
ISSN 0280-5316 
ISRN LUTFD2/TFRT--5711--SE 

  Combustion control of the  
Homogenous Charge 

Compression Ignition dynamics 

 
Roland Pfeiffer 

 
 
 
 
 
 
 
 
 
 
 

Department of Automatic Control 
Lund Institute of Technology 

September 2003 
 
 



 



Document name 
MASTER THESIS 
Date of issue 
September 

Department of Automatic Control 
Lund Institute of  Technology 
Box 118 
SE-221 00 Lund Sweden Document Number 

ISRN LUTFD2/TFRT--5711--SE 
Supervisor 
Rolf Johansson LTH, the Department of Automatic 
Control. 
Per Tunestål LTH, Division of Combustion Engines 
 

Author(s) 
Roland Pfeiffer 
 

Sponsoring organization 

Title and subtitle 
Combustion control of the Homogenous Charge Compression Ignition dynamics (Förbränningsreglering av HCCI-
dynamik) 
 

Abstract 

The HCCI engine has potential to replace the spark ignition and compression ignition engines of today. One of the main 
problems in making the engine commercially attractive is that there are no direct means of controlling the ignition phasing. 
This thesis attempts to describe a method for system identification of the HCCI process, and development of an effective 
LQG regulator for the combustion process. Matlab and Simulink are used in computations and simulations. 

 
 

Keywords 

Classification system and/or index terms (if any) 
 

Supplementary bibliographical information 
 
ISSN and key title 
0280-5316 

ISBN 
 

Language 
English 

Number of pages 
59 

Security classification 

Recipient’s notes 

The report may be ordered from the Department of Automatic Control or borrowed through: 
Lund University Library , Box 3, SE-221 00 Lund, Sweden Fax +46 46 222 42 43       



 



 
 

Master thesis 
 

Combustion control of the  
Homogenous Compression Charge  

Ignition dynamics 
 

System identification and development of an LQG  

controller for the ignition phasing 

 

Performed at Lund Institute of Technology  
at the 

Department of Automatic Control  
in association with the 

Division of Combustion Engines 
 
 

 

 

 

 

  

 

 

 

 

 

 

 Performed by: 

 Roland Pfeiffer 

 Supervisors: 
 Professor Rolf Johansson 

 Ass. Professor Per Tunestål 



 



 - - 2 - - 

1 INTRODUCTION ............................................................................................................................................. - 4 - 
1.1 METHOD ......................................................................................................................................................- 4 - 
1.2 OBJECTIVE...................................................................................................................................................- 4 - 
1.3 OUTLINE OF THE TEXT.................................................................................................................................- 4 - 

2 THE HCCI PROCESS...................................................................................................................................... - 4 - 
2.1 THE ENGINE .................................................................................................................................................- 5 - 
2.2 MEASURING IAT .........................................................................................................................................- 5 - 

3 EXPERIMENTS................................................................................................................................................ - 5 - 
3.1 PROCESS STABILITY.....................................................................................................................................- 6 - 
3.2 INITIAL EXPERIMENTS .................................................................................................................................- 6 - 

4 MAIN EXPERIMENTS ................................................................................................................................... - 7 - 
5 SYSTEM IDENTIFICATION......................................................................................................................... - 9 - 

5.1 METHOD ......................................................................................................................................................- 9 - 
5.2 MODEL ACCURACY......................................................................................................................................- 9 - 
5.3 SAMPLING RATE ..........................................................................................................................................- 9 - 
5.4 RESULT ........................................................................................................................................................- 9 - 
5.5 CHOICE OF MODEL COMPLEXITY.............................................................................................................. - 10 - 

5.5.1 Method ................................................................................................................................................ - 10 - 
5.5.2 Result................................................................................................................................................... - 10 - 

5.6 ONE MODEL OR SEVERAL?........................................................................................................................ - 10 - 
5.6.1 Method ................................................................................................................................................ - 10 - 
5.6.2 Result................................................................................................................................................... - 10 - 

