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1.  Introduction 
 
 
 
 
Many control objectives can be expressed in terms of a criterion function. 
Generally, explicit solutions to such optimization problem require full knowledge 
of the plant and disturbances and complete freedom in the complexity of the 
controller. In practice, the plant and the disturbances are seldom known, and it is 
often desirable to achieve the best possible performance with a controller of 
prescribed complexity. For example, one may want to tune the parameters of a 
PID controller in order to extract the best possible performance from such simple 
controller. 

The optimization of such control performance criterion typically requires 
iterative gradient-based minimization procedures. The major stumbling block for 
the solution of this optimal control problem is the computation of the gradient of 
the criterion function with respect to the controller parameters: it is a fairly 
complicated function of the plant and disturbance dynamics. When these are 
unknown, it is not clear how this gradient can be computed. 

The contribution of  [Hjalmarsson, Gunnarsson, Gevers, 1994] was to 
show that an unbiased estimate of the gradient can be computed from signals 
obtained from closed loop experiments with the present controller operating on 
the actual system. 

For a controller of given (typically low-order) structure, the minimization 
of the criterion is then performed iteratively by a Gauss-Newton based scheme. 

For a two-degree-of-freedom controller, three batch experiments are to be 
performed at each step of the iterative design. The first and third simply consist of 
collecting data under normal operating conditions; the only real experiment is the 
second batch which requires feeding back, at the reference input, the output 
measured during normal operation. Hence the acronym Iterative Feedback Tuning 
(IFT) given to this scheme. For a one-degree-of-freedom controller, only the first 
and second experiments are required.  No identification procedure is involved. 

As in any numerical optimization routine, a variable step size can be used. 
This allows one to control the rate of change between the new controller and the 
previous one and is an important aspect from an engineering perspective. 
Furthermore a variable step size is the key to establishing convergence of the 
algorithm under noisy conditions. With a step size tending to zero appropriately 
fast, ideas from stochastic averaging can be used to show that, under the condition 
that the signal remain bounded, the achieved performance will converge to a 
(local) minimum of the criterion function as the number of data tends toward 
infinity. 

The optimal IFT scheme of [Hjalmarsson et al, 1994] was initially derived 
in 1994 and presented at the IEEE CDC 1994. 

The IFT method is appealing to process control engineers because, under 
this scheme, the controller parameters can be successively improved without ever 
opening the loop. 

In addition, the idea of improving the performance of an already operating 
controller, on the basis of closed-loop data corresponds to a natural way of 
thinking. 
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2.  IFT Description 
 
 
 
 
2.1 Two-degree-of-freedom controllers and IFT 
 
 
The theory in this section is based on [Hjalmarsson, Gevers, Gunnarsson, Lequin, 
1998]. 
We consider an unknow true system described by the discrete model 
 
                                                             ttt vuGy += 0                                            (1) 

 
where G0 is the linear time-invariant operator, y is the measured output, u is the 
control input, {vt} is an unmeasurable process disturbance and t represents the 
discrete time instants (remark: to easy the notation the time index t is sometimes 
left out). 
 
We consider that this system is to be controlled by a two-degree-of-freedom 
(2DOF) controller: 
 
                                                   tytrt yCrCu )()( ρρ −=                                      (2) 

 
where Cr(ρ) and Cy(ρ) are linear time-invariant transfer functions parametrized by 

some vector ρρ nR∈ , and {r t} is an external deterministic reference signal, 

independent of {vt}. 
Notice that it is possible for Cr(ρ) and Cy(ρ) to have common parameters. 

v

u

-

G0

Cy

Cr

r y

 
We will use the notation yt(ρ) and ut(ρ) for the output and the control input of the 
system (1) in feedback with the controller (2), in order to make the dependence of 
these signals on the controller parameter vector ρ explicit. 

Fig. 2.1 A two-degree-of-freedom controller 
structure 
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Let yd be a desired output response to a reference signal r for the closed loop 
system. This response may be defined as the output of a reference model Td such 
that 

 
                                                           td

d
t rTy =                                                     (3) 

 
but for the IFT method knowledge of the signal d

ty  is sufficient. 

The error between the achieved and the desired response is 
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This error consists of a contribution due to incorrect tracking of the reference 
signal r t and an error due to the disturbance v. 
 
For a controller of some fixed structure parametrized by ρ, it is natural to 
formulate the control design objective as a minimization of some norm of 

)(~ ρy over the controller parameter vector ρ. 
We will consider the following quadratic control performance criterion: 

 
 
                (4) 
 

 
where N is the number of samples considered and E[⋅] denotes expectation with 
respect to the weakly stationary disturbance v. 
 
The filter Ly is a frequency weighting of the error between the desired response 
and the achieved response. The filter Lu weights the penalty of the control effort. 
They can of course be set to 1, but they give added flexibility to the design. 
 
The optimal controller parameter *ρ  is defined by: 
 
                                                     )(minarg* ρρ

ρ
J=                                          (5) 

 
The objective of the criterion (4) is to tune the process response to a desired 
deterministic response of finite length N in a mean square sense. 
 
As formulated, this is a model reference problem with an additional penalty on the 
control effort. 
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Let T0(ρ) ans S0(ρ) denote the achieved closed loop response and sensitivity 
function with the controller {Cr(ρ), Cy(ρ)}: 
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Given the independence of r t and vt, J(ρ) can be written as: 
 

 
 
 
 
 
 

 
The first term is the tracking error, the second term is the disturbance 
contribution, and the last term is the penalty on the control effort. 
 
 
 
 
CRITERION MINIMIZATION 
 
We examine now the minimization of the criterion (4) with respect to the control 
parameters vector ρ  for a controller of specified structure. 
 
To obtain the minimum a necessary condition is that the first derivative of J(ρ) 
w.r.t. the controller parameter ρ is zero: 
 

 
        (6) 
 

 
where for simplicity we assume Ly =Lu=1. 
 

If the gradient )(ρ
ρ∂

∂J
 could be computed, then the solution of the previous 

equation would be obtained by the following iterative algorithm: 
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Here iγ  is a positive real scalar that determines the step size and Ri is some 
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must obey some constraints for the algorithm to converge to a local minimum of 
the cost function J(ρ)). 
 
Ri determines the update direction and is therefore crucial for the performance of 
the algorithm. Typically we choose a Gauss-Newton approximation of the 
Hessian of J, so: 
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We will see that all the signals (estimates) needed in this expression of Ri will be 
available from the IFT algorithm. 
 
As stated the problem is intractable since it involves expectations that are 
unknown. 
 

However, such a problem can be solved by replacing the gradient )(ρ
ρ∂

∂J
 by an 

unbiased estimate. 
In order to solve this problem, one needs to generate the following quantities: 
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These quantities can be obtained by performing experiments on the closed loop 
system formed by the actual system in feedback with the controller 
{ })(),( iyir CC ρρ .  

 
We will see that (8) can be expressed us follow: 
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COMPUTATION OF THE GRADIENT 
 

Noting that )()(
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From the expression above we see that the gradient depends also on the not 
computable quantities T0(ρ) and S0(ρ) since they depend on the unknown system. 
Therefore, unless an accurate model of the system is assumed to be available, the 

signal )(ρ
ρ∂

∂ ty
 can only be obtained by running experiments on the actual closed 

loop system. 
 
Notice that the last two terms in the expression above involve a double filtering of 
the signal r and v throught the closed loop system: 
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The term T0(ρ)(r-y) can be obtained by substracting the output signal from one 
experiment of the closed loop system from the reference and by using this error 
signal as reference signal in a new experiment. 
In each iteration i of the controller tuning algorithm, we will use three 
experiments, each of duration N, with the fixed controller 

{ })(),(ˆ)( iyiri CCC ρρρ =  operating on the actual plant. 

 
We will see that only the second experiment is a special experiment, the first and 
the third just consist of collecting data under normal operating conditions. 
 
We denote the N-length reference signals by jir , j =1,2,3, and the corresponding 

output signals by )( i
jy ρ , j =1,2,3. 
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We have:  
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Here j

iv  denotes the disturbance acting on the system during experiment j at 

iteration i (these disturbance can be assumed to be mutually independent since 
they come from different experiments). 
 
With these experiments 
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is a perturbed version (by the disturbance 2
iv  and  3

iv ) of  )(ρ
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∂ ty
. 

