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1 Introduction 
 
The work for this thesis was done at Tetra Pak in Lund. Tetra Pak is one of the world's largest 
suppliers of packaging systems for milk, fruit juices and drinks, and many other products. The 
packaging machines that Tetra Pak develops contain a lot of mechanics that must move or rotate 
with high velocity and precision. Those movements are controlled by methods from the fields of 
automation and control theory. Improvements of control methods would mean improvement of the 
machines and is thus of interest. 
 
When regulating processes that contain flexible mechanics, problem with resonance frequencies 
often occurs. Oscillations can decrease the working speed and shorten the life span of a machine. 
Finding a way to minimize oscillations would therefore be of interest. 
 
The purpose of the work presented in this thesis was to investigate some different strategies of 
coping with resonance problems, to design and test different regulators for a flexible servo process 
at Tetra Pak in Lund and to implement one regulator for the process. 
 
Model-based design methods were chosen and thus a model of the process was needed. System 
identification was used to obtain this model of the process. Some different regulators were designed 
for the model and tested in simulations. 
 
Finally one regulator was designed and implemented for the process. 
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2 Theory 
 
2.1 System identification 
 
A rigid body mechanics model of the flexible servo process from torque to angular velocity has an 
order of three (see Åström & Wittenmark 1997 chap.4). Thus a model from torque to position 
would have an order of four (obtained by adding an integrator). 
 
System identification is an area with a lot of different approaches and methods. The quality of the 
results may vary and therefore validation of obtained models is necessary.  
 
Statistical analysis can be used for transfer function estimation (see Johansson 1993 chap.4).  
 
For regulator design, a low order parametric model is often needed. One way of obtaining this is to 
use subspace methods (see Johansson 1993 chap.13). Singular values obtained in the calculations 
will give an idea of what order of the model that would be suitable.  
Validation of a model obtained by system identification is necessary. This can be made with 
residual analysis and cross validation (see Johansson 1993 chap.9). 
 
2.2 Regulator design 
 
There are several ways of designing a regulator. Two model-based ways are pole placement design 
and linear quadratic design. 
 
When a discrete model of a process is known, a regulator that makes pole placement can be 
designed. If the model is present as a pulse transfer operator this can be done using a polynomial 
approach. The possibility to cancel poles makes it possible to obtain a regulator that also acts as a 
notch filter. Integral action can be added to such regulators as well (see Åström & Wittenmark 
chap.5). 
 
A regulator with notch filter action will not excite the resonant mode by its control signal but it will 
not damp this mode actively either. This means that if a load disturbance causes resonance 
oscillations the regulator will not stop them (see Åström & Wittenmark 1997 chap.5). 
 
If a pole placement regulator without cancellation of any pole is designed, it is possible to obtain a 
regulator that makes active damping of the resonant mode. This means that any resonance 
oscillations will be damped (see Åström & Wittenmark 1997 chap.5). 
 
Another type of model-based regulator design is LQ/LTR (linear quadratic regulator with loop 
transfer recovery) (see Åström & Wittenmark 1997 chap.5 and Glad & Ljung 1997 chap.9). 
Reference signal following can be obtained (see Åström & Wittenmark 1997 chap.4). 
  
If the state gain L is chosen as a solution to a linear quadratic problem the regulated system will 
have some good characteristics. The phase margin will be at least 60 degrees, the amplitude margin 
will be infinite and the sensitivity function will be less than 1. (see Glad & Ljung 1997 chap.9). By 
choosing the observer gain carefully it is possible to come arbitrarily close to these good 
characteristics even when an observer is needed (see Glad & Ljung 1997 chap.9). 
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3 Material 
 
The process was a flexible servo according to Figure 1. 

 
Figure 1 A schematic picture of the process 
 
 
The flexibility of the process originated in a mechanical flexibility in a gear-box on the shaft.  
The input signal was a so called stator current quadrature component, and the output signal was the 
measured position of the motor. The torque produced by the motor is approximately proportional to 
the stator current quadrature component. A rigid body mechanics model of this process would give 
a system of fourth order. 
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4 Method 
 
A model of the process was obtained by system identification. Then three different regulators were 
designed and tested in simulations. 
 
4.1 System identification 
 
The purpose of the system identification was to obtain a reliable low order parametric model of the 
process. There are different ways of achieving this and validation is crucial to determine whether 
the obtained model is good or not.  
 
4.1.1 Data sets 
 
The system was excited by an input signal and sampled at a frequency of 2000 Hz. System 
identification was made on one set of data (data1). Then cross validation was made with other data 
sets. 
 
4.1.2 Friction compensation 
 
Friction was measured by exciting the process with a constant input signal. The wheel stopped 
moving at an input signal of 0.2A. Before the identification friction was compensated for by 
decreasing the input of the data sets with 0.2A when the wheel was moving in positive direction, 
and increasing it with 0.2A when the wheel was moving in negative direction. 
 
4.1.3 Statistical analysis 
 
Matlab was used to do some spectral analysis of the data. Loading the data into Matlab as u and y 
(input and output signals respectively), and using the command line  
>>specplot(spectrum(u,y),Ts)  
where Ts is the sampling frequency (2000 Hz for all sets) produced functions and plots of the 
following:  
.Power spectral density and confidence of u 
.Power spectral density and confidence of y 
.Estimation of pulse transfer operator magnitude 
.Estimation of pulse transfer operator phase 
.Coherence function 
The third and forth quantity are extracted from the ratio between the power spectral density of the 
output and the input signals.  
 
4.1.4 Low order parametric model estimation 
 
For model estimation, subspace methods were chosen.  
 
A rigid body mechanics model of the process (see Figure 1) would have an order of four. Thus, the 
identified model is expected to be of at least fourth order. This fact and the singular values (se 
Figure 5) suggested that a model order of four should be chosen. 
 
