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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Purpose

The purpose of this master thesis was to work in the large project of Caltech’s au-

tonomous vehicle in the DARPA1 Grand Challenge race2. The work consists of im-

proving decision making, create a simulation environment and to assist in various

project management tasks and system administration on the way to the next race that

will be held in October 2005.

1.2 Goal

The overall goal for the project was to improve Team Caltech’s vehicle platform that

was used in the 2004 race so it will win the next race in 2005. Indetail, the goals

became to:

• Improve the Arbiter module of the planning software

• Build and demonstrate a complete simulation environment

• Participate in the process of decisions for the 2005 race vehicle

• Improve the project administration and development process in general

1Defense Advanced Research Projects Agency, see [2]
2A U.S. government sponsored race for autonomous vehicles
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Chapter 2

Background and Motivation

For a long timeautonomous vehicleshave been a dream for engineers, but they have

only appeared in science fiction so far. Some partially autonomous vehicles has seen

the light, as for example highway following cars using camera sensors to track the

edges of the road and radar for distance estimation to surrounding cars [3]. No one has

yet been able to construct an autonomous vehicle that can handle arbitrary terrain and

off-road environments. In 2003, the U.S. Department of Defense decided that in 2015,

one third of all their ground vehicles shall be able to operate without a human driver.

To speed up research in the autonomous vehicles areas, DARPAin 2002 announced a

race for autonomous vehicles with a $1 million cash prize to the first vehicle that could

travel on a specific route between Los Angeles and Las Vegas (see figure 2.2) in less

than ten hours. The race, called DARPA Grand Challenge, caught a lot of interest at

many companies and universities doing engineering and robotics. From Caltech a team

was created, driven by mostly undergraduate students, which applied for the race. After

one year of hard work a completely autonomous car was createdand participated in the

first race that was held in March 2004. Team Caltech1 ended up #5 of 252 competitors

after their vehicle, named Bob, had traveled autonomously for 1.3 miles until he got

stuck on a barbed wire fence. Since no team was even close to complete the 142 mile

course, a new race is announced for October 2005, now with a $2million cash prize.

This is what Team Caltech is currently working on.

1The official name for Caltech’s team
225 teams were invited to the qualification event, only 15 were allowed to start in the race

Henrik Kjellander — 13 —



2.1. AUTONOMOUS VEHICLES

Figure 2.1: Bob, Team Caltech’s vehicle in the 2004 DARPA Grand Challenge race.

2.1 Autonomous vehicles

Fully autonomous vehicles are a very complex and difficult task to achieve. Many

attempts have been made since computers has been available to the mass market. There

are many different sizes and approaches that has been testedthrough the years. The by

far hardest part is to perceive the environment and to take intelligent decisions out of the

perceived data. A human brain is still far ahead of even the fastest computers because

of it’s ability to plan and maybe most important of all: to learn from it’s mistakes.

There’s a lot of research going on within artificial intelligence about related techniques

but autonomous vehicles that can handle a completely unknown environment is still

quite far away because of the almost unlimited possibilities of different scenarios that

can appear.

— 14 — Department of Automatic Control



CHAPTER 2. BACKGROUND AND MOTIVATION

Figure 2.2: The course for the 2004 DARPA Grand Challenge race.

2.1.1 Arbiter

DAMN

DAMN3 is a decision taking architecture created by Julio K. Rosenblatt at Carnegie

Mellon University, Pittsburgh, USA [1]. It uses a collection of distributed task-achieving

modules (orbehaviors) that cooperatively determine a robot’s path by expressingtheir

preferences for each of various possible actions. An Arbiter then performscommand

fusionand selects a combined action that best satisfies the prioritized goals of the sys-

tem which can be configured by weights on each input. This behavior-based architec-

ture has the advantage of distributing different responsibilities to separate processes,

that can be developed independent in separate teams. This flexibility was one of the

key advantages that made Team Caltech implement this architecture since it would

make it easy to have independent groups of students working on each module.

Each module analyzes its view of the situation considering aset of paths generated out

3Distributed Architecture for Mobile Navigation

Henrik Kjellander — 15 —



2.2. DARPA GRAND CHALLENGE

of different steering angles (see figure 2.3). For each of these arcs it assigns a goodness

value and a recommended speed. This data is called avote. The Arbiter gets votes

from all different modules and selects the arc that has the best goodness value, which

is then sent to the actuators to steer the vehicle in that direction. For speed, the lowest

voted speed for that specific arc is selected, for safety reasons. Lack of time for testing

before the race made it impossible to fully test which weights on the different voter

inputs that were suitable, so they all ended up being 1.0. This problem gave inspiration

to the work of weight analysis with a genetic algorithm (see 4.2.2 at page 38).

Figure 2.3: The different voteable arcs created out of different steering angle

2.2 DARPA Grand Challenge

2.2.1 Background

Grand Challenge is the name for the race that DARPA arranged in March 2004. It grew

out of two Congressional mandates: one that allowed cash prizes to be awarded "in

recognition of outstanding achievements that are designedto promote science, math-

ematics, engineering, or technology education in support of the missions of the U.S.

Department of Defense."4 and another that required "by 2015, one-third of the opera-

tional ground combat vehicles of the Armed Forces are unmanned."5 Any team from

any country6 was allowed to apply for the race. To participate in the race,each team

first had to file a technical report that described their approach and showed that their

4National Defense Authorization Act for Fiscal Year 2003 (H.R. 4546, Sec. 2374b)
5National Defense Authorization Act for Fiscal Year 2001 (S.2549, Sec. 217)
6No government support or funding allowed and each team must have US citizen team lead
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CHAPTER 2. BACKGROUND AND MOTIVATION

vehicle fulfilled all the safety requirements from DARPA. Ifthe technical report was

approved, the team had to participate in a qualification event, called QID7, that was

held three days before the race at the California Speedway8. The QID consisted of a

small course with a variety of obstacles that represented typical situations the vehicles

would be expected to face in the off-road terrain. Given a predefined file of GPS way-

points, a so calledRDDF-file9, the vehicle knew where it should go. If completing the

QID the team was allowed to start in the Grand Challenge. TeamCaltech did good in

the QID and qualified as third team to the race.