 
So now we have an estimate of the gradient that can be used in (6) and so in (7) 
for the updating control parameter law. 
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we can see that the three experiments described above generate the corresponding 
control signals: 
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These signals can similarly be used to generate the estimates of the input related 
signals required for the estimation of the gradient (6). 
 
Indeed )(1

iu ρ is a perfect realization of )( iu ρ , 
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Resuming, with these two gradient estimates an experimentally based estimate of 
the gradient of J can be formed by taking: 
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ONE-DEGREE-OF-FREEDOM CONTROLLERS 
 
In the case where the simplified controller structure CCC yr == ˆ  is used, i.e., 

 
))(( yrCut −= ρ , 

 
the algorithm simplifies because the third experiment becomes unnecessary. 
 
Therefore, in the case of a one-degree-of-freedom controller, the first two 
experiments are run with the same reference signals as the case of a two-degree-
of-freedom controller, i.e., 
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Fig. 2.2 A one-degree-of-freedom controller 
structure 
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2.1.1 Two-degree-of-freedom controllers – EXAMPLE 1 
 
 
 
Consider the plant 
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where the operator q is the forward shift operator, that is 1+= tt fqf . 

 
We add a disturbance v as in (1) given by a noise n which is the output sequence 
of white (Gaussian) noise with zero mean and variance 0.01 filtered by the 
following frequency weighting function 
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We use the following quadratic criterion: 
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and the same fixed step size for all the parameters, 1.0=iγ , and a Gauss-Newton 

approximation of the Hessian of J for the matrix Ri. 
Performing the IFT algorithm described above we get, after 15 iterations, the final 
parameters 

-214.6256
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33.1330

3

2

1

=
=
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ρ
ρ
ρ

 

and the following results: 
 
 
Number of 
iterations 

Value of the final 
criterion J 

1 11.3131 
2 10.7929 
3 10.2780 
4 9.7635 
5 9.2482 
6 8.7339 
7 8.2239 
8 7.7219 
9 7.2314 
10 6.7555 
11 6.2971 
12 5.8591 
13 5.4442 
14 5.0561 
15 4.7000 

(initial value of the criterion = 11.8443) 
 

 
Fig. 2.4  Step Response (step at t =1, amplitude 1) 

Dotted line: initial - Solid line: final 

Fig. 2.3 
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2.1.2 Two-degree-of-freedom controllers – EXAMPLE 2 
 
We now apply the IFT scheme to the tuning of the controller for a flexible servo, 
a “two-mass-system” (two masses connected with a spring). 
 
The following figure show the sketch of the process. 

 
Fig. 2.5 

 
We have the two masses m1 and m2. The spring between the masses has the spring 
constant k. The viscous damping coefficients are d1 and d2, respectively. 
One of the masses is driven by a DC-motor. Here we neglect the internal 
dynamics of the motor. The force from the motor is proportional to the voltage u, 
that is: 
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Force balance equations give the following  dynamical model: 
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Introducing the state vector Tppppx ][ 2211 ��=  and y = p2, the system can 
be written on state-space form, 
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We use the following constants and coefficients: 
 
m1 = 2.29 kg 
m2 = 2.044 kg 
d1 = 3.12 N/m/s 
d2 = 3.73 N/m/s 
k = 400 N/m 
km = 2.96 N/V 
ky = 280 V/m 
 
These values correspond to the real process which will be considered in next 
section. 
 
The purpose is to control the position p2. 
 
Assuming that we could measure all the states, using a state feedback control 
strategy, we could place the poles for the closed loop system freely 
(controllability matrix has full rank) by using the control law: 
 

)()()( tyltLxtu rr+−=  
 
by properly choosing the parameters L = [l1 l2 l3 l4]. 
 
Here yr is the reference value and lr is a scalar gain affecting the overall gain and 
it is chosen to get the correct stationary gain (=1). 
 
We choose the following desired poles for the closed loop system (c.l.s.): 
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Fig. 2.6 

 
Note the poorly damped first pole-pair, which we have chosen on purpose. 
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They give an oscillatory response for the position of the second mass and our aim 
will be to improve the corresponding controller to get a better behaviour.  
 
Assume now that only the position p2 is measurable. Thus we are faced with a 
control problem where we want to feedback signals which we can not measure. 
We need to estimate the process state vector using an observer (Kalman filter) 
described by: 
 

))(ˆ)(()()(ˆ
)(ˆ

22 txCtyKtButxA
dt

txd −++=  

 
where )(ˆ tx denotes the states of the observer. K can be chosen so that the observer 
states are approaching the real states with an arbitrarily fast rate of convergence 
(usually such that the observer dynamics will be 1.5 to 2 times faster than the 
closed loop system). 
We get:          
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We will use the observer states in the feedback law instead of the real states which 
we can not measure.  
 
The Simulink scheme of the controlled system is shown below. 
 

 
Fig. 2.7 

 
By decomposing the state-space realization we can easily find the transfer 
functions from yr to u and from y2 to u, so that we could have a two-degree-of-
freedom controller structure as below. 

 
Fig. 2.8 
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The initial feedforward controller is: 
 

694410s 50480 1977 50.81

932389191s 427.7  10.3262 0.2868
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The initial feedback controller is: 
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Cy ρ  

 
 
 
These initial controllers give the following response (position second mass): 
 

 
Fig. 2.9  Initial step response 

 
 
 
The parametrization chosen to be used for the IFT algorithm is: 
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Notice the choise to keep the same denominator in the two controllers Cr and Cy. 
This to keep the structure due by the observer and the state feedback control 
design. 
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We can now apply the IFT algorithm to update the control parameters of the 
feedback and the feedforward controller. We will use the following cost function: 
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As written above we need three experiments and we will implement them using 
Simulink. Actually in this example we do not use the disturbance v so we do not 
need the third experiment. 
 
The first and the second experiments have the following Simulink schemes: 
 
 

 
 

Fig. 2.10  First IFT experiment 
 
 
 
 

 
 

Fig. 2.11  Second IFT experiment: r2=r-y2 
 
 
 
 
The desired output yd is chosen as: 
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where a=3.5 and r as a unit step. 
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Fig. 2.12  Desired output yd 

 
 
Starting from an initial criterion 

00497.00 =J  

 
and using a small step size of  ,,005.0 ii ∀=γ  so that we can speak in terms of 

fine tuning, and a Gauss-Newton approximation of the Hessian of J for the matrix 
Ri, after n = 600 iterations, we get the following final parameters: 
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and the final criterion value 

5
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Fig. 2-13  Step Response (step at t =1, amplitude 1) 
Solid line: final (after 600 iterations) 
Dashed line: initial  –  Dotted: desired 

 
 
 
 
 

 
 

                Fig. 2.14  Final value of the cost function J versus 
                                       the IFT iteration number 
 
 
 
 

Iteration 
number 

Final Cost 

100 0.001799028 
200 0.000653825 
300 0.000237864 
400 0.000086545 
500 0.000031488 
600 0.000011455 

Initial cost: 0.004971208       
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Fig. 2.15  Left: after 100 iterations – Right: after 200 iterations 
 
 
 
 

 
 

Fig. 2.16  Left: after 300 iterations – Right: after 400 iterations 
 
 
 
 

 
 

Fig. 2.17  Left: after 500 iterations – Right: after 600 iterations 
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The parameters updating is shown in the following figures. 
 
 
 
 

 
Fig. 2.18 
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Fig. 2.19 

 
 
 

 
Fig. 2.20 
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Fig. 2.21 

 
 
 

 
Fig. 2.22 

 
 
 

 
Fig. 2.23 
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    Fig. 2.24 
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THE REAL PROCESS AND THE PROBLEM OF FRICTION 
 
An implementation on the real process has been tried but a relevant problem has 
been encountered: friction. 
In this case, a nonlinear contribution (friction) does not allow the IFT method to 
work properly and in our specific case, the friction was too important and the 
calculations of  y-yd during the iterations of the algorithm were distorted. 

 
Fig. 2.25 

 
In the following picture, we show the behaviour of the system and we can 
understand how in this case the implementation of IFT was almost impossible 
because we could neither check the result of the final controller nor keep stability 
properties. 

