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1. Introduction

Many control objectives can be expressed in terms of a criterion function.
Generally, explicit solutions to such optimization problem requirekiudwledge
of the plant and disturbances and complete freedom in the complexihe of
controller. In practice, the plant and the disturbances are seldom knuavit,ig
often desirable to achieve the best possible performance with all=ntf
prescribed complexity. For example, one may want to tune the paranoéta
PID controller in order to extract the best possible performanoe $uch simple
controller.

The optimization of such control performance criterion typically megui
iterative gradient-based minimization procedures. The major stumitllbeg for
the solution of this optimal control problem is the computation of theigraof
the criterion function with respect to the controller parametiérss a fairly
complicated function of the plant and disturbance dynamics. When these are
unknown, it is not clear how this gradient can be computed.

The contribution of [Hjalmarsson, Gunnarsson, Gevers, 1994] was to
show that an unbiased estimate of the gradient can be computed gyaafs si
obtained from closed loop experiments with the present controller imgeoat
the actual system.

For a controller of given (typically low-order) structure, the miziation
of the criterion is then performed iteratively by a Gauss-Newton based scheme.

For a two-degree-of-freedom controller, three batch experiment® dre
performed at each step of the iterative design. The first artistiinfply consist of
collecting data under normal operating conditions; the only real exgetriis the
second batch which requires feeding back, at the reference input, the output
measured during normal operation. Hence the acronym lterative Fe&dbank
(IFT) given to this scheme. For a one-degree-of-freedom controtir the first
and second experiments are required. No identification procedure is involved.

As in any numerical optimization routine, a variable step sizébearsed.

This allows one to control the rate of change between the new centiot the
previous one and is an important aspect from an engineering perspective.
Furthermore a variable step size is the key to establishing ¢gemeer of the
algorithm under noisy conditions. With a step size tending to zero apdedpri

fast, ideas from stochastic averaging can be used to show thatthendendition

that the signal remain bounded, the achieved performance will converge t
(local) minimum of the criterion function as the number of data teéoard
infinity.

The optimal IFT scheme of [Hjalmarssenhal, 1994] was initially derived
in 1994 and presented at the IEEE CDC 1994.

The IFT method is appealing to process control engineers because, under
this scheme, the controller parameters can be successively itprdtieut ever
opening the loop.

In addition, the idea of improving the performance of an already operating
controller, on the basis of closed-loop data corresponds to a naturabfway
thinking.
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2. IFT Description

2.1 Two-degree-of-freedom controllers and IFT

The theory in this section is based on [Hjalmarsson, Gevers, Gunndrsgaim,
1998].
We consider an unknow true system described by the discrete model

y’( = GOut +V’[ (1)

whereGq is the linear time-invariant operatgr,is the measured output,is the
control input,{v;} is an unmeasurable process disturbancetamegresents the
discrete time instants (remark: to easy the notation theitidext is sometimes
left out).

We consider that this system is to be controlled by a two-defieeedom
(2DOF) controller:

u, =C, (p)r, —C, ()Y, (2)

whereC,(p) andCy(p) are linear time-invariant transfer functions parametrized by
some vectorpOR™, and{r} is an external deterministic reference signal,
independent of v} .

Notice that it is possible fdZ;(0) andCy(p) to have common parameters.

Fig. 2.1 A two-degree-of-freedom controller
structure

We will use the notatiog(0) andu(p) for the output and the control input of the
system (1) in feedback with the controller (2), in order to makel¢pendence of
these signals on the controller parameter veg®xplicit.
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Let yd be a desired output response to a reference sigfwal the closed loop
system. This response may be defined as the output of a referedeETgsuch
that

Ytd =Tqr, (3)

but for the IFT method knowledge of the sigydl is sufficient.
The error between the achieved and the desired response is

y(0) £ y(p) - y* :[Mr_ d} 1

—V
1+Cy (p)GO 1+Cy(p)GO

So, using (3):

Wmfyw%v“=t54@%L—n}+ L

—V
1+C, (0)G, 1+C, (0)G,

This error consists of a contribution due to incorrect tracking of the reference
signalr; and an error due to the disturbarce

For a controller of some fixed structure parametrizeg,biis natural to
formulate the control design objective as a minimization of some norm of

y(,0) over the controller parameter vecpor
We will consider the following quadratic control performance criterion:

J(p):%E{Z(Lyw)f+AZ(Luut(p))1 @

whereN is the number of samples considered arifildeinotes expectation with
respect to the weakly stationary disturbance

The filterLy is a frequency weighting of the error between the desired response

and the achieved response. The filigweights the penalty of the control effort.
They can of course be set to 1, but they give added flexibility to the design.

The optimal controller parametgr is defined by:
P =argmin J(p) (5)
P

The objective of the criterion (4) is to tune the process response to a desired
deterministic response of finite lendthin a mean square sense.

As formulated, this is a model reference problem with an additional penalty on the
control effort.
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Let To(0) ans S(p) denote the achieved closed loop response and sensitivity
function with the controllef C,(0), Cy(0)}

_ C(p)G,
T =176 (e C,(0)G,

_ 1
Si(p) = 1+C.(0)G,

Given the independence gfandv;, J(0) can be written as:

J(p) = % tN Lo -Tom)f + % e, s, (o J |+

+AWE{;(LUut(p)) }

The first term is the tracking error, the secondmteis the disturbance
contribution, and the last term is the penaltyl@dontrol effort.

CRITERION MINIMIZATION

We examine now the minimization of the criterion With respect to the control
parameters vectgr for a controller of specified structure.

To obtain the minimum a necessary condition is thatfirst derivative ofl(o)
w.r.t. the controller parametgris zero:

. au,
——( )—WE{Z Vi (p) (p) ;ut (p)a(p)} (6)

where for simplicity we assums =L,=1

If the gradientg—‘](p) could be computed, then the solution of the previo
0

equation would be obtained by the following iteratalgorithm:
4, 0d
=0 -V RT—(p 7
10|+1 IOI le ap(pl) ()

Here y; is a positive real scalar that determines the step andR is some
appropriate positive definite matrix (notice al$mtt as we will show latery,
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must obey some constraints for the algorithm toveage to a local minimum of
the cost functiord(p)).

R determines the update direction and is therefaseia for the performance of

the algorithm. Typically we choose a Gauss-Newt@preximation of the
Hessian of], so:

13 % oy 1% o] 4 a2 oy 124 o) |
-—N;({ (p.Map(pi)} +A{ap(pi)}{ap(pi)}) (8)

We will see that all the signals (estimates) neadetlis expression dr will be
available from the IFT algorithm.

As stated the problem is intractable since it imesl expectations that are
unknown.

However, such a problem can be solved by replaltiaggradientg—‘](p) by an

unbiased estimate.
In order to solve this problem, one needs to gead¢he following quantities:

1) the signalsy, (,0 andu, (,0 )
2) the gradlent (p) and t(,0);

3) unbiased estimates of the produﬁ;@o)%(p) and u, (p)%(p).
Y Y

These quantities can be obtained by performing raxgats on the closed loop
system formed by the actual system in feedback witle controller

{c.(n).c (o)}

We will see that (8) can be expressed us follow:
R =13 (es {"yt ¢ } {"yt (o )T + es{"i(p )}es{%(p )T)
N e i ,0 i 6,0 i 6,0 i '

(here and in the sequcds{% (o )} and es{% (o )} denote the estimates of

0 ou
Di(p) and T (p))
0p 0p
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COMPUTATION OF THE GRADIENT

Noting that%(p) = al(p) , We can write:
0p 0p

G oC C (p)GZ oC
0 r(p)r_ r(p) 0 - y(p)r_
1+C, ()G, 9p L+C,(0)G,) 90

G Ty
L+C,(0G.F o0

1 oG _ 1 ocC, ,
C () 35 PO = s o AT O 4Ty (DS, ()

oy, , \_0Y, , \_
o0 (0) o0 (0)

From the expression above we see that the gradepends also on the not
computable quantitieEy() andSy(p) since they depend on the unknown system.
Therefore, unless an accurate model of the systeamsumed to be available, the

signal gl(p) can only be obtained by running experiments onatttaal closed

loop system.

Notice that the last two terms in the expressianvabnvolve a double filtering of
the signal andv throught the closed loop system:

[To]2r +ToSV=T,Y.
So we can write:

1 [ac ac
— ()T, (p)r ——
C.(o)op " op

1 _[ac,
C.(P)|

gi(p) g (DT (0) y}
0

aC
(p)——

0p 0p 0p

aC
(p)jTo (P)r +— ()T, (P)(r - y)}

The termTy(p)(r-y) can be obtained by substracting the output sifoah one
experiment of the closed loop system from the ezfee and by using this error
signal as reference signal in a new experiment.

In each iterationi of the controller tuning algorithm, we will use ré¢le
experiments, each of durationN, with the fixed controller

C(p)= {Cr (0),C,(p )} operating on the actual plant.

We will see that only the second experiment specialexperiment, the first and
the third just consist of collecting data undermalk operating conditions.

We denote thé\-length reference signals by , j =1,2,3, and the corresponding
output signals by’ (p,),j =1,2,3.
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So the expressions for the output signal are:

y' (L) =To(p)r +S,(p; )V|l
y? (L) =Ty (o )(r = yl(pi )+ S, (o )Vi2
y? (L) =To(p)r +S(p, )V|3

Here v/ denotes the disturbance acting on the system gl@iperiment at

iterationi (these disturbance can be assumed to be mutual@pamdent since
they come from different experiments).

With these experiments

Y =Y~V
is a perfect realization of; (where the subscriptdenotes the iteration number),
while

ayt o 1 aCr _aCy 3 acy 2
es{a(pi)}—cr - [[ (o) (p)]y (0)+5 (0} (p)

is a perturbed version (by the disturbanfeand v°) of (;l(p) :
0

So now we have an estimate of the gradient thabeansed in (6) and so in (7)
for the updating control parameter law.

: , . du
In an analogous way, we can obtain an estlmaﬂeeogltadlenta—‘(p) .

From
Cr (p) r - Cy ('0)
1+C,(0)G, 1+C,(p)G,

u(p) = v=S,(0)[C, (o)1 -C, (o)V]

we can see that the three experiments describec: aj@merate the corresponding
control signals:

u(p) =S, (p)lC, () -C, ()]
uw?(0,) = S, (o)[C, (0)(r = y*(0)) - C, (0 )v?]
W) =S (e)lC (o) -C, (o)%]
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These signals can similarly be used to generateshmates of the input related
signals required for the estimation of the grad{éint

Indeedu*(p,) is a perfect realization af(p, ,)

u(p) = Ul(pi)
while
au, ~ 1 oC, _ aC, 3 aC, 2
es{% (b )} 0 K - (p)ju (o) + 3 (o) (1 )}

Resuming, with these two gradient estimates anrarpatally based estimate of
the gradient od can be formed by taking:

33 _1d dy, RN ou,
es{g(m} =2 (p)es{ s (p)} o (p)es{ o (p)}

17



ONE-DEGREE-OF-FREEDOM CONTROLLERS

In the case where the simplified controller streetd, =C, =C is used, i.e.,

u, =C(p)(r-vy),
the algorithm simplifies because the third expentieecomes unnecessary.
Therefore, in the case of a one-degree-of-freedamtraller, the first two

experiments are run with the same reference sigisatbe case of a two-degree-
of-freedom controller, i.e.,

ri2 =r-= yl(pi)
and the gradient estimates are obtained by:

o, , \|_ 1 aoC )
es{—ap (P)|= 55 35 PV (P)

du , +|_ 1 ac N2
es{%(pi)_ —C(p) _6,0 (L )u”(p)

Fig. 2.2 A one-degree-of-freedom controller
structure
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2.1.1 Two-degree-of-freedom controllers - EXAMPLE 1

Consider the plant

1
G,(s) =
o(S) S5+ D)
and the controllers
1.6535
CA=——+
g+ 0.8469

2.68541-1.0319
q+0.8469

Cy(a) =

where the operatayis the forward shift operator, thatdd, = f,,,.

