
ISSN 0280-5316
ISRN LUTFD2/TFRT--5706--SE

Subspace Based Identification
for Adaptive Control

Brad Schofield

Department of Automatic Control
Lund Institute of Technology

June 2003

Document name
MASTER THESIS
Date of issue
June 2003

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD2/TFRT--5706--SE
Supervisor
Rolf Johansson at LTH

Author(s)
Brad Schofield

Sponsoring organization

Title and subtitle
Subspace Based Identification for Adaptive Control (Identifiering med underrumsmetoder för adaptive reglering)

Abstract
This thesis describes the results of an investigation into the use of Subspace-based System Identification techniques in the
field of Adaptive Control. The project aims included adaption of subspace algorithms for
online use, proposal of new algorithms of adaptive control based on these algorithms, and analysis of properties of the
proposed systems. The thesis includes reviews of various subspace algorithms used in the investigation, as well as a brief
review of cur-rent adaptive control algorithms. A direct adaptive control algorithm based on a combination of subspace
methods and model predictive control techniques, as well as an indirect algorithm combining an implemented online
subspace identification algorithm and a model predictive controller, are presented.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
104

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through: University Library 2, Box 3, SE-221 00 Lund, Sweden Fax +46
46 222 44 22

Subspace Based Identification

for

Adaptive Control

Brad Schofield

June 16, 2003

Contents

1 Introduction 6
1.1 Background . 6
1.2 Aims . 7
1.3 Description of Work Undertaken 7
1.4 Structure of the Report . 7
1.5 Previous Work . 8
1.6 Acknowledgements . 8

I Subspace Methods 9

2 State Space Identification 10
2.1 Ho and Kalman Realization Algorithm 10

3 Projection Algorithms 12
3.1 Introduction . 12
3.2 The Basic MOESP Algorithm . 13
3.3 The PIMOESP Algorithm . 15
3.4 The POMOESP Algorithm . 17

4 Intersection Algorithms 21
4.1 Introduction . 21
4.2 Offline Algorithm . 22
4.3 Online Algorithm . 22

II Adaptive Control and Model Predictive Control 24

5 Adaptive Control 25
5.1 Introduction . 25
5.2 Self Tuning Regulators . 26

5.2.1 RLS Estimation . 26
5.2.2 Pole Placement Design . 27
5.2.3 An STR Example . 29

5.3 Model Reference Adaptive Systems 30
5.3.1 The MIT Rule . 33
5.3.2 An MIT Rule Example 34

1

CONTENTS 2

6 Model Predictive Control 38
6.1 Introduction . 38
6.2 A MPC Formulation . 39

6.2.1 The Cost Function . 40
6.2.2 Prediction of the Future Outputs 40
6.2.3 Solution of the MPC Problem 43
6.2.4 Solution in the Constrained Case 44

III Subspace Methods in Adaptive Control 45

7 Online Subspace Identification 46
7.1 Introduction . 46
7.2 Online POMOESP Implementation 46
7.3 An Example: The Furuta Inverted Pendulum 48

7.3.1 Complete Nonlinear Model 48
7.3.2 Simplified Pendulum Model 48
7.3.3 Identification Results . 50

8 Subspace Adaptive Control 57
8.1 Introduction . 57
8.2 An Initial Structure . 57
8.3 Indirect Adaptive Control Using MPC 58

9 Subspace Predictive Control 63
9.1 A Relation between Subspace Model Identification and MPC . . 63

9.1.1 The Subspace Identification Problem 63
9.1.2 Model Predictive Control Problem 65

9.2 An Example . 68

10 Conclusions 73
10.1 Summary of Algorithms . 73

10.1.1 POMOESP-MPC Indirect Adpative Controller 73
10.1.2 SPC Direct Adpative Controller 73

10.2 Discussion . 74
10.2.1 Comparison of Proposed Algorithms 74
10.2.2 Comparison with Existing Algorithms 76

10.3 Conclusions . 77
10.4 Future Work . 77

10.4.1 Identification . 77
10.4.2 Control . 78

IV Appendices 80

A Mathematical Tools 81
A.1 Projections . 81

A.1.1 Orthogonal Projections 81
A.1.2 Oblique Projections . 82

A.2 The QR Decomposition . 82
A.3 The Singular Value Decomposition 83

CONTENTS 3

B Matlab Tools 84
B.1 SPC Matlab files . 84

B.1.1 SPC1.m . 84
B.1.2 SPCID . 86
B.1.3 fixedspc.m . 89

B.2 Online POMOESP Implementation 92
B.2.1 POMOESP.m . 92

Bibliography 99

List of Figures

5.1 General adaptive controller structure 25
5.2 Gain scheduling controller structure 26
5.3 Self tuning regulator structure 27
5.4 Simulink model of a second order STR 30
5.5 STR simulation results. λ = 0.99, input a square wave of ampli-

tude 1 . 31
5.6 STR simulation results for process parameter change at time 50.

λ = 0.99, input a square wave of amplitude 1 31
5.7 STR simulation results for process parameter change at time 50.

λ = 0.8, input a square wave of amplitude 1 32
5.8 STR simulation results for noisy process noise variance 0.001.

λ = 0.8, input a square wave of amplitude 1 32
5.9 Model reference adaptive system structure 33
5.10 Simulink model of a second order MRAS 36
5.11 MRAS simulation results. γ = 2, input a square wave of ampli-

tude 1 . 36
5.12 MRAS simulation results for process parameter change at time

100. γ = 6, input a square wave of amplitude 1 37
5.13 MRAS simulation results for process parameter change at time

100. γ = 20, input a square wave of amplitude 1 37

6.1 Signals for MPC control . 39

7.1 Singular value results from a second order MIMO process model
in Simulink, showing the effects of output noise 47

7.2 Simulink model for identification of the Furuta Inverted Pendu-
lum process . 50

7.3 Simulink model for estimation of friction constant k for use in
the friction compensation block 51

7.4 Simulation results. VAF 98.7984% 51
7.5 Simulation results. VAF 99.5493% 52
7.6 Cross-validation results. VAF 83.7963% 52
7.7 Cross-validation results. VAF 47.2825% 53
7.8 Singular Values obtained with square wave input 53
7.9 Singular values obtained with PRBS input 54
7.10 Simulation results. VAF 95.6641% 55
7.11 Simulation results. VAF 90.2902% 55
7.12 Cross-validation results. VAF 69.2815% 56

4

LIST OF FIGURES 5

7.13 Cross-validation results. VAF 94.5587% 56

8.1 A possible structure of an adaptive controller using LQ design . . 58
8.2 An adaptive controller structure incorporating MPC design . . . 59
8.3 Simulink model implementing the combined POMOESP-MPC in-

direct adaptive controller . 60
8.4 The parameters to be chosen in the POMOESP-MPC adaptive

control scheme . 61
8.5 Simulation results using h = 0.1 for both the identification and

control . 62
8.6 Simulation results using h = 0.1 for control and h = 0.01 for

identification . 62

9.1 Simulink model used to implement SPC on an unstable second
order SISO system . 68

9.2 SPC Subsystem Simulink model 69
9.3 Parameter change from original dynamics to new dynamics at t

= 50s (500 samples) . 70
9.4 Parameter change from new dynamics to original dynamics at t

= 50s (500 samples) . 71
9.5 Parameter change from new dynamics to original dynamics at t

= 50s (500 samples) . 72
9.6 Parameter change from original dynamics to new dynamics at t

= 55s (550 samples) . 72

10.1 Summary of advantages and disadvantages of the proposed algo-
rithms . 77

Chapter 1

Introduction

1.1 Background

This project deals with two fields of systems and control theory which are inti-
mately related, namely Adaptive Control and System Identification. Adaptive
control is a term applied to any control system which has an ability to auto-
matically adjust its parameters. This may be caused by the output of some
identification element within the overall system, or by the variation of some
performance measure. System identification is a term used for the process of
obtaining a mathematical model from some form of measured data. This could
be input-output data or frequency response information. There exists an ex-
tremely wide variety of techniques for performing system identification, all of
which require differing levels of knowledge about the system in question.

Traditional approaches to adaptive control involve gradient search methods.
Where an unknown system is to be identified, it is common to use a least-squares
approach to identify parameters in an assumed model, which may then be used
to design a controller. Such an approach works well in the case where a model
structure can be specified, and for single-input, single-output (SISO) systems.
However, when many inputs and outputs are present (MIMO systems), and the
system is of a relatively high order, it becomes difficult not only to postulate a
model structure, but also to solve the identification problem.

With regard to these problems it is clear that a method of system identifica-
tion that requires a minimum of prior information on order and model structure,
but can provide a useful mathematical model, is highly desirable. The class of
system identification algorithms known as Subspace Methods are able to provide
state-space representations of unknown systems from input-output data and a
minimum of prior identification. They are block based methods, i.e. they op-
erate on a given number of input-output samples, and they may be applied to
MIMO systems as easily as SISO systems. By using modern linear algebra tech-
niques such as the QR and singular value decompositions, their computational
complexity is such that they are easily implementable.

6

CHAPTER 1. INTRODUCTION 7

1.2 Aims

In the light of the above it would clearly be desirable to devise some form of
adaptive control strategy that utilizes subspace algorithms to perform system
identification. This is the underlying aim of the project. Since the work con-
stitutes in some way a new field of adaptive control it was decided not to place
emphasis on solving a particular control task, but to propose algorithms and
system structures which may subsequently be investigated further. Neverthe-
less it is always useful to investigate real world systems, and to this end such a
system, the Furuta Inverted Pendulum, was used throughout the project.

The aims of the project may be specified more clearly as

• Investigation of online implementation of subspace algorithms

• Proposal of algorithms and system structures for an adaptive control sys-
tem utilizing subspace methods of identification

• Investigation of the properties of such a system, including performance
and computational complexity

These aims correspond at least approximately to the stages in which work on
the project was completed.

1.3 Description of Work Undertaken

The work involved much theoretical research into the subspace identification
algorithms, from sources such as [22]. Adaptive control was also reviewed, the
main reference being [20]. Various other aspects of control and system identi-
fication were investigated throughout the project, including LQ control design,
Model Predictive Control, and statistical significance testing. Practical work
was carried out in the Matlab/Simulink environment, used for implementation
of the algorithms and simulation of the systems. Experiments on real processes
(namely the Furuta inverted pendulum) were also carried out in Matlab, via
DAC/ADC interfaces to the process.

1.4 Structure of the Report

Since the particulars of subspace identification may not be known to the reader
this report begins with a moderately in-depth overview of the subspace al-
gorithms in Part I. They are by no means fully proved, but outlines of the
derivations are provided. The sources are stated for those readers interested in
gaining more knowledge on any particular algorithm. The part begins with an
introduction to state-space identification, which is a starting point for the devel-
opment of subspace methods. The presentation of subspace algorithms is split
according to type, with one chapter describing the so-called ‘projection’ algo-
rithms and another describing ‘intersection’ algorithms. For those who already
have a knowledge of the subspace methods, or are more interested in control
aspects, this section may be skipped.

In the same way, a very brief overview of the state of the art of adaptive
control is provided in Part II. This serves as a useful reference for comparing

CHAPTER 1. INTRODUCTION 8

proposed subspace-adaptive control algorithms with existing ones. It is also
intended to give the reader who has not encountered adaptive control previously
an insight into the structures and algorithms which currently exist, and perhaps
to indicate some of their limitations. An overview of Model Predictive Control
is presented in Chapter 6, since ideas and techniques from MPC will be called
upon often in Part III. Like Part I, Part II may be skipped by those familiar
with adaptive control.

Part III deals with the results obtained during the project, and is structured
in accordance with the stated project aims. It begins with the methods of im-
plementation and experimental results of online implementations of subspace
algorithms, including tests on the Furuta Inverted Pendulum mentioned earlier.
The next chapter deals with the proposed adaptive algorithms and system struc-
tures. Chapter 9 introduces a direct adaptive control strategy based on ideas
drawn from subspace identification and model predictive control. This strat-
egy was implemented in a Simulink controller block, and sucessfully tested in
a simple example. In the conclusion, the proposed algorithms are summarised,
and the areas deemed most important and most promising for future work are
highlighted. Conclusions are drawn about the applicability of the proposed algo-
rithms, and some qualitative comparisons are made between them and existing
algorithms.

In the Appendices, some of the more important mathematical tools used in
the thesis are briefly described, including projections and matrix factorizations.
Also included in the appendices are descriptions and source code of the Matlab
functions and Simulink m-files written to support the project.

1.5 Previous Work

The work presented in this thesis is based upon the work done on subspace
identification by Verhaegen, De Moor, van Overshee, Moonen, Favoureel and
many others. The sources include [26], [27], [3], [14] and [6]. The adaptive
control background was provided by [20], by Åström and Wittenmark.

1.6 Acknowledgements

Technical help and direction was provided by Dr Rolf Johansson (project su-
pervisor) and Johan Åkesson (PhD student) at the Department of Automatic
Control, Lund Institute of Technology. The MPC tools utilized in Chapter 8
were also written by Johan Åkesson.

Thanks are also due to Dr Philippe De Wilde at the Department of Elec-
trical and Electronic Engineering, Imperial College, and Christina Grossmann
and colleagues at the International Office, LTH, for coordinating the exchange
agreement.

Part I

Subspace Methods

9

Chapter 2

State Space Identification

Current system identification techniques used in adaptive control are of the
gradient-search type, in which parameters of a predetermined model structure
are estimated. For single-variable systems, and for systems in which the process
structure is known, this approach works adequately. However, for multivariable
systems, and those with structures that are unknown or complex, the tasks of
both proposing a model structure and of finding a parameter set are complicated.

In the light of this, a method of identifying a mathematical model without
the requirement of specifying a model order or structure is desirable. More
specifically, since state-space models are a standard representation of dynamical
systems, it is desirable to identify such a model from input-output data. Such
a method, based on the multivariable transfer function of Markov parameters,
was proposed by Ho and Kalman, and modified by Juang and Pappa. The latter
algorithm is outlined in the following section.

2.1 Ho and Kalman Realization Algorithm

Consider the aforementioned multivariable transfer function:

H(z) =
∞∑

k=0

Hkz−k (2.1)

where {Hk} are the Markov parameters, i.e. matrices of impulse response coef-
ficients. Consider also a general state-space system of the form:

xk+1 = Axk + Buk + wk (2.2)
yk = Cxk + Duk + ek (2.3)

with uk ∈ Rm, yk ∈ Rl, state xk ∈ Rn, dynamics noise sequence wk ∈ Rn and
output noise sequence ek ∈ Rl.

The aim is to identify the system matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n,
D ∈ Rl×m, using the finite input-output data sequences {uk}N

k=1 and {yk}N
k=1.

The Markov parameters {Hk} are given by:

Hk = CAk−1B, k = 1, 2, 3, . . . , N (2.4)

10

CHAPTER 2. STATE SPACE IDENTIFICATION 11

From the Markov parameters, form the Hankel matrix:

Hk,i,j =

Hk+1 Hk+2 . . . Hk+j

Hk+2 Hk+3 . . . Hk+j+1

...
...

. . .
...

Hk+i Hk+i+1 . . . Hk+i+j−1

 (2.5)

The modified algorithm by Juang and Pappa uses two such Hankel matrices,
with k = 0 and k = 1:

H0,i,j =

H1 H2 . . . Hj

H2 H3 . . . Hj+1

...
...

. . .
...

Hi Hi+1 . . . Hi+j−1

 (2.6)

H1,i,j =

H2 H3 . . . Hj+1

H3 H4 . . . Hj+2

...
...

. . .
...

Hi+1 Hi+2 . . . Hi+j

 (2.7)

The next step involves the calculation of the singular value decomposition of
the Hankel matrix H0,i,j :

H0,i,j = UΣV T

A balanced realization of order n, input dimension m and output dimension l:

x(k + 1) = Anx(k) + Bnu(k)
y(k) = Cnx(k) + Dnu(k)

is obtained, where the system matrices are obtained from:

An = Σ−1/2
n UT

n H1,i,jVnΣ−1/2
n Bn = Σ−1/2

n V T
n Eu

Cn = ET
y UnΣ−1/2

n Dn = H0

where the matrices Eu Ey are given by:

ET
y = [Il×l 0l×(i−1)l]

ET
u = [Im×m 0m×(j−1)m]

The matrices Un, Vn and Σn are given by:

Σn =

σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn

Un = Ufirst n columns

Vn = Vfirst n columns

This realization algorithm is based on the Markov parameters of the system,
that is, the system’s impulse response. While the practical significance is low,
since the impulse response is unlikely to be available, the real importance of this
algorithm is that it represents a special case of a subspace algorithm, namely
one in which the input is an impulse.

Chapter 3

Projection Algorithms

3.1 Introduction

Subspace algorithms may be split into two classes, namely projection algorithms
and intersection algorithms. These names derive from the methods used to ob-
tain the system matrices from the input-output data organised in Hankel ma-
trices. In this chapter the projection algorithms are considered. The following
chapter deals with intersection algorithms.

The concept of the projection algorithms is fairly straightforward, stemming
from the multiplication of the equation:

Yf = ΓiXf + HiUf (3.1)

with the projection operator ΠU⊥f
. This yields the projection:

Yf/U⊥
f = ΓiXf/U⊥

f (3.2)

From Equation 3.2 an estimate of the column space of the extended observability
matrix may be obtained, whose rank gives the system order.

The class of algorithms known as MIMO Output-Error State-sPace (MOESP)
is important, since a number of variations of the basic algorithm exist which
allow identification of several types of identification problems such as the noise-
free case, white ouput noise, the output-error model and the innovations model.
This chapter will concentrate on this class of algorithms, since they will be
referred to and utilized in later chapters.

The first algorithm to be illustrated is the basic MOESP, used for noise-free
identification. This derivation will also serve to outline the notation used in
discussions of subspace methods throughout this thesis. The PIMOESP algo-
rithm, for use with output-error noise model identification, and the POMOESP
algorithm used for innovations model identification will also be described. The
POMOESP algorithm is particularly important here since it is the one used
in later chapters, for the implementation of adaptive controllers. It should be
noted that the full proofs are not given here; they are in general rather involved
and are not required within the scope of the thesis. Proofs may be found in [6],
[26] and [22].

12

CHAPTER 3. PROJECTION ALGORITHMS 13

3.2 The Basic MOESP Algorithm

The basic MOESP formulation is derived for the noise-free identification prob-
lem, that is, it is purely a deterministic algorithm. While this is of course
restrictive (any real-world process to be identified will be contaminated with
noise), it is of value not only because it is required as a starting point for the
other algorithms in its class, but also because it illustrates in a simple way the
principles of projection algorithms.

