
ISSN 0280-5316
ISRN LUTFD2/TFRT--5727--SE

Information-Theoretic Approach
for Path Planning of a Moving

Platform with Bearings-only Sensor

Rickard Björström

Department of Automatic Control
Lund Institute of Technology

October 2004

Document name
MASTER THESIS
Date of issue
October 2004

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRNLUTFD2/TFRT--5727--SE
Supervisor
Per Hagander LTH, Lund
Per Skoglar FOI, Linköping

Author(s)
Rickard Björström

Sponsoring organization

Title and subtitle
Information-Theoretic Approach for Path Planning of a Moving Platform with Bearings-only Sensor.
(Informationsteoretisk ruttplanering för en rörlig plattform med passiv sensor)

Abstract
Using flying vehicles for reconnaissance and surveillance has always been
interesting, especially in military applications. Unmanned aerial vehicles (UAVs)
have been increasingly used in the last decades, but they have often been
controlled by an operator on the ground. In an attempt towards higher level of
autonomy, the UAV should be able to decide itself where to fly.
This thesis examines a method for autonomous path planning based on the
uncertainty of the target locations, a so called information-theoretic approach.
A bearings-only sensor is attached to the UAV, such as a video or an infrared
sensor, which makes observations of the relative angle to the object, reducing
the uncertainty orthogonal to the observed target. The planned path is
the solution to an optimization problem, such that the uncertainty
is minimized which is equal to maximizing the information in the
information-theoretic approach.
When identifying a target, there is a potential benefit to make observations from
different views. If the path could be planned, the better are the observations of
the target, and the image based identification will be more reliable to target
appearance variations and more robust against decoys.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
65

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through: University Library, Box 3, SE-221 00 Lund, Sweden Fax +46
46 222 42 43

Acknowledgements

This master’s thesis was carried out at the department of Sensor Technology at
FOI, the Swedish Defense Research Agency, in Linköping. This thesis finishes
my education in Engineering Physics at Lund Institute of Technology, Lund
University.

First of all, I would like to thank my supervisors Per Skoglar and Jonas Nyg̊ards
for the confidence in me doing this thesis. They have given support throughout
the time and provided me with some great ideas. I would also like to thank
Morgan Ulvklo for the opportunity of doing my thesis at FOI and the SIREOS
group for following the development and visiting the test launch of their air-
borne remote sensing platform, where my work may be implemented later.

Linköping, October 2004

3

Contents

1 Introduction 6
1.1 The SIREOS Project . 6
1.2 Information . 6
1.3 Objective . 7
1.4 Outline . 7
1.5 References and Further Readings 8

2 The Use of Information in Optimal Control 9
2.1 Information measures . 9

2.1.1 Entropic Information . 9
2.1.2 Fisher Information . 10
2.1.3 Information Matrix . 10

2.2 Information Evolution . 11
2.2.1 Observed Information . 11
2.2.2 Update of Information Matrix 12

2.3 Optimal Control . 13
2.3.1 The General Optimal Control Problem 13
2.3.2 Optimal Control In Path Planning 13
2.3.3 Gradient Determination 15

3 A Single Platform Example 16
3.1 Modelling the Vehicle, Sensor and Environment 16

3.1.1 Sensor Platform Model 16
3.1.2 Feature Model . 17
3.1.3 Sensor Model . 18
3.1.4 System Equations . 18
3.1.5 Gradient Given Analytically 19

3.2 Simulations . 20
3.2.1 Plotting the Criteria Function 22
3.2.2 The Effect of Optimization Time Horizon 23
3.2.3 The Effect of Prior Information 24
3.2.4 Evaluation of the Utility Function 25

3.3 n Objects . 27
3.3.1 Modelling 2 Objects . 27
3.3.2 Path for 2 Objects . 30
3.3.3 Extension to n Objects 32

3.4 3D-modeling . 32
3.4.1 A 3D Object . 33

4

3.4.2 Information in 3D . 33
3.5 Conclusion and Remarks . 36

4 Area Exploration 37
4.1 Area Search . 37

4.1.1 Modelling the Area . 37
4.1.2 Limited Sensor Range . 38
4.1.3 Observed Information . 39

4.2 Simulations . 40
4.2.1 Determinant as Utility Function 40
4.2.2 Trace of the Inverse as Utility Function 41
4.2.3 Simulating the Area Search 41

4.3 The Combined Model . 41
4.3.1 Global Information Matrix 42
4.3.2 Simulations . 42

4.4 Summary . 43

5 Spline Optimization 45
5.1 Properties of Splines . 45

5.1.1 Advantages . 45
5.1.2 Disadvantages . 46

5.2 The Single Platform Example . 46
5.2.1 Optimizing over Splines 46
5.2.2 Simulations . 47

5.3 Discussion . 49

6 The Gimballed Camera 50
6.1 Experimental Sensor System . 50

6.1.1 Modelling the Camera . 50
6.1.2 Limitation of the Camera 51

6.2 Localizing Objects on the Ground 52
6.2.1 Using all Spline Points . 52
6.2.2 The Utility Function . 53
6.2.3 Simulations . 53

6.3 Summary . 55

7 Summary and Conclusion 57
7.1 Summary . 57

7.1.1 Information-Theoretic Approach 57
7.1.2 Optimal Control . 58
7.1.3 Spline Optimization . 58

7.2 Discussion . 58
7.2.1 Utility Function . 58
7.2.2 Optimal Control vs. Splines 59
7.2.3 Comments on References 59

7.3 Conclusion . 59
7.4 Future Work . 59

A Matlab functions 61

5

Nomenclature

Notations

f(·) Non-linear state transition model (System equations)
F Linearized state transition matrix
h(·) Non-linear observation model
H Linearized observation matrix
I(·) Observed information
m Number of parameterized control signal
P (·) Probability distribution
P(·) Covariance matrix
Q Process noise covariance
R Observation noise covariance
tf Time horizon in optimization
u Control input vector
v, ν Observation noise
w, ω Process noise
x State vector
Y(·) Information matrix
z Observation vector

Abbreviations

EO Electro Optical
CCD Charge Coupled Device
FOI Totalförsvarets Forskningsinstitut (Swedish Defense Research Agency)
FRD Forward-Right-Down
INS Inertial Navigation System
GPS Global Positioning System
IR Infrared
SIREOS Signal Processing for Moving EO/IR Sensors
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle

6

Chapter 1

Introduction

This master’s thesis examines how to plan the flight path for an unmanned
aerial vehicle (UAV). In this introduction, the task of the UAV is presented as
well as how information is used in this thesis.

1.1 The SIREOS Project

This thesis is a small part of the SIREOS (Sensor Processing for Moving EO/IR
Sensors) group at FOI where several algorithms are developed for analysis of
electro optical and infrared image sequences from moving platforms like UAVs.
The designated task is surveillance and reconnaissance. Many problems must
be considered like robust navigation, collision avoidance, image motion compu-
tation, route and viewpoint planning, scene topography estimation etc. These
tasks are improved by sensor management, which are currently under develop-
ment. [8]

In order to help the image processing algorithms by collecting useful images,
the path of the moving platform must be planned. If a target is about to be
identified by the methods of image processing, there is a need to see the objects
from different field of views. In other words, the ability to identify a target in an
image is depending from where the image was taken. This means, how ”good”
the images are, is depending on the distance and the angle to the target. If
the path of the moving vehicle could be planned, the targets could be identified
more reliable. An example of how this would look like is in Figure 1.1, where
the UAV collects images from different positions.

1.2 Information

Throughout this thesis, the task of the UAV is to identify different objects
on the ground. When an object is said to be identified, there are sufficient
number of pictures of the object that it could be identified with the methods
from image analysis. To represent the ability to identify targets, the concept of
information is introduced in the sense ”the more information about an object,
the more likely is the identification”. By collecting images from the target, the
information about the target increases and when a sufficient amount of images
are collected, the target is said to be identified. To express this a bit sloppy:

7

Figure 1.1: UAV surveillance and reconnaissance. [8]

An object is identified when a certain level of information about the object is
reached.

There are no real images in this thesis, instead the amount of information
is connected to the uncertainty of the target’s geometrical location. The term
”identify an object” would now be that the uncertainty of the target’s location
is lower than a pre-defined threshold value. The uncertainty is represented by a
covariance matrix, and as will be shown later on, the information matrix is the
inverse of the covariance matrix for normal distributions. The path is planned
such that the uncertainties of the targets are minimized, which is the same
as maximizing the information and the resulting path is the best in terms of
information at the optimization horizon.

1.3 Objective

The objective of the thesis is to investigate if the information-theoretic approach
is suitable method for path planning of moving platforms.

1.4 Outline

The outline of the thesis is:

• Chapter 2 introduces the theory of information and presents the optimal
control problem.

• Chapter 3 is a path planning example for a UAV and shows the solution
to the optimal control problem.

• Chapter 4 is the extension to a full area exploration and there are sev-
eral objects dynamically detected in the area and the planned path must
simultaneously consider both the object geolocation and the area coverage.

• Chapter 5 introduces another method called spline optimization. Instead
of finding optimal control signals, one could find the optimal trajectory
directly by placing points who together creates a spline.

8

• Chapter 6 complicates the model with a camera, and objects can only be
seen if they are visible by the camera and the path consists of both the
vehicle trajectory and the camera directions.

• Chapter 7 summarizes the result and some suggestions for future work are
given.

1.5 References and Further Readings

The path planning problem as an optimal control problem is formulated and
solved in Grocholsky [4]. The definitions of information and the examples are
from Grocholsky as well. A more detailed description of information and infor-
mation filter is found in Manyika and Durrant-Whyte [5]. The solution of the
optimal control problem by parametrization of the control signal is described in
Bertsekas [1]. The gimballed camera used in the SIREOS project is described
in Skoglar [8].

9

Chapter 2

The Use of Information in
Optimal Control

In this chapter, the optimal control problem based on the information criteria is
formulated. First the concept of information is introduced and how it is used in
optimal control, and this results in a utility function from information theory,
which should be optimized in the optimal control problem.

2.1 Information measures

Uncertainties of states and observations are represented by probability distribu-
tions and the concept of information is introduced as a measure of how much
”information”is contained in such distributions. There are two formal definitions
of information, the Entropic information and Fisher information.

2.1.1 Entropic Information

Entropic information is defined from entropy. The entropy or Shannon informa-
tion H(x) associated with a probability distribution P (x), where x is a random
variable, is defined in Grocholsky [4] as

H(x) ≡ −E{log P (x)} = −
∫ ∞

−∞
P (x) log P (x)dx. (2.1)

That is, the entropy is defined as the negative of the expected value of the
log-likelihood. Entropic information i(x) is then defined as the negative of the
entropy, so information is maximized when entropy is minimized

i(x) = −H(x). (2.2)

When the probability distribution modeling an n-dimensional state x is Gaus-
sian distributed with mean x̄ and covariance P, it could be shown, as in Gro-
cholsky [4], that the entropic information becomes

i(x) = −H(x) = −1
2

log[(2πe)n | P |]. (2.3)

10

2.1.2 Fisher Information

The second measure of information is the Fisher information. It is only defined
on continuous distributions unlike entropy. Fisher information gives a measure
of the amount of information about x given observations Zk up to time k, in the
probability distribution P (Zk,x). Like entropy, Fisher information is derived
from the log-likelihood. In Manyika and Durrant-Whyte [5] a score function s
is introduced as

s(Zk,x) ≡ ∇x log P (Zk,x) =
∇xP (Zk,x)

P (Zk,x)
. (2.4)

Then the Fisher information matrix is defined as the covariance of the score
function as

J (k) ≡ E{∇x log P (Zk,x) (∇x log P (Zk,x))T }
= −E{∇x∇T

x log P (Zk,x)}. (2.5)

In Grocholsky [4], the definition of Fisher information matrix J (x) is simplified
from (2.5), with P (Zk,x) = P (x) as

J (x) ≡ − d2

dx2
log P (x). (2.6)

Consider again the case when P (x) is a Gaussian distribution, taking logarithm
and differentiating twice with respect to x gives J (x) = P−1, the Fisher infor-
mation becomes simply the inverse of the covariance. The relationship between
entropy and Fisher information can be explicit shown for a Gaussian distribu-
tion, where n is the dimension of the state, as

i(x) = −1
2

log[(2πe)n | P |] =
1
2

log[(2πe)−n | J (x) |]. (2.7)

2.1.3 Information Matrix

Let x = x(t) and

Y = Y(t) = J (x(t)) (2.8)

be the information matrix throughout the work. From (2.7), information i(x)
is maximized when the determinant of the information matrix Y is maximized.
The determinant gives a scalar value, which is needed for comparison. The
determinant is an example of a utility function, and it is this function which
will be optimized in the optimal control problem.