 
Fig. 2.26  Position response to a square wave reference signal 

 
A problem with friction and a poorly tuned initial controller is that the process 
will stick at positions which are far from the reference value and which may 
change a lot from one iteration to another. 
The experiments on the real process, even we are in presence of a limit case of 
huge friction, showed the limit of IFT that usually is based on the measurements 
of the error between the output of the system and the desired response. 
However we will show in the next chapter how it is still possible to apply the IFT 
method to the case of (deterministic) nonlinear systems. 
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2.2 Convergence of IFT 
 
 
Consider a discrete time linear time-invariant (LTI) model 
 

ttt vuGy += 0  

(vt disturbance) 
 
and let be the system be controlled by the controller 

))(( tt yrCu −= ρ  

with ρρ nℜ∈ . 
 
In this section we state exact conditions for which the controller parameters 
updated with the IFT algorithm converge to the set of stationary points of the 
criterion  
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Let D be a convex compact subset of ρnℜ . 
 
We introduce the following conditions on the noise, the controller, the closed loop 
system and the step sizes of the algorithm, respectively. 
 
V1) In any experiment, the signal sequence vt ,t=1, …, N consists of zero mean 
random variables which are bounded: Cvt ≤  for all t. 

The constant C and the second order statistics of vt are the same for all 
experiments, while sequences from different experiments are mutually 
independent. 
 
C1) There exists a neighbourhood Θ to D such that )(ρC is two times 

continuously differentiable w.r.t. ρ in Θ . 
 
C2) All elements of the transfer functions 
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have their poles and zeros uniformly bounded away from the unit circle on D. 
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S1) The linear time-invariant closed loop system is stable and has all its poles 
uniformly bounded away from the unit circle on D. 
 

A1) The elements of the sequence { }iγ  satisfies 0≥iγ  and  

∞

=

∞=
1i

iγ . 

A2) The elements of the sequence { }iγ  satisfies 

∞

=

∞<
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2

i
iγ . 

 
 
 
 
Theorem (Hjalmarsson, 1998) 
 

Consider the IFT algorithm ( given by )(1
1 iiiii

J
R ρ

ρ
γρρ

∂
∂−= −

+   ). 

Assume that V1), C1), C2), S1), A1) and A2) hold.  
Assume that iR is a symmetric matrix which is generated by the experiments at 

iteration i and satisfies  

IRI i δ
δ

≥≥1
 

for some 0>δ . 
 
Then 
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ρρρ JDci
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on a set { }iDA i ∀∈= ρ . 

 
 
 
The basic requirement for convergence is that the signals remain bounded 
throughout the iterations (since the result only applies to the set A introduced in 
the theorem). 
 
The power of the theorem is that apart from the assumption of linearity and time-
invariance there are no other assumptions on the properties of the system. The 
same holds for the controller: the complexity of the controller is arbitrary and the 
result thus applies to simple PID controllers as well as to more complex ones. 
 
It is also important to notice that even though the disturbances have to have the 
same second order statistics from experiment to experiment, it is not necessary 
that the disturbances are stationary during one experiment. 
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2.3 The step size: a critical choice 
 
 
In this section we discuss and show with some expamples, how critical is the 
choice of the step size γ in the parameter update law 
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Let’s take the following robot model: 
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with N=10. 
 

 
Fig. 2.27 

 
To implement IFT on this system we use the criterion 
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and a Gauss-Newton approximation of the Hessian for the matrix Ri . 
 
We use as desired output 
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a
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with r(t) as the unit step and a=4. 
 
 
Starting with the initial parameters kp=2 and Td=2 we get the an initial cost J0 = 
0.0077 and the following response: 
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Fig. 2.28  Response with the initial PD parameters(full) and the desired output (dotted) 

 
 
Performing 50 iterations of IFT using a step size γ=0.1 we get  a final cost J50 = 
0.0043 and the following response: 
 
 

 
Fig. 2.29  Final response after 50 iterations of IFT using a step size of 0.1(full), 

initial response(dashed) and desired output (dotted) 
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We can look at the cost function values as function of the iterations number: 
 

 
Fig. 2.30  (step size γ=0.1, final cost J50 = 0.0043) 

 
 
We perform now the same number of iterations, starting form the same initial 
parameters but using a bigger step size, γ=0.5. 
 
The response is: 

 
Fig. 2.31 
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We get the same final cost value J50 = 0.0043 but if we look at the graph of J as 
function of the iteration numbers we can observe an interesting behaviour: 
 

 
Fig. 2.32  (step size γ=0.5, final cost J50 = 0.0043) 

 
 
 
We can see that after 3 iteration we get a lower, even if not considerably, cost 
function value (J50 = 0.0042 ). 
 
So it’s not useful to continue in the iterations and it’s enough to stop the IFT 
algorithm just after 3 iterations. 
 
This is an important aspect of the iterative tuning methods since it can happen that 
we find a local minimum just after few iteration and if we don’t look at the cost 
value during the iterations it can happen that we can get lower performance from 
the parameters updating. 
This is due in main part to the “irregular” surface of the cost function J and so it is 
critical to choose a right step size or at least a good stop rule for the algorithm. 
Another important issue is the approximation of the gradients and the form of the 
matrix R. In fact, in case of very irregular surface of J, we could need to use a 
very small step size if the approximation is not accurated. This holds to perform a 
high number or iterations for the IFT in order to get improvements of the 
controller. 
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Interesting is also the behaviour of the IFT implementation after 50 iteration and 
with a step size equal to 0.9: 
 

 
Fig. 2.33  (step size γ=0.9, final cost J50 = 0.0043) 

 
 
 
In this case we can see that we find more than one local minimum during the IFT 
implementation or at least four different iteration numbers in which we could stop 
instead of arriving at 50 iterations. 
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3.  The Nonlinear Case 
 
 
 
 
In this chapter we discuss an analysis of the properties of IFT when applied to 
nonlinear systems controlled by a under a linear controller. 
We will assume that the system to be controlled is given by the following 
nonlinear state-space model: 
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where ),,( wuxff =  and  ),( vxhh =  are smooth functions, where )(tx  represent 
the state vector at time t, where u(t) and y(t) are the scalar inputs and outputs and 
where w(t) and v(t) are external disturbances. 
 
We will also assume that the system is controlled by the following linear time-
invariant controller C(q,ρ): 
 

))()()(,()( tytrqCtu −= ρ  
 
where r(t) is the external reference signal and ρ is the parameters vector. 
 
Proceding in an analogous way of the previous sections, we get, differentiating the 
system equations wrt ρi:  
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As the linear case, if follows that the gradients 
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can be obtained by first performing a simulation using the system (*) with r(t) as 
reference signal and collecting the signals y1(t), u1(t), x1(t) and w1(t),  t =1,…,N 
(where the subscript denoted that the signals stem from the first simulation using 
system (*) ). 
With these signals at hand, in a second simulation use the linear time-varying 
feedback system 
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with reference signal 
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and with the special choice of time-varying matrices 
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which are function of the signals x1(t), u1(t), w1(t), v1(t) in the first experiment. 
 
It then holds that 
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By repeating the second simulation with a new reference signal 
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the (true) gradients with respect to ρj can be obtained. 
 
To obtain the gradient with respect to the complete parameter vector nℜ∈ρ , the 
second simulation has to be performed n times. 
A drawback with this method is that the number of experiments is proportional to 
the number of parameters that are to be tuned. 
 
An alternative approach to avoid this is suggested by Sjöberg and Agarval in 
[Sjöberg et al, 1997] and by De Bruyne, Anderson and Gevers in [De Bruyne et 
al, 1996] where a linear-varying model is identified. 
 
Another approach for the control of non linear systems is the development of IFT 
due to Hjalmarsson et al (1998), that we now describe. 
 
For each iteration i in  
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the IFT method uses two experiments, each of duration N say, with the fixed 
controller C(ρi) operating on the actual plant. Notice that contrary to the method 
outlined above the number of experiments is fixed to two regardless of the 
dimension of the parameter vector ρ.  
 
When r-y is used as reference in the second experiment in IFT, the system 
equations in the second experiment can be written: 
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Approximating the first two equations by a first order Taylor expansion around 
(x1(t), u1(t), w1(t), y1(t), v1(t)), the closed loop trajectories in the first experiment 
(with r as reference signal), gives 
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Above the suppressed arguments are signals from the first experiment: 
 

))(),(),(( 111 twtutxff = . 
 
Notice that )(t∆ and )(tδ  can be regarded as external signals since they are 
functions of variables in the first experiment and w2 and v2 only. 
Disregarding these signals we see that the first order approximation is identical to 
the linear time-varying equations seen previously that generate the true gradient 
except for the fact that the reference signal r(t)-y(t) in the expression of u’(t) is 
filtered by CC' whereas in (**) is not. The reason of this last difference is that in 
the IFT algorithm this filtering is done after and not before the second experiment. 
 