Figure 2.4: Examples of different kind of terrain on the course of the race.

2.2.2 Rules

For safety and organizational reasons DARPA set up a large set of rules that the teams

must follow. Here’s a summary of the most important ones:

7Qualification, Inspection and Demonstration
8A large racing speedway in Fontana, California. http://www.californiaspeedway.com
9Route Data Definition File

Henrik Kjellander — 17 —



2.2. DARPA GRAND CHALLENGE

• The vehicle must stay within theRDDF corridor at all times (this rule was given

exceptions during the race). See figure 2.5 for a sample corridor plotted. The

RDDF corridor is used for safety reasons to limit the area that needs to be secured

by DARPA during the race.

• Each team must implement a radio signal system called E-stopused by DARPA.

This means the vehicle must respond to a pause signal by stopping as soon as

possible and enter a stand by mode. If a disable signal is given, the vehicle must

also stop, but also shut down completely (race over). The pause signal was used

in situations like if other competitors were close and needed to pass.

• GPS signals are the only allowed signals a team vehicle is allowed to use during

the race.

• No communication of any kind may be performed with the vehicle (except the

E-stop signal).

• It is not allowed to do any harm to the environment or destroy property during

the race. Since Team Caltech ran through a barbed wire fence during the race,

exceptions could obviously be made.

• Moving obstacles will appear on the course (handled by DARPA) and must be

avoided.

During the 2004 race some teams relied almost entirely onRDDF waypointfollowing,

lacking sensor processing about obstacles and intelligentbehavior avoiding them. To

prevent such approaches to be successful in the 2005 race, DARPA will put obstacles

made to disable vehicles (tank traps, see figure 2.6), in the middle of roads between

waypoints to efficiently end the race for such teams.

2.2.3 The Race

At 3:20 Saturday morning March 13, 2004, the teams were giventhe CD containing

the RDDF, the file that included the waypoints, corridor widths, and speed limits that

defined the course. By 6:00am, Team Caltech were at the starting gate ready to go.

At 6:40am, the green starting flag waved for Bob. At the mile mark, he veered off

— 18 — Department of Automatic Control
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Figure 2.5: Example of a RDDF corridor plotted with Matlab.

course, probably confused by the long shadows on the road, and kept traveling off-

road, avoiding bushes along the way. After getting back on the road, he decided to

crash through a barbed wire fence at approximately the 1.0 mile point. From there, he

drove off-road until 1.3 miles, at which point he again triedto break through the barbed

wire fence. This time, the barbed wire won and Bob sat for over40 minutes revving

his engine until DARPA disabled the vehicle though their E-stop device.

Henrik Kjellander — 19 —



2.2. DARPA GRAND CHALLENGE

Figure 2.6: Example of a tank trap obstacle. It is a simple construction of welded

iron girders that efficiently makes any vehicle come to a sudden halt. c©Entertainment

Earth, http://www.entertainmentearth.com
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Chapter 3

Methods and Technology

3.1 Material provided

Team Caltech has a budget that involves a lot of money and sponsors. Several compa-

nies donated hardware and Caltech sponsors with available students that take courses

available that relate to the Team Caltech race vehicle.

3.1.1 Computing Hardware

For software development standard PCs with various Linux distributions were used.

These PCs were a part of the CDS1 network. Team Caltech also have eight IBM laptops

that are used for field testing.

Inside Bob, the race vehicle, eight IBM Pentium4 desktops with 3.0GHz CPUs, linked

with gigabit network, were used to run the different modules.

3.1.2 Vehicle platform

Bob is a used Chevy Tahoe from 1996 that was purchased. It has four wheel drive

and has custom suspension to couple with rough off-road terrain. Surrounding Bob a

custom iron roll-cage was built that also acts as a mount platform for the sensors on the

roof. To cool the computers inside, an external air condition supply had to be mounted

1Control and Dynamical Systems Department at California Institute of Technology
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3.1. MATERIAL PROVIDED

on the roof (the race takes place in hot desert environment).The large number of

computers and the external air condition supply required somuch power that an extra

electricity generator had to be mounted in the vehicle. To ensure constant power to the

equipment, two UPS power supplies are used. For emergency stopping the vehicle, red

push buttons are placed all around the vehicle, that will kill the throttle if pushed.

3.1.3 Sensors

To create such an autonomous vehicle, a lot of different sensors need to be used to sense

the environment. Examples of sensors can be radar, cameras,laser distance estimators,

gyros and GPS receivers. The following sensors are the ones that Team Caltech used

for the 2004 race:

• LADAR2: a laser-radar that uses a spinning mirror to scan a laser beam that reads

the distance to the objects it hits. Used to detect obstacles. Team Caltech has two

units but only one was used during the race.

• Stereovision cameras: two cameras that when combined give depth information

about the images they capture. Two pairs of these cameras were created but only

one pair was used during the race.

• Road following camera: A camera that was going to be used for aroad-detecting

algorithm to follow roads. The implementation wasn’t readyenough to run at

the race, so it was not used.

• Differential GPS3 receiver: to keep track of the current position on the map.

• IMU4: a device that uses accelerometers and a gyro to measure the orientation.

3.1.4 Software

Many different applications and packages has been used in the project. As common in

the university world, free and open-source software has been used as much as possi-

ble. Table 3.1 lists the most important ones and two project specific applications are

described in detail below.
2Laser Detection And Ranging
3Global Positioning System
4Inertial Measurement Unit
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CHAPTER 3. METHODS AND TECHNOLOGY

Name Description Open-

source?