The subspace identification provided a fourth order model estimation of the process. 
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4.1.5 Validation 
 
A validation of data1 was made. The forth order model estimated from data1 and the input signal 
and an estimation of the initial states of data1, were used to simulate an output signal. This signal 
was plotted in the same diagram as the true output signal of data1 in some different scales. 
 
The residuals of the data were calculated as the difference between the real output of data1 and the 
output simulated by the estimated forth order model with input from data1. 
 
To be able to make a quantitative measure of the model’s ability to simulate the output in an 
accurate way a relative standard deviation was introduced as 
 rstd=(standard deviation of residuals)/(interval of output) 
The variance of the residuals was estimated as 

 )1)(/(' −×= rlengthrrv  
where v is the variance and r is a residual vector. The standard deviation, s, was calculated as the 
square root of the estimated variance. 
 
One way of getting an idea of the accuracy of the model is to look at the auto correlation of the 
residuals and the cross correlation between the residuals and the input. The Matlab Control system 
toolbox command resid, with estimated model and data as input was used to calculate and plot these 
two functions. Ideally the residuals should be uncorrelated which means that the auto correlation 
function should vary around zero and be neither only positive nor only negative for more than a few 
units. Further the correlation function should be small. In the Matlab function plots, boundaries 
which should not be exceeded are indicated. The residuals and the input should also be 
uncorrelated. This imposes the same requirements on the cross correlation function as on the auto 
correlation function. 
 
The power spectral density of the residuals with confidence interval was plotted using the Matlab 
Control system toolbox command spectrum, in order to see if some frequencies were 
overrepresented in the residuals. 
 
Finally cross validation was made with three data sets (data2, data3 and data4). 
 
4.2 Regulator design 
 
Since a model of the process was identified a model-based design was chosen. One purpose was to 
try to avoid oscillations in the process. Three different regulators were designed and tested in 
simulations. Some Matlab programs for different regulator design were designed (see Appendix B). 
 
4.2.1 Notch filter design by pole placement 
 
The Matlab file notchfilter.m designs an RST regulator with notch filter and pole placement action 
according to the method below.  
The sampled process contains four zeros and four poles. Two of the poles represent the oscillatory 
mode which is to be canceled and two are real. The process model’s characteristic polynomial is 
factorized as 

−+= AAA   
where A+ contains a monic polynomial of degree two to be canceled and A- is the rest of degree 
two. The desired characteristic polynomial is also of degree four and is chosen to be the sampled 
version (zero order hold) of 
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222 )2( cccc ssA ωωξ ++=  
The parameters can be chosen arbitrarily but in this case the following values were used 
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The observer polynomial Ao of degree three is choosen as 

  += AAA oo
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Ao-hat is thus of degree 1 and is chosen to have a zero in wc  
The Diophantine equation becomes 

  oc AAABSAR
_

+=+   
S is introduced as 

  
_
SAS +=  

and the Diophantine equation is shortened to 

  oc AASBRA
__

=+−  
It is solved in the usual manner (the computer file uses the Matlab oldboxes command dab). 
This gives the following transfer function from input to output 
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the steady state gain is one and the resonant poles are canceled so that the command signal will not 
excite the resonant modes. Further, since A+ is a factor of S the feedback will also not excite the 
resonant modes. 
 
The sensitivity function was calculated to give an idea of how sensitive the regulator is to modeling 
errors. 
 
Finally the regulator was tested in simulations. The regulator and process were implemented in 
Matlab Simulink (see Figure18). The fourth order model from the system identification was used to 
simulate the process. 
 
In the first simulation the step load disturbance was turned off (see Figure 18). 
 
In the next simulation the step load disturbance was activated after 4.3s with an initial value of 0A 
and a final value of 30A. The reference signal was the same as before. 
 
To avoid stationary errors integral action was added in the design. A new closed loop pole in the 
origin was introduced and an integrator was forced into the polynomial R. 
 
4.2.2 Active damping by pole placement 
 
The file activedamping.m designs an RST regulator with pole placement design for the model 
obtained in the system identification. This regulator does not cancel poles and thus it has no notch 
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filter action. The idea is to make an active damping of the oscillatory mode and not, as in the case 
with a notch filter, to make the regulator avoid to excite them. The process is the same as before 
and the desired characteristic polynomial Ac is also the same but the observer polynomial is chosen 
as 
  do AA =  
where Ad is the sampled versions of 
  ))(2( 22

ccccd sssA ωωωξ +++=  
The parameters are the same as those in Ac in the file but could be chosen differently. 
The Diophantine equation becomes  
  dc AABSAR =+  
It is solved in the usual manner (Matlab command dab in the file). 
 
Integral action is added in the same manner as in the case with the notch filter design. 
 
The sensitivity function was calculated and plotted in order to give an idea of the regulator’s 
sensitivity to modeling errors. 
 
The regulator was implemented and simulated in Matlab Simulink. The Simulink model was the 
same as in the case with the notch filter design and the same reference signal and load disturbance 
was used. 
 
4.2.3 LQG/LTR 
 
The purpose of the LQG/LTR regulator design was to design a robust regulator. 
 
An LQG/LTR regulator was designed for the process. The regulator was designed for the 
continuous equivalent of the model obtained in the system identification, and then sampled. To 
avoid computations with too great numbers the unit of the output signal was altered, divided by a 
factor 1000. For simplicity a small direct term was removed from the model.   
 
An LQ regulator with robust closed loop performance was designed. 
 
The open loop transfer function of the regulated system was plotted and the amplitude and the 
phase margins were investigated. The sensitivity function was also plotted. 
 
Thereafter loop transfer recovery (LTR) was obtained by choosing observer gain K according to the 
theory. The open loop transfer function and the sensitivity function were plotted again to verify that 
the good characteristics of the LQ regulated system were recovered to a satisfactory extent.  
The calculations in the design were organized in the Matlab file LQGLTR.m (see Appendix B). 
 