These similarities suggest that it should be possible to improve the performance 
for nonlinear systems using the standard IFT procedure under the following 
conditions: 
 

- the first order Taylor approximation is reasonably accurate; 
 
- the signals )(t∆ and )(tδ are small compared to )()( 22 tuftxf ux +  and 

)(2 txhx , respectively;  

 
- the error due to commuting theCC'  operator and the closed loop system 

is small. 
 
It may seem as if these stated conditions are quite restrictive. However, practice, 
as will be evidenced below, has shown that this does not seem to be the case for 
many systems. One reason for this is that it suffices to be able to compute a 
descent direction, the exact gradient is not necessary. 
However, it might be necessary to reduce the step-size γ when a perturbed 
gradient estimate is used. Furthermore, care has to be exercised if e.g. a Gauss-
Newton update is used since the joint effect of the gradient perturbation and the 
modification of the search direction caused by Ri is additive and one may end up 
in an ascent direction. 
We conclude that for nonlinear systems, it might be wise to use a small step-size. 
 
 
 
 
A SIMULATION EXAMPLE 
 
We will consider now the following noise-free nonlinear system which has x(t) 
and z(t) as states: 
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Remembering that the subscripts denote experiment number in the IFT procedure, 
for this system the right-hand side of the first equation of (**) becomes: 
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We’ll consider the system controlled with the PI controller 
10 1
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 is not very significant. So we 

can say that )()()1( 222 tuftxftx ux +=+  is a reasonable approximation of the 

second experiment. This indicates also that, provided the commutation CC'  and 
the closed loop system does not influence the signals too much, it should be 
possible to use the IFT on this system. 
 
We choose a reference signal as a period of a square-wave with period time 250. 

 
Fig. 3.1  Reference signal for the first IFT experiment 

 
 
The desired output yd is taken to be the reference signal of the first IFT 
experiment and filtered throught the following low-pass filter  
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Fig. 3.2  Desired response yd 

 
 
The parameters ρ1, ρ2, ρ3, ρ4 are adjusted in the following discrete time 
generalization of a PID controller structure: 
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We use for the IFT algorithm: 
 

- a cost function 
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- a Gauss-Newton approximation of the Hessian for the matrix Ri 
 
- a step size γi = 0.5 ∀i . 

 
 
The initial parameters are: 
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and the corresponding response can be seen in the following figure. 
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Fig. 3.3  Closed loop response with the initial PID parameters (full) 

and desired response yd (dotted) 
 
 
 
As can be seen the system exhibits some quite nonlinear behaviours. 
 
Applying the IFT algorithm, we obtain the following response after 50 iterations: 
 

 
Fig. 3.4  Response(full) after 50 iterations, desired response (dotted) and 

response with the initial PID parameters (dashed) 
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The criterion decreases monotonically during the iterations as shown below in the 
plot and in the table (the subscript denotes after how many iteration the values 
stem from). 
 

 
Fig. 3.5  Cost J as function of the number of IFT iterations 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
A comparison with the initial response shows that the IFT has managed to 
improve the performance considerably. 
It should also be noted that the simple linear controller makes a surprisingly good 
job on this nonlinear system. 
 
The corresponding final controller is given by: 
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Criterion values 
J0(initial)= 56.0030 
J10= 19.0633 
J20= 6.3112 
J30= 3.5936 
J40= 2.2127 
J50(final)= 1.0496 
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4.  Modifications and Improvements to 
IFT 

 
 
 
 
4.1 Modified criterion 
 
One of the frequent practical use of controller design is to tune a controller of 
fixed structure (for example a PID controller) in such a way that the step response 
of the closed-loop system has a minimal settling time with a small overshoot. 
The objective in such applications is to move the output of the closed-loop system 
quickly from one reference value to another; however, the particular shape of the 
transient response from the initial reference value to the final value is of no 
importance, provided that it does not have large overshoot. In addition, without 
knowledge of the actual system (which is a major reason for using IFT) it is not 
known in advance how fast a settling time can be achieved for this particular 
system with this particular controller structure. 
 
By imposing the entire response of the closed-loop system through a specific 
choice of a desired response yd, rather than just the endpoint of this transient 
response, the classical IFT criterion leads to controller parameters that realize a 
compromise between fitting the transient response and fitting the new reference 
value, even though the user does not care about the exact shape of the transient 
response. Instead, by imposing a mask on the transient response, the optimization 
will tune the controller parameters in such a way as to achieve the new desired 
reference value without focusing on a particular pre-imposed transient response 
that is perhaps not naturally achieved by the closed-loop system. 
 
We can introduce a variant of the control performance criterion (4) in which the 
signals  )(~ ρty  and )(ρtu are time weighted by weightings wy(t) and wu(t), 

respectly. 
 
Thus the criterion 
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where wy(⋅) and wu(⋅) are any nonnegative numbers. The flexibility offered by the 
time weightings wy(t) and wu(t) is that they allow one to put different weightings 
on different parts of the time responses. A particularly interesting application is 
when zero weightings are put on the transient response of the output response to a 
step change in the reference signal. 
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In this case the criterion becomes: 
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and we say that a mask of length t0 is put on the transient response of the tracking 
error. 
 
By imposing a mask on the transient response one does not waste the available 
degrees of freedom in the controller parameters on the matching of a specific and 
entirely arbitrary transient response. Instead one can focus these parameters 
entirely on achieving a fast settling time. The cost achieved after the masked 
interval is always smaller than when no mask is used.   
 
 
 
 
 
4.1.1 Simulations using weighted IFT algorithm – Improving the settling time 
 
Consider the plant 
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One wish to tune a PID controller in order to achieve a better settling time for the 
closed loop system. 
 
Consider the standard form of the PID controller: 
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that for the physical realization we change in: 
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This yields the very sluggish response shown in the figure below. 
 

 
Fig. 4.1  Closed loop step(amplitude 1) response with initial PID parameters 

 
 
 

We use in the IFT algorithm a Gauss-Newton approximation of the Hessian for 
the matrix Ri, a step size of 0.1 and the following desired response yd: 
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Fig. 4.2  Desired response to a step of amplitude 1 

 
 
The application of the classical IFT criterion using the cost function 
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yields, after 15 iterations, the response: 
 

 
Fig. 4.3  Closed loop step response(full) obtained with 

 the classical IFT criterion and using the desired response(dotted) 
 Dashed curve: response with the initial PID parameters. 

 
This response is very unsatisfactory; this is in large part due to an unfortunate 
choice of initial parameters. 
 
With the use of a fixed mask of length t0 =100 seconds, the minimization of the 
modified IFT criterion with the same initial parameters leads to the following 
closed-loop responses, obtained after 15 and 30 iterations respectively. 
 

 
Fig. 4.4  Step response(full) after 15 iterations(left) and after 30 iterations(right) using a mask of 

length 100, the desired response(dotted) and the step response with the initial PID 
parameters(dashed) 

 
 
 
This response is better than that obtained with a reference trajectory. 
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Finally a mask of decreasing length is used, with an initial length of 100 seconds, 
and with the same initial parameters again. At every iteration of the IFT scheme, 
the length of the mask is decreased by 10 seconds. 
 
 

 
Fig. 4.5  Step response(full) after 15 iterations(left) and after 30 iterations(right) using a mask of 

decreasing length, the desired response(dotted) and the step response with the initial PID 
parameters(dashed) 

 
 
Observe the dramatic improvement of the response due to the use of a mask of 
decreasing length, leading to a sequence of cost criteria (rather than a one-shot 
criterion), and to a different sequence of ρi parameter vectors than resulted with 
the direct use of a mask of length t0 =100 seconds. 
Resuming, we can use the criterion 
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to compare the results. 
 
The initial cost is J0 = 0.0294 and with the implementation of the classical IFT 
criterion we get J15 = 0.0020. 
 
 

Using IFT with fixed mask Using IFT with mask of decreasing 
length 

J15 = 0.0169 J15 = 0.0034 
J30 =  0.0117          J30 =  2.0882 · 10-4 

 
Fig. 4.6  The subscript denotes after how many iterations the values stem from. 