We add a disturbanceas in (1) given by a noisewhich is the output sequence
of white (Gaussian) noise with zero mean and vaea.01 filtered by the
following frequency weighting function

10
W(s) =
(s) s? +10s

The purpose is to improve the step response (trggkoblem).

We take the following parametrization of the twatollers:

o
C(oy=_— "
(P = ¥ 0869

PA+* Ps

C =
0= 08469

so that we have three parametgisp, 0; to tune, starting from:

0, =1.6535
0, = 2.6854
0, =-1.0319

We use the following quadratic criterion:

J(p)=Z(yt -y9)?
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and the same fixed step size for all the paramefers 0.1, and a Gauss-Newton

approximation of the Hessian dfor the matrixR.
Performing the IFT algorithm described above we gger 15 iterations, the final
parameters

0, =33.1330
0, = 247.6248
0, =-214.6256

and the following results:

Number of | Value of the final

iterations criterionJ "

1 11.3131 1or

2 10.7929 al

3 10.2780 -

4 9.7635 -

5 9.2482 I

6 8.7339 Br

7 8.2239 5

8 7.7219
9 72314 o 2 4 E‘Ieratiunﬁﬂumberm 12 14 16
10 6.7555 Fig. 2.3

11 6.2971

12 5.8591

13 5.4442

14 5.0561

15 4.7000

(initial value of the criterion = 11.8443)

1.2

_Dz 1 1 1 1 1 1 1 1 1
o 2 4 B g 10 12 14 16 13 20

Fig. 2.4 Step Response (step att =1, amplitude 1)
Dotted line: initial - Solid line: final
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2.1.2 Two-degree-of-freedom controllers - EXAMPLE 2

We now apply the IFT scheme to the tuning of thetrdler for a flexible servo,
a “two-mass-system” (two masses connected withiagp

The following figure show the sketch of the process

P1 . P2 .

— —
F k

A
N

Ls
SOV

Fig. 2.5

We have the two masses andm,. The spring between the masses has the spring
constank. The viscous damping coefficients afeandd,, respectively.
One of the masses is driven by a DC-motor. Hereneglect the internal
dynamics of the motor. The force from the motoprisportional to the voltage u,
that is:

F=ku

m

Force balance equations give the following dynahmeodel:

.

dt? bodt

k(p, = p2) +F (1)

d’p dp
m, dt22 =—d2d—t2+k(pl— pz)

Introducing the state vectox=[p, p, p, P,]" andy = p,, the system can
be written on state-space form,

x(t) = Ax(t) + Bu(t)

y(t) = Cx(1)
where
0 1 0 0] o
_k 4k 0 k
I m Tm om =2l e [k, 000
Ao o o 1 " %’C{cj[oo%o
kg kL4 2
_m2 m2 m2_ _0_
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We use the following constants and coefficients:

my = 2.29 kg
mp = 2.044 kg
di = 3.12 N/m/s
d; = 3.73 N/m/s

k = 400 N/m
K = 2.96 N/V
k, = 280 V/m

These values correspond to the real process whilthb& considered in next
section.

The purpose is to control the positipn
Assuming that we could measure all the states,gusirstate feedback control

strategy, we could place the poles for the closedp!| system freely
(controllability matrix has full rank) by using tleentrol law:

u(t) = -Lx(t) +1.y, (1)
by properly choosing the parameters [l1 15 13 14].

Herey; is the reference value ahds a scalar gain affecting the overall gain and
it is chosen to get the correct stationary gain.(=1

We choose the following desired poles for the aldsep system (c.l.s.):

b, =-14+# j157
by, =-76% |49

Pole-Zero Map
T

Imag Axis
o
T
I

Feal Lxiz

Fig. 2.6

Note the poorly damped first pole-pair, which wednahosen on purpose.
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They give an oscillatory response for the positbthe second mass and our aim
will be to improve the corresponding controlleiget a better behaviour.

Assume now that only the positign is measurable. Thus we are faced with a
control problem where we want to feedback signdgwwe can not measure.

We need to estimate the process state vector asingbserver (Kalman filter)
described by:

ax(t - N
LU = asx()+ B + K (1,00 -C.50)
where X(t) denotes the states of the obsertecan be chosen so that the observer

states are approaching the real states with atraailyi fast rate of convergence
(usually such that the observer dynamics will be tb. 2 times faster than the
closed loop system).
We get:

L =[-20.9693 11.4598 101.2845 2.2563

0.4428
_|1.9066
“10.1172

3.6203

We will use the observer states in the feedbackimatead of the real states which
we can not measure.

The Simulink scheme of the controlled system isashbelow.

h 4

" ol P
> # = AtBu v = At By v
= Cwtlu = Cwtlu
Step ?DI—> w v Soope

State Feedback Contraller
{using Obzenrer)

Frocess
(State-Space)

Fig. 2.7

By decomposing the state-space realization we a@msilyefind the transfer
functions fromy; to u and fromy, to u, so that we could have a two-degree-of-
freedom controller structure as below.

wr u
cr ) A ) # = fptBu
i W= CxtDu 2

h Scope
Step LTI System

FROCESS (State-Space)

LTI Systemz

Cy

F Y

Fig. 2.8
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The initial feedforward controller is:

_0.2868s" +10.32625° + 427.75* + 9191s+ 93238

C
(P) s* +50.81s® +1977s? +5048(< + 69441(

The initial feedback controller is:

C.(p) = 33s®-1221s” +21835s+93238
Y s* +50.81s® +1977s* +5048(s + 69441(

These initial controllers give the following resgenposition second mass):

Pa

06 .

0.4F .

02f .

1 1 1 1 1
a 100 200 300 400 500 B00

Fig. 2.9 Initial step response

The parametrization chosen to be used for the I§drighm is:

4 3 2
p. st + 0,5+ 0, +p, 5+ g

Cr(p): 4 3 2
Q + 0SS +oud" T 0,St O

Ps S’ +p; S*+ Py S+ Py
q* + 01, S+ Pu0° + P, S+ Py

C,(p) =

Notice the choise to keep the same denominatdreartwo controller<, andC,.
This to keep the structure due by the observer thedstate feedback control
design.
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We can now apply the IFT algorithm to update thetid parameters of the
feedback and the feedforward controller. We wi# tise following cost function:

3P = 5> 3 -y

As written above we need three experiments and ivemplement them using
Simulink. Actually in this example we do not use tisturbance so we do not
need the third experiment.

The first and the second experiments have thevioligp Simulink schemes:

> cr »ir » = = fsctBu
= ¥=Cu+lu

Step pz
PROCESS (State-Space)

Output Response

Fig. 2.10 First IFT experiment

:

p1

pl
= Mt By
- -
b e " ¥ = betbu 4’|:—’n
2 -

[

To Wiofkspace

PROCESS (State-Space)

Cy

Fig. 2.11 Second IFT experiment=r-y?2

The desired outpyf' is chosen as:

4
025
y! =T,r = _y025 ),
s+a/ 025

wherea=3.5 and as a unit step.
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[IR=R 3 .

0B .

041 -

1 1 1 1 1
0 100 200 300 400 500 G000

Fig. 2.12 Desired outpyf

Starting from an initial criterion
J, = 0.00497

and using a small step size gf = 0.005 i so that we can speak in terms of

fine tuning and a Gauss-Newton approximation of the Hesdiafar the matrix
R;, aftern = 600 iterations, we get the following final pardens:

p, = 0527

p, =10.8913
p; =521.356
0, =3.618410°
05 =9.061610°*
Ps =335995
0, =1474887
0, = 2.347110°
0, =9.061610"
Po = 72.816

0y, = 2.645910°
0., =5.838110"
0, = 6.848410°

and the final criterion value
Jme00 = 1.145510°°

26



k=] S
06 |

04r |

0z

1 1 | 1
0 100 200 300 400

1
s00 BO0

Fig. 2-13 Step Response (step at t =1, amplitjde 1

Solid line: final (after 600 iterations)

Dashed line: initial — Dotted: desired

Iteration | Final Cost
number

100 0.00179902¢

200 0.000653821

300 0.000237864

400 0.000086541

500 0.00003148¢

1 1 1
0 100 200 300 400 500 600

600 0.00001145%

VT W UT = VI W

lteration nurber

Fig. 2.14 Final value of the chstctionJ versus
the IFT @don number
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1.4 1.4
12 12
7y A
; 17
=] S 1 oar [
- I - I
L] 1 S
; i
04t nap
02F f 0z2r
DEI 1EIID ZEID SEIID AISD EEID 600 UD 160 260 360 460 560 600
Fig. 2.15 Left: after 100 iterations — Right: af&®0 iterations
1.4 1.4
12+ 1 12t
I8 "y
1 }\4_[,_\,,/,?,, , o f,,_\\,,ff,
! !
08F f 08F f
) [ ) [
06l | 0&r |
It j
oar g o4t
! f
02r 0z
DEI 1EIIU 200 300 AEIIU 500 600 DEI 1EIIU 200 300 AEIIU 500 600
Fig. 2.16 Left: after 300 iterations — Right: af®0 iterations
1.4 14
1.2r b 12F 4
A Al
1 | i f,\\ - = 1r | | f\\ - —
! /
n&r o/ 1 nar 1
o | £ f
0Er | 1 Y] 1
/ /
nar | 1 04t | 4
I |
0.2r 0.2 b
UD 100 250 300 400 56D B00 UD 100 260 300 400 560 ()

Fig. 2.17 Left: after 500 iterations — Right: afé®0 iterations
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The parameters updating is shown in the followiggres.

o0&

025 n . n n . 10 L I L L I
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Iteration number lteration number
Fig. 2.18
560 : : : : : 14000
5401 —
12000
520 B
10000
500 B
e = gD
480 B
/ 6000
460 v B
440 4 4000
420 I I I I I 2000 L L L L .
0 100 200 300 400 500 600 [u] 100 200 300 400 500 600
Iteration number lteration number
Fig. 2.19
x10°
18 T T T T T og
17 k!
a0 B
16 B
15 B 70 i
o0 k!
7 50 i
40+ 4
0g L I L L T el L L L L I
0 100 200 300 400 500 600 0 100 200 300 400 500 500
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THE REAL PROCESS AND THE PROBLEM OF FRICTION

An implementation on the real process has beed kg a relevant problem has
been encountered: friction.