Avail-

ability

URL

Boost Free C++ libraries yes free http://www.boost.org

CxxTest Unit test library yes free http://cxxtest.sf.net

Dia Diagram editor yes free http://gnome.org/projects/dia

Doxygen Documentation generation yes free http://www.doxygen.org

Eclipse Java IDE yes free http://www.eclipse.org

Gazebo 3D simulation engine yes free http://playerstage.sf.net

GNU GCC/G++ C/C++ compiler yes free http://gcc.gnu.org

GNU Profiler

(gprof)

Code profiler yes free http://gnu.org

ImageMagick Image manipulation yes free http://www.imagemagick.org

KDevelop The KDE IDE tool yes free http://www.kdevelop.org

Linux Reliable operating system yes free http://www.linux.org

Matlab Numerical math tool no no http://www.mathworks.com

MJPEG Tools Toolkit for movie creation yes free http://mjpegtools.sf.net

MTA Real-time process commu-

nication

no Caltech

inter-

nal

See [9]

Player Interface server to Gazebo yes free http://playerstage.sf.net

Sparrow Text display library no Caltech

inter-

nal

See [12]

Sun Java SDK

1.4.2

Java SDK no free http://java.sun.com

Umbrello UML-drawing tool yes free http://uml.sf.net

Table 3.1: Software that has been used in the project development.
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MTA

MTA is a messaging transport architecturethat was written by Isaac Gremmer at Cal-

tech [9]. The purpose of it was to make it easy for the module developers to have a way

to communicate with other modules over the network, withoutthe need to manually

open and close sockets etc. MTA also supports starting and shutting down modules

through the messaging system.

Sparrow

Sparrow is a real-time text display library written by Richard Murray at Caltech. It’s

written in C and is very compact and fast, allowing user inputand displaying variables

with low CPU usage. For a screenshot of the Arbiter sparrow display, see figure 4.4 at

page 46.

3.1.5 Development tools and methods

The development is performed in Linux operating system environment. The computers

in Bob all run Linux and communicate via MTA over Gigabit Ethernet. For program-

ming development mostly editors and the GNU G++ compiler with Make was used.

The IDE5 that ships with KDE, called KDevelop, was also used. For Javadevelopment

the IDE called Eclipse was used.

3.1.6 Design- and coding standards

No specified standards existed in the DGC project. This was a bad thing since mostly

undergraduate students without a lot of project experiencedeveloped the code during

the year before the 2004 race. That meant a lot of code was unstructured and hardly

documented at all. Design documents only existed at the top level of the architecture,

and everything below were only source code. This became a real challenge.

5Integrated Development Environment, a tool that integrates multiple development tools
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3.1.7 Versioning system

CVS6 was used in the development until this project began. A conversion to use Sub-

version7 took place the first weeks. Subversion is a much better versioning system

but there were a lot of issues with the Subversion installation that slowed down the

development initially.

3.2 Planning architecture

An overview of the planning architecture that was used during the 2004 race can

be viewed in figure 3.1. Several additional modules existed,but were never reliable

enough to be used. Examples of this are RoadFollower, a module that analyzes color

images to detect roads (and then voted to follow them) and StaticMapper, a module

that uses pre-recorded data about the environment to feed extra details to the Digital

Elevation Map.

Figure 3.1: The Planning Architecture that was executed during the 2004 race.

6Concurrent Versioning System, a free and very common used versioning system
7Another versioning system. See http://subversion.tigris.org
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The way of information flow in the planning architecture:

• Input:

– Sensors, like LADAR distance points, Stereovision disparity maps, state

and position, delivers data to the modules.

– The RDDF symbolizes the pre-defined route of waypoints that creates the

corridor. This data is also available for the modules.

• Processing:

– The mapping modules creates DEM8 maps from their perceived sensor

data, which are processed by the Reactive Path Evaluation (which currently

is just a conversion function) that creates the final votes ofwhere the mod-

ule recommends we travel next.

– The reactive modules instantly creates votes out of their input data. No in-

between steps are required, which makes it possible to have alow response

time for these modules.

• Decision:

– The Arbiter collects all the votes, weights the different voters and makes a

decision out of the resulting combined vote.

• Execution:

– The commanded steering and speed from the Arbiter is processed by the

controllers in VDrive and the involved actuators are given new reference

signals.

3.2.1 Voters

The Arbiter has differentvotersthat give it input about the decision to take. In this

section, a short description for each voter is given. The voters have different tasks to

fulfill, some are meant to steer for goals (the GPS waypoints)and others have as their

only purpose to avoid obstacles during the travel to reach the goal.

8Digital Elevation Map
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GlobalPlanner

This global planning module uses the current position of thevehicle to calculate where

to steer to reach the next waypoint in the RDDF file. It only cares about this and

always votes maximum goodness for the shortest path to the next waypoint. The other

arcs gets lower votes as the distance increases from the bestarc. The GlobalPlanner

module operates at 10 Hz.

Corridor Arc Evaluator

This module is created to make Bob staying within the RDDF corridor at all costs. It

votes very low goodness for the arcs that takes Bob out of the corridor and high for all

arcs that keeps Bob within the corridor. During the 2004 race, it was accepted to go

outside the corridor to a certain extent, but this rule mightbe stricter in the next race,

making this module important. The Corridor Arc Evaluator module operates at 10 Hz.

LADARPlanner

LADARPlanner uses distance data from a Sick9 LMS221 [8] LADAR device to detect

obstacles in the terrain. For each arc path the area that Bob would occupy if traveling at

that path is evaluated and goodness values are lowered for the arcs that have obstacles.

The laser readings are performed at 75Hz, where each scan consists of 201 distance

values, each related to a different angle. These values combined with the current pitch,

roll and yaw angle of the vehicle are used to calculate a DEM map. This DEM map

is converted to a cost map from which the arcs are calculated.This calculation is very

demanding and is currently running around only 4 Hz.

StereoPlanner

The second obstacle detecting module uses data from two cameras (Sony ICX 084AL)

separated in space to create disparity images which can be used to analyze the distance

to objects within the camera’s vision [4]. This is performedby analyzing small win-

dows of pixels for similarities. Simple trigonometry is then used to locate that point in

space. The disparity map combined with the vehicle state at the time of the reading is

9Sick Inc. http://www.sick.com
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used to calculate a DEM map. This map is converted to a cost map, similar to LADAR-

Planner, from which the voted arcs are generated. The overall processing of the stereo

vision data is very computationally intensive and is currently able to reach only 7Hz

update frequency.