According to Grocholsky [4], the scalar value must combine or weight the
elements or eigenvalues of the information matrix or its inverse. Let {λ1, . . . , λn}
be the eigenvalues of the information matrix and the determinant is related as

|Y| =
n∏

i=1

λi. (2.9)

11

The determinant of the information matrix is a candidate for utility function
and the method is often referred to, simply as ”the entropy”. According to Gro-
cholsky [4], entropy is the most appropriate measure of information contained in
a probability function, but it is interesting to examine alternative measures and
hence different candidates of utility functions in order to see their solutions to
the path planning problem. Two alternatives to maximize entropic information
are:

1. max trace (Y) and
2. min trace (Y−1).

Or expressed in terms of eigenvalues

trace (Y) =
n∑

i=1

λi, (2.10)

trace (Y−1) =
n∑

i=1

1
λi

. (2.11)

As can be seen from (2.9) to (2.11), there are drawbacks. A poorly scaled
information matrix could give high information even when some eigenvalues are
small in comparison. To avoid such problems, the utility function could operate
on the eigenvalues directly like in [4], with

max(min eig(Y)), (2.12)

as the most direct one. There are also other alternatives and for details see
Grocholsky [4]. These four different utility functions discussed are simulated
later in Section 3.2.4.

The eigenvalues of the information matrix are always positive, since the
information matrix is the inverse of the covariance matrix and the eigenvalues
of a covariance matrix represent covariances, which are quadratic. Therefore are
the eigenvalues of the information matrix inverse quadratic and still positive.

2.2 Information Evolution

2.2.1 Observed Information

The information matrix Y(t) is updated by observations of objects. Let the
states to be observed be the vector x(t) and the observations are in the obser-
vation vector z(t). The observation z(t) is a function of the observed states x(t)
and some observation noise v(t) as [4]:

z(t) = h(x(t),v(t)). (2.13)

The sensor making the observation is a bearings-only sensor, which can only
make observations about the angle to the objects. The function h is a nonlinear
function since it is the observed angle, ϕ̃(t), which is the real angle, ϕ(t), plus
the noise:

12

h(x(t),v(t)) = ϕ̃(x(t),v(t)) = ϕ(x(t)) + v(t). (2.14)

The observation noise v(t) is modelled as white noise with covariance R. The
nonlinear function is linearized about nominal states xn(t) and zn(t) as in Gro-
cholsky [4]:

δz(t) = H(t)δx(t) + D(t)v(t). (2.15)

Where

H(t) =
∂h
∂x

∣∣∣∣ x(t) = xn(t)
v(t) = 0

and D(t) =
∂h
∂v

∣∣∣∣ x(t) = xn(t)
v(t) = 0

(2.16)

and the new linearized states are

δx(t) ≡ x(t)− xn(t)
δz(t) ≡ z(t)− zn(t).

The H-matrix is called the linearized observation matrix and the D-matrix is
the linearized observation noise matrix. The reason for the linearization, is
that the information filter equations are linear. The linearized filter equations
are detailed in Manyika and Durrant-Whyte [5] and simplified in Grocholsky
[4], and describes how the expected observed information I(t) is related to the
observations, which is

I(t) = H(t)T R−1H(t). (2.17)

2.2.2 Update of Information Matrix

The information matrix is updated not only by the observed information, but
there are losses due to process noise and the system dynamics could affect as
well. First consider the system equations

ẋ(t) = f(x(t),u(t),w(t)), (2.18)

where x(t) is the states, u(t) known control inputs and w(t) is the process noise,
the latter is assumed to be a zero mean uncorrelated Gaussian process with
covariance Q. The function f is a system of non-linear differential equations,
that could be linearized about nominal states xn(t) and nominal control signals
un(t) as

δẋ(t) = F(t)δx(t) + B(t)δu(t) + G(t)w(t). (2.19)

The matrix F(t) is the linearized state transition matrix, B(t) is the linearized
input matrix and G(t) is the linearized noise matrix. These are given by

F(t) =
∂f
∂x

∣∣∣∣ x(t) = xn(t)
u(t) = un(t)
w(t) = 0

, B(t) =
∂f
∂u

∣∣∣∣ x(t) = xn(t)
u(t) = un(t)
w(t) = 0

and G(t) =
∂f
∂w

∣∣∣∣ x(t) = xn(t)
u(t) = un(t)
w(t) = 0

(2.20)

where δx(t) ≡ x(t)− xn(t) and δu(t) ≡ u(t)− un(t). (2.21)

13

Given these matrices, the update law of the information matrix Y(t) is described
in Grocholsky [4] as:

Ẏ(t) = −F(t)Y(t)− FT (t)Y(t)−Y(t)G(t)Q(t)GT (t)Y(t) + I(t) (2.22)

where I(t) is given in (2.17). This is the continuous version of the prediction and
update states of the information filter which is described in [4] and [5]. Since R
and Q are positive semi-definite, the process noise cannot gain any information
and observation cannot lose information. However, the system dynamics in F
could lose or gain information over time.

2.3 Optimal Control

2.3.1 The General Optimal Control Problem

The general optimal control problem could be expressed simply as ”choose the
control signal such that the system behaves as good as possible” [3]. In mathe-
matical terms, the problem can be formulated as in Glad and Ljung [3]:

Given initial conditions:

x(0) = x(t0) (2.23)

System equations:

ẋ(t) = f(x(t),u(t)) (2.24)

Subject to constraints:

ψ(x(t),u(t)) = 0 (2.25)
g(x(t),u(t)) ≤ 0 (2.26)

The criteria function to minimize is:

J(x(t),u(t)) = φ(x(tf)) +
∫ tf

t0

L(x(t),u(t)) dt (2.27)

The solution to the optimal control problem would be:

min
u(t)

J(x(t),u(t)), (2.28)

subject to the constraints (2.25) and (2.26).

2.3.2 Optimal Control In Path Planning

The criteria function J in (2.27) is the utility function discussed in Section 2.1.3,
if the utility function is modified such that it is minimized. A maximum problem,
could always be converted into a minimum problem, according to Böiers [2] with:

max g(x) = −min(−g(x)),

14

and in the implementation, the utility functions that required a maximization,
like maximizing the determinant, were converted into minimum problems.

The solution to the optimal control problem is affected by the choice of
utility function and the idea is to find a control signal, or sequence of control
signals, that maximizes information. However, the optimization is done over a
pre-defined optimization time, called the time horizon denoted by tf , and it is
only of interest to consider the information at the time horizon tf . Therefore
the criteria function is a function of the time horizon only, that is J = J(tf),
and L in (2.27) is equal to zero.

Most optimal control problems requires a numerical solution and by param-
eterize the control signal into m steps in every optimization, an approximate
solution will be found, for details see Bertsekas [1]. The idea is now to find a
sequence of control steps ui that maximizes information at the time horizon tf
as in Grocholsky [4]:

ui(t) = piχi(t), i = 1, . . . , m. (2.29)

Where χi simply holds the control variable over m equal time steps ∆tu as

χi(t) =
{

1 if (j − 1)∆tu ≤ t ≤ j∆tu
0 otherwise , ∆tu =

tf − t0
m

. (2.30)

The optimal control problem in (2.28) is now converted into a nonlinear pro-
gramming problem [4]:

min
p

J(p) = φ(x(tf)) +
1
2
∆tx

m·nsteps∑

i=1

(Li(xi,uk) + Li−1(xi−1,uk)), (2.31)

subject to the constraints in (2.25) and (2.26), where p = [u1, . . . , um] is the
parameter vector and ∆tx = ∆tu

nsteps
, {nsteps ≥ 1} is the time between the eval-

uations of the states, and k is the control index. The original optimal control
problem is now in the form of mathematical programming problem [4]. In the
path planning problem, L is zero, but it is given for generality.

There are no equal constraints as in equation (2.25), but there could be lower
or equal constraints as in equation (2.26), with the control signals bounded as

umin ≤ ui ≤ umax, (2.32)

since it is reasonable that the movement of a UAV is restricted by its dynamics.
The solution of the optimal control problem is solved by Matlab’s optimiza-

tion toolbox. If there are no bounds on the control signal, the problem is consid-
ered to be unbounded problem, solved by the function fminunc. Otherwise, the
problem are bounded and solved by the function fmincon. How these functions
are called is shown in Appendix A.

2.3.3 Gradient Determination

The functions in Matlab’s toolbox uses the gradient ∇pJ and the Hessian ∇2
pJ

in order to find minimum. The use of the gradient will help the minimizer to
reach a minimum in terms of efficiency and reliability. This can be done in two

15

ways, either by letting the optimizer calculate the gradient and Hessian itself
as an numerical solution, or by giving the analytical expressions explicitly. The
first method requires no knowledge of the partial derivatives with respect to
state and control vectors. However, the drawback is the computational load.
For the latter method, the details are given here for the gradient, the details for
calculating the Hessian are given in Grocholsky [4].

Differentiating (2.31) (L = 0) with respect to p gives:

(∇pJ) =
∂φ(x(tf))

∂x(tf)
∂x(tf)

∂p
(2.33)

The first part of (2.33) is simply the derivative of the criteria function with
respect to each state at the time horizon tf . The second part is derived from
(2.24) by applying the chain rule, which gives:

d
dt

∂x
∂p

=
∂f
∂x

∂x
∂p

+
∂f
∂u

∂u
∂p

, with
∂x
∂p

∣∣∣∣
t=t0

=
∂x0

∂p
(2.34)

By the use of a Heun scheme, the first order sensitivities could be calculated as:

∂xi

∂p
=

[
In−1

2
∆tx

∂fi
∂xi

]−1[[
In+

1
2
∆tx

∂fi−1

∂xi−1

]
∂xi−1

∂p
+

1
2
∆tx

(
∂fi
∂uk

+
∂fi−1

∂uk

)
∂uk

∂p

]
,

where In is a (n× n)identity matrix, ∆tx is the time between each state evalu-
ation, and ∂f

∂x are the derivatives of the system equations with respect to each
state and ∂f

∂u with respect to the control signal.

16

Chapter 3

A Single Platform Example

To illustrate the use of information in control problems an example is given.
A single vehicle is considered, where the task is to localize a feature in the
xy-plane with a bearings-only sensor. This is done by seeking control action
and trajectory that maximizes the information as described in Chapter 2. The
example illustrates information as a performance metric and the effect of varied
optimization time horizons. The different utility functions are evaluated and
the difference between analytical implementation of the gradient and numerical
calculation is examined. First the sensor platform is moving in the plane, and
then a height of flight is added. Also the case with n objects is considered, where
the path is planned such that all objects are to be localized simultaneously.

3.1 Modelling the Vehicle, Sensor and Environ-
ment

3.1.1 Sensor Platform Model

The sensor is attached to a sensor platform which is moving in the xy-plane
with constant velocity V . The location (x, y)T and the direction of the vehicle
are described by the state xs(t). The direction of the vehicle is the heading
and is modelled by the angle ψ between the head of the platform and the x-
axis. The rate of change of the platform heading ψ̇ is the control variable as
in Figure 3.1. This is the same example as in Grocholsky [4]. The denotation
”sensor platform” is referring to the vehicle, which is a UGV until the flight
height is introduced where it becomes a UAV. The equations describing the
sensor platform are summarized:

xs(t) =




x(t)
y(t)
ψ(t)


, xs(0) =




x(0)
y(0)
ψ(0)


, u(t) = ψ̇, ẋs(t) =




V cos(ψ(t))
V sin(ψ(t))

u(t)


 . (3.1)

In Figure 3.1 the coordinate system is not the usual, instead the x-axis is for-
ward, the y-axis is rightwards, and z-axis downwards. This is called a forward-
right-down (FRD) coordinate system and is often used for all kinds of flying
platforms.

17

-

6

@@
¡

¡
¡µ6

-
j
^

x

y

ψ
ẋ

ẏ
ψ̇

V

UGV

Figure 3.1: 2D sensor platform vehicle model

In real life applications, like the SIREOS project, the coordinates of the
vehicle is given by GPS/INS and therefore a noise should be added to represent
this uncertainty of the vehicle. Adding this to the model yields a quite complex
model and is saved for future work.