Problem Formulation 3.2.1. Given the input-output data sets {uk}N
k=1 with

uk ∈ Rm and {yk}N
k=1 with yk ∈ Rl of an unknown system of order n given by:

xk+1 = Axk + Buk

yk = Cxk + Duk (3.3)

Determine:

• the order n of the system

• the system matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m up to a
similarity transformation

The first stage is the construction of the Hankel matrices from input-output
data:

Yk,i,j =

yk yk+1 . . . yk+j−1

yk yk+2 . . . yk+j

...
...

. . .
...

yk+i−1 yk+i . . . yk+j+i−2

 (3.4)

Uk,i,j =

uk uk+1 . . . uk+j−1

uk uk+2 . . . uk+j

...
...

. . .
...

uk+i−1 uk+i . . . uk+j+i−2

 (3.5)

Construct the matrix Γi ∈ Rli×n:

Γi =

C
CA
...

CAi−1

If i > n, Γi has an interpretation as an extended observability matrix. If the
matrix pair A, C is assumed to be observable, then it follows that rank(Γi) = n.

Construct also the lower block triangular Toeplitz matrix of Markov param-
eters Hi:

Hi =

D 0 0 . . . 0
CB D 0 . . . 0

CAB CB D . . . 0
...

...
...

. . . 0
CAi−2B CAi−3 CAi−4 . . . D

CHAPTER 3. PROJECTION ALGORITHMS 14

Introduce the state vector:

Xk,j =
(

xk xk+1 . . . xk+j−1

)
(3.6)

Using the notation defined above it is possible to express input-output data in
the form:

Yk,i,j = ΓiXk,j + HiUk,i,j (3.7)

The method of operation of the MOESP algorithm is to obtain an estimate
of the extended observability matrix Γi, and from this determine estimates of
the system matrices A and C. The estimate of Γi is obtained by removing
the HiUk,i,j term from Equation 3.7, and determining the column space of the
result.

This method is justified by considering that the future outputs of a system
are given by the combination of the vector spaces of the state (which reflects
the past inputs and outputs of the system) and the future inputs. By removing
the HiUk,i,j term from Equation 3.7, the algorithm determines the effect of the
state on the output.

To remove the term HiUk,i,j in Equation 3.7, consider multiplication by the
projection operator onto the orthogonal complement of Uk,i,j , denoted ΠU⊥k,i,j

(see Appendix A.1.1). This yields:

Yk,i,jΠU⊥k,i,j
= ΓiXk,jΠU⊥k,i,j

This may be expressed as the orthogonal projection:

Yk,i,j/U⊥
k,i,j = ΓiXk,j/U⊥

k,i,j

As shown in Appendix A.2, this projection may be solved by employing the RQ
decomposition: (

U0,i,j

Y0,i,j

)
=

(
R11 0
R21 R22

)(
Q1

Q2

)
(3.8)

From Equation 3.8, we obtain:

U0,i,j = R11Q1

Y0,i,j = R21Q1 + R22Q2

(3.9)

and from Equation 3.7, we obtain:

Y0,i,j = ΓiX0,j + HiR11Q1 (3.10)

Multiplying the expression for Y0,i,j in Equation 3.9 with QT
2 , we get:

Y0,i,jQ
T
2 = R22

Performing a similar multiplication from the right on Equation 3.10 yields:

Y0,i,jQ
T
2 = ΓiX0,jQ

T
2

This gives the result:
R22 = ΓiX0,jQ

T
2

CHAPTER 3. PROJECTION ALGORITHMS 15

It remains to obtain the column space of the extended observability matrix
Γi. As illustrated in Appendix A.3, this may be found by taking the SVD of
R22:

R22 = UΣV T

In this noise-free case, the number of nonzero singular values gives the system
order n. A basis in the column space of the extended observability matrix Γi is
given by the first n columns of the matrix U . Estimates of the system matrices
C and A (up to a similarity transformation) are obtained as:

Ĉ = Un(first l rows)

Â = U†
1U2

where:

U1 = Un(first (i− 1)× l rows)

U2 = Un(last (i− 1)× l rows)

The methods for obtaining the B and D matrices are not so straightforward
and will not be discussed here.

It can be shown that this basic algorithm also provides consistent estimates
in the presence of white output noise (see for example [6]). In this case the
singular values above the order of the system are nonzero, and the ‘large’ singular
values must be chosen in order to obtain the system order and estimate the
system matrices. This is in general done by inspection of the singular values.

3.3 The PIMOESP Algorithm

As seen in the previous section, the basic MOESP formulation gives consistent
estimates in the presence of white output noise. In reality however, the noise
encountered will seldom be white. In this section the output-error problem, this
is, where coloured output noise is present.

Problem Formulation 3.3.1. Given the input-output data sets {uk}N
k=1 with

uk ∈ Rm and {yk}N
k=1 with yk ∈ Rl of an unknown system of order n given by:

xk+1 = Axk + Buk

yk = Cxk + Duk + v(k) (3.11)

where v(k) is an additive zero mean noise signal, uncorrelated with the input,
determine:

• the order n of the system

• the system matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m up to a
similarity transformation

The Past-Input version of the MOESP algorithm, known as PIMOESP,
solves this problem using an instrumental variable method. Forming Hankel
matrices of appropriate dimensions as in Section 3.2, we obtain the representa-
tion:

Yk,i,j = ΓiXk,j + HiUk,i,j + Vk,i,j (3.12)

CHAPTER 3. PROJECTION ALGORITHMS 16

where Vk,i,j is a Hankel matrix of the noise values.
As with the basic MOESP algorithm, the first step involves the removal of

the HiUk,i,j term through multiplication by the projection operator ΠU⊥k,i,j
. To

remove the remaining noise term, an instrument Z, correlated with the state
but uncorrelated with the noise, will be used. In other words, the matrix Z
must satisfy the conditions:

lim
N→∞

1
N

Vk,i,jΠZ = 0 (3.13)

rank(lim
N→∞

1
N

Xk,jΠZ) = n (3.14)

In the PIMOESP the instrument is chosen to be a matrix of past input values.
Since the noise is assumed to be uncorrelated with the input, it is clear that
Equation 3.13 holds. Under conditions of persistent excitation, Equation 3.14
also holds.

It is now necessary to define two Hankel matrices for inputs and outputs,
one of ‘past’ values, given by U0,i,j , and another of ‘future’ values, given by
Ui,2i,j (note that the block row sizes need not be equal, it is merely chosen so
in this case). From this the instrument Z may be defined as:

Z = U0,i,j

Multiplying Equation 3.12 (using the ‘future’ Hankel matrices) from the right
with ΠU⊥k,i,j

and ΠZ and allowing the number of data points to tend to infinity
gives:

lim
N→∞

1
N

Yi,2i,jΠU⊥k,i,j
ΠU0,i,j = lim

N→∞
1
N

ΓiXi,jΠU⊥k,i,j
ΠU0,i,j

It is now desired to estimate the column space of Γi. This may be done in a
similar way to Section 3.2 by using the RQ decomposition:

Ui,2i,j

Z
Yi,2i,j

 =

R11 0 0
R21 R22 0
R31 R32 R33

Q1

Q2

Q3

As the number of data points tends to infinity we obtain:

lim
N→∞

1√
N

R32 = lim
N→∞

1√
N

ΓiXi,jQ
T
2

As before, we take the SVD of R32:

R32 = UΣV T

The system matrices A and C are then calculated in the same manner as with
the basic MOESP algorithm, giving:

Ĉ = Un(first l rows)

Â = U†
1U2

where:

U1 = Un(first (i− 1)× l rows)

U2 = Un(last (i− 1)× l rows)

CHAPTER 3. PROJECTION ALGORITHMS 17

3.4 The POMOESP Algorithm

In this section the problem of identification of the innovations model will be
considered. This model involves white output noise in addition to white noise
on each of the states, the latter being known as process noise. The Past Output
MOESP scheme involves both deterministic and stochastic parts, and is thus
useful for control purposes, for example the construction of a one step ahead
predictor.

Problem Formulation 3.4.1. Given the input-output data sets {uk}N
k=1 with

uk ∈ Rm and {yk}N
k=1 with yk ∈ Rl of an unknown system of order n given by:

xk+1 = Axk + Buk + w(k)
yk = Cxk + Duk + v(k) (3.15)

where v(k) and w(k) are additive zero mean white noise signals, uncorrelated
with the input, and with covariance matrices:

E{
(

w(k)
v(k)

) (
wT (k + τ) vT (k + τ)

)} =
(

Q S
ST R

)
δ(τ)

Let the system in Equation 3.15 be written on the equivalent innovations
form:

xk+1 = Axk + Buk + Ke(k)
yk = Cxk + Duk + e(k) (3.16)

Determine:

• the order n of the system

• the system matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m up to a
similarity transformation

• the Kalman gain K

Consider the representation:

Yk,i,j = ΓiXk,j + HiUk,i,j + GiWk,i,j + Vk,i,j (3.17)

where:

Gi =

0 0 . . . 0
C 0 . . . 0

CA C . . . 0
...

...
. . .

...
CAi−2 CAi−3 . . . 0

Again the projection operator ΠU⊥k,i,j
will be used to remove the HiUk,i,j term.

An instrumental variable will also be used to remove the noise terms. The instru-
mental variable U0,i,j as used in the PIMOESP method is a possible candidate,
since:

lim
N→∞

1
N

Wk,i,jU
T
0,i,j = 0 (3.18)

lim
N→∞

1
N

Vk,i,jU
T
0,i,j = 0 (3.19)

CHAPTER 3. PROJECTION ALGORITHMS 18

It can also be shown that:

lim
N→∞

1
N

Y0,i,jW
T
k,i,j = 0 (3.20)

lim
N→∞

1
N

Y0,i,jV
T
k,i,j = 0 (3.21)

The instrumental variable in the POMOESP method is thus chosen as a com-
bination of past inputs and outputs:

Z =
(

U0,i,j

Y0,i,j

)

Multiplying Equation 3.17 from the right by ΠU⊥k,i,j
and ΠZ gives:

lim
N→∞

1
N

Yi,2i,jΠU⊥k,i,j
ΠZ = lim

N→∞
1
N

ΓiXi,jΠU⊥k,i,j
ΠZ

This is solved in the usual way using the RQ decomposition:

Ui,2i,j

Z
Yi,2i,j

 =

Ui,2i,j

U0,i,j

Y0,i,j

Yi,2i,j

 =

R11 0 0 0
R21 R22 0 0
R31 R32 R33 0
R41 R42 R43 R44

Q1

Q2

Q3

Q4

Letting the number of data points tend to infinity we obtain:

lim
N→∞

1√
N

(
R42 R43

)
= lim

N→∞
1√
N

ΓiXi,j

(
Q2

Q3

)T

To find an estimate of the column space of Γi, we take the SVD of
(

R42 R43

)
:

(
R42 R43

)
= UΣV T

The system matrices A and C are then calculated in the same manner as with
the basic MOESP algorithm, giving:

Ĉ = Un(first l rows)

Â = U†
1U2

where:

U1 = Un(first (i− 1)× l rows)

U2 = Un(last (i− 1)× l rows)

The next step is stochastic stage in which the Kalman gain K is obtained.
This begins by writing Equation 3.17 on innovations form:

Yk,i,j = ΓiX̂k,j + HiUk,i,j + MiEk,i,j (3.22)

where:

Mi =

Il 0 . . . 0
CK Il . . . 0

...
...

. . .
...

CAi−2K CAi−3K . . . Il

CHAPTER 3. PROJECTION ALGORITHMS 19

In order to obtain estimates of the matrices Q, R and S we must first obtain
an estimate of the state. Consider the observer equation:

x̂(k + 1) = Ax̂(k) + Bu(k) + K(y(k)− ŷ(k))

= Ãx̂(k) + B̃u(k) + Ky(k)

where:
Ã = A−KC, B̃ = B −KD

The state sequence may then be written as:

X̂k,j = ÃiX̂0,j + Cu,iU0,i,j + Cy,iY0,i,j

where X̂0,j is the initial state and:

Cu,i =
(

Ãi−1B̃ Ãi−2B̃ . . . B̃
)

Cy,i =
(

Ãi−1K Ãi−2K . . . K
)

Owing to the stability of Ã, the term ÃiX̂0,j tends to zero as i tends to infin-
ity. Substituting the expression for the state sequence into Equation 3.22, and
allowing i to tend to infinity, we obtain:

lim
i→∞

Yk,i,j = Γi lim
i→∞

(Cu,iU0,i,j + Cy,iY0,i,j) + lim
i→∞

HiUk,i,j + lim
i→∞

MiEk,i,j

Here, Γi and Hj may be computed from the system matrix estimates found in
the deterministic identification stage. The state sequence may be obtained by
using the instrumental variable:

Z =

Ui,2i,j

U0,i,j

Y0,i,j

This gives:

lim
i→∞

Yk,i,jΠZ = lim
i→∞

ΓiX̂k,jΠZ + lim
i→∞

HiUk,i,jΠZ + lim
i→∞

MiEk,i,jΠZ

Since the row spaces of X̂k,j and Uk,i,j are completely spanned by the row space
of Z, the projection operator multiplying these terms may be omitted. This
gives:

X̂k,j = Γ̂†i (Yk,i,jΠZ − ĤiUk,i,j)

An estimate of X̂k+1,j is given by:

X̂k+1,j = Γ̂†i−1(Yk+1,i−1,jΠZ+ − Ĥi−1Uk+1,i−1,j)

where:

Z+ =

Ui+1,2i−1,j

U0,i+1,j

Y0,i+1,j

Estimates of Wk,i,j and Vk,i,j may be obtained by solving:
(

X̂k+1,j

Yk,1,j

)
=

(
Â B̂

Ĉ D̂

)(
X̂k,j

Uk,1,j

)
+

(
Ŵk,1,j

V̂k,1,j

)

CHAPTER 3. PROJECTION ALGORITHMS 20

The covariance matrices may them be obtained as:

(
Q̂ Ŝ

ŜT R̂

)
=

1
N

(
Ŵk,1,j

V̂k,1,j

) (
Ŵk,1,j

V̂k,1,j

)T

The Kalman gain K is finally given by:

K̂ = (ÂP̂ ĈT + Ŝ)(ĈP̂ ĈT + R̂)−1

P̂ = ÂP̂ ÂT + Q̂ + (ÂP̂ ĈT + Ŝ)(ĈP̂ ĈT + R̂)−1(ÂP̂ ĈT + Ŝ)T

The POMOESP algorithm is an attractive one from a control point of view
due to its stochastic elements, which allow the calculation of the Kalman gain.
This may be used in control applications for implementing for example a one
step ahead predictor for the state. It should however be remembered that
the subspace algorithms generate state-space models in an effectively arbitrary
state-space basis, meaning that the states will almost certainly lack physical
interpretation. This is important for the choice of control design methodology,
and will be discussed in greater depth in later chapters.

A further algorithm exists for solving the errors-in-variables identification
problem which incorporates noise on the input. However, in many identification
tasks the input is specifically generated for the purposes of identification, and
thus does not include noise. For this reason this variant of the MOESP algorithm
will not be presented here.

Chapter 4

Intersection Algorithms

4.1 Introduction

The idea of the intersection algorithms is to obtain the future state sequence
Xf as the intersection of the row space of the past inputs and outputs Wp and
the future inputs and outputs Uf and Yf :

row space Xf = row space Wp ∩ row space
(

Uf

Yf

)
(4.1)

Algorithms based on this idea are presented in [14]. Although these al-
gorithms will not be implemented or directly utilized in this thesis, they are
included here for completeness. Additionally, an online adaptive algorithm is
presented in [14] which provides an interesting alternative to the more usual
block based algorithms.

Unlike the MOESP class of algorithms presented in the previous chapter, the
intersection algorithms presented here determine estimates of the system matri-
ces via estimation of a state sequence. Since these algorithms are considered in
less detail in this thesis than the MOESP class of algorithms, the presentation
here will be very brief, consisting only of a statement of the algorithms. The
full proofs may be found in [14].

21

CHAPTER 4. INTERSECTION ALGORITHMS 22

4.2 Offline Algorithm

Define the Hankel matrices of input-output data (notice the different structure
as compared to the MOESP algorithms):

H1 =

u(k) u(k + 1) . . . u(k + j − 1)
y(k) y(k + 1) . . . y(k + j − 1)

u(k + 1) u(k + 2) . . . u(k + j)
y(k + 1) y(k + 2) . . . y(k + j)

...
...

. . .
...

u(k + i− 1) u(k + i) . . . u(k + i + j − 2)
y(k + i− 1) y(k + i) . . . y(k + i + j − 2)

H2 =

u(k + i) u(k + 1 + 1) . . . u(k + i + j − 1)
y(k + i) y(k + 1 + 1) . . . y(k + i + j − 1)

u(k + i + 1) u(k + i + 2) . . . u(k + i + j)
y(k + i + 1) y(k + i + 2) . . . y(k + i + j)

...
...

. . .
...

u(k + 2i− 1) u(k + 2i) . . . u(k + 2i + j − 2)
y(k + 2i− 1) y(k + 2i) . . . y(k + 2i + j − 2)

Define H as the concatenation of the above matrices:

H =
(

H1

H2

)

Calculate and partition the SVD of H:

H = UΣV T =
(

U11 U12

U21 U22

)(
Σ11 0
0 0

)
V T

Calculate the SVD of the matrix UT
12U11Σ11:

UT
12U11Σ11 =

(
Uq U⊥

q

)(
Σq 0
0 0

) (
V T

q

V T
q

)

Estimates of the system matrices are obtained by solving the linear equations:

(
UT

q UT
12U(m + l + 1 : (i + 1)(m + l), :)Σ

U(mi + li + m + 1 : (m + l)(i + 1), :)Σ

)
=

(
A B
C D

)(
UT

q UT
12U(1 : mi + li, :)Σ

U(mi + li + 1 : mi + li + m, :)Σ

)

where the matrix indices follow standard Matlab notation.

4.3 Online Algorithm

In [14] an online version of the algorithm presented in the previous section is
derived. It involves updating the H matrix with a new column when new input-
output samples are available. Old values may be discarded through the use of
a forgetting factor. The scheme is thus analogous to an RLS algorithm with a

CHAPTER 4. INTERSECTION ALGORITHMS 23

forgetting factor, and is suited to situations where the process dynamics may
be changing.

