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1 Introduction

The goal of the work is to find accurate and explicit formulas for the motion of
water waves. The systems under consideration have important boundary con-
ditions, these boundary conditions interact with the water and generate waves
trough the Saint-Venant shallow water equations (for background information
one may refer to [12]). A prime example of such a system is the water tank as
studied by Grundelius [8], Petit and Rouchon [9]. Other example include water
channels as studied by Coron, d’Andréa Novel and Bastin [2].

The formulas we derive can be used either for feed-forward control for stabi-
lization purposes (one may use the Prieur and de Halleux approach [10]) or as
straight forward simulation techniques. Both benefit from real-time capability.
For control applications open-loop trajectories are to be recomputed every time
the user updates the desired operating point (tank position). In that context
computational speed reduces waiting time for the user. On the other hand fast
simulation techniques, as the formulas given in this report, can also be used for
interactive realtime computer graphics.

Starting from the first order approximation formulas given in Dubois, Petit
and Rouchon [5] we develop a perturbation method that allows us to derive
second and third order approximation. A sketch for the method at a general
nth-order is also given. Following the classical ideas (see for instance Debnath
[3], [4]) we use already computed approximations to derive a new higher order
approximation of the partial differential equation, that we show how to solve in
a sequence.

Next, properties of these second and third order approximation are studied.
We prove that steady-state controllability can not be achieved for second order
for a short time. In addition we prove that a set of first order approximated wa-
ter tanks can be controlled all together provided that their dimensions satisfies
rational equations.

For steady-state to steady-state transient we derive bounds for first, second
and third order solutions, these serve as sanity checks for numerical simulations.

We compare the different approximations to a Godunov scheme resolution
of the non-linear partial differential equation as given in Dubois [5]. We investi-
gate the volume preservation and the shape of evolving wavefronts. A numerical
conclusion is that second and third approximation order are more like the so-
lution of the Godunov scheme based numerical method than first order. Also
they compare favorably with the Godunov scheme in terms of CPU-time.

The methodology that we develop is extended to the wave-maker problem.
We end up with similar formulas that can also be exploited in computer graphics
problems. We propose a one-dimensional tank, a two-dimensional tank and a
boat on the open sea to illustrate our approach.

1.1 Physics of the water-tank system

We consider a tank of length l, containing a perfect fluid under gravity g, which
is submitted to a one-dimensional horizontal motion D(t), as depicted in figure
1. The vertical component of the fluid velocity is considered to be the negligibly
small, thus the water velocity is horizontal and only depends on the x-coordinate.
The Saint-Venant equations is a suitable model for these shallow water flows.
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Figure 1: Tank of length l, its midpoint has the x-coordinate D(t)

The partial differential equation (PDE) consist of the continuity and momentum
equation.

PDE





∂h

∂t
+

∂

∂x
(hv) = 0

∂

∂t
(hv) +

∂

∂x
(hv2 +

g

2
h2) = 0

The water velocity is zero at the boundaries of the tank and at time zero the
water is at steady state. This implies the following initial and boundary condi-
tions

BC





v(t,D(t)− l

2
) = Ḋ(t)

v(t,D(t) +
l

2
) = Ḋ(t)

∣∣∣∣∣∣∣
∀t ≥ 0

IC

{
h(0, x) = h0

v(0, x) = 0

∣∣∣∣∣ ∀x ∈
[
D(t)− l

2
, D(t) +

l

2

]

where h0 is the constant water height of steady state.

Notation From now on we denote the partial differential equation as PDE,
the boundary condition as BC and initial condition as IC.

1.2 Alternative set of equations

With help of the Riemann invariants (for more details see [9]) the set of equations
(PDE, BC, IC) can be rewritten to a more handleable form. Let





z = x−D(t)

J+(t, z) = v(t, z+D(t))− 2
√
g ·h(t, z+D(t))

J−(t, z) = v(t, z+D(t)) + 2
√
g ·h(t, z+D(t))

α+(t, z) = v(t, z+D(t))−
√
g ·h(t, z+D(t))− Ḋ(t)

α−(t, z) = v(t, z+D(t)) +
√
g ·h(t, z+D(t))− Ḋ(t)
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Where (t,z) is the tank local coordinate system. To get back to the original
functions these transformations may be used





x = z +D(t)

h(t, z) =
1

16g
(J−(t, z)− J+(t, z))

2

v(t, z) =
1

2
(J+(t, z) + J−(t, z))

The new set of equations writes

PDE





∂J+
∂t

+ α+
∂J+
∂z

= 0

∂J−
∂t

+ α−
∂J−
∂z

= 0

(1)

BC





J+ + J−
2

(t,− l
2
) = Ḋ(t)

J+ + J−
2

(t,
l

2
) = Ḋ(t)

IC





1

16g
(J−(0, z)− J+(0, z))

2 = h0

J+(0, z) + J−(0, z)

2
= 0

∣∣∣∣∣∣∣∣
z ∈ [− l

2
,
l

2
]

(2)

From now on the system is represented by (1) and (2) where





α+ =
1

2
(J+ + J−)−

1

4
(J− − J+)− Ḋ

α− =
1

2
(J+ + J−) +

1

4
(J− − J+)− Ḋ

which equals 



α+ =
3

4
J+ +

1

4
J− − Ḋ

α− =
1

4
J+ +

3

4
J− − Ḋ

(3)
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2 Perturbation Method for the water tank

In [5] a linear approximation to the equations was performed. To obtain higher
order approximation with non-linearity we use a series expansion. Let J+, J−,
α+ and α− be expressed by the expansion series

J+ = J0+ + J1+ + J2+ + · · ·
J− = J0− + J1− + J2− + · · ·
α+ = α0+ + α1+ + α2+ + · · ·
α− = α0− + α1− + α2− + · · ·

In the following we define the kth order approximation as the sum of the first
k+ 1 terms in the preceding expansions. Additionally a term with upper index
i will be referred to as a ith order term. It should be kept in mind that in this
method higher order not necessarily mean smaller magnitude. The PDE (1)
writes

n∑

k=0

∂Jk
+

∂t
+

n∑

i=0

αi
+ ·

n∑

k=0

∂Jk
+

∂z
= 0

n∑

k=0

∂Jk
−

∂t
+

n∑

i=0

αi
− ·

n∑

k=0

∂Jk
−

∂z
= 0

where n→∞. From now on a more compact notation will be used.

PDE





n∑

k=0

J̇k
+ +

n∑

i=0

αi
+ ·

n∑

k=0

Jk
+z = 0

n∑

k=0

J̇k
− +

n∑

i=0

αi
− ·

n∑

k=0

Jk
−z = 0

(4)

the boundary and initial conditions are

BC





1

2

n∑

k=0

(
Jk
+(t,−

l

2
) + Jk

−(t,−
l

2
)

)
= Ḋ(t)

1

2

n∑

k=0

(
Jk
+(t,

l

2
) + Jk

−(t,
l

2
)

)
= Ḋ(t)

IC





1

16g

(
n∑

k=0

(
Jk
−(0, z)− Jk

+(0, z)
)
)2

= h0

1

2

n∑

k=0

(
Jk
+(0, z) + Jk

−(0, z)
)
= 0

∣∣∣∣∣∣∣∣∣∣∣

z ∈ [− l
2
,
l

2
]

(5)

The kth-order representation of these equations is obtained by only including
terms with total order less or equal to k. In a product the total order is obtained
by adding the orders, eg. J1+α

2
+ is a third order term. To explain how the method

work the solution for zero, first, second and third order are now given.
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2.1 Zero order

Let the zero order terms be defined as constants, hence the boundary conditions
can not be fulfilled at this order but the PDE and the initial conditions can.
One of two solutions is

{
J0+ = −2c
J0− = 2c

(6)

where c =
√
g · h0 is the wave propagation speed. Choosing the other solution

would be the same as switching J+ and J−, hence giving rise to the same height
(h) and velocity (v). The corresponding α-terms can be obtained from Eq. (3)
discarding Ḋ (zero order terms are defined to be constant).

{
α0+ = −c
α0− = c

The zero order solution corresponds to the steady state, which is also the initial
condition.

2.2 First order

2.2.1 Solving the PDE

The first order representation of the PDE, (4), is obtained by taking into ac-
count terms with a total order not greater than one. The zero order terms are
constants, their derivatives are zero, and can therefore from now on be excluded
from the PDE approximations. The first order representation writes

{
J̇1+ + α0+J

1
+z = 0

J̇1− + α0−J
1
−z = 0

which equals {
J̇1+ − c · J1+z = 0

J̇1− + c · J1−z = 0
(7)

This is a set of two linear Burgers equations with the wave propagation speed
c. The characteristics method (see Marsden [1]) gives the general solution




J1+(t, z) = ϕ+(t+

z

c
)

J1−(t, z) = ϕ−(t−
z

c
)

2.2.2 Matching the boundary conditions

Matching the general solution to the boundary conditions according to (5) gives
rise to the equations





J0+ + J1+ + J0− + J1−
2

(t,− l
2
) = Ḋ(t)

J0+ + J1+ + J0− + J1−
2

(t,
l

2
) = Ḋ(t)

(8)
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so





ϕ+(t−
∆

2
) + ϕ−(t+

∆

2
) = 2Ḋ(t)

ϕ+(t+
∆

2
) + ϕ−(t−

∆

2
) = 2Ḋ(t)

where ∆ is the time required for a wave to travel from one end of the tank to
the other, ∆ = l

c
. The same equations in matrix form writes

(
e−s∆2 es

∆
2

es
∆
2 e−s∆2

)(
ϕ+

ϕ−

)
=

(
1

1

)
· 2Ḋ (9)