5.7 THE MODEL............................................................................................................................................... - 11 - 
5.7.1 Method ................................................................................................................................................ - 11 - 
5.7.2 Result................................................................................................................................................... - 11 - 
5.7.3 Poles and zeros ................................................................................................................................... - 11 - 
5.7.4 Bode diagrams .................................................................................................................................... - 13 - 
5.7.5 Observability and controllability ....................................................................................................... - 13 - 
5.7.6 Simulation capacity............................................................................................................................. - 14 - 

5.8 VALIDATION ............................................................................................................................................. - 14 - 
5.8.1 Residuals ............................................................................................................................................. - 14 - 

5.9 MODEL AND SIMULINK ............................................................................................................................ - 15 - 
5.9.1 Constructing an engine block in Simulink.......................................................................................... - 15 - 

6 CONSTRUCTING A CONTROLLER ........................................................................................................ - 16 - 
6.1 METHOD ................................................................................................................................................... - 16 - 
6.2 A COMMENT ON THE FIGURES.................................................................................................................. - 17 - 
6.3 STEP ONE, NO NOISE ................................................................................................................................. - 17 - 

6.3.1 Result................................................................................................................................................... - 18 - 
6.4 STEP TWO, ADDING NOISE......................................................................................................................... - 20 - 

6.4.1 Result................................................................................................................................................... - 21 - 
6.5 STEP THREE, ADDING DELAYS .................................................................................................................. - 21 - 

6.5.1 Result................................................................................................................................................... - 22 - 
6.6 STEP FOUR, NON PERFECT MODEL ............................................................................................................ - 22 - 

6.6.1 Targeted operating points .................................................................................................................. - 22 - 
6.6.2 Tuning the controller .......................................................................................................................... - 23 - 
6.6.3 Result................................................................................................................................................... - 23 - 

6.7 SENSITIVITY FUNCTION ............................................................................................................................ - 27 - 
6.8 PERFORMANCE: LQG VS. PID.................................................................................................................. - 27 - 

6.8.1 Method ................................................................................................................................................ - 28 - 
6.8.2 The LQG controller ............................................................................................................................ - 28 - 
6.8.3 The PID controller.............................................................................................................................. - 28 - 
6.8.4 Disturbance rejection, result .............................................................................................................. - 28 - 
6.8.5 Reference following, result ................................................................................................................. - 29 - 

6.9 CYLINDER INDIVIDUAL TEMPERATURE CONTROL.................................................................................... - 29 - 



 - - 3 - - 

6.9.1 Test set up............................................................................................................................................ - 31 - 
6.9.2 Result................................................................................................................................................... - 32 - 

7 IMPLEMENTATION IN JAVA ................................................................................................................... - 33 - 
7.1 REAL TIME CONSIDERATIONS................................................................................................................... - 33 - 
7.2 RESULT ..................................................................................................................................................... - 33 - 

8 CONCLUSIONS.............................................................................................................................................. - 33 - 
9 DISCUSSION................................................................................................................................................... - 33 - 

9.1 INCREASING PERFORMANCE..................................................................................................................... - 33 - 
9.2 VARIABLE COMPRESSION RATIO AND FRICTION....................................................................................... - 34 - 
9.3 SPEED OF THE THERMAL ELEMENT........................................................................................................... - 34 - 
9.4 OPERATING RANGE................................................................................................................................... - 34 - 

10 REFERENCES ................................................................................................................................................ - 35 - 
11 ACKNOWLEDGEMENTS............................................................................................................................ - 35 - 
12 ABBREVIATIONS.......................................................................................................................................... - 35 - 
A OPERATING POINTS................................................................................................................................... - 36 - 

A.1 PRELIMINARY EXPERIMENTS.................................................................................................................... - 36 - 
A.2 FIRST SET OF MAIN EXPERIMENTS ............................................................................................................ - 36 - 
A.3 SECOND SET OF MAIN EXPERIMENTS ........................................................................................................ - 37 - 
A.4 THIRD SET OF MAIN EXPERIMENTS ........................................................................................................... - 37 - 

