.nextstate;
variable2_setHigh := stepl.nextstate;
end if;

30

end if;
variable2_setHigh := false;

In the context of the normal actions of initial steps in the first scan cycle,
the auxiliary variables and if clauses are not necessary, the corresponding
variables are just set to true.

Also the timer of the step is updated according to the two state variables.
If the step is and has been active it is increased, else it is assigned “0”.

stepl.active := if (stepl.state and stepl.nextstate) then
stepl.active + scancycle else 0;

After the timer update and the actions state is finally updated.
stepl.state := stepl.nextstate;

Besides normal steps, also macrosteps, procedure and process steps have
a state and a timer. They can as well have actions. These properties of
macrosteps and procedure steps are coded in the same way as in the case of
a normal step.

5.2 Transitions

Also transitions are represented by a record in Modelica. The record asso-
ciates the boolean condition with the transition icon. The label is needed
for the graphical annotation. In the declaration of the record it is an empty
string, but when the instances of the individual transitions are declared,
the JGrafchart labels are used. The transition condition in the label may
differ from Modelica notation, e.g. instead of the boolean value “true” the
JGrafchart notation “1” is used. As transitions have no name in JGrafchart
but need one in Modelica, names are automatically generated. The name is
composed of “transition” and the value of a counter.

record transition
Boolean condition;
parameter String label=‘®’;
end transition;

A transition in JGrafchart has a tree for its condition similar to what a
step has for its actions. Also the different classes of the nodes correspond to

31

X varl=0;

stepl
Int 0
== Yarl:>2 Warl
5 Var? = Var? + 1 Int

step?
Wars

Figure 5.2: Example transition

those of the action tree. So the reading of the transition condition works in
the same way as coding actions.

In the beginning of the Modelica algorithm the transition conditions are
updated. The condition in Modelica does not exactly correspond to the
condition in JGrafchart. In Modelica the states of the preceding steps are
also considered in the condition. The following example shows the generated
code for the transition in Figure 5.2.

transitionl.condition := (Varl > 2) and stepl.state;
The firing of the transitions is implemented in an if clause. Inside the if
clause nextstate is updated for the preceding and succeeding steps and the

entry and exit actions of these steps are executed.

if transitionl.condition then

stepl.nextstate := false;
Varl := 0; \\exit action stepl
step2.nextstate := true;

Var2 := Var2 + 1; \\entry action step2
end if;

A JGrafchart transition has two attached lists, one for the preceding steps
and one for the succeeding steps. During code generation the two lists are
read and for every step in the list code is written. For a preceding step,
state is added to the transition condition, nextstate is set to false and its
exit actions are traversed. For a succeeding step nextstate is set to true
and the entry actions are traversed.

32

A transition can only have one direct connection at each port. Neverthe-
less the lists can contain more than one item. If parallel splits or joins are
used, all the steps connected over the split(s) or join(s) are written into the
list when the model is compiled. Thus it is not necessary to generate code
for parallel splits and joins, that is done automatically when the transitions
are coded. For parallel splits and joins only a graphical annotation in the
Modelica diagram is generated.

Also in the case of connection posts the code generation works without
implementing them due to the lists.

Transitions connected to macrosteps, procedure steps or process steps
need special handling. This will be discussed in the context of these elements.

5.3 Variables

JGrafchart and Modelica have the same four basic variable types: integer,
real, boolean and string. In both languages these types have the same de-
fault start values. So the variables can be translated directly. Variables are
declared public in Modelica to maintain the public structure of JGrafchart
models.

A JGrafchart variable has an attribute initialValue. During code gen-
eration this attribute is checked and if necessary a start value is specified
in the Modelica model. Otherwise the default start values are used. The
two simulation environments handle initialization at the simulation start in
different ways. In JGrafchart a variable without initial value keeps the last
assigned value even in a new simulation run, in Modelica it is always initial-
ized at the beginning of a simulation.

Modelica needs an exactly determined system of equations and assign-
ments. Therefore every declared variable has to be assigned a value at least
once in the algorithm section. That can be avoided by declaring the variable
as parameter. In JGrafchart the difference between modifiable variables and
parameters is not important. The attribute isConstant () of a variable can
be set true, so that the value cannot be modified any more during simulation.
But it is not necessary to do that, a JGrafchart model will also be able to
execute with unused variables. When code for variables is generated, those
for which isConstant () is true are declared as parameters. Hence it is very
important that the programmer pays attention to the difference between vari-
ables and parameters already in JGrafchart, otherwise the Modelica model
will not be executable.

As in Dymola string variables are not implemented, only string param-
eters are translated into Modelica code. If string variables are used in the

33

JGrafchart model, an error message will appear during the code generation
when the model is checked for unallowed elements.

In the action or condition tree variables are represented by the class
ACTVariable resp. TRVar. Through the attribute out the actual variable
can be accessed and the name generated by reading the complete path of the
variable.

5.4 Example

The code generation explained in the previous sections is illustrated with
the example network shown in Figure 5.3. The declarations of the element
records have been left out in the Modelica text. Besides steps and transitions,
the example implements the different kinds of actions and parallel splits (see
transitionl) and joins (see transition3).

Int 2 S intvar=0;
n step(N boolvariable;
intvar
Boaol O
hoolvariable == intvVar:>2 == jintVar<=2
step3
P intVar = intVar + 1;
XintVar = 0;

stepl — stepd

’_‘ step3.s>2
JEI intvVar>2

Figure 5.3: Example network in JGrafchart

model Examplel

protected
initstep stepOl;
transition transitionl(label=*“intVar>2”’);
transition transition2(label=*“intVar<=2"’);

34

step step3;

step stepl;

step step2;

transition transition3(label=*‘intVar>2’’);
transition transition4(label=*‘step3.s>2);
Boolean boolVariable_setHigh;

public
parameter Real scancycle=0.04;
Boolean boolVariable;
Integer intVar(start=2);

algorithm

if initial() then

intVar := 0;
boolVariable := true;
end if;

if sample(scancycle, scancycle) then

transitionl.condition (intVar > 2) and stepO.state;
(intVar <= 2) and stepO.state;

(intVar > 2) and stepl.state and

transition2.condition

transition3.condition
step2.state;

transitiond.condition = (step3.active > 2) and step3.state;

if transitionl.condition then

step0.nextstate := false;
stepl.nextstate := true;
step2.nextstate := true;

end if;

if transition2.condition then
step0.nextstate := false;
step3.nextstate := true;

end if;

if transition3.condition then
intVar := 0;
stepl.nextstate := false;
step2.nextstate := false;

intVar := 0;

35

stepO.nextstate := true;
end if;
if transition4.condition then
step3.nextstate := false;
intVar := 0;
step0.nextstate := true;
end if;

stepO.active := if (stepO.state and stepO.nextstate) then
step0.active + scancycle else 0;

step3.active := if (step3.state and step3.nextstate) then
step3.active + scancycle else 0;

stepl.active := if (stepl.state and stepl.nextstate) then
stepl.active + scancycle else 0;

step2.active := if (step2.state and step2.nextstate) then
step2.active + scancycle else 0;

if stepl.state and stepl.nextstate then
intVar := intVar + 1;
end if;

if stepO.state <> stepO.nextstate then
if not(boolVariable_setHigh) then
boolVariable := stepO.nextstate;
boolVariable_setHigh := stepO.nextstate;
end if;
end if;
boolVariable_setHigh := false;

step0.state := stepl.nextstate;
step3.state := step3.nextstate;
stepl.state := stepl.nextstate;
step2.state := step2.nextstate;

end if;

end Examplel;

36

5.5 Workspaces

A workspace is only a repository for a sublevel model, the element itself
does not interfere with the rest of the model. The Modelica model does
not follow the hierarchies, therefore workspace objects are only present in
a purely graphical form in Modelica. For workspace objects the function
codedocument is called recursively in order to code the sublevel document.
As the names in Modelica contain the whole path, the workspace name is
present in the names of the sublevel elements.

In JGrafchart it is possible to set a specific scan cycle for a workspace or
to disable the firing of transitions. These features are not implemented in
the Modelica program.

5.6 Macrosteps

A macrostep is both a step and a hierarchical element that contains a sub-
workspace. In Modelica this hierarchy is not maintained, the Modelica
macrostep is similar to a normal step and linked to the sublevel elements
via the transition if clauses.

Like a normal step a macrostep is represented by a record. Only the
name and the graphical annotation (which is not shown in the following
representation) are different.

record macrostep
Boolean state;
Boolean nextstate;
Real active;

end transition;

The periodical and normal actions are coded in the same way as those of
steps. Also the updating of the timer and the variable state corresponds to
normal steps.

Since a macrostep can have several entries and exits, its sublevel document
can contain more than one active step at a time. So, if a macrostep is left
through one exit, all the inner steps have to be checked to decide if nextstate
has to be set true or false. Instead of controlling this for every transition
connected to an exit, nextstate is assigned after all transition if clauses.
The following example illustrates this for the macrostep of Figure 5.4.

mstep.nextstate := mstep_enterstep_1.nextstate or
mstep_enterstep_2.nextstate or mstep_exitstep_l.nextstate or
mst ep_exit step_2.nextstate;

37

] mstep

X variablel = 0;
stepl ——

== 0 S variable3 = 05

A variablel = 0
7 < entgrstep_1 enterstep_2
.

0 mstep
N/ == enterstep_l.s>2 == enterstep_2.s>1
step2
exitstep_1 exitstep_2
== 0 - 5 - 5>

Figure 5.4: Example macrostep

The inner document is coded in the same way as the top level document,
l.e., codedocument is called recursively. In the Modelica model the inner
steps are at the same level as the macrostep and all other elements, only
their name indicates the hierarchy in JGrafchart.

