ISSN 0280-5316
ISRN LUTFD2 /TFRT--5730--SE

Arbiter and Simulation for
for Team Caltech
in DARPA Grand Challenge

Henrik Kjellander

Department of Automatic Control
Lund Institute of Technology
November 2004

H Document name
Departmept of Automatic Control MASTER THESIS
Lund Institute of Technology

Date of issue

Box 118 November 2004

SE-221 00 Lund Sweden Document Number
ISRNLUTFD2/TFRT--5730--SE

Author(s) Supervisor

Henrik Kjellander Richard Murray Caltech, USA.

Anders Rantzer LTH in Lund, Sweden.

Sponsoring organization

Title and subtitle
Avrbiter and Simulation for Team Caltech in DARPA Grand Challenge (Forbattringar och simulering fér Team Caltech i
DARPA Grand Challenge)

Abstract

I would like to thank my mentor Richard Murray at the Control and Dynamical Systems Department of California
Institute of Technology (Caltech) for giving me the opportunity of conducting my master’s thesis at Caltech and for his
support during the project. | would also like to thank my other mentor Anders Rantzer at the Department of Automatic
Control of Lund Institute of Technology under whose supervision this master’s thesis was conducted.

Thanks also goes to Lars Cremean who has been very supportive during the whole project as my co-mentor at Caltech. |
would also like to thank the members of Team Caltech for their help as well as making my visit at Caltech a very pleasant
time: Elliott Andrews, Jeremy Gillula, Ben Brantley, Sue Ann Hong, Dimitry Kogan, Kristo Kriechbaum, Haomiao
Huang, Henry Barnor, Adam Craig and Alan Somers.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes

English 70

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden Fax +46 46
2224243

—2— Department of Automatic Control

Contents

1 Introduction 11
1.1 PUrpose e e e 11
12 Goal 11
2 Background and Motivation 13
2.1 Autonomousvehicles L 14
211 Arbiter 15
2.2 DARPAGrandChallenge 16
221 Background o 16
222 Rules 17
223 TheRace e 18
3 Methods and Technology 21
3.1 Materialprovided 21
3.1.1 ComputingHardware 21
3.1.2 \Vehicleplatform o 21
3.1.3 Sensors 22
3.1.4 Software 22
3.1.5 Developmenttoolsand methods 24
3.1.6 Design-andcodingstandards 24
3.1.7 Versioningsystem, 25
3.2 Planning architecture o 25
3.21 Voters 26
3.22 VDrive 28

CONTENTS

3.3 Objectives
3.4 Timeschedule.
Solution
4.1 Simulation.
4.1.1 Player/Gazebo
4.1.2 Simulation Design
4.1.3 Playerinterface
41.4 Gazebomodels
4.2 Arbiter.
421 Design
4.2.2 Improvements.
4.3 LogPlayer
431 Design
4.4 Fieldtests
4.5 System Administration
45.1 Documentation
45.2 Coding Standards
45.3 CodeProfiing
4.5.4 \ersioning System
455 Bugreporting
4.5.6 Hardware Maintenance . . .
4.5.7 Scripting for automation . .
Conclusion
5.1 Retrospective
5.2 Conclusion
53 Futurework

323 VState.

3.2.4 Matlab

5.3.1
5.3.2 Simulation

3.2.5 Arbiter decisions

Ingeneral

Department of Automatic Control

CONTENTS

5.3.3 Arbiter

5.3.4 LogPlayer. . ..
5.3.5 New race vehicle

A Definition of Words
Al Terminology.
A.2 Abbreviations

B Class diagrams

B.1 Arbiter.

B.2 GeneticAlgorithm
B.3 Playerinterface
B.4 LogPlayer

C Sequence Diagrams

C.1 Arbiter.

C.2 GeneticAlgorithm
C.3 Playerinterface
C.4 LogPlayer

55
55
55

59
59
59
59
59

Henrik Kjellander

CONTENTS

—6— Department of Automatic Control

List of Tables

3.1 Software that has been used in the project development.... . . . 23
A.1 Terminology usedinthisreport. 56
A.2 Terminology usedinthisreport. 57
A.3 Abbreviationsusedinthisreport 58

LIST OF TABLES

—8— Department of Automatic Control

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2

3.3

4.1

4.2

4.3

Bob, Team Caltech’s vehicle in the 2004 DARPA Grand @magjé race. 14

The course for the 2004 DARPA Grand Challenge race. 15
The different voteable arcs created out of differergratg angle . . . 16
Examples of different kind of terrain on the course ofrdme. 17
Example of a RDDF corridor plotted with Matlab. 19

Example of a tank trap obstacle. It is a simple consouatf welded
iron girders that efficiently makes any vehicle come to a saddalt.
(©Entertainment Earth, http://www.entertainmenteartmco. 20

The Planning Architecture that was executed during @& 2ace. . . 25
The MatlabDisplay module in use. The votes of the difiereodules

are plotted in real-time together with the current vehiasifion and

the RDDF corridor. 29
Schematic overview of the flow of information that leadlah Arbiter

decision. e 30

The Simulation Architecture. Note that the current iempéntation is
not transparently connected to Player as the purpose oéP@gzebo
is. This will be a future implementationgoal. 44
Left: The Gazebo simulator with a Sick LMS221 device nmtedron
the Tahoe model. Right: A client application that displays turrent
LADAR readings and allows interaction with the model. 45
The Corridor plugin drawing the RDDF corridor in the 3nsiated

ENVIFONMENE. o o e e e e e e e 45

LIST OF FIGURES

4.4

4.5

4.6

B.1
B.2
B.3
B.4

Ci1

C.z2

C3

CA4

The Arbiter sparrow display. Votes with goodness anddpalues

can be seen for the 25 arcs for each module. Also all the \ehiete
informationisdisplayed. 46
The LogPlayer interface. Playback of logs can be pauséglkayed.
Delivery speed can be adjusted and sending of votes can jygeste
forwardand backward. L. 46
Example of a documentation web page generated by Doxygén

class boxes and methods are links to their respective daotaticn

pages. The class diagram is of a compact format but UML class d

gramscanalsobegenerated. 47
Arbiter classdiagram. 60
The GeneticAlgorithm application class diagram. 61
Playerinterface module class diagram. 62
LogPlayer classdiagram. 63

Arbiter sequence diagram showing a typical iteratiothéxmain loop
ofthearbiter. 66
The GeneticAlgorithm application sequence diagrarowshg one it-

eration of the evolutionary algorithm. 67
Playerinterface sequence diagram. The scenario shewleel Arbiter
requesting the current vehicle state. The scenario of thaeXrsending

a steering command is very similar, but with the PlayerGet3nhodule

replaced by PlayerSendCmd. 68
LogPlayer sequence diagram. Shows one step of sendiegasid votes. 69

— 10— Department of Automatic Control

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Purpose

The purpose of this master thesis was to work in the largeeptajf Caltech’s au-
tonomous vehicle in the DARPAGrand Challenge raée The work consists of im-
proving decision making, create a simulation environment t assist in various
project management tasks and system administration ondligathe next race that
will be held in October 2005.

1.2 Goal

The overall goal for the project was to improve Team Calteehicle platform that
was used in the 2004 race so it will win the next race in 2005ddtail, the goals
became to:

e Improve the Arbiter module of the planning software
e Build and demonstrate a complete simulation environment
e Participate in the process of decisions for the 2005 racihkeh

e Improve the project administration and development proaegeneral

1Dpefense Alvanced Rsearch Bjects Agency, see [2]
2A U.S. government sponsored race for autonomous vehicles

Henrik Kjellander —11—

1.2. GOAL

—12— Department of Automatic Control

CHAPTER 2. BACKGROUND AND MOTIVATION

Chapter 2

Background and Motivation

For a long timeautonomous vehicldsave been a dream for engineers, but they have
only appeared in science fiction so far. Some partially aartmwus vehicles has seen
the light, as for example highway following cars using caansensors to track the
edges of the road and radar for distance estimation to susihog cars [3]. No one has
yet been able to construct an autonomous vehicle that cadieharbitrary terrain and
off-road environments. In 2003, the U.S. Department of Deéedecided that in 2015,
one third of all their ground vehicles shall be able to opemithout a human driver.
To speed up research in the autonomous vehicles areas, DARE®2 announced a
race for autonomous vehicles with a $1 million cash prizdédfirst vehicle that could
travel on a specific route between Los Angeles and Las Vegasfigure 2.2) in less
than ten hours. The race, called DARPA Grand Challenge,itatpt of interest at
many companies and universities doing engineering andiocshdrom Caltech a team
was created, driven by mostly undergraduate studentshvalpiglied for the race. After
one year of hard work a completely autonomous car was creategarticipated in the
first race that was held in March 2004. Team Caltemided up #5 of 25competitors
after their vehicle, named Bob, had traveled autonomouwsiy {3 miles until he got
stuck on a barbed wire fence. Since no team was even closenplei® the 142 mile
course, a new race is announced for October 2005, now withrail#i@n cash prize.
This is what Team Caltech is currently working on.

1The official name for Caltech’s team
225 teams were invited to the qualification event, only 15 wélavad to start in the race

Henrik Kjellander — 13—

2.1. AUTONOMOUS VEHICLES

Stereovision
= cameras

Figure 2.1: Bob, Team Caltech’s vehicle in the 2004 DARPAr@r&hallenge race.