DFE - Dynamic Feasibility Evaluator

In order to avoid rolling over with Bob, a module was created to monitor the speed and

vote against dangerous maneuvers. It has a physical dynamics model of the vehicle

which it uses together with the current vehicle state to calculate which turns are safe at

various speeds. It also takes the pitch, roll and yaw angles into account and prevents for

example turning left if driving with a right lean and the opposite, which would result

in a roll-over. Since the computer has no sense of what’s appropiate maneuvers this

module is important to avoid damaging the truck. The DFE currently operates at 10

Hz.

3.2.2 VDrive

The module that controls steering, throttle and brakes actuation is called VDrive (Ve-

hicle Drive). It makes commands in the shape of a desired steering angle and a desired

speed. The steering angle is given as a reference value to a controller that handles the

steering wheel. The speed is given as reference value to a controller that is closely

linked to the cruise controller and the brake actuator.

3.2.3 VState

The most critical thing for Bob is to know where he is. The VState (Vehicle State)

module gets position estimation data from a NavCom SF-2050Gdifferential GPS re-

ceiver [6] that updates at 10Hz. For orientation and acceleration measurements a high-

accuracy Northrop Grumman LN-200 IMU unit [7] , operating at100Hz, is used. This

is a high-end IMU that is normally used in military aircraft and was loaned kindly by

Northrop Grumman. The data from these two devices are used asinput to a Kalman

Filter, that operates at 40Hz, giving state output at a high race. When a module needs

to know the state, it asks VState with a MTA message and the state data is delivered

with minimum latency.
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3.2.4 Matlab

Matlab is used for various tasks during development. It is also integrated into a user

interface module called MatlabDisplay, which was built to give the user an overview

of the vehicle state within the RDDF corridor and how the voters are voting (see fig-

ure 3.2).

Figure 3.2: The MatlabDisplay module in use. The votes of thedifferent modules are

plotted in real-time together with the current vehicle position and the RDDF corridor.

3.2.5 Arbiter decisions

In figure 3.3 a schematic overview of the Arbiter decisions can be seen. The flow of

information can be described as:

• Voters cast their votes by sending MTA messages to the Arbiter

• The Arbiter weights the received votes and calculates a resulting combined vote

• From the combined vote, the arbiter selects the best arc

• The desired steering angle and speed are sent as a MTA messageto the vehicle

controller (VDrive)

• VDrive controls the actuators to reach the commanded steering and speed.
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The Arbiter has a few special features about how it handles the votes. For example if

many votes next to each other are equal, the middle vote of that sequence is picked as

the decided arc. The update rate for the Arbiter is currently20Hz.

Figure 3.3: Schematic overview of the flow of information that leads to an Arbiter

decision.

3.3 Objectives

The following objectives summarizes what was going to be accomplished with the

project:

• A working simulation environment using Player/Gazebo

• Scenario reconstruction using logged state and sensor data.

• Redesign of the Arbiter code to improve modularity and object orientation.
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• Research learning abilities of the weighting of the voters in the Arbiter.

• Implement situation awareness functionality for the Arbiter.

• Streamline the development process in general for the project.

• Improve the documentation for the project

3.4 Time schedule

This thesis project was divided into two parts. The first ten weeks were a SURF

project10 while the remaining ten weeks were individual work. The whole project was

supervised by Richard Murray [10] (Caltech) and Anders Rantzer [11] (Lund Institute

of Technology). The SURF project had three milestones:

1. Progress report after four weeks.

2. Progress report and an Abstract after eight weeks.

3. Create a vocal or poster presentation.

4. Final report after SURF had ended.

A poster presenting the project was created and presented (see [16] for download).

After SURF ended the final SURF report was filed and project development continued

as before but with the thesis report and the presentation as the only targets.

10Summer Undergraduate Research Fellowship, a 10 weeks project for students at Caltech, see [14]for

more info
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Chapter 4

Solution

4.1 Simulation

Before this project, there were no sufficient simulations available for Team Caltech1.

All real testing relied on field tests, which is time demanding and requires exclusive

use of the whole truck for each test. A goal for this thesis wasto investigate, evaluate

and integrate a simulation environment for use with the current Team Caltech plan-

ning software. Discussions had already taken place and various available simulation

packages had been reviewed. The choice became Player/Gazebo, mostly because it

was free, open-source and created for robot simulation. It also had built-in support for

simulating some of the devices that were used, like GPS, cameras and LADAR.

4.1.1 Player/Gazebo

Player is an free, open-source, interface server for robot simulation created by people

from the Robotics Research Lab at University of Southern California. It is designed to

connect either to real hardware or a software simulation engine, called Gazebo. The

planning software is intended to only talk to Player withoutknowing if it’s talking to

the robot or the simulation engine. Player provides robot state from the simulation

engine and possibilities to send commands to the robot in thesimulation.

The real-time simulation engine used is called Gazebo. It’salso free, open-source,

1An planar kinematic simulator module called SimVStateVDrive existed
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and created at USC. Gazebo was originally developed from a less detailed simulation

engine called Stage, which was created for simulation of many robots simulataneously.

Gazebo is a very capable simulation environment. A summary of important features

include:

• Realistic simulation of rigid-body physics: robots can push things around, pick

things up and generally interact with the world in a plausible manner. This means

there’s forces for gravity and friction, collision detection between objects etc.

• Models for commonly used robots.

• Simulation of standard robot sensors, including sonar, scanning laser range-

finders (LADAR), GPS and IMU’s.

Gazebo, Stage and Player all started out as tools developed for robot simulation and

were later on released under the GPL source license, allowing people from many other

places of the world to contribute. Now the project is growingfaster and faster and is a

very capable simulation environment.