3.1.2 Feature Model

The feature is represented by a stationary point xf = (xf , yf)T in the xy-plane.
The uncertainty of the location is captured in the covariance of a two dimensional
Gaussian distribution Pf (t). In the information filter, this is represented by a
information matrix Y(t) as the inverse of the covariance as

Y(t) = P−1
f (t). (3.2)

Since it is a Gaussian distribution the Entropic Information and the Fisher
information are the same according to (2.7), and there is no need to distinguish
between them.

The feature process model is

ẋf (t) = ω(t), (3.3)

where ω(t) is a zero mean Gaussian process with uncorrelated covariance Q(t)
called the process noise. This is a bit contradictorily that a stationary point is
modelled by some process noise. By adding a small process noise in the model,
the feature is allowed to move a bit and is no longer stationary. However, this
is a trick to improve the numerical conditioning since if there are any incorrect
information, the impact will be lower and the effect of the new information
gained more important.

The uncertainty is an ellipse about the estimated location of the object.
When planning the next optimization step, the path is calculated under the
assumption that the true location of the object is the estimated location. This is
not true in real life, since the object could be in the outer range of its uncertainty
ellipse, and the path would not be optimal to the object. Instead of having a
Gaussian distribution representing the uncertainty, one could instead use a sum
of Gaussian with different weights which gives a more accurate model. This is
merely a warning and must be considered in future work.

18

-

6

@@
¡

¡
¡µ r6

³³³³³1

x

y

ψ

r
θ (x, y)feature

UGV

(x, y)sensor

Figure 3.2: 2D sensor model

3.1.3 Sensor Model

The vehicle carries the sensor which makes observations of the feature. The
observation is the bearing of the feature, that is the relative angle to the feature,
which could be calculated as the angle from the x-axis to the feature θ, minus ψ
as shown in Figure 3.2. The observation model is then, from (2.13) and (2.14):

z(t) = h(xf ,xs) (3.4)

h(t) = θ(t)− ψ(t) + ν(t) = arctan(
yf − ys

xf − xs
)− ψ(t) + ν(t) (3.5)

where ν(t) is a zero mean uncorrelated Gaussian process with variance R =
σ2. Taking the Jacobian with respect to the feature state gives the linearized
relationship between the sensed output and the states according to (2.16):

H(t) = ∇x̂f
h(xf ,xs)

=
[−(ŷf − ys(t))
(x̂f − xs(t))2 + (ŷf − ys(t))2

,
x̂f − xs(t)

(x̂f − xs(t))2 + (ŷf − ys(t))2
]

=
1

r̂(t)
[− sin θ̂(t), cos θ̂(t)

]
, (3.6)

with (x̂f , ŷf) as the estimated feature location, and (r̂, θ̂) estimation of (r, θ)
respectively. The resulting observed information is derived according to (2.17)
as

I(t) = HT (t)R−1H(t). (3.7)

3.1.4 System Equations

The state of the system consists of the platform model and the information ma-
trix representing the uncertainty of the feature. The update of the vehicle states
xs is given in (3.1). The update of the information matrix is given by (2.22).
A comparison between the feature model in (3.3) with the general expression in

19

(2.19), yields F(t) = 0 and G = I (and B = 0). The update of information is
now reduced to

Ẏ(t) = −Y(t)QY(t) + I(t). (3.8)

The rate of change in information is some loss due to process noise and the gain
of information by observation. The matrices Y(t) and I(t) are symmetric and
Q is a diagonal matrix as

Y(t) =
[

Yx Yxy

Yxy Yy

]
, I(t) =

[
Ix Ixy

Ixy Iy

]
and Q =

[
Qx 0
0 Qy

]
. (3.9)

The feature information matrix is symmetric and it is therefore sufficient to
calculate three of four values, that means the states representing the information
would be

xinfo =




Yx

Yxy

Yy


 . (3.10)

The equations derived for the evolution of the feature information combined
with the equations of the vehicle dynamics describe fully the system state and
the stacked system equations become

ẋ(t)=
[

ẋs

ẋinfo

]
=




ẋ(t)
ẏ(t)
ψ̇(t)
Ẏx(t)
Ẏxy(t)
Ẏy(t)



=




V cos(ψ(t))
V sin(ψ(t))

u(t)
−Y2

x(t)Qx −Y2
xy(t)Qy + Ix(t)

−Yx(t)QxYxy(t)−Yxy(t)QyYy(t) + Ixy(t)
−Y2

xy(t)Qx −Y2
y(t)Qy + Iy(t)



.

(3.11)
The task is to reduce the uncertainty of the feature by maximizing information.
For a Gaussian distribution, the information is given by (2.7) and the informa-
tion is maximized when the utility function of Y = P−1 is optimized. Introduce
for example the determinant as utility function J(t) according to (2.9) as

J(tf) = | Y(tf) | = Yx(tf)Yy(tf)−Y2
xy(tf). (3.12)

and maximize it at the time horizon tf .

3.1.5 Gradient Given Analytically

If the gradient would be given analytically, recall Section 2.3.3. The gradient of
the utility function in (3.12) would be

∂φ(x(tf))
∂x(tf)

=
[

0 0 0 Yy −2Yxy Yx

]
. (3.13)

The gradient of the systems equations (3.11) is needed, and is given by

20

∂f
∂x

=




0 0 −V sin(ψ) . . .
0 0 V cos(ψ) . . .
0 0 0 . . .

4(ŷf−y)2(x̂f−x)
σ2r6

4(ŷf−y)3

σ2r6 − 2(ŷf−y)
σ2r4 0 . . .

− 4(ŷf−y)(x̂f−x)2

σ2r6 + (ŷf−y)
σ2r4 − 4(ŷf−y)2(x̂f−x)

σ2r6 + (x̂f−x)
σ2r4 0 . . .

4(x̂f−x)3

σ2r6 − 2(x̂f−x)
σ2r4

4(ŷf−y)(x̂f−x)2

σ2r6 0 . . .

0 0 0
0 0 0
0 0 0

−2YxQx −2YxyQy 0
−YxyQx −YxQx −YyQy −YxyQy

0 −2YxyQx −2YyQy




(3.14)

where (x, y)T is the vehicle’s position, (x̂f , ŷf)T is the feature’s estimated posi-
tion and r is the distance between the vehicle and the target, and

∂f
∂u

=
[

0 0 1 0 0 0
]T

. (3.15)

These are the equations needed to calculate the gradient ∇pJ according to
(2.33). One could realize that if the model is further complicated, it would
be quite difficult to derive the expressions needed for the analytical gradient.
Instead one could let Matlab calculate the gradient numerically.

3.2 Simulations

The initial conditions in (3.1) are the starting position of the vehicle and the
starting angle as the angle between the heading of the vehicle and the x-axis. Let
the vehicle start in origo, and specify a desired starting angle. In the simulation
examples the starting angle was set to π/2 rad, so that

xs(0) =
[

0 0 π/2
]T

.

There must also be some starting information, since in order to plan how to
localize a target, some information is needed. In other words, there is a need to
know that the target exists, otherwise it is hard to plan the path. The details
used in the simulations are

21

(xf , yf) = (10, 10) m Feature location (stationary)
V = 1 m/s Constant velocity
σ = 2.5◦ ⇒ R = σ2 Observation noise
Y(0) = I2 · 10−3 Low starting information
Q = I2 · 10−6 Process noise
I2 A 2× 2 identity matrix
m = 2 Number of parameterized control signals

in each optimization step
tf = 1 s Optimization time horizon
|ui| ≤ 1 rad/s Bounded control signal
J(tf) = |Y(tf)| Utility function is determinant

of information matrix

These values are chosen for simplicity and are not values for real applications, it
is the principle that is interesting. The resulting path is presented in Figure 3.3
and the observed information and the parameterized control signal are shown in
Figure 3.4. The control signal is bounded and then the optimization is solved by
the function fmincon, see Appendix A for how it was used. The solution is cal-
culated as following. In each step, a control signal, parameterized into m equal
long parts, will be calculated such that the information at the time horizon tf
is maximized, given the system equations and subject to constraints. The first
optimum will be a trajectory from origo of length V · tf = 1 m, and this point
is reached by the optimal control signal consisting of m = 2 steps. The first
part of the control signal u1 is valid between the time 0 and tf/2 and the next
part u2 is valid between tf/2 and tf . After the first optimum is reached, and
the states x have been updated, a new optimization is done. The uncertainty
of the feature location is plotted as an ellipse about the feature, and the proce-
dure is terminated when the uncertainty is so low that the object could be said
is localized. The total number of optimizations are the number of ’x’:s in the
figure, a total of 25, that is the number of optimizations required for localizing
the target in this case. Since then, the information is higher than a pre-defined
value, and the target is said to be localized.

As can be seen in the path, the sensor is trying to see the object orthogonally
with respect to the last observed direction. For a bearings only sensor, an object
could be localized with just two observations if the observations are orthogonal
to each other. The optimization time is much smaller than the time it would
take for the sensor to go to a position where the second observation is orthogonal
to the first observation, and the step is taken in the orthogonal direction.

The path is the planned path for the sensor platform. However, since there
are no uncertainties of the platform’s position, it will also be the performed path
by the platform. The control signal varies all the time and it is undesirable since
the controller would be worn out. But it is understandable that the solution
gives a varying control signal, since it plans very short ahead. To avoid this
problem, one could formulate penalty functions on varying control signals, but
that is not the main task of this thesis and is therefore left out.

The calculation times for this problem are up to ten seconds in each opti-
mization, and thus the total calculation time would be about 2 minutes1. The
calculation time is highly dependent on the number of control parameterizations
m. A test with m = 3 gave a total time of 9 minutes. The calculation time

1Celeron 2.0 GHz 760 MB RAM

22

0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

Sensor Platform Trajectory

y (m)

x
(m

)

Initial sensor
platform position

Optimization
horizon

Feature
location

Figure 3.3: Trajectory of the sensor platform. Each ’x’ marks a new optimization.
The feature location’s uncertainty is an ellipse about its location.

is also dependent on the tolerance chosen for the optimization. The tolerance
is set in the Matlab function optimset, which sets the parameters used in the
optimization such as number of maximum iterations etc, see Appendix A.

The use of information as a performance index is intuitive, since the more
information you have of a feature, the more certain are you of its location.
It is also a convenient criteria for the optimization process, since when the
information is maximized, the uncertainty of the feature location is minimized.

3.2.1 Plotting the Criteria Function

To illustrate the complexity of the optimization problem, the criteria function
could be plotted over the first optimization step, that is over the first param-
eterized control signal [u1 u2]. Recall the criteria function used here as the
determinant of the information matrix from (3.12)

J(tf) = Yx(tf)Yy(tf)−Y2
xy(tf).

This function is plotted for two cases of bound on the control signal, first
bounded as −10 rad/s ≤ ui ≤ 10 rad/s, i = 1, 2, plotted in Figure 3.5. The
optimizer is trying to find the maximum, and the problem is that there are
several local maxima, and there is a risk that the optimizer will find a local
maxima instead of the global. The reason why there are so many maxima is
that when having a high bound on the control signal, the vehicle could either
turn around with a high control signal and end up about the same place as a
low control signal. For this example, tighten the bound on the control signal to
−1 rad/s ≤ ui ≤ 1 rad/s, i = 1, 2, for the same situation yields the situation
in Figure 3.6. The problem of many maxima is not solved by this, instead one
could accept any maxima inside the bound since all the solutions inside the

23

0 5 10 15 20 25
−7

−6

−5

−4

−3

−2

−1

0

1

2

3
Feature Entropic Information

Inf
orm

ati
on

time (s)

0 5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (s)

u (
rad

/s)

Control Signal

Figure 3.4: Feature entropic information and the parameterized control signal.

bounds are said to be good enough, but there are less maxima than for the high
control signal. The reason why the criteria function was plotted, is to illustrate
that the optimization is not perfect, but since it is an application of engineering,
one could satisfy with a good solution and not the best in the theoretical sense.
The Matlab functions fminunc and fmincon uses line search when it cannot
solve the problem otherwise. The line search algorithm has problem with local
maximum, and instead one could implement other optimization methods when
it is known that there are several maxima. This would however take more time
than scheduled for the thesis.

3.2.2 The Effect of Optimization Time Horizon

The sensor platform’s trajectory is affected by the time horizon tf in the opti-
mization. Figure 3.7 shows a comparison between three different time horizons.
The number of parameterizations of the control signal m differs, since in a longer
optimization, each parameterization of the control signal is valid longer. The
three time horizons are short (1 s) for 16 optimization steps, intermediate (4 s)
for 4 optimization steps and long (8 s) for 2 optimization steps. The reason is
that the total time would be 16 s for all cases. The cases can be summarized in
Table 3.1.