The link between the inner elements and the macrostep is made in the
transition if clauses and the transition conditions. For every enter or exit step
code is written in the if clause of the transition connected to the correspond-
ing port. The enter or exit actions of the inner steps are added as well as
their nextstate is updated. The order in which the actions are executed is
the same as in JGrafchart. The entry actions of the macrostep are executed
before those of the enter step, and the exit actions of the exit step before
those of the macrostep. The state of the corresponding exit step is added to
the transition condition. In the example below enterstep_1in Figure 5.4 is
entered.

if transitionl.condition then

variablel := 0; \\exit action of preceding step
stepl.nextstate := false;
variable2 := 2; \\entry action of macrostep
mstep.nextstate := true;
variable3 := 0; \\entry action of enter step
mstep_enterstep_1.nextstate := true;

end if;

When the JGrafchart model is compiled, the enter and exit steps are also
written in the lists of succeeding and preceding steps of the transitions. Thus
they can easily be accessed and coded.

38

Also the exception outport and the history port are implemented by
adding code to the transition if clause.

The name generated for the exception transition does not conform with
that of normal transitions, it is composed of the name of the macrostep and
“ exception”.

The exception transition has priority over all inner transitions. In the
Modelica program this is achieved by updating the inner transition conditions
only if the exception transition condition is false. Normally new code is added
in the end of a string, but the code for the update of the exception transition
is added in the beginning of code[4], so that it is updated before all other
conditions of the same document. The conditions of the inner transitions are
enclosed by an if clause, so that they can only be set true if the exception
transition will not fire in this scan cycle.

if not (mstep_exception.condition) then
mstep_transitionl.condition := (mstep_enterstep_l.active >2)
and mstep_enterstep_1.state;
mstep_transition2.condition := (mstep_enterstep_2.active >1)
and mstep_enterstep_2.state;
end if;

In the context of the abortion of a macrostep some additional variables
have to be declared. In order to recall the state of a macrostep through the
historyport after an abortion, a boolean variable is declared for each inner
step. In these the actual states of the steps are stored when the macrostep is
aborted. This is done during the code generation for the macrostep. If the
function searchexception finds an exception transition connected to the
macrostep and returns the value “true”, the function storehistory is called.
This function generates code to declare a private boolean variable for every
inner step. The generated name is composed of the complete name of the
step and “_storedstate”.

A macrostep can only be recalled after it has been aborted. Therefore
another boolean variable is needed that is set true after the first abortion.
Its name is composed of the name of the macrostep and “ _aborted”.

The abortion is performed in the if clause of the exception transition.
This if clause contains an if clause for each inner step. Depending on the
actual state of the inner step different operations are executed. In both cases
the actual state is stored and nextstate set to false. If the step is active, its
abort actions are executed.

After the if clauses for the inner steps the macrostep itself is aborted. The
abort actions are executed, nextstateis set to false and macrostep_aborted
to true.

39

Then the succeeding step of the exception transition is entered. For the
list of succeeding steps of an exception transition the same code is generated
as for a normal transition. The following example shows the if clause of the
exception transition in Figure 5.4.

if mstep_exception.condition then
if mstep_enterstep_1.state then

mstep_enterstep_1_storedstate := true;
variablel := 0; \\abort action of enterstep_1
mstep_enterstep_1.nextstate := false;

else
mstep_enterstep_1_storedstate := false;
mstep_enterstep_1.nextstate := false;

end if;

if mstep_exitstep_1l.state then
if mstep_enterstep_2.state then
if mstep_exitstep_2.state then

variable2 := true; \\abort action of macrostep

mstep.nextstate := false;

mstep_aborted := true;

step2.nextstate := true;
end if;

In contrary to the exception outport, the history port is connected to
a normal transition. Its if clause contains the operations that are executed
when a macrostep is recalled. For each inner step nextstate is updated
according to the stored state and for the steps that become active the en-
try actions are executed. If the macrostep has not been aborted before, it
will not be activated. The preceding step is left, but no other step is acti-
vated subsequently. In the following example the macrostep of Figure 5.4 is
resumed.

if transition2.condition then

step2.nextstate := false; \\preceding step of transition is
left

if mstep_aborted then
variablel := 1; \\entry action of macrostep
mstep.nextstate := true;

40

mstep_enterstep_1.nextstate :=
mstep_enterstep_1_storedstate;

if mstep_enterstep_1.nextstate then
variable2 := 0; \\enter action enterstep_1

end if;

mstep_exitstep_1l.nextstate :=
mstep_exitstep_1_storedstate;

mstep_enterstep_2.nextstate 1=
mstep_enterstep_2_storedstate;

mstep_exitstep_2.nextstate 1=
mstep_exitstep_2_storedstate;

end if;

end if;

If a transition is connected to the history port of a macrostep, its list of
succeeding steps contains the history outport and the macrostep. The history
port is the first element in this list. The boolean variable historyport is
set “true” if a history port is found in the list. Thus it can be detected when
a macrostep i1s found in the list if the transition is connected to its history
port. Then the function enterhistory writes the code for the recall of the
macrostep and after that historyport is reset.

The following example network Example2 implements a macrostep with
an exception transition and a transition connected to its history inport. The
corresponding JGrafchart model is shown in Figure 5.5. The record declara-
tions are not included in the Modelica text.

model Example2
protected
initstep stepl;
macrostep mstep;
Boolean mstep_aborted;
Boolean mstep_exit_storedstate;
Boolean mstep_enter_storedstate;
step mstep_exit;
step mstep_enter;
transition mstep_transitioni(label=*‘enter.s>1”’);
transition transitioni(label=*‘step0.s>1’);
transition transition2(label=‘’mstep.exit.s>1”’);
exceptiontransition mstep_exception(1abe1=“Var1>10”);

41

] mstep

step(

=Fo

step0.s>1
N
I
Yarl:>10 N mstep

Int 0

Warl

Int 0

Ward

mstep.exit.s>1

S Varl = 0;
- 1A Varl = 2;
Eentgr
=%=entens>1
exit

Figure 5.5: Example network in JGrafchart

transition transition3(label=¢0"’);

public

parameter Real scancycle=0.04;

Integer Varl;
Integer Var2;

algorithm

if sample(scancycle, scancycle) then

mstep_exception.condition = (Vartl > 10) and mstep.state;
if not (mstep_exception.condition) then
mstep_transitionl.condition = (mstep_enter.active > 1)

and mstep_enter.state;

end if;

transitionl.condition
transition2.condition

(stepO.active > 1) and stepO.state;
(mstep_exit.active > 1) and

mstep_exit.state and mstep.state;

transition3.condition =

false;

if mstep_transitionl.condition then

mstep_enter.nextstate

:= false;

42

mstep_exit.nextstate := true;
end if;
if transitionl.condition then
step0.nextstate := false;
Var2 := Var2 + 1;

mstep.nextstate := true;

Varl := 0;
mstep_enter.nextstate := true;
end if;transition2.condition then
mstep_exit.nextstate := false;

stepO.nextstate := true;
end if;

if mstep_exception.condition then
if mstep_exit.state then

mstep_exit_storedstate := true;
mstep_exit.nextstate := false;
else
mstep_exit_storedstate := false;
mstep_exit.nextstate := false;
end if;
if mstep_enter.state then
mstep_enter_storedstate := true;
Varl := 2;
mstep_enter.nextstate := false;
else
mstep_enter_storedstate := false;
mstep_enter.nextstate := false;
end if;
Var2 := 0; \\abort action mstep
mstep.nextstate := false;
mstep_aborted = true;
step0.nextstate := true;
end if;

if transition3.condition then
if mstep_aborted then
Var2 := Var2 + 1;

mstep.nextstate := true;
mstep_exit.nextstate 1= mstep_exit_storedstate;
mstep_enter.nextstate := mstep_enter_storedstate;
if mstep_enter.nextstate then

Varl := 0;

43

end if;
end if;
end if;

mstep.nextstate := mstep_exit.nextstate or
mstep_enter.nextstate;

stepO.active := if (stepO.state and stepO.nextstate) then
step0.active + scancycle else 0;

mstep.active := if (mstep.state and mstep.nextstate) then
mstep.active + scancycle else 0;

mstep_exit.active := if (mstep_exit.state and
mstep_exit.nextstate) then
mstep_exit.active + scancycle else 0;

mstep_enter.active = if (mstep_enter.state and
mstep_enter.nextstate) then
mstep_enter.active + scancycle else 0;

step0.state := stepl.nextstate;

mstep.state := mstep.nextstate;

mstep_exit.state := mstep_exit.nextstate;
mstep_enter.state := mstep_enter.nextstate;
end if;

end Example2;

5.7 Procedures

In JGrafchart, procedure and process steps are able to call different pro-
cedures during a simulation run. This is possible if the procedure is not
indicated directly but through a string variable. As Dymola does not sup-
port string variables and procedure calls are rather complicated to implement
in Modelica , procedure calls are inlined. The resulting structure in Modelica
is then similar to that of a macrostep.

A procedure has no directly corresponding object in Modelica. For every
procedure or process step its corresponding procedure is identified. The
model inside this procedure is then translated into Modelica and linked to
the procedure or process step. So the model of a procedure can appear more
than once in the Modelica model — or not at all if the procedure is not called.

44

For this reason the principle of naming objects with the full JGrafchart
path cannot be maintained here. It could lead to name conflicts and confu-
sion, as the inlined elements would not include the name of the procedure step
but that of the procedure. So the procedure name in the path is exchanged
with the name of the procedure or process step.