 
 
The initial parameters are: 
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After 15 iteration of the classical IFT criterion: 
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Using the modified criterions: 
 
 

IFT with fixed mask IFT with mask of decreasing length 
0.0538

151 =ρ ;  0.0630
301 =ρ  0.0898

151 =ρ ;    0.1460
301 =ρ  

-0.0085
152 =ρ ; 0.0099- 

302 =ρ  -0.0219
152 =ρ ;     0.0356- 

302 =ρ  

0.0169
153 =ρ ; 0.0197 

303 =ρ  0.0294
153 =ρ ; 0.0478 

303 =ρ  
 

Fig. 4.7 
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4.1.2 Simulations using weighted IFT algorithm – Improving the overshoot 
 
In this section we will present with an example how the modified criterion using 
time weightings can improve the response performance in terms of maximum 
overshoot.  
 
Consider the plant (discrete time): 

23 7413.0
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and the discrete controller: 
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This yields a step response with a considerable overshoot shown below: 
 
 

 
Fig. 4.8  Response to a step of amplitude 1 at t =1 

with the initial controller parameters 
 
 
 
Using in the classical IFT algorithm: 
 

- a partial parametrization of the controllet (numerator) 

- a cost function 
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- a Gauss-Newton approximation of the Hessian for the matrix Ri 
 
- a step size γi = 0.2 ∀i 
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we get, respectively after 4 and 9 iterations, the following step responses. 
 

 
Fig. 4.9  Step response(full) after 4 iterations of the classical IFT algorithm 

and step response with the initial parameters(dotted) 
 
 
 

 
Fig. 4.10  Step response(full) after 9 iterations of the classical IFT algorithm 

and step response with the initial parameters(dotted) 
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We see that the classical IFT criterion yields a smaller maximum overshoot (and 
settling time). 
Using a time weighting in the cost function, we will now show how we can get 
better results. 
 
Considering the cost function 
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and applying a time weighting  
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as shown in the following figure 

 
Fig. 4.11 

 
we get the following step response: 

 
Fig. 4.12 

 
that yields a much better behaviour with respect to the classical IFT criterion and 
was using only 4 iterations. 
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4.2 The BFGS method for the search direction 
 
The matrix Ri in the parameter update law determines the update direction and it is 
therefore crucial for the performance of the algorithm. 
We have seen that a good choice is to let Ri be an approximation of the Hessian. 
Especially if y~  is small, the Gauss-Newton direction 
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is a desirable choise and the natural approximation is: 
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Another good choise is the Broyden-Fletcher-Goldfarb-Shanno(BFGS) method, 
one of the quasi-Newton methods. 
One of the merits of the quasi-Newton methods is that the good estimation of 
Hessian matrix is given from the gradients of the cost function J and the design 
parameters ρi. BFGS method is well known as a good optimization method 
[Hamamoto et al, 2003]. 
The renewal law to estimate the Hessian based on BFGS method is given as 
follows. 
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The superscript denotes the k-th iteration. 
The initial matrix value of B(0) is an arbitrary positive definite matrix. Usually B(0) 
is chosen to be an identity matrix. 
The following facts are well known about the BFGS method: 
 

a) if B(k) is symmetric then B(k+1) is symmetric; 
b) if B(k) is positive definite and (z(k))Ts(k)>0, then B(k+1) is positive definite. 

 
When (z(k))Ts(k)>0 is not satisfied, let B(k+1)= B(k)>0. However such a case seldom 
occurs. 
Notice that the BFGS method uses the same data as the Gauss-Newton method.  
 
Thus the IFT parameter updating law becomes: 
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4.3 The Hamamoto-Fukuda-Sugie IFT Approach 
 
We consider the two d.o.f. control system depicted in the following figure. 
 

 
 

Fig. 4.13  Closed loop system with two-degree-of-freedom controller 
 
 
Since any two d.o.f. control system can be transformed in to this configuration 
[Sugie & Yoshikawa, 1986],  there is no loss of generality here. 
In figures, P is the SISO plant, and K and F denote the controllers to be designed. 
The scalar u, y and r are the plant input, its output and the reference, respectively. 
The signal d denotes an external test signal which is used for the estimation of the 
performance of the closed loop system and we assume that we can choose it 
arbitrarily. 
Note that all subsystems are known except for the plant P, and all the signals are 
observable. 
As we have seen before, the system Td is the desired closed loop model which is 
given in advance, and yd = Tdr is the desired trajectory which y should track. 
One distinguishing feature of the control structure shown in the figure is as 
follows. 
Let Tyr denote the closed loop transfer function from r to y, then it is known that 
the so-called conditional feedback property holds, that is, 
 

KTT dyr ∀=  

is satisfied whenever PTF d=  holds. In other words, K does not play any role for 

tracking property in the nominal case, and the main role of K is to suppress the 
effect of disturbances and plant uncertainties [Sugie & Yoshikawa, 1986]. While 
apparently, the role of F is to specify the tracking property. 
 
The controllers K and F are supposed to be uniquely determined by the design 
parameters ρa and ρb respectively. We use the symbols K(ρa) and F(ρb) in order to 
indicate their dependence on the parameters, explicitly.  For I/O signals, we use 
the similar symbols such as u(ρa) and y(ρb). From the above observation, it would 
be natural to tune K(ρa) and F(ρb) do as to achieve low sensitivity and desired 
tracking property, respectively. 
In the following we assume that one stabilizing controller pair  (K(ρa

(0)), F(ρb
(0))) 

is given in advance. And each experiment is performed in the finite time interval 
[0, tf]. 
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The strategy proposed by Hamamoto, Fukuda and Sugie (HFS-method) is the 
separeted tuning of the feedback and feedforward controllers. In particular, as for 
the feedback controller, they concentrate on tuning to achieve low sensitivity 
instead of tracking property, while the feedforward controller is tuned from the 
viewpoint if command tracking property. 
 
 
1 - Feedback controller tuning 
 
In this section we concentrate on the tuning of the feedback controller K(ρa). 
In order to achieve low sensitivity, this new method try to minimize the weighted 
sensitivity function W(s)S(s) in a certain case, where W(s) is the given weighting 
transfer function and 
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is the sensitivity function. 
 
To achive this goal the HFS method performs the following two experiments 
(A,B). 

 
 

Experiment A 
 
Set  uf (t) = 0  and  yd(t) = 0 in figure 4.13. Then the controlled system is shown as 
the figure below. 

 
 

Fig. 4.14 
 
 

Inject the test signal d(t) which is calculated from 
 

)()()( snsWsd =  
 
where n is a virtual white signal which has zero mean and an appropriate 
covariance. Then, let y(ρa) and u(ρa) be the corresponding I/O signals of the plant. 
 
For these I/O signals, we solve the following problem. 
 
 
 



 61 

FB Controller Design Problem 
 
Find the parameter ρa

* which minimizes 
22
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with  
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through iteration of experiments, where λa is a positive constant weighting scalar. 
Note that the transfer function from d to y is equal to the sensitivity function S. 
Therefore, if ∞→ft  and 0→aλ , the above cost is equal to the square of the H2 

norm of WS because of the whiteness of the virtual signal n. 
 
Now we apply the HFS method, that derives form the standard IFT algorithm 
based on Hjalmarsson and Birkeland (1998) and Hamamoto and Sugie (1999). 
 
The parameter ρa is updated by 
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where )(i

aρ  denotes the value of ρa at the i-th renewal, and )('
afbJ ρ is the gradient 

of J(ρa) with respect to ρa. 
As for the standard IFT method, the matrix )( )(i

aB ρ  gives the update direction and 

can be for example a Gauss-Newton approximation of the Hessian of J or a matrix 
found with the BFGS method. 
In our discussion and following example the scalar )(iγ  is considered as a fixed 
step-size. 
 
First, we calculate )('

afbJ ρ  from the I/O data of experiments without any model 

of P. The j-th entry of '
fbJ  is given by  

 

)(),(2)(),(2)( '''
, aajaaajajfb uuyyJ ρρλρρρ +=  

 
where )()( '

aρ⋅  denotes the derivative with respect to ρa and the subscript j means 

the j-th element of the vector. 
In order to calculate )('

afbJ ρ , we perform the following experiment. 

 
 

Experiment B 
 
Set  d(t) = 0 and yd(t) = 0 in fig. 4.13 and inject the signal uf  = y(ρa) which is 
obtained by Experiment A, and let fu(ρa) and fy(ρa) be the corresponding I/O 
signals of the plant. 