A large part of the thesis was spent on getting used to the Player/Gazebo environment

and integrating it to the existing planning software of TeamCaltech.

4.1.2 Simulation Design

The simulation architecture can be seen in figure 4.1. Currently, Player is not used

as it’s intended to by the creators, but rather as an interface to the simulation engine.

The link between the old planning software and the hardware is still established but

will hopefully be migrating over to the true Player-interface in the future, completely

isolating the planning software from the underlying layers.

4.1.3 PlayerInterface

A module called PlayerInterface was developed, which worksas a wrapper between

the commands used in the existing software and the Player protocol for world state and

vehicle control. Simulated sensor devices like LADAR, GPS and cameras were already

included in Gazebo so connecting the existing software to those was just an interface

conversion task. Running the existing planning software inthe simulated environment
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gave realistic results compared to what had been seen in realworld tests with the same

software. Those results looks very promising since every student working in the team

can now have access to a complete simulation environment to test algorithms and new

modules in, without the need of exclusive access to the real vehicle.

Design

For transparency with the existing planning software, PlayerInterface was designed to

simulate the two existing modules that interacts with the hardware: VState and VDrive.

The new module names became PlayerGetState and PlayerSendCmd. When PlayerIn-

terface is launched the planning modules detects it as VState and VDrive, which means

no modifications are required to run with the simulation. PlayerGetState delivers vehi-

cle state from the Gazebo simulation engine on request. PlayerSendCmd sends steering

and speed commands to the simulation, when invoked. The class diagram for Player-

Interface can be viewed in figure B.3 at page 62. A sequence diagram showing typical

operation can be seen in figure C.3 at page 68.

4.1.4 Gazebo models

Tahoe

A Gazebo plugin model of the Chevy Tahoe vehicle was developed; which had the

same length, width, height, mass etc as the real vehicle. Further work needs to be

performed to create a complete model with the real dynamic properties like suspension

and turnrate of the real vehicle. This will also require a measuring operation on the

real vehicle, which will be performed by STI2. STI is a company that is working with

simulation of cars for major manufacturers and they have a complete measuring facility

they’ve offered to let Team Caltech use. A screenshot of the Tahoe model in action can

be seen in figure 4.2.

Sick LMS221

The LADAR device that ships with Gazebo is a model of the Sick LMS220 LADAR de-

vice which sends laser beams in a 180 degrees wide scan angle.Team Caltech uses the

2Systems Technology, Inc. http://www.systemstech.com
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LMS221 model at a 110 degrees scan angle, so some modifications were required to fit

the simulated LADAR device to the needs of this project. The simulated SickLMS221

can be seen as the blue rays in action in figure 4.2.

Corridor

When running a simulation, it is crucial from an user interface perspective to know

where the RDDF corridor is compared to the environment. A Gazebo plugin was devel-

oped that parses the RDDF file and displays it in the simulated3D world environment.

A sample of this Corridor plugin can be seen in figure 4.3.

4.2 Arbiter

The Arbiter was already functional when this thesis projectstarted. It had some ad-

vanced features and worked as intended with a few exceptions:

• All the weights were 1.0 for the voter modules

• It gave a stop signal with zero steering as soon as an obstaclesensor gave zero

votes (which happened for example when the LADAR device got too much vi-

brations and had to reset itself)

• The code was very hard to maintain and not very well documented.

Like much of the other code for Bob, it had been written in a hurry by only one person

that had full understanding of the code. However, this person was not present in the

project anymore. An important decision made was to leave theexternal API to other

modules untouched for backward compatibility with existing modules. A re-design

into object oriented classes were made and abranchwas created where the new devel-

opment took place while the old, proved working version, wasleft intact.

4.2.1 Design

The first thing to do with the Arbiter design was to create classes. The old code was

written mainly in two large (600 rows each) files with not muchobject orientation at

all. To be able to reuse the code in the future, but also to be able to perform unit testing,
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an object oriented design was created. The resulting class diagram can be viewed in

figure B.1 at page 60. A sequence diagram showing a typical situation of the Arbiter

operating can be seen in figure C.1 at page 66.

4.2.2 Improvements

In addition to the redesign of the Arbiter, new features wereadded.

Weight adjusting

One feature was support for changing the voter weights in real-time. The purpose of

this was to be able to weight some voters higher than others toaffect the decisions in

an intelligent way for the Arbiter. This also included support for reading and writing

configuration files for the weights.

Modes

To be able to implement situation awareness different modeswere needed. This was

achieved by adding flags for situations and conditions that would be able to be detected

by other modules. Examples of these were:

• Terrain: rough or light terrain could affect how we prioritize decisions. For

example we want to limit the maximum possible speed when we’re driving in

rough terrain.

• Lighting: bad lighting conditions is when we do not want to trust stereo vision

cameras since they have a hard time to gather depth data in badlightning or

when the sun is shining into the camera lenses. In this case, the weight for the

StereoPlanner module is lowered.

• Dustiness: if there’s a dust cloud in front of the LADAR device, it gives in-

valid readings about obstacles that are not real. Then we don’t want to trust the

LADAR, meaning we lower the weights for the LADARPlanner module.

Currently, this is only supported in the Arbiter – other modules does not yet detect and

signal these conditions, but as soon as that’s available, the Arbiter will have this mode

management.
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Steering smoothing

Steering command smoothing was another feature implemented. It works as if the

commanded steering is almost straight forward (currently the middle 3 arcs); it sup-

presses quick changes from left and right by averaging the output steering command.

This avoids zigzagging when going forward which has been a problem since only 25

arcs are used for vote generation. One might think increasing the number of arcs would

be a better solution but that would increase the computationtime used for each module

that calculates votes.

GeneticAlgorithm

An idea for managing the weights was to use logged data from a human driving Bob,

with the sensor modules running. Analysis of the decisions taken by the human driver

using a genetic algorithm is able to produce weight-sets that make it possible for the

Arbiter to imitate the human’s decisions in the situations the human faced. By that,

good weight sets can be developed for different situations with this tool.