In this case, a nonlinear contribution (frictiorged not allow the IFT method to
work properly and in our specific case, the frintivas too important and the
calculations ofy-y? during the iterations of the algorithm were ditedr

=
Y

Enceders for position ineasurelments /

Fig. 2.25

In the following picture, we show the behaviour thie system and we can
understand how in this case the implementationFaf Was almost impossible
because we could neither check the result of thed @ontroller nor keep stability
properties.

25

05

o WEI‘EIEI ZEI‘EIEI 3EI‘EIEI AEI‘EIEI EEI‘EIEI EEI‘EIEI 7EI‘EIEI 6000
Fig. 2.26 Paosition response to a square waveemdersignal

A problem with friction and a poorly tuned initiabntroller is that the process
will stick at positions which are far from the redace value and which may
change a lot from one iteration to another.

The experiments on the real process, even we gpoeesence of a limit case of
huge friction, showed the limit of IFT that usuai$ybased on the measurements
of the error between the output of the system hadlesired response.

However we will show in the next chapter how isidl possible to apply the IFT
method to the case of (deterministic) nonlineatesys.
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2.2 Convergence of IFT

Consider a discrete time linear time-invariant (Lifilodel

yt = GOU’( + Vt
(v disturbance)

and let be the system be controlled by the costroll
u =C(o)(r - y,)
with pO0"™.

In this section we state exact conditions for whtble controller parameters
updated with the IFT algorithm converge to the alestationary points of the
criterion

J(p):%E{i(yt(p)—ydf]

Let D be a convex compact subsetiof .

We introduce the following conditions on the noiges controller, the closed loop
system and the step sizes of the algorithm, reispdct

V1) In any experiment, the signal sequerncg=1, ..., N consists of zero mean
random variables which are boundég< C for all t.

The constantC and the second order statistics wfare the same for all
experiments, while sequences from different expemi®m are mutually
independent.

Cl1l) There exists a neighbourhoo®to D such that C(p)is two times
continuously differentiable w.r.pin ©.

C2) All elements of the transfer functions

C(0)

0C(p)
0p

0°C(p)
0p?

have their poles and zeros uniformly bounded away the unit circle ol.
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S1) The linear time-invariant closed loop systenstable and has all its poles
uniformly bounded away from the unit circle bn

Al) The elements of the sequer{pg} satisfiesy, = Oand >y =oo.

i=1

A2) The elements of the sequer{ge} satisfiesd ) <.

i=1

Theorem (Hjalmarsson, 1998)

Consider the IFT algorithm ( given hy,, = p. — . F{lg—‘](pi) ).
0

Assume that V1), C1), C2), S1), Al) and A2) hold.
Assume thatR is a symmetric matrix which is generated by theeexpents at

iterationi and satisfies

1
—Z1>2R =>4
5 R

for someod > 0.

Then
lim p, =D, ={p:3'(p) =0}
on a setA={p, 0D 0i}.

The basic requirement for convergence is that tigpaks remain bounded
throughout the iterations (since the result onlgli@s to the seA introduced in
the theorem).

The power of the theorem is that apart from theagsion of linearity and time-
invariance there are no other assumptions on thpepiies of the system. The
same holds for the controller: the complexity af tontroller is arbitrary and the
result thus applies to simple PID controllers a#i a®to more complex ones.

It is also important to notice that even though dieturbances have to have the

same second order statistics from experiment t@mxent, it is not necessary
that the disturbances are stationary during oneraxent.
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2.3 The step size: a critical choice

In this section we discuss and show with some exbesn how critical is the
choice of the step sizein the parameter update law

L ra®
Pia =P KR (P).

Let’s take the following robot model:

100
s(s+1)(s* +15s+100

Gy(s) =

controlled by a PD controller:

1+sT
Ge(9) =Kk, T
1+s-4
N
with N=10.
SYSTEM
y 1 100
I G B FD | —— - e — e
= o s2+165+100
reference Controller
Fig. 2.27

To implement IFT on this system we use the criterio
1o)==y -y
2N

and a Gauss-Newton approximation of the HessiathtomatrixR, .

We use as desired output
a

S—a

y' =Tyr = r(t)

with r(t) as the unit step araf4.

Starting with the initial parametekg=2 andTs=2 we get the an initial codp =
0.0077 and the following response:
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Fig. 2.28 Response with the initial PD parameteli}@nd the desired output (dotted)

Performing 50 iterations of IFT using a step s/z68.1 we get a final cosko=
0.0043 and the following response:

14 T T T T

12+ '['L i

0.6 4

02k i

1 1 1 |
o 400 1000 1500 2000 2500

Fig. 2.29 Final response after 50 iterations df USing a step size of 0.1(full),
initial response(dashed) and desired output (dptted
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We can look at the cost function values as funabibthe iterations number:

7.5

6.5

Cost
o

8.5

4.5

We perform now the same number of iterations, istartorm the

¥ 10

20

1
a0 40 a0
[teration number

Fig. 2.30 (step sizg=0.1, final costlso= 0.0043)

parameters but using a bigger step s5z6,5.

The response is:

1.4

G0

same initial

121

08t

06
04p

0.2y

. - = - - - -

1 1 |
1000 1500 2000

Fig. 2.31
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We get the same final cost valdig = 0.0043 but if we look at the graph bfs
function of the iteration numbers we can observenteresting behaviour:

10"

7.5

B.4

Cost
[ny]
|

845

4.5

_4 | | | | |
a 10 20 30 40 a0 il

[teration number

Fig. 2.32 (step sizg=0.5, final costlso= 0.0043)

We can see that after 3 iteration we get a loweendaf not considerably, cost
function value Jso= 0.0042).

So it's not useful to continue in the iterationgdatis enough to stop the IFT
algorithm just after 3 iterations.

This is an important aspect of the iterative tummgthods since it can happen that
we find a local minimum just after few iterationdaif we don’t look at the cost
value during the iterations it can happen that ae get lower performance from
the parameters updating.

This is due in main part to the “irregular” surfaafehe cost functiod and so it is
critical to choose a right step size or at leagb@d stop rule for the algorithm.
Another important issue is the approximation of ghedients and the form of the
matrix R. In fact, in case of very irregular surfaceJpfwe could need to use a
very small step size if the approximation is naturated. This holds to perform a
high number or iterations for the IFT in order tet gmprovements of the
controller.
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Interesting is also the behaviour of the IFT impdeation after 50 iteration and
with a step size equal to 0.9:

10"

74h

6.5

Cost
[my}
1

B5¢F .

45

4 | | | | |
1] 10 20 30 40 &0 g0

[teration number

Fig. 2.33 (step sizg=0.9, final costlso= 0.0043)

In this case we can see that we find more tharlama minimum during the IFT
implementation or at least four different iteratimmmbers in which we could stop
instead of arriving at 50 iterations.
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3. The Nonlinear Case

In this chapter we discuss an analysis of the ptiseof IFT when applied to
nonlinear systems controlled by a under a lineatrotier.

We will assume that the system to be controlledgiieen by the following
nonlinear state-space model:

X(t+2) = f(x(t),u(t),w(t))

y(t) = h(x(), v(t)) ©

where f = f(x,u,w) and h=h(x,v) are smooth functions, wherdt) represent

the state vector at tinte whereu(t) andy(t) are the scalar inputs and outputs and
wherew(t) andv(t) are external disturbances.

We will also assume that the system is controllgdhe following linear time-
invariant controller Gf,p):

u(t) = C(q, p)(r (t) - y(t))
wherer (t) is the external reference signal gnid the parameters vector.

Proceding in an analogous way of the previous aestiwe get, differentiating the
system equations wpgi:

X(t+12) = f x(t)+ fu'(t)
v =hx()
WD) = C'(r (D) - y(©) - Cy ()
- c(%(r(t) vt -y (t)j

where

X'(t) = dipx(t)

e d

y'(t) —d—piy(t)
0y =_9_

u'(t) = a0 u(t)

f = f(x(t),u(t), w(t))

£, =9 ¢ (xt), u), we)
dx

£, =9 £ (x(t),uct), wit))
du
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As the linear case, if follows that the gradients

d
d_,Oi y(t)

and

d
d_,ou(t)

can be obtained by first performing a simulatiomgghe system (*) withi(t) as
reference signal and collecting the signal$), ui(t), x.(t) andwy(t), t =1,...,N
(where the subscript denoted that the signals §temm the first simulation using
system (*) ).

With these signals at hand, in a second simulatiem thelinear time-varying
feedback system

X, (t+1) = A(t)x, (t) + B(t)u, (1)
Y2(t) = H()x,(t)
U, (t) = C(s(t) — v, (1)

with reference signal

_ @ Clap) o
s(t) = m(r(t) Y. (1)

and with the special choice of time-varying matice
A =21 (0., w ()
X
_ 0
B(t) = 30 F 0, (), Uy (1), wy (1)
_0
H(t) = &h(xl(t),vl(t))

which are function of the signatg(t), ui(t), wa(t), vi(t) in the first experiment.

It then holds that

d
u, =——u

=4 (0)

_d
Y, = do y(0)

and

d
X, =—X(0).
2 = g (P
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By repeating the second simulation with a new ezfee signal

@ Can
S(t)—m(r(t) Y, (1))

the true) gradients with respect jgcan be obtained.

To obtain the gradient with respect to the comptetemeter vectop (101", the

second simulation has to be perfornmetimes.
A drawback with this method is that the numberxgeriments is proportional to
the number of parameters that are to be tuned.

An alternative approach to avoid this is suggedtedSjoberg and Agarval in
[Sjoberget al, 1997] and by De Bruyne, Anderson and Gevers i fuyneet
al, 1996] where a linear-varying model is identified.

Another approach for the control of non linear egst is the development of IFT
due to Hjalmarssoat al (1998), that we now describe.

For each iterationin

_ .10
Pu=p VR ap(pi)

the IFT method uses two experiments, each of duradti say, with the fixed
controller C(p;) operating on the actual plant. Notice that cagtta the method
outlined above the number of experiments is fixedtwo regardless of the
dimension of the parameter vector

When r-y is used as reference in the second experimenETn the system
equations in the second experiment can be written:

X (t+1) = F(x; (1), u, (1), W, (1))
Y2 (1) = h(x; (1), v, (1))
U (£) = C(r(t) — y1(t) — v, (1)
Approximating the first two equations by a firsder Taylor expansion around

(x1(t), ua(t), wa(t), ya(t), va(t)), the closed loop trajectories in the first exmpent
(with r as reference signal), gives

X (t+1) = f,x,(t) + f,u, (1) +AY)
Y, (1) = hx, (1) + o(t) ()
U, (1) = C(r(t) - y,(t) — y, (1))

where

AD) = L 0) + f = £, - f,u,0) - fw )
8(t) = hyv, (1) +h=h,x, 0 - hy, (1
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Above the suppressed arguments are signals froffirshexperiment:
=10 (1), uy (), wy (1) .

Notice that A(t)and J(t) can be regarded as external signals since they are

functions of variables in the first experiment andandv, only.