 62 

Since 

d
PK

y
a

a )(1

1
)(

ρ
ρ

+
=  

 
)()()( aaa yKu ρρρ =  

 
hold from Experiment A, the derivative with respect to ρa gives us 
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where we used the relations 
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from Experiment B. 
 
Therefore we can calculate )('

afbJ ρ  from the data 

( ))(),(),(),( ''
aaaa uyuy ρρρρ  through Experiments A and B. 

 
 
The procedure of feedback controller tuning is stopped when, for a given scalar 

0>ε  in advance, 
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and we regard )(k

aρ  as the sub-optimal parameters *
aρ . 
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2 - Feedforward controller tuning 
 
Now we fix the feedback controller as )( )(k

aKK ρ= , and tune the feedforward 

controller )( bF ρ . 

The objective here is to make y(t) track yd(t) more accurately for the given 
reference r(t) = r0. 
For this purpose we perform the following experiment. 
 

Experiment C 
 
Inject r to the two d.o.f. control system in fig. 4.13 with )( bF ρ  and K, and let 

y(ρb) and u(ρb) be the corresponding I/O signals of the plant. 
The system is shown in the figure below. 
 

 
 

Fig. 4.15 
 
For this system we solve the following problem. 
 
 
FF Controller Design Problem 
 
Assume the controllers K and )( )0(

bF ρ which stabilize the system shown in fig. 

4.13 are given. Find the parameter *
bρ  which minimizes the cost function 

22
)()()( bbdabff uyyJ ρλρρ +−=  

 
through iteration of experiments, where bλ  denotes the positive constant 

weighting scalar. 
The IFT procedure is almost the same as in the case of FB controller tuning by 
replacing fffb JJ → , FK →  and  ba ρρ → . 

The j-th entry of the gradient of the cost function is given by: 
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To calculate it we need the following experiment. 
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Experiment D 
 
Set  d(t) = 0 and  yd(t) = 0 in fig. 4.13 and inject the signal uf  = r, and let ru(ρb) and 
ry(ρb) be the corresponding I/O signals of the plant. 
From Experiments C and D, the following relations hold: 
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While, from the derivative with respect to ρb , we have: 
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Therefore, the data ( ))(),(),(),( ''

bbbb yyuu ρρρρ  are obtained through 

Experiments C and D, and we can calculate '
ffJ  from these data. 

 
 
 
 
 
 

A SIMULATION EXAMPLE 
 
Let us introduce a simple model of a robot joint expressed by the Laplace 
function: 
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1
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sGC ⋅
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where J is the joint moment of inertia. 
 
The example is taken for [Scalamogna, 2001]. In that work, the purpose was to 
improve the performance of the controlled system by adding to the system a 
suitable external control signal using Iterative Learning Control (ILC). We will 
examine the same example in terms of IFT. 
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From Gc(s) we obtain G(z) that is the discrete-time version of Gc(s) including the 
Zero Order Hold (ZOH): 
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where Ts is the sampling time. 
 
The joint is controlled by a PD feedback controller K(z) and by a feed-forward 
controller Ff(z). 
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with 
 
J = 0.0094 Ns2 

kp = 12.7 
kd = 0.4 
Ts=0.001 s 
 
The following figure shows the scheme we are considering (notice the disturbance 
added). 

 
 

Fig. 4.16 
 

We choose the following parametrizations of the two controllers: 
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with the initial parameters: 
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The reference trajectory chosen in the experiment is )2sin( tyd π= . 

The initial behaviour is shown in the pictures below. 
 

 
Fig. 4.17 

 
 

 
Fig. 4.18 

 
 
We wish to improve the performance of the controlled system by using the HFS-
IFT approach. 
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We perform 13 iteration of the IFT algorithm to tune the feedback controller K 
with a Gauss-Newton approximation of the Hessian for the matrix Bi , a step size 
of 0.2 and .0== ba λλ  

The final parameters are: 
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2

1
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=

ρ
ρ

 

 
Fig. 4.19 

 
and the corresponding tracking error: 
 
By 13 iteration we pass from an initial cost -5100.2439

0
⋅=fbJ  to a final cost 

-5100.0047
13

⋅=fbJ . 

The following figure shows the transition of the cost Jfb by iterations. 
 

 
Fig. 4.20 

 
From this figure we can see that the cost Jfb decreases by the method proposed by 
Hamamoto, Fukuda and Sugie. 
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The following figure shows the output response corresponding to the test signal d. 
 

 
Fig. 4.21  Full: response after feedback tuning 

Dotted: response with the initial controller 
 
 
This figure shows that lower sensitivity is achieved via IFT. The gain and phase 
plots of sensitivity are shown in the figure below. 
 
The obtained controller achieves a satisfactory property in the low-frequency 
domain. These figures show that the proposed IFT method works well in order to 
achieve low sensitivity.  

 
 

Fig. 4.22  Sensitivity function – Full: final controller after feedback tuning 
Dotted: initial controller 
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We now fix the feedback controller as found after the previous 13 iterations and 
we perform 10 iterations with the purpose to tune the feedforward controller Ff. 
 
By ten iterations, we pass from an initial cost -3100.1402

0
⋅=ffJ  to a final cost 

-3100.1372
10

⋅=ffJ . 

 
The following figure shows the transition of the cost Jff as a function of iteration 
number. 
 

 
Fig. 4.23 

 
 

The following figure shows the tracking error after the tuning of the feedforward 
controller Ff. 
 

 
                    Fig. 4.24  Tracking error -Full: after feedforward tuning - Dotted: after feedback 

tuning - Dashed: initial 
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The final parameters are: 
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Summarizing, the HFS-method use separate tuning of the feedback and 
feedforward controllers. As for the feedback controller, the point is focused on 
tuning in order to achieve low sensitivity instead of tracking property, while the 
feedforward controller have been tuned from the viewpoint of enhancement of 
tracking performance. 
 
The experimental results show the effectiveness of the proposed IFT method. 
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5.  Applications on an Industrial Robot 
 
 
 
 

5.1 The ABB industrial robot Irb-2000 – brief description 
 
The robot used in the experiments is an ABB Irb-2000 industrial robot. 
The robot has seven links which are connected by six joints, as shown in the 
following figure. 

 
Fig. 5.1                                                                      Fig. 5.2 

 
It is built up by two big arms and a wrist. Joint 2 (axis B in the figure is used to 
move the lower arm back and forth, whereas joint 3 (A) moves the upper arm up 
and down. Joint 4 (D) is used to turn the wrist unit and joint 5 (E) bends the wrist 
unit around its center. The sixth joint (F) is used to turn the robot end effector, 
which is mounted on the tip of the wrist (the end effector is not shown in the 
figure). Finally, joint 1 (C) turns the entire robot around its base. 
 
The robot system has different built-in controllers, one for the control of each 
joint angle. These controllers are cascaded PID controllers.  

 
Fig. 5.3 
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5.2 The experimental platform 
 
The experimental platform consists of: 
 

- reconfigured Irb-2000 robot system (robot and control cabinet); 
 
- VME based board computer system (target system); 

 
- Host computer system consisting of Sun workstations (host system); 

 
- Ethernet connection between host and target. 

 
The Irb-2000 is controlled from VME-based embedded computers. Sun 
workstations are used for software development and control engineering, as well 
as for robot operator interaction. 
 

 
Fig. 5.4 

 
The above figure shows the Irb-2000 part of the laboratory. Signals from internal 
sensors of the robot to the VME system go via the sensor interface to the DSP 
board connected to the VME bus. 
The master computer in the VME computer is based on Power PC processor. 
Supervision and safety functions are implemented on a M68030 board, well 
separated from the rest of the system to prevent damage of the robot. Digital 
Signal Processors(DSP) are used for low-level control and filtering of sensors 
signals. Sensors requiring very high data bandwidths are connected directly to the 
DSP boards. An additional DSP board belongs to the force-torque sensor. 

CPU-board 
Power PC 
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5.3 The Matlab-robot connection 
 
By the Sun workstations on host-level it is possible to define and write the 
programs to control the robot or send it references to be tracked. That can be done 
inside the Matlab environment. 
 
A Matlab program called Exc_handler (excitation handler) is available for simple 
excitation experiments on the robot. This program can be used to define velocity 
and position references to the robot servos. The inputs can be steps, ramps, 
sinusoids, noise and other arbitrary signals from the Matlab workspace. 
 