2.1 Autonomous vehicles

Fully autonomous vehicles are a very complex and difficidkte achieve. Many
attempts have been made since computers has been availti#ennass market. There
are many different sizes and approaches that has been tiesiagh the years. The by
far hardest part is to perceive the environment and to tak#igent decisions out of the
perceived data. A human brain is still far ahead of even thiee§h computers because
of it's ability to plan and maybe most important of all: to tedrom it's mistakes.
There’s a lot of research going on within artificial inteligce about related techniques
but autonomous vehicles that can handle a completely unkrmeswironment is still
quite far away because of the almost unlimited possibidliGEdifferent scenarios that

can appear.

— 14— Department of Automatic Control

CHAPTER 2. BACKGROUND AND MOTIVATION

" Pahwmp, Las Vegaé_ ;
L s e L &
pPorlerleIe : 8 LY h?lte M’uadﬁl'R“A

(85) N Finish
k‘Delmo ‘ Saturday 3/13-14
L A N (Near Las Vegas/Primm)
.99) Lake Isabella - — S P
1 “Ridgecrest o Pmm, NV & Le3)
e 14) China Lake Naval %
Bakersfield ~7 | WWeapons Center / :
| = H 1A . . -8": Bullhead
5 “,Tehachap Off-Road Start ﬂ 'gc‘w
‘ N Saturday 31213 | asme Mojave National | " S° apizdhd
(Near Barstow/Stoddard) /, p Preserve fos) &
AN i Needles
40 o 0
% Lake He
ERR a2

‘ .nAppIe Valley ot . b

B osoorin L, MarineC° ~2500 GPS waypoints, 2

s::’ : hours before start of race

40 i * Corridor of varying width
Josht .

Te= around center line

Monday/Friday 3/8-12 -
0 Checkdn 3(Tr ?*{”E « Guaranteed navigable path
e . some place within corridor |

Figure 2.2: The course for the 2004 DARPA Grand Challenge.rac

2.1.1 Arbiter
DAMN

DAMN? is a decision taking architecture created by Julio K. Rokghht Carnegie
Mellon University, Pittsburgh, USA [1]. It uses a collegatiof distributed task-achieving
modules (obehavior$ that cooperatively determine a robot's path by expresgiag
preferences for each of various possible actions. An Arliiten performsommand
fusionand selects a combined action that best satisfies the péatigoals of the sys-
tem which can be configured by weights on each input. This\iekbased architec-
ture has the advantage of distributing different respadlitséls to separate processes,
that can be developed independent in separate teams. THiislite was one of the
key advantages that made Team Caltech implement this ectlié since it would
make it easy to have independent groups of students workirggach module.

Each module analyzes its view of the situation consideriggt®f paths generated out

3Distributed Architecture for Mbbile Navigation

Henrik Kjellander — 15—

2.2. DARPA GRAND CHALLENGE

of different steering angles (see figure 2.3). For each aigtlagcs it assigns a goodness
value and a recommended speed. This data is callemtea The Arbiter gets votes
from all different modules and selects the arc that has tkedmodness value, which
is then sent to the actuators to steer the vehicle in thattitire For speed, the lowest
voted speed for that specific arc is selected, for safetyrsad ack of time for testing
before the race made it impossible to fully test which wesght the different voter
inputs that were suitable, so they all ended up being 1.G fittiblem gave inspiration

to the work of weight analysis with a genetic algorithm (se22lat page 38).

STRAIGHT
SOFT SOFT
LEFT ~ AHEAD © RIGHT

HARD HARD
LEFT RIGHT

Figure 2.3: The different voteable arcs created out of ifiesteering angle

2.2 DARPA Grand Challenge

2.2.1 Background

Grand Challenge is the name for the race that DARPA arramgkihich 2004. It grew
out of two Congressional mandates: one that allowed cagegtd be awarded "in
recognition of outstanding achievements that are desigm@domote science, math-
ematics, engineering, or technology education in supgattie missions of the U.S.
Department of Defensé.'and another that required "by 2015, one-third of the opera-
tional ground combat vehicles of the Armed Forces are uneinAny team from
any countr§ was allowed to apply for the race. To participate in the raseh team
first had to file a technical report that described their apghoand showed that their

4National Defense Authorization Act for Fiscal Year 2003RH4546, Sec. 2374b)
SNational Defense Authorization Act for Fiscal Year 20012549, Sec. 217)
6No government support or funding allowed and each team mustbi&\citizen team lead

— 16 — Department of Automatic Control

CHAPTER 2. BACKGROUND AND MOTIVATION

vehicle fulfilled all the safety requirements from DARPA tlife technical report was
approved, the team had to participate in a qualification eeiled QID, that was
held three days before the race at the California Speetivtye QID consisted of a
small course with a variety of obstacles that representgidalsituations the vehicles
would be expected to face in the off-road terrain. Given aegfieed file of GPS way-
points, a so calle®DDF-file, the vehicle knew where it should go. If completing the
QID the team was allowed to start in the Grand Challenge. T€ahech did good in

the QID and qualified as third team to the race.

Figure 2.4: Examples of different kind of terrain on the cmuof the race.

2.2.2 Rules

For safety and organizational reasons DARPA set up a latg#f sales that the teams

must follow. Here’s a summary of the most important ones:

7Qualification,_hspection and Bmonstration
8A large racing speedway in Fontana, California. http://wealiforniaspeedway.com
9Route Data Definition File

Henrik Kjellander — 17—

2.2. DARPA GRAND CHALLENGE

The vehicle must stay within tHRDDF corridor at all times (this rule was given
exceptions during the race). See figure 2.5 for a sampledworplotted. The
RDDF corridor is used for safety reasons to limit the arearibads to be secured
by DARPA during the race.

Each team must implement a radio signal system called Etsteg by DARPA.
This means the vehicle must respond to a pause signal byistppp soon as
possible and enter a stand by mode. If a disable signal isigilie vehicle must
also stop, but also shut down completely (race over). Thegaignal was used
in situations like if other competitors were close and nelddegass.

GPS signals are the only allowed signals a team vehicledead to use during
the race.

No communication of any kind may be performed with the vehiexcept the
E-stop signal).

It is not allowed to do any harm to the environment or destnmpprty during
the race. Since Team Caltech ran through a barbed wire famgegdhe race,
exceptions could obviously be made.

Moving obstacles will appear on the course (handled by DAR&# must be
avoided.

During the 2004 race some teams relied almost entireRDBF waypointollowing,

lacking sensor processing about obstacles and intelliggimivior avoiding them. To

prevent such approaches to be successful in the 2005 radePBAvill put obstacles

made to disable vehicles (tank traps, see figure 2.6), in fddlenof roads between

waypoints to efficiently end the race for such teams.

2.2.3 The Race

At 3:20 Saturday morning March 13, 2004, the teams were gierCD containing

the RDDF, the file that included the waypoints, corridor Wijtand speed limits that

defined the course. By 6:00am, Team Caltech were at thengtaydite ready to go.

At 6:40am, the green starting flag waved for Bob. At the milekmae veered off

— 18— Department of Automatic Control

CHAPTER 2. BACKGROUND AND MOTIVATION

40

-20F

-100 i i i i i i i i
-20 0 20 40 60 80 100 120 140

Figure 2.5: Example of a RDDF corridor plotted with Matlab.

course, probably confused by the long shadows on the roablkemt traveling off-
road, avoiding bushes along the way. After getting back enrtiad, he decided to
crash through a barbed wire fence at approximately the Ié@pnint. From there, he
drove off-road until 1.3 miles, at which point he again triedreak through the barbed
wire fence. This time, the barbed wire won and Bob sat for édeminutes revving
his engine until DARPA disabled the vehicle though theintépsdevice.

Henrik Kjellander — 19—

2.2. DARPA GRAND CHALLENGE

Figure 2.6: Example of a tank trap obstacle. It is a simplestrotion of welded
iron girders that efficiently makes any vehicle come to a suaduhlt.(©Entertainment
Earth, http://www.entertainmentearth.com

—20— Department of Automatic Control

CHAPTER 3. METHODS AND TECHNOLOGY

Chapter 3

Methods and Technology

3.1 Material provided

Team Caltech has a budget that involves a lot of money andsspanSeveral compa-
nies donated hardware and Caltech sponsors with availalderss that take courses
available that relate to the Team Caltech race vehicle.

3.1.1 Computing Hardware

For software development standard PCs with various Lingkributions were used.
These PCs were a part of the CD®twork. Team Caltech also have eight IBM laptops
that are used for field testing.

Inside Bob, the race vehicle, eight IBM Pentium4 desktophk &i0GHz CPUs, linked
with gigabit network, were used to run the different modules

3.1.2 \Vehicle platform

Bob is a used Chevy Tahoe from 1996 that was purchased. Itduasmvheel drive

and has custom suspension to couple with rough off-roaditerSurrounding Bob a
custom iron roll-cage was built that also acts as a mountgptatfor the sensors on the
roof. To cool the computers inside, an external air condisiopply had to be mounted

1Control and Oynamical §'stems Department at California Institute of Technology

Henrik Kjellander — 21—

3.1. MATERIAL PROVIDED

on the roof (the race takes place in hot desert environmemte large number of

computers and the external air condition supply requireshgoh power that an extra
electricity generator had to be mounted in the vehicle. Buesmconstant power to the
equipment, two UPS power supplies are used. For emergemayisy the vehicle, red

push buttons are placed all around the vehicle, that wiltlké throttle if pushed.