As can been seen, the platform with long optimization time travels more

24

−10

−5

0

5

10

−10−8−6−4−20246810

−5.85

−5.8

−5.75

−5.7

−5.65

−5.6

−5.55

−5.5

−5.45

−5.4

u2u1

In
fo

rm
at

io
n

Figure 3.5: The criteria function over a parameterized control signal [u1 u2],−10 ≤
ui ≤ 10

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−5.75

−5.7

−5.65

−5.6

−5.55

−5.5

−5.45

−5.4

u2u1

In
fo

rm
at

io
n

Figure 3.6: The criteria function over a parameterized control signal [u1 u2],−1 ≤
ui ≤ 1

direct to the feature. It will not gain as much information in the beginning as
the case with short optimization time, but since it plan further in the future,
the information at the time horizon will increase as seen in Figure 3.8.

According to Figure 3.8, a long time horizon is preferable compared to a short
time horizon. But there are problems with a long horizon. The calculation time
was different for the three cases. For the first case was about 1.8 minutes, for
the second case about 2.3 minutes and in the third case about 6.3 minutes. This
is just a simple case with one object, later on the model will be extended to n
objects and there is a need to simulate with different time horizons later on, to
evaluate the choice of time horizon.

3.2.3 The Effect of Prior Information

In the simulations, the starting information was set to 10−3 in both the x-
and y-direction. The starting information is a measure of how much is known
about the object when planning the first step in terms of uncertainty. When

25

Case 1 2 3
Time horizon tf (s) 1 4 8
Number of optimizations 16 4 2
Total time (s) 16 16 16
Control parameters m 2 4 8

Table 3.1: Details of the three cases used to investigate the effect of optimization time
horizon.

0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

Sensor Platform Trajectory

y (m)

x
(m

)

1

2

3

Figure 3.7: The trajectories for platforms with different optimization times for the
three cases in Table 3.1.

knowing more about the object, i.e. the starting information was set to 1 in
both directions, the resulting path is seen in the left part of Figure 3.9. It
will travel in the direction of the object at first, since it will not gain that much
information by taking a step orthogonally. Instead it needs to move closer, which
it does until one point where it turns and continues like in the first simulation
in Figure 3.3.

Another simulation is tried where the starting information is set to 1 in the
x-direction and 10−3 in the y-direction, shown in the right part of Figure 3.9.
This is the case when knowing one coordinate of the object’s position and it is
needed to reduce the uncertainty in the other direction. The vehicle is trying
to reduce the uncertainty in the y-direction by moving in the direction which is
orthogonal to the initial uncertainty, that is in the y-axis. The vehicle continues
until the uncertainty in the y-direction is about the same as the x-axis and it
turns to reduce the uncertainty in both directions.

3.2.4 Evaluation of the Utility Function

In the simulations below, three different utility functions are evaluated. The
details of the different simulations are given in Table 3.2. The first one is

26

0 2 4 6 8 10 12 14 16
−7

−6

−5

−4

−3

−2

−1

0

1

2
Feature Entropic Information

Inf
orm

ati
on

time (s)

1

2

3

Figure 3.8: The information for platforms with different optimization times for the
three cases in Table 3.1.

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

Sensor Platform Trajectory

y (m)

x
(m

)

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

Sensor Platform Trajectory

y (m)

x
(m

)

Figure 3.9: Left: The effect of high starting information. Right: High starting infor-
mation in x-direction and low staring information in y-direction.

maximizing the determinant of the information matrix, and tried for two cases
where the gradient of the utility function is given analytically, case 1, and by
letting Matlab approximate the gradient numerically, case 2. The optimization
is made by Matlab’s function fmincon, where it is possible for the user to choose
whether the gradient is given explicitly or not, and for a simple case like this with
only one object, the gradient could be calculated as described in Section 2.3.3.
Case 3 is the path from the trace of the information matrix’s inverse and case 4
is maximizing the minimum of the eigenvalues. The resulting paths are shown
in Figure 3.10.

All paths have the same structure, shaped as a spiral. The time horizon was
set to 1 s for simplicity and except for the utility function and gradient, all other
simulation parameters are the same. The information is plotted in Figure 3.11.

It seems that all paths are reasonable, and the maximizing of the determinant
is considered to give the best result, since the gain of information is faster
than for the other utility functions as seen in Figure 3.11. Based on the same
result, the analytical implementation of the gradient is better since information

27

Case 1 2 3 4
Utility function max |Y| max |Y| min(trY−1) max(min eig(Y))
Gradient Analytical Numerical Numerical Numerical

Table 3.2: Details of the four cases used to investigate the effect of different utility
functions.

0 5 10 15

−2

0

2

4

6

8

10

Sensor Platform Trajectory

y (m)

x
(m

)

1
2 3 4

Figure 3.10: Sensor platform trajectory calculated from different utility functions: 1)
max |Y| with gradient analytically, 2) max |Y| with gradient numerically, 3) min(trace
Y−1), 4) max(min eig(Y))

is higher, and the calculation time is faster. But there are not so much difference
in information between the analytical and numerical gradient, and when the
model gets more complicated, it is difficult to derive the analytical expression
explicitly. Especially when objects are removed or added to the model, and one
could satisfy with the numerical approximation of the gradient.

3.3 n Objects

Following the methods of this chapter, it seems that the vehicle could success-
fully localize an object. To make things more interesting, the vehicle must be
able to handle the case of n objects on the ground.

3.3.1 Modelling 2 Objects

First the model should be extended to the case with two objects. A symmetric
information matrix Y is now of (4× 4) as:

28

0 5 10 15 20 25
−7

−6

−5

−4

−3

−2

−1

0

1

2

3
Feature Entropic Information

In
fo

rm
at

io
n

time (s)

1

2

3

4

Figure 3.11: Information from the different utility functions: 1. max |Y| with gradient
analytically, 2. max |Y| with gradient numerically, 3. min(trace Y−1), 4. max(min
eig(Y))

Y(t) =




Yx1 Yx1y1 Yx1x2 Yx1y2

Yx1y1 Yy1 Yx2y1 Yy1y2

Yx1x2 Yx2y1 Yx2 Yx2y2

Yx1y2 Yy1y2 Yx2y2 Yy2


 . (3.16)

With just one more object, there were seven new states introduced. There is now
three states representing the vehicle, same as in (3.1) and ten states from the
information matrix above. The question arises whether some states, especially
the cross states Yi1j2 , could be zero. Recall the information rate of change from
(3.8) as

Ẏ(t) = −Y(t)QY(t) + I(t), (3.17)

and the same observation model as for one object from (3.4) now extended as

z(t) = [h1(xf1 ,xs),h2(xf2 ,xs)]T

h1(t) = θ1(t)− ψ(t) + ν1(t) (3.18)
h2(t) = θ2(t)− ψ(t) + ν2(t).

The linearized observation matrix H(t) is

H(t) = ∇x̂f
h(xf ,xs)

=

[
− sin θ1(t)

r1(t)
cos θ1(t)

r1(t)
0 0

0 0 − sin θ2(t)
r2(t)

cos θ2(t)
r2(t)

]
. (3.19)

29

The R matrix is the covariance matrix of the two noise processes ν1(t) and ν2(t)
as

R =
[

var(ν1) cov(ν1, ν2)
cov(ν1, ν2) var(ν2)

]
. (3.20)

Combining (3.19) and (3.20) gives the observed information according to (3.7)
as

I(t) = HT (t)R−1H(t)

=
1

(−var(ν1)var(ν2) + cov(ν1, ν2))




−var(ν2) sin2 θ1
r2
1

. . .

var(ν2) sin θ1 cos θ1
r2
1

. . .

cov(ν1, ν2) sin θ1 sin θ2
r1r2

. . .

−cov(ν1, ν2) sin θ1 cos θ2
r1r2

. . .

var(ν2) sin θ1 cos θ1
r2
1

cov(ν1, ν2) sin θ1 sin θ2
r1r2

−cov(ν1, ν2) sin θ1 cos θ2
r1r2

−var(ν2) cos2 θ1
r2
1

−cov(ν1, ν2) cos θ1 sin θ2
r1r2

cov(ν1, ν2) cos θ1 cos θ2
r1r2

−cov(ν1, ν2) cos θ1 sin θ2
r1r2

−var(ν1) sin2 θ2
r2
2

var(ν1) sin θ2 cos θ2
r2
2

cov(ν1, ν2) cos θ1 cos θ2
r1r2

var(ν1) sin θ2 cos θ2
r2
2

−var(ν1) cos2 θ2
r2
2




,

where

r1 = r1(t)
r2 = r2(t)
θ1 = θ1(t)
θ2 = θ2(t).

It can clearly be seen that if the two noise processes ν1(t) and ν2(t) are indepen-
dent, there are no covariances and the observed information matrix I(t) would
become a block matrix as

I(t) =
[

I1(t) 0
0 I2(t)

]
, (3.21)

where Ii(t), i = 1, 2 are (2 × 2) matrices representing the observed information
from respective object. From this, a model with n objects could be easily be
derived by just extending the observed information with block matrices. This
is not sufficient for the cross states Yi1j2 in (3.16) to be zero. The term in the
update law corresponding to the loss due to the process noise

−Y(t)QY(t)

must also be considered. The process noise is modelled with a block matrix,
each block containing process noise for the two objects, extended from (3.9) to

Q =
[

Q1 0
0 Q2

]
=




Qx1 0 0 0
0 Qy1 0 0
0 0 Qx2 0
0 0 0 Qy2


 . (3.22)

30

If the cross states Yi1j2 are set to zero, then the term Y(t)QY(t) would be a
block matrix as

Y(t)QY(t) =
[

Y1(t)Q1Y1(t) 0
0 Y2(t)Q2Y2(t)

]
. (3.23)

Since both terms, I(t) and Y(t)QY(t), in the update of the information matrix
in (3.17) are block matrices with non-diagonal blocks as zeros, there will not be
any information update from the cross states Yi1j2 . With no update of those
states, they will not affect the optimization and therefore those states could be
set to zero. Then the information matrix in (3.16) would be a diagonal matrix,
with (2×2) block matrices on the diagonal representing the information of each
object as

Y(t) =
[

Y1(t) 0
0 Y2(t)

]
, (3.24)

where

Yi(t) =
[

Yxi Yxiyi

Yxiyi Yyi

]
.

The matrix in (3.24) could easily be extended to n objects, with adding block
matrices for each object.

3.3.2 Path for 2 Objects

In these simulations, the noise processes ν1(t) and ν2(t) are independent of each
other, and the resulting path is examined. An information matrix is constructed
as in (3.24), and from this the determinant is taken as utility function, and
information could be maximized.

The observed information is inverse proportional to the squared distance and
angle dependent, and there is a risk that the optimizer will only ”zoom” on the
nearest object, since it will gain much information by getting closer all the time.
In order to avoid such problem, the object is removed from the model when
localized, since there is no point of getting more information about something
that already is localized. The states representing the information from the
objects are removed from the system equations and the new information matrix
is simply the information matrix from the non-localized object.

In the following simulation two features was placed in (10, 10) and (10, 0),
and the vehicle starts in origo with heading in the y-axis direction. The opti-
mization time horizon tf is set to 1 s in the first simulation and to 8 s in the
second simulation, and the utility function is the determinant of the information
matrix. The noise is the same for the two objects.

The resulting paths are shown in Figure 3.12, where the short time horizon
to the left and the long time horizon to the right. In both cases, the resulting
path is where information is gained the most from both objects. For the short
time horizon, the first step is as much orthogonal to both objects as possible,
and at a certain point, it will gain more information to ”zoom”the object closest
and will continue until the first object is localized. Next the full attention will
focus on the remaining object and it will be the case of localizing one object.

31

−2 0 2 4 6 8 10 12 14 16
−4

−2

0

2

4

6

8

10

Sensor Platform Trajectory

y (m)

x
 (

m
)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Sensor Platform Trajectory

y (m)
x
 (

m
)

Figure 3.12: Left: Simulated sensor platform trajectory with two objects, time horizon
1 s. Right: Simulated sensor platform trajectory with two objects, time horizon 8 s.

For the long time horizon, it could place its first optimum close and orthogonal
to both objects.