B MATLAB FILES ............................................................................................................................................. - 38 - 
B.1 LOADDATA.M ........................................................................................................................................... - 38 - 
B.2 ZIZV.M....................................................................................................................................................... - 38 - 
B.3 COMPLEXITY_TEST.M ............................................................................................................................... - 39 - 
B.4 SINGLE_MANY_TEST.M............................................................................................................................. - 40 - 
B.5 RESIDUAL_ANALYSIS.M............................................................................................................................ - 43 - 
B.6 CREATE_MODEL.M.................................................................................................................................... - 44 - 
B.7 OBSERVABILITY_CONTROLLABILITY_TEST.M.......................................................................................... - 44 - 
B.8 CREATE_SENSITIVITY_FUNCTION.M......................................................................................................... - 45 - 
B.9 HCCI.M .................................................................................................................................................... - 45 - 
B.10 CREATE_LQG.M......................................................................................................................................... - 47 - 
B.11 LQG_REGULATOR.M ................................................................................................................................. - 47 - 
B.12 TEST_NOISE.M........................................................................................................................................... - 51 - 
B.13 CREATE_REGULATOR.M ........................................................................................................................... - 51 - 
B.14 LQG_CONTROLLER.JAVA........................................................................................................................ - 51 - 



 - - 4 - - 

1 Introduction 
Combustion engines are very important to 
every one of us. They are used to power 
vehicles as well as electrical power 
generators, mobile pumps and so on. 
However current combustion engines all 
have some drawback. Spark Ignition (SI) 
engines have low emissions but high fuel 
consumption. Compression Ignition (CI) 
engines have low fuel consumption but high 
emissions. An attempt to obtain the best 
behaviour from both SI and CI engines is the 
Homogeneous Charge Compression Ignition 
(HCCI) engine. It has the low fuel 
consumption of the CI engine combined 
with the low emissions of the SI engine. 

The HCCI engine does have its drawbacks 
however. Due to its operation there is no 
direct way of controlling the ignition 
phasing. This means that it is very hard to 
control the engine. As a step towards 
building a better controller than is available 
today, this master thesis aims at identifying 
the process and subsequently developing an 
effective controller.  When a good model of 
the engine process is obtained this model can 
be transferred to a Matlab Simulink block. 
This offers the possibility to develop and test 
control strategies without having to test them 
on the real engine right away.  

1.1 Method 

This Thesis is based on experimental work 
performed on an engine located at Lund 
Institute of Technology (LTH). The 
particular engine on which this master thesis 
is based is a five-cylinder prototype built by 
SAAB and equipped with a system for 
variable compression ratio (CR) and variable 
inlet air temperature (IAT). The engine is 
described in more detail in section 2.1. 

Matlab is used to make the computations 
necessary to create a Linear Quadratic 
Gaussian (LQG) controller. The functions 
used can be studied in the Matlab files listed 
in App. B. 

1.2 Objective 

The goal of this master thesis is to develop a 
model of how the ignition phasing of the 
HCCI engine is affected by the different 
input signals. This knowledge can be used to 
build simulation blocks for Matlab Simulink, 
which can be used for advanced simulations. 

Another objective is to create a controller 
that is more effective than the gain 
scheduled PID-controllers used today. For 
more information on gain scheduling see 
(Åström and Wittenmark, 1995). 

1.3 Outline of the text 

The content of this text is outlined in the 
same order the different parts have been 
performed. It starts by describing how the 
system identification is performed. This part 
includes results and validation of the 
obtained model. 

The next part of the text describes the steps 
taken to develop an LQG controller. This 
section includes development of a controller 
for an engine with cylinder individual IAT. 
A suggestion of how the controller can be 
implemented in Java is then given. 

The next section sums up the most important 
points made. This section is followed by a 
discussion of problems and possible im-
provements. 

After the describing text, there are two 
Appendices containing listings of examined 
operating points and Matlab m-files. 