A class diagram of the Genetic Algorithm application can be seen in figure B.2 at

page 61 and a sequence diagram showing a typical iteration can be seen in figure C.2

at page 67.

Unit Testing

The new object oriented design of the Arbiter made it possible to performunit testing.

A free unit test package called CxxTest3 was used for these tests. With unit tests, the

specifications of the important parts of the Arbiter were tested and verified working

correctly. This test suite will also make a solid ground for futureregression testingon

the Arbiter when further modifications have been made.

4.3 LogPlayer

In addition to the lack of simulation capabilities, there was no way to reconstruct logged

runs of Bob. To be able to analyze what decisions the Arbiter makes in each time seg-

ment it is crucial to have a playback utility where you can step and pause the playback,

3http://cxxtest.sf.net
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giving time to analyze the situation for debugging purposes. To achieve this, a module

called LogPlayer was developed. It allows playback from voter and state logs just as

all the modules were actually running. Different playback modes includes timedriven

playback and a user mode when the user selects when votes and state shall be sent. An

example of the user interface can be seen in figure 4.5.

4.3.1 Design

The LogPlayer was designed to be transparent to the existingArbiter. Two MTA mod-

ules were created: VStatePlayback and VoterPlayback. VStatePlayback parses the state

log and responds to VDrive state requests just as it was the VState module. VoterPlay-

back parses all the voter logs and sends votes just as they came from running voting

modules. A class diagram of the LogPlayer can be seen in figureB.4 at page 63 and a

sequence diagram showing a typical playback step can be seenin figure C.4 at page 69.

4.4 Field tests

For trying out new software implementations on Bob, a large area of space is required

if Bob is going to be able to travel safely around autonomously. This requirement

combined with the size of Bob and the clumsy ways to transportit (requires a trailer

since Bob cannot be driven on the streets manually) combinedwith the distance (a 2

hours drive) to suitable test areas, makes quick tests impossible to perform. Because

of this, only two field tests were performed during the summer. They took place at a

dry lake bed in El Mirage4 and included staying there for two days of testing. It is

quite a challenge to organize such a field test as it includes alot of computers, having

a site server out in the desert and all other logistic issues involved with having fifteen

students camping in the desert. Many people were sharing Bobas a test platform and

inefficiency in the handling of modules, logs and test setupsmade testing very time

demanding. It was a great time though and field testing in large scale will probably be

the key to success in the 2005 race.

4An off-road racing area about 60 miles north-east of Caltech in Pasadena, CA. For further info, see:

http://www.ca.blm.gov/barstow/mirage.html
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4.5 System Administration

A lot of system administration tasks were required to improve the efficiency of the

project. The thesis author quickly took a role as one of the system administrators,

handling various tasks.

4.5.1 Documentation

Doxygen

Even though the project library consisted of 50000 lines of source code, no overall doc-

umentation API existed. For this some research was performed to find a suitable doc-

umentation tool and a tool called Doxygen was chosen. Doxygen parses code source

files for specific syntax that tells the parser which text means what in the documen-

tation (like javadoc5 does for Java source code). Doxygen is very powerful and also

has features like creating class diagrams andcall graphs. An example of a Doxygen

generated HTML-page can be seen in figure 4.6.

Wiki

To gather all the documentation about tools, hardware and software projects, meetings

and contact lists in one place, a web based documentation system called Wiki was

used. Wiki is an easy way for users to create and edit web pageswithout any HTML

knowledge required. It was a big success for the project, as for the first time all infor-

mation was available at the Wiki webpage and constantly updated by users. Also all

old documentation was entered into the Wiki. This thesis project administrated some

of the Wiki pages and also wrote many installation guides about how to compile the

Player/Gazebo, how to use different tools, code standards and many other things.

4.5.2 Coding Standards

As mentioned earlier (see 3.1.6), there existed no standards about how the source code

should be written, formatted and documented. The coding standards were based on

standard GNU Linux coding standards6. Guidelines about Doxygen documentation

5Sun’s tool for creating the Java documentation
6For more info, see http://www.gnu.org/prep/standards/
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formatting was also included in these standards to make it possible to view all the

documentation for the different sources online in the Doxygen HTML-documentation.

4.5.3 Code Profiling

When building computationally intensive applications likethe modules in the planning

architecture,code profilingis an important tool for identifying performance bottlenecks

in the code. For profiling the GNU profiler, called gprof, was used. One limitation with

gprof is that it cannot normally profile multi-threaded programs, which all the MTA

modules are. This limitation was solved with a patch createdby Samuel Hocevar7.

4.5.4 Versioning System

For version management, the common tool called CVS was used.In the beginning of

the thesis a merge to Subversion was made, with a lot of issueson the administration

side. The problems were solved and soon everyone could take advantage of the ease of

use with Subversion and the many improvements it has over CVS. Some of the main

advantages with Subversion compared to CVS are:

• It is backwards compatible with CVS and supports importing all the old version-

ing logs

• It uses a relative database to track changes in the files, which is very fast

• It only saves the changes between each revision instead of making a copy of a

file every time it’s edited. This saves a lot of disk space.

• Many clumsy operations from CVS like renaming and moving of files and direc-

tories are now easily performed

• Since all commands in CVS exists in Subversion, it’s very easy to switch for

users used to CVS.

7See http://sam.zoy.org/writings/programming/gprof.html for more info
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4.5.5 Bug reporting

To keep track of bugs in the project, the widely known bug tracking system Bugzilla8

was used. Bugzilla was originally created for tracking bugsin the open-source project

of the Mozilla web browser but turned out to be so successful that it was released as an

independent, free bugtracking system. It’s a very capable tool for keeping track of cur-

rent and past bugs and tasks that needs to be performed. It also has support for showing

dependency trees between different bugs. Every time a new bug is submitted or modi-

fied, an e-mail is sent to the bug owner and all affected developers. The bug owner can

then reassign the bug to other developers or accept it as his own responsibility to fix.