From the two paths, it is very tempting to make the conclusion that the
long time horizon is better than the short time horizon. But if the threshold
for localization is set higher, the long time horizon must plan a long time ahead
close to an object. In Figure 3.13 a path is shown, where the problem with a
long time horizon is seen. The first two points are the same as the right part
of Figure 3.12, but then the path must be planned a long time ahead close to
the target, until it is localized and then turns back to the other object, which is
not very effective. The short optimization horizon is not much more effective,
but it takes less time to calculate. This example was given to illustrate that a
long optimization horizon is not always preferable as one could assume be just
looking at Figure 3.12.

3.3.3 Extension to n Objects

The model can now be extended to handle n objects, since it is about adding
and removing states to the model and hence to the information matrix. When
modelling n objects, each object i has its own (2 × 2) information matrix Yi.
Then a global information matrix could be constructed by putting these on the
diagonal as

Y =




Y1 0 . . . 0
0 Y2 . . . 0
...

...
. . .

...
0 0 . . . Yn


 . (3.25)

From this matrix, all discussed utility functions could be formulated such as
maximizing the determinant and minimizing the trace of its inverse.

A simulation is made with five objects randomly placed in the xy-plane. The

32

−2 0 2 4 6 8 10 12 14

−4

−2

0

2

4

6

8

10

Sensor Platform Trajectory

y (m)

x
 (

m
)

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

9

10

Sensor Platform Trajectory

y (m)

x
 (

m
)

Figure 3.13: With long time horizon (right), the UAV must turn back to the initially
nearest object compared to the short time horizon (left).

same parameters is used as for the simulation with two objects and the result
is shown in Figure 3.14.

There are most certainly many maxima of the utility function, but as said
before, any local maxima would be good enough and new optimizations are done
until localization.

3.4 3D-modeling

The previous simulations has been in two dimensions, but a UAV has a certain
height of flight and it is natural to extend the model to three dimensions. The
height could be taken into account as an optimization parameter in a more
complex model treating the dynamics of an aircraft. A simplification is keeping
the height constant in the simulations justified by keeping down the complexity
of the problem and that an UAV often fly at a constant height in reconnaissance
missions.

There is also a singularity in the model, since the observed information is
inverse proportional to the squared distance to the feature. This means that
the vehicle could not fly straight over an object. The problem was ignored by
removing object when localized or by bounding the control signals, so the vehicle
never had to fly straight over an object. Later on in this section, a method is
derived where the information is observed in a different coordinate system and
then transformed into Cartesian coordinates, and the singularity is avoided.

3.4.1 A 3D Object

As described previously, the uncertainty of an object’s location is represented
by its information matrix Y(t). The concept is taken into three dimensions with
an extended information matrix:

33

−2 0 2 4 6 8 10 12

0

2

4

6

8

10

Sensor Platform Trajectory

y (m)

x
(m

)

Figure 3.14: Sensor platform trajectory with five objects.

Y(t) =




Yx Yxy Yxz

Yxy Yy Yyz

Yxz Yyz Yz


 . (3.26)

By modelling an object in three dimensions, the uncertainty in the z-direction
will also be considered. Even though the objects are on the ground, there should
be an uncertainty in the z-direction, because the vehicle does not fly at an exact
high. But the vehicle’s position is assumed to be known exactly, and therefore
the uncertainty is on the object instead.

The information matrix is symmetric as before and it is sufficient with six
states to represent an object. The update of the information matrix is still:

Ẏ(t) = −Y(t)QY(t) + I(t), (3.27)

but both the process noise Q and the observed information I are now (3 × 3)-
matrices.

3.4.2 Information in 3D

Let the UAV fly in the xy-plane and the distance to the ground, zs, is kept
constant. An object on the ground could be described by the angle α same
as θ in the two dimensional case and the angle β, which is the angle from the
xy-plane to the object, shown in Figure 3.15.

Introduce a sensor direction n̂ as the vector from the vehicle to the feature.
At this moment, the sensor is considered to ”point” at every direction and a
camera will be introduced later on in Chapter 6. For now, the sensor has
unlimited field of view. A coordinate system is set in the end of the vector at
the object, as in Figure 3.16. The information is observed orthogonal to the
direction of the camera, that is in the θ̂ and the φ̂-direction. In other words, the

34

-

?

¢
¢
¢
¢
¢
¢̧

¡
¡

¡
¡¡µ

@
@

@
@

@
@R

x

y

z r

α

β

(x, y)feature

Figure 3.15: 3D modelling of a feature described by the angles α and β.

?

@
@R

¡
¡ª

r
n̂

φ̂

θ̂

(x, y)feature

Figure 3.16: Local coordinates for observing information.

variance of the noise process in the n̂-direction is infinite. The variance in the θ̂-
and the φ̂-directions are σ2

θ and σ2
φ respectively. The inverse of the covariance

matrix R could be set as

R−1 ≈




0 0 0
0 1

σ2
θ

0
0 0 1

σ2
φ


 , (3.28)

if the noise processes are uncorrelated. The information could now be trans-
formed into the global Cartesian coordinates, by using the angles α and β. The
angle α could be expressed as the rotation about the z-axis in positive direction
and the angle β would be the rotation about the y-axis in negative direction.
The rotation matrices are described in [7] as

Rotz(α) =




cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1


 and (3.29)

Roty(β) =




cos(β) 0 − sin(β)
0 1 0

sin(β) 0 cos(β)


 . (3.30)

The resulting rotation matrix which transforms the global Cartesian coordinates
into the local coordinates would be [7]

Rottot = Roty(β)Rotz(α), (3.31)

35

which is equal to align the x-axis of the global Cartesian coordinate system
with the direction n̂ of the sensor by first rotate an angle α about the z-axis
and then an angle β about the y-axis. The information is gained into cartesian
coordinates by first transform with Rottot into the sensor coordinates, and there
make an observation Ilocal and then transform back with Rot−1

tot as

Iglobal = Rot−1
tot Ilocal Rottot. (3.32)

It can be shown as in [7] that the rotation matrix has following useful properties

Rot−1
i (γ) = RotT

i (γ) = Roti(−γ),

and (3.32) would be

Iglobal = Rotz(−α) Roty(−β) Ilocal Roty(β) Rotz(α). (3.33)

This yields in a (3 × 3) information matrix, used in the update law in (3.27),
without a singularity. The H in this case is simply the identity matrix in the
local coordinates, since the feature location and the observed location is the
same point.

A simulation with the same properties as for the two dimensional model in
Figure 3.3 is shown in Figure 3.17 for two different heights. In the left picture the
height of flight zs is 1 m and the β-angle is close to zero, and the rotation matrix
in (3.30) is almost the identity matrix, and there is hardly any rotation about
the y-axis, just like in the two dimensional case. That is why the simulations
are similar. The flight height affects more when it is higher, and in the right
picture of Figure 3.17 it was set to 10 m. The rotation matrix about the y-
axis differs now from the identity matrix, and there will be essential amount
of information in all states in the information matrix (3.26) and this will affect
the eigenvalues of the information matrix and hence the utility function. The
scalar measure of the utility function will be lower with increasing flight height
and could be interpreted as the higher the UAV flies, the less information is
seen about the object since it will be farther away. The resulting path with
higher flight height is longer, since there will be less information gained and
the vehicle must therefore seek more orthogonality than before in order to gain
more information.

3.5 Conclusion and Remarks

The use of information as a performance metric is reasonable since the more
information about an object is better when trying to localize it, and the path
of the moving platform is planned such that information is maximized.

The path is planned by optimization in each step. That is the reason the
control signal varies a lot, and there are no penalty in choosing the control signal
allowing the most greedy solution in terms of information. The optimization
uses the Matlab optimization toolbox, which uses line search in the examples
and there is a risk to get stuck in local optimum when the optimization is done
over a non-convex or non-linear area. Introduce bounds on the control signal in
the optimizer, reduces the number of local optimums but the problem does not
disappear, instead one could accept any local minima as a good solution and
make another optimization step, until the information is high enough.

36

0 2 4 6 8 10 12

0

2

4

6

8

10
Sensor Platform Trajectory

y (m)

x
(m

)

−2 0 2 4 6 8 10 12 14 16
−2

0

2

4

6

8

10

12

Sensor Platform Trajectory

y (m)

x
(m

)
Figure 3.17: The trajectory for an UAV with different flight heights. Left: zs = 1 m.
Right: zs = 10 m. Feature located in (10, 10).

There is the difficulty of choosing the optimization parameters. The longer
time horizon, the faster information gain, but it takes longer time to calculate
and the there is the problem of planning the path close to an object with long
time horizon. Therefore the short time horizon is chosen in the next chapter,
where an area is about to be explored. The utility function which gives the
best result with respect to information is the determinant, with the trace of the
inverse as second best. By calculating the gradient analytically, the calculation
time decreases, but the resulting path is about the same as for the numerical
approximation of the gradient. However, the analytical gradient is hard to
implement in an area search in the next chapter, and therefore the numerical
approximation is chosen. The vehicle was also able to localize n objects, and the
resulting path considered that all objects were to be localized simultaneously.

Finally the model was extended to three dimensions where the information
is observed in a local coordinate system about the object and then transformed
into global coordinates and thus avoiding the singularity in the linearization.

37

Chapter 4

Area Exploration

A common mission surveillance and reconnaissance is to search an area. The
area is represented by a number of grid points, and each point has a certain
information, so an information matrix could be constructed. The flight path is
calculated from utility functions derived from the information matrix.

4.1 Area Search

The area search is usual done after a pre-defined path. The UAV is sweeping
the area back and forth until the whole area has been covered. The usual area
search principle is shown in Figure 4.1. This method is useful when scanning
an area. However, this is not what this thesis is trying to achieve. Instead
the vehicle is about to search an area where there are a number of unknown
objects. By calculating the next step from an information matrix consisting of
information about both the area and the objects, the UAV is able to ”react” at
objects on the ground. This can’t be done if the path is pre-defined. The vehicle
will now take the best possible step at the time horizon in terms of information.
The reason is that the UAV should decide in real-time where it should go, and
not just be able to follow some pre-defined path.

Consider for example a game of battleships. In those games, you are sweeping
your opponents area, and if you hit something, you know that there is a ship
and you continue to search that part of the area until the ship has been sunken.
Instead of ships and sinking, change the terms to objects and localizing and that
will be the case of the UAV.

4.1.1 Modelling the Area

An area is represented by a grid and each grid point is considered almost like an
object. This means, if the area is about to be ”explored”, all grid points have to
be ”checked”. The main difference between grid points and objects is that a grid
point does not have to be localized in the same manner, the important thing is
whether there is an object or not, in or close to the grid point. The information
from an object was modeled in (3.26) by a (3 × 3) information matrix, that is
by six states. One could imagine that the complexity of a discretisized area
with N grid points will grow large to 6N states. Instead let each grid point be

38

−2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10
Area Search

y (m)

x
(m

)

Figure 4.1: The conventional area search. Sweeping the area according to a pre-
defined path.

represented by just one state, total N states, justified by that the grid points do
not have to be localized in the same manner as the object, and hence keeping
down the complexity and decreasing the calculation time. This one state has no
physical interpretation. If there is something at the grid point, it will be taken
into the model and the grid point are ”checked”, and when all grid points are
checked, the whole area has been explored. A grid point is said to be checked,
when the information about the grid point is higher than a pre-defined threshold
value.

The state vector x consists of the three states representing the vehicle, that
is xs and the N states representing the grid points xgp as

x =
[

xs

xgp

]
. (4.1)

The state vector consists now of (3+N) states. The information matrix consists
of the states representing the information and is constructed in the same manner
as for n objects as

Yarea(t) =




Ygp1(t) 0 . . . 0
0 Ygp2(t) . . . 0
...

...
. . .

...
0 0 0 YgpN(t)


 , (4.2)

where the index gpi denotes grid point i. The noise in each observation is con-
sidered uncorrelated and the information matrix becomes an diagonal matrix.
The dimension of the information matrix is (N ×N).