Let

M =

(
e−s∆2 es

∆
2

es
∆
2 e−s∆2

)

Denote the null space of M as

N (M) = {π |M · π = 0}
Its elements are solution to

(
e−s∆2 es

∆
2

es
∆
2 e−s∆2

)
·
(
π1

π2

)
=

(
0

0

)

which implies





π1(t) = −π2(t+∆)

π1(t+∆)− π1(t−∆) = 0

π2(t+∆)− π2(t−∆) = 0

Hence, the null space elements to M can be written as
(
−π(t+∆)

π(t)

)
(10)

where π(t) is a 2∆-periodic function. The general solution to (9) is
(
ϕ+

ϕ−

)
=

(
−e∆s

1

)
π + ”M−1”

(
1

1

)
· 2Ḋ

which implies

(
ϕ+

ϕ−

)
=

(
−e∆s

1

)
π +

1

e−s∆ − es∆

(
e−s∆2 −es∆2

− es
∆
2 e−s∆2

)(
1

1

)
· 2Ḋ





ϕ+ = −e∆sπ +
e−s∆2 − es

∆
2

e−s∆ − es∆
· 2Ḋ

ϕ− = π +
e−s∆2 − es

∆
2

e−s∆ − es∆
· 2Ḋ

⇒





ϕ+ = −e∆sπ +
1

e−s∆2 + es
∆
2

· 2Ḋ

ϕ− = π +
1

e−s∆2 + es
∆
2

· 2Ḋ
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To make the solution more handleable an extra variable ν̃ is introduced. Set

2Ḋ(t) = ˙̃ν(t+
∆

2
) + ˙̃ν(t− ∆

2
)

With this definition the general solution to the PDE is
{
ϕ+(t) = −π(t+∆) + ˙̃ν(t)

ϕ−(t) = π(t) + ˙̃ν(t)

2.2.3 Fitting the initial conditions

According to (5) the initial conditions with z ∈ [− l
2 ,

l
2 ] lead to

{
J0−(0, z) + J1−(0, z)− (J0+(0, z) + J1+(0, z)) = 4 ·

√
g · h0

J0−(0, z) + J1−(0, z) + J0+(0, z) + J1+(0, z) = 0
{
J1−(0, z)− J1+(0, z) = 0

J1−(0, z) + J1+(0, z) = 0
⇒
{
J1+(0, z) = 0

J1−(0, z) = 0

The initial conditions will be the same for higher orders.

{
Jn
+(0, z) = 0

Jn
−(0, z) = 0

, z ∈
[
− l
2
,
l

2

]
, n = 1, 2, 3, ... (11)

The initial condition rewrite in terms of ϕ+ and ϕ− as

{
ϕ+(s) = −π(s+∆) + ˙̃ν(s) = 0

ϕ−(s) = π(s) + ˙̃ν(s) = 0
, s ∈

[
−∆

2
,
∆

2

]

Thus, π is not only 2∆-periodic but ∆-antiperiodic. Set

ν̇(s) = π(s) + ˙̃ν(s)

one easily get

ν̇(s) = 0 , s ∈
[
−∆

2
,
∆

2

]
(12)

and

2Ḋ(t) = ν̇(t+
∆

2
)− π(t+

∆

2
) + ν̇(t− ∆

2
)− π(t− ∆

2
)

Yet π is ∆-antiperiodic so

2Ḋ(t) = ν̇(t+
∆

2
) + ν̇(t− ∆

2
)

In conclusion the unique solution is




J1+(t, z) = ν̇(t+

z

c
)

J1−(t, z) = ν̇(t− z

c
)

(13)

The corresponding α-terms are determined from equation (3), including Ḋ this
time.
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α0+ + α1+ =
3

4
(J0+ + J1+) +

1

4
(J0− + J1−)− Ḋ

α0− + α1− =
1

4
(J0+ + J1+) +

3

4
(J0− + J1−)− Ḋ

Using equations (6,13) and the fact that 2Ḋ(t) = ν̇(t + ∆
2 ) + ν̇(t − ∆

2 ), the
expression can be rewritten to





α1+ =
3

4
ν̇(t+

z

c
) +

1

4
ν̇(t− z

c
)− 1

2

(
ν̇(t+

∆

2
) + ν̇(t− ∆

2
)
)

α1− =
1

4
ν̇(t+

z

c
) +

3

4
ν̇(t− z

c
)− 1

2

(
ν̇(t+

∆

2
) + ν̇(t− ∆

2
)
) (14)

The first order solution corresponds to the solution to the linearized model used
in [5].

2.2.4 Summary first order

Set of equations:

PDE

{
J̇1+ − c · J1+z = 0

J̇1− + c · J1−z = 0

BC





(J1+ + J1−)(t,−
l

2
) = 2Ḋ(t)

(J1+ + J1−)(t,
l

2
) = 2Ḋ(t)

IC

{
J1+(0, z) = 0

J1−(0, z) = 0
, z ∈

[
− l
2
,
l

2

]

Solution: 


J1+(t, z) = ν̇(t+

z

c
)

J1−(t, z) = ν̇(t− z

c
)

where

2Ḋ(t) = ν̇(t+
∆

2
) + ν̇(t− ∆

2
)

and

ν̇(s) = 0 , s ∈
[
−∆

2
,
∆

2

]

2.3 Second order

2.3.1 Solving the PDE

The second order representation of (4) is
{
J̇1+ + J̇2+ + α0+J

1
+z + α0+J

2
+z + α1+J

1
+z = 0

J̇1− + J̇2− + α0−J
1
−z + α0−J

2
−z + α1−J

1
−z = 0

Subtracting first order (7) the equations can be written in the same form as (7)
but with two forcing terms f+ and f−.

11



{
J̇2+ − c · J2+z = −α1+J1+z = f+

J̇2− + c · J2−z = −α1−J1−z = f−

According to (14) the forcing terms are

f+(t, z) = −
(
3

4
ν̇(t+

z

c
) +

1

4
ν̇(t− z

c
)− 1

2

(
ν̇(t+

∆

2
) + ν̇(t− ∆

2
)

))
·

ν̈(t+
z

c
) · 1

c

f−(t, z) =

(
1

4
ν̇(t+

z

c
) +

3

4
ν̇(t− z

c
)− 1

2

(
ν̇(t+

∆

2
) + ν̇(t− ∆

2
)

))
·

ν̈(t− z

c
) · 1

c

(15)

To handle this problem another change of coordinates (t, z) 7→ (ξ+, ξ−) is ap-
plied. Let 




ξ+ = t− z

c

ξ− = t+
z

c

and inversely





t =
ξ+ + ξ−

2

z = (ξ− − ξ+) ·
c

2

(16)

In the following a function defined in the coordinate system (t, z) is noted with
a hat in the coordinate system (ξ+, ξ−). Eg.

J+ ←→ J+(t, z)

Ĵ+ ←→ Ĵ+(ξ+, ξ−)

with





Ĵ+(ξ+, ξ−) = J+(
ξ+ + ξ−

2
, (ξ− − ξ+) ·

c

2
)

J+(t, z) = Ĵ+(t−
z

c
, t+

z

c
)

Classically





(
∂Ĵ2+
∂ξ+

)

ξ−

=

(
∂J2+
∂t

)

z

·
(

∂t

∂ξ+

)

ξ−

+

(
∂J2+
∂z

)

t

·
(
∂z

∂ξ+

)

ξ−

(
∂Ĵ2−
∂ξ−

)

ξ+

=

(
∂J2−
∂t

)

z

·
(

∂t

∂ξ−

)

ξ+

+

(
∂J2−
∂z

)

t

·
(
∂z

∂ξ−

)

ξ+

(17)

Further (16) implies

12







(
∂t

∂ξ+

)

ξ−

=
1

2
(

∂t

∂ξ−

)

ξ+

=
1

2





(
∂z

∂ξ+

)

ξ−

= − c
2

(
∂z

∂ξ−

)

ξ+

=
c

2

Hence (17) can be rewritten as





(
∂Ĵ2+
∂ξ+

)

ξ−

=
1

2

((
∂J2+
∂t

)

z

− c

(
∂J2+
∂z

)

t

)

(
∂Ĵ2−
∂ξ−

)

ξ+

=
1

2

((
∂J2−
∂t

)

z

+ c

(
∂J2−
∂z

)

t

)

In coordinate system (t, z) the problem to solve is





∂J2+
∂t
− c

∂J2+
∂z

= f2+

∂J2−
∂t

+ c
∂J2−
∂z

= f2−

In coordinate system (ξ+, ξ−) it becomes





2 ·
(
∂Ĵ2+
∂ξ+

)

ξ−

= f̂2+

2 ·
(
∂Ĵ2−
∂ξ−

)

ξ+

= f̂2−

Its general solution is given by:





Ĵ2+(ξ+, ξ−) =
1

2

∫ ξ+

ξ−

f̂2+(s, ξ−) ds+ ϕ̂2+(ξ−)

Ĵ2−(ξ+, ξ−) =
1

2

∫ ξ−

ξ+

f̂2−(ξ+, s) ds+ ϕ̂2−(ξ+)

Where the starting points of the integration may be arbitrary chosen, as long
as they are not dependant on the integration variable. For practical reasons the
starting points have been chosen to ξ− and ξ+.

The solution can be separated in two parts, the homogenous and the partic-
ular. The particular parts are the integrals which when differentiated according
to the PDE gives rise to the forcing terms. The homogenous parts are the gen-
eral solutions to the homogenous equation known from first order. The forcing
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terms (15) gives rise to the following solutions.