The regulator was simulated in Matlab Simulink (see Figure 38). The fourth order model from the 
system identification was used to simulate the process. 
 
4.3 Implementation 
 
A regulator for the process was implemented in the programming language C. The program was 
loaded to a PC computer. The PC computer communicates with a drive that contains the regulator. 
The control signal from the regulator is actually a reference signal for the current regulator in the 
three phase motor that drives the process. It is a reference signal for the current quadrature 
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component which is a virtual current. The torque on the shaft is approximately linear to the current 
quadrature component. The computer system had a real time scheduling from the beginning. Thus it 
was possible to implement the regulator without worrying too much about real time issues. 
 
It was discovered that the model obtained from system identification had a shortcoming. Compared 
to the process it had a very large low frequency gain. A new data set (data4) was taken with an 
input signal that excited low frequencies more than the data sets used before. The new data set was 
used to identify a second order model in the same way as the identification of the fourth order 
model earlier. A pole placement regulator for this model was designed in the same way as the 
active damping regulator above. The desired closed loop characteristic polynomial had to be chosen 
with a lower order since the model order was lower. When this regulator was implemented and used 
to regulate the process it was noticed that there was a stationary error. The ratio between the 
reference signal and the position was constant but not one. This was compensated for by 
multiplying the reference signal with the mentioned ratio before feeding it into the regulator. 
 
No resonance oscillations could be detected by the eye or by looking at plots of the output signal. In 
order to investigate the presence of resonance oscillations quantitatively the power spectral density 
of the output was plotted. 
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5 Results 
 
In this section the results of the system identification and the regulator design is presented. 
 
5.1 System identification 
 
The results of the system identification is presented in order. 
 
5.1.1 Statistical analysis 
 
The statistical analysis resulted in an estimation of the transfer function of the process (see Figure 2, 
Figure 3) and a coherence spectrum for the estimation (see Figure 4) 
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Figure 2 Estimated transfer function magnitude obtained by statistical analysis. The unit on the y axis is one. 
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Figure 3 Estimated transfer function phase obtained by statistical analysis. The unit on the y axis is degrees. 
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Figure 4 Coherence spectrum. The unit on the y axis is one. 

 
The magnitude curve shows a main resonance frequency centered around 106 Hz with a half-value-
width of approximately 40 Hz. Higher up the Bode plots show some additional resonance 
frequencies. The coherence is poor and the energy of the excitation signal is low at these 
frequencies. 
 
5.1.2 Model estimation 
 
Figure 5 shows the first twenty singular values from the subspace algorithm. 
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Figure 5 The first twenty singular values obtained in the subspace algorithm. The unit on the y axis is one. 

 
A high singular value indicates that the corresponding state is important for model accuracy. Since 
the rigid body mechanics model says that the model should be of at least fourth order and the 
singular values from five and up are small (see Figure 5) in some sense, a model order of four is 
chosen. 
 
Figure 6 shows a Bode plot of the estimated fourth order model. 
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 Figure 6 Bode diagram of the estimated fourth order model 
 
Figure 6 shows a resonance frequency centered around 106 Hz. For frequencies under 200 Hz the 
shape of the diagram is about the same as in the diagrams obtained by statistical analysis (see 
Figure 2 and Figure 3). 
 
5.1.3 Validation 
 
Figure 7 and Figure 9 show the output and a model simulated output of data1. Figure 8 and 10 show 
residuals between the output and the simulated output. 
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Figure 7 Output and simulated output of data1. The unit on the y axis is the same as the units of the measured 

position. 
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Figure 8 Residuals. The unit on the y axis is the same as the units of the measured position. 
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Figure 9 Figure 7 in a different scale.  
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Figure 10 Figure 8 shown in a different scale. 
 

 
   
 
The variance and the standard deviation of the residuals were calculated and were found to be 

 
4

8

10011.1
10022.1

×=

×=

s
v  

 
The data varies between approximately 5108×−  and 51017 ×−  units. 
The relative standard deviation introduced above (section 4.1.4) was calculated. 
 

rstd = %1.1)10))17(8/(( 5 =×−−−s   
 
The autocorrelation for the residuals and the cross correlation between the residuals and the input 
are shown in Figure 11 and Figure 12 in different scales. 
 

 
Figure 11 Auto correlation function of the residuals and cross correlation function between the residuals and           

the input. 
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 Figure 12 Figure 11 in a different scale 
 
The cross correlation function shown in Figure 11 and Figure 12 is acceptable but the auto 
correlation function indicates that the residuals are correlated. 
 
Figure 13 shows the power spectral density of the residuals. 
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 Figure 13 The power spectral density of the residuals with 95% confidence interval 
 
Low frequencies and frequencies around the resonance frequency dominate the frequency content 
of the residuals. 
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Figure 14, Figure 16 show cross validation made with data2, data3. Figure 15 and Figure 17 
show the corresponding residuals. 
 

0 500 1000 1500 2000 2500 3000 3500 4000
-14

-12

-10

-8

-6

-4

-2

0

2
x 105

time (periods)

 
 Figure 14 Cross validation with data2. The unit on the y axis is the same as in the measured position. 
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 Figure 15 Residuals corresponding to the cross validation in Figure 14. 
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 Figure 16 Cross validation with data3. The unit on the y axis is the same as in the measured position. 
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Figure 17 Residuals corresponding to the cross validation in Figure 16. 

 
 

 
The high frequency behavior of the model is satisfactory but the low frequency behavior seems to 
be less good. However, the proportional part of a regulator could be able to compensate for this. 
Special attention has to be paid to the sensitivity function in the low frequency region of a 
regulator. 
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5.2 Regulator design 
 
Three different regulators were designed and tested in simulations in Matlab Simulink. 
 
5.2.1 Notch filter design 
 
The notch filter regulator design resulted in three polynomials (R, S and T) to be used in the filters 
of the regulator. 
 
The regulator was implemented and simulated in Matlab Simulink. 