Disregarding these signals we see that the fidgroapproximation is identical to
the linear time-varying equations seen previoukbt generate the true gradient
except for the fact that the reference sigrfgty(t) in the expression af’(t) is
filtered by C'/C whereas in (**) is not. The reason of this lagtedence is that in
the IFT algorithm this filtering is done after andt before the second experiment.

These similarities suggest that it should be pdesgio improve the performance
for nonlinear systems using the standard IFT prowedinder the following
conditions:

- the first order Taylor approximation is reasoyatcurate;

- the signalsA(t) and J(t) are small compared té, x, (t) + f,u,(t gnd
h x, (t), respectively;

- the error due to commuting t8¢C operator and the closed loop system
is small.

It may seem as if these stated conditions are gegictive. However, practice,
as will be evidenced below, has shown that thisdos seem to be the case for
many systems. One reason for this is that it sesfito be able to compute a
descent direction, the exact gradient is not necgss

However, it might be necessary to reduce the s#pis when a perturbed
gradient estimate is used. Furthermore, care h&e texercised if e.g. a Gauss-
Newton update is used since the joint effect ofghaient perturbation and the
modification of the search direction causedRys additive and one may end up
in an ascent direction.

We conclude that for nonlinear systems, it mighwise to use a small step-size.

A SIMULATION EXAMPLE

We will consider now the following noise-free nardar system which hagt)
andz(t) as states:

x(t+1) = x(t) - 0.1 (t) - 0.2u(t)
z(t +1) = z(t) — 0.2x3(t) - 0.2Z°(t)
y(t) = z(t)
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Remembering that the subscripts denote experimenbar in the IFT procedure,
for this system the right-hand side of the firsa&ipn of (**) becomes:

X (1) + f,u, (1) f(

3 (t)j :[ (1= 03%; (1)X, (t) = 0.u, (1) J
y(t)) (= 06X7(1)x, (1) + L- 062 (1)) z,(1)

and

ap=(AO)Z(  02€o
Ww(t) 04x2(t) + 0421 ()

, : . 002

We’'ll consider the system controlled with the Phtoller C, = gt
-q

We can prove tha¢(t)| dominategA(t)| and alsdw(t)| <<|p(t).
A(t)
40)
can say thatx,(t+1) = f x,(t) + f,u,(t )is a reasonable approximation of the

second experiment. This indicates also that, peabithe commutatioi€’/C and

the closed loop system does not influence the g much, it should be
possible to use the IFT on this system.

This indicates that the perturbatidx(t) :£ J Is not very significant. So we

We choose a reference signal as a period of aesqueare with period time 250.

15

05+ B

05 B

1 1 1 1 1
50 100 150 200 250 300

Fig. 3.1 Reference signal for the first IFT expeznt

The desired outpuyd is taken to be the reference signal of the fifsT |
experiment and filtered throught the following I@ass filter

005q97*

45



0ap -

0aF -

50 100 150 200 240 300

Fig. 3.2 Desired respongé

The parametersoi, 2, 03, 2 are adjusted in the following discrete time
generalization of a PID controller structure:

c = PtPAT AP
0o~ 1_q—1

We use for the IFT algorithm:

N
- acost functiond (o) = > (y, - y*)?
t=1

- a Gauss-Newton approximation of the HessianHembatrixR,

- astep sizgr=0.50i .

The initial parameters are:

p, = 002
P> =
Py =
Py =

and the corresponding response can be seen ioliwihg figure.
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;
260 300

Fig. 3.3 Closed loop response with the initial P&rameters (full)
and desired respong(dotted)

As can be seen the system exhibits some quiterre@anlbehaviours.

Applying the IFT algorithm, we obtain the followimgsponse after 50 iterations:

1 L
0 50 100 180 200 250 300

Fig. 3.4 Response(full) after 50 iterations, dediresponse (dotted) and
response with the initial PID parameters (dashed)
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The criterion decreases monotonically during teeations as shown below in the
plot and in the table (the subscript denotes dftav many iteration the values
stem from).

B0

Fig. 3.5 Cost as function of the number of IFT iterations

Criterion values
Jo(initian= 56.0030
Ji= 19.0633
Jo= 6.3112
Jz= 3.5936
Juog= 2.2127
Jso(final= 1.0496

A comparison with the initial response shows thatlFT has managed to
improve the performance considerably.

It should also be noted that the simple linear dier makes a surprisingly good
job on this nonlinear system.

The corresponding final controller is given by:

_8.7931:16.9071 " +8.1999 -0.044 7%

C
50 1_ q_1
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4. Modifications and Improvements to
IFT

4.1 Modified criterion

One of the frequent practical use of controllerigiess to tune a controller of
fixed structure (for example a PID controller) urch a way that the step response
of the closed-loop system has a minimal settlingetivith a small overshoot.

The objective in such applications is to move thipot of the closed-loop system
quickly from one reference value to another; howgtree particular shape of the
transient response from the initial reference valehe final value is of no
importance, provided that it does not have largersivoot. In addition, without
knowledge of the actual system (which is a majasoa for using IFT) it is not
known in advance how fast a settling time can beiexed for this particular
system with this particular controller structure.

By imposing the entire response of the closed-leggtem through a specific
choice of a desired respongg rather than just the endpoint of this transient
response, the classical IFT criterion leads torotiet parameters that realize a
compromise between fitting the transient respomsk fdting the new reference
value, even though the user does not care abowxhet shape of the transient
response. Instead, by imposing a mask on the &naing@sponse, the optimization
will tune the controller parameters in such a wayt@achieve the new desired
reference value without focusing on a particula-ijpnposed transient response
that is perhaps not naturally achieved by the ddsep system.

We can introduce a variant of the control perforogaariterion (4) in which the
signals y,(p ) and u,(p )are time weighted by weightingsy(t) and wy(t),
respectly.

Thus the criterion
1 N _ N
J(p) = —E{Z(Lyyt ()2 + A (L, (p))z}
2N | & =
is replaced by

(o) = %E{Z w, (L, T, () + 22w, DL, (p»ﬂ

wherew,([] andw,([} are any nonnegative numbers. The flexibility cfte by the
time weightingsw,(t) andw,(t) is that they allow one to put different weighsng
on different parts of the time responses. A paldity interesting application is
when zero weightings are put on the transient respof the output response to a
step change in the reference signal.
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In this case the criterion becomes:

30(P) =5 X (L, TP + A3 (L (o))

t=t,

and we say that maskof lengthtp is put on the transient response of the tracking
error.

By imposing a mask on the transient response oes dot waste the available
degrees of freedom in the controller parameterthermatching of a specific and
entirely arbitrary transient response. Instead oam focus these parameters
entirely on achieving a fast settling time. The tcashieved after the masked
interval is always smaller than when no mask isluse

4.1.1 Simulations using weighted IFT algorithm — Improving the settling time

Consider the plant
1

s?+0.1s+1

P(s) =

One wish to tune a PID controller in order to achia better settling time for the
closed loop system.

Consider the standard form of the PID controller:

1
Gop (S) = k{“T—s +T, s}

that for the physical realization we change in:

Gu(9) = kp{1+Tds+ 1 }

1+7s ﬁ

with7 =2 and the following initial PID parameters:

025

k, =0.
T =2
T, =1

2
p.S” + P,5+ p;
Is’+s

so that the initial controller iS5, (s) =
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This yields the very sluggish response shown irfithee below.

1

09r

0er

07r

0EF

05r

0.4r

03r

0Z2r

01F

D 1 1 1 1 1
0 a0 100 150 200 250 300

Fig. 4.1 Closed loop step(amplitude 1) respongle wnitial PID parameters

We use in the IFT algorithm a Gauss-Newton apprakion of the Hessian for
the matrixR,, a step size of 0.1 and the following desired mespyd:

005
I=Tr=
Y = =008

r

1

09r

IR=}3

0.7

06

0sr

04r

03r

0.2H

0.1

D 1 1 1 1 1
0 a0 100 160 200 250 300

Fig. 4.2 Desired response to a step of amplitude 1

The application of the classical IFT criterion ypsthe cost function

3P =533 YY)’
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yields, after 15 iterations, the response:

0sF - .

06 - _

04 | p .
02t £ §

El | 1 | | 1
1] 50 100 180 200 250 300

Fig. 4.3 Closed loop step response(full) obtaiwed
the classical IFT criterion and using the desmesponse(dotted)
Dashed curve: response with the initial PID patanse

This response is very unsatisfactory; this is mgeapart due to an unfortunate
choice of initial parameters.

With the use of a fixed mask of lengif=100 seconds, the minimization of the

modified IFT criterion with the same initial paratees leads to the following
closed-loop responses, obtained after 15 and Blitias respectively.

1

nal
051
07t
as| |
o5t
oaf |
us

ot

il

L L L L L L L L L L
a 50 100 150 200 250 300 a 50 100 150 200 250 300

Fig. 4.4 Step response(full) after 15 iteratiosit)land after 30 iterations(right) using a mask of
length 100, the desired response(dotted) and ¢peresponse with the initial PID
parameters(dashed)

This response is better than that obtained witiference trajectory.
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Finally a mask of decreasing length is used, withndtial length of 100 seconds,
and with the same initial parameters again. Atyweration of the IFT scheme,
the length of the mask is decreased by 10 seconds.

L I L L L 1 1 1 1 L
1} 50 100 150 200 280 300 1} 50 100 180 200 260 300

Fig. 4.5 Step response(full) after 15 iteratiosit)land after 30 iterations(right) using a mask of
decreasing length, the desired response(dottedihanstep response with the initial PID
parameters(dashed)

Observe the dramatic improvement of the responsetahe use of a mask of
decreasing length, leading to a sequence of cdstiar(rather than a one-shot

criterion), and to a different sequencegiparameter vectors than resulted with
the direct use of a mask of lendggl=100 seconds.
Resuming, we can use the criterion

3P = 5> -y

to compare the results.

The initial cost isJp = 0.0294 and with the implementation of the cleesIFT
criterion we getl;s= 0.0020.

Using IFT with fixed mask Using IFT with mask of decreasing
length
\]15: 0.0169 J15: 0.0034
Jso= 0.0117 o= 2.0882 - 10

Fig. 4.6 The subscript denotes after how manwtins the values stem from.

The initial parameters are:

P, =0.025
P,, = 005
P5, =0.0125
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After 15 iteration of the classical IFT criterion:

p,, =0.0429
P, =0.1643
Ps, =0.0321

Using the modified criterions:

IFT with fixed mask
Py, = 0.0538, P, = 0.0630

p,,. =-0.0085 p, =-0.0099
p,. =0.0169, p, =0.0197

IFT with mask of decreasing length
p,, =0.0898 p, =0.1460

P, =-0.0219 p, =-0.0356
Py, =0.0294; p, =0.0478

Fig. 4.7
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4.1.2 Simulations using weighted IFT algorithm — Improving the overshoot

In this section we will present with an example hitve modified criterion using
time weightings can improve the response performancterms of maximum
overshoot.