J2+(t, z) =−
ν̈(t+ z

c
)

8 · c

[
ν(t− z

c
)− ν(t+

z

c
)− 3ν̇(t+

z

c
) · 2z

c

− 4

(
ν(t+

∆

2
) + ν(t− ∆

2
)− ν(t+

z

c
+

∆

2
)− ν(t+

z

c
− ∆

2
)

)]

+ ϕ2+(t+
z

c
)

(18)

J2−(t, z) =
ν̈(t− z

c
)

8 · c

[
ν(t+

z

c
)− ν(t− z

c
) + 3ν̇(t− z

c
) · 2z

c

− 4

(
ν(t+

∆

2
) + ν(t− ∆

2
)− ν(t− z

c
+

∆

2
)− ν(t− z

c
− ∆

2
)

)]

+ ϕ2−(t−
z

c
)

(19)
To simplify the expression without loss of generality, and thus making it more
practical for computations, the general homogenous parts can be redefined as
follows.

Φ2+(t+
z

c
) = − ν̈(t+

z
c
)

8 · c

[
−ν(t+ z

c
) + 4 · ν(t+ z

c
+

∆

2
) + 4 · ν(t+ z

c
− ∆

2
)

]

+ ϕ2+(t+
z

c
)

Φ2−(t−
z

c
) =

ν̈(t− z
c
)

8 · c

[
−ν(t− z

c
) + 4 · ν(t− z

c
+

∆

2
) + 4 · ν(t− z

c
− ∆

2
)

]

+ ϕ2−(t−
z

c
)

Hence a more compact expression for the solution is obtained

J2+(t, z) = −
ν̈(t+ z

c
)

8 · c

[
ν(t− z

c
)− 6ν̇(t+

z

c
) · z

c
− 4

(
ν(t+

∆

2
) + ν(t− ∆

2
)

)]

︸ ︷︷ ︸
J2
p+
(t,z)

+Φ2+(t+
z

c
)

︸ ︷︷ ︸
J2
h
+(t,z)

J2−(t, z) =
ν̈(t− z

c
)

8 · c

[
ν(t+

z

c
) + 6ν̇(t− z

c
) · z

c
− 4

(
ν(t+

∆

2
) + ν(t− ∆

2
)

)]

︸ ︷︷ ︸
J2
p−
(t,z)

+Φ2−(t−
z

c
)

︸ ︷︷ ︸
J2
h
−(t,z)
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2.3.2 Matching the boundary conditions

The boundary conditions for second order, subtracting the terms of zero and
first order (8), yield

(
J2
h
+ + J2

p+
+ J2

h
− + J2

p−

)
(t,− l

2
) = 0

(
J2
h
+ + J2

p+
+ J2

h
− + J2

p−

)
(t,

l

2
) = 0





(20)

The particular solutions have the following symmetry properties




J2
p+

(t,− l
2
) = −J2

p−
(t,

l

2
)

J2
p+

(t,
l

2
) = −J2

p−
(t,− l

2
)

Set A(t) = J2
p+

(t, l
2 )− J2

p+
(t,− l

2 ). Now (20) can be written as





Φ2+(t−
∆

2
) + Φ2−(t+

∆

2
) = A(t)

Φ2+(t+
∆

2
) + Φ2−(t−

∆

2
) = −A(t)

with

A(t) =
ν̈(t+ ∆

2 )

8 · c

[
3ν̇(t+

∆

2
) ·∆+ 3ν(t− ∆

2
) + 4ν(t+

∆

2
)

]

+
ν̈(t− ∆

2 )

8 · c

[
3ν̇(t− ∆

2
) ·∆− 3ν(t+

∆

2
)− 4ν(t− ∆

2
)

]

The general solution to this system can be obtained in the same manner as for
first order.

(
Φ2+

Φ2−

)
=

(
−e∆s

1

)
π +

1

e−s∆ − es∆

(
e−s∆2 −es∆2

− es
∆
2 e−s∆2

)(
1

−1

)
·A

which implies




Φ2+ = −e∆sπ +
e−s∆2 + es

∆
2

e−s∆ − es∆
·A

Φ2− = π − e−s∆2 + es
∆
2

e−s∆ − es∆
·A

⇒





Φ2+ = −e∆sπ +
1

e−s∆2 − es
∆
2

·A

Φ2− = π − 1

e−s∆2 − es
∆
2

·A

Set

A(t) = η̃(t− ∆

2
)− η̃(t+

∆

2
) (21)

This yields the homogenous solution where π(t) is a 2∆-periodic function (see
(10)).





Φ2+(t) = −π(t+∆) + η̃(t)

Φ2−(t) = π(t)− η̃(t)
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2.3.3 Fitting the initial conditions

Initial conditions are (see (11))

{
J2+(0, z) = J2

p+
(0, z) + J2

h
+(0, z) = 0

J2−(0, z) = J2
p−

(0, z) + J2
h
−(0, z) = 0

,∀z ∈ [− l
2
,
l

2
]

and it is known from first order (12) that

ν̇(s) = 0, ∀s ∈ [−∆

2
,
∆

2
]

which implies {
J2
p+

(0, z) = 0

J2
p−

(0, z) = 0
,∀z ∈ [− l

2
,
l

2
]

hence





− π(s+∆) + η̃(s) = 0

π(s)− η̃(s) = 0

,∀s ∈
[
−∆

2
,
∆

2

]

This implies that π(s) is not only 2∆-periodic but also ∆-periodic and that

π(s) = η̃(s), s ∈
[
−∆

2
,
∆

2

]

Set η(s) = η̃(s)− π(s), then

η(s) = 0 , s ∈
[
−∆

2
,
∆

2

]

and (21) writes

A(t) = η(t− ∆

2
) + π(t− ∆

2
)− η(t+

∆

2
)− π(t+

∆

2
)

In addition π(s) is ∆-periodic so

A(t) = η(t− ∆

2
)− η(t+

∆

2
)

The unique homogenous solution is




J2
h
+(t, z) = η(t+

z

c
)

J2
h
−(t, z) = −η(t−

z

c
)

and the total solution for second order (sum of homogenous and particular
solution) is

{
J2+ = J2

p+
+ J2

h
+

J2− = J2
p−

+ J2
h
−

16



It can be noted that1





J2
p+

(t, z) = −J2
p−

(t,−z)
J2
h
+(t, z) = −J2

h
−(t,−z)

J2+(t, z) = −J2−(t,−z)
(22)

The second order α-terms can be derived from equation (3) but are not written
here because of their high number of terms. Ḋ have already been taken care of
in first order (see (14)) so for this and higher orders the α-definition writes





αi
+ =

3

4
J i
+ +

1

4
J i
−

αi
− =

1

4
J i
+ +

3

4
J i
−

, i ≥ 2

2.3.4 Summary second order

PDE:





J̇2+ − c · J2+z = −
(
3

4
ν̇(t+

z

c
) +

1

4
ν̇(t− z

c
)− 1

2

(
ν̇(t+

∆

2
) + ν̇(t− ∆

2
)

))
·

ν̈(t+
z

c
) · 1

c

J̇2− + c · J2−z =

(
1

4
ν̇(t+

z

c
) +

3

4
ν̇(t− z

c
)− 1

2

(
ν̇(t+

∆

2
) + ν̇(t− ∆

2
)

))
·

ν̈(t− z

c
) · 1

c

BC: 



(J2+ + J2−)(t,−
l

2
) = 0

(J2+ + J2−)(t,
l

2
) = 0

IC: {
J2+(0, z) = 0

J2−(0, z) = 0
,∀z ∈

[
− l
2
,
l

2

]

Solution: 


J2+(t, z) = η(t+

z

c
) + J2

p+
(t, z)

J2−(t, z) = −η(t−
z

c
) + J2

p−
(t, z)

where

A(t) = η(t− ∆

2
)− η(t+

∆

2
)

η(s) = 0 , s ∈
[
−∆

2
,
∆

2

]

1Hence to save computational effort, J2
− could be computed from J2

+.
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with

A(t) =
ν̈(t+ ∆

2 )

8 · c

[
3ν̇(t+

∆

2
) ·∆+ 3ν(t− ∆

2
) + 4ν(t+

∆

2
)

]

+
ν̈(t− ∆

2 )

8 · c

[
3ν̇(t− ∆

2
) ·∆− 3ν(t+

∆

2
)− 4ν(t− ∆

2
)

]

and

J2
p+

(t, z) = − ν̈(t+
z
c
)

8 · c

[
ν(t− z

c
)−6ν̇(t+

z

c
) · z
c
−4

(
ν(t+

∆

2
) + ν(t− ∆

2
)

)]

J2
p−

(t, z) =
ν̈(t− z

c
)

8 · c

[
ν(t+

z

c
) + 6ν̇(t− z

c
) · z

c
− 4

(
ν(t+

∆

2
) + ν(t− ∆

2
)

)]

2.4 Third order

The expressions are getting bigger and of practical reasons some are not shown
explicitly for third order.

2.4.1 Solving the PDE

The third order representation of (4), including terms with total order less or
equal to three with equalities from known lower orders subtracted, writes

{
J̇3+ − c · J3+z = −α1+J2+z − α2+J

1
+z = f3+

J̇3− + c · J3−z = −α1−J2−z − α2−J
1
−z = f3−

Where the righthand sides are known functions (they can be found in appendix
A.1). Actually, as the fourth order terms −α2+J2+z and −α2+J2+z are known they
could be included, but they are not due to the high number of terms they give
rise to. These equations have the same form as for second order and can be
solved the same way.