The algorithm is initialized by creating the matrices:

U0 = I(2mi+2li)×(2mi+2li), Σ0 = 0(2mi+2li)×(2mi+2li)

where m and l are the input and output dimensions respectively, and i is the
nominal block row size of the Hankel matrix H. At each sampling instant,
construct a new column of the Hankel matrix H, H+

k , and calculate the SVD:

UkΣkV T
k =

(
αUk−1Σk−1 H+

k

)

where α < 1 is a forgetting factor, multiplying previous input-output informa-
tion. Form the partition:

UkΣk =
(

U11 U12

U21 U22

)(
Σ11 0
0 0

)

Calculate and partition the SVD of UT
12U11Σ11:

UT
12U11Σ11 =

(
Uq U⊥

q

)(
Σq 0
0 0

) (
V T

q

V T
q

)

Estimates of the system matrices are obtained by solving the linear equations:

(
UT

q UT
12U(m + l + 1 : (i + 1)(m + l), :)Σ

U(mi + li + m + 1 : (m + l)(i + 1), :)Σ

)
=

(
A B
C D

)(
UT

q UT
12U(1 : mi + li, :)Σ

U(mi + li + 1 : mi + li + m, :)Σ

)

It can be seen that this algorithm requires the computation of two singular
value decompositions at each sampling instant. For this reason it may be sug-
gested that the algorithm is restricted to systems with relatively low sampling
frequencies. Alternatively the algorithm could be modified to calculate new es-
timates of the system matrices after a given number of sampling periods. This
would lower the computational demand while retaining the adaptive nature of
the algorithm.

Part II

Adaptive Control and
Model Predictive Control

24

Chapter 5

Adaptive Control

5.1 Introduction

An adaptive control system is one in which the controller parameters may be
adjusted by some mechanism. There exists a wide variety of mechanisms for
adjustment, among them system identification of the control object, and some
performance measure of the system such as output variance. The aim of an adap-
tive controller is to automatically provide a competitive controller in situations
where the dynamics of the control object may be varying. This could include
for example a chemical process, a paper mill or an aircraft. Adaptive control
can also be useful in situations where disturbance characteristics vary in nature.
A good example of this would be a ship autopilot, where the disturbances in
the form of waves and currents cannot be approximated by simple disturbance
models. The structure of an adaptive controller is shown in Figure 5.1.

Some of the first adaptive control techniques were developed in the 1950s
for aircraft flight controllers. This was required because aircraft dynamics differ
depending on flight conditions such as altitude and Mach number, meaning a
fixed dynamic controller may not work well in all operating modes. Most aircraft
use a technique called Gain Scheduling in which a control strategy is selected

PlantController

Parameter
Adjustment
Mechanism

Controller
Parameters

yu
uc

Figure 5.1: General adaptive controller structure

25

CHAPTER 5. ADAPTIVE CONTROL 26

PlantController

Gain
Schedule

y

Parameters
Controller

u
uc

Operation Conditions

Figure 5.2: Gain scheduling controller structure

depending on the measured operating conditions. This can be considered as a
form of adaptive control in which the mechanism for adjusting the control is the
measurement of operating conditions. Figure 5.2 shows the basic structure of a
gain scheduling controller.

In the 1970s and 1980s new schemes were developed using various struc-
tures. Among these are the Model Reference Adaptive System (MRAS) and the
Self Tuning Regulator (STR). In reality these schemes are equivalent, but were
developled for different standpoints and remain regarded as separate method-
ologies. This chapter aims to give a very brief overview of the operation of
these two types of system and their variants, in order to provide comparisons
and analogies with new algorithms and structures developed in the project. The
reference material for this chapter is [20], Adaptive Control by Åström and Wit-
tenmark, and the reader is directed to this book for further information on any
adaptive control schemes.

5.2 Self Tuning Regulators

5.2.1 RLS Estimation

Many adaptive control strategies involve the estimation of parameters in an
ARMA model of the plant to be controlled. The estimated model is then used
in some standard control design methodology, such as pole placement design.
Such schemes are known as indirect adaptive controllers. A common method of
estimating the plant parameters is Recursive Least Squares (RLS). This is, as
the name suggests, a recursive implementation of the least-squares estimation
process, which is computationally efficient since it does not recalculate the stan-
dard least-squares solution θ̂ = (ΦT Φ)−1ΦTY every time a new data sample is
obtained, but only updates various matrices. The proof is not given here (see
[7]), rather the result is stated.

Consider an ARMA model of the form:

y(t) =− a1y(t− 1)− a2y(t− 2)− . . .− any(t− n)
+ b0u(t− 1) + . . . + bm(t−m− 1)

CHAPTER 5. ADAPTIVE CONTROL 27

PlantController

Control
Design

Estimation
Algorithm

u
uc

y

Controller
Parameters

System Specification

Estimated Parameters

Self Tuning Regulator (Str)

Figure 5.3: Self tuning regulator structure

Define the regressors:

θ =
(

a1 a2 . . . an b0 . . . bm

)T

φ(t− 1) =
(−y(t− 1) . . . −y(t− n) u(t− 1) . . . u(t−m− 1)

)T

It is now possible to write the regression equation

y(t) = φT (t− 1)θ

The recursive least-squares estimate is given by:

θ̂(t) = θ̂(t− 1) + K(t)ε(t)

ε(t) = y(t)− φT (t− 1)θ̂(t− 1)

K(t) = P (t− 1)φ(t− 1)(λ + φT (t− 1)P (t− 1)φ(t− 1))−1

P (t) = (I −K(t)φT (t− 1))P (t− 1)/λ

Here the factor λ is known as the forgetting factor, and is used to ‘discard’ old
data. This can be useful in situations where the process is changing with time.
A low value of λ uses fewer past data points in the calculation of the estimates.
Notice however that the update law for P (t) contains λ in the denominator, and
this can cause an effect known as ‘P-matrix explosion’, particularly for lower
values of λ.

5.2.2 Pole Placement Design

Pole placement design is a standard controller design, useful for SISO systems.
It is commonly used as the design methodology in indirect adaptive controllers.

CHAPTER 5. ADAPTIVE CONTROL 28

In this application it is often used with polynomial input-output representation,
to correspond to the estimated transfer function of the unknown system, often
obtained from RLS parameter estimation.

Consider the discrete-time system representation:

A(q)y(t) = B(q)(u(t) + v(t))

Consider also the general controller:

Ru(t) = Tuc(t)− Sy(t))

containing both feedforward and feedback transfer functions. The closed loop
system is given by:

y(t) =
BT

AR + BS
uc(t) +

BR

AR + BS
v(t)

u(t) =
AT

AR + BS
uc(t)− BS

AR + BS
v(t)

(5.1)

The closed loop characteristic polynomial is given by AR + BS. The idea of
pole placement design is to choose R and S such that this polynomial is equal
to a desired polynomial Ac. This gives rise to the Diophantine equation:

AR + BS = Ac (5.2)

To obtain the T polynomial, consider the desired response to the reference
input uc:

Amym(t) = Bmuc(t)

From Equations 5.1 and 5.2 it can be seen that:

BT

Ac
=

Bm

Am
(5.3)

Factor B as:
B = B+B−

where B+ corresponds to stable, well-damped plant zeros that may be cancelled
by the controller, and B− to unstable or poorly damped zeros that may not be
cancelled. From Equation 5.3 it can be seen that B− must be a factor of Bm,
so we may write Bm = B−B′

m. If B+ is cancelled it must therefore be a factor
of Ac, as must Am from Equation 5.3. This gives:

Ac = A0AmB+

where the polynomial A0 has an interpretation, in the case of no zero cancella-
tion (B+ = 0), as an observer polynomial. This is justified by considering the
state-space version of pole placement design, done using observer-based state
feedback. For more information see [21] and [20].

From Equation 5.2 it may also may be seen that B+ is a factor of R, i.e.
that R = B+R′. The Diophantine equation then becomes:

AR′ + B−S = A0Am

By cancelling factors in the above equations we obtain an expression for T :

T = A0B
′
m

CHAPTER 5. ADAPTIVE CONTROL 29

5.2.3 An STR Example

Consider the second order process:

G(s) =
b

s(s + a)
(5.4)

where the parameters a and b are unknown. For the design it is assumed that
only the orders of the numerator and denominator polynomials are known, not
their structure.

Let the desired response be that of a standard second order system:

Gm(s) =
ω2

m

s2 + 2ζmωm + ω2
m

(5.5)

where ωm = 1 and ζm = 0.7. Let the design incorporate an observer polynomial
of the form:

Ao(s) = (s + ao)γ

with ao = 3, and γ the smallest possible integer. The sampling period is chosen
to be h = 0.5. Converting the continuous time transfer functions of the process
and desired response into discrete time representations yields:

G(q) =
b0q + b1

q2 + a1q + a2
(5.6)

and
Gm(q) =

bm0q + bm1

q2 + am1q + am2

(5.7)

Applying the Diophantine Equation AR + BS = AoAmB+ to the design
problem gives:

(q2 + a1q + a2)(q + r1)+ (b0q + b1)(s0q + s1) = (q2 + am1q + am2)(q + ao) (5.8)

where the controller parameters can be found by comparing coefficients. The
discretized desired response is given by:

Gm(q) =
0.09833q + 0.07778
q2 − 1.32q + 0.4966

(5.9)

The T (q) polynomial may then be calculated using the equation:

T (q) = βA0(q) (5.10)

where

β =
Am(1)
B(1)

(5.11)

Using the calculated values from Am we can calculate β:

β =
0.1766
b0 + b1

(5.12)

T (q) is hence given by:

T (q) =
0.1766(q + ao)

b0 + b1
(5.13)

CHAPTER 5. ADAPTIVE CONTROL 30

ySum2
Sum1

Step

u

y
phi

Signals to regressor

Reference
Generator

Random
Number

phi

y

theta

P

RLS−estimator

11.2

s +0.12s2

Plant

theta[B,A]

Parameters to model
polynomials

P

[B,A] [R,S,T]

Minimum−degree
pole−placement design

 without zero cancelation

[R,S,T]

u_c

y

u

Adaptive
2DOF controller

Figure 5.4: Simulink model of a second order STR

Figures 5.5 to 5.8 show the results of simulations using this design. In
particular, the effect of the forgetting factor λ of the RLS estimator can be
seen. In Figure 5.5 a relatively high forgetting factor, λ = 0.99 is used, and
gives good results in the absence of noise and disturbances. Figure 5.6 shows
the effect of a parameter change during the simulation, again with λ = 0.99. It
can be seen that the system does not adapt well to the parameter change, with
the estimated parameters varying slowly with time and the output failing to
tract the reference signal in the desired way. In Figure 5.7 the same parameter
change is performed during the simulation, but this time a forgetting factor of
λ = 0.8 is used. Clearly the estimated parameters change much more quickly,
with the result that the output continues to track the reference signal with
minimal disturbance. However there are disadvantages with using such a low
forgetting factor. Figure 5.8 shows the effect of adding output noise when λ =
0.8. Notice also the ‘P-matrix explosion’ effect, which although present in all
the simulations, is more pronounced for lower λ. The estimated parameters
are very noisy, because the system effectively adapts to the noise. In practical
applications forgetting factor values between 0.97 and 0.99 are most common.

5.3 Model Reference Adaptive Systems

The MRAS solves a control problem in which system specifications are given in
the form of a reference model. This could for example be the desired dynamics
of a new aircraft, or the desired response of a robot arm. The model produces a
desired output corresponding to the input signal, which in the aircraft example
would be the pilot’s control inputs. The error between the desired output and
the actual output is then used to adjust the controller parameters. Figure 5.9
illustrates a model reference adaptive system structure.

The method used to adjust the control parameters must not only drive the

CHAPTER 5. ADAPTIVE CONTROL 31

0 20 40 60 80 100
−2

−1

0

1

2
Estimated Parameters (theta)

0 20 40 60 80 100
−3

−2

−1

0

1

2

3
Control Signal (u)

0 20 40 60 80 100
−10

−5

0

5

10

15

20

25
System Output (y)

0 20 40 60 80 100
−0.5

0

0.5

1

1.5
P matrix

Figure 5.5: STR simulation results. λ = 0.99, input a square wave of amplitude
1

0 20 40 60 80 100
−2

−1

0

1

2
Estimated Parameters (theta)

0 20 40 60 80 100
−3

−2

−1

0

1

2

3
Control Signal (u)

0 20 40 60 80 100
−10

−5

0

5

10

15

20

25
System Output (y)

0 20 40 60 80 100
−0.5

0

0.5

1

1.5
P matrix

Figure 5.6: STR simulation results for process parameter change at time 50.
λ = 0.99, input a square wave of amplitude 1

CHAPTER 5. ADAPTIVE CONTROL 32

0 20 40 60 80 100
−2

−1

0

1

2

3
Estimated Parameters (theta)

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

4
Control Signal (u)

0 20 40 60 80 100
−20

−10

0

10

20

30
System Output (y)

0 20 40 60 80 100
−2000

−1000

0

1000

2000
P matrix

Figure 5.7: STR simulation results for process parameter change at time 50.
λ = 0.8, input a square wave of amplitude 1

0 20 40 60 80 100
−3

−2

−1

0

1

2

3
Estimated Parameters (theta)

0 20 40 60 80 100
−10

−5

0

5

10
Control Signal (u)

0 20 40 60 80 100
−40

−20

0

20

40

60
System Output (y)

0 20 40 60 80 100
−200

−100

0

100

200

300

400
P matrix

Figure 5.8: STR simulation results for noisy process noise variance 0.001. λ =
0.8, input a square wave of amplitude 1

CHAPTER 5. ADAPTIVE CONTROL 33

PlantController

Reference
Model

Adjustment
Mechanism

Controller
Parameters

Adaption Loop

Control Loop

u
uc

y

ym

Figure 5.9: Model reference adaptive system structure

error between the model output and actual output to zero, but to ensure the
system is stable. Several methods exist for doing this. One such method is
a gradient method based on the error between the actual output y and the
reference model output ym. The mechanism for adjusting the control parameters
is given by the MIT rule, discussed in Subsection 5.3.1. A design example using
the MIT rule is presented in Subsection 5.3.2.

5.3.1 The MIT Rule

The MIT rule was the first adjustment mechanism used in model reference
adaptive systems. It is used to adjust control parameters by reducing a loss
funtion. This loss function is based on the error between the actual output y
and the reference model output ym:

e = y − ym

For a general loss function J the MIT rule may be stated as:

dθ

dt
= −γ

∂J

∂θ
(5.14)

There are of course a wide variety of loss functions to be chosen. A common
one is given by:

J =
1
2
e2

which gives a parameter update law (from Equation 5.14):

dθ

dt
= −γe

∂e

∂θ

A design example using such a parameter update law is given in the following
subsection.

CHAPTER 5. ADAPTIVE CONTROL 34

5.3.2 An MIT Rule Example

Consider the unknown second order process given by:

G(s) =
k

s2 + a
(5.15)

where the parameters a and k are unknown. The specification is given in the
form of the second order model:

Gm(s) =
ω2

s2 + 2ζωs + ω2
(5.16)

where ω = 1 and ζ = 0.7.
Consider the use of an RST controller:

(s + r1)U(s) = (t0s + t1)Uc(s) + (s0s + s1)

Using the Diophantine equation AR + BS = AoAmB+ we obtain:

(s2 + a)(s + r1) + k(s0s + s1) = (s + ao)(s2 + 2ζωs + ω2)

Comparing coefficients:

s2 r1 = 2ζω + ao

s1 a + ks0 = ω2 + 2aoζω

s0 ar1 + ks1 = aoω
2

Solving these for the parameters gives:

r1 = 2ζω + ao

s0 =
ω2 + 2aoζω − a

k

s1 =
ω2 − 2aζω + aao

k

(5.17)

To obtain the T polynomial, the equation:

T =
BmAo

B

can be used, which yields the parameters:

t0 =
ω2

k

t1 =
ω2ao

k

The MIT rule:
de

dθ
= −γe

dθ

dt

may be used to obtain the parameter update laws. The output equation:

y =
BTuc

AR + BS

CHAPTER 5. ADAPTIVE CONTROL 35

together with the desired output:

ym =
Bmuc

Am

can be used with the error equation:

e = y − ym

to obtain
e = (

BT

AR + BS
− Bm

Am
)uc

This is then differentiated with respect to the parameters to obtain the param-
eter update laws:

dr1

dt
=

γeBu

AoAm

ds0

dt
=

γeBpy

AoAm

ds1

dt
=

γeBy

AoAm

dt0
dt

=
−γeBym

AoBm

dt1
dt

=
−γeBymao

AoBm

(5.18)

The next step is to determine any unknown parameters in these update laws
and to make any necessary approximations in order to implement the laws.
It can be seen that the only unknown parameter is the process numerator B,
which appears in all the update laws. This can be compensated for in the
implementation by writing:

γ′ = γB

It can also be recognised that only three of the five parameters must be
estimated. The parameter r1 is given by Equation 5.17 from the Diophantine
equation; all factors in this expression are known. Also, we may observe that t1
is a scaling of t0 and need not be estimated separately.

Figure 5.10 shows a Simulink model used for simulations on this design.
For the simulation the unknown system was chosen to be of the form in Equa-
tion 5.15 with parameters k = 0.14 and a = 1. Figure 5.11 shows the results
when an adaption rate γ = 2 is used. It can be seen that parameter convergence
is slow, but the correct values are reached and the system output eventually
tracks the input square wave well.

One of the capabilities of an adaptive control system is that it can compen-
sate for changes in plant dynamics. To illustrate this, the system was altered
during the simulation, with the parameter a changed to 3 at time t = 100.
Figure 5.12 shows the effects on the system for this parameter change, with
γ = 6. It can be seen that the parameters converge to their new values, and
that the output error decreases in magnitude, but that changes are relatively
slow. Figure 5.13 shows the system response when an adaption gain γ = 20 is
used, clearly the parameter changes occur much more quickly and the desired
output is restored more quickly.

CHAPTER 5. ADAPTIVE CONTROL 36

y_m

y

u_c u

theta
e

Referencel
Generator

1

s +1.4s+12

Reference Model

0.14

s +12

Process

theta

u_c

y

u

Controller

u

y_m

y

theta

Adjustment Mechanism

y

Figure 5.10: Simulink model of a second order MRAS

0 100 200 300 400
−20

−10

0

10

20

30
Control Parameters (theta)

0 100 200 300 400
−10

−5

0

5

10
Control Signal (u)

0 100 200 300 400
−1.5

−1

−0.5

0

0.5

1

1.5
System Output (y)

0 100 200 300 400
−0.4

−0.2

0

0.2

0.4

0.6

Error (e = y−y
m

)

Figure 5.11: MRAS simulation results. γ = 2, input a square wave of amplitude
1

CHAPTER 5. ADAPTIVE CONTROL 37

0 100 200 300 400
−100

−80

−60

−40

−20

0

20

40
Control Parameters (theta)

0 100 200 300 400
−30

−20

−10

0

10

20

30

40
Control Signal (u)

0 100 200 300 400
−1.5

−1

−0.5

0

0.5

1

1.5

2
System Output (y)

0 100 200 300 400
−1

−0.5

0

0.5

1

1.5

Error (e = y−y
m

)

Figure 5.12: MRAS simulation results for process parameter change at time
100. γ = 6, input a square wave of amplitude 1

0 100 200 300 400
−100

−80

−60

−40

−20

0

20

40
Control Parameters (theta)

0 100 200 300 400
−40

−20

0

20

40
Control Signal (u)

0 100 200 300 400
−2

−1.5

−1

−0.5

0

0.5

1

1.5
System Output (y)

0 100 200 300 400
−1.5

−1

−0.5

0

0.5

1

1.5

Error (e = y−y
m

)

Figure 5.13: MRAS simulation results for process parameter change at time
100. γ = 20, input a square wave of amplitude 1

Chapter 6

Model Predictive Control

6.1 Introduction

Model Predictive Control (MPC) is a control strategy that utilizes a process
model to provide prediction and solves an optimization problem online. A key
feature of MPC is the Receding Horizon Principle, in which prediction is car-
ried out over a finite set of sample points, and an optimal control sequence
is obtained from online optimization. Only the first element of this sequence
of control signals is actually implemented; the rest are discarded and a new
optimal sequence is obtained at the next time step. This may appear at first
glance to be a rather computationally-heavy control methodology, but efficient
ways of solving optimizations (for example the QR decomposition) coupled with
modern processing power serve to make the strategy viable. Indeed, MPC en-
joys widespread use in industry, where its capability to deal with constraints on
variables in a natural way allows it to be a more ‘economical’ controller than
the traditional PID controller.