4.1.2 Limited Sensor Range

The sensor is attached to the vehicle and has its limitations. It is reasonable
that the sensor has a limited range, since it has a certain resolution, and it
is needed to find a mathematical representation of this limitation. Grocholsky
[4] argues that real world sensors typically exhibit an exponential variation in
measurement uncertainty up to the maximum range. Introduce a distance rmax

39

which is the maximum range of the sensor and introduce an exponential penalty
function, such that the covariance of the noise becomes

R = σ2
0 exp

(
4.6(

r

rmax
)2

)
, (4.3)

and the observed information is proportional to the inverse of the covariance as

R−1 =
1
σ2

0

exp
(
−4.6(

r

rmax
)2

)
, (4.4)

where σ0 is the observed standard deviation at zero range, r is the distance
between the sensor and the grid point and rmax is the maximum range of the
sensor. The penalty function is the exponential function of r

exp
(
−4.6(

r

rmax
)2

)
,

which does not penalize at zero distance, and at distance rmax there will hardly
be any information observed, and is plotted in Figure 4.2. Other functions could
be used and for examples see Grocholsky [4].

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Observed Information vs Range

O
bs

er
ve

d
In

fo
rm

at
io

n

r/rmax

Figure 4.2: Exponential modeling of range dependent measurement errors in a math-
ematical model of a realistic bearings-only sensor.

4.1.3 Observed Information

The observation model for an area exploration is according to Grocholsky [4]:

z(t) = T(x, y) + v(t), (4.5)

where T(x, y) is a function describing the terrain characteristic and v(t) zero-
mean uncorrelated Gaussian sequence with variance R as a function of the
distance r as in (4.3).

This is a model and in this model, the terrain characteristics are said to be the
states representing the grid points. For simplicity, these states could be observed
directly by the camera. This means that there are no transformation between

40

the measurements and the states. The reason is that the linear observation
matrix H becomes simply the identity matrix according to (2.15) as

T(x, y) = xgp

z(t) = xgp + v(t). (4.6)

The information observed from the grid points follows the usual update law as

I(t) = HT (t)R−1H(t) = R−1

=
1
σ2

0




exp
(
−4.6(r1

rmax
)2

)
0 . . . 0

0
. . . 0

... 0

0 . . . 0 exp
(
−4.6(rN

rmax
)2

)




.

Each grid point is stationary, but as for stationary objects, a small process noise
is included to improve numerical conditioning, as described in Section 3.1.2. The
model for a grid point i is

ẋgpi = ω(t), (4.7)

where ω(t) is a zero mean Gaussian process with uncorrelated covariance Q(t).
The observed information matrix I(t) is also an (N ×N) matrix and the update
law of the information matrix is given by

Ẏ(t) = −Y(t)QY(t) + I(t).

4.2 Simulations

In the simulations a quadratic area (10×10) was created, and discretisized with
a distance of one between each grid point. This means that there are 112 = 121
points representing the area.

The complexity of the problem is now increased. There are now 121 states
for the area plus the original three representing the vehicle, to a total of 124
states, to be compared with for example nine states when localizing an 3D
object. There is again need to evaluate the performance of the different utility
functions.

4.2.1 Determinant as Utility Function

The major problem with using the determinant as utility function is the nu-
merical difficulties. Since the area consists of 121 grid points with low starting
information, i.e. 10−3 for the states representing grid points, and the first deter-
minant calculated would be in the range of 10−363. This is considered to by zero
by Matlab, and when the determinant is zero the utility function is also zero for
all control signals and no minimum will be reached by the optimizer. To avoid

41

this problem one could simply put 1 as starting information for each grid point,
but there would still be numerical problems after a while. For example if the
states has high values, the determinant would be close to infinity, therefore a
normalization must be done. Recall the definition of entropic information from
(2.7):

i(x) =
1
2

log[(2πe)−n|Y|].

Maximizing log |Y| would also maximize the entropic information. However,
with an even finer partition of the area, many grid points must be considered
such that the log |Y| could be infinite. Therefore, the second best utility function
from Section 3.2.4 is tested.

4.2.2 Trace of the Inverse as Utility Function

When calculating trace of the inverse information matrix, a summation is done
instead of a multiplication and the numerical difficulties could be avoided. The
question arises whether a matrix is invertable when the numerical determinant
is zero? Since the matrix in (4.2) is a diagonal matrix, it is simple to invert.
The Matlab function sparse, see Appendix A, helps matrices containing lot of
zeros, and therefore it is possible to invert such information matrix. With this
utility function, there are no numerical problems, and is therefore used in the
following simulations. Remember that the states representing objects or grid
points are states in the information matrix, and it is just calculating the trace
of the inverse instead of the determinant.

4.2.3 Simulating the Area Search

Figure 4.3 shows two area searches with different bounds on the control signal.
The vehicle starts in origo with heading upwards and the time horizon is set to
1 s, otherwise the calculation time would be too long. For the same reason the
control signal is parameterized into two steps m = 2. The grayscaled background
is the information level of the surface, the brighter the more information. The
area search is terminated when the information for all grid points is higher
than a predefined threshold value. The path is about the same for the two
simulations, but with the tighter bound on the control signal, the vehicle will
not turn as sharp. The flight path will begin on the diagonal since there is
the most information to gain, but when the sensor’s maximum range reaches
the outer rim of the area, it turns and continues the search in the direction of
maximum information. Maybe the flight paths do not seem ”optimal” to the eye,
since the vehicle crosses its own path four times, but they are (locally) optimal
in the sense of maximizing information at the time horizon.

4.3 The Combined Model

It is now possible to derive a model which treats the problem of searching an
area with n objects. The UAV should be able to decide where to go, by solving
the optimal control problem while flying. The combined problem is of interest
since it is a common problem in reality. The flight path must be calculated with
respect to the grid points and the objects.

42

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Area Search

y (m)

x
 (

m
)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

y (m)

x
 (

m
)

Area Search

Figure 4.3: Trajectory of sensor platform for an area search with different bounds on
the control signals. Left: −1 ≤ u ≤ 1. Right: −π ≤ u ≤ π

4.3.1 Global Information Matrix

The locations of the objects are unknown to the sensor initially and first when an
object is in the sensor’s range, the information matrix from the grid points are
extended with the information matrix from the object. So the global information
matrix would be:

Ytot = diag
(

Ygp1 . . . YgpN Yobj1 . . . Yobjn

)
. (4.8)

All Ygp are scalar values, and the Yobj are (3×3) matrices. The total information
matrix is a diagonal block matrix containing lot of zeros, and by using the
properties of such matrices it could be invertable and the trace could again be
calculated as the utility function.

As mentioned earlier in (4.4), the observations of grid points are range de-
pendent. This is also true for objects, and the same exponential behavior is
applied to objects. The information observed from objects are done in local
coordinates, with no information in the direction of the camera. The new range
dependent inverse covariance matrix is the same as in (3.28) with the penalty
function added as

R−1(t) ≈




0 0 0
0 1

σ2
θ

0
0 0 1

σ2
φ


 exp(−4.6(

r

rmax
)2). (4.9)

4.3.2 Simulations

Since the grid points and the objects are modeled differently, there is a problem
to get balance in the simulations. The first simulation is an area search where
five objects has been placed out randomly. The path reminds of the paths in
Figure 4.3, which could be explained by instead of concentrating on an object,
there are more information to be gained by searching the unexplored area. It

43

seems that the model for the grid points gives higher information than the model
for the objects, and therefore it is more information to gain by searching the
area.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Area Search

y (m)

x
(m

)

Figure 4.4: Trajectory of sensor platform for an area search with five objects. −1 ≤
u ≤ 1

However in reality, and especially in military applications, one could set
different priorities for objects and grid points, since an unidentified object could
be hostile. The priorities could be chosen such that the information values from
the grid points could be compared to the information values from the objects.

As comparison a simulation with a weighing matrix W is including in the
utility function as in [6] as

J = trace (W P), (4.10)

where P is the covariance matrix Y−1. The states representing the objects are
weighted higher than the states representing the grid points. This could reflect
the need to identify targets faster in surveillance and reconnaissance, since a
target could be hostile. The resulting path is shown in Figure 4.5 and it is more
desirable for the vehicle to localize a target within the sensor’s range.

The question of how to choose weights arises. The user specifying the mission
of the UAV could set weight depending of how much more interesting informa-
tion from targets are compared to information about the area. If the mission
is road surveillance, it seems as a good idea to weight targets more, otherwise
the UAV must turn back to the end of the road to accomplish the localization
of the targets.

4.4 Summary

In this chapter the model was extended such that the vehicle searched an area.
Area searches are usually done after a pre-defined path, where the vehicle sweeps
the area. This information-theoretic approach lets the vehicle optimize a tra-
jectory at a time horizon, such that it can take a good step depending where it
is and what it has already seen. In this way, the vehicle can act autonomously.

The combined model of an area with objects was also tried by solving the
optimal control problem. The models for grid points and objects differs, and by

44

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Area Search

y (m)

x
(m

)

Figure 4.5: Trajectory of sensor platform for an area search consisting of five objects
with weighted utility function. −1 ≤ u ≤ 1

introducing weight matrices, these weights or priorities could be set by the user
according to the mission. A simulation for an entire area exploration takes some
time, approximately a lunch break and it is therefore undesirable for real-time
applications, but the principle works. Instead of using Matlab’s optimization
toolbox, one could write your own optimizer for this problem and reduce the
calculation time.

45

Chapter 5

Spline Optimization

The simulation model has so far one big simplification compared to the reality.
In the SIREOS project the sensor is a gimballed camera, more in Chapter 6,
and objects and grid points could only be observed if within the field of view of
the camera. The camera has two degrees of freedom, and is therefore controlled
by two control signals. The optimal control problem would now be over three
parameterized control signals, which implies a heavy computational load. An
alternative method is to find the optimal trajectory directly by placing points
who together creates a spline. In this chapter, the method with splines is de-
scribed and the resulting trajectory is compared with the previous paths. Later
on in Chapter 6, the spline method is extended with a trajectory representing
the camera motion and the resulting optimization would be two trajectories,
describing fully how both the vehicle and camera should move respectively.

5.1 Properties of Splines

5.1.1 Advantages

The main advantage with splines will be shown first after the camera is intro-
duced, which is that the splines represent the trajectories directly. The trajec-
tories do not longer have to be calculated by sending in control signals. The
camera is controlled by two control signals and combined with the control signal
for the UAV, the optimization is done over three parameterized control signals
if the problem is solved like an optimal control problem. This implies a heavy
computational load. Instead one could set up one spline representing the ve-
hicle’s trajectory and one spline representing the camera motion, which would
hopefully decrease the computational time, since the resulting trajectories are
given directly. In this chapter, there is just one spline for the vehicle’s trajectory
and the camera is introduced in Chapter 6.

Another advantage is that it is now possible to force the vehicle to pass
certain points, by making them spline points. In military applications, one
could imagine that there are some locations more strategic than other, like an
hill, and it is necessary to know if there are any hostile targets at that hill. By
including the location of the hill in the spline, the UAV is guaranteed to look
at that point.

46

u
u

³³³³³³1rr ur r
d

-XXXXXz

ϕ

Figure 5.1: Geometrical bounds on spline. The bigger points are the spline points
and the smaller points interpolated points in between. The distance d between the
spline points is bounded, as well as the angle ϕ in the intersection of two splines.

5.1.2 Disadvantages

The main difficulty is how to place the spline points. The points must be placed
such that it is possible for the UAV to fly the resulting trajectory. The spline
points must be placed in such way that the control signals corresponding to the
path are bounded. This was handled by introducing geometrical bound on the
spline points, as shown in Figure 5.1. The spline points are the bigger points,
and the smaller points are the interpolated points in between. The first bound
is that the spline points must be within a certain distance d from each other,
corresponding to a constant velocity. The second bound is that the angle ϕ in
the intersection of two splines, calculated about a spline point and the nearest
interpolated points, is limited which corresponds to a bounded control signal.
These bounds are nonlinear but the Matlab function fmincon can handle such
bounds.

Another difficulty is that the first spline point will affect the trajectory the
most, and if it is somehow misplaced by for example too low tolerance in the
optimization, the optimal final point will never be reached.

5.2 The Single Platform Example

This illustrates the first example when localizing one object on the ground. It
is the same example as in Chapter 3, but with splines instead of control signals.
The information is in three dimensions, with flight height 1 m, and it would be
the same situation as the left picture of Figure 3.17.

5.2.1 Optimizing over Splines

The feature and sensor is modelled as in Chapter 3. The states representing
the vehicle [x, y, ψ]T are removed from the model and the spline is used. The
position could be taken directly from the spline, since it is the trajectory and
the angle ψ could be calculated by using the spline points.