2 The HCCI process 
When looking at the HCCI process the 
ignition phasing is the output signal that we 
want to control. This is affected by CR, IAT, 
engine speed and injected fuel amount. The 
HCCI process can thus be considered to be a 
multi input, single output system. The model 
can be expanded with more inputs as well as 
outputs. This work however targets the 
signals mentioned above. 

The point of ignition is defined as the crank 
angle degree where 50% of the fuel has been 
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consumed (CA50). The crank angle degree 
is measured from top dead centre (TDC), 
which is located at 0˚. Top dead centre is 
defined as the crank angle when the piston is 
at its highest position after compression. 
Another acronym that will be used in this 
thesis is ATDC, which stands for After Top 
Dead Centre. 

In an HCCI engine the fuel is injected 
outside the cylinder into the inlet manifold, 
alternatively if direct injection is used, the 
fuel is injected early enough so that the fuel 
and air will have time to form a 
homogeneous mixture. This is the same 
procedure as in an ordinary SI engine. The 
advantage of this injection strategy is that 
the air/fuel mixture is homogeneous when 
combustion occurs. This leads to cleaner 
exhausts than would be the case with direct 
injection as used in CI engines. The air/fuel 
mixture then auto ignites from the 
temperature rise that occurs as a result of the 
piston compressing the mixture.  

2.1 The engine 

The engine used for the experiments 
performed as a part of this master thesis has 
five cylinders and a displacement volume of 
1.6 litres. It is built by SAAB and originally 
built as an SI engine with variable CR. The 
engine has subsequently been converted to 
HCCI operation at LTH, and equipped with 
a heat exchange system which allows the 
heat in the exhaust gas to be used to heat the 
inlet air. A valve is then used to select how 
much of the inlet air should be taken from 
the heat-exchanging device or from unheated 
air. 

Table 1 Engine specifications 

Displacement 1598 cm3 (320 cm3/cyl) 
Nr. of cylinders 5 
Compression 
ratio 

Adjustable 9 - 21:1 

Bore x Stroke 68mm x 88mm 

A problem is that the variable CR and IAT 
affects all cylinders in parallel and thus give 
no way to affect the ignition phasing for 
each cylinder individually. To achieve ba-

lanced ignition phasing for all cylinders a 
system that affects the cylinder individual 
load is used. The engine and the load 
balancing system are described in more 
detail in (Haraldsson, 2003). 

The system using cylinder individual load to 
achieve balanced ignition phasing is quite 
unfavourable since it makes it impossible to 
obtain maximum load from all five cylinders 
simultaneously. During the time this thesis is 
written the engine is being rebuilt so that it 
will be possible to use cylinder individual 
IAT to balance the ignition phasing. This 
strategy allows the individual cylinders to 
work at the same load. 

In these tests the engine is naturally 
aspirated, i.e. the engine is not supercharged 
in any way. The fuel used in these tests is 
92-octane gasoline. 

2.2 Measuring IAT  

The first sets of experiments revealed that 
the thermal element was too slow. This 
meant that a change in IAT would be visible 
in the output signal several engine cycles 
before it was visible in the measured input 
signal. As of the second set of main 
experiments the thermal element has been 
switched to a faster one.  

3 Experiments 
When performing system identification a 
disturbance is added to the input signals of 
the process and the output is then observed. 
The real process (in this case the engine) will 
always be subject to unwanted disturbances 
such as noise. This means that the disturb-
ances that have been introduced on purpose 
should be as large as possible to be possible 
to distinguish from process noise. The real 
engine, like most real processes, is a non 
linear process. This means that it is 
necessary to find linearity regions where it is 
possible to fit a linear model to the real 
process. This means that it is not possible to 
use arbitrarily large disturbances since they 
would push the process out of the linearity 
region. A thorough description of the science 
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of system identification can be found in 
(Johansson, 1993) and (Ljung, 1993). 

The first step is to obtain information about 
linearity regions; this information is used to 
decide how the main experiments should be 
performed. The next step is to perform the 
main experiments. However; analysis of the 
main experiments may reveal that some 
parts of the process have been overlooked. 
This in turn leads to a need to revise the test 
cycle and possibly to perform new initial 
experiments. 