To most of the functions of the code generator a string with the actual
path is handed over when they are called. With the aid of this string the
object names for Modelica are generated. When a function is called recur-
sively, the name of the actual object (e.g a macrostep) is added to the path.
In the case of procedure or process steps, their name is added when their
corresponding procedure is coded. In this way the right path is always avail-
able.

Yet another case has to be considered. When the action or condition
tree is traversed and coded, the actual path does not always correspond to
the path of a variable or other object included in the expression. With the
method getFullName(), that gives back the complete path of an object, a
correct name for Modelica can only be obtained if the object is not inside a
procedure. Though one cannot refer from the outside to variables inside a
procedure, procedures can contain hierarchical elements. Thus it is possible
that a procedure contains e.g. a macrostep and that a transition condition
inside the macrostep refers to a variable outside the macrostep, but inside
the procedure. Figure 5.6 illustrates this case.

Bleoeedure e oo v s o [E

gt] macrostep s s annniansi ¢ F B

Int 0

enterstep G

wariable

== enterstep.s>1

enterstep

3 L -
macrastep == variable>2

== macrostep.exitstep.s>2

exitstep

exitstep

-

B v

Figure 5.6: Illustration of path problem

45

Consequently a new function getFullName() is needed, that exchanges
the procedure name against the name of the actual procedure step in the
path. The method getFullName() traverses starting from the considered
object up to the toplevel workspace the whole path and writes the names
of the different hierarchical objects into a string. This function can easily
be adopted in checking all traversed objects on being a procedure. In that
case the name of the actual procedure step is added to the string instead of
the procedure name. Instead of declaring a new method for each JGrafchart
object, the code is added to the method traversein the classes that represent
objects in the action or condition tree. This is the case for ACTVariable,
ACTFunction, TRVar and TRFunction. In the class GrafcetProcedure a new
string variable currentpstep is added. When a procedure step is coded, its
name is assigned to currentstep of its corresponding procedure. Thus, the
correct object name can be accessed through the procedure.

Like steps for actions, procedure and process steps have an attached syn-
tax tree for the procedure call. The procedure step has two nodes, procnode
and paramnode. To the first the name of the procedure is attached, to the
second the parameters and the way they are called. Before the procedure
and the parameters can be read, the procedure or process step has to be
compiled.

@ ProcedureStep

PN

@ ACTProcCall procnode @ ACTProcParam paramnode

PN

@ ACTVaiable @ ACTCallByVaueNode @ ACTCadlByReferenceNode

L LN

@ ACTVaiable @ ACTVariable @ ACTVariable @ ACTVariable

Figure 5.7: Nodes of a procedure step

Then the procedure can be accessed and its document coded in a recursive
call of codedocument in the same way as in the case of the inner document
of a macrostep. As procedure and process steps also belong to the class
MacroStep, their code generation is implemented in that of macrosteps. The

46

common features like actions, timer and exception outport are translated in
the same way. As procedures cannot have several entries or exits, nextstate
of a procedure or process step can be assigned in the corresponding transition
if clause instead of appointing it after the transition if clauses.

Apart from the procedure parameters, a procedure step is translated in
the same way as a macrostep. In the way a process step is deactivated,
it differs from macrosteps and procedure steps. Therefore some differences
appear in the transitions inside the procedure and connected to the process
step. The condition of the succeeding transition of the process step does only
depend on the state of the process step, it does not depend of the state of
the exit state of the procedure document. In the if clause of the transition
connected to the exit step, the exit step is not activated, only its exit actions
are executed.

When a procedure or process step with a “CallByReferenceNode” is com-
piled, a link between two variables is created. A JGrafchart variable has an
attribute redirect. During compilation, the outer variable is assigned to
redirect of the inner variable. In the Modelica program, the inner variable
does not exist, it is replaced with the outer variable in all actions and con-
ditions. Therefore, when code is generated for variables, redirect of the
corresponding variable is checked first. If it is not “null”, no declaration is
generated for the variable and it is replaced with the outer variable when
generating code for actions or transition conditions.

Each time a copy of a procedure is entered, the inner variables take their
inital values if they are not parameters called by value or by reference. A
procedure has no memory of past procedure calls, whereas a Modelica vari-
able keeps the last assigned value. Therefore the inlined procedure call in
Modelica has to be initialized before it is entered again. As the call by value
has priority over the assignment of the initial value, all procedure variables
are assigned their initial values or the standard initial value when the proce-
dure step is left. When the procedure step is entered later, the call by value
assignments are made. This is done in the transition if clause of the transi-
tion preceding the procedure or process step. The assignments are coded in
the same way as actions, by traversing the syntax tree.

The code for the initialization of the procedure document is generated
in calling the function initializeprocedure. It generates an assignment
for every variable that is not redirected because of a call by reference. For
the initialization the difference between procedure and process steps has to
be taken into account. In the case of a procedure step, the procedure call
is definitely finished when the procedure step is left. Thus the initializa-
tion can take place in the transition if clause of the transition succeeding
the procedure step. For a process step this cannot be done, as the proce-

47

dure might still be active when the process step is left. So the initialization
is made after the exit actions of the procedure’s exit step. Consequently
initializeprocedure is called at different locations depending on the type
of step. For procedure steps it is called if a procedure step is found in the list
of preceding steps of a transition, for process steps if an exit step is found in
the list of succeeding steps and the boolean variable processstep indicates
that the actual document will be inlined in a process step.

The following example (see Figure 5.8) shows a network with a procedure
step. Both “call by value” and “call by reference” are implemented (see object
dialog in Figure 5.9). The declaration of the element records are left out in
the Modelica text.

Procedure i T
S intvar-1;
S VarZ = varl /3;
== step0.s>1 a1
§ Int 0
varl == Sl.s>2
Frocedurestep
Procedure
Real 0.0

war2 52
Int 0 Real 0.0
intvar realvar

Figure 5.8: Example network in JGrafchart

model Example3
protected
initstep stepl;
transition transitionl(label=*‘step0.s>1"’);
macrostep ProcedureStep;
step ProcedureStep_S2;
step ProcedureStep_S1;
transition ProcedureStep_transitioni(label="‘S1.s>2);
transition transition2(label=*¢1"’);

public

parameter Real scancycle=0.04;
Integer ProcedureStep_Vari;

48

¥ Procedure Step A x

Procedure:

Procedure

Procedure Parameters:

Yarl = intVan -
R Var2 = realVar

[l

Figure 5.9: Part of the procedure step’s object dialog

Integer intVar;
Real realVar;

algorithm

if initial() then
intVar := 1;
end if;

if sample(scancycle, scancycle) then

transitionl.condition = (stepO.active > 1) and step0O.state;

ProcedureStep_transitionl.condition =
(ProcedureStep_Si.active > 2) and ProcedureStep_S1.state;

transition2.condition = true and ProcedureStep_S2.state
and ProcedureStep.state;

if transitionl.condition then

stepO.nextstate := false;

ProcedureStep_Varl := intVar;

ProcedureStep.nextstate := true;

realVar := (ProcedureStep_Varl)/(3);

ProcedureStep_S1.nextstate := true;
end if;

if ProcedureStep_transitionl.condition then

49

ProcedureStep_S1.nextstate :

ProcedureStep_S2.nextstate :=
end if;
if transition2.condition then

ProcedureStep_S2.nextstate :
03
ProcedureStep.nextstate
1

step0.nextstate :=

ProcedureStep_Varl :=
:= false;
intVar :=
true;

false;
true;

false;

end if;

step0.active :=

if (stepO.state and stepO.nextstate) then

step0.active + scancycle else 0;

ProcedureStep.active :=

if (ProcedureStep.state and

ProcedureStep.nextstate) then
ProcedureStep.active + scancycle else 0;

ProcedureStep_S2.active

= if (ProcedureStep_SQ.state and

ProcedureStep_82.nextstate) then

ProcedureStep_S2.active + scancycle else 0;

ProcedureStep_S1.active

= if (ProcedureStep_Si.state and

ProcedureStep_Si.nextstate) then

ProcedureStep_Sl.active + scancycle else 0;

step0O.state :=
ProcedureStep.state
ProcedureStep_S2.state

ProcedureStep_S1.state :

end if;

end Example3;

5.8 Connectors

In Modelica models with connectors can easily be connected to other models
without detailed knowledge of the internals of the models. Connectors are
also implemented in the code generator, so that the generated model can be

stepO.nextstate;
:= ProcedureStep.nextstate;
:= ProcedureStep_S2.nextstate;

= ProcedureStep_S1.nextstate;

used in Modelica without knowledge of the generated model structure.

As in JGrafchart no similar elements are available, SocketIn and Sock-
etOut elements are used to generate connectors. They cannot be translated

50

into Modelica according to their original JGrafchart purpose and TCP com-
munication may therefore not be used in a model that will be translated.
Furthermore, a SocketIn and a SocketOut element are available for each
variable type.

Hence, the connectors in Modelica are declared in analogy with the differ-
ent SocketIn and SocketOut elements. For each variable type except string
variables an output and an input connector are defined. The following lines
show the declaration of the boolean output connector. Additionally, every
connector contains a graphical icon annotation.

connector SocketBoolOut
ouput Boolean signal;
end SocketBoolOut;

The string intro in the beginning of the Modelica program contains
the six possible connector classes. The function codesocket declares the
connectors the model contains. They are declared as public, as they have to
be accessible from other models.