Instead of having a parameterized control signal as variable in the optimiza-
tion process, a number of points is used which should be placed according to
a given start point and the direction of the previous spline. The output of the
optimizer is the spline points, who together build up the resulting trajectory.
The problem with several minimums of the utility function is still there, and the
resulting trajectory would not be optimal, but hopefully good enough. Then the

47

states are calculated by solving the update law of the information matrix, where
observations are made at the spline points and interpolated points in between.
The nonlinear bounds on the spline are introduced in order to get a reasonable
flight path.

5.2.2 Simulations

In the first simulations, the parameters describing the spline are

d = 1 m Distance between the spline points constant.
ϕ = 30◦ Angle bound between the splines.
M = 3 Number of spline points in each optimization step.

And the other simulations parameters are

(xf , yf) = (10, 10) m Feature location
Y(0) = I3 · 10−3 Low starting information
Q = I3 · 10−6 Process noise
I3 A (3× 3) identity matrix
σ = 2.5◦ ⇒ R = σ2 Observation noise

The distance between the spline points is kept constant to resemble constant
velocity, and the angle bound is there to avoid large control signals. M = 3
means that three spline points are placed and they are building up the trajec-
tory for the vehicle. The number of spline points and how long they may be
placed from each other are setting the length of the trajectory which resembles
the optimization time horizon. The information at the final spline point, which
is depending on the trajectory, is building up the information matrix from where
the utility function is calculated.

The resulting trajectory is still shaped as a spiral since the information gain is
most favorable orthogonal to the last observed direction and inverse proportional
to the squared distance. The spline optimization gives about the same result as
for the control signal optimization, which is correct since the same information
model are used.

0 5 10 15

0

2

4

6

8

10

Sensor Platform Trajectory

y (m)

x
 (

m
)

Figure 5.2: The optimal trajectory with constant distance 1 m between the spline
points. Each spline point is marked with an ’x’ or a ’o’, the ’x’ points indicates a new
optimization.

48

The distance between the spline points could vary and is shown in the left
part of Figure 5.3. The distance is set to 2 m and 3 m respectively. The
situation resembles much of the effect of different optimization time, and there
is a difficulty planning the number of optimization steps.

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

9

10

Sensor Platform Trajectory

y (m)

x
 (

m
)

1

2

0 5 10 15

0

2

4

6

8

10

Sensor Platform Trajectory

y (m)

x
 (

m
)

Figure 5.3: Left: The resulting trajectory for distance between spline points: 1) 2 m
and 2) 3 m. Right: The resulting trajectory for a path with distance varying 0.8 and
1.2 m between two spline points. All spline points are marked with an ’x’.

The simulations are so far very similar to the simulations in Chapter 3. Ar-
guing for the use of splines, it is very easy to place the spline points with different
distance in between. The next simulation is the same as for in Figure 5.2 but
the distance is allowed to vary within twenty percent, that is the spline point
distance is between 0.8 m and 1.2 m. This would be harder to implement in the
original model. The bound on the angle is tightened to 20◦ in order to avoid
some local minima, the same problem as in Section 3.2.1. The resulting path
is shown in the right part of Figure 5.3 which requires less optimization steps
than for the simulation in Figure 5.2 since the vehicle will take longer step far
away from the feature and could use shorter step if necessary.

A problem with splines is to overplan, which means that a spline is too
long and spline points must be placed far from the feature. By having the
length between the spline points vary with the distance to the target as seen in
Figure 5.4 but not the angular bound, there is no risk to overplan and instead
the vehicle will localize the object faster. This opens up for two interpretations.
The first is that the vehicle will no longer travel with constant velocity, but
instead travel fast when it is far away and slow when it is close to the object.
The number of observations is the same between any two spline points and
more observations are made closer to the object, which is reflecting a real life
situation. The other interpretation is that the velocity is still constant and
instead the number of observations varies with the distance to the target. The
closer the target, the more observations and it is also reasonable since nearer
the target, the better are the images.

A simulation like in Figure 5.4 takes about one minute, which is faster than
the optimal control problem. This is promising since the main reason for intro-
ducing splines was the computational time.

49

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

Sensor Platform Trajectory

y (m)

x
 (

m
)

Figure 5.4: The optimal trajectory with varying distance in each subspline.

5.3 Discussion

The method of using splines is appropriate since the resulting trajectory is about
the same as for optimizing over control signals. Spline points are very flexible
since it is very easy placing the points at different distance between each other.

Splines are also preferable if the user knows that the UAV must pass a certain
point. For example, if it is known a priori that there are a target at a certain
location, the path could be planned such that that point is passed. Then there
is no risk that the UAV will miss those points. This was not simulated, but by
adding a point in the spline that is fixed, then the vehicle will pass this point.

The user chooses the distance between the spline points and the angle bound.
There is still the problem with many optimum in the utility function, and
the number of local optimum increases with more spline points or less tighten
bounds. Most choices of parameters will lead to local optimums. At this mo-
ment, the solution is affected by the starting values and the parameters, and
the user has to choose carefully until the optimization method is changed.

50

Chapter 6

The Gimballed Camera

In this chapter the states representing the camera are introduced. Objects are
observed if seen by the camera, and the resulting path will not only be the
trajectory for the vehicle, but also a trajectory of what the camera sees. Splines
are used to create the trajectory for the camera.

6.1 Experimental Sensor System

The sensor system is a gimballed camera with an IR camera and a CCD video
sensor as in Figure 6.1. The camera is able to rotate 360◦ about its own axis,
called the pan angle, and the tilt angle is approximately +10/−90◦. The angles
are shown in Figure 6.2.

Figure 6.1: The gimbal system. Left: Inner gimbal consists of an IR camera and a
color CCD. Middle: The gimbal with demounted front. Right: Gimbal with mounted
front. [8]

6.1.1 Modelling the Camera

The states xc = (xc, yc)T representing the camera are the states which the
camera points at on the ground. The spline representing the camera would be
the points on the ground where the camera looks at. Originally the camera had
a certain visibility set to a distance from (xc, yc)T , and all points outside this
circle were not visible. This may be true in real life but there was a problem
in the optimization, since if the visibility is zero, the gain of information is zero
and no minimum will be found since the optimizer will not have a gradient and

51

Figure 6.2: Schematic view of the gimballed camera. The four joints are marked,
outer joints are called pan respectively tilt angle. [8]

will not know in which direction the visibility increases. Therefore a reasonable
visibility function is a function that is one inside a certain distance rhigh, and
outside decrease exponentially and different candidates are seen in Figure 6.3
and the function in equation form in (6.1).

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Visibility as a function of the distance to the camera center

Distance to camera center

V
is

ib
ili

ty

Figure 6.3: The visibility as a function of where the camera points at. Visibility inside

the radius rhigh = 1 is one, and outside decreasing as e−const(r−rhigh)2 . The solid line
has const = 0.05, the dashed const = 0.1 and the dash dotted const = 0.5.

r =
√

(x− xc)2 + (y − yc)2

visibility =
{

1 if r < rhigh

e−const(r−rhigh)2 o.w.
(6.1)

6.1.2 Limitation of the Camera

The camera is controlled by two control signals, controlling the pan respectively
the tilt angle. The optimization is by using splines and to represent the limi-
tation, bounds have to be constructed. Each spline point is a point where the
camera looks at, and the resulting spline would be a spline of camera point
vectors.

52

The range of the camera is taken into account in the model as a bound. The
spline points of the camera may not be placed any further away from the vehicle
than the maximum range rmax, since the camera is attached to the vehicle in
(xs, ys)T and the camera points at (xc, yc)T . This means that if the vehicle is
far away from the object, it will hardly get any information about it and must
therefore move towards it until it could begin the information gain.

The next bound is that the spline points of the camera must be at a certain
distance from each other. The differences from the vehicle trajectory are that
the camera is must faster and may move in any direction, and therefore the
points creating the camera spline do not have such tight bound and the distance
between two camera spline points could be more varying.

6.2 Localizing Objects on the Ground

Planning the path for localizing one object with a camera is not very interesting,
since the camera will always point in the direction of the object. With two
objects the camera must choose to look at either object. Once again, the utility
function chosen will affect the solution.

6.2.1 Using all Spline Points

The splines for the trajectory as well for the camera are optimized by two points
each, and the information observed is taken in the direction of the camera.
Following the same method as previously, the utility function consist of the
information at the final spline point. The spline points placed before the final
spline point will have more effect if considered in the utility function. Since
two points are building up the spline, the first point at tf−1 is also considered
in the utility function (6.2). The reason is to get rid of some local optimums
in this very complex problem. Another idea when using splines is to add an
extra point with less constraints, and the information is maximized by a sum
of the real spline points and this extra point. The latter could be interpreted
as an estimation of the future information and the resulting path would be in
the direction somewhat between what would be good now and not so bad in
the future. The utility function for two real spline points placed in tf−1 and tf
would be

J = a J(tf−1) + b J(tf) + c Ĵ(tf+1), (6.2)

where a, b and c are weights and Ĵ(tf+1) is the estimation of the future infor-
mation gain. In the simulations, the weights were set to a = 1, b = 2 and c = 1,
so the greater influence is from the real final spline point. The extra point is
not used in the update of the states and is only there for the optimization.

In the simulations the task is to localize two objects in the plane, same
as in Section 3.3.1, with the difference that the information model is in three
dimensions. The objects are located at (10, 0) and (10, 10). The vehicle starts
in origo with heading rightwards and the flight height is constant, zs = 1 m,
throughout the simulations. Into each optimization step, the initial trajectory
guess is from the current vehicle location to a point between the objects, and the
initial guess for the camera trajectory is the last point where the camera looked
at, initially straight down. The optimization is continued until both objects are

53

localized. If an object is localized, it is removed from the information matrix
and in the next optimization step the information matrix is constructed just
from the non-localized object.

6.2.2 The Utility Function

The utility function affects the solution, maybe more in this case than ever. The
two main candidates are the determinant and the trace of the inverse from (2.9)
and (2.11), given again in terms of eigenvalues

max |Y| = max
n∏

i=1

λi

min trace (Y−1) = min
n∑

i=1

1
λi

.

The determinant maximizes the product of the eigenvalues, and could therefore
compensate a low eigenvalue with a high. In other words, the determinant can
be large by just focusing on one object. For the trace of the inverse to be
minimized it is more important to affect all eigenvalues and must consider both
objects. These effects are seen in the following simulations.

6.2.3 Simulations

The simulations are done with first the determinant as utility function in Fig-
ure 6.4, and then with the trace of the inverse as utility function in Figure 6.5.
Both objects are in the range of the camera, otherwise the camera will just look
at objects inside its range. The trajectory is plotted in solid line, where each
spline point is marked. The camera spline is plotted in dotted line. The camera
spline is the points on the ground where the camera looks at and the trajectory
is at the flight height, and these splines are plotted in the same picture. The
’x’:s in the plot are all points building up the spline, including the interpolated
points between the spline points. The constant of the penalty function in (6.1)
was set to 0.05. The distance between the spline points was set to 1 m and the
distance between the camera spline points was allowed to vary between 0 and
10 m.

For both cases, this optimization problem is very complex. There are several
local maximum for the information, and the method of line search is far from
the best, but the resulting path from the different utility functions could be
seen.

The starting values of the information are small, set to 10−3. These values
are the initial eigenvalues of the information matrix. The information matrix
consists on two (3×3) block matrices representing each object, and is therefore a
(6×6) matrix. If only one object is observed, the three eigenvalues corresponding
to that object become high, and the other three eigenvalues will have their
starting values. If both objects would be observed partially, there will roughly
be six low eigenvalues. For simplicity, lets say:

λstart = 10−3, λlow = 10−2 and λhigh = 1,

54

−2 0 2 4 6 8 10 12

0

2

4

6

8

10
Sensor Platform Trajectory and Camera Direction Trajectory

y (m)

x
(m

)

Figure 6.4: Sensor Platform Trajectory (solid) and Camera Direction Trajectory
(dashed), utility function is determinant.

where the λhigh is the eigenvalue of an observed object when the camera focuses
on that object. The λlow is the eigenvalue when the camera looks somewhere
between both objects, since the visibility function in Figure 6.3 decreases with
the distance between where the camera points and the object. The λstart is the
starting value, and is still the eigenvalue for a object if not observed.

The determinant is a product of the six eigenvalues, and the idea is to max-
imize the determinant. Multiplying six λlow is lesser than multiplying three
λhigh and three λstart:

(λlow)6 = (10−2)6 = 10−12 < (λhigh)3(λstart)3 = (10−3)313 = 10−9

That is the reason that the determinant tries to see one object at a time, as
seen in Figure 6.4.