From a point of view of implementing adaptive control using subspace iden-
tification algorithms, MPC is attractive in that it is easily extensible to MIMO
systems and can deal with reference signals without problems. Basic LQ control
is more concerned with the Regulator Problem of bringing a system’s states to
zero than the Servo Problem of tracking a reference signal. Although solutions
of the latter exist, for example in [1], they often require that the reference sig-
nal have certain properties, such as having been generated by a known system.
This is not desirable for a general adaptive control implementation in which an
arbitrary reference signal may be present.

This chapter aims to provide a brief overview of the formulation and solution
of the MPC problem. In Chapter 9 a connection between MPC and subspace
identification will be highlighted that will provide a new way of implementing
an adaptive controller. Ideas from this chapter will be called upon further
in Chapter 8. The presentation of MPC given here follows the state-space
presentation shown in [13].

38

CHAPTER 6. MODEL PREDICTIVE CONTROL 39

k − 1 k + 1 k + N
t

yf

uf

yp

up

rf

k

‘past’, to horizon M ‘future’, to horizon N

Figure 6.1: Signals for MPC control

6.2 A MPC Formulation

Let the model of the plant be a linear, discrete-time state-space representation
of the form:

x(k + 1) = Ax(k) + Bu(k) (6.1)
y(k) = Cyx(k) (6.2)
z(k) = Czx(k) (6.3)

where y(k) is of size my and is the vector of measured outputs, and z(k) is of
size mz and represents the set of outputs to be controlled. Very often we have
y(k) ≡ z(k), that is, the measured outputs are the same as the outputs to be
controlled, and the system reduces to:

x(k + 1) = Ax(k) + Bu(k)
z(k) = Cx(k)

The lack of any direct feedthrough term D is noticeable in the above equa-
tions. In [13] it is stated that since the output u(k) is calculated from the
measured output y(k), including the direct feedthrough term complicates mat-
ters somewhat. The solution presented there involves introducing a new output
variable given by:

z̃(k) = z(k)−Du(k) = Czx(k)

and modifying the cost function slightly. It is also conceivable that u(k) may be
calculated from past information up to the time k − 1, in which case the direct
feedthrough problem does not arise.

CHAPTER 6. MODEL PREDICTIVE CONTROL 40

6.2.1 The Cost Function

Solving optimal control problem involves the minimization of some cost function.
Indeed, the term ‘optimal’ only refers to optimality with respect to a particular
cost function. It is quite possible that the calculated ‘optimal’ control is in
fact very bad control, due to a poor choice of cost function, or of cost function
parameters.

The cost function presented in [13] is very similar to a standard LQ cost
function, with the exception that it penalizes changes in input rather than the
input itself. Define:

∆u(k) = u(k)− u(k − 1) (6.4)

Introduce the cost function:

V (k) =
Hp∑

i=Hw

‖ẑ(k + i|k)− r(k + i|k)‖2Q(i) +
Hu−1∑

i=0

‖∆û(k + i|k)‖2R(i) (6.5)

where ẑ(k + i|k), r(k + i|k), and û(k + i|k) are the predicted output, reference
signal and control signals i time steps in the future, respectively. The weighting
matrices Q and R are used to penalize the error between predicted output and
reference signal, and control variation respectively. They may be represented
by:

Q =

Q(Hw) 0 . . . 0
0 Q(Hw + 1) . . . 0
...

...
. . .

...
0 0 . . . Q(Hp)

R =

R(0) 0 . . . 0
0 R(1) . . . 0
...

...
. . .

...
0 0 . . . R(Hu − 1)

Hu is the control horizon, that is, the number of time steps over which an optimal
control sequence will be calculated. Hp is the prediction horizon, or the number
of time steps up to which the future outputs will be estimated. Since it might
not be desirable to begin penalizing errors between the predicted output and
reference signal immediately, the horizon Hw may be used to specify the future
point at which the penalty begins to be applied. An alternative approach would
be to set Hw to zero, and vary the weighting matrix Q(i) such that the desired
number of elements up to a given time are small or zero (although problems with
the solution of the optimization arise when Q and R are not positive definite).

6.2.2 Prediction of the Future Outputs

An important element of MPC is the prediction of the future output sequence
ẑ(k + i|k). One method for obtaining this prediction is outlined here.

CHAPTER 6. MODEL PREDICTIVE CONTROL 41

Begin by considering the sequence of predicted states, given by:

x̂(k + 1|k) = Ax(k) + Bû(k|k)
x̂(k + 2|k) = Ax̂(k + 1|k) + Bû(k + 1|k)

= A2x(k) + ABû(k|k) + Bû(k + 1|k)
...

x̂(k + Hp|k) = Ax̂(k + Hp − 1|k) + Bû(k + Hp − 1|k)

= AHpx(k) + AHp−1Bû(k|k) + Bû(k + Hp − 1|k) (6.6)

Recalling Equation 6.4 we may also construct expressions for the future control
signals:

û(k|k) = ∆û(k|k) + u(k − 1)
û(k + 1|k) = ∆û(k + 1|k) + ∆û(k|k) + u(k − 1)

...
û(k + Hu − 1|k) = ∆û(k + Hu − 1|k) + . . . + ∆û(k|k) + u(k − 1) (6.7)

which may them be substituted in Equation 6.6 to obtain:

x̂(k + 1|k) = Ax(k) + B{∆û(k|k) + u(k − 1)}
x̂(k + 2|k) = A2x(k) + AB{∆û(k|k) + u(k − 1)}

+ B{∆û(k + 1|k) + ∆û(k|k) + u(k − 1)}
= A2x(k) + (A + I)B∆û(k|k) + B∆û(k + 1|k)

+ (A + I)Bu(k − 1)
...

x̂(k + Hu|k) = AHux(k) + (AHu−1 + . . . + A + I)B∆û(k|k) + . . .

+ B∆û(k + Hu − 1|k) + (AHu−1 + . . . + A + I)Bu(k − 1)

x̂(k + Hu + 1|k) = AHu+1x(k) + (AHu + . . . + A + I)B∆û(k|k) + . . .

+ (A + I)B∆û(k + Hu − 1|k)

+ (AHu + . . . + A + I)Bu(k − 1)
...

x̂(k + Hp|k) = AHpx(k) + (AHp−1 + . . . + A + I)B∆û(k|k) + . . .

+ (AHp−Hu + . . . + A + I)B∆û(k + Hu − 1|k)

+ (AHp−1 + . . . + A + I)Bu(k − 1) (6.8)

Creating vectors of future states and inputs and writing the above on matrix

CHAPTER 6. MODEL PREDICTIVE CONTROL 42

form, we obtain:

x̂(k + 1|k)
...

x̂(k + Hu|k)
x̂(k + Hu + 1|k)

...
x̂(k + Hp|k)

=

A
...

AHu

AHu+1

...
AHp

x(k) +

B
...∑Hu−1

i=0 AiB∑Hu

i=0 AiB
...∑Hp−1

i=0 AiB

u(k − 1)

+

B . . . 0
AB + B . . . 0

...
. . .

...∑Hu−1
i=0 AiB . . . B∑Hu

i=0 AiB . . . AB + B
...

. . .
...∑Hp−1

i=0 AiB . . .
∑Hp−Hu

i=0 AiB

∆û(k|k)
...

∆û(k + Hu − 1|k)

 (6.9)

To obtain the output predictions, we may use the expression for z(k), in-
cluding a direct feedthrough term for generality:

z(k) = Cx(k) + Du(k) (6.10)

Construct the future sequences of predicted outputs, reference signals and con-
trol signal changes:

Z(k) =

ẑ(k|k)
...

ẑ(k + Hp|k)

 (6.11)

T (k) =

r(k|k)
...

r(k + Hp|k)

 (6.12)

∆U(k) =

∆u(k|k)
...

∆u(k + Hu − 1|k)

 (6.13)

(6.14)

These are related by the expression:

Z(k) = Ψx(k) + Γu(k − 1) + Θ∆U(k) (6.15)

CHAPTER 6. MODEL PREDICTIVE CONTROL 43

From Equation 6.9, the matrices Ψ, Γ and Θ can be seen to be given by:

Ψ =

C
CA
...

CAHu

CAHu+1

...
CAHp

(6.16)

Γ =

D
CB + D

...
C

∑Hu−1
i=0 AiB + D

C
∑Hu

i=0 AiB + D
...

C
∑Hp−1

i=0 AiB + D

(6.17)

Θ =

D . . . 0
CB + D . . . 0

C(AB + B) + D . . . 0
...

. . .
...

C
∑Hu−1

i=0 AiB + D . . . CB + D

C
∑Hu

i=0 AiB + D . . . C(AB + B) + D
...

. . .
...

C
∑Hp−1

i=0 AiB + D . . . C
∑Hp−Hu

i=0 AiB + D

(6.18)

6.2.3 Solution of the MPC Problem

A solution to the MPC problem, where the system’s states are available and in
the absence of disturbances, will be presented here. Using the above notation
the cost function of Equation 6.5 may be written on matrix form:

V (k) = ‖Z(k)− T (k)‖2Q + ‖∆U(k)‖2R (6.19)

Define:
E(k) = T (k)−Ψx(k)− Γu(k − 1) (6.20)

This expression can be thought of as a tracking error, between the reference
signal and the response of the system if no input changes occurred over the
horizon. Making a substitution from Equation 6.20 into the matrix cost function
in Equation 6.19 we obtain:

V (k) = ‖Θ∆U(k)− E(k)‖2Q + ‖∆U(k)‖2R
= (∆U(k)T ΘT − E(k)T)Q(Θ∆U(k)− E(k)) + ∆U(k)TR∆U(k)

= E(k)TQE(k)− 2∆U(k)T ΘTQE(k) + ∆U(k)T (ΘTQΘ +R)∆U(k)

Writing only the terms containing the control changes:

V (k) = ∆U(k)TH∆U(k)−∆U(k)TG + constant (6.21)

CHAPTER 6. MODEL PREDICTIVE CONTROL 44

with:

G = 2ΘTQE(k)

H = ΘTQΘ +R
Taking the derivative of Equation 6.21, we obtain:

∂V (k)
∂∆U(k)

= 2H∆U(k)− G

Setting this to zero, we obtain the optimal set of future control signal changes:

∆U(k)optimal =
1
2
H−1G (6.22)

To confirm that this result in fact yields a minimum, observe the second deriva-
tive of the cost function:

∂2V (k)
∂∆U(k)2

= 2H

= 2(ΘTQΘ +R)

Thus if Q and R are both positive definite, the solution given in Equation 6.22
corresponds to a minimum of the cost function.

6.2.4 Solution in the Constrained Case

MPC also allows for the solution of control problems where linear inequality
constraints are present. Let these constraints take the form:

E

(
∆U(k)

1

)
≤ 0

F

(U(k)
1

)
≤ 0

G

(Z(k)
1

)
≤ 0

It is required to express these constraints as limitations on the control signal
adjustments, ∆U(k). It may be shown that the above constraints can be written
on the form:

F
GΘ
W

 ∆U(k) ≤

−F1u(k − 1)− f
−G(Ψx(k) + Γu(k − 1))− g

w

 (6.23)

Again we wish to minimize the cost function:

V (k) = ∆U(k)TH∆U(k)−∆U(k)TG + constant

subject to the constraints in Equation 6.23. This is a problem on the form:

min
θ

1
2
θT Φθ + φT θ

with the constraint:
Ωθ ≤ ω

This is the standard form of a Quadratic Programming (QP) problem. A number
of algorithms exist which solve the QP problem.

Part III

Subspace Methods in
Adaptive Control

45

Chapter 7

Online Subspace
Identification

7.1 Introduction

System identification may either be performed ‘offline’ or ‘online’. In the case
of offline implementation information about the system is collected in the form
of input-output data or frequency response data, and is processed in some way
(effectively without constraints on computational complexity or computation
time) to provide a model. An online implementation on the other hand in-
volves processing the data (normally input-output data) as it is being collected.
Parametric identification, for example of ARMAX models, is often performed
online using a Recursive Least Squares (RLS) algorithm, which is a ‘sample-by-
sample’ algorithm. Since subspace algorithms are block based, they are often
implemented offline using an entire set of collected input-output data. However,
an adaptive control algorithm requires an online identification method, and so
if subspace algorithms are to be used for adaptive control, they must first be
implemented in an online way.

7.2 Online POMOESP Implementation

A starting point for the investigation of online implementations was chosen as
the smi-1.0 toolbox written by Michel Verhaegen and Bert Haverkamp at Delft
University, the Netherlands. The toolbox contains a variety of functions which
implement the MOESP (Multiple Output-Error State Space) set of subspace
algorithms.

These functions include dordpo, which returns a vector of singular values
S and a lower triangular matrix R of information extracted from input-output
data, dmodpo which calculates the system matrices A and C as well as the
Kalman gain K from the aforementioned R matrix and the system order ob-
tained from an appreciation of the singular values S, and dac2bd, which provides
estimates of the B and C matrices. These functions implement the Past-Output
version of the MOESP algorithm, known as POMOESP.

These functions were utilized in a Matlab s-function to produce a simulink

46

CHAPTER 7. ONLINE SUBSPACE IDENTIFICATION 47

0 2 4 6 8
10

−2

10
−1

10
0

10
1

Output noise present

0 2 4 6 8
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

No noise present

Figure 7.1: Singular value results from a second order MIMO process model in
Simulink, showing the effects of output noise

block POMOESP which samples input-output data u and y, and outputs the ob-
tained system order N and the identified transfer function parameters. The
singular values are also plotted. It was decided (at least temporarily) to present
the outputs in transfer function form because the algorithm produces a state
space representation in a state space basis dependent on weighting matrices,
which vary between algorithms. Thus, to confirm the estimated output it was
useful to convert the identified state space system to transfer function form
and compare this with the identification object (either a simulink state space
or transfer function model or a real process, namely the Furuta inverted pen-
dulum). The obtained system matrices and other information such as the R
matrix are however saved as .mat files.

In order to automate the process it was necessary to obtain an heuristic al-
gorithm for determining the system order from the singular values S. As a first
iteration the system order was chosen by selecting the singular value which had
the largest difference in magnitude between itself and the consecutive singular
value. This was found to work poorly in noisy systems or when nonlinearities
were present, since singular values due to these effects were often large, as can
be seen from Figure 7.1. An improved version looks at the ‘second differential’
of the singular value plot, and sets the system order to be equal to the number
of singular values below the point where the change of gradient is highest. The
determination of system order from the singular values is an area which requires
improvement, and much work remains to be done. It is a crucial stage of the
subspace algorithm, since an incorrect choice of system order will result in poor
identification results. A possible way of confirming the choice of system order
could involve the use of statistical testing performed on estimated models of

CHAPTER 7. ONLINE SUBSPACE IDENTIFICATION 48

higher and lower order models than the suggested result. This could be imple-
mented as some kind of ‘background’ process, running at a low priority, but
would require a great deal of additional computational power compared to the
standard algorithm.

7.3 An Example: The Furuta Inverted Pendu-
lum

In order to test the implemented online algorithm on a real process, it was
decided to identify a linear model for the small oscillations of the Furuta In-
verted Pendulum process about its stable equilibrium. This section describes
the process, presents the results of the identification, and compares the subspace
method with other identification methods.

The process consists of a pendulum that has its point of rotation fixed to
the end of a rod which rotates in a horizontal plane about an axis through its
other end. The control signal is a motor voltage to the vertical shaft to which
the aforementioned horizontal rod is attached. The measurable states of the
system are the pendulum’s angular position and angular velocity, denoted by
θ and θ̇, as well as the angular position and angular velocity of the horizontal
arm, denoted by φ and φ̇.

7.3.1 Complete Nonlinear Model

The equations of motion of the pendulum are:

aθ̈ − aφ̇2sinθ cosθ + cφ̈ cosθ − dsinθ = 0 (7.1)

cθ̈ cosθ − cθ̇2sinθ + 2aθ̇φ̇ sinθ cosθ + (b + asin2θ)φ̈ = kuu (7.2)

Where:

a = Jp + Ml2

b = J + Mr2 + mr2

c = Mrl

d = lg(M + m/2)

In the above equations l is the length of the pendulum, M is the mass of the
weight at the end of the pendulum, m is the mass of the pendulum rod, r is the
length of the horizontal rod, J is its moment of inertia and Jp is the moment of
inertia of the horizontal rod.

7.3.2 Simplified Pendulum Model

By approximating the rotational motion in the horizontal plane by a linear mo-
tion, it is possible to model the system as an inverted pendulum on a cart, and
thus simplify the model. From this model it is possible to obtain simplified sys-
tem dynamics that can be used to design the controller. The resulting equations
of motion are:

Jp
d2θ

dt2
= Mgl sinθ −Mla cosθ (7.3)

CHAPTER 7. ONLINE SUBSPACE IDENTIFICATION 49

with:

a =
d2φ

dt2

Here a is the linear acceleration of the cart which is proportional to the angular
acceleration of the horizontal arm in the actual process. The above equations
can be written as:

d2θ

dt2
= ω2

o sinθ − ω2
okuu cosθ

d2φ

dt2
= kuug

where:

ωo =

√
Mgl

Jp

kuu =
a

g

From Equation 7.3 we can perform linearizations around the two equilibrium
positions and obtain from them the transfer funtions from motor voltage to
pendulum angle.

The system is in a position of unstable equilibrium when the pendulum angle
θ = 0, that is, when the pendulum is upright. Linearization of Equation 7.3
around this position is done as follows.

Using the small angle approximations for θ ≈ 0:

sinθ ≈ θ

cosθ ≈ 1

From Equation 7.3 we obtain

θ̈ = ω2
0θ − ω2

0kuu

Taking Laplace Transforms and rearranging we obtain the transfer function

θ(s)
u(s)

=
−ω2

0kuu

s2 − ω2
0

(7.4)

which, as follows also from an intuitive approach, is an unstable transfer func-
tion.