 
 Figure 18 Implementation of regulator in Matlab Simulink 
 
The forth order model from the system identification was used to simulate the process. 
 
5.2.1.1 Notch filter simulation example one 
 
In this simulation example all poles of the closed loop system were placed in the discrete time 
equivalent of the real continuous pole in p = -170. No disturbances acted on the system. The fourth 
order model from the system identification was used to simulate the process. The implementation 
was done according to Figure 18. Figure 19 and Figure 20 show the reference signal and the output 
signal. Figure 21 shows the control signal. For the coefficients of the regulator and model 
polynomials see Appendix A. 
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Figure 19 The reference signal (dashed) and the output signal (solid). The unit on the y axis is the same as the 

unit of the measured position. 
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 Figure 20 The same Figure as Figure 18 but in a shorter time interval. 
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 Figure 21 The control signal. The unit on the y axis is ampere. 
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The sensitivity function gives an idea of how sensitive the regulator is to modeling errors. 
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Figure 22 Sensitivity function for the notch filter regulator in the simulation. The unit on the x axis is radians 
per second. The first diagram shows the magnitude. It has the standard unit (dB) for Matlab Bode 
diagram of the magnitude on the y axis. The second diagram shows the phase. It has the unit degree 
on the y axis. 

 
 
The sensitivity function has a peak between 80 and 300 rad/sec which means that the model has to 
be quite accurate in this region in order for the regulator to work as expected. 
 
  
5.1.1.2 Notch filter simulation example two 
  
In this simulation example all poles of the closed loop system were placed in the discrete time 
equivalent of the real continuous pole in p = -170. A load disturbance in the shape of a step acted on 
the system. The initial value of the disturbance was zero and the final value was 30 ampere. The 
step time was 4.3 seconds. The forth order model from the system identification was used to 
simulate the process. The implementation was done according to Figure 18. Figure 23 shows the 
reference signal and the output signal. Figure 24 shows the control signal. For the coefficients of 
the regulator and model polynomials see Appendix A. 
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Figure 23 The reference signal (dashed) and the output signal (solid). The unit on the y axis is the same as the 

unit of the measured position. 
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A large stationary error can be seen in the position plot. 
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 Figure 24 The control signal. The unit on the y axis is ampere. 
 
 
5.1.1.3 Notch filter simulation example three 
  
In this simulation example all poles of the closed loop system were placed in the discrete time 
equivalent of the real continuous pole in p = -170. A load disturbance in the shape of a step acted on 
the system. The initial value of the disturbance was zero and the final value was 30 ampere. The 
step time was 4.3 seconds. Integral action was added to cope with the load disturbance. This 
included adding of a new closed loop discrete time pole in the origin. The fourth order model from 
the system identification was used to simulate the process. The implementation was done according 
to Figure 18. Figure 25 shows the reference signal and the output signal. Figure 26 shows the 
control signal. For the coefficients of the regulator and model polynomials see Appendix A. 
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Figure 25 The reference signal (dashed) and the output signal (solid). The unit on the y axis is the same as the 

unit of the measured position. 
 
The stationary error is effectively eliminated. 
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 Figure 26 The control signal. The unit on the y axis is ampere. 
 
 
A closer look on the output of the process when it is regulated with a notch filter regulator reveals 
that resonance oscillations can be excited by a load disturbance. Figure 26 and Figure 27 shows the 
same diagram as Figure 25 but in a different scale.  
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 Figure 26 Resonance oscillations in the output signal 
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Figure 27 Resonance oscillations in the output signal 
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5.2.2 Active damping simulation example 
 
In this simulation example all poles of the closed loop system were placed in the discrete time 
equivalent of the real continuous pole in p = -170. A load disturbance in the shape of a step acted on 
the system. The initial value of the disturbance was zero and the final value was 30 ampere. The 
step time was 4.3 seconds. Integral action was added to cope with the load disturbance. This 
included adding of a new closed loop discrete time pole in the origin. The fourth order model from 
the system identification was used to simulate the process. The implementation was done according 
to Figure 18. Figure 28 and Figure 29 shows the reference signal and the output signal. Figure 30 
shows the control signal. Figure 31 show the sensitivity function. For the coefficients of the 
regulator and model polynomials see Appendix A. 
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Figure 28 The reference signal (dashed) and the output signal (solid). The unit on the y axis is the same as the 

unit of the measured position. 
  
 
The elimination of stationary errors is obviously slower for this regulator than for the notch filter 
regulator but a closer look reveals that it is much smoother (compare Figure 31 with Figure 26). 
 
Figure 29 shows the same diagram as Figure 28 but in another scale. It shows that the load 
disturbance in this case does not excite any resonance oscillations. 
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 Figure 29 The same diagram as in Figure 28 but in a different scale 
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 Figure 30 The control signal. The unit on the y axis is ampere. 
 
 
Figure 31 shows the sensitivity function for the active damping regulator. 
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Figure 31 The sensitivity function for the active damping regulator in the simulation. The unit on the x axis is 
radians per second. The first diagram shows the magnitude. It has the standard unit (dB) for Matlab 
Bode diagram of the magnitude on the y axis. The second diagram shows the phase. It has the unit 
degree on the y axis. 

 
 
 
The sensitivity function has a top at approximately the same place as the notch filter regulator. But 
it has a notch around the resonance frequency of the process. 
 
5.2.3 LQG/LTR Simulation example  
 
In the design of the regulator for this simulation a small direct term was removed from the model. 
The design was made in continuous time and then the regulator was sampled. In the loss function 
the Q matrix was chosen as the identity matrix of order four. R was chosen as one and N was 
chosen as a column vector of height four containing zeros. 
 
The LTR method determined the covariance of the noises. RN was chosen as 1 and QN was chosen 
as 10000000000 times RN. 
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The names and definitions of the matrices in the loss function and the covariance constants were 
taken from Matlab Control System Toolbox commands Lqr and Kalman.  
 