3.1.3 Sensors

To create such an autonomous vehicle, a lot of differentsemeed to be used to sense
the environment. Examples of sensors can be radar, canegasdistance estimators,
gyros and GPS receivers. The following sensors are the bagé3eéam Caltech used
for the 2004 race:

e LADAR?: a laser-radar that uses a spinning mirror to scan a laser thes reads
the distance to the objects it hits. Used to detect obstatézsn Caltech has two
units but only one was used during the race.

e Stereovision cameras: two cameras that when combined gjuh hformation
about the images they capture. Two pairs of these camerasoneated but only
one pair was used during the race.

¢ Road following camera: A camera that was going to be usedtoad-detecting
algorithm to follow roads. The implementation wasn’t reahough to run at
the race, so it was not used.

o Differential GPS receiver: to keep track of the current position on the map.

e IMU*: a device that uses accelerometers and a gyro to measurgghtation.

3.1.4 Software

Many different applications and packages has been usee iprtject. As common in
the university world, free and open-source software has lbeed as much as possi-
ble. Table 3.1 lists the most important ones and two projeeti§ic applications are

described in detail below.

2Laser Detection Ad Ranging
3Global Positioning §ystem
4Inertial Measurement hit

— 22— Department of Automatic Control

CHAPTER 3. METHODS AND TECHNOLOGY

15°2

Name Description Open- | Avail- | URL
source? ability
Boost Free C++ libraries yes free http://www.boost.org
CxxTest Unit test library yes free http://cxxtest.sf.net
Dia Diagram editor yes free http://gnome.org/projects/di
Doxygen Documentation generation yes free http://www.doxygen.org
Eclipse Java IDE yes free http://www.eclipse.org
Gazebo 3D simulation engine yes free http://playerstage.sf.net
GNU GCC/G++| C/C++ compiler yes free http://gcc.gnu.org
GNU Profiler | Code profiler yes free http://gnu.org
(gprof)
ImageMagick | Image manipulation yes free http://www.imagemagick.org
KDevelop The KDE IDE tool yes free http://www.kdevelop.org
Linux Reliable operating system yes free http://www.linux.org
Matlab Numerical math tool no no http://www.mathworks.com
MJPEG Tools | Toolkit for movie creation | yes free http://mjpegtools.sf.net
MTA Real-time process commu-no Caltech| See [9]
nication inter-
nal
Player Interface server to Gazebo yes free http://playerstage.sf.net
Sparrow Text display library no Caltech| See[12]
inter-
nal
Sun Java SDK| Java SDK no free http://java.sun.com
1.4.2
Umbrello UML-drawing tool yes free http://luml.sf.net
Table 3.1: Software that has been used in the project davelop

Henrik Kjellander

— 23—

3.1. MATERIAL PROVIDED

MTA

MTA is a messaging transport architectutieat was written by Isaac Gremmer at Cal-
tech [9]. The purpose of it was to make it easy for the modueldpers to have a way
to communicate with other modules over the network, withtbetneed to manually
open and close sockets etc. MTA also supports starting auttirel down modules
through the messaging system.

Sparrow

Sparrow is a real-time text display library written by RicthdMurray at Caltech. It's
written in C and is very compact and fast, allowing user irgnud displaying variables
with low CPU usage. For a screenshot of the Arbiter sparr@pldy, see figure 4.4 at

page 46.

3.1.5 Development tools and methods

The development is performed in Linux operating systemrenwent. The computers
in Bob all run Linux and communicate via MTA over Gigabit Ethet. For program-

ming development mostly editors and the GNU G++ compilehwitake was used.

The IDE that ships with KDE, called KDevelop, was also used. For davalopment

the IDE called Eclipse was used.

3.1.6 Design- and coding standards

No specified standards existed in the DGC project. This waslahing since mostly
undergraduate students without a lot of project experieleveloped the code during
the year before the 2004 race. That meant a lot of code wasuahgted and hardly
documented at all. Design documents only existed at theetagd bf the architecture,
and everything below were only source code. This becamd ahallenge.

SIntegrated @velopment Bvironment, a tool that integrates multiple development tools

— 24— Department of Automatic Control

CHAPTER 3. METHODS AND TECHNOLOGY

3.1.7 Versioning system

CVS? was used in the development until this project began. A asive to use Sub-
versiorf took place the first weeks. Subversion is a much better v@rgiosystem

but there were a lot of issues with the Subversion installathat slowed down the
development initially.

3.2 Planning architecture

An overview of the planning architecture that was used dutime 2004 race can
be viewed in figure 3.1. Several additional modules exisbed were never reliable
enough to be used. Examples of this are RoadFollower, a raddat analyzes color
images to detect roads (and then voted to follow them) anticBtapper, a module
that uses pre-recorded data about the environment to feeal datails to the Digital
Elevation Map.

vdrive

_Reactive Modules . _._._._
Sensors ! i
5| [DFE]

|RDDF | + [GlobalPlanner]

Arbiter

—;-{ [LADARMapper] —H LADAR DEM }w——- Reactive
[StereoPlanner] H—:‘-I Stereo DEM %‘——' Path

Evaluation
—,-{ [CorridorArcEval] }-'—-| Corridor DEM }~—+

Figure 3.1: The Planning Architecture that was executedthduhe 2004 race.

6Concurrent Versioning System, a free and very common usecbwéngisystem
7Another versioning system. See http://subversion. tignis.

Henrik Kjellander — 25—

3.2. PLANNING ARCHITECTURE

The way of information flow in the planning architecture:
e Input:
— Sensors, like LADAR distance points, Stereovision didgariaps, state
and position, delivers data to the modules.

— The RDDF symbolizes the pre-defined route of waypoints tredtes the

corridor. This data is also available for the modules.

e Processing:

— The mapping modules creates DEhaps from their perceived sensor
data, which are processed by the Reactive Path Evaluatiuiolwurrently
is just a conversion function) that creates the final votestadre the mod-

ule recommends we travel next.

— The reactive modules instantly creates votes out of thpintidata. No in-
between steps are required, which makes it possible to hiaverasponse

time for these modules.
e Decision:

— The Arbiter collects all the votes, weights the differentars and makes a

decision out of the resulting combined vote.

e Execution:

— The commanded steering and speed from the Arbiter is preddssthe
controllers in VDrive and the involved actuators are givewmneference

signals.

3.2.1 \oters

The Arbiter has differenvotersthat give it input about the decision to take. In this
section, a short description for each voter is given. Thengohave different tasks to
fulfill, some are meant to steer for goals (the GPS waypoantsl) others have as their

only purpose to avoid obstacles during the travel to reaetytal.

8Digital Elevation Map

— 26— Department of Automatic Control

CHAPTER 3. METHODS AND TECHNOLOGY

GlobalPlanner

This global planning module uses the current position of/#tgcle to calculate where
to steer to reach the next waypoint in the RDDF file. It onlyesaabout this and
always votes maximum goodness for the shortest path to thievagpoint. The other
arcs gets lower votes as the distance increases from thatwesthe GlobalPlanner
module operates at 10 Hz.

Corridor Arc Evaluator

This module is created to make Bob staying within the RDDFidor at all costs. It
votes very low goodness for the arcs that takes Bob out ofdhédor and high for all
arcs that keeps Bob within the corridor. During the 2004 rétc@as accepted to go
outside the corridor to a certain extent, but this rule miggstricter in the next race,
making this module important. The Corridor Arc Evaluatordute operates at 10 Hz.

LADARPIlanner

LADARPIanner uses distance data from a 8itkS221 [8] LADAR device to detect
obstacles in the terrain. For each arc path the area that Balhwccupy if traveling at
that path is evaluated and goodness values are loweredsfarth that have obstacles.
The laser readings are performed at 75Hz, where each scaistsoaf 201 distance
values, each related to a different angle. These valuesioechlwith the current pitch,
roll and yaw angle of the vehicle are used to calculate a DEM.ndis DEM map
is converted to a cost map from which the arcs are calculdted. calculation is very

demanding and is currently running around only 4 Hz.

StereoPlanner

The second obstacle detecting module uses data from twaraarf&ony ICX 084AL)
separated in space to create disparity images which caredgaianalyze the distance
to objects within the camera’s vision [4]. This is performmdanalyzing small win-
dows of pixels for similarities. Simple trigonometry is thesed to locate that point in
space. The disparity map combined with the vehicle statieedtitne of the reading is

9Sick Inc. http:/Avww.sick.com

Henrik Kjellander — 27 —

3.2. PLANNING ARCHITECTURE

used to calculate a DEM map. This map is converted to a costsimapar to LADAR-
Planner, from which the voted arcs are generated. The dyeoalessing of the stereo
vision data is very computationally intensive and is cutlseable to reach only 7Hz
update frequency.

DFE - Dynamic Feasibility Evaluator

In order to avoid rolling over with Bob, a module was createthbnitor the speed and
vote against dangerous maneuvers. It has a physical dysanudel of the vehicle

which it uses together with the current vehicle state toutate which turns are safe at
various speeds. It also takes the pitch, roll and yaw angtesiccount and prevents for
example turning left if driving with a right lean and the opjte, which would result

in a roll-over. Since the computer has no sense of what'sogygite maneuvers this
module is important to avoid damaging the truck. The DFEeantly operates at 10
Hz.

3.2.2 \Drive

The module that controls steering, throttle and brakesasictu is called VDrive (Ve-
hicle Drive). It makes commands in the shape of a desiredisteangle and a desired
speed. The steering angle is given as a reference value tat@lber that handles the
steering wheel. The speed is given as reference value toteottenthat is closely

linked to the cruise controller and the brake actuator.