The system is in a position of stable equilibrium when θ = π, that is, when
it is hanging in the downright position. Linearization of Equation 7.3 about
this position is done in the same manner as above. Using the small angle
approximations for θ ≈ π

sinθ ≈ −θ

cosθ ≈ −1

From Equation 7.3 we obtain

θ̈ = −ω2
0θ + ω2

0kuu

CHAPTER 7. ONLINE SUBSPACE IDENTIFICATION 50

s=5, n=200, h=0.01

y

theta dot

phi dot

phi

Signal
Generator1

Hardware

Pendulum

input1

PRBS Signal

uk

yk

B,A

N

POMOESP (1 stage)

Ytest

Output Data

N

Motor Voltage

MATLAB
Function

MATLAB Fcn1

MATLAB
Function

MATLAB Fcn
Utest

Input Data

0.1

Gain

u_lin

x
u

Friction
Compensation

Demux

B,A

Figure 7.2: Simulink model for identification of the Furuta Inverted Pendulum
process

Taking Laplace Transforms and rearranging we obtain the transfer function

θ(s)
u(s)

=
ω2

0kuu

s2 + ω2
0

(7.5)

7.3.3 Identification Results

The online POMOESP implementation was applied to the process in an attempt
to obtain a second order model when operating in the approximately linear
region (small θ) around the stable downright position.

Since it is necessary to maintain the pendulum within a small range of angles
(arbitrarily chosen as ±0.2 radians from the equilibrium position), smasll control
inputs were therefore required. This posed problems related to friction, which
is high around the arm pivot. It was decided to include friction compensation
block (as can be seen in Figure 7.2) in order to cancel, as much as possible,
the effects of friction and improve the identification. Clearly the friction block,
if included, becomes part of the identification object along with the plant and
thus must be included when any control is performed.

Figures 7.4, 7.5, 7.6 and 7.7 were obtained from square wave input with am-
plitude 0.3, frequency 1Hz and friction compensation coefficient k = 0.1187. In
all the results presented here the dotted line represents the input, the dashed line
the actual output and the solid line the simulated output. The data block size
used in all the experiments was 200, the sampling interval was 10 milliseconds
and the Hankel matrix block row size used was 10. In the POMOESP algorithm
it is stated that this parameter should be approximately twice the maximum
expected system order. In this case, the knowledge that a second order system
should result from the identification was not used, and a maximum expected
system order of 5 was supplied to the Simulink POMOESP block, yielding the
figure 10 for the block row size of the Hankel matrices.

CHAPTER 7. ONLINE SUBSPACE IDENTIFICATION 51

u

To Workspace

Selector

Scope1

Hardware

Pendulum

s

0.3*[1 0.5]

PI−controller

0

Constant

Figure 7.3: Simulink model for estimation of friction constant k for use in the
friction compensation block

0 20 40 60 80 100 120 140 160 180 200
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
Simulation results from data set 1

Sample periods

A
m

pl
itu

de

Figure 7.4: Simulation results. VAF 98.7984%

CHAPTER 7. ONLINE SUBSPACE IDENTIFICATION 52

0 20 40 60 80 100 120 140 160 180 200
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Simulation results from data set 2

Sample periods

A
m

pl
itu

de

Figure 7.5: Simulation results. VAF 99.5493%

0 20 40 60 80 100 120 140 160 180 200
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Cross−validation results: ABCD from data set 1

Sample periods

A
m

pl
itu

de

Figure 7.6: Cross-validation results. VAF 83.7963%

CHAPTER 7. ONLINE SUBSPACE IDENTIFICATION 53

0 20 40 60 80 100 120 140 160 180 200
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Cross−validation results: ABCD from data set 2

Sample periods

A
m

pl
itu

de

Figure 7.7: Cross-validation results. VAF 47.2825%

1 2 3 4 5 6 7 8 9 10
10

−3

10
−2

10
−1

10
0

10
1

10
2

Singular Values

Figure 7.8: Singular Values obtained with square wave input

CHAPTER 7. ONLINE SUBSPACE IDENTIFICATION 54

1 2 3 4 5 6 7 8 9 10
10

−3

10
−2

10
−1

10
0

10
1

10
2

Singular Values

Figure 7.9: Singular values obtained with PRBS input

Figures 7.10, 7.11, 7.12 and 7.13 were obtained from Pseudo-Random Bi-
nary Signal (PRBS) input, with amplitude 0.1. For this simulation the friction
constant used was K = 0.1305.

It can be seen that the simulation and cross-validation results for both
square-wave and PRBS inputs are very good in most cases. This test high-
lights the ability of subspace algorithms to obtain accurate linear models of real
systems despite the presence of such nonlinearities as friction. It should also
be noted that the RLS solution to this identification problem is not straightfor-
ward, and in addition to requiring knowledge of the model order and structure,
it is necessary to construct a modified regression model to obtain acceptable
identification results.

CHAPTER 7. ONLINE SUBSPACE IDENTIFICATION 55

0 20 40 60 80 100 120 140 160 180 200
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Simulation results from data set 1

Sample periods

A
m

pl
itu

de

Figure 7.10: Simulation results. VAF 95.6641%

0 20 40 60 80 100 120 140 160 180 200
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Simulation results from data set 2

Sample periods

A
m

pl
itu

de

Figure 7.11: Simulation results. VAF 90.2902%

CHAPTER 7. ONLINE SUBSPACE IDENTIFICATION 56

0 20 40 60 80 100 120 140 160 180 200
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Cross−validation results: ABCD from data set 1

Sample periods

A
m

pl
itu

de

Figure 7.12: Cross-validation results. VAF 69.2815%

0 20 40 60 80 100 120 140 160 180 200
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Cross−validation results: ABCD from data set 2

Sample periods

A
m

pl
itu

de

Figure 7.13: Cross-validation results. VAF 94.5587%

Chapter 8

Subspace Adaptive Control

8.1 Introduction

After obtaining an online implementation of subspace algorithms the next task
is to devise a system structure for an adaptive controller. Traditional adaptive
controllers using system identification elements often deal with input-output
models, and perform controller design based on transfer function polynomials.
With the use of subspace methods providing state-space representations, as
well as information such as the Kalman gain, it would seem sensible to use
state space control design methods to implement forms of indirect adaptive
controllers. LQ control design is an obvious starting point, and in Section 8.2
this possibility is investigated further. The Model Predictive Control (MPC)
methodology (as outlined in Chapter 6) is also well suited to the state-space
control design problem, and adaptive control implemented with MPC design is
explored in Section 8.3.

8.2 An Initial Structure

An intial structure could incorporate standard LQ design, implemented using a
cost function of the form:

J =
∑

yT Qy + uT Ru

which may be implemented with the Matlab function dlqry. This function
utilizes a quadratic cost on the outputs and the inputs and is therefore preferable
to design methods where penalties are based on the states, since it is not possible
for the user to input meaningful weighting matrices for the identified system’s
states. The inputs and outputs may have the necessary R and Q matrices
assigned to them more easily.

A Kalman filter may be used to estimate the state, which is then multiplied
by the state feedback control law to obtain the control signal. A block diagram
of this structure suggestion is shown in Figure 8.1.

The main problem with this suggested controller structure was found to be
the incorporation of a suitable reference signal. A reference state trajectory for
the arbitrary state-space realization determined by the subspace identification

57

CHAPTER 8. SUBSPACE ADAPTIVE CONTROL 58

Plant

POMOESPLQ Design

State estimator

Controller

n (block size)s (max order)

uc u y

x

L

A,B,C,D,K,x0

Figure 8.1: A possible structure of an adaptive controller using LQ design

cannot directly be specified, nor easily generated from a given output reference.
A possible solution would be to incorporate a model inverse to generate the
required control signal to give the specified output trajectory.

A second problem that comes to mind, but that was not formally proven nor
shown empirically is the issue of identification in closed loop without a reference.
A key assumption required for the correct operation of the subspace methods
is that the intersection of the row space of the future inputs Uf and the row
space of the past states Xp is empty. It can be seen that using a state feedback
regulator as designed using LQ methods with the form:

u = −Lx

will violate this condition, and thus create problems for the identification stage.
Another rather more subtle issue is that the overall strategy is somewhat

redundant, since it requires an observer to produce state estimates. Although
the POMOESP algorithm provides the Kalman gain, the strategy lacks elegance
in that the full capabilities of the subspace method are not used. In Chapter 9
we will reconsider this issue.

In summary, it was decided due to these shortcomings not to further inves-
tigate LQ-based control design for the adaptive controller. This is not to say
that the strategy lacks potential, but it was decided that more effective, and
perhaps more elegant strategies were more worthy of investigation.

8.3 Indirect Adaptive Control Using MPC

The model predictive control strategy is an interesting alternative for the con-
trol design method. It allows the incorporation of not only reference trajectories
but also constraints on control signals and outputs. It was decided to imple-
ment an indirect adaptive control scheme using the online POMOESP algorithm
described in the previous chapter along with MPC tools developed by Johan

CHAPTER 8. SUBSPACE ADAPTIVE CONTROL 59

Plant

POMOESP

Controller

MPC Design

n (block size)s (max order)

u y

A,B,C,D,K,x0

uc

Constraints

Weights

Horizons
Measured outputs

Parameters
MPC

Controlled outputs

Figure 8.2: An adaptive controller structure incorporating MPC design

Åkesson at LTH. These MPC tools allow the solution of control problems with
constraints on ∆u(k) (effectively limiting the ‘slew rate’ of the control signal),
u(k) (absolute limits on control signal values) and z(k) (the controlled outputs).
The solution follows the formulation in Chapter 6, and involves the solution of
a quadratic programming problem. A block diagram of the proposed system
can be seen in Figure 8.2.

The implemented algorithm uses the system matrix estimates provided by
the POMOESP identification algorithm to set up the prediction matrices as in
Chapter 6. This step is normally performed offline in the case where the control
object is known, and represents additional computations that must be performed
after each set of input-output block data is collected. A Simulink MPC controller
block was modified to accept the system matrix estimates from the POMOESP
block. The current implementation does not utilize the estimated Kalman gain
K provided by the POMOESP algorithm, but this is an obvious extension.

The control strategy was implemented in a Simulink model, illustrated in
Figure 8.3. To test the system, a simple control object was chosen. The unstable
second order system given by:

G(s) =
11.2

s2 + 0.12s

was used. It was found that the system could be stabilized and controlled rather
well, as may be seen in Figures 8.5 and 8.6.

A number of issues arose with this system. One of particular interest is
that different sampling periods may be used for the identification and control
stages. This functionality was implemented in the modified MPC controller
block, by resampling the identified system matrices using the Matlab command
d2d. Using different sampling rates in this manner is an attractive prospect
since it allows the system matrices to be estimated at a higher rate (recall that
there is in some sense a lower bound on the column size of the Hankel matrices

CHAPTER 8. SUBSPACE ADAPTIVE CONTROL 60

y

x internal

u

ex_time

z

1

Unit Delay

11.2

s +0.12s2

Transfer Fcn

Signal
Generator

uk

yk

A,B,C,D

N

POMOESP

N

Reference

Measurements

System Matrices

u

MPCController
Demux

Demux

A,B,C,D

Figure 8.3: Simulink model implementing the combined POMOESP-MPC indi-
rect adaptive controller

to ensure accurate identification results). It is also advantageous to have a
relatively long sampling period for the control, since a QP problem must be
solved at each time step.

Unfortunately, it was found that the control performance deteriorated as the
difference in the relative sizes of the identification and control sampling intervals
increased. This can be seen in the simulation results presented here. Figure 8.5
shows the results when the sampling periods for control and identification were
equal, i.e. hc = hid = 0.1. The performance is good. However, Figure 8.6
shows the results when the identification sampling rate was set to hid = 0.01
and the control rate to hc = 0.1. The results are clearly less satisfactory than
in Figure 8.5, with unexplained control activity after the step changes, where
the control signal ought to be small. This is undesirable, since in this case
the smaller value of hid is clearly desirable for dealing with parameter changes
and preventing large initial transients, occurring when the reference signal is
passed through as the control, providing excitation for the first set of system
matrix estimates. Increasing the relative difference in size between the control
and identification sampling periods gave increasingly poor results. Indeed, the
system was unstable for values of hc above 0.1. This was disappointing because
the simulations ran very slowly at this sampling rate, due to the need to solve
a quadratic programming problem at each time step. While this may be an
issue specific to this example, the lack of robustness with respect to the choice
of sampling intervals is concerning.

Another issue that arises deals with the solution to the QP problem. It can
occur that the problem is infeasible, in which case no solution is found. This
is of course highly undesirable for an online control algorithm, and it implies
that steps must be taken to provide some form of ‘backup strategy’ in this
eventuality.

A more general issue with this strategy, and indeed MPC in general, is the
large number of tuning parameters. Weights must be assigned to outputs and
control signals (although since these are relative the problem reduces some-
what). In theory at least, these weights may also be time variant with respect
to the control and prediction horizons, complicating the matter greatly. In this

CHAPTER 8. SUBSPACE ADAPTIVE CONTROL 61

Parameter Description
Identification

hid Sampling interval
N Block data size
s Block row size of Hankel matrices

Control
hc Sampling interval
Hp Prediction horizon
Hw First included sample
Hu Control horizon
Q Output weighting matrices
R Input weighting matrices

∆umin, ∆umax Limits on control changes
umin, umax Absolute limits on control
zmin, zmax Limits on outputs

Figure 8.4: The parameters to be chosen in the POMOESP-MPC adaptive
control scheme

investigation however, the weights were assigned to be constant over the hori-
zons. If the limits on the control signals are not ‘hard’ limits, they also may
be considered as tuning parameters. Indeed, this is related to the problem of
solving the QP problem discussed above; overly-stringent limits may make the
problem infeasible, and prevent the calculation of the control sequence. Such
behavior was observed during simulations, and in some cases the repeated in-
feasibility of the QP problem to be solved (and the lack of a ‘reserve’ strategy)
resulted in destabilization of the system.

In addition to the control design parameters, various parameters must be
chosen for the identification stage, in particular the sampling period, the block
data size (which determines the column size of the Hankel matrices) and the
block row size of the Hankel matrices. The parameters to be chosen with the
implemented strategy are summarized in Figure 8.4.

While there are many parameters to be chosen and tuned, it must be remem-
bered that this scheme may be applied to any system without any design work,
which is in contrast to current adaptive control strategies where, for instance,
parameter update laws must be derived for different systems. The prior infor-
mation required about the system in question is also much lower than current
strategies. It would seem reasonable to state these as the primary advantages
of the proposed scheme. Another very important point is that this scheme may
be extended to MIMO systems without any difficulties (although the selection
of weighting matrices will become more complicated). This represents a great
advantage over current schemes, where the extension to MIMO systems is no
trivial task.

CHAPTER 8. SUBSPACE ADAPTIVE CONTROL 62

0 200 400 600 800 1000
−5

0

5
Control Signal (u)

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
Output (y)

0 200 400 600 800 1000
−5

0

5
Error (r−y)

0 200 400 600 800 1000
−5

0

5
System Matrix Estimates

Figure 8.5: Simulation results using h = 0.1 for both the identification and
control

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
Output (y)

0 200 400 600 800 1000
−5

0

5
Control Signal (u)

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
Error (r−y)

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
System Matrix Estimates

Figure 8.6: Simulation results using h = 0.1 for control and h = 0.01 for
identification

Chapter 9

Subspace Predictive
Control

9.1 A Relation between Subspace Model Iden-
tification and MPC

In [3] an interesting link between subspace identification and model predictive
control is exploited to implement a predictive controller for an unknown sys-
tem based on subspace techniques. The algorithm presented does not require
computation of the system matrices, and as such this method of control design
can be interpreted as ‘direct’ adaptive control. The derivation of the algorithm
is outlined below. In addition, a modification was made to the algorithm, and
this modified algorithm was successfully implemented in Simulink.

9.1.1 The Subspace Identification Problem

Recall the input-output representations derived earlier, namely:

Yf = ΓNXf + Hd
NUf + Hs

NEf (9.1)

Yp = ΓMXp + Hd
MUp + Hs

MEp (9.2)

where the block Hankel matrices are definied in the usual way:

Up =

u1 u2 . . . uj

u2 u3 . . . uj+1

...
...

. . .
...

uM uM+1 . . . uM+j−1

Uf =

uM+1 uM+2 . . . uM+j

uM+2 uM+3 . . . uM+j+1

...
...

. . .
...

uM+N uM+N+1 . . . uM+N+j−1

in addition to the system related matrices:

63

CHAPTER 9. SUBSPACE PREDICTIVE CONTROL 64

ΓN =

C
CA
...

CAN−1

Hd
N =

D 0 0 . . . 0
CB D 0 . . . 0

CAB CB D . . . 0
...

...
...

. . . 0
CAN−2B CAN−3B CAN−4B . . . D

Hs
N =

Il 0 0 . . . 0
CK Il 0 . . . 0

CAK CK Il . . . 0
...

...
...

. . . 0
CAN−2K CAN−3K CAN−4K . . . Il

Recall also the shorthand notation

Wp =
(

Yp

Up

)

A key interpretation of subspace algorithms is that an estimate of the future
outputs Ŷf lies in the combined row space of the past inputs and outputs Wp

and the future inputs Uf (when no noise is present the actual future outputs Yf

lie in this combined row space). This may be written as:

Ŷf = LwWp + LuUf (9.3)

Thus a least squares problem may be formulated to obtain this prediction. This
may be expressed as:

min
Lw,Lu

∥∥∥∥Yf −
(

Lw Lu

)(
Wp

Uf

)∥∥∥∥
2

F

(9.4)

Geometrically, the solution of the least squares problem is the orthogonal
projection (see Appendix A.1.1) of Yf onto the combined row space of Wp and
Uf :

Ŷf = Yf/

(
Wp

Uf

)
= Yf

(
Wp

Uf

)†(
Wp

Uf

)
(9.5)

This projection can be implemented using an RQ decomposition, as in [3],[26]
which gives:

Wp

Uf

Yf

 =

R11 0 0
R21 R22 0
R31 R32 R33

Q1

Q2

Q3

 (9.6)

from which we obtain:

Ŷf = L

(
Wp

Uf

)
(9.7)

CHAPTER 9. SUBSPACE PREDICTIVE CONTROL 65

where

L =
(

R31 R32

)(
R11 0
R21 R22

)†
(9.8)

Thus the matrices Lw and Lu can be obtained by partitioning L in the following
way:

Lw = Lfirst N(m + l) columns

Lu = Lcolumns N(m + l) + 1 to N(2m + l)

Alternatively, this may be written in Matlab notation as:

Lw = L(:, 1 : N(m + l))
Lu = L(:, N(m + l) + 1 : N(2m + l))

At this stage, the algorithm presented in [3] states that the matrix Lw should
be approximated with a lower order matrix using a singular value decomposition.
The reason given is that Lw would be a rank deficient matrix of order n in the
absence of noise, and the approximation is made to remove some of the noise.
The SVD:

Lw =
(

U1 U2

) (
Σ11 0
0 Σ22

)(
V T

1

V T
2

)

is used to make the approximation:

Lw ≈ U1Σ1V
T
1 (9.9)

The system order n is obtained by observing the number of dominant singular
values, in this case the number of singular values in the matrix Σ11. In the
following section further reasoning will be provided as to why this approximation
of Lw may be made.