4.5.6 Hardware Maintenance

The computers used in Bob for the 2004 race were working fine but required a lot of

space in the truck. For this reason, thin rack mounted servers has been purchased for

the new platform that will be used in the 2005 race. The selection and maintenance of

these and the old servers was one of the administrative tasksperformed in this thesis

project. Another was reinstallation of the field laptops used by the team to achieve a

homogenous setup of workstations for the developers. The selected Linux distribution

became Debian9 since it is widely supported and has excellent package management.

From the 2004 race, one important lesson learned was how important a good package

management support was, since many of the tools that are used, depend on a lot of

different Linux packages.

4.5.7 Scripting for automation

Many tasks in the project were inefficient and required the same work being performed

on multiple computers. Most of them were automated bybash-scripts. Examples of

such tasks are:

• Updating the subversion tree and compiling on multiple computers.

• Automated movie creation with time synchronization from logged images from

the stereo vision cameras.
8See http://www.bugzilla.org
9See http://www.debian.org
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• Conversion of RDDFs to Bob’s native format and uploading to multiple comput-

ers before used in a test run.

• Creation and exchange of SSH-keys between multiple computers to enable au-

tomatic login which makes it possible for other scripts to perform operations on

multiple computers without user interaction required.

• Flexible automatic setup of MTA settings between multiple computers since

MTA requires config files with the IP adresses of all the computers that shall

be able to talk to each other, on each of the involved computers.

• Collecting various log files from multiple computers to a single storage host.

This was created when realized how much time that was wasted on this during

the field tests.
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Figure 4.1: The Simulation Architecture. Note that the current implementation is not

transparently connected to Player as the purpose of Player/Gazebo is. This will be a

future implementation goal.
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Figure 4.2: Left: The Gazebo simulator with a Sick LMS221 device mounted on the

Tahoe model. Right: A client application that displays the current LADAR readings

and allows interaction with the model.

Figure 4.3: The Corridor plugin drawing the RDDF corridor inthe 3D simulated envi-

ronment.
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Figure 4.4: The Arbiter sparrow display. Votes with goodness and speed values can be

seen for the 25 arcs for each module. Also all the vehicle state information is displayed.

Figure 4.5: The LogPlayer interface. Playback of logs can bepaused and played.

Delivery speed can be adjusted and sending of votes can be stepped forward and back-

ward.
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Figure 4.6: Example of a documentation web page generated byDoxygen. All class

boxes and methods are links to their respective documentation pages. The class dia-

gram is of a compact format but UML class diagrams can also be generated.
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Chapter 5

Conclusion

5.1 Retrospective

From the beginning, this project was focused on remaking theArbiter to something

more intelligent and advanced. There are two main reasons for why most of the effort

was spent on other objectives: the lack of good simulation possibilities and the lack of

tools for reconstructing logged scenarios. It’s almost impossible to test advanced al-

gorithms and behaviors without those key requirements. As mentioned earlier (see 4.4

at page 39), only two field tests were performed during the thesis project. Unfortunate

circumstances in sensor modules of the software rendered the collected obstacle sensor

data useless for applying the Genetic Algorithm, which leadto that the theories about

it couldn’t be proved1.

1although the base program it was built on has been proved working since it was used in the "Applied

Artificial Intelligence" class at LTH spring 2003. So good results should be expected as soon proper test data

is available.
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5.2 Conclusion

What was accomplished with this master thesis? The Arbiter was improved, not as

revolutionary as first proposed, but a number of improvements has been performed:

• Object oriented design

• Well documented classes

• Unit tested classes

• Support for mode management (still requires work on other modules)

• Adjustable weights in real-time

• Highly improved state logging with a new reusable global logger class

• Rewritten implementation of features handling decisions

• Smoothing of steering command when going straight.

Outside the Arbiter a collection of tools has been developed:

• Tool for generating Arbiter weight sets imitating human decisions (the genetic

algorithm application)

• Simulation environment integrated with Player/Gazebo, capable of simulating

all the involved decision making modules transparent2 to simulation/hardware.

• A collection of scripts that simplifies monotonous tasks andincreases the effi-

ciency of development, administration, log handling and movie creation.

5.3 Future work

Team Caltech has the largest challenge still coming. The first race was a huge learning

experience but also a project developed under high time pressure. A lot of experience

was gained by the design mistakes in both software and hardware. Currently, a new

2not completely transparent until all modules communicate with the Player server instead of with VS-

tate/VDrive over MTA. Right now you must give a special flag when running the modules for them to adjust

to the Player interface
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vehicle is being built and a new planning architecture is being developed. The new

architecture will use a deliberative planner that outputs paths instead of just steering

angles. This will make it possible to do much more sophisticated planning.

5.3.1 In general

• Improve the documentation for the project.

• Redesign more of the DGC code for object orientation to isolate dependencies

and problems between modules. Object orientation also has the advantages of

an easier way to present the hierarchy graphically and the possibility to perform

unit tests on objects.

• Decide on the new planning architecture, including a deliberative planner, path

following and more.

5.3.2 Simulation

• To create a complete simulation environment that is transparent to the planning

software (i.e. uses the Player server as it’s meant to be used, with all modules

talking to Player only).

• To make a detailed analysis of the race vehicle and create a dynamically correct

model of it in Gazebo, with suspension dynamics etc. This will be possible after

measuring the new vehicle at STI.

• Integrate stereo vision image processing with image data delivered from Play-

er/Gazebo.

5.3.3 Arbiter

• Implement inputs to situation awareness so it can use the mode management.

• Run long and detailed tests with a human driving, logging data to be executed

with the Genetic Algorithm.
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5.3.4 LogPlayer

• Synchronize with a (not yet fully developed) user interfaceapplication so graphs,

maps and camera images are displayed during playback.

5.3.5 New race vehicle

For the next race in 2005, Team Caltech will build a completely new vehicle. The

major mistakes with Bob can be summarized to:

• Desktop computers took up too much space (but was chosen because they were

donated), resulting in room for only one person, the safety driver

• An external generator had to be purchased to supply enough power. It makes a

lot of noise and takes up space for one person.