Consider the plant (discrete time):
0.14937+ 0.1095
P(2) =

2% -0.74172°

and the discrete controller:

_ 16z°-125z+03
GC (Z) — _2 ~
2* -0.60€z - 0.392

This yields a step response with a considerablesbwet shown below:

0.8 .

06

0.4

0.2r .

0 1 2 3 4 5 B 7 & H 10

Fig. 4.8 Response to a step of amplitude 1 att =1
with the initial controller parameters

Using in the classical IFT algorithm:

- a partial parametrization of the controllet (nuater)
N

- acost functionJ(p) = > (y, —y*)?
t=1

- a Gauss-Newton approximation of the HessianifembatrixR,

- astep sizgr=0.20i
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we get, respectively after 4 and 9 iterations felewing step responses.

0.5

06

0z

Fig. 4.9 Step response(full) after 4 iterationshef classical IFT algorithm
and step response with the initial parameters(dptte

0sf | |

06

0.4

02r ) i

Fig. 4.10 Step response(full) after 9 iteratiohthe classical IFT algorithm
and step response with the initial parameters(dptte

56



We see that the classical IFT criterion yields altan maximum overshoot (and
settling time).
Using a time weighting in the cost function, welwbw show how we can get
better results.

Considering the cost function
N
3(0) =3 [w, )y, - y*)?]
t=1
and applying a time weighting

wt) =1 t0[0,15]0 [225.10]
w(t) =5, tO (15225

as shown in the following figure

<1

5 -

4

z3

time [s]

Fig. 4.11

we get the following step response:

08

06

0.4F

02¢

Fig. 4.12

that yields a much better behaviour with respetié¢oclassical IFT criterion and
was using only 4 iterations.
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4.2 The BFGS method for the search direction

The matrixR; in the parameter update law determines the uputlegetion and it is
therefore crucial for the performance of the aligoni.

We have seen that a good choice is tdrJdie an approximation of the Hessian.
Especially if y is small, the Gauss-Newton direction

1 [y, ay, , | t ool
W;‘{ (o)) j||:$(pi):| +/ { (o )M (,0.)})

is a desirable choise and the natural approximasion

_i X ayt ayt T % % T
R=N2 es{ (8 }es{ (p.)} +A es{ > (pi)}es{ 5 (pi)} )

Another good choise is the Broyden-Fletcher-Golufgahanno(BFGS) method,
one of the quasi-Newton methods.

One of the merits of the quasi-Newton methods & the good estimation of
Hessian matrix is given from the gradients of tbetdunctionJ and the design
parameterso. BFGS method is well known as a good optimizatroathod
[Hamamotoet al, 2003].

The renewal law to estimate the Hessian based daSBRethod is given as
follows.

7z (Z(k))T ~ B gtk) (S(k))T B®

BY =B + KT (K KT R (K) o(k
(Z()) S() (S()) B()S()
where
B = B(p*)
S(k) = p(k+1) _p(k)

oAk . 0N . 0J
209 = 3'(p") = 3'(p%) = = (0*¥) == ()
0p 0p

The superscript denotes tki¢h iteration.

The initial matrix value oB© is an arbitrary positive definite matrix. UsuaB’
is chosen to be an identity matrix.

The following facts are well known about the BFG&thod:

a) if B¥ is symmetric theB**" is symmetric;
b) if B¥ is positive definite andd)'s¥>0, thenB**Y is positive definite.

When ¢9)'s¥>0 is not satisfied, 1eB**Y= B¥>0. However such a case seldom
occurs.
Notice that the BFGS method uses the same dake &auss-Newton method.

Thus the IFT parameter updating law becomes:

- OJ
10i+1 Ioi 1 (IOI)
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4.3 The Hamamoto-Fukuda-Sugie IFT Approach

We consider the two d.o.f. control system depiateithe following figure.

/
- F
/P £ | d
r Yi+ € +yt u +§+ y
o Td K - — P s

Fig. 4.13 Closed loop system with two-degree-e&ffom controller

Since any two d.o.f. control system can be tramséal in to this configuration
[Sugie & Yoshikawa, 1986], there is no loss of gratity here.

In figures,P is the SISO plant, and andF denote the controllers to be designed.
The scalar u, y and r are the plant input, its ougmd the reference, respectively.
The signald denotes an external test signal which is usethiestimation of the
performance of the closed loop system and we assbatewe can choose it
arbitrarily.

Note that all subsystems are known except for taet|p, and all the signals are
observable.

As we have seen before, the systems the desired closed loop model which is
given in advance, ang = Tqr is the desired trajectory whighshould track.

One distinguishing feature of the control structstfewn in the figure is as
follows.

Let Ty, denote the closed loop transfer function from y,tthen it is known that
the so-called conditional feedback property haldat is,

T, =T, 0K
is satisfied whenevétr =T, /P holds. In other wordsd( does not play any role for
tracking property in the nominal case, and the maia of K is to suppress the

effect of disturbances and plant uncertainties {&8gYoshikawa, 1986]. While
apparently, the role df is to specify the tracking property.

The controllers K and F are supposed to be uniqgdetgrmined by the design
parameterg, andp, respectively. We use the symb#lgo,) andF(0,) in order to
indicate their dependence on the parameters, @kplid-or I/O signals, we use
the similar symbols such ago,) andy(a,). From the above observation, it would
be natural to tun&(p,) andF(0,) do as to achieve low sensitivity and desired
tracking property, respectively.

In the following we assume that one stabilizingtcolter pair K(0.?), F(a,®))

is given in advance. And each experiment is peréatim the finite time interval
[O’ tf]
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The strategy proposed by Hamamoto, Fukuda and Stifi&method) is the
separeted tuningf the feedback and feedforward controllers. Irtipalar, as for
the feedback controller, they concentrate on turimgachieve low sensitivity
instead of tracking property, while the feedforwaahtroller is tuned from the
viewpoint if command tracking property.

1 - Feedback controller tuning

In this section we concentrate on the tuning ofitfeelback controlleK(oy).

In order to achieve low sensitivity, this new methoy to minimize the weighted
sensitivity functionW(s)Ss) in a certain case, whek#(s) is the given weighting
transfer function and

1

S(=— -
@+ P(s)K(s))

is the sensitivity function.

To achive this goal th&élFS methodperforms the following two experiments
(A,B).

Experiment A

Set us (t) = 0 andyy(t) = 0 in figure 4.13. Then the controlled systershswn as
the figure below.

Uy
Yi=0+ e £ +u d+ ;
oz gl edulplell 2
7p
Fig. 4.14

Inject the test signai(t) which is calculated from
d(s) =W(s)n(s)

where n is a virtual white signal which has zero mean amd appropriate
covariance. Then, l§{,0,) andu(p,) be the corresponding I/O signals of the plant.

For these I/O signals, we solve the following pewbl
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FB Controller Design Problem

Find the parametgs, which minimizes
31(P) = [y(P)|" + Aufute,)|
with
X[ = (). x(®) = [ ¥ (Ox(7)dr

through iteration of experiments, whelgis a positive constant weighting scalar.
Note that the transfer function frottoy is equal to the sensitivity function S.
Therefore, ift; - o and A, - Q the above cost is equal to the square oHhe

norm of WSbecause of the whiteness of the virtual signal

Now we apply the HFS method, that derives form stendard IFT algorithm
based on Hjalmarsson and Birkeland (1998) and Hastaand Sugie (1999).

The parametep, is updated by

P = ol = OB(AD) 3, (AL

wherep!) denotes the value @, at thei-th renewal, andJ , (o, i the gradient

of J(0,) with respect tq..
As for the standard IFT method, the matBgo(") gives the update direction and

can be for example a Gauss-Newton approximatiadhefHessian ad or a matrix
found with the BFGS method.

In our discussion and following example the scatér is considered as a fixed
step-size.

First, we calculatel, (p, Yrom the I/O data of experiments without any model
of P. Thej-th entry of J ., is given by

I3 (0) = 2y, (0,) Y(P)) + 24, {u; (0,). u(p,))

where ()i (p,) denotes the derivative with respecigoand the subscrigtmeans
thej-th element of the vector.
In order to calculaté,, (o, ,)we perform the following experiment.

Experiment B
Set d(t) = 0 andyy(t) = 0 in fig. 4.13 and inject the signad = y(0,) which is

obtained by Experiment A, and l&f(p.) andfy(0,) be the corresponding I/O
signals of the plant.
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Since

1
y(0,) _TK(pa)d

u(o,) = K(0.)y(p.)

hold from Experiment A, the derivative with resperp, gives us

Y (p) =~ iP)
e (1+PK(p,))
P 1

= —KJ- (pa) 1+ PK(,Oa) 1+ PK(IOa) |

e P
- Kj(pa)1+PK(pa) y(pa)

==K, (p)f,(p.)

u; (0.) = K (0,)y(0.) + K(p,)Y, (0,)
= K} (pa)ﬁ)’(pa)
=K, (p.) f,(0.)

where we used the relations

_ P
f,(p.) = m y(0,)

1
f,(0.) = m Y(P.)

from Experiment B.
Therefore we can calculat, (o, fijom the data

(y(,oa), u(o,), v (p.), u'(,oa)) through Experiments A and B.

The procedure of feedback controller tuning is gpempwhen, for a given scalar
£ >0 in advance,

J fb (,Oék)) -J fb (Ioé(lk+l)) <&

and we regargp{” as the sub-optimal parameteos.
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2 - Feedforward controller tuning

Now we fix the feedback controller as = K(0{"), and tune the feedforward

controller F(p, ).

The objective here is to makgt) track yy(t) more accurately for the given
reference (t) =ro.
For this purpose we perform the following experiten

Experiment C

Inject r to the two d.o.f. control system in fig. 4.13 whifyp,) andK, and let

y(m) andu(o,) be the corresponding I/O signals of the plant.
The system is shown in the figure below.

¥

Fig. 4.15

For this system we solve the following problem.

FF Controller Design Problem

Assume the controllerk and F(0”)which stabilize the system shown in fig.
4.13 are given. Find the paramejgr which minimizes the cost function

Ji (0y) = ||Y(,0a) ~ Yy ”2 +/]b||u(,0b)”2
through iteration of experiments, wherd, denotes the positive constant

weighting scalar.
The IFT procedure is almost the same as in the cb&® controller tuning by

replacingJd, - J;, K - F and p, - p,.
Thej-th entry of the gradient of the cost function ixgeq by:

‘J'ﬁ,j (L) = 2<y‘j (L), Y(Py) — yd>+ 2/]b<u} (pb)’u(pb)>

To calculate it we need the following experiment.
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Experiment D

Set d(t) = 0 andyy(t) = 0 in fig. 4.13 and inject the signal=r, and letry,(0,) and
ry() be the corresponding I/O signals of the plant.
From Experiments C and D, the following relatiomgdh

1

r, = r
1+ PK
p
r, = r
¥ 1+ PK
1
U(pb):[l_'_ PKF('Ob)+1+ PKder

y(p,) = Pu(p,)

While, from the derivative with respect i, we have:

u; (P,) = Fj (pd)mr = Fj (o)1,

Yi (Py) = F (pd)mr =F, (pb)ry

Therefore, the data(u(,ob), u(p,), Y0, y'(,ob)) are obtained through
Experiments C and D, and we can calculdfefrom these data.