3.1 Process stability 

The HCCI process is not completely stable 
over the entire operating range. This means 
that some kind of closed loop control of the 
process is necessary to keep the process in a 
certain range. This kind of closed loop 
operation can cause problems when 
performing system identification since it will 
introduce non-causal behaviour. However 
this non-causal behaviour will be a problem 
mainly when performing continuous time 
identification. When performing discrete 
time identification the non-causal behaviour 
will not be problem. In this thesis only 
discrete time identification is performed. 

The process is stabilized using a weak 
integral control of the CR at the operating 
points where the process is unstable. 

3.2 Initial experiments 

The initial experiments are done by feeding 
step changes to the process inputs and 
observing the output.  The magnitudes of the 
step changes are increased until non linear 
behaviour is observed, or until the input or 
output are close to going outside of normal 
operating range. The step response experi-
ments are performed on each of the input 
signals, one at a time. The input signals are: 

• Compression ratio 
• Inlet air temperature 
• Fuel amount 
• Engine speed 

Other input signals exists, for instance the 
fuel composition (Olsson, 2002) can be used 

to control the ignition phasing but this thesis 
focuses on the input signals listed above. 
Plots of the initial experiments can be 
viewed in Figure 1 to Figure 4. 
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Figure 1 Step disturbances applied to the 

compression ratio. 
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Figure 2 Step disturbances applied to the 

engine load. 
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Figure 3 Step disturbances applied to the 

engine speed. 
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Figure 4 Step disturbance applied to the 

inlet air temperature. This Figure is 
obtained using the faster thermal 
element. 

4 Main experiments 
Test series of 1000 engine cycles provide an 
adequate amount of data from which the 
identification can be made. The operating 
points referred to in this section are listed in 
App. A.  

To create the disturbances needed to perform 
identification of the process, Pseudo 
Random Binary Sequence (PRBS) signals 
are used. The initial experiments indicates 
that the process could be excited using a 
PRBS amplitude of ±40 J/cycle on the fuel 
heat (this is the heat content of the injected 
fuel), ±0.3 units on compression ratio, ±300 

rpm on engine speed and ±0.5 % units on the 
valve regulating the inlet air temperature.  

When performing the tests, excitation is 
applied to all four input signals concurrently. 
This means that if all disturbances work in 
the same direction the process will be 
pushed out of the linear range even though 
the individual input signals are in range. This 
was found to be a problem when performing 
the first round of main experiments. To 
minimize the risk of this the concurrent 
excitation levels are chosen to be 50% of the 
values stated above. 

Four sets of experiments were conducted. In 
the first set the main focus was on step 
response analysis. At this point it was 
discovered that the thermal element 
measuring the IAT was too slow to be of any 
use in the subsequent tests, thus the position 
of the valve controlling the air flow was 
focused upon instead. This signal is called 
PWM  and is a value between 0 and 1 where 
0 means; valve completely closed; only cold 
air used, and 1 means valve completely 
open; only hot air used. In the very first tests 
performed the PWM signal was not stored.  

The PWM signal is really a measure of the 
valve position. This signal is then transferred 
to the valve as a Pulse Width Modulated 
(PWM) signal.  

The second set of experiments aimed mainly 
at investigating different amplitudes and 
shortest period of the PRBS signals. It was 
discovered at this point that a slower PRBS 
excitation on the fuel amount allowed for 
better results when performing system 
identification. A slower PRBS means that 
the shortest time a value is held is increased. 

When performing the third set of experi-
ments the thermal element was changed to a 
much faster one. This new element allows 
the focus to be shifted from the PWM to the 
IAT instead. This is of course much more 
interesting since the results would be valid 
even though the valve might be replaced. At 
this time the possibility to add PRBS 
disturbances to the engine speed has also 
been added.  
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The fourth set is largely the same as set 
number three, and was performed mainly to 
supply validation data.  