Ĵ3+(ξ+, ξ−) =
1

2

∫ ξ+

ξ−

f̂3+(s, ξ−) ds+ ϕ̂3+(ξ−)

Ĵ3−(ξ+, ξ−) =
1

2

∫ ξ−

ξ+

f̂3−(ξ+, s) ds+ ϕ̂3−(ξ+)

As in second order the solution can be expressed as

{
J3+ = J3

p+
+ J3

h
+

J3− = J3
p−

+ J3
h
−

⇔




J3+(t, z) = J3

p+
(t, z) + ϕ3+(t+

z

c
)

J3−(t, z) = J3
p−

(t, z) + ϕ3−(t−
z

c
)

The particular solutions have a high number of terms and are presented in
appendix A.1. The solutions have the following symmetric properties

J3
p+

(t, z) = J3
p−

(t,−z) (23)
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2.4.2 Matching the boundary conditions

Similarly to second order the boundary condition equations for third order writes





(
J3
h
+ + J3

p+
+ J3

h
− + J3

p−

)
(t,− l

2
) = 0

(
J3
h
+ + J3

p+
+ J3

h
− + J3

p−

)
(t,

l

2
) = 0

Due to the symmetries in the particular solutions (23) the boundary condition
equations can be simplified as usual





J3
p+

(t,− l
2
) = J3

p−
(t,

l

2
)

J3
p+

(t,
l

2
) = J3

p−
(t,− l

2
)

Set

A3(t) = −J3
p+

(t,
l

2
)− J3

p+
(t,− l

2
)

and the equation can be written as





ϕ3+(t−
∆

2
) + ϕ3−(t+

∆

2
) = A3(t)

ϕ3+(t+
∆

2
) + ϕ3−(t−

∆

2
) = A3(t)

As for first order the general solution is

(
ϕ3+

ϕ3−

)
=

(
−e∆s

1

)
π +

1

e−s∆ − es∆

(
e−s∆2 −es∆2

− es
∆
2 e−s∆2

)(
1

1

)
·A3

where π(s) is 2∆-periodic function. The equations can be reduced to





ϕ3+ = −e∆π +
1

e−s∆2 + es
∆
2

·A3

ϕ3− = π +
1

e−s∆2 + es
∆
2

·A3

If A3 is set

A3(t) = η̃3(t+
∆

2
) + η̃3(t− ∆

2
)

the boundary fitted solution is





ϕ3+(t) = −π(t+∆) + η̃3(t)

ϕ3−(t) = π(t) + η̃3(t)
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2.4.3 Fitting the initial conditions

According to (11) the initial conditions for third order are

{
J3+(0, z) = 0

J3−(0, z) = 0
,∀z ∈ [− l

2
,
l

2
]

ν̇(s) = 0,∀s ∈ [−∆

2
,
∆

2
]⇒

{
J3
p+

(0, z) = 0

J3
p−

(0, z) = 0
,∀z ∈ [− l

2
,
l

2
]

hence





ϕ3+(s) = −π(s+∆) + η̃3(s) = 0

ϕ3−(s) = π(s) + η̃3(s) = 0

,∀s ∈ [−∆

2
,−∆

2
]

thus, π(s) is ∆-antiperiodic. Set

η3(s) = π(s) + η̃3(s)

hence

η3(s) = 0, s ∈ [−∆

2
,−∆

2
]

A3(t) = η3(t+
∆

2
)− π(t+

∆

2
) + η3(t− ∆

2
)− π(t− ∆

2
)

Yet π is ∆-antiperiodic, hence

A3(t) = η3(t+
∆

2
) + η3(t− ∆

2
)

So given the initial conditions the unique third order homogenous solution is




J3
h
+(t, z) = ϕ3+(t+

z

c
) = η3(t+

z

c
)

J3
h
−(t, z) = ϕ3−(t−

z

c
) = η3(t− z

c
)

Hence,
J3+(t, z) = J3−(t,−z)

and once again J3− can be computed from J3+ to save computational effort.

2.4.4 Summary third order

PDE: {
J̇3+ − c · J3+z = f3+

J̇3− + c · J3−z = f3−

BC: 



(J3+ + J3−)(t,−
l

2
) = 0

(J3+ + J3−)(t,
l

2
) = 0

20



IC: {
J3+(0, z) = 0

J3−(0, z) = 0
,∀z ∈

[
− l
2
,
l

2

]

Solution: 


J2+(t, z) = η3(t+

z

c
) + J3

p+
(t, z)

J2−(t, z) = η3(t− z

c
) + J3

p−
(t, z)

where

A3(t) = η3(t+
∆

2
) + η3(t− ∆

2
)

η3(s) = 0 , s ∈
[
−∆

2
,
∆

2

]

The explicit formulas for f3+, f
3
−, J

3
p+

, J3
p−

and A3 can be found in appendix A.1.

2.5 nth order

To solve for a higher arbitrary order the solving method follows from the one
exposed before for second or third order.

2.5.1 The set of equations

As the PDE (4) is the same for J+ and J− it is here represented by one equation
without subindex. The nth order approximation to the PDE is obtained by
including terms with total order less or equal to the approximation order. The
PDE for order m− 1 is

m−1∑

k=0

J̇k +
∑

k+i≤m−1

αi · Jk
z = 0

and for order m:
m∑

k=0

J̇k +
∑

k+i≤m

αi · Jk
z = 0

The expression for order m − 1 equals zero so we can subtract its terms from
the expression for order m without changing it’s value. This gives the following
expression for a general order n.

J̇n +
∑

k+i=n

αi · Jk
z = 0

which equals

J̇n +

n∑

k=0

αk · Jn−k
z = 0

Since the zero order terms are constants J0z = 0, so

J̇n + α0 · Jn
z = −

n−1∑

k=1

αk · Jn−k
z
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In the full form the set of equations is

{
J̇n
+ + α0+ · Jn

+z = fn+

J̇n
− + α0− · Jn

−z = fn−

which implies

{
J̇n
+ − c · Jn

+z = fn+

J̇n
− + c · Jn

−z = fn−

The left hand side is the linear Burgers equation and the right hand side forcing
terms are known functions that can be calculated from lower orders.





fn+ = −
n−1∑

k=1

αk
+ · Jn−k

+z

fn− = −
n−1∑

k=1

αk
− · Jn−k

−z

2.5.2 Repeating structure

Proposition 1. The equation

Jk
+(t, z) = (−1)k+1Jk

−(t,−z) (24)

holds for any k ≥ 0

We are going to prove it by induction. Equation (24) holds for the explicit
expressions we derived from zero to third order. Let k = 3

Jk
+(t, z) = (−1)k+1Jk

−(t,−z)
Differentiation with respect to z gives

Jk
+z(t, z) = (−1)kJk

−z(t,−z) (25)

The forcing terms for next order write

fk+1+ = −
k∑

q=1

αq
+ · Jk+1−q

+z

fk+1− = −
k∑

q=1

αq
− · Jk+1−q

−z

or

fk+1+ = −
k∑

q=1

((
3

4
Jq
+ +

1

4
Jq
−

)
Jk+1−q
+z

)
+ Ḋ · Jk

+z

fk+1− = −
k∑

q=1

((
3

4
Jq
− +

1

4
Jq
+

)
Jk+1−q
−z

)
+ Ḋ · Jk

−z

Using equations (24) and (25) we get
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fk+1+ (t, z) = −
k∑

q=1

((
3

4
(−1)q+1Jq

−(t,−z) +
1

4
(−1)q+1Jq

+(t,−z)
)
·

(−1)k+1−q · Jk+1−q
−z (t,−z)

)
+ (−1)kḊ · Jk

−z(t,−z)

Hence the symmetry property of (24) implies a similar symmetry in the forcing
terms of the following order

fk+1+ (t, z) = (−1)k · fk+1− (t,−z)
The same equality in the (ξ+, ξ−) coordinate system writes

f̂k+1+ (ξ+, ξ−) = (−1)k · f̂k+1− (ξ−, ξ+)

The particular solutions





Ĵk+1

p+
(ξ+, ξ−) =

1

2

∫ ξ+

ξ−

f̂k+1+ (s, ξ−) ds

Ĵk+1

p−
(ξ+, ξ−) =

1

2

∫ ξ−

ξ+

f̂k+1− (ξ+, s) ds

also have symmetry properties according to

Ĵk+1

p+
(ξ+, ξ−) = (−1)k · 1

2

∫ ξ+

ξ−

f̂k+1− (ξ−, s) ds

so

Ĵk+1

p+
(ξ+, ξ−) = (−1)k · Ĵk+1

p−
(ξ−, ξ+)

In the (t, z) coordinate system one gets

Jk+1

p+
(t, z) = (−1)k · Jk+1

p−
(t,−z) (26)

The homogenous parts of the total solution are




Jk+1

h
+ (t, z) = ϕk+1

+ (t+
z

c
)

Jk+1

h
− (t, z) = ϕk+1

+ (t− z

c
)

and the boundary condition equations writes





(
Jk+1

h
+ + Jk+1

p+
+ Jk+1

h
− + Jk+1

p−

)
(t,− l

2
) = 0

(
Jk+1

h
+ + Jk+1

p+
+ Jk+1

h
− + Jk+1

p−

)
(t,

l

2
) = 0

Equation (26) give rise to the following symmetries





Jk+1

p+
(t,

l

2
) = (−1)k · Jk+1

p−
(t,− l

2
)

Jk+1

p+
(t,− l

2
) = (−1)k · Jk+1

p−
(t,

l

2
)
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Set

Ak+1(t) = (−1)k+1 · Jk+1

p+
(t,

l

2
)− Jk+1

p+
(t,− l

2
)

then the boundary condition equations writes





ϕk+1
+ (t− ∆

2
) + ϕk+1

− (t+
∆

2
) = Ak+1(t)

ϕk+1
+ (t+

∆

2
) + ϕk+1

− (t− ∆

2
) = (−1)k ·Ak+1(t)

and the solution fitted to the initial conditions is




Jk+1

h
+ (t, z) = ηk+1(t+

z

c
)

Jk+1

h
− (t, z) = (−1)k · ηk+1(t− z

c
)

where

Ak+1(t) = ηk+1(t− ∆

2
) + (−1)k · ηk+1(t+ ∆

2
)

and

ηk+1(s) = 0, ∀s ∈
[
−∆

2
,
∆

2

]

The homogenous solution have the same symmetry property as the particular

Jk+1

h
+ (t, z) = (−1)k · Jk+1

h
− (t,−z)

The total solution for order k + 1 is

{
Jk+1
+ = Jk+1

h
+ + Jk+1

p+

Jk+1
− = Jk+1

h
− + Jk+1

p−

and have the same symmetry properties as for order k, (24).