The fourth order model from the system identification was used to simulate the process. The 
simulation was implemented in Matlab Simulink according to Figure 38. For the model 
polynomials and the components of the Kalman filter gain and the state feedback gain see 
Appendix A. 
  
Figure 32 and Figure 33 shows what impact the removal of a small direct term had on the process 
model.  
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Figure 32 Model with direct term. The first diagram shows the magnitude. It has the standard unit (dB) for 

Matlab Bode diagram of the magnitude on the y axis. The second diagram shows the phase. It has the 
unit degree on the y axis. 
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Figure 33 Model without direct term. The first diagram shows the magnitude. It has the standard unit (dB) for 

Matlab Bode diagram of the magnitude on the y axis.  The second diagram shows the phase. It has the 
unit degree on the y axis. 

 
 
 
Figure 34 shows the open loop transfer function of the LQ regulated system 
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Bode Diagram
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Figure 34 Open loop transfer function of the LQ regulated system. The amplitude and the phase margins are 

indicated at the top of the Figure. 
 
The good margins promised by theory can be seen in practice in Figure 34 
 
Figure 35 shows the sensitivity function of the LQ regulated system. The sensitivity is less than 
one. 
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Figure 35 Sensitivity function for the LQ regulator. The first diagram shows the magnitude. It has the standard 

unit (dB) for Matlab Bode diagram of the magnitude on the y axis.  The second diagram shows the 
phase. It has the unit degree on the y axis. 
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Thereafter loop transfer recovery (LTR) was obtained by choosing observer gain K according to the 
theory. Figure 36 shows the recovered open loop regulated system. 
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Figure 36 Recovered transfer function. Amplitude and phase margins are indicated at the top of the Figure. 

 
Figure 37 shows the recovered sensitivity function. 
 

frequency (rad/sec)

-80

-60

-40

-20

0

20

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

-45

0

45

90

135

 
Figure 37 Recovered sensitivity function. The first diagram shows the magnitude. It has the standard unit (dB) 

for Matlab Bode diagram of the magnitude on the y axis. The second diagram shows the phase. It has 
the unit degree on the y axis. 
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The regulator was implemented and simulated in Matlab Simulink. 

 
 Figure 38  Matlab Simulink implementation of the LQG/LTR regulator 
 
The fourth order model from the system identification was used to simulate the process. 
 
Figure 39, Figure 40 and Figure 41 shows the reference signal used in the simulations and the 
output signal. 
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Figure 39 The reference signal (dashed) and the output signal (solid). The unit on the y axis is the same as the 

unit of the measured position divided by 1000. 
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 Figure 40 The same as Figure 39 but in a shorter time interval 
 
Figure 42 shows the same diagram as Figure 41 but in a different scale. 
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 Figure 41 The same as Figure 39 but in a shorter time interval 
 
 
Figure 42 shows the control signal. 
 

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

time (seconds)

 
 Figure 40 The control signal. The unit on the y axis is ampere. 
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5.3 Implementation 
 
Figure 43 shows a bode diagram of the second order model used in the regulator design. For the 
coefficients of the regulator and model polynomials see Appendix A. 
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 Figure 43 Bode diagram of the model used for regulator design. 
 
 
 
 
5.4 Experimental results 
 
A reference signal with steps with an interval of 0.72 seconds was used. Figure 44 shows a plot of 
the reference signal and the position when the steps had amplitude of 10000 units. Figure 45 and 
Figure 46 are the same as Figure 44 but in a different scale. Figure 47 shows the difference between 
the actual position and the reference signal. Figure 48 shows the control signal. 
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Figure 44  The reference signal (dashed line) and position (solid line). The unit on the y axis is the unit for the 

measured position. 
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Figure 45 The same Figure as in Figure 43 but in a different scale. 
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Figure 46 The same Figure as in Figure 43 but in a different scale. A stationary error about 20 units can be 

seen. 
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Figure 47 The difference between the actual position and the reference signal. 
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Figure 48 The control signal. The unit on the y axis is ampere. The control signal is saturated at 10 ampere. 

 
Figure 49 shows the power spectral density of the output signal (position). 
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Figure 49 The power spectral density of the output signal with 95% confidence interval. Resonance oscillations 

are revealed in the diagram. 
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6 Discussion 
 
The first part of the work was system identification. The model obtained was used to design and 
test different regulators in Matlab Simulink. The identified model was used to simulate the process.  
During this phase the difference in low frequency gain between the real process and the model was 
not discovered. The simulations are of general interest because the model looks like a typical 
process containing a resonance frequency and the regulators are designed to cope with this. Further 
the validation suggests that the model was quite accurate in the frequency region around the 
resonance frequency. 
 
The sensitivity function that was plotted for the different regulators is a measure of the regulator’s 
sensitivity to small model errors. Frequency regions where the sensitivity function is greater than 
one could be considered to be regions were the model must be very accurate. The simulations 
showed how the regulators react to reference signals and load disturbances. The different regulators 
tested have different advantages and shortcomings. 

• The notch-filter design works well if the model accuracy is good and there are no load 
disturbances. If an integrator is added stationary error can be avoided, but the fact that load 
disturbances excite the oscillatory modes is a problem. 

• The active damping approach is good when model accuracy is good. The regulator is 
capable of coping with load disturbances. If an integrator is added stationary error can be 
avoided. 

• LQG/LTR design is robust and is therefore preferable when model accuracy is less good. 
 
In every design case it has to be considered if it is necessary to damp resonance frequencies at all. 
As it turned out in this case, the power spectral density of the low frequencies in the output signal is 
greater than the power spectral density of the resonance frequency by a factor 10000. This means 
that resonance oscillations will cause small problems. 
During the implementation phase the difference in low frequency behavior between the process and 
the model was discovered. A new identification of the model was made. An input signal that 
excited the low frequencies more than before was used. The first approach in the implementation 
was to use a second order model. The results of the implementation were good. Plotting the power 
spectral density revealed that resonance oscillations were present in the output signal but they were 
of low amplitude. This made it unnecessary to increase the model order to four in order to cope 
with resonance oscillations. When the regulator was tested it was discovered that saturation of the 
control signal did not cause big problems. 
 