3.2.3 VState

The most critical thing for Bob is to know where he is. The \t8t@/ehicle State)
module gets position estimation data from a NavCom SF-20&i@i€rential GPS re-
ceiver [6] that updates at 10Hz. For orientation and acagtar measurements a high-
accuracy Northrop Grumman LN-200 IMU unit [7] , operatindl@0Hz, is used. This
is a high-end IMU that is normally used in military aircraftcawas loaned kindly by
Northrop Grumman. The data from these two devices are usegpasto a Kalman
Filter, that operates at 40Hz, giving state output at a hégler When a module needs
to know the state, it asks VState with a MTA message and the dtda is delivered

with minimum latency.

— 28— Department of Automatic Control

CHAPTER 3. METHODS AND TECHNOLOGY

3.2.4 Matlab

Matlab is used for various tasks during development. It$® ahtegrated into a user
interface module called MatlabDisplay, which was built teegthe user an overview
of the vehicle state within the RDDF corridor and how the wtare voting (see fig-
ure 3.2).

GOODMESS

— = Comhined

— Glokal WELOCITY

FRaad
FathEvaluation

Figure 3.2: The MatlabDisplay module in use. The votes ofdifferent modules are
plotted in real-time together with the current vehicle piosiand the RDDF corridor.

3.2.5 Arbiter decisions

In figure 3.3 a schematic overview of the Arbiter decisions ba seen. The flow of
information can be described as:

e \oters cast their votes by sending MTA messages to the Arbite

The Arbiter weights the received votes and calculates dtnegw@wombined vote

From the combined vote, the arbiter selects the best arc

The desired steering angle and speed are sent as a MTA masghgevehicle
controller (VDrive)

VDrive controls the actuators to reach the commanded sigarnd speed.

Henrik Kjellander — 29—

3.3. OBJECTIVES

The Arbiter has a few special features about how it handlesthes. For example if
many votes next to each other are equal, the middle vote bsttpence is picked as
the decided arc. The update rate for the Arbiter is curreiiyz.

Decision Making: Arbiter Logic

GOODNESS
LADAR 100 s ¢
Stereovision & /) \
Global (waypoints) / il

60 e o
Dynamic Feasibility |:> ; \
----- o

Corridor Arc Evaluator 40

: ' N
20 : \

5 10 15 20 25 220 240 250 250 360

: -

Voters
— = Combined Motion determined by voting _
— LADAR B ! Vehicle Control System
- - Each “sensor” sends votes to (VDrive)
— DFE central arbiter
CAE

- Arbiter uses weighted average to
determine velocity/steering

- Can stop or reverse vehicle if
needed to avoid obstacles

Figure 3.3: Schematic overview of the flow of informationttheads to an Arbiter

decision.

3.3 Objectives

The following objectives summarizes what was going to beoanished with the

project:
e A working simulation environment using Player/Gazebo
e Scenario reconstruction using logged state and sensar data

o Redesign of the Arbiter code to improve modularity and dbjeientation.

— 30— Department of Automatic Control

CHAPTER 3. METHODS AND TECHNOLOGY

Research learning abilities of the weighting of the votarthe Arbiter.

Implement situation awareness functionality for the Aghit

Streamline the development process in general for thegiroje

Improve the documentation for the project

3.4 Time schedule

This thesis project was divided into two parts. The first tezels were a SURF
project® while the remaining ten weeks were individual work. The vehploject was
supervised by Richard Murray [10] (Caltech) and Anders RarftL1] (Lund Institute
of Technology). The SURF project had three milestones:

1. Progress report after four weeks.

2. Progress report and an Abstract after eight weeks.
3. Create a vocal or poster presentation.

4. Final report after SURF had ended.

A poster presenting the project was created and preserged[16] for download).
After SURF ended the final SURF report was filed and projeceldgment continued
as before but with the thesis report and the presentatidmeasly targets.

10summer Lhdergraduate &earch Ellowship, a 10 weeks project for students at Caltech, séfdil
more info

Henrik Kjellander —31—

3.4. TIME SCHEDULE

—32— Department of Automatic Control

CHAPTER 4. SOLUTION

Chapter 4

Solution

4.1 Simulation

Before this project, there were no sufficient simulationsilable for Team Caltech
All real testing relied on field tests, which is time demamgdand requires exclusive
use of the whole truck for each test. A goal for this thesis tedavestigate, evaluate
and integrate a simulation environment for use with theentrifeam Caltech plan-
ning software. Discussions had already taken place andusagvailable simulation
packages had been reviewed. The choice became Playertizamebtly because it
was free, open-source and created for robot simulatiortsdttzad built-in support for
simulating some of the devices that were used, like GPS, icenasd LADAR.

4.1.1 Player/Gazebo

Player is an free, open-source, interface server for rabuilation created by people
from the Robotics Research Lab at University of Southeriif@ala. It is designed to
connect either to real hardware or a software simulationnengalled Gazebo. The
planning software is intended to only talk to Player withknbwing if it's talking to
the robot or the simulation engine. Player provides robatestrom the simulation
engine and possibilities to send commands to the robot isithelation.

The real-time simulation engine used is called Gazebo. al€s free, open-source,

1An planar kinematic simulator module called SimVStateVDrivisted

Henrik Kjellander — 33—

4.1. SIMULATION

and created at USC. Gazebo was originally developed frorasadetailed simulation
engine called Stage, which was created for simulation ofymalpots simulataneously.
Gazebo is a very capable simulation environment. A summAiyportant features
include:

e Realistic simulation of rigid-body physics: robots caniptisings around, pick
things up and generally interact with the world in a plausiblanner. This means
there’s forces for gravity and friction, collision detemtibetween objects etc.

e Models for commonly used robots.

e Simulation of standard robot sensors, including sonamrsog laser range-
finders (LADAR), GPS and IMU’s.

Gazebo, Stage and Player all started out as tools developedifot simulation and
were later on released under the GPL source license, aljopgnple from many other
places of the world to contribute. Now the project is growfaster and faster and is a
very capable simulation environment.

A large part of the thesis was spent on getting used to thesR{agzebo environment

and integrating it to the existing planning software of Te@aitech.

4.1.2 Simulation Design

The simulation architecture can be seen in figure 4.1. CtiyrdPlayer is not used
as it’s intended to by the creators, but rather as an interfia¢he simulation engine.
The link between the old planning software and the hardwasdili established but
will hopefully be migrating over to the true Player-interéain the future, completely

isolating the planning software from the underlying layers

4.1.3 Playerinterface

A module called Playerinterface was developed, which waks wrapper between
the commands used in the existing software and the Playgyqmidor world state and

vehicle control. Simulated sensor devices like LADAR, GIR8 eameras were already
included in Gazebo so connecting the existing software dedtwas just an interface
conversion task. Running the existing planning softwartaésimulated environment

— 34— Department of Automatic Control

CHAPTER 4. SOLUTION

gave realistic results compared to what had been seen iwoelal tests with the same
software. Those results looks very promising since evargesit working in the team
can now have access to a complete simulation environmeestalgorithms and new
modules in, without the need of exclusive access to the efdtie.

Design

For transparency with the existing planning software, @mterface was designed to
simulate the two existing modules that interacts with thelivare: VState and VDrive.
The new module names became PlayerGetState and Player8dntithen Playerin-
terface is launched the planning modules detects it as ¥ &tat VDrive, which means
no modifications are required to run with the simulationyBt&etState delivers vehi-
cle state from the Gazebo simulation engine on requesteF3andCmd sends steering
and speed commands to the simulation, when invoked. The dlagram for Player-
Interface can be viewed in figure B.3 at page 62. A sequencgatiashowing typical
operation can be seen in figure C.3 at page 68.

4.1.4 Gazebo models
Tahoe

A Gazebo plugin model of the Chevy Tahoe vehicle was developich had the

same length, width, height, mass etc as the real vehicleth&uwork needs to be
performed to create a complete model with the real dynanaipgrties like suspension
and turnrate of the real vehicle. This will also require a sueing operation on the
real vehicle, which will be performed by STISTI is a company that is working with
simulation of cars for major manufacturers and they havargpbete measuring facility
they've offered to let Team Caltech use. A screenshot of &i@& model in action can

be seen in figure 4.2.

Sick LMS221

The LADAR device that ships with Gazebo is a model of the Sig3220 LADAR de-
vice which sends laser beams in a 180 degrees wide scan aegha.Caltech uses the

2gystems Bchnology, hc. http://www.systemstech.com

Henrik Kjellander — 35—

4.2. ARBITER

LMS221 model at a 110 degrees scan angle, so some modifisatene required to fit
the simulated LADAR device to the needs of this project. Tiheutated SickLMS221
can be seen as the blue rays in action in figure 4.2.

Corridor

When running a simulation, it is crucial from an user integfgerspective to know
where the RDDF corridor is compared to the environment. Aedbazplugin was devel-
oped that parses the RDDF file and displays it in the simuldiedorld environment.
A sample of this Corridor plugin can be seen in figure 4.3.