Jk+1
+ (t, z) = (−1)kJk+1

− (t,−z)
Therefore the solving method can be repeated and the same structure is obtained
for all orders.

3 Open loop control

The first order approximation is identical to the solution of a linear model
derived in [9]. There the system was proven to be steady-state controllable, in
other words there exists a way to move the tank from steady state to a new
position and arrive there in steady state. The controllability can be explained
by the fact that all system variables of the first order approximation write in
terms of ν. ν is a flat output for the system (see [6] and [7]). To control the
system one may simply control its flat output.
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D(t) =
ν(t+ ∆

2 ) + ν(t− ∆
2 )

2

h(t, z) =
1

16g

(
ν̇(t− z

c
)− ν̇(t+

z

c
)
)2

v(t, z) =
1

2

(
ν̇(t+

z

c
) + ν̇(t− z

c
)
)

∣∣∣∣∣∣∣∣∣∣∣∣

t ≥ 0, z ∈ [− l
2
,
l

2
]

The tank position D converges in finite time to ν provided that ν gets to an
equilibrium and they are identical when ν has been constant for a time period
of ∆ seconds. In addition, when ν has been constant for a period of ∆ seconds
the surface settles, h = h0 and v = 0.

3.1 Steady-state controllability of the second order system

Steady-state controllability of second order is not proven. In this report we
show that there exists no motion, such that Ḋ has finite support smaller than
2∆, that cancels the second order system. This implies that one may not move
the second order approximation of the tank system from steady state to steady
state in less than 2∆ transient time.

Definition The term cancellation will be used in the sense that cancellation
is obtained if the following holds for all times after the tank stopped moving.

h(t, z) = h0

v(t, z) = 0

3.1.1 Lower bound on motion cancellation time for the second order

system

Consider a motion D applied on a tank which is at t = 0 in steady-state. Let Ḋ
be a non-zero differentiable function with a finite support included in an interval
less than 2∆. Further let Ḋ(0) = 0 and

Ḋ(t) = 0, ∀t > 2∆

To obtain cancellation (as defined before) of the second order system the fol-
lowing must hold for all t > 2∆ and for all z ∈ [− l

2 ,
l
2 ].





h(t, z) =
1

16g

(
2∑

k=0

(
Jk
−(t, z)− Jk

+(t, z)
)
)2

= h0

v(t, z) =
1

2

2∑

k=0

(
Jk
+(t, z) + Jk

−(t, z)
)
= 0

The zero order terms are constants, J0+ = −2c and J0− = 2c, so the equations
can be simplified to
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2∑

k=1

Jk
−(t, z)−

2∑

k=1

Jk
+(t, z) = 0

2∑

k=1

Jk
−(t, z) +

2∑

k=1

Jk
+(t, z) = 0

which implies

{
J1+(t, z) + J2+(t, z) = 0

J1−(t, z) + J2−(t, z) = 0
⇔
{
J1+(t, z) + J2+(t, z) = 0

J1−(t,−z) + J2−(t,−z) = 0

the terms have the following symmetry properties (see section 2.2.4 and equation
(22))

{
J1+(t, z) = J2+(t,−z)
J1−(t, z) = −J2−(t,−z)

hence
J1+(t, z) = 0, J1−(t, z) = 0, J2+(t, z) = 0, J2−(t, z) = 0

J1+ can be expressed in terms of ν (see section 2.2.4)

J1+(t, z) = ν̇(t+
z

2
) = 0

So to obtain cancellation the following must hold

ν̇(t+
z

c
) = 0, ∀t > 2∆, ∀z ∈ [− l

2
,
l

2
]

which implies

ν̇(t) = 0, ∀t > 3∆

2

an additional constraint is obtained from the first order system (see section
2.2.4)

ν̇(t) = 0, ∀t ∈ [−∆

2
,
∆

2
]

This implies that the second order system can only be cancelled if ν̇ has a finite
support included in

(
∆
2 ,
3∆
2

]
. In lemma 1 it is shown that there exist no non-zero

function that cancels the second order system.

Lemma 1. For a Ḋ(t)

Ḋ(t) =
ν̇(t− ∆

2 ) + ν̇(t+ ∆
2 )

2

where ν̇ is chosen as a non-zero differentiable function with finite support in-
cluded in

(
∆
2 ,
3∆
2

]
(first order cancellation is achieved) then cancellation of the

second order system (as defined in section 2.3.4) can not be achieved.
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Proof. To obtain second order cancellation the following must hold

h(t∗, z) = h0

v(t∗, z) = 0

where t∗ is used to denote every time after the tank stopped moving, (t∗ ≥ 2∆).





h(t∗, z) =
1

16g

(
2∑

k=0

(
Jk
−(t

∗, z)− Jk
+(t

∗, z)
)
)2

= h0

v(t∗, z) =
1

2

2∑

k=0

(
Jk
+(t

∗, z) + Jk
−(t

∗, z)
)
= 0

(27)

By hypothesis ν̇(t∗) = 0 and z ∈ [− l
2 ,

l
2 ] then from section 2.2.4 and 2.3.4





J1+(t
∗, z) = 0

J1−(t
∗, z) = 0

J2
p+

(t∗, z) = 0

J2
p−

(t∗, z) = 0

Further J0+ = −2c and J0− = 2c hence the equations (27) reduce to

{
J2
h
−(t

∗, z)− J2
h
+(t

∗, z) = 0

J2
h
+(t

∗, z) + J2
h
−(t

∗, z) = 0

which implies

{
J2
h
−(t

∗, z) = 0

J2
h
+(t

∗, z) = 0

Yet from section 2.3.4




J2
h
+(t, z) = η(t+

z

c
)

J2
h
−(t, z) = −η(t−

z

c
)

So

η(t∗ +
z

c
) = 0

To obtain cancellation of second order (28) must hold. In summary

η(t) = 0, ∀t > 3∆

2
(28)

Besides





η(t+
∆

2
) = η(t− ∆

2
)−A(t)

η(t) = 0 , ∀t ∈
[
−∆

2
,
∆

2

]
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This implies

η(t) = η(t−∆−N ·∆)−
N∑

k=0

A(t− ∆

2
− k ·∆)

For any t > 3∆
2 there exists a unique natural number N0 such that (t−∆−N0 ·

∆) ∈
(
−∆2 , ∆2

]
. Hence

η(t) = −
N0∑

k=0

A(t− ∆

2
− k ·∆)

As we know it, A can be expressed in terms of ν. This gives

η(t) = −
N0∑

k=0

(
ν̈(t− k ·∆)

8 · c [3ν̇(t− k ·∆) ·∆+ 3ν(t−∆− k ·∆) + 4ν(t− k ·∆)]

+
ν̈(t−∆− k ·∆)

8 · c [3ν̇(t−∆− k ·∆) ·∆− 3ν(t− k ·∆)− 4ν(t−∆− k ·∆)]

)

where by hypothesis ν̈(t) = 0 and ν̇(t) = 0 for t /∈
(
∆
2 ,
3∆
2

]
. There exists a

unique natural number N1 such that

t−N1 ·∆ ∈
(
∆

2
,
3∆

2

]

The only terms in the sum that can have a non zero value are the one corre-
sponding to k = N1 or k = N1 − 1. So η(t) can be written

η(t) = − ν̈(t−N1 ·∆)

8c
(3ν̇(t−N1 ·∆)∆− 4ν(t−N1 ·∆))

− ν̈(t−N1 ·∆)

8c
(3ν̇(t−N1 ·∆)∆+ 4ν(t−N1 ·∆)) (29)

which implies

η(t) = −3∆

4c
ν̈(t−N1 ·∆)ν̇(t−N1 ·∆)

According to (28) the following must hold to obtain second order cancellation.

−3∆

4c
ν̈(t−N1 ·∆)ν̇(t−N1 ·∆) = 0

hence

d

dt

(
ν̇(t−N1 ·∆)2

)
= 0, ∀t−N1 ·∆ ∈

(
∆

2
,
3∆

2

]

which is equivalent to

d

dt

(
ν̇(t)2

)
= 0, ∀t ∈

(
∆

2
,
3∆

2

]

hence ν̇(t) must be a constant over
(
∆
2 ,
3∆
2

]
. This constant has to be zero

due to that ν̇ is differentiable and ν̇(∆2 ) = 0. Due to that ν̇ has to be a non-
zero function by hypothesis cancellation of the second order system can not be
achieved.
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3.2 Multiple tank regulation

As stated in section 3 the first order model is steady-state controllable, thus
there exist ways to move a tank in steady state to a new position and arrive in
steady state. Here a method to control two tanks with different dimensions is
presented.