There are some advantages of the design of the implemented regulator as compared to the PID 
design that is used at present. The behavior of the closed loop system is design parameters of the 
regulator. This means that the regulator is designed to force the system to react in a specified way to 
reference signals. In this particular case it is crucial to have a well damped closed loop system and 
this is easy to achieve using the methods suggested in this thesis. The PID design uses a totally 
different approach and it can be hard to know how to tune the parameters to get a well damped 
closed loop system. Often it is necessary to use a reference signal that is not just a step for the PID-
regulated process because the closed loop system is poorly damped. This is not always necessary if 
the process is regulated by a regulator that specifies the behavior of the closed loop system, and 
thus the damping of the system. 
 
The regulator was implemented to demonstrate the possibility of using a model-based regulator for 
this process. It was not optimized. If a regulator of this type was to be used in an industrial 
application there are some issues that have to be considered.  
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• The regulated process had a stationary error. One possible way of coping with this is to add 
an integrator to the regulator. This might cause some stability problems and some kind of 
anti-windup might be necessary.  

• It is possible to write a computer program that creates the regulator but an accurate model 
of the process has to be at hand. System identification can be made but is likely to be time 
consuming to an engineer that is not specialized in control theory. Therefore the system 
identification also has to be automatic to some extent. There are some problems with this. 
For example it is hard to know how to choose the input signal that gives a necessary 
excitation of the process. And it is hard to evaluate the model in an automatic way. 

• The design assumes that the process is linear. In practice the region of linearity is limited. 
What happens outside the linearity region has to be considered. 

 
Further work on this topic would be to develop software for optimal system identification and for 
regulator design that could be used in an industrial application. The problems mentioned above 
should be considered. 
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Appendix A - Constants of models and regulators 
 
The fourth order model from the system identification is given as a transfer function. The 
numerator, B, and the denominator, A, are presented in the form 

432
2

1
3

0
4 bbzbzbzbz +×+×+×+×  

432
2

1
3

0
4 aazazazaz +×+×+×+× . 

The coefficients are the following: 
a0 =1 
a1 =-3.26169485236 
a2 =4.40473220273 
a3 =-3.01973756569 
a4 =0.876700504779 
 
b0 =-68.6810549537 
b1 =295.714159865 
b2 =-366.144180865 
b3 =144.131579054 
b4 =8.3061166878 
 
The second order model used for regulator design of the regulator that was implemented is 
presented in the same way. The coefficients are the following: 
a0 =1 
a1 =-1.99752290806 
a2 =0.997522907152 
 
b0 =2.94809451537 
b1 =-6.26019760955 
b2 =3.38519886215 
 
The R, S and T polynomials of the notch filter regulator without integral action are presented in the 
same way as the polynomials of the model. The coefficients are 
r0 =1.02593787796 
r1 =-2.16970438537 
r2 =1.55380355748 
r3 =-0.360314765171 
 
s0 =0.000377656953301 
s1 =-0.000840942628864 
s2 =0.000792575892961 
s3 =-0.000319429398435 
 
t0 =0.00008702013171 
t1 =-0.000181412248754 
t2 =0.0001669399146 
t3 =-0.0000626858985894 
 
The R, S and T polynomials of the notch filter regulator with integral action are presented in the 
same way as the polynomials of the model. The coefficients are 
 
r0 =1.28219032882 
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r1 =-3.27302870483 
r2 =2.91990580759 
r3 =-0.89807689481 
r4 =-0.0309905367608 
 
s0 =0.00410870696447 
s1 =-0.0130104892442 
s2 =0.0172268520272 
s3 =-0.0115862212766 
s4 =0.00327101342815 
 
t0 =8.702013171e-05 
t1 =-0.000181412248754 
t2 =0.0001669399146 
t3 =-0.0000626858985894 
 
The R, S and T polynomials of the active damping regulator with integral action are presented in 
the same way as the polynomials of the model. The coefficients are 
r0 =1.08423093284 
r1 =-3.02359731536 
r2 =2.8630365165 
r3 =-0.888585119074 
r4 =-0.0350850149029 
 
s0 =0.00122640709134 
s1 =-0.00712169064842 
s2 =0.0142870865818 
s3 =-0.0120944367783 
s4 =0.00370318061155 
 
t0 =0.00008702013171 
t1 =-0.000212884928836 
t2 =0.000173599648858 
t3 =-0.0000471879937651 
 
The R, S and T polynomials of the pole placement regulator that was implemented are presented in 
the same way as the polynomials of the model. The coefficients are 
r0 =0.7957 
r1 =-0.6519 
 
s0 =0.0693 
s1 =-0.06834 
 
t0 =0.02314 
t1 =-0.02219 
 
 
The components of the LQG/LTR regulator Kalman filter gain are 
k0 =1595961.70903 
k1 =35973.9217414 
k2 =101.277680112 
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k3 =0.18396072437 
 
The components of the LQG/LTR regulator state feedback gain are 
l0 =4.11057563628 
l1 =0.564387692912 
l2 =7.11041651818 
l3 =0.999852967082 
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Appendix B - Computer programs 
 
Matlab file estmod.m 
 
clear all; 
clf; 
 
% Load data set to be used for estimation 
data1;                                   
 
% Do estimation and save the results 
s=100; 
[Sn,r]=dordpo(u,y,s); 
n=4; 
[A,B,C,D,K,ye,x0]=dmodpo(u,y,n,r,1); 
sparA=A; 
sparB=B; 
sparC=C; 
sparD=D; 
sys=ss(A,B,C,D,Ts); 
G=tf(sys); 
M=idss(sys); 
 