A SIMULATION EXAMPLE

Let us introduce a simple model of a robot joinppressed by the Laplace
function:

G (9) :Ji

[s?
whereJ is the joint moment of inertia.

The example is taken for [Scalamogna, 2001]. In Wk, the purpose was to
improve the performance of the controlled systemalging to the system a
suitable external control signal using Iterativeatreng Control (ILC). We will
examine the same example in terms of IFT.
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From G(s) we obtainG(z) that is the discrete-time version @§(s) including the
Zero Order Hold (ZOH):

T2 z+1 z+1
G(Z):_S 2 = gain 2
2J (z-1) (z-1)

whereTs is the sampling time.

The joint is controlled by a PD feedback controkgr) and by a feed-forward
controllerF«(2).

kd
Z_
- k T.+k k T.+k
G =k, + e 271 T Kl T
T, T, z
hence
K(2) = F,,, 7~ Frero
Z
and
_ 2 _ 2
Ff (Z) :%@: ngain d#
T, z z
with
J=0.0094 N§
ko= 12.7
kq=0.4
T=0.001s

The following figure shows the scheme we are cagid (notice the disturbance
added).

FEED-FORWARD controller

M uhite
i noise
> F'f_galn(z—'I)2
zZ
¥
F i) o "
24105
Robot Joint Model
FEED-BACK controller
G_gain(z+1) .. 1
l'r\\ F_gain(z-F_zer) + = = - 4k —P.-
> + 18
\¥i = OUTFUT
REFERENCE & (2 K
Kiz)
SlENAL v_d

Fig. 4.16

We choose the following parametrizations of the twatrollers:
+
K(Z) = 1012 102
2

2
Ff (Z) - pSZ +ZI(ZAZ+105
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with the initial parameters:

0, =412.7
0, =-400
£, =9400
0, =-18800
0, =9400

The reference trajectory chosen in the experingenf, i=sin(27t).
The initial behaviour is shown in the pictures belo

Initial Qutput y

0 01 pz 03 04 05 0B 07 08 09 1
tirme [s]

Fig. 4.17

Initial Tracking Error Yy

1
0 01 02 03 0.4 05 0& o7 0g 0g 1
time [s]

Fig. 4.18

We wish to improve the performance of the contbbgstem by using thdFS
IFT approach.
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We perform 13 iteration of the IFT algorithm to éuthe feedback controllét
with a Gauss-Newton approximation of the Hessiarttie matrixB; , a step size
of 0.2andA, =A, = O.

The final parameters are:

0, = 4047.9
0, =-3983.7

Tracking Error i

4 I 1 I I I
1] 0.1 0.2 03 04 0s 0B 07 g 08 1

time [s]

Fig. 4.19

and the corresponding tracking error:

By 13 iteration we pass from an initial codt, =0.243910° to a final cost
I, = 0.004710°.
The following figure shows the transition of thestdy, by iterations.

lteration nurmber

Fig. 4.20

From this figure we can see that the chstlecreases by the method proposed by
Hamamoto, Fukuda and Sugie.
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The following figure shows the output responseegponding to the test sigrdl

1.5 T T T T T T T T T

i ' B
. ; oy | ' ' ' Lo
' [ ' . ‘ '
' ' ' 4 B
' ' ' ' ' ' "
| - ' [ H I . -
. o ' v
H ' H . o .
'
K | ' .

Cutput corresponding to the test signal d

_“]5 1 1 1 1 1 1 1 1 1
1] 0.1 02z 03 04 05 06 07 08 08 1

time [s]

Fig. 4.21 Full: response after feedback tuning
Dotted: response with the initial controller

This figure shows that lower sensitivity is achigwea IFT. The gain and phase
plots of sensitivity are shown in the figure below.

The obtained controller achieves a satisfactoryp@my in the low-frequency
domain. These figures show that the proposed IFthodeworks well in order to
achieve low sensitivity.

Bode Diagram
20 T T T

Magnitude (dB)

180

135

an

45

Phase (deg)

a5 b L Lol ! Lol L Ll L Jd
10" 10 10 10°

Freqguency (radisec)

Fig. 4.22 Sensitivity function — Full: final cootler after feedback tuning
Dotted: initial controller
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We now fix the feedback controller as found aftex previous 13 iterations and
we perform 10 iterations with the purpose to turefeedforward controlle;.

By ten iterations, we pass from an initial cakf =0.140210° to a final cost
i, = 0.137210°.

The following figure shows the transition of thestd as a function of iteration
number.

1.41 T

1.408

1.355

Cost .JTf
i
o

1.388

138

1.375

137

lteration number

Fig. 4.23

The following figure shows the tracking error aftee tuning of the feedforward
controllerF;.

Tracking Error Yoy
.

5]
T

1 1 1 1
0 01 0z 03 0.4 05 06 o7z 0a 0s 1
time [s]

Fig. 4.24 Tracking error -Fualfter feedforward tuning - Dotted: after feedback
tuning - Dashed: initial
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The final parameters are:

0, = 4047.9
0, =-3983.7
0, =9334.1
0, =-18669
0, =9334.8

Summarizing, theHFSmethod use separate tuning of the feedback and
feedforward controllers. As for the feedback colfgrp the point is focused on
tuning in order to achieve low sensitivity insteafdtracking property, while the
feedforward controller have been tuned from thevp@nt of enhancement of
tracking performance.

The experimental results show the effectivenesseproposed IFT method.
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5. Applications on an Industrial Robot

5.1 The ABB industrial robot Irb-2000 — brief desciption

The robot used in the experiments is an ABB Irb@®@iustrial robot.
The robot has seven links which are connected Xyjosints, as shown in the
following figure.

Motor unit 5th and
3rd |A} axis €th axes

Motor unit 4th axis Bth (E) exis

4th (D} axis

Upper arm

2nd {B) axis

Lower erm

Motar unlt and L 3 I‘ Motor unit and
a i L:'; or an

Fig. 5.1 Fig. 5.2

It is built up by two big arms and a wrist. Join{aXis B in the figure is used to
move the lower arm back and forth, whereas joi(A)Bmoves the upper arm up
and down. Joint 4 (D) is used to turn the wrist amd joint 5 (E) bends the wrist
unit around its center. The sixth joint (F) is ugedurn the robot end effector,
which is mounted on the tip of the wrist (the erffitator is not shown in the
figure). Finally, joint 1 (C) turns the entire rdlaround its base.

The robot system has different built-in controljeosie for the control of each
joint angle. These controllers are cascaded Pliraibers.

-,

wel. ref.

position

¥

-
-]

FID FID JOINT

D

pos. ref.

¥y
¥

¥

P
Lt

welocity

Fig. 5.3
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5.2 The experimental platform

The experimental platform consists of:

reconfigured Irb-2000 robot system (robot andticcabinet);

VME based board computer system (target system);

Host computer system consisting of Sun workstatitnost system);

Ethernet connection between host and target.

The Irb-2000 is controlled from VME-based embeddedmputers. Sun

workstations are used for software developmentcamdrol engineering, as well
as for robot operator interaction.

mEEE | 1 Ethernet 1 -EE
Work- Work- Work-
station station station
______________________________________________ SUN_
VME
CPU-board CPU-board CPU-board CPU-board [
1 6 x DSP32C [ JR3 DSP 1 Power PC M68030
—~ I T I I |
S -
g Acceleration Force, ” VME-bus
0 ~joraue Di
@ | /g RS232
g
0 Resolver . .
- to Digital N
£ Converters
= Interface to
S ¢ internal ABB bus
T ]
S — ABB control
n IO, control cabinet and
interface IRB-2000 drive electronics
L -

Fig. 5.4

The above figure shows the Irb-2000 part of th@datory. Signals from internal
sensors of the robot to the VME system go via #mwsar interface to the DSP
board connected to the VME bus.

The master computer in the VME computer is basedPower PC processor.
Supervision and safety functions are implementedaoM68030 board, well

separated from the rest of the system to prevemtaga of the robot. Digital

Signal Processors(DSP) are used for low-level obrand filtering of sensors

signals. Sensors requiring very high data bandwidtle connected directly to the
DSP boards. An additional DSP board belongs tddtee-torque sensor.
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5.3 The Matlab-robot connection

By the Sun workstations on host-level it is possibd define and write the
programs to control the robot or send it refererodse tracked. That can be done
inside the Matlab environment.

A Matlab program calledExc_handler(excitation handler) is available for simple
excitation experiments on the robot. This program be used to define velocity
and position references to the robot servos. Tipaitencan be steps, ramps,
sinusoids, noise and other arbitrary signals froenNlatlab workspace.

= Excitation signals (2002-03-37) JE

File Inp_Sign Plot  Record Excitation Special

Fig. 5.5

A lot of signals can be recorded during the exidtat These include input
torques, position measurements, differentiatedtipos{velocity), and force and
torque measurements from the force sensor. Thededsignals can be exported
to the Matlab workspace for plotting and data psscey.

= Excitation signals (2002-03-31) =T

File ing ez Plot Record Escitation  Special

duve | I pA AvE | Jub o6 | dgB | I mz I simB

duvs | Jdps | dvs | Jdus | dgs | ddgs | omy | 0 simS

ouwd | L pd dwd | dud g | Jdgd ) mx | ) simd

Back
duyd | dpd | dwd | dud | dogd | ddgd | fz | I simd

- uwg | O pZ dwe | dud dgg | ddgg | fy | sime

NI w1 | | Wogl | ddgl | O fe | simd

Fig. 5.6
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5.4 The Simulink control interface

A Simulink control interface is available to handle connection between the
robot and the Matlab environment. The figure betepresents one robot joint.

[ _| template = @ |
File Edit “iew Simulation Format Tools Help
O = Ed& L = & Marmal -
Output from Robot Systemu
Lz
Lz
L4
Input to Fobot Systen L5
po=s_ref pos
wel_ref wel
torque_ref
i
datai
fy
dataz
10 fz
dataz Muz | gl motor_out hotar In - Hpm| DEmux
mix
datad output fram Simulink Input to Simulink
my
datag
mz
dataf
ADInd
ADOut0
15 pos_ref
wel_ref
trg_ref
BXE_pos
e wil
20 exc_trg
Ready 100%. odel

Fig. 5.7

With this interface, it is possible to connect dad signals with the Excitation
handler Exc_handley and also to build our own controller that we weitinnect to
thetorque_ref(torque reference) signal.

After we have built our controller, the Simulinkhg&mne can be automatically
translated into C code and downloaded directly thiorobot control unit.

To be able to use our own controller for jokntwe need to activate the new
controllers for the robot. This operation can beaasing the matlab program
activate_simu(k).

To reactivate the original controllers for the joive useactivate _simu®).

With the matlab programRegOffi) and RegOifi) we can remove and reinstall,
respectively, the original controller for the sgied i-th joint.
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5.5 Application of IFT to a robot joint model

Before we come to the real application we will stimbme results of the IFT
algorithm for tuning a controller for a model ofettbase joint (joint 1) for the
robot.