In actions and transition conditions SocketIn and SocketOut elements
are treated like ordinary variables. In JGrafchart, a reference to a SocketIn
or SocketOut element consists of the element name. In Modelica, this name
refers to the connector, but not to the signal inside the connector. Therefore,
when translating actions and conditions to Modelica, “.signal” has to be
added to the element name.

o1

Chapter 6

Graphics and animation in

Modelica

6.1 The icon and the diagram

Every Modelica model can have an icon and a diagram. The diagram shows
the sublevel composition of the model. The icon represents the model in
upper level models. For both, a common coordinate system is declared.
To avoid coordinate conversions, the dimensions of the top level workspace
in JGrafchart are used for the Modelica coordinate system. Nevertheless
the JGrafchart coodinates cannot be used directly, as the direction of the
vertical axis i1s different in the programs. In order to create a quadratic icon,
the greater of the workspace dimensions i1s used. The model icon consists of
a rectangle with the name of the model inside. Figure 6.1 shows an example
of an icon as it appears in an upper level diagram. The following graphical
annotation shows the declaration of the coordinate system and the icon.

annotation (
Coordsys(extent=[0, -806; 806, 0]),
Icon(Rectangle(extent=[20, -786; 786, -20], style(color=0,
thickness=4)),
Text (
extent=[50, -756; 756, -50],
style(color=0, thickness=3),
string = ‘“/name’))) ;

The coordinate system and the icon are generated in modelicaAction
and written into the strings code[10] and conclusion respectively.

52

To enable graphical connections between the generated model and other
Modelica models, the connectors have an icon. An icon is placed in the dia-
gram by specifying its extent coordinates in a graphical annotation. If this is
done for a connector, the icon will also appear in the model icon. A graphical
connection can be made by clicking with the mouse on the connector icon
in the model icon and drawing the mouse to another connector icon. The
complete declaration of the boolean output connector is:

connector SocketBoolOut
output Boolean signal;
annotation (
Coordsys(extent=[-100, -100; 100, 100]),
Icon(Polygon(points=[60, 0; -60, -80; -60, 80],
style(color=0, £fillColor=0)), Text(
extent=[-100, 200; 100, 100],
string=‘‘)name’’,
style(color=0, thickness=3))))
end SocketBoolOut;

— 4 a8

lam
senser controller1 P
switch actuator

Figure 6.1: Model icon with connectors

The graphical annotations for connectors are generated by the function
codesocket. The input connectors are placed at the left side of the model
icon, the output connectors at the right one. In order to place the connectors
in regular intervals, they are counted by the functions countsocketin and
countsocketout. Thus, a convenient distance between the connector icons
can be fixed. Then the document is traversed and code for the connector
declarations and graphical annotations is generated. The connector icons
are placed one by one along the sides of the model icon from top to bottom.

53

The code generator uses two variables to store the actual vertical position
of the last declared connector on the left and right side. After a connector
has been generated, the position is updated and increased by the connector
distance. In order to maintain the positions up-to-date in recursive function
calls, the positions have to be handed over to and given back by codesocket.
Therefore, codesocket gives back a string array with the generated code as
well as the positions of the last declared connectors. An example for a model
icon with connectors can be seen in Figure 6.1.

In order to illustrate the generated program for the Modelica user, a dia-
gram is generated in Modelica that shows the network from JGrafchart. The
network elements are represented by icons. The layout of the Modelica icons
1s based on the JGrafchart icons. In the case of non-hierarchical elements
like steps and transitions, the icon is defined in the declaration of the object
classes at the beginning of the Modelica model. When the instances of these
elements are declared, the icons are placed in the diagram with a graphcial
annotation that specifies the coordinate extent of the icon. The following
lines show the declaration text of a step including the object icon and the
declaration of an instance of a step in Modelica.

record step
Boolean state;
Boolean nextstate;
Real active;
annotation (Icon(
Rectangle(extent=[-80, 80; 80, -80], style(
color=0,
thickness=2,
fillColor=7)),
Line(points=[0, 80; 0, 115], style(color=0)),
Line(points=[0, -80; 0, -87], style(color=0)),
Text (
extent=[-300, 20; -100, -20],
string=*name”,
style(color=0))));
end step;

step step2 annotation(extent=[45, -600; 115, -530]);
The icons of hierarchical elements are declared and placed in a similar

way. The graphical representation of hierarchical elements is explained more
in detail in Section 6.2.

54

The graphical annotations to place step instances in the diagram are
generated when steps and initial steps are translated in codedocument. Then
the function drawIcon is called. This function indentifies the coordinates of
the object in the diagram and the size of the icon and generates the code
for the graphical annotation. The coordinates of the JGrafchart diagram
are converted by changing the sign of the vertical axis. In some cases, e.g.
for steps, it also has to be taken into account that the coordinates do not
refer to the center of the object icon. Therefore the coordinates have to
be adjusted. With the aid of getHeight() or getWidth() the dimensions
of the JGrafchart icon can be identified. When translating the icon size
into Modelica, it has to be considered that different object classes have a
different relation between the invisible bounding rectangle of an icon given
by getHeigth() and getWidth() and the actual visible icon. For example,
without considering this different relation, enter and exit steps would appear
larger in the Modelica diagram as ordinary steps.

For transitions and exception transitions the function drawIcon is not
called, though the procedure is the same. As the object classes for transitions
and exception transitions do not inherit the class Referencable, which the
function uses, the code for the graphical annotation is generated directly in
codedocument.

The parts of the JGrafchart network that have no corresponding Modelica
element, like the links between steps and transitions or parallel splits and
joins, are modelled by drawing lines in the diagram. The code for the lines
is integrated in the diagram part of the graphical annotation at the end of
the model that also contains the model icon and the coordinate system. The
generated code is written in the string code[10].

annotation (
Coordsys(...),

Diagram(
Line(...),
L),

Icon(...));

The connections between the different objects in the JGrafchart diagram
are represented by the object class GCLink. An attached list of points defines
the graphical connection. If such an object is found in the object list of the
top level document, the points are read and their coordinates translated to
Modelica. The following line shows an example of a graphical annotation
for a link. As one can see, the line is defined by more points than are
actually necessary. The JGrafchart link includes points in regular distances
and during code generation all points are translated.

95

Line(points=[160, -335; 160, -340; 160, -345], style(color=0))

Also parallel splits and joins lack corresponding objects in Modelica. For
them two parallel lines are generated that imitate their JGrafchart icon. If a
parallel split or join is found in the object list of the top level document, its
coordinates and extension are read and according to them the distance, the
length and the coordinates of the lines are generated. The following example
shows a graphical annotation for a parallel split or join.

Line(points=[180, -217; 460, -217],
style(color=0, thickness=2)),
Line(points=[180, -225; 460, -225],
style(color=0, thickness=2))

6.2 The model for hierarchical objects

The JGrafchart model is translated into flat Modelica code. Without any
further code generation, the JGrafchart hierarchies would only be visible
in the object names that contain their complete path in JGrafchart. The
Modelica diagram would only show the top level document although it is
possible to show the diagrams of sublevel models in Modelica. In order to
show also the lower level documents, a purely graphical model is generated
for every hierarchical element. This is also done for procedure or process
steps, though they do not have a sublevel document in JGrafchart. The
graphical model shows then the procedure document.

This model exists in parallel with the functional objects that are gener-
ated when a hierarchical object is translated into flat code. The top level
model contains the declarations of the graphical model class as well as the
declaration of an instance of this model with a graphical annotation that
specifies its coordinates in the top level diagram. The graphical model is
generated by calling the function drawModel when a hierarchical element is
translated and the code for it stored in code[0]. The name of the model
class is composed of the complete path of the object beginning in the top
level document and “ model”, whereas the instance of this model is named
with ¢ g” attached to the complete object name. The graphical annotation
that places the model icon in the top level diagram is generated with the
function drawIcon.

As for the top level document, an icon and a coordinate system are de-
clared for the graphical model. In the function drawModel the dimensions of
the inner document are read and according to them a coordinate system is

56

created in the same way as for the top level document. Then an icon is gen-
erated corresponding to the object icon in JGrafchart. The graphical model
includes also a string parameter 1abel which contains the name without the
path of the object. This string is integrated in the model icon.

The steps and transitions the graphical model contains are represented
by records. The difference compared to the functional records of these ele-
ments is that the graphical ones contain no variables, they only aggregate an
icon and a string parameter for the name or transition condition in a class.
In addition to the record step_dummy shown in the example below, similar
records for initial steps, transitions and exception transitions are declared in
the general declaration part in the beginning of the top level model.

record step_dummy
paramter String label=‘"’;
annotation (Icon(
Rectangle(extent=[-80, 80; 80, -80], style(
color=0,
thickness=2,
fillColor=7)),
Line(points=[0, 80; 0, 115], style(color=0)),
Line(points=[0, -80; 0, -87], style(color=0)),
Text (extent=[-300, 20; -100, -20],
string=*Jlabel”,
style(color=0))));
end step_dummy;

In the function drawModel the object list of the sublevel document is
traversed and for every step or transition an instance of the corresponding
graphical element is declared. A graphical annotation for the icon extent in
the diagram is generated by calling the function drawIcon.

Parallel splits and joins and links between the objects are handled in the
same way as in the top level document. They are modelled by lines that are
added to the graphical annotation of the model diagram.

If a hierarchical object contains another hierarchical object, the function
drawModel is called recursively and the lower level model class is inserted
in the upper level model as well as an instance of the declared model class.
Consequently, the function codedocument calls drawModel only for hierar-
chical objects in the top level document. The graphical models of lower level
hierarchical elements are generated through recursion of drawModel.

The following example illustrates the generated graphical model. Fig-
ure 6.2 shows the example macrostep containing an enter and an exit step
and a transition.