The suggested modification to the algorithm is that Lw should not be ap-
proximated. Several reasons contributed to this decision, some of which will be
described here, and the remainder in the next section. It was found that the
estimate of the system order using the method described above was poor, com-
pared to the method used in for example the POMOESP algorithm, described
earlier. Another important reason for not approximating Lw by a smaller matrix
is that its size determines the backwards horizon in the prediction problem, i.e.
the number of past samples used. If the matrix is approximated, this horizon
will become very small. Using the original matrix, the horizon remains at the
level specified by the user, as the block row size of the Hankel matrices.

9.1.2 Model Predictive Control Problem

The model predictive control problem that we wish to solve in this case can be
stated as follows.

Problem Formulation 9.1.1. Given a reference output {rk}N
k=1 up to a for-

ward horizon N , find a corresponding control sequence {uk}N
k=1 yielding the

future predicted outputs {ŷk}N
k=1 that minimizes the cost function:

J =
N∑

k=1

(ŷk − rk)T Qk(ŷk − rk) + uT
k Rkuk (9.10)

CHAPTER 9. SUBSPACE PREDICTIVE CONTROL 66

where Qk ∈ Rl×l and Rk ∈ Rm×m are user defined weighting matrices for the
time step k.

In this receding-horizon problem only the first control input, u1 will be
applied. A new control sequence will be calculated at every time step. For
this reason it is useful to minimize the computational complexity of the control
calculations.

Defining the future signals Uf , Ŷf and Rf as:

Uf =

u1

u2

...
uN

 , Ŷf =

ŷ1

ŷ2

...
ŷN

 , Rf =

r1

r2

...
rN

it is possible to write Equation 9.10 on matrix form as:

J = (Ŷf −Rf)T QN (Ŷf −Rf) + UT
f RNUf (9.11)

where the matrices QN ∈ RNl×Nl and RN ∈ RNm×Nm have the form:

QN =

Q1 0 . . . 0
0 Q2 . . . 0
...

...
. . .

...
0 0 . . . QN

 , RN =

R1 0 . . . 0
0 R2 . . . 0
...

...
. . .

...
0 0 . . . RN

Note that the weighting matrices are now effectively time variant with respect
to the prediction horizon, i.e. different weights can be applied to inputs and
outputs at different time steps.

The predicted future outputs Ŷf can be found from Equation 9.4 as:

Ŷf = LwWp + LuUf (9.12)

where Wp is defined as:

Wp =
(

Yp

Up

)

with:

Yp =

y−M+1

y−M+2

...
y0

 , Up =

u−M+1

u−M+2

...
u0

From Equation 9.12 the matrix cost function in Equation 9.11 may be written
as:

J = (LwWp + LuUf −Rf)T QN (LwWp + LuUf −Rf) + UT
f RNUf

The minimum of this cost function may be found by differentiating J with
respect to the future control sequence Uf and setting the trace of this derivative
to zero:

tr
∂J

∂Uf
= 0

CHAPTER 9. SUBSPACE PREDICTIVE CONTROL 67

This gives:
LT

u QN (LwWp + LuUf −Rf) + RNUf = 0

Which in turn yields the optimal future control sequence:

Uf = (RN + LT
u QNLu)−1LT

u QN (Rf − LwWp) (9.13)

As previously stated, only the first term in this sequence will be implemented.
A new optimal sequence will be recalculated at the next time step. The first
element is given by:

u1 = −Kc
wWp + Kc

rRf (9.14)

where:

Kc
r = [(RN + LT

u QNLu)−1]first m rowsL
T
u QN (9.15)

Kc
w = Kc

rLw (9.16)

At this point we may return to the issue of approximating Lw, first consid-
ered in the previous section. It can be shown that estimates of the extended
observability matrix ΓN and the future state sequence X̂f can be obtained from
Equation 9.9, as:

ΓN = U1Σ
1/2
1 (9.17)

X̂f = Σ1/2
1 V T

1 Wp (9.18)

Consider the standard form of a state feedback controller:

u(k) = −Kx(k)

It is not necessarily obvious that Equation 9.14 fits this form. However, approx-
imating Lw, and using Equation 9.17 and Equation 9.18, we may write:

ΓN X̂f = U1Σ1V
T
1 Wp

= LwWp

From Equation 9.16 and Equation 9.14, ignoring for the moment the reference
sequence, we may also write:

u1 = −Kc
rLwWp

= −Kc
rΓN X̂f

= −KX̂f

Thus by making an approximation of Lw it is possible to show that the control
law fits the standard form of a state feedback controller. However, it is proposed
that the primary importance of Lw is to provide prediction, and as such it should
not be approximated in such a way that the horizons involved are reduced. Of
course, using this modified algorithm requires more computation from sample
to sample since the matrices are larger. It does however avoid the need for an
SVD to be performed during calculation of the prediction and control matrices.

From an implementation point of view, the algorithm is attractive, since
the RQ decomposition used to calculate the matrices Lw and Lu is performed

CHAPTER 9. SUBSPACE PREDICTIVE CONTROL 68

y

u

11.2

s +0.12s2

Transfer Fcn
Signal

Generator

yp

up

r

u

SPC

Reference Input

PAUSE

Pause simulation

Figure 9.1: Simulink model used to implement SPC on an unstable second order
SISO system

only when a new set of input-output data is obtained (typically a large number
of samples). The controller matrices Kc

r and Kc
w also only require calculation

once in this period. The first term of Equation 9.14 may be precalculated in an
‘update-state’ procedure, since it depends on information up to the time k − 1,
where uk is the control output to be calculated. Thus only the term Kc

rRf must
be calculated and added to −Kc

wWp before the control signal is available.
One issue arising with the use of block based identification for adaptive

control is that of response to parameter changes. When a rapid parameter
change occurs, it is reasonable to assume that the input-output data block in
which the change occurred will not provide meaningful identification results (or
in the case of SPC, prediction matrices Lw and Lu and thus control matrices
Kc

r and Kc
w). This implies that any control designed using these results will

be poor at best, and at worst could lead to system instability (on the subject
of stability of adaptive systems, few results are available even for established
algorithms. In this project there has been no investigation of stability of the
systems proposed).

A possible solution to this problem could be to perform identification on
‘overlapping’ data sets, or in other words to use some form of window. From
an identification point of view, this implies redundant calculations, since the
data in one of the new ‘shorter’ sampling periods will be reused several times by
the identification algorithm. However the time delay from a parameter change
to the generation of accurate identification results will be much shorter. The
decision of what scheme to use would depend highly on the sampling period
required, the computational power available, and also the likelyhood of such a
parameter change.

9.2 An Example

To test the implemented subspace predictive controller a simulink model was
created to control an unstable second order SISO system. The model used is
shown in Figure 9.1, and the SPC controller subsystem can be seen in Figure 9.2.
The system was simulated to test the effects of a sudden parameter change.

CHAPTER 9. SUBSPACE PREDICTIVE CONTROL 69

2(m+l)N

K_wc,K_rc

m

ms

ls

1

u

z

1

Unit Delay2

z

1

Unit Delay1

z

1

Unit Delay

fixedspc

S−Function

u U

Output Vector Maker (ID)

u U

Output Vector Maker (Control)

u U

Input Vector Maker (ID)

u U

Input Vector Maker (Control)

SPCID

Identification

Controller
Matrices

3

r

2

up

1

yp

Figure 9.2: SPC Subsystem Simulink model

The system used was the same as that in the STR example in Chapter 5, namely:

G(s) =
11.2

s2 + 0.12s
(9.19)

In the simulation the following parameters were used:

Block size N 100
Hankel Matrix index/MPC horizon s 10
Sampling Interval h 0.1
Q matrix 400Is×s

R matrix 10Is×s

It was found that when the dynamics were changed during the simulation from
the original system to:

G(s) =
11.2

s2 + 12s
(9.20)

the system responded well, with the control continuing to stabilize the sys-
tem before the identification had collected a new set of input-output data and
calculated new control matrices. Figure 9.3 shows the results of this simu-
lation. However, when the simulation was started with the dynamics as in
Equation 9.20, and the parameter was changed back to the original dynamics
in Equation 9.19, the system became badly unstable for a number of sample
periods before being stabilized again by the newly obtained controller matri-
ces. The extent of the instability is shown in Figure 9.4, although it should be
noted that there was no limitation on the control, and a rather unrealistically
low control weighting matrix was used, for the purposes of experiment. Thus
the control signals obtained were very large. (This is a good example of why
the introduction of the MPC methods for dealing with constraints should be
introduced to the basic SPC formulation; a higher control weighting in the cost

CHAPTER 9. SUBSPACE PREDICTIVE CONTROL 70

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5
Output (y)

0 200 400 600 800 1000

−10

−5

0

5

10

Control Signal (u)

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
Error (r−y)

0 200 400 600 800 1000
−1

0

1

2

3
Controller Matrix Values

Figure 9.3: Parameter change from original dynamics to new dynamics at t =
50s (500 samples)

function would negatively affect the control performance). Figure 9.5 shows
that the system is nevertheless restabilized by the new control.

A possible explanation for why the instability occurs during one transition
and the other may be seen by an intuitive look at the systems in question.
When the parameter change is from the original dynamics to the new dynamics
(the case in which the system remains stable during the change), the dynamical
change is one from slow to fast dynamics. It would appear that the designed
control handles such a transfer better than in the case where the parameter
transition goes the other way.

It is proposed that these instability problems arise because of the finite
horizon nature of MPC. Concepts of stability are intrinsically asymptotic, and
thus control designed for a finite horizon cannot have guaranteed stability inn
the same way as is found in LQG control design, for example. Thus it is unknown
if such instability windows will arise if the system (or the simulation) is run for
an arbitrary length of time. This is clearly a disadvantage of MPC strategies.

The relatively small block data size (Hankel matrix block column size is 81)
appears to give fairly poor identification in comparison with larger block sizes.
But larger block sizes imply longer delays in responses to parameter changes,
and can only be compensated for with smaller sampling periods, which increases
the requirement on computational power.

Another possible disadvantage is the tuning of the parameters. In standard
MPC, the parameters to be tuned include the weighting matrices Q and R,
which are able to allocate different weights to different time steps within the
forward horizon. This implies that the tuning procedure is very difficult, even
for SISO systems. Indeed, it was found that tuning these matrices for the simple

CHAPTER 9. SUBSPACE PREDICTIVE CONTROL 71

0 200 400 600 800 1000
−2

−1

0

1

2

3

4
x 10

6 Output (y)

0 200 400 600 800 1000
−2

−1.5

−1

−0.5

0

0.5

1
x 10

7 Control Signal (u)

0 200 400 600 800 1000
−4

−3

−2

−1

0

1

2
x 10

6 Error (r−y)

0 200 400 600 800 1000
−2

0

2

4

6

8
Controller Matrix Values

Figure 9.4: Parameter change from new dynamics to original dynamics at t =
50s (500 samples)

example above to obtain adequate control was not easy. It may therefore be
concluded that the tuning process for MIMO systems would be very complicated
indeed (Look at maciejowski for more details).

In SPC, further parameters must be chosen, namely, the size of the block
data and the row size of the block Hankel Matrices (which in turn yields the
backward and forward horizons). While these do not appear to be control
parameters, they affect the identification result and thus the control design,
and therefore have an effect on stability and performance of the system.

Figure 9.6 shows the results of a parameter change in the middle of a block
of identification data. It can be seen that incorrect controller matrices are
calculated from this set of data. This illustrates the point made previously
about the use of some form of sliding window for the identification in order to
minimize the time between the occurrence of a parameter change (or perhaps
some disturbance) and the calculation of correct identification or control data.

CHAPTER 9. SUBSPACE PREDICTIVE CONTROL 72

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5
Output (y)

0 200 400 600 800 1000

−10

−5

0

5

10

Control Signal (u)

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
Error (r−y)

0 200 400 600 800 1000
−2

0

2

4

6

8
Controller Matrix Values

Figure 9.5: Parameter change from new dynamics to original dynamics at t =
50s (500 samples)

0 200 400 600 800 1000

−1

−0.5

0

0.5

1

Output (y)

0 200 400 600 800 1000
−15

−10

−5

0

5

10

15
Control Signal (u)

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
Error (r−y)

0 200 400 600 800 1000
−1

0

1

2

3
Controller Matrix Values

Figure 9.6: Parameter change from original dynamics to new dynamics at t =
55s (550 samples)

Chapter 10

Conclusions

10.1 Summary of Algorithms

In this section the algorithms that were derived and implemented in previous
chapters will be summarized. The following sections will discuss some of the
properties and relative merits of these systems.

Two subspace-adaptive control algorithms were proposed in this thesis. The
first is an indirect adaptive controller utilizing the POMOESP subspace algo-
rithm adapted for online use as well as a model predictive controller, capable
of dealing with constraints on variables. The second is a direct scheme derived
by considering parallels between the formulations of subspace identification and
model predictive control.

10.1.1 POMOESP-MPC Indirect Adpative Controller

This algorithm involves the explicit calculation of the system matrices using a
subspace method followed by control design using the MPC methodology. The
algorithm can be summarized as:

• Collect a set of input-output data of length N

• Utilize the POMOESP algorithm as in Chapter 7 every N × h sample
periods to obtain a new set of system matrix estimates Â, B̂, Ĉ, D̂

• Set up the MPC prediction matrices as in Chapter 6

• Solve the model predictive control problem as in Chapter 6 at every time
step

• Implement the first element in the calculated optimal control sequence

10.1.2 SPC Direct Adpative Controller

This algorithm combines ideas from subspace identification and MPC to provide
a direct adaptive control strategy. The system matrices are not directly esti-
mated, but subspace techniques are used to obtain prediction matrices, which
are then used to solve an unconstrained MPC problem. This algorithm may be
summarized as:

73

CHAPTER 10. CONCLUSIONS 74

• Collect a set of input-output data of length N

• Form Hankel matrices of past and future inputs and outputs Up, Uf , Yp,
Yf ,

• Obtain prediction matrices Lw and Lu through the use of an RQ decom-
position solving the least squares problem:

min
Lw,Lu

∥∥∥∥Yf −
(

Lw Lu

)(
Wp

Uf

)∥∥∥∥
2

F

• Calculate the control matrices Kc
r and Kc

w, given by:

Kc
r = [(RN + LT

u QNLu)−1]first m rowsL
T
u QN

Kc
w = Kc

rLw

• Calculate the first element of the optimal control sequence:

u1 = −Kc
wWp + Kc

rRf

10.2 Discussion

In this section a qualitative appraisal of both of the proposed subspace-adaptive
algorithms will be made. There relative merits will be discussed, both mea-
sured against each other and existing algorithms. Unfortunately, due to time
constraints it was not possible to accomplish a quantative analysis of the com-
putational complexity of the proposed algorithms.

10.2.1 Comparison of Proposed Algorithms

A direct comparison between the proposed algorithms is somewhat difficult
since they fall into different categories, namely one is a direct algorithm and
the other is indirect. Nevertheless some comments may be made regarding their
generality, computational complexity and elegance.

The POMOESP-MPC indirect algorithm represents perhaps the more ob-
vious method of solving the subspace adaptive control problem. The system
matrices are estimated and used in an existing control design methodology.
This system is perhaps the more flexible, since any subspace algorithm may be
substituted for the POMOESP used in this case. It was seen empirically that
the computational complexity of this algorithm was much greater than that
of the SPC direct algorithm, when controlling the same system with the same
sampling period.

The SPC direct adaptive algorithm is arguably the more elegant of the two.
For ‘faster’ systems where computation time is an issue, it would be a superior
choice. The primary reason for the reduced complexity of this algorithm is the
absence of a quadratic programming problem to be solved at every time step.
This comes at a price, since the algorithm is not able to handle constraints on
variables, as the POMOESP-MPC algorithm can.

A major issue befalling both algorithms is the problem of guaranteed sta-
bility. With the SPC algorithm, providing a simple solution to a finite horizon

CHAPTER 10. CONCLUSIONS 75

predictive control problem, there is no guarantee of stability. There is pre-
sumably nothing to be done about this; stability is inherently an asymptotic
property and a solution calculated over a finite horizon cannot provide asymp-
totic guarantees. This problem was observed during simulations, in the form
of ‘instability windows’, instances where the system became unstable, but was
then restabilized. It may be possible to describe the stability of the system using
some optimal performance index. A cost function specified over infinite time
may be rewritten as a cost over a finite time plus an additional term, known as
a ‘cost-to-go’ term:

J(u∗) =
∫ ∞

0

xT Qx + u∗
T

Ru∗dt

=
∫ T

0

xT Qx + uT Rudt + V (x(T))

where V (x(T)) is the cost-to-go term. If this term is very large it would indicate
poor control.

Another issue common to both of the algorithms arises from the block based
nature of the majority of subspace algorithms. The system matrices are only
estimated every few hundred samples, depending on the user specified block
data size. For better identification a larger block size (giving ‘more rectangular’
Hankel matrices) is preferred, but this means of course that the system matrices
are estimated fewer times in a given time interval. This has implications in
situations where parameter changes occur. It may be expected that after a
parameter change in the identification object, the next set of system matrix
estimates (calculated from input-output data from both before and after the
change) will be poor, and it will take one further data collection period to
provide accurate estimates for the altered system. Such behaviour was indeed
observed in simulations. The result is that the control law, based on poor
identification results, will at least be poor and could in fact destabilize the
altered system, as was also observed in simulations.

A possible solution to this problem could be to use some form of data win-
dowing, whereby the system matrices are estimated at intervals which are frac-
tions of the data block size. This would reduce the time taken before a set
of accurate estimates are available, but would of course increase the computa-
tional power required. This problem is common to any algorithm using a block
based subspace method of identification and is therefore an important one to
be investigated.

The issue of tuning parameters is common to both algorithms, with similar
numbers of parameters to select in each. The POMOESP-MPC algorithm has
more, due to its ability to deal with constraints on variables. Some of the
parameters, in particular the weighting matrices for outputs and control signals,
may be tuned intuitively (although the capacity for these to be time variant
with respect to the prediction horizon complicates the issue considerably over a
basic LQG tuning case). Others have less obvious effects on performance, most
notably factors such as the data block size in the identification algorithms.
Currently the only way to choose this value is by trial and error, and only very
rough guides can be given (namely that the column size of the Hankel matrices
should be much larger than the row size).