% Load data set to be used for validation 
data2; 
 
% Validation with some plots 
[ye,x0,B,D] = dac2bdx(sparA,sparC,u,y); 
 
e=zeros(size(u)); 
UE = [u e]; 
ye=idsim(UE,M,x0); 
 
Figure(1); 
plot([y,ye]); 
 
Figure(2); 
resid(M,z,1/Ts) 
 
Figure(3) 
bode(sys) 
 
Figure(4) 
d=y-ye; 
plot(d) 
 
 
 
Matlab file notchfilter.m 
 
s=tf('s'); 
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z=tf('z'); 
 
% New Sampling time 
Ts=0.0012;                    
 
% Give the model the new sampling time 
G=d2d(G,Ts); 
 
%specifications 
zi=1;        % desired relative damping in Ac 
wc=170;      % desired velocity in Ac 
zin=zi;      % in Ao 
wcn=wc;      % in Ao 
 
% transfer functions 
Gd=1/(s+wcn);          % poles in Ao 
sysm=ss(Gd);                            
Hd=tf(c2d(Gd,Ts));                      
Aohat=zpk([pole(Hd)'],[] ,1,Ts);  
                                             
Gm=1/(s^2+2*zi*wc*s+wc^2)^2;  % desired poles  
sysm=ss(Gm);                            
Hm=tf(c2d(Gm,Ts));                      
Ac=zpk([pole(Hm)'],[] ,1,Ts);           
       
AoAc=Ac*Aohat;  
 
% determine Aminus and Aplus 
p=pole(G); 
k=1; 
l=1; 
for i=1:length(p') 
    if imag(p(i))==0 
        pminus(k)=p(i); 
        k=k+1; 
    else 
        pplus(l)=p(i); 
         l=l+1; 
    end 
end 
Aminus=zpk([pminus], [], 1, Ts);    
Aplus=zpk([pplus], [], 1, Ts); 
        
% extract polynomial  
[pAminus d]=tfdata(Aminus,'v'); 
[pAo d]=tfdata(Aohat,'v'); 
[pAoAc d]=tfdata(AoAc,'v'); 
[pAc d]=tfdata(Ac,'v'); 
[pB pA]=tfdata(G,'v') ;           
R=0; 
S=0; 
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T=0; 
     
%R,S och T 
[pR,pShat] = dab(pAminus,pB,pAoAc); % solving the Diophantine equation 
S=tf(pShat,1,Ts)*Aplus; 
[pS d]=tfdata(S,'v') ;       
T=polyval(pAc,1)/polyval(pB,1)*Aohat*Aplus; 
[pT d]=tfdata(T,'v'); 
 
% polynomial for plots 
B=tf(pB,1,Ts); 
A=tf(pA,1,Ts); 
S=tf(pS,1,Ts); 
R=tf(pR,1,Ts); 
Hc=B*S/(R*A);       % loop transfer function 
karpol=AoAc*Aplus;      
Hv=A*R/karpol;        % sensitivity function 
 
% integral action 
x0=0; 
y0=(1+x0)*polyval(pR,1)/polyval(pB,1) 
R=(z+x0)*R-y0*B; 
[pR,d]=tfdata(R,'v'); 
S=(z+x0)*S+y0*A; 
[pS,d]=tfdata(S,'v'); 
zero(R) 
 
% Plotting the sensitivity function 
Figure(5); 
bode(Hv); 
title('sensitivity function for notchfilter') 
xlabel('frequency (rAohat/sec)') 
grid on 
 
Matlab file activedamping.m 
 
s=tf('s'); 
z=tf('z',Ts); 
 
Ts=0.0012;                   % New sampling time 
 
% Give the model the new sampling time 
G=d2d(G,Ts); 
 
%specifications 
zi=1;        % desired relative damping in Ac 
wc=170;      % desired velocity in Ac 
zin=zi;      % in Ao 
wcn=wc;      % in Ao 
 
% transfer functions 
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Gd=1/(s^2+2*zin*wcn*s+wcn^2)/(s+wcn);  % poles in Ao 
sysm=ss(Gd);                           % 
Hd=tf(c2d(Gd,Ts));                     % 
Ao=zpk([pole(Hd)'],[] ,1,Ts);          % Ao 
                                              
Gm=1/(s^2+2*zi*wc*s+wc^2)^2;           % desired poles  
sysm=ss(Gm);                           % 
Hm=tf(c2d(Gm,Ts));                     % 
Ac=zpk([pole(Hm)'],[] ,1,Ts);          % Ac 
     
AoAc=Ac*Ao;                             
        
% extract polynomial  
[pAo d]=tfdata(Ao,'v'); 
[pAoAc d]=tfdata(AoAc,'v'); 
[pAc d]=tfdata(Ac,'v'); 
[pB pA]=tfdata(G,'v') ;           
R=0; 
S=0; 
T=0; 
     
%R,S och T 
[pR,pS] = dab(pA,pB,pAoAc);           % solving the Diophantine equation 
    
T=polyval(pAc,1)/polyval(pB,1)*Ao; 
[pT d]=tfdata(T,'v'); 
 
% polynomial for plots 
B=tf(pB,1,Ts); 
A=tf(pA,1,Ts); 
S=tf(pS,1,Ts); 
R=tf(pR,1,Ts); 
 
% Integral action 
x0=0; 
y0=(1+x0)*polyval(pR,1)/polyval(pB,1) 
R=(z+x0)*R-y0*B; 
[pR,d]=tfdata(R,'v'); 
S=(z+x0)*S+y0*A; 
[pS,d]=tfdata(S,'v'); 
 
Hc=B*S/(R*A);       % loop transfer function 
karpol=AoAc*z;      
Hv=A*R/karpol;        % sensitivity function 
 
% plotting the sensitivity function 
Figure(5); 
bode(Hv); 
title('sensitivity function for active damping') 
grid on 
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Matlab file LQGLTR 
 