4.2 Arbiter

The Arbiter was already functional when this thesis progtatted. It had some ad-
vanced features and worked as intended with a few exceptions

¢ All the weights were 1.0 for the voter modules

e It gave a stop signal with zero steering as soon as an obsaesor gave zero
votes (which happened for example when the LADAR device gotnhuch vi-

brations and had to reset itself)
e The code was very hard to maintain and not very well docungdente

Like much of the other code for Bob, it had been written in ajbiy only one person
that had full understanding of the code. However, this pesgas not present in the
project anymore. An important decision made was to leaveexiternal API to other
modules untouched for backward compatibility with exigtimodules. A re-design
into object oriented classes were made abdsachwas created where the new devel-
opment took place while the old, proved working version, Vefisintact.

4.2.1 Design

The first thing to do with the Arbiter design was to create s¢ss The old code was
written mainly in two large (600 rows each) files with not mualtject orientation at
all. To be able to reuse the code in the future, but also to leetalperform unit testing,

— 36— Department of Automatic Control

CHAPTER 4. SOLUTION

an object oriented design was created. The resulting clagsain can be viewed in
figure B.1 at page 60. A sequence diagram showing a typicadtsin of the Arbiter
operating can be seen in figure C.1 at page 66.

4.2.2 Improvements

In addition to the redesign of the Arbiter, new features vastded.

Weight adjusting

One feature was support for changing the voter weights iktire@. The purpose of
this was to be able to weight some voters higher than otheaffdot the decisions in
an intelligent way for the Arbiter. This also included supdor reading and writing
configuration files for the weights.

Modes

To be able to implement situation awareness different medes needed. This was
achieved by adding flags for situations and conditions tlratitvbe able to be detected

by other modules. Examples of these were:

e Terrain: rough or light terrain could affect how we priarii decisions. For
example we want to limit the maximum possible speed whenenagyiving in

rough terrain.

e Lighting: bad lighting conditions is when we do not want tostr stereo vision
cameras since they have a hard time to gather depth data iligh&ding or
when the sun is shining into the camera lenses. In this chsey¢ight for the

StereoPlanner module is lowered.

e Dustiness: if there’s a dust cloud in front of the LADAR desjidt gives in-
valid readings about obstacles that are not real. Then wi @ant to trust the
LADAR, meaning we lower the weights for the LADARPlanner rotel

Currently, this is only supported in the Arbiter — other medudoes not yet detect and
signal these conditions, but as soon as that’s availat#eithiter will have this mode

management.

Henrik Kjellander — 37—

4.3. LOGPLAYER

Steering smoothing

Steering command smoothing was another feature implemheriteworks as if the

commanded steering is almost straight forward (curremtyrhiddle 3 arcs); it sup-
presses quick changes from left and right by averaging thgubsteering command.
This avoids zigzagging when going forward which has beeroalpm since only 25
arcs are used for vote generation. One might think incrgabimnumber of arcs would
be a better solution but that would increase the computétimmused for each module
that calculates votes.

GeneticAlgorithm

An idea for managing the weights was to use logged data froomzah driving Bob,

with the sensor modules running. Analysis of the decisiaken by the human driver
using a genetic algorithm is able to produce weight-setsrtizke it possible for the
Arbiter to imitate the human’s decisions in the situatioms human faced. By that,
good weight sets can be developed for different situatiaitts this tool.

A class diagram of the Genetic Algorithm application can bersin figure B.2 at
page 61 and a sequence diagram showing a typical iteratiobeaeen in figure C.2

at page 67.

Unit Testing

The new object oriented design of the Arbiter made it posdiblperformunit testing

A free unit test package called CxxTéstas used for these tests. With unit tests, the
specifications of the important parts of the Arbiter werdedsand verified working
correctly. This test suite will also make a solid ground fatuferegression testingn

the Arbiter when further modifications have been made.

4.3 LogPlayer

In addition to the lack of simulation capabilities, theresim® way to reconstruct logged
runs of Bob. To be able to analyze what decisions the Arbitgkas in each time seg-
ment it is crucial to have a playback utility where you campstad pause the playback,

Shttp://cxxtest.sf.net

— 38— Department of Automatic Control

CHAPTER 4. SOLUTION

giving time to analyze the situation for debugging purpo3esachieve this, a module
called LogPlayer was developed. It allows playback fromeva@ind state logs just as
all the modules were actually running. Different playbaad®s includes timedriven

playback and a user mode when the user selects when votetagmdtsall be sent. An

example of the user interface can be seen in figure 4.5.

4.3.1 Design

The LogPlayer was designed to be transparent to the exiatiniter. Two MTA mod-
ules were created: VStatePlayback and VoterPlayback.t¥&yback parses the state
log and responds to VDrive state requests just as it was that®¥8odule. VoterPlay-
back parses all the voter logs and sends votes just as they ftam running voting
modules. A class diagram of the LogPlayer can be seen in fi§drat page 63 and a

sequence diagram showing a typical playback step can bersigure C.4 at page 69.

4.4 Field tests

For trying out new software implementations on Bob, a lamga &f space is required
if Bob is going to be able to travel safely around autonompudihis requirement
combined with the size of Bob and the clumsy ways to transpéréquires a trailer
since Bob cannot be driven on the streets manually) combiitidthe distance (a 2
hours drive) to suitable test areas, makes quick tests isiflesto perform. Because
of this, only two field tests were performed during the sumnidrey took place at a
dry lake bed in El Miragkand included staying there for two days of testing. It is
quite a challenge to organize such a field test as it includesai computers, having
a site server out in the desert and all other logistic issaasved with having fifteen
students camping in the desert. Many people were sharingaBa@btest platform and
inefficiency in the handling of modules, logs and test setupsle testing very time
demanding. It was a great time though and field testing irelamale will probably be
the key to success in the 2005 race.

4An off-road racing area about 60 miles north-east of CaltecRdasadena, CA. For further info, see:
http://www.ca.blm.gov/barstow/mirage.html

Henrik Kjellander — 39—

4.5. SYSTEM ADMINISTRATION

4.5 System Administration

A lot of system administration tasks were required to imprtive efficiency of the
project. The thesis author quickly took a role as one of thetesy administrators,

handling various tasks.

4.5.1 Documentation
Doxygen

Even though the project library consisted of 50000 linesofse code, no overall doc-
umentation API existed. For this some research was perfbtménd a suitable doc-
umentation tool and a tool called Doxygen was chosen. Daxygeses code source
files for specific syntax that tells the parser which text nseahat in the documen-
tation (like javadoe does for Java source code). Doxygen is very powerful and also
has features like creating class diagrams ealtigraphs An example of a Doxygen
generated HTML-page can be seen in figure 4.6.

Wiki

To gather all the documentation about tools, hardware afte@®@ projects, meetings
and contact lists in one place, a web based documentatidensysalled Wiki was
used. Wiki is an easy way for users to create and edit web paiglesut any HTML
knowledge required. It was a big success for the projecthathé first time all infor-
mation was available at the Wiki webpage and constantly tgaday users. Also all
old documentation was entered into the Wiki. This thesiggutcadministrated some
of the Wiki pages and also wrote many installation guidesuabow to compile the
Player/Gazebo, how to use different tools, code standamdisreny other things.

4.5.2 Coding Standards

As mentioned earlier (see 3.1.6), there existed no staaddrout how the source code
should be written, formatted and documented. The codingdstals were based on

standard GNU Linux coding standafdsGuidelines about Doxygen documentation

5Sun’s tool for creating the Java documentation
8For more info, see http://iwww.gnu.org/prep/standards/

— 40 — Department of Automatic Control

CHAPTER 4. SOLUTION

formatting was also included in these standards to makessiple to view all the
documentation for the different sources online in the Dexyfl TML-documentation.

4.5.3 Code Profiling

When building computationally intensive applications like modules in the planning
architecturecode profilings an important tool for identifying performance bottlekgc
in the code. For profiling the GNU profiler, called gprof, wagd. One limitation with
gprof is that it cannot normally profile multi-threaded prasgs, which all the MTA

modules are. This limitation was solved with a patch create8amuel Hocevar

4.5.4 \ersioning System

For version management, the common tool called CVS was usdte beginning of
the thesis a merge to Subversion was made, with a lot of issu#ise administration
side. The problems were solved and soon everyone could tekmtage of the ease of
use with Subversion and the many improvements it has over. &dBie of the main
advantages with Subversion compared to CVS are:

e |tis backwards compatible with CVS and supports importiththe old version-
ing logs

e It uses a relative database to track changes in the fileshvidicery fast

e It only saves the changes between each revision instead kihgna copy of a
file every time it's edited. This saves a lot of disk space.

e Many clumsy operations from CVS like renaming and movingletfand direc-
tories are now easily performed

e Since all commands in CVS exists in Subversion, it's veryydasswitch for
users used to CVS.

See http://sam.zoy.org/writings/programming/gprof.htmirfmre info

Henrik Kjellander —41 —

4.5. SYSTEM ADMINISTRATION

4.5.5 Bug reporting

To keep track of bugs in the project, the widely known bugkirag system Bugzillé
was used. Bugzilla was originally created for tracking bimgthe open-source project
of the Mozilla web browser but turned out to be so succeskilit was released as an
independent, free bugtracking system. It's a very capalakfor keeping track of cur-
rent and past bugs and tasks that needs to be performed hadsupport for showing
dependency trees between different bugs. Every time a ngustaubmitted or modi-
fied, an e-mail is sent to the bug owner and all affected deesto The bug owner can

then reassign the bug to other developers or accept it asviisasponsibility to fix.