57

== enterstep.s>2

exitstep

Figure 6.2: Example macrostep

model macrostep_model
parameter String label=‘‘macrostep’’;
annotation (Coordsys(extent=[0, -400; 400, 0]), Icon(
Rectangle(extent=[20, -380; 380, -20], style(
color=0,
thickness=2)),
Line(points=[110, -20; 20, -110],
style(color=0, thickness=2)),
Line(points=[290, -380; 380, -290],
style(color=0, thickness=2)),
Line(points=[290, -20; 380, -110],
style(color=0, thickness=2)),
Line(points=[20, -290; 110, -380],
style(color=0, thickness=2)),
Ellipse(extent=[20, -190; 40, -210], style(
color=0,
thickness=4,
fillColor=0)),
Ellipse(extent=[360, -190; 380, -210], style(
color=0,
thickness=4,
fillColor=0)),
Text (extent=[400, -200; 800, -290],
string=‘‘label”,
style(color=0))));
step_dummy macrostep_exitstep_m(label=“exitstep”)
annotation (extent=[116, -269; 184, -201]);

58

step_dummy macrostep_enterstep_m(1abe1=“enterstep”)
annotation (extent=[116, -139; 184, -71]);

transition_dummy macrostep_ti(1abe1=“enterstep.s>2”)
annotation (extent=[125, -185; 175, -135]);

annotation (Diagram(line(points=[150, -1135; 150, -145;
-150, -145; 150, -140; 150, -140; 150, -150],
style(color=0)), Line(points=[150, -175; 150, -185;
150, -185; 150, -185; 150, -185; 150, -195],
style(color=0))));

end macrostep_model;

6.3 Animation

Modelica diagrams can be animated during realtime simulation [9]. This
possibility is also implemented in the generated Modelica model.

To enable animation, a graphical annotation can contain dynamical parts.
For example, the fill color of a rectangle or the coordinates of a line can
depend on a variable. In order to make a part of a graphical annotation
dynamical, the function DynamicSelect is needed. It gives back the value of
an attribute according to a dynamic expression. Also a static value has to
be specified.

attribute = DynamicSelect(static value, dynamic expression)

This feature can be used to animate the generated network in such a way
that the active steps show a token like in JGrafchart. To the icon of steps
and other objects that have a state an ellipse that represents the token is
added. The color of the ellipse depends of the state of the corresponding
object. If the element is deactivated, the token is white (color code 7) and
thus invisible on the white background. Transparency corresponds to the
lack of the fill color attribute and can therefore not be used to make the
token invisible. If the step is activated, the token changes its color to black
(color code 0) and gets visible. The static value for the token is white. The
following example shows the declaration of the token as it is integrated in
the record icon.

Ellipse(extent=[-20, -20; 20, 20], style(color=7,
fillColor=DynamicSelect(7, if state > 0.5 then 0 else 7)))

In the same way the color of transitions can be changed between red
(color code 1) and green (color code 2) according to their condition.

59

For steps and transitions their state or condition can easily be obtained
as icon and variable belong to the same record. For hierarchical elements
that is not the case. The in the diagram represented graphical element is
not the same as the functional element that contains the variable state. As
animation did not work with a reference from the annotation in the graphical
model to the variable of the functional model, the token of hierarchical ele-
ments is included in the functional record. The record declaration including
the icon is the following, the icon only consists of the token.

record macrostep
Boolean state;
Boolean nextstate;
Real active;
annotation(Icon(
Ellipse(extent=[-20, -20; 20, 20],
style(color=7, fillColor=
DynamicSelect(7, if state > 0.5 then 0 else 7)))));
end macrostep;

The icons of functional and graphical elements are placed one upon the
other with drawIcon. When the object is activated, the token is visible
through the transparent icon of the graphical object. This is only possible for
hierarchical elements in the top level document, because the corresponding
objects have to be at the same hierarchy level in order to appear in the same
diagram.

For this reason, it is not possible to animate the graphical sublevel steps
and transitions in this way. Joining the parallel existing objects to one object
and generating a functional hierarchical model is not compatible with the
idea to generate one Modelica model, because it is not possible to declare
a hierarchical model containing variables inside another Modelica model.
Therefore, animation is at the moment only implemented for the top level
document.

60

Chapter 7

Example: A controlled tank
system

7.1 The tank system

In this example the code generator is used to generate a controller for a tank
system. The tank system itself is modelled in Modelica. It consists of two
tanks that are connected in series (see Figure 7.1). The upper tank can be
filled from a reservoir and emptied into the lower one, the lower one can be
emptied through a drain. The filling and emptying can be controlled by three
on-off valves.

With the tank system a simple process is executed. The upper tank is
filled from the reservoir up to a specified limit. Then the reservoir is shut and
the valve between the two tanks is opened. When the liquid has completely
flowed into the second tank, it i1s emptied through the drain. After a tank
has been filled, the process pauses for a short time.

The discrete-event controller implements this process in an infinite loop.
In order to start and stop the process, the tank system includes also three
buttons (see Figure 7.1). With “start”, the process is started. With “stop”,
the process can be interrupted. After a process has been halted, it can be
resumed with “start” or the plant can be shutdown with “shut”. At most one
button is active at the same time, clicking on one button forces the other
ones to deactivate.

The three valves are opened or shut by the controller. The tanks also
include level sensors, that send back their signals to the controller.

61

ourcel

Tank1

start

stop

shut —

Tank?2 .%

Figure 7.1: Tank system in Modelica

7.2 The JGrafchart controller

Figure 7.2 shows the top level workspace of the JGrafchart controller. The
starting point of the process is the initial step s_1. All the valves are closed
and the process is waiting for the “Start” signal. If “Start” is set to true, the
macrostep MakeProduct is activated and one cycle of the process is executed.
When the process cycle is ended, the token reenters s_1 and a new process
cycle begins.

The infinite loop can be interrupted by setting “Stop” to true. Then the
exception transition of MakeProduct is fired and the process is aborted. The
abort actions of MakeProduct are executed, i.e. the three valves are closed.
In s_2, the controller waits for a new signal. Either the process can be
resumed by setting “Start” to true or the plant can be shutdown by setting
“Shutdown” to true. In the case the process is resumed, MakeProduct is
entered through the history port and the process is continued. If the plant is
shutdown, the tanks are emptied and after that the initial step s_1 is entered.
As “Start” has been deactivated by setting “stop” to true, the controller waits
for a new signal in s_1.

In order to communicate with the process, the controller needs different
input and output variables. The tank level signals are received by two Sock-
etRealln objects and the three button signals by three SocketBoolln objects.

62

The valves are connected to three SocketBoolOut objects.

Figure 7.3 shows the macrostep MakeProduct which contains the actual
process. First the upper tank is filled. For that valvel is opened and after
a certain level, 1imit, has been reached, it is closed again. After a short
waiting time, valve2 is opened and the lower tank is filled until the upper
tank is empty. Then valve2 is shut again. It is assumed that the lower tank
is not smaller than the upper one. After another waiting time, the lower tank
is emptied by opening valve3. The macrostep is left when the lower tank is
empty.

7.3 The generated Modelica controller

The complete code of the generated Modelica model is shown in Appendix A.
In the first part of the model, the different object classes are defined (Page 72).
Then the graphical model for the macrostep follows (Page 76). The decla-
ration of the object instances (Page 78) completes the declaration part. On
Page 79, the algorithm section begins with the execution of the initial steps’
entry actions. After that the if clause with the sampled algorithm follows.
First the transition conditions are updated. The transition conditions inside
the macrostep are only updated if the exception transition condition is false.
Then the if clauses to fire the transitions follow. This section contains no-
tably the if clause for the exception transition (Page 80) and for transition2,
which is connected to the history port of the macrostep (Page 81). After the
assignment for the macrostep’s nextstate, the timer and state of each step
is updated (Page 83). The model contains no periodic or normal actions.
The graphical annotation for the diagram and icon is the last part of the
model.

Figure 7.4 the tank system including the controller, Figure 7.5 shows the
generated Modelica diagram.

7.4 Results

Figure 7.6 shows the simulation results of the tank system combined with
the generated controller. In the beginning of the simulation, all valves are
shut and the tanks are empty. After one second, “Start” is activated. The
process starts and one cycle is completely executed. When tank 1 is emptied
into tank 2 in the second cycle, “Stop” is activated. After some seconds, the
process 1s resumed with “Start”. When the process is stopped a second time,
the plant is shutdown after some seconds and both tanks are emptied. The
generated controller works in the intended way.

63

S Valvel = 0;
| —{S valve2 = 0;
SVvalvel3 =0;

== Start

I stop

MakePraduct

== Level2<0.001

5.2

= Start

== Shutdown

emptyTanks

SVvalve3 = 1;
LS Valve2 = 1;

+ {Levell + Level2) < 0.001

Levell

el
bt
=1
@
=1

Level2
Walvel

Walve2

H
L

Stan

H
L

Walves
Stop

f‘

Shutdown

Figure 7.2: The tank controller in JGrafchart

L3

S Valvel = 1
L X Valvel = 0;
FillTlank1

== Level1>limit

waitl
== waitlLs>waitTime
S Valve2 = 1;
FillTankz2 —— X Valve2 = 0;
== Level1<0.001
wait2

== wait2.s>waitTime
5 Valve3 = 1
empty

Real 2.0

waitTime

Real 048

limit

Figure 7.3: The fill and empty process

64

ource |

Tank1 %

.

W Tank2 &

TankController1 |#b————————

1[I

Figure 7.4: System with tanks and controller

:‘Fl Start

errod...