 
 

Fig. 5.5 
 
 
A lot of signals can be recorded during the excitation. These include input 
torques, position measurements, differentiated position (velocity), and force and 
torque measurements from the force sensor. The recorded signals can be exported 
to the Matlab workspace for plotting and data processing. 
 
 

 
 

Fig. 5.6 
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5.4 The Simulink control interface 
 
A Simulink control interface is available to handle the connection between the 
robot and the Matlab environment. The figure below represents one robot joint. 
 

 
 

Fig. 5.7 
 
With this interface, it is possible to connect and log signals with the Excitation 
handler (Exc_handler) and also to build our own controller that we will connect to 
the torque_ref (torque reference) signal. 
 
After we have built our controller, the Simulink scheme can be automatically 
translated into C code and downloaded directly into the robot control unit. 
 
To be able to use our own controller for joint k we need to activate the new 
controllers for the robot. This operation can be done using the matlab program 
activate_simuJ(k). 
To reactivate the original controllers for the joint we use activate_simuJ(0). 
 
With the matlab programs RegOff(i) and RegOn(i) we can remove and reinstall, 
respectively, the original controller for the specified i-th joint. 
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5.5 Application of IFT to a robot joint model 
 
Before we come to the real application we will study some results of the IFT 
algorithm for tuning a controller for a model of the base joint (joint 1) for the 
robot. 
 
The joint 1 model structure we consider is the following: 
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The values used in the simulations are: 
 

45.0

4.0

17

15

7

2

1

2

1

=
=
=
=

=

ξ
ξ
ω
ω
a

  

 
Notice the presence of an integrator in the process model. 
 
We control the system with a standard PID control structure:  
 
 
 
 
 
 

Fig. 5.8 
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with τ = 0.01. 
 
 

Choice of the initial PID parameters - AMIGO tuning rules 
 
We choose to start with initial parameters Kp, Ti and Td found using the AMIGO 
conservative tuning rules [Åström & Hägglund, 2003]. 
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The AMIGO rules, in the case when an integrator is present in the process, can be 
resumed in the following way. 
 
We make an open loop step response experiment in which we measure the 
quantities Kv and L of the figure, that are the slope and the intersection with the 
time axis of the straight line r, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.9  Open loop step response of the system G(s) 
 
 
Then the AMIGO rules give the following quantities of the PID parameters: 
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In our specific case, we measured the quantities: 
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So that we get the initial PID parameters for the robot joint 1 controller: 
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These parameters yield the following initial step response: 
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Fig. 5.10  Initial step response of the robot joint 1 model 

 
 
Now we apply the standard IFT algorithm with the aim of improving the robot 
joint 1 response. 

 
We condider the following desired output response to the reference signal r 
chosen as a step: 
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Fig. 5.11  Joint 1 - Desired output yd 



 78 

The application of the classical IFT criterion using the cost function 
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and considering: 
 
- a Gauss-Newton approximation of the Hessian for the matrix Ri 

- a step size γ = 0.1 
 
yields, after respectively 10, 20, 30 and 40 iterations, the responses: 

 

 
Fig. 5.12  Full line: final Joint 1 step response after 10 iterations 

 Dashed: initial response - Dotted: desired output 
 

 
Fig. 5.13  Full line: final Joint 1 step response after 20 iterations 

 Dashed: initial response - Dotted: desired output 
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Fig. 5.14  Full line: final Joint 1 step response after 30 iterations 

 Dashed: initial response - Dotted: desired output 
 
 
 
 
 
 

 
Fig. 5.15  Full line: final Joint 1 step response after 40 iterations 

 Dashed: initial response - Dotted: desired output 
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We can plot the graph of the cost function J respect to the IFT iterations and 
summarize the values in the following table. 
 

 

 
 

Fig. 5.16  Criterion as function of the number of IFT iterations 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.17 

 
 
 
The final values of the PID parameters are: 
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Criterion values 
J0(initial) = 0.008744 
J10 = 0.0015060 
J20 = 0.0002908 
J30 = 0.0001162 
J40(final) = 0.00009158 
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We can follow the parameter update during the IFT algorithm looking at the 
following graphs: 

 
Fig. 5.18 

 
Fig. 5.19 

 
Fig. 5.20 
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5.6 APPLICATION OF IFT ON THE REAL ROBOT PROCESS 
 
 
5.6.1 THE JOINT 1 EXPERIMENT 
 
We implement a PID controller in the Simulink robot interface as the following 
(the standard controller is deactivated and the control signal is directly on the 
torque). 
 

 
 

Fig. 5.21 
 
The purpose is to improve the response of the robot joint 1. 
 

The reference uses is r
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We start with the initial parameters: 
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We use the criterion 
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- desired output as the reference signal; 

- a Gauss-Newton approximation of the Hessian for the matrix Ri; 
- a step size γ = 0.1. 

 
We performed three different IFT schemes: standard (no weights), modified with 
double weighting and modified with variable mask. 
 
The results are shown in the following sections. 
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Standard IFT – no weights 
 

 
 

Fig. 5.22  Full: initial response - Dotted: desired output 
 

 
 

Fig. 5.23  Full: final response after 10 iterations – Dashed: initial – Dotted: desired 
 
 
 
We can notice how the settling time is not very satisfactory. 



 84 

In the following pictures the parameter updates are shown. 
 

 
Fig. 5.24 

 

 
Fig. 5.25 

 

 
Fig. 5.26 
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Modified IFT – fixed weighting 
 
We use now a modified criterion using time weighting as shown in the first 
picture. 

 
Fig. 5.27  Full: initial response - Dotted: desired output 

 
 

 
Fig. 5.28  Full: final response after 8 iterations – Dashed: initial – Dotted: desired 

 
 

We can notice how this technique yields to a better response in terms of settling 
time. However we introduce oscillations during the overshoot and the result from 
iteration number 9 became critical (stability problem). 
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The parameter updates are shown in the pictures below. 
 

 
Fig. 5.29 

 

 
Fig. 5.30 

 

 
Fig. 5.31 
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Modified IFT – Weighting with a variable mask 
 
A mask with initial lengt of 1.5 seconds is used as shown in the figure below and 
at every iteration it is decreased by 0.15 seconds. 
 

 
Fig. 5.32  Full: initial response - Dotted: desired output 

 
 

 
Fig. 5.33  Full: final response after 10 iterations – Dashed: initial – Dotted: desired 
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The parameter updates are shown in the picture below. 
 

 
Fig. 5.34 

 

 
Fig. 5.35 

 

 
Fig. 5.36 
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5.6.2 THE FLEXIBLE BEAM EXPERIMENT 
 
The purpose is to design a controller for the beam deflection and to improve the 
behaviour of the system using the IFT algorithm. 
We set up the robot with a flexible beam mounted on the joint 6 of the robot (see 
figure below). 
 
 

       
 

Fig. 5.37  The flexible beam 
 
 
We have used a force/torque sensor (JR3) for measuring the beam deflection 
(torque approximately proportional to the deflection). 
The beam was also equipped with a strain gauge which also could be used for 
estimating the beam deflection but in these experiments we only used torque 
measurements. 
 
 
The systems is strongly related with the two-mass-process seen in the previous 
chapter, where we could consider the first mass as the robot mass and the second 
mass as the beam mass. 
The process could be compared with the picture below, where m1>>m2. 
 
 

                
 

Fig. 5.38  The two-mass-process 
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Identification Experiment 
 
The first step is to identify a SIMO model (Single Input Multiple Output) from the 
position reference(signal posref) to the robot position and beam deflection(signal 
my) which is to be used for control of the beam deflection. 
In these experiments we have the standard position controller activated. 

 

Step response experiment 

 
Fig. 5.39 

 
Fig. 5.40 

 
We see that the position control of the robot joint is satisfactory but there are large 
poorly damped oscillations for the flexible beam (~6 Hz).�
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Frequency response experiment 
 
To estimate a good model for the control we use a Pseudo Random Binary 
Sequence (PRBS) as excitation signal. 
 

 
Fig. 5.41  Response of the joint 1 position with a PRBS as reference 

 
 
 

 
Fig. 5.42  Response of the flexible beam deviation (signal my) with a PRBS as reference 
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Using a sub-space estimation method (N4SID) from System Identification 
Toolbox (Matlab), we get good results for a state space model of order 6: loss 
function 0.00203914, FPE 0.00214452. 
 