The joint 1 model structure we consider is thedielhg:

2
Gg=1 3 S *t2abstar

Ss+1s*+2wé,5+ax

The values used in the simulations are:

a=7

w =15

w, =17

=04

¢, =045

Notice the presence of an integrator in the pronesdel.

We control the system with a standard PID contiroicture:

r
u Robot >
% “

Fig. 5.8

1
G.(s) = k{“ﬂ +T, s}

For the realization we choose:

1+Tds+ 1
1+rs Ts

G.(9) = kp{
with 7=0.01.

Choice of the initial PID parameters - AMIGO tuning rules

We choose to start with initial paramet&ts, Ti andTd found using theAMIGO
conservative tuning rules [Astrém & Hagglund, 2003].
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The AMIGO rules, in the case when an integrator is presehe process, can be
resumed in the following way.

We make an open loop step response experiment in whicimeasure the

guantitiesk, and L of the figure, that are the slope and the intersection with the
time axis of the straight line respectively.

5':' T T T T

I :
amnt .
Kv

gl .
25F .

- .

,
;
,
5 “r -
,
/
/

E 1 1 | |
a L 500 1000 1500 2000 2500

Fig. 5.9 Open loop step response of the sy&&n

Then the AMIGO rules give the following quantities of the PHDgmeters:

k, = 0451
K, L

T, =8L

T, = 05L

In our specific case, we measured the quantities:

K, =5.4499
L =1.001

So that we get the initial PID parameters for thigot joint 1 controller:

k,, =0.0825
T,, =8.008
T,, =0.5005
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These parameters yield the following initial stepponse:

1.4

0.6+

0.2
L L
3500 4000

L
2000 2500

L
3000

L
1500

L L
500 1000

0
0
Fig. 5.10 Initial step response of the robot jdimhodel

Now we apply the standard IFT algorithm with thenaf improving the robot

joint 1 response.
We condider the following desired output responsethe reference signal

chosen as a step:
2.2
y! =T,r =— r.
§°+3s+22
1t e e
0.8} / i
!
/)
!
0.6 / B
f
‘/
04r | 7
f
|
(
0.2*/‘ B
rJ
0 500 1000 1500 2000 2500 3000 3500 4000

Fig. 5.11 Joint 1 - Desired outpyt
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The application of the classical IFT criterion ysthe cost function
1) =D (v -y
Z\ k=
and considering:

- a Gauss-Newton approximation of the HessianHembatrixR;
- astepsizg=0.1

yields, after respectively 10, 20, 30 and 40 iiere, the responses:

1.4 T T T T T T T

121 S — -

iE:1 / :

o6/ ]

1 1 1 1 1 1 1
o 500 1000 1500 2000 2500 3000 3500 4000

Fig. 5.12 Full line: final Joint 1 step respon#eral iterations
Dashed: initial response - Dotted: desired output

1.4 T T T T T T T

121 e — —— 4

08+ / |
asl §/ ]
a4t [{ |

02r / -

D 1 1 1 1 1 1 1
a 500 1000 1500 2000 2500 3000 3500 4000

Fig. 5.13 Full line: final Joint 1 step respon#era?0 iterations
Dashed: initial response - Dotted: desired output
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1.4 T T T T T T T

12} e — .

06F f/ i
oaf |/ 1

02t f .

1 1 1 1 1 1 1
] 500 1000 1500 2000 2500 3000 3500 4000

Fig. 5.14 Full line: final Joint 1 step respon#era30 iterations
Dashed: initial response - Dotted: desired output

1.4 T T T T T T T

osl S/ .

0.4 f[ 4

02f i -

D 1 1 1 1 1 1 1
0 a00 1000 1400 2000 2500 300 3500 4000

Fig. 5.15 Full line: final Joint 1 step respon#era40 iterations
Dashed: initial response - Dotted: desired output
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We can plot the graph of the cost functidmespect to the IFT iterations and
summarize the values in the following table.

Cost

I:I 1 1 1 1 1 T t t
o ] 10 14 20 24 a0 35 40

[teration number

Fig. 5.16 Criterion as function of the number T literations

Criterion values
JO(initiaI) =0.008744
Jio=0.0015060
J20=0.0002908
Jgo: 0.0001162
J4o(ﬁna|): 0.00009158

Fig. 5.17

The final values of the PID parameters are:

Kp,, =0.1421
T,,0 =5109.14
T, = 0.5651
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We can follow the parameter update during the li§oréghm looking at the
following graphs:

0.16 T T T T T T T T

015 B
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013
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Fig. 5.18
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Fig. 5.19
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Fig. 5.20
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5.6 APPLICATION OF IFT ON THE REAL ROBOT PROCESS

5.6.1 THE JOINT 1 EXPERIMENT

We implement a PID controller in the Simulink roboterface as the following
(the standard controller is deactivated and therobsignal is directly on the
torque).

Li=kp

pos_rel

vel_rel el

torque_ref

&
v
<3
b= S
Io
sl2l.| 32 .
% L2
¥ Y v

Ty

roduc
- im

TeLS ot

M mator_out Motor In Demus

simé. output from Simulink Input o Simulink y

AD0utD
15 po3_ref

vel_ref

tro_ref

20 exc_trg

Fig. 5.21

The purpose is to improve the response of the rjolat 1.

The reference uses i5; :( 4ya jr , witha = 0.25,r unit step.
s+4/a

We start with the initial parameters:

K, =04

T =1

T, =01

We use the criteriod (p) = %Zﬁl:(yt -y%)? and
t=1

desired output as the reference signal,
a Gauss-Newton approximation of the Hessian f@ntitrixR;;

- astepsizg=0.1.

We performed three different IFT schemes: stan@aodweights), modified with
double weighting and modified with variable mask.

The results are shown in the following sections.
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Standard IFT — no weights
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Fig. 5.22 Full: initial response - Dotted: desimdput
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w
=
(]
=
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E
E
o
=
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0 0.5 1 1.5 2 25 3 34 4 4.5 g
time [s]

Fig. 5.23 Full: final response after 10 iteratienBashed: initial — Dotted: desired

We can notice how the settling time is not verys$attory.
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In the following pictures the parameter updatessavn.
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Fig. 5.24
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Fig. 5.25
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Fig. 5.26
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Modified IFT — fixed weighting

We use now a modified criterion using time weiggtias shown in the first
picture.

Jaint 1 response

|
1 0.4a 1 14 2 25 3 34 4 4.5 ]
time [=]

Fig. 5.27 Full: initial response - Dotted: desimdput

Joint 1 response

1 ns 1 14 2 24 3 34 4 45 A
tirme [s]

Fig. 5.28 Full: final response after 8 iteratienBashed: initial — Dotted: desired

We can notice how this technique yields to a betsponse in terms of settling
time. However we introduce oscillations during twershoot and the result from
iteration number 9 became critical (stability pex).
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The parameter updates are shown in the picturesvbel

0.49

04 1 1 1 1 1 1 1

lteration nurmber

Fig. 5.29

lteration nurmber

Fig. 5.30
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lteration nurmber

Fig. 5.31
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Modified IFT — Weighting with a variable mask

A mask with initial lengt of 1.5 seconds is usedshswn in the figure below and
at every iteration it is decreased by 0.15 seconds.
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x
E
()
=
_2 1 1 1 | 1 1 1 1 1
a ns 1 1.5 2 25 3 35 4 45 5
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Fig. 5.32 Full: initial response - Dotted: desimdput
o
o
=
[
fw
a
E
2
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1
a 0.5 1 1.5 2 25 3 35 4 4.5 5
time [s]

Fig. 5.33 Full: final response after 10 iteratienBashed: initial — Dotted: desired
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The parameter updates are shown in the picturavbelo
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5.6.2 THE FLEXIBLE BEAM EXPERIMENT

The purpose is to design a controller for the beaftection and to improve the
behaviour of the system using the IFT algorithm.

We set up the robot with a flexible beam mountedhenjoint 6 of the robot (see
figure below).

Fig. 5.37 The flexible beam

We have used a force/torque sensor (JR3) for meagstinie beam deflection
(torque approximately proportional to the deflegjio

The beam was also equipped with a strain gaugehwdlgo could be used for
estimating the beam deflection but in these expamish we only used torque
measurements.

The systems is strongly related with the two-masggss seen in the previous
chapter, where we could consider the first maghe@sobot mass and the second
mass as the beam mass.

The process could be compared with the picturenpgelMherem;>>m.

dy dsy
B

Fig. 5.38 The two-mass-process
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Identification Experiment

The first step is to identify a SIMO model (Singtut Multiple Output) from the
position reference(signgloses) to the robot position and beam deflection(signal
my) which is to be used for control of the beam adibe.

In these experiments we have the standard positiotroller activated.

Step response experiment
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We see that the position control of the robot jesrgatisfactory but there are large
poorly damped oscillations for the flexible bear Hz).
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Frequency response experiment

To estimate a good model for the control we useseau® Random Binary
Sequence (PRBS) as excitation signal.

Input and output signals

1 T T T T T T T T T

—_

1
'
o
[}
v
0
) 5 B 7 g g 1

time [s]

0

Fig. 5.41 Response of the joint 1 position witARBS as reference

Input and output signals
‘I‘uj T T T T T T T T T

20 .

0 1 2 3 4 5 B 7 g 9 10
Time

Fig. 5.42 Response of the flexible beam deviafsignalm,) with a PRBS as reference
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Using a sub-space estimation method (N4SID) fronstey Identification
Toolbox (Matlab), we get good results for a stgtace model of order 6: loss
function 0.00203914, FPE 0.00214452.

Fregquency response

1D T T
[t}
ER
=JTi i
c
T
.2
1D 0 I1 I?
10 10 10 10
200
g ot 1
=
[:h]
w
£ ot .
400 . L L | . L
10’ 10 10 10°

Fregquency (rad/s)
Fig. 5.43 Frequency response of the 6 order mfodeld with the N4SID method (pos_refriy)

We try to reduce to order 4 to capture essentinhdycs but, with the original
data sequence we have a problem of matching theeatofirst resonancy
frequency and we have a lower peak for the gain.gétethe following values:
loss function 0.193784, FPE 0.200404.