Finally, both algorithms share the advantageous properties that they may

CHAPTER 10. CONCLUSIONS 76

be applied to systems where very little is known about the identification/control
object, and to MIMO systems. They may also be simply ‘plugged in’ to a system
without the necessity of obtaining update laws or knowledge of system structure
or order. The price paid for this apparent ease of application is presumably some
difficulty in tuning.

10.2.2 Comparison with Existing Algorithms

The proposed subspace-adaptive algorithms are different in many ways to exist-
ing adaptive algorithms. Several advantages of the proposed algorithms clearly
present themselves. Among these are:

• Ease of application to MIMO systems

• Very low level of required knowledge about the target system

• No ‘target-specific’ design required, only tuning of parameters

The first of these is perhaps the most important. Current adaptive control
strategies such as those outlined in Chapter 5 are derived using input-output
models for SISO systems, and may not be directly extended to MIMO systems.
However many systems of interest as control objects for adaptive controllers
are MIMO systems, such as chemical processes. Such systems are also likely
to be complex, and thus the proposal of model structures which may be used
for parametric identification techniques is difficult. With subspace methods,
virtually nothing need be known about the system in question. Indeed, only
an estimate of the maximum likely system order is required. The combination
of these factors makes subspace-adaptive methods much more attractive than
traditional methods for multivariable, complex systems about which little is
known.

Related to the issue of prior information is the topic of the amount of design
required for each application. As seen in Chapter 5, some design work must be
done to obtain the adaptive control laws for a certain system. This work requires
the knowledge of system order, and possibly (but not always) system structure.
In contrast, the proposed subspace-adaptive algorithms can be applied directly
to any system. The disadvantage with this is the number of parameters to be
tuned. In traditional schemes, there are few parameters, often just a forgetting
factor, an observer polynomial, or a parameter adjustment gain. As has been
seen, there are a great deal of parameters to be tuned with the subspace-adaptive
algorithms, concerning both the identification stage and the control, not all of
which have intuitive effects on system performance.

A more difficult issue to make direct comparisons about is that of stability.
There exist only limited results on the stability of existing adaptive control
strategies, and the proposed algorithms are no exception. With the use of finite
horizon control design methods, stability guarantees cannot be made. This
is clearly an issue, in particular for safety-critical systems where the lack of
guarantees on system stability is a major disadvantage.

The computational complexity of the proposed algorithms is of course much
greater than existing algorithms. This could be an issue when high sampling
rates are required, but in such applications as chemical processes it is not un-
common that sampling rates are lower, so computation times become less of an
issue.

CHAPTER 10. CONCLUSIONS 77

Advantages Disadvantages
Easily applied Computationally
to MIMO systems complex
Very little prior Lack of stability
information required guarantees
No offline design Many tuning
required parameters

Figure 10.1: Summary of advantages and disadvantages of the proposed algo-
rithms

10.3 Conclusions

A great many positive and negative points have come to light during this in-
vestigation. It is clear that subspace-adaptive methods have a large number of
important and useful advantages over existing techniques, primarily the applica-
bility to MIMO systems, and the low requirements on prior system information.
It is also clear that a great many problems need to be solved, including the
issues of parameter tuning, response times to parameter changes, and stability.

In general the results gained from the implemented control algorithms were
encouraging. It must be stated that the systems used to test the algorithms were
simple and perhaps did not fully demonstrate the capacities of the schemes.
Nevertheless useful results and observations were obtained. Simulations and
experiments on more complex, real-world systems are of course a natural pro-
gression.

In conclusion, it is proposed that these algorithms show much promise for
further development. At this stage, given the advantages observed and the
problems encountered, the most likely areas of application for the proposed
algorithms are multivariable processes, about which little information is known.
Processes to be controlled with long sampling periods are ideal targets, since
the issue of computation time is reduced in importance. Possible problems with
such applications include the issue of stability, as well as the ease (or otherwise)
of tuning, in particular in MIMO systems with large numbers of variables.

10.4 Future Work

Having stated that the proposed algorithms show promise, it is of course nec-
essary to highlight the areas in which further work is deemed necessary. This
is perhaps best tackled by splitting the problem into identification issues and
control issues.

10.4.1 Identification

During the course of this investigation, the power of the subspace algorithms
was noted, in particular the ease with which they may be applied, as well as
their applicability to multivariable systems. However, many of the parameters
to be chosen by the user have less than intuitive effects on the identification
results, and guidelines for selecting them are rather minimal.

CHAPTER 10. CONCLUSIONS 78

In addition to these general issues, a further, more specific issue arises from
the need to perform identification automatically. In particular, the method of
analysis of the singular values to estimate the system order is very important in
the identification process. In an offline setting this is performed visually by the
user, and it is the user who must decide what constitutes a ‘dominant’ singular
value. In this thesis a fairly simple heuristic algorithm was derived and found
to work reasonably well in most situations. The situation is further complicated
in the presence of nonlinearities, where it was found that the ease of analysis
was affected by the choice of parameters such as block data size.

A suggestion in this area is that some kind of statistical significance testing
could be employed, to confirm the choice of system order. However, such as
system would require a great deal of additional computation, as system matrices
would have to be estimated for each system order to be analysed, and the
necessary tests performed.

Another issue perhaps more related to identification than control is that of
response to parameter changes. As discussed earlier, the block based nature of
subspace identification implies that a considerably time may pass between the
occurrence of a parameter change in the identification object and the accurate
estimation of the new system matrices. The solution suggested in this thesis,
but not implemented in the presented schemes, is that system matrices may be
calculated at instances which are fractions of the block data size, rather than
only when an entirely new set of input-output data is available. In this way
the time between parameter change and accurate estimation may be reduced.
Naturally, much work would be required to find some optimal way of doing this.

In summary, it would be desirable to have results concerning the effects on
identification accuracy of such parameters as Hankel matrix dimensions. It is
also deemed important to continue to investigate new methods of analysing the
singular values to estimate the system order, since this determines the accuracy
of the identification results. Additionally, methods of minimizing response times
to parameter changes should be investigated.

10.4.2 Control

The control design methodology focused upon in the implementations presented
in this thesis is model predictive control. This strategy was chosen largely be-
cause it was deemed the most general, with the capability to deal with reference
signals in a simple way, as well as with constraints on variables. This is, of
course, not to say that there are no other design strategies to be followed. The
LQG strategy has its advantages over finite-horizon MPC, in particular its abil-
ity to provide asymptotically stable control laws. Some wariness was shown in
this thesis to the solution of a regulator problem via LQG design when subspace
methods are used for identification, because of the condition that the intersec-
tion of the row spaces of future inputs and past states be empty. However this
hypothesis was not formally proven, nor empirically investigated.

Focusing attentions on the MPC strategies used in the implemented algo-
rithms, one of the main issues arising was the lack of stability guarantees given
the finite horizon nature of the strategy. Lapses in the stability of the systems
were observed. Little can be said about this, other than that further investiga-
tion of a theoretical nature would be useful.

The issue of the large number of parameters to be selected and tuned is

CHAPTER 10. CONCLUSIONS 79

also important. This applies not only to the control parameters but also to the
identification parameters, although they are fewer. Methods exist for effective
tuning of parameters for MPC, though they were not utilized in this work. It
may be interesting to ascertain how easily the control algorithms may be tuned
for more complex, multivariable systems. If it transpires that this task is not
a prohibitively difficult undertaking, it may be concluded that the proposed
algorithms represent a considerable advance over existing methods.

The recommendations of directions for future work may be summarized as:

• Effects on identification results of the user defined parameters such as
Hankel matrix block sizes

• Methods of analysing the singular values to estimate the system order

• Methods of reducing latency from parameter changes to accurate identifi-
cation results

• Use of different control design strategies

• Stability guarantees and finite horizon control design

• Control parameter selection and tuning

Part IV

Appendices

80

Appendix A

Mathematical Tools

A.1 Projections

A.1.1 Orthogonal Projections

Define an operator ΠB that projects the row space of a matrix onto the row
space of a matrix B ∈ Rq×j :

ΠB
def= BT (BBT)†B (A.1)

where ()† denotes the Moore-Penrose pseudo inverse, defined as follows.

Definition A.1.1. Given the matrices A ∈ Rm×n, X ∈ Rn×m, X is said to
be the Moore Penrose pseudo inverse of A if it satisfies all of the following
conditions:

AXA = A

XAX = X

(AX)H = AX

(XA)H = XA

Define the projection of the row space of the matrix A ∈ Rp×j on to the row
space of B ∈ Rq×j as:

A/B def= A.ΠB (A.2)

Consider also the projection operator ΠB⊥ :

ΠB⊥ = Ij −ΠB

= Ij −BT (BBT)†B (A.3)

It can be seen that the the operators ΠB and ΠB⊥ decompose a matrix into two
matrices whose row spaces are orthogonal:

A = AΠB + AΠB⊥ (A.4)

This is equivalent to expressing A as the linear combination of the row space of
B and the orthogonal complement of B. Define:

LB .B
def= A/B

LB⊥ .B⊥ def= A/B⊥ (A.5)

81

APPENDIX A. MATHEMATICAL TOOLS 82

It is then clear from the definitions that:

A = LB .B + LB⊥ .B⊥ (A.6)

A.1.2 Oblique Projections

In addition to decomposing a matrix into a linear combination of the basis of
another matrix and its orthogonal complement, it is possible to decompose it as
linear combinations of the bases of two nonorthogonal matrices. In this case, we
may express the row space of A as a linear combination of the row spaces of the
nonorthogonal matrices B and C, as well as a third matrix which is orthogonal
to both B and C, using the same notation as introduced in Eq. A.6:

A = LB .B + LC .C + LB⊥C⊥ .

(
B
C

)⊥
(A.7)

Here LC .C is defined as the oblique projection of A along the row space of B
onto the row space of C, that is:

LC .C
def= A/BC (A.8)

Clearly the orthogonal projection is a special case of the oblique projection, one
in which the matrix C is made equal to B⊥. The oblique projection may be
interpreted as a projection of A onto the combined row spaces of the matrices
B and C, with the result then decomposed onto the row spaces of one of the
latter matrices. This may be written in matrix form as:

A/

(
C
B

)
= A.

(
CT BT

)
.

(
CCT CBT

BCT BBT

)
.

(
C
B

)
(A.9)

which is then to be decomposed along the row space of B or C. The oblique
projection may then be defined as follows:

Definition A.1.2. The oblique projection of the row space of A along the row
space of B onto the row space of C may be defined as:

A/BC = A.
(

CT BT
)
.

(
CCT CBT

BCT BBT

)†
.C (A.10)

A.2 The QR Decomposition

The QR decomposition of a matrix A ∈ Rm×n is given by:

A = QR

where Q ∈ Rm×m has orthonormal columns and R ∈ Rm×n is upper triangular.
In the case m > n, the final m− n rows of R are zero, and thus these rows and
the final m − n columns of Q may be removed, resulting in a decomposition
with Q ∈ Rm×n and R ∈ Rn×n.

One of the applications of the QR decomposition is solving orthogonal pro-
jections. To this end it is used throughout this thesis. Consider a projection

APPENDIX A. MATHEMATICAL TOOLS 83

operator ΠA, defined in the same manner as the operator in Equation A.1 but
which projects a matrix B ∈ Rm×p onto the column space of A ∈ Rm×n, namely:

ΠA
def= A(AT A)†AT (A.11)

Let this multiply B from the left, giving ΠAB. This can be solved using the
QR decomposition:

(
A B

)
=

(
Q1 Q2

) (
R11 R12

0 R22

)

where the right hand side is partitioned such that Q1 ∈ Rm×n, Q2 ∈ Rm×m−n,
R11 ∈ Rn×n, R12 ∈ Rn×p and R22 ∈ Rm−n×p. This gives:

A = Q1R11

B = Q1R12 + Q2R22

(A.12)

Using Equation A.11 and Equation A.12 and various properties of the matrices
Q and R, the projection may be written as:

ΠAB = A(AT A)†AT B

= Q1R11(RT
11Q

T
1 Q1R11)†RT

11Q
T
1 (Q1R12 + Q2R22)

= Q1R11(RT
11R11)†RT

11R12

= Q1R11R
−1
11 R−T

11 RT
11R12

= Q1R12

In the algorithms presented in this thesis, the orthogonal projections involve
projection onto row spaces, that is, projection operators of the form in Equa-
tion A.1 multiply matrices from the left. In this case an RQ decomposition can
be used, which has the form:

(
A
B

)
=

(
R11 0
R21 R22

)(
Q1

Q2

)

A.3 The Singular Value Decomposition

The Singular Value Decomposition (SVD) of a matrix A ∈ Rm×n is given by:

A = UΣV T

where U ∈ Rm×m and U ∈ Rn×n are orthogonal, and Σ ∈ Rm×n is a diagonal
matrix, whose diagonal elements are called the singular values of the matrix
A. The number of nonzero singular values s is the rank of A, and the first s
columns of U provide a basis in the column space of A. This can be illustrated
as:

A =
(

U1 U2

) (
Σ1 0
0 0

)(
V T

1

V T
2

)
= U1Σ1V

T
1 (A.13)

The SVD may be used to approximate a matrix with one of lower order.
By observing the singular values and choosing only those deemed ‘large’, an
approximation of the original matrix may be obtained as in Equation A.13.
This is used in this thesis to obtain system matrices, in the presence of noise
which acts to make the remaining singular values nonzero. The number of ‘large’
singular values can be used to determine the order of the system and thus to
recover column spaces of certain matrices.

Appendix B

Matlab Tools

B.1 SPC Matlab files

The Matlab code used to implement the subspace predictive control (SPC)
strategy is listed here. Three functions were written, two of which are Simulink
M-files for s-functions in the Simulink model, and the third is a standard Matlab
function.

B.1.1 SPC1.m

The function spc1.m calculates the prediction matrices Lw and Lu which may
be used to calculate controller matrices. They are calculated using an RQ
decomposition of the Hankel matrices of ‘past’ and ‘future’ inputs and outputs.
The Matlab source code for this function is listed below.

function [L_w,L_u] = spc1(u,y,s);

% function spc1 provides the prediction matrices Lw and Lu
% which may be used to obtain the prediction:
%
% Yf^hat = [Lw Lu][Wp ; Uf]
%
% This prediction can be used to find an optimal future control
% sequence Uf that minimizes the cost:
%
% V = (Yf-Rf)’Q(Yf-Rf) + Uf’RUf
%
% Input:
% u, y The input-output data of the system to be identified.
% s The dimension parameter that determines the number
% of block rows in the processed Hankel matrices. Should be
% chosen to be twice as large as the maximum expected
% system order
%
% Output:
% Lw, Lu Prediction matrices multiplying the past inputs

84

APPENDIX B. MATLAB TOOLS 85

% and outputs Wp, and the future inputs Up, respectively
%
% See also SPCID fixedspc
%
% Brad Schofield, LTH Reglerteknik 2003

if nargin<3
error(’Not enough input variables’)

end

% Reorient block data if necessary
if size(y,2)>size(y,1)

y=y’;
end
if size(u,2)>size(u,1)

u=u’;
end
N=size(y,1); % data block size
l=size(y,2); % output dimension
m=size(u,2); % input dimension

if l==0,
error(’output required’)

end

if (~(size(u,1)==N) &~isempty(u))
error(’Input and output should have same length’)

end

if 2*(m+l)*s>=N-2*s+1
error(’s is chosen too large or data size is too small’)

end

% construction of Hankel matrices
%
NN=N-2*s+1; % NN is the index j used in the literature
Up=zeros(NN,m*s); % these Hankel Matrices are transposed

% versions of the usual definitions
Uf=zeros(NN,m*s); % (used for the RQ decomposition - take

% a QR decomposition of the transpose)
Yf=zeros(NN,l*s);
Yp=zeros(NN,l*s);
for i=(1:s)

if m>0
Up(:,(i-1)*m+1:i*m)=u(i:NN+i-1,:);
Uf(:,(i-1)*m+1:i*m)=u(s+i:NN+s+i-1,:);

end
Yp(:,(i-1)*l+1:i*l)=y(i:NN+i-1,:);
Yf(:,(i-1)*l+1:i*l)=y(s+i:NN+s+i-1,:);

APPENDIX B. MATLAB TOOLS 86

end

% Solve the least squares problem via an orthogonal projection
% of the future outputs (Yf) onto the combined row space of the
% past io (Wp) and the future outputs (Uf). This is implemented
% with an RQ decomposition.