I

Ny

7N

Levelz<0.001

ﬂ,

|:,:| Start é:l Shutdown

emptyTanks

:F ({Levell + Lewel2)...

Figure 7.5: Diagram of the generated Modelica controller

65

TankT.level TaRkZlevel—— — — — — — — — —

o 4 & 12 18 20 24 28 | 32 38 40
start.state
1 I |
O_
o 4 8 12 18 20 | o4 28 | 3P 36 40
stop state
] [I
0
o 4 8 12 18 20 | 24 28 32 33 4D
shutdown.state
1_
0
0 4 g 12 16 o0 24 o8 30 36 40

Figure 7.6: Simulation results

66

Chapter 8

Limitations and assumptions

Although the basic elements of JGrafchart are implemented in the code gen-
erator, some objects cannot be translated. Dymola has not the same pos-
sibilities to communicate with real processes as JGrafchart. Therefore, the
communication part of JGrafchart cannot be translated into Modelica. This
part includes digital or analog input or output channels and TCP and XML
messages respectively.

Another part that has not been implemented in the code generator is
the graphical user interface. Although some of its elements and methods
are translatable into Modelica with the aid of dynamic or interactive graph-
ical annotations, they do not play a major role in modelling discrete-event
controllers and have therefore been left out.

JGrafchart lists are because of their flexible size impossible to translate.
Whereas in JGrafchart elements can be added to or removed from a list and
thus its size changed during simulation, in Modelica the size of an array is
fixed and each element has to be assigned a value.

In the case a not implemented element is part of a network that is to be
translated into Modelica, the code generator detects this when the function
checkElements is called. Since the number of elements available in the
JGrafchart Editor is limited, every non-translatable element can be taken
into account in checkElements and errors in Modelica resulting from those
can be avoided.

Besides complete elements that cannot be translated into Modelica, sev-
eral elements include features which are not included in the code generator.
For example, the scan cycle of a subworkspace cannot be changed, as this
would be difficult to implement in the Modelica program structure. Likewise,
the procedure may not be given by a string variable for a procedure or pro-
cess step, as string variables are not supported by Dymola. The concerned
elements are also checked by the function checkElements and non-working

67

Modelica models can thus be avoided.

However, non-working Modelica programs cannot be avoided on all ac-
counts. During the design of the code generator, not all possible combinations
of elements and their resulting Modelica model may have been considered, es-
pecially when hierarchical and more sophisticated elements are implemented.
Therefore it may be possible that an unconsidered combination of elements
leads to a non-working Modelica program.

Even though the JGrafchart model is checked by checkDocument before
the actual code generation, not all known sources of error can be found in
this way. JGrafchart handles variables more flexibly. A difference between
parameters and variables is not necessary, though a variable can be assigned
constant. It is also possible to mix different variable types in assignments
like real and integer variables. On the other hand, Modelica is very strict
concerning the treatment of variables. The different variable types cannot
be mixed and for every variable which is not a parameter or a constant, at
least one assignment in the algorithm section is required. Therefore every
variable in JGrafchart which is not specified by an action has to be a constant.
Also the different variable types may not be mixed in a model that is to be
translated into Modelica. Since the code generator does not check variables
in conjunction with the actions, the success of the code generation regarding
these matters relies completely on the JGrafchart user.

68

Chapter 9

Conclusion

In this thesis, a code generator to translate JGrafchart models into Mod-
elica language has been implemented. With the aid of the code generator,
discrete-event controllers can be modelled in JGrafchart an then combined
with a continuous Modelica model. The code generator includes the rel-
evant JGrafchart objects for discrete-event modelling. The basic elements
like steps, transitions and variables are translated as well as hierarchical and
procedural constructions including e.g. macrosteps or procedures. During
the code generation, the JGrafchart model is checked for non-translatable
constructs in order to avoid a non-working Modelica model. In doing so,
several sources of error can be detected, but a working program cannot be
assured at any rate. For example, the distinction between variables and pa-
rameters, which i1s not important in JGrafchart but necessary in Modelica,
relies completely on the JGrafchart user.

The Modelica program is based on an algorithm section in which the
JGrafchart execution model is implemented. After the transition conditions
are updated and the transitions fired that are to be fired, the actions are
executed and the timer and the state of the steps updated. The algorithm
is executed with the JGrafchart scan cycle and an identical model behaviour
in both simulation environments can be assured. A negligible but inevitable
difference may result from the fact that Modelica in contrast to JGrafchart
considers that calculations do not take any time. In Modelica the results of
the algorithm section are available at the same simulation time instant the
execution of the algorithm starts, whereas JGrafchart is executed in real-
time. The objects are represented by records which contain variables for
the state and timer or the transition condition respectively. Hierarchical
constructs are translated into flat code, dependencies between the hierarchi-
cal element and inner objects are implemented in the algorithm part of the
corresponding transitions. Procedure calls are inlined in procedure or pro-

69

cess steps. In addition to the functional program part a diagram including
realtime simulation animation is generated.

Further development of the code generator could include the improve-
ment of the error prevention. For example, a function could be implemented
that checks if every JGrafchart variable which is not constant is assigned a
value by at least one action. Furthermore, possible combinations of hierar-
chical elements and their resulting Modelica model could be examined more
extensively in order to identify and remove potential sources of error. In that
way the success of the code generation could be ensured.

Another way to ensure the success of the code generation could be to have
a special Modelica version of JGrafchart where the elements and features
which are not translatable are not available. In that way errors are already
prevented when the model is constructed.

Another point that could be implemented is animation of sublevel dia-
grams. Although the approach that has been tried out in this thesis did not
work, other approaches could be studied. For example, the possiblity to add
dynamic graphical annotations to the sublevel diagram that are not part of
the graphical object icon could be investigated. Another way to animate
sublevel models could be to generate a library that includes the Modelica
object classes and a hierarchical model of the JGrafchart network. In the
case of a hierarchical Modelica model the problem of the reference between
functional and graphical objects does not occur and thus animation can be
made possible.

A comparison between a flat and a hierarchical Modelica model and a
Modelica library for JGrafchart elements could also be interesting in other
contexts.

Furthermore, the possibilities of on-line communication between JGraf-
chart and Dymola could be studied. By implementing on-line communica-
tion, elements that are not translatable into Modelica might nevertheless be
used if a part of the simulation is executed in JGrafchart.

70

Bibliography

[1]
2]

[3]
[4]
[5]

[6]

7]

8]

[9]

JGrafchart, On-Line Help of the JGrafchart Editor.

Tiller M.M.: Introduction to Physical Modeling with Modelica, Boston,
2001.

Modelica Homepage: http://www.Modelica.org/.
Dymola Homepage: http://www.Dynasim.se/.

Remelhe M.A.P.: Combining Discrete Event Models and Modelica - Gen-
eral Thoughts and a Special Modeling Environment, 2°¢ International

Modelica Conference, Proceedings, pp.203-207, 2002.

Ferreira J.A., Estima de Oliveira J.P.: Modelling Hybrid Systems us-
ing Statecharts and Modelica, Proc. 7th IEEE International Conference
on Emerging Technologies and Factory Automation, Barcelona, Spain,

1999.

Mosterman P.J., Otter M., Elmqvist H.: Modeling Petri Nets as Local
Constraint Equations for Hybrid Systems using Modelica, Proceedings
of the Summer Computer Simulation Conference -98, Reno, USA, 1998.

Remelhe M.A.P., Engell S.: Structuring Discrete- Event Models in Mod-

elica.

Elmgqgvist H., Olson H.: Modelica Objects for User Interaction, Realsim
Deliverable Report P3, Lund, Sweden, 2002.

71

Appendix A

Code of the example controller

model TankController
protected
record step
Boolean state;
Boolean nextstate;
Real active;
annotation (Icon(
Rectangle(extent=[-80, 80; 80, -80],
style(color=0, thickness=2, fillColor=7)),
Line(points=[0, 80; 0, 115], style(color=0)),
Line(points=[0, -80; 0, -87], style(color=0)),
Ellipse(extent=[-20, -20; 20, 20],
style(color=7, fillColor=
DynamicSelect (7, if state > 0.5 then 0 else 7))),
Text (extent=[-300, 20; -100, -20], string=‘‘)name’’,
style(color=0))));
end step;

record initstep
Boolean state(start=true);
Boolean nextstate(start=true);
Real active;
annotation (Icon(
Rectangle(extent=[-80, 80; 80, -80],
style(color=0, thickness=2, fillColor=7)),
Rectangle(extent=[-70, 70; 70, -70],
style(color=0, thickness=2, fillColor=7)),
Line(points=[0, 80; 0, 115], style(color=0)),

72

Line(points=[0, -80; 0, -87], style(color=0)),
Ellipse(extent=[-20, -20; 20, 20],
style(color=7, fillColor=
DynamicSelect(7, if state > 0.5 then 0 else 7))),
Text (extent=[-300, 20; -100, -20], string=‘‘)name’’,
style(color=0))));
end initstep;

record step_dummy
parameter String label = °’;
annotation (Icon(
Rectangle(extent=[-80, 80; 80, -80],
style(color=0, thickness=2, fillColor=7)),
Line(points=[0, 80; 0, 115], style(color=0)),
Line(points=[0, -80; 0, -87], style(color=0)),
Text (extent=[-300, 20; -100, -20], string=‘‘)label”,
style(color=0))));
end step_dummy;

record initstep_dummy
parameter String label = “°’;
annotation (Icon(
Rectangle(extent=[-80, 80; 80, -80],
style(color=0, thickness=2, fillColor=7)),
Rectangle(extent=[-70, 70; 70, -70],
style(color=0, thickness=2, fillColor=7)),
Line(points=[0, 80; 0, 115], style(color=0)),
Line(points=[0, -80; 0, -87], style(color=0)),
Text (extent=[-300, 20; -100, -20], string=*}label”,
style(color=0))));
end initstep_dummy;

record macrostep
Boolean state;
Boolean nextstate;
Real active;
annotation (Icon(Ellipse(extent=[-20, -20; 20, 20],
style(color=7, fillColor=
DynamicSelect (7, if state>0.5 then O else 7)))));
end macrostep;