• An external air conditioner had to be purchased to cool the computers. This adds

complexity and weight on the roof.

• Basically all actuation of the vehicle was custom made for the vehicle, making it

hard to drive manually to/from test sites, requiring a trailer to tow Bob with.

Currently, Team Caltech has closed a deal with a major sponsor called Sportsmobile3.

Sportsmobile is a company that converts vans to four wheel drive and off-road terrain

capabilities. A Ford van will be converted to have four wheeldrive, custom suspension,

a 6 litre diesel engine, 110V uninterruptable power builtin(no need for UPS), powerful

retail air condition and much more. This will take away all the mistakes made during

the building of Bob, and allow 4 persons to ride in the vehicleduring testing. Rack

mounted servers will be used instead of laptops, improving cabling issues and reducing

space required. For actuation, a retail handicap specialized actuation system will be

used, allowing easy switching to manual driving and a reliable and well documented

interface to the lower levels of control of the actuators.

This new vehicle, combined with the new planning architecture, looks very promising

for the next DARPA Grand Challenge race, which will have muchtougher competition.

Time will tell if Team Caltech succeeds with their quest!

3For more info, see http://www.sportsmobile.com
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Appendix A

Definition of Words

A.1 Terminology

Table A.1 and A.2 explains terminology used in this report.

A.2 Abbreviations

Table A.3 explains the abbreviations used in this report.
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Term Explanation

Actuator An actuator is the mechanism by which an agent acts upon an environment.

The agent can be either an artificial intelligence agent or any other autonomous

being (human, other animal, etc).

Autonomous ve-

hicle

A vehicle that can drive completely by itself, with no help ofa human through

remote control etc.

Bash Bash stands for Bourne again shell and is the default commandlanguage inter-

pretor (shell) for the Linux operating system. It is very suitable for scripting

commands and operations.

Behaviour In the subject of planning, an action-producing module is called abehaviour.

Branch When an isolated state of the code repository is frozen and development goes

on from that point, without being affected by changes in other parts of the tree.

Call graph A graph that shows which methods a class calls during execution.

Code profiling When you use a tool to probe a running application to measures the time spent

in different parts of a program, to identify bottlenecks.

Command fusion Combining different commands into one resulting command.

Deliberative

planning

To plan for long-term goals, looking forward into what will happen later instead

of just facing the current situation.

Differential GPS A GPS system that, in addition to the satellite signals, usessignals from ground

based GPS-towers to correct the errors from the satellites.This gives very high

accuracy in position estimation, at best the error is as small as a couple of

decimeters.

Messaging trans-

port architecture

A way of hiding the underlying network layers for the programmer. Given

an API to the architecture it’s easier to write code that usesthe network to

send/receive messages.

Table A.1: Terminology used in this report
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Term Explanation

RDDF waypoint A waypoint in the RDDF file. Consists of a Easing and a Northingcoordi-

nate, a maximum radius of distance and a maximum allowed speed. Multiple

waypoints form a corridor (see figure 2.5 at page 19).

RDDF corridor Multiple waypoints form a corridor. From each waypoint’s outer limit a cor-

ridor is reaching to the same radius out of the next waypoint (see figure 2.5 at

page 19).

Reactive plan-

ning

Planning for a short-term perspective, like avoiding obstacles that are close.

Regression

testing

Tests that are executed after modifications has been made to code, to verify that

the code is still running as proposed.

Unit Testing A way of testing isolated parts (usually classes) of an application, to verify it’s

working according to the specifications.

Vote A data set of 25 arcs where each arc has a goodness and a speed assigned to it.

Table A.2: Terminology used in this report
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Abbreviation Full words Description

CAE CorridorArcEvaluator See 3.2.1 at page 27.

Caltech California Institute of Technol-

goy

See http://www.caltech.edu

CVS Concurrent Versioning System Version management system

DARPA Defense Advanced Research

Projects Agency

Grand Challenge organizers

DAMN Distributed Architecture for

Mobile Navigation

A steering arbiter architecture

DEM Digital Elevation Map Grid-based terrain representation

DFE Dynamic Feasibility Evaluator See 3.2.1 at page 28.

DGC DARPA Grand Challenge The name of the race for autonomous ve-

hicles.

IDE Integrated Development Envi-

ronment

A program that integrates many different

tools for software development

IMU Inertial Measurement Unit Device to measure accelerations and an-

gular rates

MTA Message Transport ArchitectureFramework that provides messaging be-

tween modules.

NTG Nonlinear Trajectory Genera-

tion

A library for real-time trajectory genera-

tion.

QID Qualification, Inspection and

Demonstration

Qualification event for vehicles that took

place the week before the 2004 GC

RDDF Route Data Definition File File that contains the GPS waypoints used

in the race.

SDK Software Development Kit All you need to develop in a language.

SSH Secure Shell The standard secure login to remote Linux

hosts.

SURF Summer Undergraduate Re-

search Fellowship

A summer project for research at Caltech.

Table A.3: Abbreviations used in this report
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Appendix B

Class diagrams

B.1 Arbiter

Figure B.1 shows the Arbiter’s class diagram.

B.2 GeneticAlgorithm

Figure B.2 shows the Genetic Algorithm application’s classdiagram.

B.3 PlayerInterface

Figure B.3 shows the PlayerInterface module’s class diagram.

B.4 LogPlayer

Figure B.4 shows the LogPlayer module’s class diagram.
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APPENDIX C. SEQUENCE DIAGRAMS

Appendix C

Sequence Diagrams

C.1 Arbiter

Figure C.1 shows a sequence diagram for the Arbiter.

C.2 GeneticAlgorithm

Figure C.2 shows a sequence diagram for the Genetic Algorithm application.

C.3 PlayerInterface

Figure C.3 shows a sequence diagram for the PlayerInterfacemodule.

C.4 LogPlayer

Figure C.4 shows a sequence diagram for the LogPlayer module.
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