Consider a tank with length l1 and mean height h1, the corresponding ∆ is

∆1 =
l1√
gh1

The tank is steady-state controlled if the flat output is fed with a function whose
derivative has finite support. Let the tank flat output ν1 be fed with such a
function σ1, the tank motion is given by ν1

ν1(t) = σ1(t)

D1(t) =
1

2

(
ν1(t+

∆1
2

) + ν1(t−
∆1
2

)

)

hence

D1 =
1

2

(
es
∆1
2 + e−s

∆1
2

)
σ1

Now consider a second tank with different dimensions

∆2 =
l2√
gh2

Similarly as for the first tank the second is steady-state controlled if ν2 is fed
with a function σ2 where σ̇2 has finite support.

ν2(t) = σ2(t)

D2(t) =
1

2

(
ν2(t+

∆2
2

) + ν2(t−
∆2
2

)

)

hence

D2 =
1

2

(
es
∆2
2 + e−s

∆2
2

)
σ2

Let the two tanks have the same motion D = D1 = D2.

Figure 2: Two tanks with different dimensions but the same motion
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Thus the following equation is valid.
(
es
∆1
2 + e−s

∆1
2

)
σ1 =

(
es
∆2
2 + e−s

∆2
2

)
σ2 (30)

The two tanks are regulated(steady-state controlled) by the same motion if one
of the σ’s can be written as an explicit function of the other so that both σ̇1
and σ̇2 have finite support. This is possible for a certain case, when

∆2 = (2k + 1)∆1 , k ∈ N.

Under that hypothesis the right hand side in (30) writes

(
es
(2k+1)∆1

2 + e−s
(2k+1)∆1

2

)
σ2

which can always be factorized as (see Lemma 2)

(
es
∆1
2 + e−s

∆1
2

)
P (es

∆1
2 , e−s

∆1
2 )σ2

Where P is a polynomial of finite degree if k is finite. So equation (30) writes

σ1 = P (es
∆1
2 , e−s

∆1
2 )σ2

Hence the two tanks are regulated by the same motion D. The second tank is
regulated as usual

ν2(t) = σ2(t)

D(t) =
1

2

(
ν2(t−

∆2
2

) + ν1(t−
∆2
2

)

)

and the flat output of the first tank is fed with a function adapted by the second
tank

ν1(t) = σ1 = P (es
∆1
2 , e−s

∆1
2 )σ2

D(t) =
1

2

(
ν1(t−

∆1
2

) + ν1(t−
∆1
2

)

)

From these results it can be seen that two tanks, with ∆a respectively ∆b, can
be regulated by the same motion D if it exist a ∆c such that

{
∆c = (2ka + 1)∆a, ka ∈ N

∆c = (2kb + 1)∆b, kb ∈ N

then D would be constructed to regulate a tank with ∆c and the tanks with ∆a

and ∆b would be regulated by the same D.

Lemma 2. The expression
(
es
(2k+1)∆

2 + e−s
(2k+1)∆

2

)
(31)

where k is a finite natural number can always be factorized as
(
es
∆
2 + e−s∆2

)
P (es

∆
2 , e−s∆2 )

where P is a polynomial of finite degree 2k in the variables es
∆
2 and e−s∆2 .
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Proof. Define

a = es
∆
2

b = e−s∆2

then (31) writes

a2k+1 + b2k+1 (32)

As 2k + 1 is an odd number, a = −b is a root to the equation

a2k+1 + b2k+1 = 0

(32) can therefore always be factorized as

(a+ b)P (a, b)

where P is a polynomial. Additionally

deg(a2k+1 + b2k+1) = deg(a+ b) + deg(P )

hence

deg(P ) = 2k

and as k is finite so is the degree of P.

4 Results and analysis

4.1 Bounds for the Perturbation Method

We do not prove convergence for the perturbation method, however we give
bounds for a specific type of motion for the derived orders. These are summa-
rized by equations (33,34,38,39).

We consider function [0, 1] 3 t 7→ σ(t) be a C∞ step function that moves
from 0 to 1 when t goes from 0 to 1, that has the following bounds

σ(t) ∈ [0, 1]

|σ(t)| ≤ C0 = 1

|σ̇(t)| ≤ C1

|σ̈(t)| ≤ C2

|σ(3)(t)| ≤ C3

...

|σ(i)(t)| ≤ Ci, i ≥ 0

where Ci are constants. For an example of such a function see appendix A.2.
Let

ν(t) =





0, for t ≤ 0

σ(
t

T
), for 0 < t < T

1, for t ≥ T
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which give rise to the following bounds for ν

|ν(t)| ≤ 1

|ν̇(t)| ≤ C1
T

|ν̈(t)| ≤ C2
T 2

|ν(3)(t)| ≤ C3
T 3

...

|ν(i)(t)| ≤ Ci

T i
, i ≥ 0

4.1.1 Zero order

The zero order terms are constants so

J0+ = −2c
J0− = 2c

(33)

4.1.2 First order

The bounds are the same as for ν̇ according to equation (13).

|J1+| ≤
C1
T

|J1−| ≤
C1
T

(34)

4.1.3 Second order

According to (15) the bounds for the second order forcing terms are

|f2+| ≤
2C1C2
cT 3

|f2−| ≤
2C1C2
cT 3

The second order solution decomposed in to their homogenous and particular
parts writes

J2+ = J2
p+

+ J2
p+

J2− = J2
p−

+ J2
p−

and the particular solutions in their non-simplified version ((18) and (19)) are

J2
p+

(t, z) = − ν̈(t+
z
c
)

8 · c

[
ν(t− z

c
)− ν(t+

z

c
)− 3ν̇(t+

z

c
) · 2z

c

− 4

(
ν(t+

∆

2
) + ν(t− ∆

2
)− ν(t+

z

c
+

∆

2
)− ν(t+

z

c
− ∆

2
)

)]
(35)
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J2
p−

(t, z) =
ν̈(t− z

c
)

8 · c

[
ν(t+

z

c
)− ν(t− z

c
) + 3ν̇(t− z

c
) · 2z

c

− 4

(
ν(t+

∆

2
) + ν(t− ∆

2
)− ν(t− z

c
+

∆

2
)− ν(t− z

c
− ∆

2
)

)]
(36)

By Rolle’s theorem there exists a ξa ∈
[
t− z

c
, t+ z

c

]
such that

ν(t+
z

c
) = ν(t− z

c
) +

2z

c
ν̇(ξa)

and a ξb ∈
[
t− z

c
+ ∆
2 , t+

∆
2

]
such that

ν(t− z

c
+

∆

2
) = ν(t+

∆

2
)− z

c
ν̇(ξb)

Using Rolle’s theorem one more time for the ν terms in (35) and (36) we get

J2
p+

(t, z) = − ν̈(t+
z
c
)

8 · c

[
−2z

c
ν̇(ξ1)− 3ν̇(t+

z

c
) · 2z

c
− 4z

c
ν̇(ξ2)−

4z

c
ν̇(ξ3)

]

J2
p−

(t, z) =
ν̈(t+ z

c
)

8 · c

[
2z

c
ν̇(ξ4) + 3ν̇(t+

z

c
) · 2z

c
− 4z

c
ν̇(ξ5)−

4z

c
ν̇(ξ6)

]

Hence, we can bound

|J2
p+
| ≤ 2∆C1C2

T 3c

|J2
p−
| ≤ 2∆C1C2

T 3c

On the other hand A(t) is defined by

A(t) = J2
p+

(t,
l

2
)− J2

p+
(t,− l

2
)

So

|A| ≤ 4∆C1C2
T 3c

At last η(t) is connected to A(t) by

A(t) = η(t− ∆

2
)− η(t+

∆

2
) (37)

where

η(t) = 0, t ∈
[
−∆

2
,
∆

2

]

A(t) = 0,

{
t < 0

t > T

So η can only accumulate values from A through (37) during the transition time,
that is (at most) T/∆+ 1 times, thus
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|η| ≤ T +∆

∆
· 4∆C1C2

T 3c

Finally the bound for second order solution is

|J2+| ≤
2C1C2
T 2c

(
3∆

T
+ 2

)

|J2−| ≤
2C1C2
T 2c

(
3∆

T
+ 2

) (38)

4.1.4 Third order

Due to the high number of terms a precise bound has not been derived. However,
using similar methods as for second order (excluding Rolle’s Theorem) on the
third order expressions (see appendix A.1) it can be seen that J 3+ and J3− is
bounded by

|J3+| ≤
N∑

k=3

C̃k

T k

|J3−| ≤
N∑

k=3

C̃k

T k

Where N is finite and C̃k is a constant (consisting of an algebraic expression of
the constants c, ∆, C1, C2, C3 etc.). For not small T the dominant term is of
magnitude 1/T 3 or smaller. So for not small T third order terms are bounded
by

|J3+| ≤
C̃

T 3

|J3−| ≤
C̃

T 3

(39)

where C̃ is a constant.

4.2 Simulation setup

In the following sections simulations were made for a tank with length 1m and
depth 0.1m subject to a 1m translation during a transition time of T seconds.
The motion is adapted to cancel the first order system.

4.3 Formulas implementation

The method have been implemented in Matlab up to third approximation order.
The nature of the solutions makes it quite easy to implement and requires a
relatively small computational effort, small enough to do realtime interactive
simulations.

The height and velocity in the (t,z) local coordinate system of the tank is
obtained from the formulas
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h(t, z) =
1

16g

(
3∑

k=0

(
Jk
−(t, z)− Jk

+(t, z)
)
)2

v(t, z) =
1

2

3∑

k=0

(
Jk
+(t, z) + Jk

−(t, z)
)

Further, J+ and J− are functions of ν, η, η3 and some of their derivatives. To
calculate height and speed within the tank at a specific time t, values of the
above mentioned functions only have to be known in the interval

[
t− ∆

2 , t+
∆
2

]
.