73

record transition
Boolean condition;
parameter String label = °’;
annotation (Icon(

Rectangle(extent=[-90, -20; 90, 20],
style(color=0, thickness=2, gradient=0,
fillColor=7, fillPattern=1)),

Line(points=[0, 20; 0, 40], style(color=0)),

Line(points=[0, -20; 0, -60], style(color=0)),

Text (extent=[500, 30; 120, -30], string=*‘)label’’,
style(color=0))));

end transition;

record exceptiontransition
Boolean condition;
parameter String label = °’;
annotation (Icon(
Rectangle(extent=[-20, -90; 20, 90],
style(color=0, thickness=2)),
Line(points=[-20, 0; -60, 0], style(color=0)),
Line(points=[20, 0; 40, 0],
style(color=0, thickness=2)),
Text (extent=[20, -10; 500, -70], string = ‘)label”,
style(color=0))));
end exceptiontransition;

model transition_dummy
parameter String label = °’;
annotation (Icon(

Rectangle(extent=[-90, -20; 90, 20],
style(color=0, thickness=2, gradient=0,
fillColor=7, fillPattern=1)),

Line(points=[0, 20; 0, 40], style(color=0)),

Line(points=[0, -20; 0, -60], style(color=0)),

Text (extent=[500, 30; 120, -30], string=*‘)label’’,
style(color=0))));

end transition_dummy;

model exception_dummy

parameter String label = °’;
annotation (Icon(

74

Rectangle(extent=[-20, -90; 20, 90],
style(color=0, thickness=2)),

Line(points=[-20, 0; -60, 0], style(color=0)),

Line(points=[20, 0; 40, 0],
style(color=0, thickness=2)),

Text (extent=[20, -10; 500, -70], string = “/label”,
style(color=0))));

end exception_dummy;

connector SocketBoolln
input Boolean signal;
annotation (Coordsys(extent=[-100, -100; 100, 100]),
Icon(
Polygon(points=[-60, 0; 60, -80; 60, 80],
style(color=0, £illColor=0)),
Text (extent=[-100, 200; 100, 100], string=‘‘)name”’,
style(color=0, thickness=3))));
end SocketBoollIn;

Connector SocketIntIn
input Integer signal;
annotation (Coordsys(extent=[-100, -100; 100, 100]),
Icon(
Polygon(points=[-60, 0; 60, -80; 60, 80],
style(color=0, fillColor=0)),
Text (extent=[-100, 200; 100, 100], string=*‘‘)name’’,
style(color=0, thickness=3))));
end SocketIntIn;

connector SocketRealln
input Real signal;
annotation (Coordsys(extent=[-100, -100; 100, 100]),
Icon(
Polygon(points=[-60, 0; 60, -80; 60, 80],
style(color=0, £illColor=0)),
Text (extent=[-100, 200; 100, 100], string=*‘‘)name”,
style(color=0, thickness=3))));
end SocketRealln;

connector SocketBoolOut
output Boolean signal;

75

annotation (Coordsys(extent=[-100, -100; 100, 100]),
Icon(
Polygon(points=[60, 0; -60, -80; -60, 80],
style(color=0, £fillColor=0)),
Text (extent=[-100, 200; 100, 100], string=*name’,
style(color=0, thickness=3))));
end SocketBoolQut;

connector SocketIntOut
output Integer signal;
annotation (Coordsys(extent=[-100, -100; 100, 100]),
Icon(
Polygon(points=[60, 0; -60, -80; -60, 80],
style(color=0, £illColor=0)),
Text (extent=[-100, 200; 100, 100], string=‘‘)name”’,
style(color=0, thickness=3))));
end SocketIntOut;

connector SocketReallOut
output Real signal;
annotation (Coordsys(extent=[-100, -100; 100, 100]),
Icon(
Polygon(points=[60, 0; -60, -80; -60, 80],
style(color=0, fillColor=0)),
Text (extent=[-100, 200; 100, 100], string=*‘‘)name’,
style(color=0, thickness=3))));
end SocketReallOut;

model MakeProduct_model
parameter String label = ‘MakeProduct’’;
annotation (Coordsys(extent=[0, -671; 671, 0]),
Icon(
Rectangle(extent=[20, -651; 651, -20], style(color=0,
thickness=2)),
Line(points = [177, -20; 20, -177],
style(color=0, thickness=2)),
Line(points = [493, -651; 651, -493],
style(color=0, thickness=2)),
Line(points = [493, -20; 651, -177],
style(color=0, thickness=2)),

76

Line(points = [20, -493; 177, -651],
style(color=0, thickness=2)),
Ellipse(extent=[20, -318; 53, -352],
style(color=0, thickness=4, fillColor=0)),
Ellipse(extent=[617, -318; 651, -352],
style(color=0, thickness=4, fillColor=0)),
Text (extent=[671, -335; 1342, -493], string=‘‘/label”’,
style(color=0))));
step_dummy MakeProduct_empty_m(label=*“‘empty’’)
annotation (extent=[76, -549; 144, -481]);
step_dummy MakeProduct_FillTankl_m(label=*FillTank1’’)
annotation (extent=[76, -99; 144, -31]);
transition_dummy MakeProduct_t1(label=‘Levell>1limit’’)
annotation (extent=[85, -135; 135, -85]);
transition_dummy MakeProduct_t2(label=‘‘wait2.s>waitTime’’)
annotation (extent=[85, -465; 135, -415]);
step_dummy MakeProduct_waitl_m(label="‘wait1’’)
annotation (extent=[75, -210; 145, -140]);
transition_dummy MakeProduct_t3(label=*‘waitl.s>waitTime’?)
annotation (extent=[85, -245; 135, -195]);
transition_dummy MakeProduct_t4(label=*Levell<0.001”’)
annotation (extent=[85, -355; 135, -305]);
step_dummy MakeProduct_wait2_m(label=*‘wait2’’)
annotation (extent=[75, -430; 145, -360]);
step_dummy MakeProduct_FillTank2_m(label=*“FillTank2’’)
annotation (extent=[75, -320; 145, -250]);
annotation(Diagram(
Line(points=[110, -315; 110, -325; 110, -325; 110, -310;
110, -310; 110, -320], style(color=0)),
Line(points=[110, -425; 110, -435; 110, -435; 110, -420;
110, -420; 110, -430], style(color=0)),
Line(points=[110, -345; 110, -355; 110, -355; 110, -345;
110, -345; 110, -355], style(color=0)),
Line(points=[110, -205; 110, -215; 110, -215; 110, -200;
110, -200; 110, -210], style(color=0)),
Line(points=[110, -125; 110, -135; 110, -135; 110, -125;
110, -125; 110, -135], style(color=0)),
Line(points=[110, -455; 110, -465; 110, -465; 110, -465;
110, -465; 110, -475], style(color=0)),
Line(points=[110, -95; 110, -105; 110, -105; 110, -90;
110, -90; 110, -100], style(color=0)),

7

Line(points=[110, -235; 110, -245; 110, -245; 110, -235;
110, -235; 110, -245], style(color=0))));
end MakeProduct_model;

initstep s_1 annotation (extent=[155, -160; 225, -90]);
macrostep MakeProduct;
Boolean MakeProduct_aborted;
Boolean MakeProduct_empty_storedstate;
Boolean MakeProduct_FillTankl_storedstate;
Boolean MakeProduct_waitl_storedstate;
Boolean MakeProduct_wait2_storedstate;
Boolean MakeProduct_FillTank2_storedstate;
MakeProduct_model MakeProduct_g
annotation (extent=[159, -271; 221, -209]);
step MakeProduct_empty;
step MakeProduct_FillTank1;
transition MakeProduct_transitionl(label=*“Levell>1limit’’);
transition MakeProduct_transition2(label=*‘wait2.s>waitTime’’);
step MakeProduct_waitl;
transition MakeProduct_transition3(label=*‘waitl.s>waitTime’’);
transition MakeProduct_transition4(label=*Levell<0.001’%);
step MakeProduct_wait?2;
step MakeProduct_FillTank2;
transition transitionl(label=¢‘Start’’)
annotation (extent=[165, -195; 215, -145]);
exceptiontransition MakeProduct_exception(1abe1=“Stop”)
annotation (extent=[75, -265; 125, -215]);
step s_2 annotation (extent=[25, -370; 95, -300]);
transition transition2(label=¢‘Start’’)
annotation (extent=[35, -445; 85, -395]);
transition transition3(label=*‘Shutdown’?’)
annotation (extent=[205, -445; 255, -395]);
step emptyTanks annotation (extent=[195, -520; 265, -450]);
transition transition4(label=¢‘(Levell + Level2) <0.001%)
annotation (extent=[205, -565; 255, -515]);
transition transition5(label=*‘Level2<0.001’)
annotation (extent=[165, -325; 215, -275]);

public
parameter Real scancycle=0.04;

78

parameter Real MakeProduct_waitTime(start=3);
parameter Real MakeProduct_limit(start=0.98);