456 Hardware Maintenance

The computers used in Bob for the 2004 race were working finedguired a lot of
space in the truck. For this reason, thin rack mounted sehas been purchased for
the new platform that will be used in the 2005 race. The sieleend maintenance of
these and the old servers was one of the administrative pesksrmed in this thesis
project. Another was reinstallation of the field laptopsdibg the team to achieve a
homogenous setup of workstations for the developers. Tlbetsd Linux distribution
became Debiahsince it is widely supported and has excellent package nesmegt.
From the 2004 race, one important lesson learned was howriamt@ good package
management support was, since many of the tools that are depdnd on a lot of
different Linux packages.

4.5.7 Scripting for automation

Many tasks in the project were inefficient and required tieesavork being performed
on multiple computers. Most of them were automatedbghscripts. Examples of

such tasks are:
e Updating the subversion tree and compiling on multiple cotars.

e Automated movie creation with time synchronization frogded images from
the stereo vision cameras.

8See http://www.bugzilla.org
9See http://www.debian.org

—42 — Department of Automatic Control

CHAPTER 4. SOLUTION

e Conversion of RDDFs to Bob'’s native format and uploading tdtiple comput-
ers before used in a test run.

e Creation and exchange of SSH-keys between multiple comptdesnable au-
tomatic login which makes it possible for other scripts tofen operations on

multiple computers without user interaction required.

e Flexible automatic setup of MTA settings between multiptenputers since
MTA requires config files with the IP adresses of all the coramuthat shall
be able to talk to each other, on each of the involved computer

e Collecting various log files from multiple computers to aglenstorage host.
This was created when realized how much time that was wastedi® during
the field tests.

Henrik Kjellander — 43 —

4.5. SYSTEM ADMINISTRATION

Planning software

s

TCP sockets

v

PlayerInterface

TCP sockets Y
TCP sockets

A

Player
2004 race server
software/ }:;;i:n zoalto Shared Memory
har dW are / Data/Commands Gazeb()

Actuator
Command

Actuator
Commands

Figure 4.1: The Simulation Architecture. Note that the eatrimplementation is not
transparently connected to Player as the purpose of Pageebo is. This will be a
future implementation goal.

— 44 — Department of Automatic Control

CHAPTER 4. SOLUTION

Figure 4.2: Left: The Gazebo simulator with a Sick LMS221idevmounted on the
Tahoe model. Right: A client application that displays tlherent LADAR readings
and allows interaction with the model.

Figure 4.3: The Corridor plugin drawing the RDDF corridotle 3D simulated envi-

ronment.

Henrik Kjellander — 45 —

4.5. SYSTEM ADMINISTRATION

Figure 4.4: The Arbiter sparrow display. Votes with goodnasd speed values can be
seen for the 25 arcs for each module. Also all the vehicle stébrmation is displayed.

Figure 4.5: The LogPlayer interface. Playback of logs carpéesed and played.
Delivery speed can be adjusted and sending of votes canpygestéorward and back-
ward.

— 46 — Department of Automatic Control

CHAPTER 4. SOLUTION

P TeamCaltechAPI: Brain Class Reference - Mozilla

. Fle Edt View Go Bookmarks Tools Window Help

-J_@Q @ @ @ | [hitpsffar.catech.edujdocidac-apihtmliclasserain.hml =] [y search | & o

A! k- Humel [ESBookmarks % mozilaiorg 5 Latest Builds

=

s

Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | I¥: 3 Members | Class Memh
File Members | Related Pages | Search for

Brain Class Reference

#include <Brain.hh:>

Collaboration diagram for Brain:

— — voterHandler d o

Timeval
. e S S %
a2 | o

- Timestamp e Jimestamp

4 I m
Y lastUpdateState | ki
) Jate 3
h 'e“eme?rﬁﬁg‘zzsigmmme |Armerstates State‘ ‘VSIalsiﬁeIStateMsg| ‘VDnve;:muMumnMsg
. 5 lastUpdate [P = A
e R = et
2) combined T~ I "/ 7 tovDrive i
: “ o o J
I Aomnmedydter, - allVoters i State i SS< - lastCommand .
b = 4 | P o
g B o e s A JSfeny i it
VeterHandler ArbiterDatum S - emd
% =
= d

legend
List of all members.

Public Member Functions

Brain (ArbiterDatum &daturn)
~Brain ()
VDrive_Cl i lcul i (list< Voter > ¤t_voters)
Voter getlastCombinedVote ()

DO [} ad |

Figure 4.6: Example of a documentation web page generaté&bkygen. All class
boxes and methods are links to their respective documentpfiges. The class dia-
gram is of a compact format but UML class diagrams can alscebermted.

Henrik Kjellander — 47 —

4.5. SYSTEM ADMINISTRATION

— 48 — Department of Automatic Control

CHAPTER 5. CONCLUSION

Chapter 5

Conclusion

5.1 Retrospective

From the beginning, this project was focused on remakingAtttéter to something
more intelligent and advanced. There are two main reasangtfp most of the effort
was spent on other objectives: the lack of good simulatiasidities and the lack of
tools for reconstructing logged scenarios. It's almostasgible to test advanced al-
gorithms and behaviors without those key requirements. Astioned earlier (see 4.4
at page 39), only two field tests were performed during thsishgroject. Unfortunate
circumstances in sensor modules of the software rendeeezbtlected obstacle sensor
data useless for applying the Genetic Algorithm, which leathat the theories about
it couldn’t be proved.

Lalthough the base program it was built on has been provedingpgince it was used in the "Applied
Artificial Intelligence" class at LTH spring 2003. So goodués should be expected as soon proper test data

is available.

Henrik Kjellander — 49 —

5.2. CONCLUSION

5.2 Conclusion

What was accomplished with this master thesis? The Arbiter imgoroved, not as
revolutionary as first proposed, but a number of improvesbas been performed:

e Object oriented design
e Well documented classes

e Unit tested classes

Support for mode management (still requires work on othedutes)

Adjustable weights in real-time

Highly improved state logging with a new reusable globablegclass

Rewritten implementation of features handling decisions
e Smoothing of steering command when going straight.
Outside the Arbiter a collection of tools has been developed

e Tool for generating Arbiter weight sets imitating humanidems (the genetic

algorithm application)

e Simulation environment integrated with Player/Gazebgabde of simulating
all the involved decision making modules transpatémsimulation/hardware.

e A collection of scripts that simplifies monotonous tasks armteases the effi-
ciency of development, administration, log handling and/imareation.

5.3 Future work

Team Caltech has the largest challenge still coming. Thieréice was a huge learning
experience but also a project developed under high timespresA lot of experience
was gained by the design mistakes in both software and haedvizurrently, a new

2not completely transparent until all modules communicate WithRlayer server instead of with VS-
tate/VDrive over MTA. Right now you must give a special flag whianning the modules for them to adjust
to the Player interface

— 50— Department of Automatic Control

CHAPTER 5. CONCLUSION

vehicle is being built and a new planning architecture impealeveloped. The new
architecture will use a deliberative planner that outpatthg instead of just steering
angles. This will make it possible to do much more sophigtidglanning.

5.3.1 Ingeneral

e Improve the documentation for the project.

e Redesign more of the DGC code for object orientation to teatkependencies
and problems between modules. Object orientation alsohwadvantages of
an easier way to present the hierarchy graphically and tesilpitity to perform
unit tests on objects.

e Decide on the new planning architecture, including a detitiee planner, path

following and more.

5.3.2 Simulation

e To create a complete simulation environment that is tranespao the planning
software (i.e. uses the Player server as it's meant to be wdtdall modules

talking to Player only).

e To make a detailed analysis of the race vehicle and creataeanuigally correct
model of itin Gazebo, with suspension dynamics etc. Thiklwlpossible after

measuring the new vehicle at STI.
¢ Integrate stereo vision image processing with image ddieeded from Play-

er/Gazebo.

5.3.3 Arbiter

e Implement inputs to situation awareness so it can use themashagement.

e Run long and detailed tests with a human driving, loggingdatbe executed

with the Genetic Algorithm.

Henrik Kjellander —51—

5.3. FUTURE WORK

5.3.4 LogPlayer

e Synchronize with a (not yet fully developed) user interfapplication so graphs,
maps and camera images are displayed during playback.

5.3.5 New race vehicle

For the next race in 2005, Team Caltech will build a compjetedw vehicle. The

major mistakes with Bob can be summarized to:

e Desktop computers took up too much space (but was chosendmetteey were
donated), resulting in room for only one person, the safated

e An external generator had to be purchased to supply enougbrptt makes a

lot of noise and takes up space for one person.

e An external air conditioner had to be purchased to cool thepeders. This adds

complexity and weight on the roof.

e Basically all actuation of the vehicle was custom made fenbhicle, making it
hard to drive manually to/from test sites, requiring a &atb tow Bob with.

Currently, Team Caltech has closed a deal with a major spaasied Sportsmobife
Sportsmobile is a company that converts vans to four wheet dnd off-road terrain
capabilities. A Ford van will be converted to have four widrale, custom suspension,
a 6 litre diesel engine, 110V uninterruptable power bu{ltio need for UPS), powerful
retail air condition and much more. This will take away ak tmistakes made during
the building of Bob, and allow 4 persons to ride in the vehiblging testing. Rack
mounted servers will be used instead of laptops, improvaigicg issues and reducing
space required. For actuation, a retail handicap speethbrtuation system will be
used, allowing easy switching to manual driving and a rédiamd well documented
interface to the lower levels of control of the actuators.