If the motion is defined by the functionD(t), then ν and its derivatives can easily
be obtained from D. It is known that

ν(t+
∆

2
) = 2D(t)− ν(t− ∆

2
)

ν(t) = 0 ,∀t ∈
[
−∆

2
,
∆

2

]

and derivation of the expressions gives

ν̇(t+
∆

2
) = 2Ḋ(t)− ν̇(t− ∆

2
)

ν̇(t) = 0 ,∀t ∈
[
−∆

2
,
∆

2

]

For the third approximation order the fourth derivative of ν is used, so to get
smooth solutions we let D(t) ∈ C4. Then let D(t) be discretized with a time
step dt. Hence, ν and its derivatives are known at ∆

dt
points in the interval[

t− ∆
2 , t+

∆
2

]
. This induces a space discretization dz = c · dt.

All the functions describing the state of the tank, h, v, D, can be calculated
from ν and its derivatives and as mentioned above they have to be stored for a
∆ long time interval.

4.4 Numerical comparison with Godunov scheme based

algorithm

Simulations with tank parameters set as described above were made and com-
pared with a Godunov scheme based numerical method (for more details see
[5]). The tank is subject to a move D that cancels first order and Ḋ has a finite
support included in [0, T ]. The first, second and third order approximation of
the height (h1(t, z), h2(t, z), h3(t, z)) as a function of t and z were calculated,
for discrete values of t and z. The Godunov numerical method used as reference
is dissipative and its height (hG(t, z)) will settle with time. As a measurement
of the deviation from hG(t, z) for the different orders the 2-norm over space is
applied followed by the mean value over a time interval. The time interval is
chosen to be [0, 5T4 ], that is, slightly longer than the transient time. Nt is the
number of discrete time points in the interval.

E1 =
1

Nt

Nt∑

k=1

∣∣hG(t, z)− h1(t, z)
∣∣
2
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E2 =
1

Nt

Nt∑

k=1

∣∣hG(t, z)− h2(t, z)
∣∣
2

E3 =
1

Nt

Nt∑

k=1

∣∣hG(t, z)− h3(t, z)
∣∣
2

The deviations have been calculated for different transition times and smooth-
ness levels of the motion D. In table 1 D ∈ C∞, the function is a Gevrey
function based upon an unpublished work of François Malrait, see appendix
A.2. In table 2 D is a piecewise polynomial such that D ∈ C5 and in table 3
D ∈ C4.

The tables indicates that longer transition times imply greater likeliness to
the numerical scheme. It can also be observed that the second and third order
corresponds better than first for long transition times, and this property is
consistent for different degrees of smoothness.

For each of these simulations the mean computational speed for the pertur-
bation method was 5 to 9 times faster than for the Godunov method, measured
in (t, z) mesh points per second.

T= 4s T= 5s T= 6s T= 7s T= 8s T= 9s
E1 0.0205 0.0114 0.00391 0.00204 0.000931 0.000629
E2 0.0195 0.00661 0.00307 0.00181 0.000707 0.000557
E3 0.0341 0.00622 0.00306 0.00188 0.000715 0.000562

Table 1: Deviation for a C∞ function

T= 4s T= 5s T= 6s T= 7s T= 8s T= 9s
E1 0.0413 0.00651 0.00188 0.000899 0.000494 0.000301
E2 0.0451 0.00439 0.000995 0.000545 0.000313 0.000202
E3 0.0648 0.00479 0.0011 0.000562 0.000322 0.000202

Table 2: Deviation for a C5 function

T= 4s T= 5s T= 6s T= 7s T= 8s T= 9s
E1 0.0236 0.00412 0.00133 0.000717 0.000371 0.000253
E2 0.0205 0.00211 0.000796 0.000475 0.000258 0.000178
E3 0.024 0.00235 0.000819 0.000491 0.000259 0.000178

Table 3: Deviation for a C4 function

4.5 Volume preservation

The perturbation method do not preserve volume exactly at least not for a finite
order. An analytical expression for the volume deviation has not been derived
but series of numerical simulations have been made. The volume V (t) has been
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numerically estimated by integrating the surface height using the trapezoidal
rule. Table 4 shows volume deviation for different orders and transition times,
the motion is a C5 piecewise polynomial and the tank dimensions are as described
before. As a measurement of the volume deviation, the maximum deviation over
the time period [0, 5T4 ] is used, represented in percentage of the true volume (V0).

max
t∈[0, 5T4 ]

|V (t)− V0|
V0

· 100

T= 4s T= 5s T= 6s T= 7s T= 8s T= 9s
1st 1.66 0.61 0.269 0.135 0.0744 0.0443
2nd 0.521 0.017 0.00321 0.00127 0.000661 0.000369
3rd 1.18 0.0493 0.00452 0.000605 0.000173 6.43e-005

Table 4: Maximum volume deviation in percentage for different orders and
transition times

The tables indicate that volume deviation decreases with transition time and
for large transition times higher order implies smaller volume deviation.

4.6 Evolving wavefronts

In this simulation the tank has been moved a short distance to the right in a
short time. This movement gives rise to two travelling waves, one going to the
right and one to the left. The figures (3,4,5) show a zoom-in on the right going
wave profiles for different approximation orders. The figures on the left are at a
time shortly after the tank stopped moving and the figures on the right about
0.6 seconds later.

It can be observed that the linear first order model gives rise to a travelling
wave with constant wave profile while for higher order approximations nonlinear
terms are present and the wave profile evolves as the wave propagates. All three
orders are quite similar directly after the tank motion, although second order
shows a steeper right side and third even steeper. Another property is that they
share the same group velocity c.
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Figure 3: Zoom-in on a first order wavefront

Figure 4: Zoom-in on a second order wavefront

Figure 5: Zoom-in on a third order wavefront
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5 Perturbation method applied to the wave-maker

problem

The perturbation method can be applied to other situations than the tank
problem. Here it is used for a wave-maker problem where a non-viscid liquid with
a non zero height over the interval [D(t),∞] is governed by the Saint-Venant
equations. In addition the liquid is under the constraint that the horizontal
velocity at the boundary (D(t)) is equal to the velocity of the border (Ḋ(t)).
In the initial condition of the system the liquid is at steady-state with constant
height h0 and the border has the x-coordinate zero for all times equal to or
before 0, D(t) = 0,∀t ≤ 0.

Figure 6: Liquid with one boundary with the x-coordinate D(t)

The PDE is the same as for the tank problem





∂h

∂t
+

∂

∂x
(hv) = 0

∂

∂t
(hv) +

∂

∂x
(hv2 +

g

2
h2) = 0

the boundary condition writes

v(t,D(t)) = Ḋ(t)

and the steady-state initial condition implies

{
h(0, x) = h0

v(0, x) = 0

where x ∈ [D(t),∞].

5.1 Change of variables

Applying the same change of variables as for the one-dimensional tank (see
section 1.2) the following set of equations is obtained.
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PDE





∂J+
∂t

+ α+
∂J+
∂z

= 0

∂J−
∂t

+ α−
∂J−
∂z

= 0

BC
J+ + J−

2
(t, 0) = Ḋ

IC





1

16g
(J−(0, z)− J+(0, z))

2 = h0

J+(0, z) + J−(0, z)

2
= 0

The location of the border in the coordinate system (t, z) is z = 0 for all time.
Using the same decomposition of J+, J−, α+ and α− as in the tank problem,
the system can be solved in a similar way.

5.2 Zero order

Zero order terms are defined as constants and therefore can not fulfill the BC,
but only the PDE and the IC. The chosen steady-state solution is

{
J0+ = −2c
J0− = 2c

with the corresponding α-terms

{
α0+ = −c
α0− = c

It can easily be shown that the initial condition for any higher order k writes

{
Jk
+(0, z) = 0

Jk
−(0, z) = 0

∣∣∣∣∣ ,∀z ≥ 0

5.3 First order

The set of equations are

PDE





∂J1+
∂t
− c

∂J1+
∂z

= 0

∂J1−
∂t

+ c
∂J1−
∂z

= 0

BC
J1+ + J1−

2
(t, 0) = Ḋ

IC

{
J1+(0, z) = 0

J1−(0, z) = 0

The characteristics method gives the general solution to the PDE
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J1+(t, z) = ϕ+(t+

z

c
)

J1−(t, z) = ϕ−(t−
z

c
)

Fitting the solution to the initial conditions, taking consideration positive z and
t, we get




J1+(t, z) = 0

J1−(t, z) = 0, t− z

c
≤ 0

Adding the boundary condition constraint give the unique solution

ϕ+(t) + ϕ−(t) = 2Ḋ(t)

which implies

ϕ−(t−
z

c
) = 2Ḋ(t− z

c
)

so the total solution is




J1+(t, z) = 0

J1−(t, z) = 2Ḋ(t− z

c
)

The corresponding α-terms are





α1+ =
3

4
J1+ +

1

4
J1− − Ḋ

α1− =
1

4
J1+ +

3

4
J1− − Ḋ

which implies





α1+ =
1

2
Ḋ(t− z

c
)− Ḋ(t)

α1− =
3

2
Ḋ(t− z

c
)− Ḋ(t)

5.4 Second order

The set of equations for second order, according to the perturbation method,
only including terms with order less or equal to 2 derive to

PDE





∂J2+
∂t
− c

∂J2+
∂z

= −α1+J1+z
∂J2−
∂t

+ c
∂J2−
∂z

= −α1−J1−z

BC
J2+ + J2−

2
(t, 0) = 0

IC

{
J2+(0, z) = 0

J2−(0, z) = 0

The forcing terms in the PDE expressed in terms of D
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∂J2+
∂t
− c

∂J2+
∂z

= 0

∂J2−
∂t

+ c
∂J2−
∂z

=

(
3

2
Ḋ(t− z

c
)− Ḋ(t)

)
· 2
c
D̈(t− z

c
) = f2−(t, z)

Here the same method as for the tank problem can be applied, invoking the
coordinate change (t, z) 7→ (ξ+, ξ−).