SocketBoollIn
annotation
SocketBoollIn
annotation
SocketBoolln
annotation
SocketRealln
annotation
SocketRealln
annotation

Start
(extent=[-107,
Stop
(extent=[-107,
Shutdown
(extent=[-107,
Levell
(extent=[-107,
Level2
(extent=[-107,

SocketBoolOut Valvel
annotation (extent=[899, -73; 986, -160]);
SocketBoolOut Valve2
annotation (extent=[899, -366; 986, -453]);
SocketBoolOut Valve3d
annotation (extent=[899, -659; 986, -746]);

algorithm

when time >=

Valvel.signal :=
Valve2.signal :=
Valve3.signal :

end when;

0 then

false;
false;
false;

-43; -20, -1301);

-218; -20, -305]);

-393; -20, -480]);
-568; -20, -655]);
-743; -20, -830]1);

if sample(scancycle, scancycle) then

MakeProduct_exception.condition =

MakeProduct.state;
if not (MakeProduct_exception.condition) then

Stop.signal and

MakeProduct_transitionl.condition =(Leve11.signa1>
MakeProduct_limit) and MakeProduct_FillTankl.state;
MakeProduct_transition2.condition =

(MakeProduct_wait2.active > MakeProduct_waitTime)
and MakeProduct_wait2.state;
MakeProduct_transition3.condition =

(MakeProduct_waitl.active > MakeProduct_waitTime)
and MakeProduct_waitl.state;

MakeProduct_transition4.condition =

(Levell.signal

79

< 0.001) and MakeProduct_FillTank?2.state;
end if;
transitionl.condition = Start.signal and s_1.state;
transition2.condition = Start.signal and s_2.state;
transition3.condition = Shutdown.signal and s_2.state;

transition4.condition ((Levell.signal + Level2.signal)
< 0.001) and emptyTanks.state;

transitionb.condition = (Level2.signal < 0.001) and
MakeProduct_empty.state and MakeProduct.state;

if MakeProduct_transitionl.condition then
Valvel.signal := false;
MakeProduct_FillTankl.nextstate := false;

MakeProduct_waitl.nextstate := true;
end if;
if MakeProduct_transition2.condition then
MakeProduct_wait2.nextstate := false;
Valve3.signal := true;

MakeProduct_empty.nextstate := true;

end if;

if MakeProduct_transition3.condition then
MakeProduct_waitl.nextstate := false;
Valve2.signal := true;
MakeProduct_FillTank2.nextstate := true;

end if;MakeProduct_transition4.condition then
Valve2.signal := false;
MakeProduct_FillTank2.nextstate := false;

MakeProduct_wait2.nextstate := true;

end if;

if transitionl.condition then
s_1.nextstate := false;
MakeProduct.nextstate := true;
Valvel.signal := true;
MakeProduct_FillTankl.nextstate := true;

end if;

if MakeProduct_exception.condition then
if MakeProduct_empty.state then
MakeProduct_empty_storedstate := true;
MakeProduct_empty.nextstate := false;
else
MakeProduct_empty_storedstate := false;

80

MakeProduct_empty.nextstate := false;
end if;
if MakeProduct_FillTankl.state then
MakeProduct_FillTankl_storedstate := true;
MakeProduct_FillTankl .nextstate := false;
else
MakeProduct_FillTankl_storedstate := false;
MakeProduct_FillTankl.nextstate := false;

end if;
if MakeProduct_waitl.state then
MakeProduct_waitl_storedstate := true;
MakeProduct_waitl.nextstate := false;
else
MakeProduct_waitl_storedstate := false;
MakeProduct_waitl.nextstate := false;
end if;
if MakeProduct_wait2.state then
MakeProduct_wait2_storedstate := true;
MakeProduct_wait2.nextstate := false;
else
MakeProduct_wait2_storedstate := false;
MakeProduct_wait2.nextstate := false;
end if;

if MakeProduct_FillTank2.state then
MakeProduct_FillTank2_storedstate := true;
MakeProduct_FillTank2.nextstate := false;
else
MakeProduct_FillTank2_storedstate := false;
MakeProduct_FillTank2.nextstate := false;
end if;

Valvel.signal := false;

Valve2.signal := false;

Valve3.signal := false;
MakeProduct.nextstate := false;
MakeProduct_aborted = true;
s_2.nextstate := true;

end if;
if transition2.condition then

s_2.nextstate := false;
if MakeProduct_aborted then
MakeProduct .nextstate := true;

81

MakeProduct_empty.nextstate :=
MakeProduct_empty_storedstate;

if MakeProduct_empty.nextstate then
Valve3.signal := true;

end if;

MakeProduct_FillTankl.nextstate :=
MakeProduct_FillTankl_storedstate;

if MakeProduct_FillTankl.nextstate then
Valvel.signal := true;

end if;

MakeProduct_waitl.nextstate :=
MakeProduct_waitl_storedstate;

MakeProduct_wait2.nextstate :=
MakeProduct_wait2_storedstate;

MakeProduct_FillTank2.nextstate :=
MakeProduct_FillTank2_storedstate;

if MakeProduct_FillTank2.nextstate then

Valve2.signal := true;
end if;
end if;
end if;
if transition3.condition then
s_2.nextstate := false;
Valve3.signal := true;
Valve2.signal := true;
emptyTanks.nextstate := true;
end if;

if transition4.condition then
emptyTanks.nextstate := false;
Valvel.signal := false;

Valve2.signal := false;
Valve3.signal := false;
s_1.nextstate := true;

end if;

if transitionb5.condition then
MakeProduct_empty.nextstate := false;
Valvel.signal := false;
Valve2.signal := false;
Valve3.signal := false;
s_1.nextstate := true;

end if;

82

MakeProduct.nextstate := MakeProduct_empty.nextstate or
MakeProduct_FillTankl .nextstate or
MakeProduct_waitl.nextstate or
MakeProduct_wait2.nextstate or
MakeProduct_FillTank2.nextstate;

s_l.active := if (s_1.state and s_1.nextstate) then
s_l.active + scancycle else 0;

MakeProduct.active := if (MakeProduct.state and
MakeProduct.nextstate) then
MakeProduct.active + scancycle else 0;

MakeProduct_empty.active := if (MakeProduct_empty.state and
MakeProduct_empty.nextstate) then
MakeProduct_empty.active + scancycle else 0;

MakeProduct_FillTankl.active := if
(MakeProduct_FillTankl.state and
MakeProduct_FillTankl.nextstate) then
MakeProduct_FillTankl.active + scancycle else 0;

MakeProduct_waitl.active := if (MakeProduct_waitl.state and
MakeProduct_waitl.nextstate) then
MakeProduct_waitl.active + scancycle else 0;

MakeProduct_wait2.active := if (MakeProduct_wait2.state and
MakeProduct_wait2.nextstate) then
MakeProduct_wait2.active + scancycle else 0;

MakeProduct_FillTank2.active := if
(MakeProduct_FillTank?2.state and
MakeProduct_FillTank?2.nextstate) then
MakeProduct_FillTank2.active + scancycle else 0;

s_2.active := if (s_2.state and s_2.nextstate) then
s_2.active + scancycle else 0;

emptyTanks.active := if (emptyTanks.state and
emptyTanks.nextstate) then emptyTanks.active + scancycle

else 0;
s_1l.state := s_1.nextstate;
MakeProduct.state := MakeProduct.nextstate;

MakeProduct_empty.state := MakeProduct_empty.nextstate;

MakeProduct_FillTankl.state :=
MakeProduct_FillTankl.nextstate;

MakeProduct_waitl.state := MakeProduct_waitl.nextstate;

83

MakeProduct_wait2.state := MakeProduct_wait2.nextstate;

MakeProduct_FillTank2.state :=
MakeProduct_FillTank2.nextstate;

s_2.state := s_2.nextstate;

emptyTanks.state := emptyTanks.nextstate;

end if;

annotation (Coordsys(extent=[0, -879; 879, 0]),
Diagram(

Line(points=[190, -315; 190, -375; 407, -375; 407, -75;
190, -75; 190, -85], style(color=0)),

Line(points=[190, -275; 190, -285; 190, -285; 190, -280;
190, -280; 190, -290], style(color=0)),

Line(points=[230, -555; 230, -565; 407, -565; 407, -75;
190, -75; 190, -85], style(color=0)),

Line(points=[230, -515; 230, -525; 230, -525; 230, -520;
230, -520; 230, -530], style(color=0)),

Line(points=[60, -435; 60, -445; 364, -445; 364, -240;
231, -240; 221, -240], style(color=0, thickness=2)),

Line(points=[230, -435; 230, -445; 230, -445; 230, -435;
230, -435; 230, -445], style(color=0)),

Line(points=[60, -365; 60, -375; 60, -387; 230, -387;
230, -400; 230, -410], style(color=0)),

Line(points=[60, -365; 60, -375; 60, -387; 60, -387;
60, -400; 60, -410], style(color=0)),

Line(points=[90, -240; 80, -240; 60, -240; 60, -262;
60, -285; 60, -295], style(color=0)),

Line(points=[159, -240; 149, -240; 132, -240; 132, -240;
115, -240; 105, -240], style(color=0, thickness=2)),

Line(points=[190, -185; 190, -195; 190, -195; 190, -195;
190, -195; 190, -205], style(color=0)),

Line(points=[190, -155; 190, -165; 190, -165; 190, -150;
190, -150; 190, -160], style(color=0))),

Icon(

Rectangle(extent=[20, -859; 859, -20],
style(color=0, thickness=4)),

Text (extent=[50, -829; 829, -50], style(color=0,
thickness=3),string=*‘)name’’))) ;

end TankController;

84