Freguency response

10 T T
a
Z
= 9t i
=
by
2
10 -
10" 10°
200
g of 1
=
= 1]
o
£ 200t i
.40 N
10" 10" 100 10°

Freguency (rad/s)

Fig. 5.44 Frequency response of the 4 order m@dléline) found with the
N4SID method [foser to m,) and of the 6 order model (dotted)
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Finally, using a low pass filter on the signalsdsefdoing the identification in
order to match the first resonance frequency, we igglementing again the
N4SID method, a state space model of order 4 wih function 1.00914e-06 and

FPE 1.04361e-06 and the following frequency respons

Freguency response
10 T T

Arnplitude

10 -- -
10 10" 10 100
500 : ;
T or 1
=
a
o
£ s} -
1000 L1 il
10 10" 10 10°

Freguency (rad/s)

Fig. 5.45 Frequency response of the 4 order m@déline) found with the

N4SID method [fos.s to m)) using filtered data
Dotted: previous 6 order model — Dashed: previoasdér model (no pre-filtering)

Input and output signals

Input and output signals

time [s] time [g]

Fig. 5.46 Filtered version of the data set usedHe identification of the fourth-order model with
prefiltering
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The final discrete state-space model identifiedi€ord, prefiltering) and chosen
for the control implementation is:

X(t +t,) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

with the sampling timé& = 0.005 and the matrices:

[ 0.97659 0.00041152 -0.033363 0.067988
-0.027119 0.97038 0.008932 -0.15777

0.14484 0.087583 0.88605 -0.01417
| -0.04572  0.17648 -0.025004 0.98178

[-0.0005343

-0.0002080
0.012453

| 0.0030635

C_‘c1 _[-18.237 -7.813 0.13774 -0.001971
“|C,| | 108.12 -209.04 -3.986 13.831

3

The poles of the identified model are:

p, =0.9257+ j0.0547
p, =0.9257 - j0.0547
p, =0.9817+ j0.1736
p, =0.9817-j0.1736

Pole-Zero Map
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06|
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Imag Axis
o
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1 LI 1 == 1
-1 -05 o 0.3 1
Real Axis

Fig. 5.47
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CONTROL DESIGN

We choose a state feedback control structure with gurpose to damp the
flexible beam deflectiom, and still get a good (fast) step response.

my

r 17 ——t—
— = [, ROBOT pos
———t
—LK x
|
Fig. 5.48

Pole placement

For the closed-loop system we choose to keep teedspnd the damping of the
two poles corresponding to the position andvethe two poorly damped poles
related to the flexible beam keeping the same &iggnency but increasing the
damping.
From the identified discrete time model the polesravtransfered to the
corresponding continuos time poles were we haveamy interpretation of the
damping.

z?+a,z+a,=0 -  s*+2w(s+a’ =0
Poles are mapped according 2z0= e (p continuous time pole; discrete time
pole) [Astrém & Wittenmark].
In our case we increased the damping of the compbdes from approx 0.02 to

0.74
We make a pole placement design with the new distirae poles.

p, =0.9296 - j0.06
p, = 0.9296 + j0.06
p, =0.8724- j0.1032
p, =0.8724+ j0.1032

Pole-Zero Map
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As only the position and torquenf) are measured from the forth (or sixth order
model) we also design an observer for the procesm® fwhich we use the
feedback.

my

N + = ROBOT | |ps.

= Observer |=

—L

P
-~
X

SRN—

Fig. 5.50

The observer poles were chosen to be approximatélytimes faster than the
desired closed loop poles for the system. Evengihdhe eigenvalues oA{BL)
and A-KC) which will be the closed loop system eigenvalweste to be stable
we also want to consider the poles of the resulwogtroller, namely the
eigenvalues ofA-BL-KC), to be stable.

In the experiments when we will compare betweerontrolled and controlled
system it is convenient to be able to switch od aff the use of the controller
without troublesome transients. We have therefti@sen the poles so that also
the transfer function of the controller is stable.

To have a stable controller may also be a safetggution if there for instance
should be a sensor failure.

The state space design using state feedback ardvebgjives:

X(k+1 = AX(K) + Bu(k) + K([Y o5 (K) Y (K] =[¥pos(K) ¥ (K)])
[Vpos(K) ¥, (K)] = CX(K)
u(k) = -LX(K)

with
L =[73.7156 -87.6223 -15.0262 136.788%

-0.0089 0.0004
0.0007 -0.0015
0.0124 -0.0007
0.0029 0.0006
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We implement the state feedback controller on thieot process using the
Simulink control interface with the robot shownbielow.

,

ttput Erom Robot Systen
t
12
13
Input to Robot spsten L"
B
i 3 vel_vef
Gain
torque_rel
datal
data2
daer | M O motor_out Motor In Derni
datad output from Smlink Input 1o Simuink
datas
datas
ADirD
£DOu0
15 pos_ret
vel_ref
troy_ref
exc_vel
20 exe_trgy
LTI System
s
T Gohserver -
Gain{
: [
Ly Gainz i
L} -
Gain3
Gaind

Notice the notch filters used in the measuremenhefposition, beam deflection
and input signal to avoid problems due to the highsonancy frequency that is
not included in the 4-th order model.

_ 7z -129z+0.913
Fnotch(z) - _2
z°-1.2212+0.844

Bode Diagram
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10’ 100 -1 s i 0s 1
Freguency (rad/sec) Real Axis
Fig. 5.52 Fig.5.53

Notice also that in this case we keep the origroabt joint 1 controller and in
fact we enter in thpos_refchannel of the robot system input interface. Sause
a state feedback controller to determine the nesitipa reference to pass to the
original robot controller.
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The robot joint 1 position step response and tlaerbaeflection are:

and measured Robot Joint 1 position

Robaot Joint 1 position

ret

pos

T S S
1) 0a 1 15 2 25 3 35 4 448 g
time [s] time [s]

Fig. 5.54 Pos before statefeedback Fig. 5.55 Pos after statefeedback

reasured targue ~ bearn deflection

measured torque ~ beam deflection

: : : , : :
04 1 15 2 25 3 34 4 45 a o 0s 1 15 2 25 3 34 4 445 5
tirne [s] tirme [s]

Fig. 5.56 Signain, before statefeedback control Fig. 5.57 Signadfter statefeedback control

As we can see we get good improvements on the kasfilection but we
introduce a worse behaviour in the joint 1 postiesponse.

In the next step, the idea is to use IFT to impribsejoint 1 response still keeping
a good damping of the flexible beam.
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FIRST STRATEGY: IFT and the two-gains method

We consider the controlled robot/beam system andintreduce a two-gains
control modification. The role of IFT will be torte these two gains such that we
get improvements on the joint 1 step response.

pos

ref +
a State feedback
controlled system — >

The Simulink control interface is shown in the figubelow.

Fig. 5.58

Stort position

fitered pos

Fig. 5.59

Starting, as it is natural, with initial gains=1, =0 and using in the classical
IFT algorithm:

N
a cost functiond(p) = iZ(ypoS -y9)?
2N =

a desired outpyt’ as a unit step

a Gauss-Newton approximation of the HessianHemhatrixR;

a step sizgr = 0.50i
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we get, after 4 iterations, the following step msge and corresponding flexible
beam deflection.

) ) 02
’ = : :
02 HI S i i i
tre e P
Fig. 5.60 Initial response Fig. 5.61 After 5 iterations

measured torgue ~ beam deflection
reasurad torque ~ bearn deflection

I
o 0.5 1 15 2 25 3 35 4 45 a
tirne [5] tirne [5]

Fig. 5.62 Initial beam deflection Fig. 5.63 After 5 iterations

The following figure show the cost function.
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Zomzt
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1 1.8 2 258 3 348 4 448 g
lteration number
Fig. 5.64
The final parameters are:
a =1.3850
£ =0.4708
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SECOND STRATEGY: IFT and the three-gains method

We introduce a three-gains control modificationsaswn in the figure below,
with 7 = 001.

pos

ref +
a State feedback
’Q controlled system >

£y

s+1

Fig. 5.65

The Simulink control interface is shown on the nexge.

We start, as it is natural, with initial gaims=1, 5, =0, £, =0 and we use in
the classical IFT algorithm:

N
a cost functionJ(p) = iZ(ypos -y?)?
2N =

a desired outpyt’ as a unit step

a Gauss-Newton approximation of the HessianHemhatrixR;

a step sizgr = 0.20i.
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Fig. 5.66 The simulink interface with the roboedsn the three-gains method
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We get, after 5 iterations, the following step mws®e and corresponding flexible

beam deflection.

14 T T T T T T 14 T T T T T
B 12
: : ; 1
5 : | : 5
G : : : G
2068 B 208}
z ool z
o H ! ' =]
208 ; ' i ; 208
5 H H ' H 5
3 H H 1 H =
g H H ' H g
4 : : : : 4
D oo E——_—_—_———- —_——— 04
e ot SO SR FEE S ST S 02
AN T T SN T NN S R S o
0o 05 1 15 2 25 3 35 4 45 &
tirne [s] tirne [s]

Fig. 5.67 Initial response

Fig. 5.68 Aftgiterations

measured torgue ~ beam deflection

measured torgue ~ heam deflection

tirne [s]

Fig. 5.69 Initial beam deflection

tirne [s]

Fig. 5.70 After 5 iterations

The following figure show the cost function.
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The final parameters are:

3 34 4 44

lteration number

Fig. 5.71

a =1.6950
B, =0.7437
3, = 0.0502

We can notice how the static error is reduced atene iterations but still an

overshoot is present.
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To reduce the overshoot we implement again the trddifying the criterion
introducing a time weighting as follow:

3(p) =%i[wy(t>(yt —yy

with the weightsw(t) shown in the graph below.

1 1 1 1 1 1
1] 05 1 14 2 25 3 35 4 45 ]

time [s]

Fig. 5.72

In the IFT algorithm we use:

- adesired outpyf as a unit step
- a Gauss-Newton approximation of the HessianiHembatrixR;

- astep sizgr = 0.10i.

The initial parameters are:

a=1
By =0
B =0

Performing 4 iterations we get the following result
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Robot Joint 1 position

Robot Joint 1 position
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Fig. 5.73 Initial response Fig. 5.74 Afieiterations
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measured torque ~ beam deflection

measured torque ~ beam deflection
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Fig. 5.75 Initial beam deflection Fig. 5.76 After &rations
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Fig. 5.77

The final parameters are:

a =1.9212
3, =0.9436
B, =0.1132

Using the modified criterion, even if the reductiohthe static error through the
iterations is slower, we can notice how the IFT liaye the response in terms of
overshoot.
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6. Conclusions

In this thesis we have examined an optimizationr@ggh to iterative control
design.

The important ingredient is that the gradient & tlesign criterion needed
in the parameter update law is computed from meadstiosed loop data.

The approach is thus not model-based.

From a practical point of view, the scheme offergesal advantages. It is
straighforward to apply. It is possible to conttble rate of change of the
controller in each iteration. The objective cann@nipulated between iterations
in order to tighten or loosen performance requir@neCertain frequency regions
can be emphasized if desired.

This direct optimal tuning algorithm is particulanvell suited for the
tuning of the basic control loops in the procestustry, which are typically PID
loops. These primary loops are often very badlgtljrmaking the application of
more advanced techniques rather useless.

A first requirement in the successful applicatioh aslvanced control
techniques is that the primary loops be tuned phpp€he IFT technique appears
to be a very practical way of doing this, with &amast automatic procedure.

We showed also how IFT have high potential fortthéng of controllers
applied to non-linear systems, even if attentios twabe put in case of problems
as high friction.

The results from the robot experiments show hofaat IFT can be used
in combination with a previous controller. The espents show that it is
possible to improve the total behaviour using jest iterations of the algorithm.
The different IFT—schemes have been verified inuttions and in real
experiments on an industrial robot manipulator ABB2000.

For the experiment with the flexible beam we haveaae where we do not
explicitly want to change the parameters of a presentroller (combination of
state-estimation and state-feedback). Instead feenmalate the controller system
to a trivial feedback connection with two or thqe@rameters which are used as
initial parameters for the IFT algorithm.
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