 
Fig. 5.43  Frequency response of the 6 order model found with the N4SID method (pos_ref to my) 

 
 
We try to reduce to order 4 to capture essential dynamics but, with the original 
data sequence we have a problem of matching the correct first resonancy 
frequency and we have a lower peak for the gain. We get the following values: 
loss function 0.193784, FPE 0.200404. 
 

 
 

Fig. 5.44  Frequency response of the 4 order model (full line) found with the 
N4SID method (posref to my) and of the 6 order model (dotted) 
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Finally, using a low pass filter on the signals before doing the identification in 
order to match the first resonance frequency, we get, implementing again the 
N4SID method, a state space model of order 4 with loss function 1.00914e-06 and 
FPE 1.04361e-06 and the following frequency response. 
 
 

 
 

Fig. 5.45  Frequency response of the 4 order model (full line) found with the 
N4SID method (posref to my) using filtered data 

Dotted: previous 6 order model – Dashed: previous 4 order model (no pre-filtering) 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5.46  Filtered version of the data set used for the identification of the fourth-order model with 
prefiltering 
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The final discrete state-space model identified (order 4, prefiltering) and chosen 
for the control implementation is: 
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The poles of the identified model are: 
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Fig. 5.47 
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CONTROL DESIGN 
 
We choose a state feedback control structure with the purpose to damp the 
flexible beam deflection my and still get a good (fast) step response. 
 

 
 

Fig. 5.48 

Pole placement 
 
For the closed-loop system we choose to keep the speed and the damping of the 
two poles corresponding to the position and move the two poorly damped poles 
related to the flexible beam keeping the same eigenfrequency but increasing the 
damping. 
From the identified discrete time model the poles were transfered  to the 
corresponding continuos time poles were we have an easy interpretation of the 
damping. 
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Fig. 5.49 
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As only the position and torque (my) are measured from the forth (or sixth order 
model) we also design an observer for the process from which we use the  
feedback. 
 

 
 

Fig. 5.50 
 

The observer poles were chosen to be approximately 1.5 times faster than the 
desired closed loop poles for the system. Even though the eigenvalues of (A-BL) 
and (A-KC) which will be the closed loop system eigenvalues, were to be stable 
we also want to consider the poles of the resulting controller, namely the 
eigenvalues of (A-BL-KC), to be stable. 
In the experiments when we will compare between uncontrolled and controlled 
system it is convenient to be able to  switch on and off the use of the controller 
without troublesome transients. We have therefore chosen the poles so that also 
the transfer function of the controller is stable. 
To have a stable controller may also be a safety precaution if there for instance 
should be a sensor failure. 
 
The state space design using state feedback and observer gives: 
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We implement the state feedback controller on the robot process using the 
Simulink control interface with the robot shown in below. 

 
Fig. 5.51 

 
Notice the notch filters used in the measurement of the position, beam deflection 
and input signal to avoid problems due to the higher resonancy frequency that is 
not included in the 4-th order model. 
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               Fig. 5.52                                                              Fig.5.53 

 
Notice also that in this case we keep the original robot joint 1 controller and in 
fact we enter in the pos_ref channel of the robot system input interface. So we use 
a state feedback controller to determine the new position reference to pass to the 
original robot controller. 
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The robot joint 1 position step response and the beam deflection are: 
 

 
   Fig. 5.54  Pos before statefeedback                      Fig. 5.55  Pos after statefeedback 

 
 
 

 
Fig. 5.56  Signal my before statefeedback  control    Fig. 5.57  Signal my after statefeedback control 
 
 
 
 
As we can see we get good improvements on the beam deflection but we 
introduce a worse behaviour in the joint 1 postion response. 
 
In the next step, the idea is to use IFT to improve the joint 1 response still keeping 
a good damping of the flexible beam. 
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FIRST STRATEGY: IFT and the two-gains method 
 
We consider the controlled robot/beam system and we introduce a two-gains 
control modification. The role of IFT will be to tune these two gains such that we 
get improvements on the joint 1 step response. 
 
 
 
 
 
 
 
 
 
 

Fig. 5.58 
 

The Simulink control interface is shown in the figure below. 
 

 
Fig. 5.59 

 
Starting, as it is natural, with initial gains 1=α , 0=β  and using in the classical 
IFT algorithm: 

- a cost function 
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- a desired output yd as a unit step 
 

- a Gauss-Newton approximation of the Hessian for the matrix Ri 
 
- a step size γi = 0.5 ∀i 
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we get, after 4 iterations, the following step response and corresponding flexible 
beam deflection. 
 

 
     Fig. 5.60  Initial response                                    Fig. 5.61  After 5 iterations 

  

Fig. 5.62  Initial beam deflection                             Fig. 5.63  After 5 iterations 
 
 
 
The following figure show the cost function. 

 
Fig. 5.64 

 
The final parameters are: 

0.4708

1.3850

=
=

β
α

 



 101 

SECOND STRATEGY: IFT and the three-gains method 
 

We introduce a three-gains control modification as shown in the figure below, 
with 01.0=τ . 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

Fig. 5.65 
 
 
The Simulink control interface is shown on the next page. 
 
 
We start, as it is natural, with initial gains 1=α , 00 =β , 01 =β  and we use in 
the classical IFT algorithm: 
 

- a cost function 
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- a desired output yd as a unit step 

 
- a Gauss-Newton approximation of the Hessian for the matrix Ri 
 
- a step size γi = 0.2 ∀i. 
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Fig. 5.66  The simulink interface with the robot used in the three-gains method 
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We get, after 5 iterations, the following step response and corresponding flexible 
beam deflection. 

 
                     Fig. 5.67  Initial response                                     Fig. 5.68  After 5 iterations 

 
Fig. 5.69  Initial beam deflection                              Fig. 5.70  After 5 iterations 

 
 
The following figure show the cost function. 

 
Fig. 5.71 

 
The final parameters are: 
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We can notice how the static error is reduced after some iterations but still an 
overshoot is present. 
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To reduce the overshoot we implement again the IFT, modifying the criterion 
introducing a time weighting as follow: 
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with the weights wy(t) shown in the graph below. 
 

 
Fig. 5.72 

 
In the IFT algorithm we use: 
 
 

- a desired output yd as a unit step 
 

- a Gauss-Newton approximation of the Hessian for the matrix Ri 
 
- a step size γi = 0.1 ∀i. 

 
 
The initial parameters are: 
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Performing 4 iterations we get the following results. 
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                      Fig. 5.73  Initial response                                     Fig. 5.74  After 4 iterations 
 

 
                Fig. 5.75  Initial beam deflection                               Fig. 5.76  After 4 iterations 
 

 
Fig. 5.77 

 
The final parameters are: 
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Using the modified criterion, even if the reduction of the static error through the 
iterations is slower, we can notice how the IFT improve the response in terms of 
overshoot. 
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6.  Conclusions 
 
 
 
 
In this thesis we have examined an optimization approach to iterative control 
design. 

The important ingredient is that the gradient of the design criterion needed 
in the parameter update law is computed from measured closed loop data. 
The approach is thus not model-based. 

From a practical point of view, the scheme offers several advantages. It is 
straighforward to apply. It is possible to control the rate of change of the 
controller in each iteration. The objective can be manipulated between iterations 
in order to tighten or loosen performance requirements. Certain frequency regions 
can be emphasized if desired. 

This direct optimal tuning algorithm is particularly well suited for the 
tuning of the basic control loops in the process industry, which are typically PID 
loops. These primary loops are often very badly tuned, making the application of 
more advanced techniques rather useless. 

A first requirement in the successful application of advanced control 
techniques is that the primary loops be tuned properly. The IFT technique appears 
to be a very practical way of doing this, with an almost automatic procedure. 

We showed also how IFT have high potential for the tuning of controllers 
applied to non-linear systems, even if attention has to be put in case of problems 
as high friction. 

The results from the robot experiments show how in fact IFT can be used 
in combination with a previous controller. The experiments show that it is 
possible to improve the total behaviour using just few iterations of the algorithm. 
The different IFT–schemes have been verified in simulations and in real 
experiments on an industrial robot manipulator ABB Irb-2000. 
For the experiment with the flexible beam we have a case where we do not 
explicitly want to change the parameters of a present controller (combination of 
state-estimation and state-feedback). Instead we reformulate the controller system 
to a trivial feedback connection with two or three parameters which are used as 
initial parameters for the IFT algorithm.  
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