% New sampling time 
Ts=0.0012; 
 
% Making the model continuos and giving it the new sampling time 
sys=d2c(G); 
G=d2d(G,Ts); 
 
% Modifying the model a bit 
syssim=ss(sys); 
syssim.d=0; 
syssim=tf(syssim); 
syssim=syssim*0.001; 
syssim=ss(syssim); 
 
% Choosing R1 and R2 for LTR 
alpha=10000000000; 
R2=1; 
R1=alpha*R2; 
H=1; 
 
% Determine estimator and regulator 
[KEST,K,P]= kalman(syssim,R1,R2,0); 
EST=ss(syssim.a-K*syssim.c,[syssim.b K],eye(4),zeros(4,2)); 
[L,S,E] = lqr(syssim.a,syssim.b,1*eye(4),1,0*ones(4,1)); 
contr = reg(syssim,L,K); 
 
% Ploting some plots 
Figure(1) 
help=ss(syssim.a-syssim.b*L-K*syssim.c,K,L,0); 
ols=tf(help)*tf(syssim); 
margin(ols) 
 
sens2=1/(1+ols) 
Figure(3) 
bode(sens2) 
grid on; 
title('sensitivity function') 
xlabel('frequency (rad/sec)') 
 
x0=[0,0,0,0]; 
s=tf('s'); 
lqsys=ss(syssim.a,syssim.b,L,0); 
sens1=1/(1+lqsys); 
Figure(2) 
margin(lqsys) 
 
Figure(4) 
bode(sens1) 
grid on; 
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title('sensitivity function') 
xlabel('frequency (rad/sec)') 
 
process=ss(G); 
 
% Making the regulator and estimator discrete 
contr=c2d(contr,Ts); 
kest=c2d(EST,Ts); 
 
Implementation in C 
 
#include <bur/plctypes.h>               /* IEC data types */ 
 
 
typedef struct ncCYCUSDAT_typ { 
    USINT cnt; 
    USINT reserve; 
    USINT data[16]; 
} ncCYCUSDAT_typ; 
 
 
_LOCAL BOOL   init_da,steg,stepsequense; 
_LOCAL BOOL   ctrlon; 
_GLOBAL BOOL   nw_ok; 
_GLOBAL BOOL   alloc_ok; 
_GLOBAL UDINT   todrv1_obj; 
_GLOBAL UDINT   frdrv1_obj; 
_LOCAL ncCYCUSDAT_typ* p_todrv1da; 
_LOCAL ncCYCUSDAT_typ* p_frdrv1da; 
_LOCAL REAL   current; 
_LOCAL DINT   s_act1; 
_GLOBAL BOOL   access_da; 
_LOCAL REAL    r0,r1,s0,s1,t0,t1; 
_LOCAL REAL    sr0,sr1,ss0,ss1,ss2,st0,st1; 
_LOCAL REAL    position; 
_LOCAL REAL    ref,safelimit,stepl,kvot; 
_LOCAL INT     counter; 
 
/********************************init************************************
**/ 
void _INIT cyc_mon_init(void) 
{ 
   
 r0 =0.7957; 
 r1 =-0.6519; 
 
 s0 =0.0693; 
 s1 =-0.06834; 
 
 t0 =0.02314; 
 t1 =-0.02219; 
 
 sr0=0; 
 sr1=0; 
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 ss0=0; 
 ss1=0; 
   
 st0=0; 
 st1=0; 
  
 kvot=1.0105; 
 position=0; 
 init_da = 0; 
 ctrlon=0; 
 safelimit=5; 
 steg=0; 
 stepl=1000; 
 
} 
 
void _CYCLIC cyc_mon_cyclic(void) 
{ 
 /*Cyclic User Data*/ 
 if ( init_da == 0 && access_da == 1 ) 
 { 
  p_todrv1da = (ncCYCUSDAT_typ*)todrv1_obj; 
  p_frdrv1da = (ncCYCUSDAT_typ*)frdrv1_obj; 
  init_da = 1; 
 } 
 
 
 if ( (nw_ok == 1) && (alloc_ok == 1)) 
 { 
  /***********reading 
position************************************************/ 
  s_act1 = *(DINT *) &p_frdrv1da->data[0]; 
  position=s_act1; 
   
  /***********taking a 
step***************************************************/ 
  if (steg==1) 
  { 
   ref=ref+stepl; 
   steg=0; 
  } 
    
 
 /******************************regulator*****************************
********/ 
  st0=ref*kvot; 
  ss0=position; 
    
  if(ctrlon==1) 
  { 
   current=(t0*st0+t1*st1-(s0*ss0+s1*ss1)-(r1*sr1))/r0; 
  } 
   
  else 
  { 
   current=0; 
  } 
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  /****************************saturate and send the 
current***************/ 
  p_todrv1da->cnt++;  
  if (current >= safelimit) 
   current=safelimit; 
  if (current <= -safelimit) 
   current=-safelimit;  
  memcpy(&p_todrv1da->data[0],&current,4);     
 } 
    
 /*******************************update regulator 
state*********************************/  
 sr1=current; 
 
 ss1=ss0; 
  
 st1=st0; 
  
 /******************************step 
sequense**********************************/ 
 if(stepsequense==1) 
 { 
  counter=counter+1; 
  if(counter==600) 
  { 
   counter=0; 
  steg=1; 
  } 
 } 
 /********************************************************************
********/ 
   
  
 /* End of Cyclic User Data*/ 
 
} 
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Appendix C - Data sets 
 
Figure 49 to Figure 58 shows all data sets used in this thesis. 
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 Figure 50 input signal of data1 
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 Figure 51 output signal of data1 
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Figure 52 input signal of data2 
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 Figure 53 output signal of data2 
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 Figure 54 input signal of data3 
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 Figure 55 output signal of data3 
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Figure 56 input signal of data4 
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 Figure 57 output signal of data4 
 
 
 
 
 
 



 