This new vehicle, combined with the new planning architestiooks very promising
for the next DARPA Grand Challenge race, which will have miseigher competition.
Time will tell if Team Caltech succeeds with their quest!

3For more info, see http://www.sportsmobile.com

—52 — Department of Automatic Control

Bibliography

[1] Stentz, A., et al, "A Complete Navigation System for Géalquisition in Un-

(2]
3]

[4]

[5]
[6]

[7]

known Environments" 1995.
http://mww.ri.cmu.edu/pub_files/publ/
stentz_anthony _tony 1995 2/stentz_anthony td§95 2.pdf

DARPA, http://www.darpa.mil

M. Juberts, K. Murphy, M. Nashman, H. Scheiderman, H.t6& Szabo, "De-
velopment And Test Results for a Vision-Based Approach t€&V, 1993.
http://www.isd.mel.nist.gov/documents/murphy/is @@l f

Matthies, L., et al, "Stereo Vision and Rover Navigati®aftware for Planetary
Exploration™ 2002.
http://robotics.jpl.nasa.gov/people/mwm/visnavswdgedf

DARPA Grand Challenge, http://www.darpa.mil/grandttenge

NavCom SF-2050G Differential GPS receiver.
http://www.navcomtech.com/products/sf2050g.cfm

Northrop Grumman LN-200, an high-accurate airplane IMU
http://nsd.es.northropgrumman.com/Html/LN-200S/

[8] Sick LMS221 LADAR device.

http:/team.caltech.edu/members/SICK/LMS%20220-220%ch%20Info.pdf

[9] MTA, developed by Isaac Gremmer at Caltech, 2003

http://gc.caltech.edu/project/2004/doc/Embedded®ystMTA/MTA Users
Manual.pdf

53

BIBLIOGRAPHY

[10] Prof. Richard M Murray, Professor of Control and Dynarfiiystems, Caltech,
USA.
http://www.cds.caltech.edu/"murray

[11] Prof. Anders Rantzer, Professor of Automatic Conttdliand Institute of Tech-
nology, Sweden.
http://www.control.lth.se/rantzer

[12] Sparrow, developed by Richard M. Murray at Caltech
http://www.cds.caltech.edu/"murray/software/199parsow.html

[13] Sue Ann Hong, "Arbiter readme and specification”, 2003.
http://gc.caltech.edu/project/2004/doc/Planningite®fREADME.txt
http://gc.caltech.edu/project/2004/doc/PlanningifetdARBITER_SPEC.txt

[14] SURF, summer 2004. http://surf.caltech.edu

[15] Team Caltech, Caltech’s team for the DARPA Grand Chnglée
http://team.caltech.edu

[16] The thesis’ webpage. For further info and downloads.

http://exton.se/cv/thesis

—54 — Department of Automatic Control

APPENDIX A. DEFINITION OF WORDS

Appendix A

Definition of Words

A.1 Terminology

Table A.1 and A.2 explains terminology used in this report.

A.2 Abbreviations

Table A.3 explains the abbreviations used in this report.

Henrik Kjellander — 55—

A.2. ABBREVIATIONS

Term

Explanation

Actuator

An actuator is the mechanism by which an agent acts upon d@roement.
The agent can be either an artificial intelligence agent picéimer autonomous
being (human, other animal, etc).

Autonomous ve-

A vehicle that can drive completely by itself, with no helpaofiuman through

hicle remote control etc.

Bash Bash stands for Bourne again shell and is the default comhaagdage inter-
pretor (shell) for the Linux operating system. It is verytahie for scripting
commands and operations.

Behaviour In the subject of planning, an action-producing module Ikedaabehaviour

Branch When an isolated state of the code repository is frozen anela@wment goes
on from that point, without being affected by changes in pgaets of the tree

Call graph A graph that shows which methods a class calls during exacuti

Code profiling

When you use a tool to probe a running application to meashes$ne spent
in different parts of a program, to identify bottlenecks.

Command fusion

Combining different commands into one resulting command.

Deliberative

planning

To plan for long-term goals, looking forward into what wikppen later instead

of just facing the current situation.

Differential GPS

A GPS system that, in addition to the satellite signals, sggals from ground
based GPS-towers to correct the errors from the satellitas.gives very high
accuracy in position estimation, at best the error is asIsasad couple of]

decimeters.

Messaging trans

port architecture

A way of hiding the underlying network layers for the prograer. Given
an API to the architecture it's easier to write code that ukesnetwork to

send/receive messages.

Table A.1: Terminology used in this report

— 56 — Department of Automatic Control

APPENDIX A. DEFINITION OF WORDS

Term

Explanation

RDDF waypoint

A waypoint in the RDDF file. Consists of a Easing and a Northitogrdi-
nate, a maximum radius of distance and a maximum alloweddspdaltiple
waypoints form a corridor (see figure 2.5 at page 19).

RDDF corridor

Multiple waypoints form a corridor. From each waypoint'steulimit a cor-
ridor is reaching to the same radius out of the next waypaie¢ figure 2.5 at

page 19).
Reactive plan-| Planning for a short-term perspective, like avoiding otiststhat are close.
ning
Regression Tests that are executed after modifications has been maddéeoto verify that
testing the code is still running as proposed.
Unit Testing A way of testing isolated parts (usually classes) of an appbn, to verify it's
working according to the specifications.
\ote A data set of 25 arcs where each arc has a goodness and a spiged@#o it.

Table A.2: Terminology used in this report

Henrik Kjellander

A.2. ABBREVIATIONS

Abbreviation Full words Description
CAE CorridorArcEvaluator See 3.2.1 at page 27.
Caltech California Institute of Technol{ See http://www.caltech.edu
goy
CVS Concurrent Versioning System Version management system
DARPA Defense Advanced ResearchGrand Challenge organizers
Projects Agency
DAMN Distributed Architecture for A steering arbiter architecture
Mobile Navigation
DEM Digital Elevation Map Grid-based terrain representation
DFE Dynamic Feasibility Evaluator | See 3.2.1 at page 28.
DGC DARPA Grand Challenge The name of the race for autonomous ve-
hicles.
IDE Integrated Development Envi- A program that integrates many different
ronment tools for software development
IMU Inertial Measurement Unit Device to measure accelerations and an-
gular rates
MTA Message Transport ArchitectureFramework that provides messaging he-
tween modules.
NTG Nonlinear Trajectory Generd- A library for real-time trajectory genera-
tion tion.
QID Qualification, Inspection and Qualification event for vehicles that togk
Demonstration place the week before the 2004 GC
RDDF Route Data Definition File File that contains the GPS waypoints used
in the race.
SDK Software Development Kit All you need to develop in a language.
SSH Secure Shell The standard secure login to remote Linux
hosts.
SURF Summer Undergraduate Re-A summer project for research at Caltegh.

search Fellowship

Table A.3: Abbreviations used in this report

Department of Automatic Control

APPENDIX B. CLASS DIAGRAMS

Appendix B

Class diagrams

B.1 Arbiter

Figure B.1 shows the Arbiter’s class diagram.

B.2 GeneticAlgorithm

Figure B.2 shows the Genetic Algorithm application’s cldisgram.

B.3 Playerinterface

Figure B.3 shows the Playerinterface module’s class dmgra

B.4 LogPlayer

Figure B.4 shows the LogPlayer module’s class diagram.

Henrik Kjellander — 59—

1°g ainbi

p sSse|2 181qJyY :

‘welbel

- enabled : int
- statefile : FILE *
- voteLogFileVector : vector

+Log()

+ closeLogs() : void
+ init(isEnabled : bool, file_prefix : char *) : void
+ i VDrive_Ci

g &, SS : VState_GetStateMsg &, voters : Voter *, sp : Steer_Packet &) : void

ArbiterDatum

+ CombinedUpdateCount : int
+SS : VState_GetStateMsg

+ TestNumber : int

+ TestNumberStr : string

+ TimeZero : Timeval

+ UpdateCountState : int

+ currCommandIndex : int

+ globalAvailable : bool

+ infoText : char []

+ lastCommand : VDrive_CmdMotionMsg []
+ lastUpdateState : Timeval

+ now : Timeval

+ obstacleAvailable : bool

+ pauseCounter : int

+ reverseBeginPeriodTime : Timeval
+ reverseEnabled : bool

+ shapeVotesEnabled : bool

+ state : ArbiterState

+ stateAvailable : bool

+ toVDrive : VDrive_CmdMotionMsg
+ vdriveEnabled : bool

+ combined : Voter

+ allVoters[] : Voter

Arbiter

- TnputWelghts : vector
- d : AmbiterDatum
- voterList : list

+ Active() : void

+ Arbiter(flags : int)

+ InMailHandler(mi : Mail &) : void

+ Init() : void

+ QueryMailHandler(ml : Mall &) : Mail

+ Shutdown() : void

SpamowDisplayLoop() : void

+ standby() : void

UpdateSparrowVariablesLoop() : void
prepareVDriveCommand(cmd : VDrive_CmdMotionMsg &) : void
updateState() : void

updateVoterList{now : Timeval &) : void
waitForModules() : void

+ ~Arbiter()

+ printWeights(: const vector < double > weights) : void

+ readArbiterLog(filename : constchar*) : vector

+ ig(filename : constchar *) : vecor
+ readInputWeights(filename : constchar *) : vector

+ readVoterLog(filename : constchar *) : deque

+ readWeightsLog(filename : const char *) : vector

+ writeInputWeights(filename : constchar *, : const vector < double > weights)