For the trace of the inverse, the utility function will be a sum of the inverse
eigenvalues, and the idea is to minimize the trace of the inverse. If it would
focus on one object, there will be three λhigh and three λstart, and the sum of
the inverse eigenvalues would be higher than the sum of six λlow:

6
λlow

=
6

10−2
= 600 < (

3
λstart

+
3

λhigh
) = (

3
10−3

+
3
1
) = 3003.

That is the reason why the first observation is somewhere between the objects,
since it will observe something from both objects. This effect is seen in the
Figure 6.5. This example illustrates why the paths in the two simulations differ.
But with other starting values, other resulting paths would be obtained.

After the first object has been localized, it is removed from the model and
the starting values for the camera spline points is where it looked last time, that
is in the direction of the object which has just been localized. In the simulation
with the trace of the inverse as utility function, there is a problem after the first

55

−4 −2 0 2 4 6 8 10 12 14 16

−6

−4

−2

0

2

4

6

8

10

Sensor Platform Trajectory and Camera Direction Trajectory

y (m)

x
(m

)

Figure 6.5: Sensor Platform Trajectory (solid) and Camera Direction Trajectory
(dashed), utility function is trace of the inverse.

object in (10, 0) has been localized. The distance to the other object in (10, 10)
is quite long, and the information observed from it is so small, that it is hard to
find an optimum. When no optimum is found, the vehicle travels in the direction
of the initial guesses, that is in the direction of the non-localized object, and the
vehicle is just getting closer. The optimization is not perfect, this is undesirable
but with smart initial guesses, as in the direction of the non-localized object,
the vehicle is getting closer and the gained information becomes high again.

6.3 Summary

Including the camera into the model increases the complexity of the optimiza-
tion. Not only has the trajectory of the vehicle to be optimized, but also the
trajectory consisting of how the camera should point. These trajectories are
bounded to each other, since the spline points of the camera vector may only be
placed up to a certain distance from the spline points for the vehicle trajectory.
Information gain through observation is depending on where the camera looks
at, and farther away from the object gives less information. For information to
be maximized, the object must be within the camera’s field of view, orthogonal
and close to the object. With two objects, there are several possibilities for the
optimizer, that is several local maximum for information and the path in the
simulations may not be the best one.

It is more interesting to see the effects of the different choices of utility
functions. The determinant manages to find a path somewhere between the
objects and sweep the camera at the objects. This is helped by the initial guess
for the trajectory, which is in between the objects. When localizing two objects,
it seems reasonable to fly somewhere in between, and this solution is found by
the optimizer even though there are several optimum in the utility function.

56

The weights in (6.2) of the utility function has also effect on the solution and
they were chosen such that the main part of the solution is at the time horizon
tf . The time horizon corresponds to the last of the spline points that will
build up the trajectory. An extra point is added to include an estimate of the
information to be gained in the future, so the vehicle is allowed to take a step
in some direction that may not be the best at the time horizon, but better in
the future. Different weights will give different trajectories and they could be
chosen by the user on what is most important.

The trace of the inverse as utility function gives a quite different path com-
pared to the determinant. Both simulations have the same threshold for local-
izing objects and the path when using the trace of the inverse is longer, which
means that the number of optimizations is higher and the path would be less
good. This implies that the determinant is better as utility function, but in
Chapter 4, the determinant was not chosen due to numerical difficulties when
having a large information matrix. The conclusions to be drawn are that it
is hard to choose one utility function as the best one. Maybe one could use
both utility functions, since it is just about calculations, and find something in
between.

There are many suggestions for the future. The camera model is very simple
and it should be improved. Another optimization method is preferable where
the global or a sufficient good local optimum will be found. But it is interesting
that the vehicle and the camera motion trajectory could be planned with respect
to each other.

57

Chapter 7

Summary and Conclusion

In this chapter the results from the report are summarized, conclusions are
drawn and some suggestions of future work are given.

7.1 Summary

The flight path was calculated from an information-theoretic approach. The
problem was first formulated and solved like an optimal control problem, and
then solved by using splines. The applications are in UAV surveillance and
reconnaissance.

7.1.1 Information-Theoretic Approach

For both methods, the optimization is done by setting up an information matrix
constructed from those states representing the objects or grid points to be local-
ized. The use of information is very elegant, since the UAV is able to calculate
the maximum information at the optimization time horizon. The evolution of
the information matrix is depending on the linearization of the system equations
and observations, and with incorrect modelling, there is a risk that the resulting
path would not be that good.

There are two alternatives for path planning of an autonomous vehicle. Ei-
ther by a pre-defined path or by on-line planning, where the latter means that
the path is planned interactively by the vehicle. The information-theoretic ap-
proach is one method of on-line path planning.

Making no claims that on-line path planning is better than pre-defined paths,
like the conventional area search principle in Chapter 4, there are cases where
the on-line path planning is preferable. For example, the vehicle could adapt
when seeing objects, and change its path autonomously. It is not necessary to
know everything in before, which is required when using pre-defined paths.

According to Grocholsky [4], the information-theoretic approach has sev-
eral advantages. First of all, it is an intuitive correct measure when having a
bearings-only sensor. Information is also connected to probability distributions,
which are used to describe the uncertainties of the objects. When trying to lo-
calize an object, information is appropriate since the higher information about
an object, the better is the localization. The information-theoretic approach

58

is also suitable if several sensors on different platforms are used to search an
area. With communication between the sensors, information measures such as
mutual information could be used, and the solution would be how all vehicles
and sensors should move respectively.

7.1.2 Optimal Control

By formulating the path planning problem as an optimal control problem, one
must first calculate the optimal control signals as those control signals that
maximizes information. By sending in these control signals in the UAV, the
optimal flight path will be obtained. The path is optimal for each optimization
step, that is at the time horizon, but the optimum could be a local optimum
since it is not a convex problem. Different parameters were discussed, such as
different utility functions, time horizon and prior information. The method was
tried on both a simple case by identifying just one object, then extended to n
objects, as well as for an entire area exploration, and worked satisfactory in all
cases as shown in Chapter 3 and Chapter 4.

7.1.3 Spline Optimization

Spline optimization is simpler in the sense of finding points, since the resulting
trajectory is found directly. This method is extended in Chapter 6 with the
camera model. Two splines are now created, one for the vehicle and one for the
camera and the solution is how the vehicle and camera should move respectively.
The natural extension is using splines for an area exploration and compare those
results with the optimal control solutions, which is saved for future work.

7.2 Discussion

During the thesis several methods were tried. There is a problem of how to
choose the optimization parameters. The two most important choices are which
utility function to use and how to formulate the problem.

7.2.1 Utility Function

As seen in the simulations, different utility functions result in different paths.
It is hard to choose one utility function as the best in all situations. All utility
functions operates on the eigenvalues of the information matrix, and information
is high when the eigenvalues are large. In the example with only one object in
Figure 3.10, the resulting paths are similar. But when the matrix increases with
more objects, there are some differences as in the camera example in Figures 6.4
and 6.5. Grocholsky [4] has only compared the paths when identifying one
object, not with several objects. There is nothing that says that either the
determinant or the trace of the inverse is the best in all cases. Instead one could
set up a determinant for each object and sum up these, to avoid the numerical
problems when taking the determinant of a large information matrix containing
lots of small values.

59

7.2.2 Optimal Control vs. Splines

Even though the optimal control solution worked well, it was not sufficient since
the camera has not been introduced. The ”real” optimal control problem is
more complex and should be formulated over three control signals, two for the
camera and one for the vehicle. This seemed like a heavy computational load
and therefore the spline optimization was introduced. However, it would have
been interesting to examine the solution with optimal control and compare the
result with the spline optimization.

What could be compared are the solutions to similar problems, with as many
optimization parameters the same as possible. The calculation time for the
simplest case when just identifying an object is about half the time when using
splines. But the calculation time is depending on many optimization parameters.
For example, by reducing the number of parameterized control signals in the
optimal control problem, the calculation time will also be decreased. But the
method of splines seems promising though, however the splines was not that
much faster. There is still the problem of many local maximum, which should
be solved by using another optimization method, yet not decided how.

7.2.3 Comments on References

The main problem with several local optimums is never discussed in Grocholsky
[4], and one could think that the optimization functions will find the global
optimum. But as it is now, the optimization parameters affects the solution.
For example, if the starting values are set such that only local optimum could be
reached by the line search method, the global optimum will never be found. The
wanted method is that the optimizing procedure will find the global minimum
for any kind of starting values.

7.3 Conclusion

Information-theoretic approach is a method suitable for the cases of path plan-
ning where the vehicle is about to make its own decisions. But the problem is
quite complex, since it is about finding optimum where there are several local
optimums, and there is no rule that guarantees the best solution. The method
of splines is promising since the calculation time is lower than for the optimal
control problem, and spline could solve a complex problem like the optimization
over both the vehicle and camera trajectory.

7.4 Future Work

There are a lot to do in the future. First of all, another optimization method
should be used such that it is possible to find the global, or a sufficient good local
minimum. Other things that could be done later on are for example planning
the path with obstacles like trees or buildings which make some targets only
visible if observed in a certain direction. It is also possible to optimize with
other criterions like tactical constraints such that stealth. A first scenario of the
area exploration is road surveillance, where the area is the road and the task is
to search through the road for targets.

60

In order to get the simulations more realistic the uncertainty of the vehicle
must be considered, since the UAV position is estimated by GPS/INS. This will
lead to a quite complicated model and is saved for future work.

The camera model is very simple and should be improved. At this moment
the camera has a certain visibility of where it looks, but the closer the camera,
the better are the images and this has not been considered.

Eventually the UAV has to be tested and should be able to calculate its next
step in real-time. A way to decrease the computational time is instead of using
Matlab’s optimization toolbox write your own optimizer for this special case.

61

Appendix A

Matlab functions

fminunc

u = fminunc([function, u0, options, x]);

Where

u The solution to the minimization, the optimal control signal u.
function The function to be minimized by u.
u0 Initial guesses for u.
options Optimization parameters defined in optimset.
x Extra parameters into the optimization, here the states x.

fmincon

u = fmincon([function, u0, A, B, Aeq, Beq, u_low, u_high, nonlincon,
options, x]);

Differs from fminunc with

A,B Minimizes the function with respect to inequalities Au ≤ B.
Aeq,Beq Minimizes the function with respect to equalities Aequ = Beq.
u_low Lower bound of control signal u.
u_high Higher bound of control signal u.
nonlincon Minimizes the function with respect to nonlinear constraints.

optimset

options = optimset(’fminunc’); or options = optimset(’fmincon’);

Used to set optimization parameters like
options = optimset(options,’TolX’,tol); Tolerance on constraints

set to value tol
options = optimset(options,’MaxIter’,iter); Maximum number

of iterations iter

62

ode45

[T,X] = ode45(@xdot, tspan, X0, options, u);

Where the ode45 solving differential equations with

@xdot The system equations to be solved ẋ = f(x,u)
[T,X] The solutions x at time t in the vectors [T,X]
tspan The time interval where the differential equations are to be solved
X0 Starting values of x
options Solution parameters specified by odeset
u Control signal as extra parameter in the system equations

sparse

S = sparse(S);

Converts a sparse or full matrix into sparse form by squeezing out any zero
elements.

63

Bibliography

[1] Bertsekas, Dimitri P., Dynamic Programming and Optimal Control, Athena
Scientific, Belmont 2000.

[2] Böiers, Lars-Christer, Lectures on Optimization, KFS AB, Lund 2001.

[3] Glad, Torkel and Ljung, Lennart, Reglerteori. Flervariabla och olinjära
metoder, Studentlitteratur, Lund 1997. In Swedish.

[4] Grocholsky, Ben, Information-Theoretic Control of Multiple Sensor Plat-
forms, Ph.D. Thesis, University of Sydney 2002.

[5] Manyika, J. and Durrant-Whyte, H., Data Fusion and Sensor Managment:
A Decentralized Information-Theoretic Approach, Ellis Horwood, London
1994.

[6] Mihaylova, L., De Schutter, J., and Bruyninckx, H., A Multisine Approach
for Trajectory Optimization Based on Information Gain, Katholieke Uni-
versiteit Leuven, Heverlee 2003.

[7] Sciavicco, L. and Siciliano, B., Modeling and Control of Robot Manipulators,
Springer-Verlag, London 2003.

[8] Skoglar, Per, Modeling and Control of EO/IR-gimbal for UAV surveil-
lance applications, Scientific Report, Swedish Defence Research Agency,
Linköping 2003.

64