Ĵ2+ = ϕ̂2+(ξ−)

Ĵ2− =
1

2

∫ ξ−

ξ+

f̂2−(ξ+, s)ds+ ϕ̂2−(ξ+)

We can solve Ĵ2− in terms of D

Ĵ2− =
1

2

∫ ξ−

ξ+

(
3

2
Ḋ(ξ+)− Ḋ

(
ξ+ + s

2

))
· 2
c
D̈(ξ+)ds+ ϕ̂2−(ξ+)

or

Ĵ2− =
3

2c
Ḋ(ξ+)D̈(ξ+)(ξ− − ξ+)−

2D̈(ξ+)

c

(
D

(
ξ+ + ξ−

2

)
−D(ξ+)

)
+ ϕ̂2−(ξ+)

Hence, the general solution to the PDE in coordinate system (t,z) writes





J2+(t, z) = ϕ2+(t+
z

c
)

J2−(t, z) = D̈(t− z

c
)

(
3z

c2
Ḋ(t− z

c
)− 2

c

(
D(t)−D(t− z

c
)
))

+ ϕ2−(t−
z

c
)

The initial conditions

{
J2+(0, z) = 0

J2−(0, z) = 0

together with that D(t) = 0,∀t ≤ 0 implies




ϕ2+(t+

z

c
) = 0

ϕ2−(t−
z

c
) = 0, for t− z

c
≤ 0

Hence J2+(t, z) = 0 and the boundary condition reduces to

J2−(t, 0) = 0

which implies

ϕ2−(t) = 0,∀t
As a conclusion the unique second order solution is
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J2+(t, z) = 0

J2−(t, z) = D̈(t− z

c
)

(
3z

c2
Ḋ(t− z

c
)− 2

c

(
D(t)−D(t− z

c
)
))

The z term in the solution will give rise to high wave amplitude at long distances
from the boundary, which has been numerically verified. So the second order
solution to the wave maker problem do not produce credible results for large z,
however for intervals z ∈ [D(t), L] were L is chosen not too big the solution has
numerically shown to have realistic properties.

The corresponding α-terms are





α2+ =
3

4
J2+ +

1

4
J2− =

1

4
J2−

α2− =
1

4
J2+ +

3

4
J2− =

3

4
J2−

5.5 Third order

The set of equations for third order are

PDE





∂J3+
∂t
− c

∂J3+
∂z

= −α1+J2+z − α2+J
1
+z = f+

∂J3−
∂t

+ c
∂J3−
∂z

= −α1−J2−z − α2−J
1
−z = f−

BC
J2+ + J2−

2
(t, 0) = 0

IC

{
J2+(0, z) = 0

J2−(0, z) = 0

The forcing terms in the PDE can be written in terms of D and J1+(t, z) =
J2+(t, z) = 0 so f+ = 0. In analogy with second order the PDE solution writes





Ĵ3+ = ϕ̂3+(ξ−)

Ĵ3− =
1

2

∫ ξ−

ξ+

f̂3−(ξ+, s)ds+ ϕ̂3−(ξ+)

The initial and boundary conditions force the homogenous solution to be zero.
After some calculations we get the unique third order solution which is

J3+(t, z) = 0

and
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J3−(t, z) = −3 Ḋ(t− z

c
)D(3)(t− z

c
)D(t− z

c
)zc−2

+ 3 Ḋ(t− z

c
)D(3)(t− z

c
)D(t)zc−2

− 9/2 Ḋ(t− z

c
)
(
D̈(t− z

c
)
)2

z2c−3 − 3 D̈(t− z

c
)
(
Ḋ(t− z

c
)
)2

zc−2

+ 3
(
D̈(t− z

c
)
)2

D(t)zc−2 − 3
(
D̈(t− z

c
)
)2

D(t− z

c
)zc−2

+ 5 Ḋ(t− z

c
)D̈(t− z

c
)D(t)c−1 + 2D(3)(t− z

c
)D(t− z

c
)D(t)c−1

− 5 Ḋ(t− z

c
)D̈(t− z

c
)D(t− z

c
)c−1 − 9/4D(3)(t− z

c
)
(
Ḋ(t− z

c
)
)2

z2c−3

−D(3)(t− z

c
) (D(t))

2
c−1 −D(3)(t− z

c
)
(
D(t− z

c
)
)2

c−1

− D̈(t− z

c
)c−1

∫ t

t− z
c

(
Ḋ(s)

)2
ds
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6 Implementations of the perturbation method

In the previous sections we studied the wave propagations in a one-dimensional
domain due to the interaction of the water and its boundary conditions. As a
first approximation many real world physical systems can be considered as a
collection of such simple systems as the one-sided (wave-maker problem) and
the two-sided (water-tank problem) system.

More precisely a two-dimensional rectangular tank gives rise to waves that
are at first order approximation the superposition of waves travelling in orthog-
onal directions. Its structure is similar to two one-dimensional orthogonal water
tanks for which our methodology applies. Though at second and third order
dynamics are not completely decoupled we give results that have some realistic
features (shape of the wavefronts and absence of perfect symmetries) but are of
course debatable.

At last we found it interesting to try to recreate the waves generated by a
boat travelling in a straight line. A large set of one-sided systems (wave-maker
problem) was used, fed by the hull profile and the boat position and velocity.

6.1 The one-dimensional tank

An algorithm to simulate the one-dimensional tank problem was constructed
following the ideas described in section 4.3.

Figure 7 shows a snapshot of a real-time interactive simulation of a 2m long
water tank. The vertical scale of the upper figure is enlarged to clarify the wave
profile. The lower part shows the water velocity as a function of z, and it can
be seen that the water velocity is the same at both boundaries. The boundary
velocity is negative so at the snapshot moment the tank was moving leftwards.

Figure 7: One-dimensional tank simulation
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6.2 The two-dimensional tank

The algorithm used for the one-dimensional tank is here used as a primer for a
two-dimensional rectangular tank. Under the approximation that perpendicular
waves are decoupled the surface height is estimated by superposition of two
perpendicular one-dimensional tanks. The one-dimensional tanks are subject to
the vector component of the two-dimensional motion in the their direction.

H(t, x, y) = hx(t, x) + hy(t, y)

~V (t, x, y) = vx(t, x) ~ex + vy(t, y)~ey

~D(t) = Dx ~ex +Dy ~ey

Under this approximation rotational flows are impossible. Figure 8 show a
snapshot from the interactive tank simulation. As for the one-dimensional tank
the vertical scale is enlarged to clarify height differences.

Figure 8: Two-dimensional tank simulation

The water motion is calculated in realtime according to the user defined mo-
tion. Additionally, the approximation order can be changed during simulation
with the buttons to the left.

6.3 Boat induced water waves

A scenario with a boat in the open ocean is simulated with the formulas from
the wave-maker problem. The boat in consideration will only move in a straight
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line and the water is approximated by two arrays of parallel one-sided tanks per-
pendicular to the boat direction. Each tank array point out from the boat route
with the boundaries placed at the symmetry axis. When the boat passes be-
tween a pair of tanks (as seen in figure 9) the hull separates the tank boundaries
and thus inducing two waves travelling perpendicular to the boat route.

Figure 9: Boat hull between two one-sided tanks

The horizontal profile of the hull is described by a smooth C4 function and the
tank boundary displacement D is calculated from the hull profile and the boat
position. This equation provide all necessary information (D, Ḋ, D̈, D(3)) for
the third order solution to the wave-maker problem. However, the wave maker
produces waves that are not realistic for long distances from the boundary.
Therefore it has been necessary to introduce damping for some geometrical
settings and boat velocities.

To add some ocean characteristics, not induced by the boat, an approxima-
tion of the ocean surface is superimposed, once again using one-sided systems.
This time the tanks are oriented in 2 arrays in orthogonal directions and are fed
with periodic input signals for wave generation. For texturing, filtered white
noise is added following [11]. Finally, the water between the tanks is linearly
interpolated by the renderer.

Figure 10 show a photograph of boat induced water waves to the left and a
simulation imitating the photograph to the right.

Figure 10: Boat induced water waves
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A Appendix

A.1 Third order functions

The explicit expressions for J3
p+

, f3− and A3 are as follows. Additionally the

symmetric properties
f3−(t, z) = −f3+(t,−z)
J3
p+

(t, z) = J3
p+

(t,−z)

hold.

J3
p+

(t, z) = − 1

64
ν̈(t+

z

c
)ν(t+

z

c
)ν̇(t−z

c
)c−2−1/16 ν(3)(t+z
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)ν(t−∆
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)ν(t−z

c
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z
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A.2 Gevrey function

The function φ used for simulations is based upon an unpublished work of
François Malrait and is defined by

φ(τ) =





L+∆L if τ ≥ 1,

L+∆Lg(τ) if 1 > τ > 0,

L if τ ≤ 0

where

g(τ) =
f(τ)

f(τ) + f(1− τ)
, τ ∈ [0, 1]

and

f(τ) =

{
e−

1
τ if τ > 0,

0 if τ ≤ 0,

The derivatives of φ are bounded by

∣∣∣∣φ
(k+1)(τ)

∣∣∣∣ ≤
∆Le24kk!2√

2π

52



 