Vote

+ Goodness : double
+ Velo : double

other : const Vote &) : bool
+ =(other : const Vote &) : Vote &
+ ==(other : constVote &) : bool
+ Vote(good : double, vel : double)

: void

Voter
+1D : int
+ VoterWeight : double
+ <<(0s : ostream &, v : const Voter &) : ostream &
+ =(rhs : const Voter) : Voter &

+ Voter()
+ Voter(id : int, weight : double)
+ dlearVotes() : void

Brain

- d: ArbiterDatum *

- cmd : VDrive_CmdMotionMsg

reverse() : void

+ wBrain()

+ Brain(datum : ArbiterDatum &)

+ calculateCommand (current_voters : list < Voter > &, now : Timeval &) : VDrive_CmdMotionMsg
+ getlastCombinedVote() : Voter

handleMovement() : void

setMovement(state : int) : bool

VoterHandler
- doShapeVotes : bool
+ calculateCommand()

#
pickBestArc()

eIfielp sse|o uonealdde wyiobjyonsuss ayl :z'g ainbi

WeightsWriter

- weights_file : FILE *
- weights_filename : char []

+ WeightsWriter()

+ getWeightLogFilename() : char *

+ writeAverageWeights(weights_filename : char *) : void
+ writeWeights(weights : double []) : void

HumanlLog

- speedLog : deque

- voterLogHandler : VoterLogHandler *

- steerLog : deque

+ GeneticAlgorithm()

+ evolveUntilStable() : void
+ ~GeneticAlgorithm()

+ HumanLog(filename : char *)
+ getCommand() : VDrive_CmdMotionMsg
+ getNbrCmds() : int

|
[poputation

b

+ hasMore() : bool

Population

Individual

fitness : double

+ clone() : Individual *

+ crossOver(theOtherParent : Individual *) : void
+ evaluate() : void

+ getFitness() : double

+ mutate() : void

+ print() : void

- fittestindex : int

- generation : vector

- isEvaluated : bool

- maxFitness : double
- popSize : int

- selectRange : vector

+ Population()
+ add(i : Individual *) : void

+ evaluate() : void

+ gefFittestindividual() : Individual *
+ getMaxFitness() : double

+ select() : Individual *

+ ~Population()

- isEvaluated : bool
- lastHumanPhi : double

+ WeightsIndividual()

+ clone() : Individual *

+ crossOver(theOtherParent : Individual *) : void
+ evaluate() : void

+ getFitness() : double

+ getWeights() : double *

+ mutate() : void

+ print() : void

randomValue() : double

+ printWeights(: const vector < double > weights) : void

+ readArbiterLog(filename : const char *) : vector

+ readGeneticAlgorithmConfig(filename : constchar *) : vector

+ readInputWeights(filename : const char *) : vector

+ readVoterLog(filename : const char *) : deque

+ readWeightsLog(filename : const char *) : vector

+ writeInputWeights(filename : const char *, : const vector < double > weights

: void

‘welBelp sse|d a|npow agepalulIake|d :£'g ainbi4

|
PlayerSendomd

PlayerGetState

+ Active() : void

+ InMailHandler(ml : Mail &) : void

+ PlayerSendCmd()

+ QueryMailHandler(ml : Mail &) : Mail

calcTumRate(velocity : double, steering_angle : double) : double
initLogFile(file : ofstream &) : void

- host : string
- port: int

|
PI_DATUM

+ CmdMotionCount : int

+ SS : VState_GetStateMsg

+ ServedState : int

+ dient : playerc_client t *

+ cmd : VDrive_CmdMotionMsg
+ gps : playerc_gps_t *

+ lastUpdate : Timeval

+ pos : playerc_position_t *

+ startTime : Timeval

+ truth : playerc_truth_t *

+ Active() : void

+ Init() : void

+ QueryMailHandler(ml : Mail &) : Mail

connect() : void

disconnect() : void

printState(state : VState_GetStateMsg &) : void
readConfig() : void

subscribe() : void

unsubscribe() : void

g ainbi4

p sse|d Jake|dboT :

‘welbel

VoterPlaybadc

- isStandalone : bool
- period : Timeval

+ Active() : void
+ Init() : void

+ Shutdown() : void

+ VoterPlayback(loglist_filename : char *, standalone : bool, time_period : long)
+ sendVotes() : void

+ ~VoterPlayback()

~voterLogHandler

Voterl

- logFilenames : vector
- voterLogs : vector

+ VoterLogHandler(loglist filename : char *)

+ getNbrLists() : int

+ getvoterList() : list

+ hasMoreVoterLists() : bool

parseLogFilenames(loglist_filename : char *) : void

VoterLog

- voterData : deque
- voterName : const char *

+ VoterLog(name : const char ¥, logfilename : const char *)
+getName() : const char *

+getSize() : int

+ getvoter() : Voter

+ hasMoreVoterSets() : boo!

+ printoterData() : void

L

rPlayback

VStatePlaybadk

- arbiterLog : vector
- urrState : VState_GetStateMsg
- isstandalone : bool

- period : Timeval

- statesSent : int

+ Active() : void
+ Init() : void

+ QueryMailHandler(mi : Mail &) : Mail
+ Shutdown() : void

SparrowDisplayLoop() : void

UpdateS parrowVariablesLoop() : void

+ VStatePlayback(arbiterlog_filename : const char *, standalone :

printState(state : VState_GetStateMsg &) : void
updateState() : void

bool, voterPlay : VoterPlayback *, time_period : long)

+ printWeights(: const vector < double > weights) : void
~ -

+ ig(filename :

filename : const char *) : vector

const char *) : vector

+ readInputWeights(filename : const char *) : vector
+ readVoterLog(filename : const char *
+ readWeightsLog(filename : const char *) ; vector

+ writeInputWeights(filename : const char *, : const vector < double > weights) : void

: deque

APPENDIX C. SEQUENCE DIAGRAMS

Appendix C

Sequence Diagrams

C.1 Arbiter

Figure C.1 shows a sequence diagram for the Arbiter.

C.2 GeneticAlgorithm

Figure C.2 shows a sequence diagram for the Genetic Algoghplication.

C.3 Playerinterface

Figure C.3 shows a sequence diagram for the Playerintenfackile.

C.4 LogPlayer

Figure C.4 shows a sequence diagram for the LogPlayer module

Henrik Kjellander — 65—

18)qe 8y}
T'0 ainbi4

Jo dooj urew ay ul uepgealdAl e Buimoys welbeip asuanbas Jaligly

|
| | : updateState() : void
| : MTA sendQuery

|
|
|
|
|
|
|
|
: waitForModules() : void }
|
|
|
| : updateVoterList() : void |

|

|

|

|
: calculateCommand(current vbters : list < Voter > &) : VDrive_CmdMotionMsg
|

|
: calculateCommand(list<Voter>, double) : VDrive_CmdMotionMsg
|
|
: combineVotes(list<Voter>,bool) : Voter |
|
|
|
: pickBestArc(Voter, double) : VDrive_(dmdMotionMsg

: handleMovement() : void

| : prepareVDriveCommand(cmd : VDrive_CmdMotionMsg &) : void
MTA SendMail

The steering and
speed command
is sent

‘wypoBe Areuonnjons ayj Jo uon

-eJall auo Buimoys ‘mmrpidousnbas uonedidde wyiLobyonauas ayl :z'D ainbi4

: GeneticAlgoritim

|
: getCommand() : VDrive_CmdMotionMsg
|

‘ : VoterHandler

-

new Population

for every

individual
in the old

: Population : WeightsIndividual : VoterLogHandler ‘ B HumanLog‘ ‘ 2 WeighsWriter‘

|
|
|
|
|
|
|
komm o |
: evaluate() : void | |
L |
: evaluate() : void
: calculateQJmman}j(currenl_voters : list < Voter > &, lastPhi: double) : VDrive_CmdMotionMsg

| N
|

s T
|
|
getFitness() : double |
|
|
|
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|
|
,,,,,,,,,,,,,,,,,,,,,,,,,, |
|

swap new/old population

N
|
|
|

loop creating new
Populations until we've
had the same maxFitness
for a specific amount of
rounds

T
|
: geffitestindividual() : Individual

Gazebo
\
\
\
|
|
|
|
\
|
|
\
|
|
\
|
|

Inter-process communication

|

The whole procedure takes about

10ms, allowing low latency for the state

update.

TCP packetrequest
TCP packet reply

: PlayerGetState

: void

MTA SendQuery message
MTA Reply message

: updateState()

: Arbiter

\

\

\

|

|

|
i

\

Figure C.3: Playerinterface sequence diagram. The seeshawed is the Arbiter
requesting the current vehicle state. The scenario of thtekrsending a steering
command is very similar, but with the PlayerGetState modejéaced by PlayerSend-
Cmd.

‘SB]0A pue arelsdfiupulals suo smoys “welbelp asuanbas 1ake|dbo D ainbi4

MTA GetState Mail

: VStatePlayback : VoterPlayback

: readArbiterLog(filename : const char *) : vector

|
initializations |
|

(once) : readVoterLog(filename

B VoterLogHandIer‘ ‘ : Voterlog ‘

new VoterLogHandler

const char *) : deque

I
|
|
H parseLogFiIenames#char*) : void

One
VoterLog

per logged
Voter

new VoterLog

MTA Voter Mail(s)

1 updateState() : void

: sendVotes() : void

MTA State

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
b j mails for each

logged voter

Send MTA Voter