R=triu(qr([Yp Up Uf Yf])); % perform an RQ decomposition on
% [Yp Up Uf Yf]’

Rlower=R(1:2*(m+l)*s,1:2*(m+l)*s)’; % Trims R matrix to desired
% size and transposes
% to obtain a lower triangular
% matrix

% Obtain [R31 R32] (=:RL1)
RL1=Rlower((2*m+l)*s+1:2*(m+l)*s,1:(2*m+l)*s);

% Obtain [R11 0; R21 R22] (=:RL2)
RL2 = Rlower(1:(2*m+l)*s,1:(2*m+l)*s);

% Calculate L = [R31 R32][R11 0; R21 R22]^+
L = RL1*pinv(RL2);

% Partition L into L_w and L_u components
L_w = L(:,1:(m+l)*s);
L_u = L(:,(m+l)*s+1:end);

% Test to see whether the prediction works.
Yest1 = L*[Yp(1,:)’;Up(1,:)’;Uf(1,:)’]
vafsingle = vaf(Yest1,y(s+1:2*s))

% END OF THE CALCULATIONS

B.1.2 SPCID

The S-function SPCID.m is used to calculate the prediction and control matrices.
These are then passed to the S-function fixedspc.m which implements the
control from sample to sample. The Matlab code for this function is listed
below.

function [sys,x0,str,ts] = SPCID(t,x,input,flag,N,s,h,m,l,Q,R)

% fixedspc An M-file S-function for implementing a Subspace
% Predictive Controller. The function spc1 is used to obtain
% the prediction matrices Lw and Lu, from which the controller
% matrices K_rc and K_wc are calculated using the user- defined
% (positive definite) weighting matrices Q and R. The cost
% function minimized is:
%

APPENDIX B. MATLAB TOOLS 87

% V = (Yf-Rf)’Q(Yf-Rf) + Uf’RUf
%
% Input:
% U,Y Block I/O data
%
% Output:
% K_rc, K_wc Controller Matrices
%
% Parameters:
% s Hankel matrix index, serves as both the forward
% and backward horizons. (should be twice
% the max expected system order)
% h sampling interval;
% N Block data size
% m input dimension
% l output dimension
% Q Weighting matrix for future error sequence Yf-Rf
% R Weighting matrix for future control sequence Uf
%
% see also spc1 fixedspc

%%%%%%%%%%%%%%%%%%%%%%%%
% Initial Calculations %
%%%%%%%%%%%%%%%%%%%%%%%%
h_id = h*N; % increase sampling period

switch flag,

%%%%%%%%%%%%%%%%%%
% Initialization %
%%%%%%%%%%%%%%%%%%
case 0,
[sys,x0,str,ts] = mdlInitializeSizes(N,s,h_id,m,l);

%%%%%%%%%%
% Output %
%%%%%%%%%%
case 3,
sys = mdlOutputs(x,input,N,s,m,l,Q,R);

%%%%%%%%%%%%%
% Terminate %
%%%%%%%%%%%%%
case {1,2,4,9},
sys = []; % do nothing

%%%%%%%%%%%%%%%%%%%%
% Unexpected flags %

APPENDIX B. MATLAB TOOLS 88

%%%%%%%%%%%%%%%%%%%%
otherwise
error([’unhandled flag = ’,num2str(flag)]);

end

%end SPCID

%==
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times
% for the S-function.
%==%
function [sys,x0,str,ts,counter] = mdlInitializeSizes(N,s,h_id,m,l)

sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0; % no states
sizes.NumOutputs = m*s*(m+l) + m*s*l;%size of K_wc and K_rc
sizes.NumInputs = N*(m+l);
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=[];
str = [];
ts = [h_id 0];

% end mdlInitializeSizes

%==
% mdlOutputs
% output the system
%==
function sys = mdlOutputs(x,input,N,s,m,l,Q,R)

% Unpack the past i/o blocks
Up = inputUnpack(N,input,m,0);
offset = N*m;
Yp = inputUnpack(N,input,l,offset);

%--
% Find the prediction matrices Lw and Lu
[Lw,Lu] = spc1(Up,Yp,s);

% Calculate the control matrices K_rc and K_wc
tmx1 = inv(R + Lu’*Q*Lu);
K_rc = tmx1(1:m,:)*Lu’*Q; % size
K_wc = K_rc*Lw; % size m*s*(m+l)

APPENDIX B. MATLAB TOOLS 89

% Pack these and output
x = mdlPack(K_rc,K_wc,s,m,l);
%---

sys = x;

%end mdlOutputs

%==
% inputUnpack
% Unpack the input vector into a matrix of approprate dimensions
%==
function U = inputUnpack(n,u,size,offset)

result = [];
for i = 0:n-1

urow = u(offset + size*i + 1 : offset + size*(i+1))’;
result = [result;urow];

end
U=result;

%end inputUnpack

%==
% mdlPack
% Pack K_wc and K_rc in a row vector
%==
function x = mdlPack(K_rc, K_wc,s,m,l)
K_rcVec = [];
for i = 1:s*l

K_rcVec = [K_rcVec;K_rc(:,i)];
end

K_wcVec = [];
for i = 1:s*(m+l)

K_wcVec = [K_wcVec;K_wc(:,i)];
end
x = [K_rcVec;K_wcVec];
%end mdlPack

B.1.3 fixedspc.m

The S-function fixedspc.m is used to calculate the optimal future control se-
quence and implement the first element of this. It uses the control matrices
designed by the function SPCID.m. The Matlab code for this function is listed
below.

function [sys,x0,str,ts] = fixedspc(t,x,input,flag,s,h,m,l)

% fixedspc An M-file S-function for implementing a Subspace
% Predictive Controller where the controller parameters K_rc

APPENDIX B. MATLAB TOOLS 90

% and K_wc have already been calculated by SPCID.m
%
% Inputs:
% up,yp, past input, output vectors respectively
% K_rc, Controller matrix multiplying inputs
% K_wc, Controller matrix multiplying past i-o
%
% Outputs:
% u control signal u
%
% Parameters:
% s, Hankel matrix index, serves as both the forward and
% backward horizons (equals twice the max expected
% system order)
% h, sampling interval
% m, input dimension
% l, output dimension
%
% See also spc1 SPCID

switch flag,

%%%%%%%%%%%%%%%%%%
% Initialization %
%%%%%%%%%%%%%%%%%%
case 0,
[sys,x0,str,ts] = mdlInitializeSizes(s,h,m,l);

%%%%%%%%%%
% Output %
%%%%%%%%%%
case 3,
sys = mdlOutputs(x,input,s,m,l);

%%%%%%%%%%%%%
% Terminate %
%%%%%%%%%%%%%
case {1,2,4,9},
sys = []; % do nothing

%%%%%%%%%%%%%%%%%%%%
% Unexpected flags %
%%%%%%%%%%%%%%%%%%%%
otherwise
error([’unhandled flag = ’,num2str(flag)]);

end

%end fixedspc

APPENDIX B. MATLAB TOOLS 91

%==
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times
% for the S-function.
%==
function [sys,x0,str,ts,counter] = mdlInitializeSizes(s,h,m,l)

sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs = m;
sizes.NumInputs = m*s*(m+l) + m*s*l + s*(m+l)+l;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0=[];
str = [];
ts = [h 0];

% end mdlInitializeSizes

%==
% mdlOutputs
% output the system
%==
function sys = mdlOutputs(x,input,s,m,l)

% Unpack the past i/o blocks
Up = inputUnpack(s,input,m,(m*s*(m+l) + m*s*l));
offset = s*m+m*s*(m+l) + m*s*l;
Yp = inputUnpack(s,input,l,offset);

% Define Wp
Wp = [Yp; Up];

% Unpack the reference signal
offset = s*(m+l)+ m*s*(m+l) + m*s*l;
r = input(offset+1:end);

% Unpack the controller matrices K_rc and K_wc
[K_rc K_wc] = mdlUnpack(input,s,m,l);

if (K_rc==zeros(m,l*s))
u1 = r;

else
% Precalculate part of control law
pre_u = -K_wc*Wp; % could store this in a state for

APPENDIX B. MATLAB TOOLS 92

% updatestate/calculate output
% separation

% Construct the future reference sequence {r_k}
rf = r*ones(s,1); % Assume the future references will be

% the same as the current
% Calculate first control output u1 of optimal sequence u_k
u1 = pre_u + K_rc*rf;

end

sys = u1;
%end mdlOutputs

%==
% inputUnpack
% Unpack the input vector into a matrix of approprate
% dimensions
%==
function U = inputUnpack(n,u,size,offset)

result = [];
for i = 0:n-1

urow = u(offset + size*i + 1 : offset + size*(i+1))’;
result = [result;urow];

end
U=result;

%end inputUnpack

%==
% mdlUnpack
% Unpack K_rc and K_wc from input
%==
function [K_rc,K_wc] = mdlUnpack(input,s,m,l)
K_rc = [];
for i = 0:s*l-1

K_rc = [K_rc,input(i*m+1:(i+1)*m)];
end
offset = s*l*m; % number of elements in K_rc
K_wc = [];
for i = 0:s*(l+m)-1

K_wc = [K_wc,input(offset+i*m+1:offset+(i+1)*m)];
end
%end mdlUnpack

B.2 Online POMOESP Implementation

B.2.1 POMOESP.m

The S-function POMOESP.m operates as described in Chapter 7. The Matlab code
for this function is listed below.

function [sys,x0,str,ts] = POMOESP(t,x,u,flag,h,n,s,l,m)

APPENDIX B. MATLAB TOOLS 93

% POMOESP An M-file S-function for identifying the system
% matrices [A B C D] from input-output data u(k),y(k) using
% the Past Output MOESP subspace algorithm.
%
%--
% Generation of Singular Values and R matrix
%--
% Uses block input-output data to calculate Singular Values
% S, triangular information matrix R using dordpo function
% by Verhaegen.
%
%--
% Determination of System order from Singular Values
%--
% Heuristically determins the order N of a system from
% Singular Values. Compares the ’second differential’ of the
% logarithms of singular values and finds the largest value.
% The number of singular values below this maximum is taken
% to be the order of the system.
%
%--
% Calculation of System Matrices
%--
% Generation of the System Matrices [A B; C D] from R
% matrix, system order estimate N, and sequential inputs
% (formed into block data of arbitrary size) using dmodpo
% and dac2bd functions by Verhaegen.
%
% Requires SMI 1.0 toolbox (Verhaegen)
%
% Inputs: U(k): input vector; Y(k): output vector, both size n
% Outputs: System order N, Identified System polynomials A, B.
% Parameters: n: size of data block; s: Maximum expected
% system order, sampling interval
%
% Brad Schofield, LTH 2003

%===========================
% Input Adjustments
%===========================
N_0 = ceil(s/2); % Arbitrary assignment of initial system

% order. Modify to include user specification
s = 2*s; % Double the max expected system order, as recommended

% for use in POMOESP algortihm
h_alg = h*n; % Reduces sampling frequency to read in a whole

% new data block

i_u = 1; % take the first input column (corresponding to theta for
% pendulum) when calculating the transfer function from

APPENDIX B. MATLAB TOOLS 94

% the estimated state space model

%===========================
% Calculate Dimensions of R
%===========================

rowsizeR = s*(2*m+2*l);
colsizeR = max(4,s*(2*m+3*l));

switch flag,

%%%%%%%%%%%%%%%%%%
% Initialization %
%%%%%%%%%%%%%%%%%%
case 0,
[sys,x0,str,ts] = mdlInitializeSizes(n,N_0,h_alg,s,rowsizeR,colsizeR,l,m);

%%%%%%%%%%
% Update %
%%%%%%%%%%
case 2,
sys = mdlUpdate(t,x,u,s,n,rowsizeR,colsizeR,l,m);

%%%%%%%%%%
% Output %
%%%%%%%%%%
case 3,
sys = mdlOutputs(x,s,u,n,rowsizeR,colsizeR,l,m,N_0);

%%%%%%%%%%%%%
% Terminate %
%%%%%%%%%%%%%
case {1,4,9},
sys = []; % do nothing

%%%%%%%%%%%%%%%%%%%%
% Unexpected flags %
%%%%%%%%%%%%%%%%%%%%
otherwise
error([’unhandled flag = ’,num2str(flag)]);

end

%end POMOESP

%==
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for
% the S-function.
%==
function [sys,x0,str,ts] = mdlInitializeSizes(n,N_0,h,s,rowsizeR,colsizeR,l,m)

APPENDIX B. MATLAB TOOLS 95

sizes = simsizes;
sizes.NumContStates = 0; %
sizes.NumDiscStates = 2; % useR,useRbd flags
sizes.NumOutputs = s/2*s/2 + s/2*m + s/2*l + l*m+2;%
sizes.NumInputs = l*n+m*n; % U(k) and Y(k)
sizes.DirFeedthrough = 1; %
sizes.NumSampleTimes = 1; %

sys = simsizes(sizes);

useR_0 = 0;
useRbd_0 = 0;
x0 = [useR_0;useRbd_0];
str = [];
ts = [h 0];

% end mdlInitializeSizes

%==
% mdlUpdate
%==
function sys = mdlUpdate(t,x,u,s,n,rowsizeR,colsizeR,l,m)

useR = x(1,1);
useRbd = x(2,1);
if (useR == 0)

useR=1;
else if (useRbd == 0)

useRbd = 1;
end

end

x = mdlPack(useR,useRbd);
sys = x

%end mdlUpdate

%==
% mdlOutputs
% Calucate System Order and System Matrices.
%==
function sys = mdlOutputs(x,s,u,n,rowsizeR,colsizeR,l,m,N_0)

[useR,useRbd] = mdlUnpack(x);

%==
% unpack U and Y from input u
%==

APPENDIX B. MATLAB TOOLS 96

U = inputUnpack(n,u,m,0);
offset = n*m;
Y = inputUnpack(n,u,l,offset);

%--
% Check if this is the first time the algorithm is to be run,
% and if so, do not use R in the argument of dordpo
%--
useR1 = useR
if (useR==0)

% call dordpo w/o R
[S,R]=dordpo(U,Y,s);
save R0 R

else
% call dordpo with R
load Rold;
[S,R]=dordpo(U,Y,s,R);

end
save Rold R

%---
% Determination of System Order from Singular Values
%---
semilogy(S,’rx’);
title(’Singular Values’)
logS = log10(S);
diff = zeros([s-1,1]);
for j = 1:s-1

diff(j,1) = logS(j)-logS(j+1);
end

diff2 = zeros(s-2,1);
for j = 1:s-2

diff2(j,1) = diff(j)-diff(j+1);
end
gap = max(diff2);
for i = 1:s-2

if (gap==diff2(i,1))
N = i;
break

end
end
%end Singular Value Analysis

%---
% Calculate System Matrices and Polynomials
%---
if (x(1,1)==0)

sys = zeros(s/2*s/2 + s/2*m + s/2*l + l*m+2,1);
else % executed on the second and successive runs

APPENDIX B. MATLAB TOOLS 97

[A,C]=dmodpo(R,N); % calculate system matrices
[B,D,RnewBD]=dac2bd(A,C,U,Y);
IC = dinit(A,B,C,D,U,Y); % Find the initial conditions

% if desired
save Results A B C D IC U Y;
design_ctrl = 1;
output = outputPack(A,B,C,D,N,design_ctrl,s,l,m);
sys = output;

end

%end Calculate System Matrices

%end mdlOutputs

%==
% mdlPack
% Pack useR, useRbd flags in x
%==
function x = mdlPack(useR,useRbd)

x = [useR;useRbd];
%end mdlPack

%==
% mdlUnpack
% Unpack useR, useRbd flags from x
%==
function [useR,useRbd] = mdlUnpack(x)

useR = x(1,1);
useRbd = x(2,1);

%end mdlUnpack

%==
% inputUnpack
% Unpack the input vector into a matrix of appropriate
% dimensions
%==
function U = inputUnpack(n,u,size,offset)

result = [];
for i = 0:n-1

urow = u(offset + size*i + 1 : offset + size*(i+1))’;
result = [result;urow];

end
U=result;

%end inputUnpack

%==

APPENDIX B. MATLAB TOOLS 98

% outputPack
% Pack A, B, C, D, n, design_ctrl into a vector
%==
function x = outputPack(A,B,C,D,N,design_ctrl,s,l,m)

snew = s/2; % obtain original estimate of max system order

AVec = [];
for i = 1:N

AVec = [AVec; A(:,i)];
end

BVec = [];
for i = 1:m

BVec = [BVec; B(:,i)];
end

CVec = [];
for i = 1:N

CVec = [CVec; C(:,i)];
end

DVec = [];
for i = 1:m

DVec = [DVec; D(:,i)];
end

% output size is s/2*s/2 + s/2*m + s/2*l + l*m + 1(n) + 1(design_ctrl)
% need to ’pad’ the rest of the output with zeros
if N<snew

Pad_size = snew*snew + snew*(m+l) + l*m - (N*N + N*(m+l) + l*m);
padVec = zeros(Pad_size,1);

else
padVec = [];

end
x = [AVec; BVec; CVec; DVec; padVec; N; design_ctrl];
%end mdlPack

Bibliography

[1] Brian Anderson and John Moore, Optimal control linear quadratic methods,
Prentice Hall, Englewood Cliffs, NJ, 1989.

[2] H. H. J. Bloemen and T. J. J. van den Boom, Constrained linear model-
based predictive control with an infinite control and prediction horizon, Pro-
ceedings of the 14th IFAC (1999).

[3] Wouter Favoreel, Bart De Moor, and Michel Gevers, Spc: Subspace predic-
tive control, Proceedings of the 14th IFAC (1999).

[4] Magnus Gäfvert, Modelling the furuta pendulum, Tech. report, Department
of Automatic Control, Lund Institute of Technology, April 1998.

[5] B. R. J. Haverkamp, C. T. Chou, M. Verhaegen, and R. Johansson, Iden-
tification of continuous time mimo state space models from sampled data,
in the presence of process and measurement noise, Proceedings of the 35th
Conference on Decision and Control (1996).

[6] Bert Haverkamp, Subspace method identification, theory and practice,
Ph.D. thesis, Delft, The Netherlands, August 2000.

[7] Rolf Johansson, System modelling and identification, Prentice Hall, Engle-
wood Cliffs, NJ, 1993.

[8] Rolf Johansson, Michel Verhaegen, and C. T. Chou, Stochastic theory of
continuous-time state-space identification.

[9] Johan Åkesson, Safe manual control of unstable systems, Master’s thesis,
Department of Automatic Control, Lund Institute of Technology, Septem-
ber 2000.

[10] Robin De Keyser, A gentle introduction to model based predictive control,
International Conference on Control Engineering and Signal Processing,
Piura Peru (1998).

[11] J. M. Lemos and E. Mosca, A multipredictor-based lq self-tuning controller,
IFAC Identification and System Parameter Estimation (1985).

[12] Marco Lovera, Subspace identification methods: Theory and applications,
Ph.D. thesis, Politecnico Di Milano, 1997.

[13] J. M. Maciejowski, Predictive control with constraints, November 1999.

99

BIBLIOGRAPHY 100

[14] Marc Moonen, Bart De Moor, and Joos Vandewalle Vandenberghe, On- and
off-line identification of linear state space models, International Journal of
Control 49 (1989), no. 1, 219–232.

[15] Marc Moonen and Joos Vandewalle, A qsvd approach to on- and off-line
state-space identification.

[16] C. Rowe and J. M. Maciejowski, Tuning robust model predictive controllers
using lqg/ltr, Proceedings of the 14 IFAC (1999).

[17] Walter Rudin, Real and complex analysis, third ed., McGraw Hill, 1987.

[18] Wilson J. Rugh, Linear system theory, Prentice Hall, Englewood Cliffs, NJ,
1993.

[19] Gilbert Strang, Linear algebra and its applications, Academic Press, 1976.

[20] Karl J. Åström and Björn Wittenmark, Adaptive control, second ed., Ad-
dison Wesley, 1995.

[21] , Computer controlled systems theory and design, third ed., Prentice
Hall, Englewood Cliffs, NJ, 1997.

[22] Peter van Overschee and Bart De Moor, Subspace identification for linear
systems, Kluwer Academic Publishers, 1996.

[23] V. Verdult, M. Verhaegen, C. T. Chou, and M. Lovera, Efficient subspace-
based identification of mimo bilinear state space models, Proceedings of the
International Workshop on Advanced Black-Box Techniques for Nonlinear-
Modelling: Theory and Applications (1998), 216–221.

[24] Vincent Verdult and Michel Verhaegen, Subspace-based identification of
mimo bilinear systems, Proceedings of the European Control Conference
(1999).

[25] , Identification of multivariable linear parameter-varying systems
based on subspace techniques, Conference on Decision and Control CDC
2000 (2000).

[26] Michel Verhaegen and Patrick Dewilde, Subspace model identification part
1. the output-eror state-sace model identification class of algorithms, Inter-
national Journal of Control 56 (1992), no. 5, 1187–1210.

[27] , Subspace model identification part 2. analysis of the elementary
output-error state-space model identification algorithm, International Jour-
nal of Control 56 (1992), no. 5, 1211–1241.

[28] Michel Verhaegen and David Westwick, Identifying mimo wiener systems
using subspace model identification methods, Proceedings of the 34th Con-
ference on Decision ans Control (1995).

[29] Eric A. Wan and Alexander A. Bogdanov, Model predictive neural control
with applications to a 6dof helicopter model.