Plots of the input and output signals obtained 
from the experiment indexed 17 can be 
viewed in Figure 5 to Figure 9. Only values 
from engine cycle 200 up to 300 are 
included in the plots. More values would 
make the plots hard to read. 
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Figure 5 Measured ignition phasing for the 

experiment indexed 17. 

200 210 220 230 240 250 260 270 280 290 300
19.6

19.7

19.8

19.9

20

20.1

20.2

20.3

20.4

20.5
Compression ratio

Engine cycles

C
R

 
Figure 6 Compression ratio for the 

experiment indexed 17. 
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Figure 7 Engine load for the experiment 

indexed 17. 
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Figure 8 Engine speed used at experiment 

indexed 17. 
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Figure 9 Inlet air temperature used at 

experiment indexed 17. 
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5 System identification 
To be able to perform system identification 
it must be possible to distinguish the 
disturbances in the output signal caused by 
the excitation from the disturbances caused 
by inherent noise. One way to measure the 
amount of excitation of the output signal is 
to calculate the signal to noise ratio. This can 
be calculated using Eq. (1). In this Equation 
std(CA50) denotes the standard deviation of 
the output signal. 

( )
Unexcited

Excited

CAstd
CAstdNS

)50(
50/ =  (1)

It is found that the signal to noise ratio is 
approximately 2.6. This should be adequate 
to succeed when performing identification. 

5.1 Method 

The Matlab function n4sid is used to per-
form system identification on the data 
collected from the experiments. This fun-
ction makes use of a subspace algorithm 
described in (Ljung 1999). 

5.2 Model accuracy 

This text contains numerous mentions of 
correlation between simulated and measured 
output. Whenever this is mentioned the 
measured data will not be the same as the 
data used to create the model. The reason for 
this is of course that it is easy to create a 
perfect model by means of interpolation if 
the same data is used for identification as 
well as validation. The “perfect” model 
would however perform very poorly when 
compared to another measurement.  

Correlation between simulated and measured 
output is a good measure of how well the 
model manages to mimic the behaviour of 
the real engine. The correlation is a value 
that will be at most 1. 1 means that the 
model is a perfect copy of the real process.  

5.3 Sampling rate 

The time base for the combustion process is 
not seconds, but engine cycles. The com-
bustion event takes place every second 

revolution of the crankshaft, i.e. every 
engine cycle. The setting of the fuel 
injection, and the output, i.e. CA50, are both 
discrete signals, with one value for every 
engine cycle. IAT, CR and engine speed are 
continuous signals but only affect the 
process once every cycle. Therefore, it 
makes sense to base the identification, and 
subsequently the controller, on the time base 
of one engine cycle. As a consequence of 
this the sampling rate is limited to 1 sample 
per cycle. This approach avoids some of the 
problems encountered in earlier approaches 
to characterize the dynamic behaviour of the 
reciprocating combustion engine, see 
(Welbourn et al. 1959) or (Bowns 1971). 

5.4 Result 

Previous work (Olsson et al., To be 
published 2004) has shown significant 
cylinder-to-cylinder variation on an HCCI 
engine operating on two different fuels. This 
phenomenon was expected to be found in 
this engine as well. However the analysis 
shows that a model created by using data 
from all five cylinders performed equally 
well as a model created using only data from 
the examined cylinder. Thus it is concluded 
that there is little cylinder-to-cylinder 
variations in the engine on which this thesis 
is based.  

Identification of a third order model from 
file with id. 18 gives the correlations listed 
in Table 2. In this table Corr. 1 indicates 
correlations between measured output and 
output produced by a model based only on 
data from the same cylinder as the validation 
data. Corr. 2 indicates correlations between 
measured output and output created using a 
model based on data from all five cylinders. 
As can be seen the difference between the 
models is small. 

Table 2 

Cylinder 1 2 3 4 5 
Corr. 1 0.91 0.89 0.89 0.87 0.91 
Corr. 2 0.90 0.89 0.89 0.88 0.90 

The small cylinder-to-cylinder variations 
refer to the dynamics of the different 
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cylinders. Even though the different 
cylinders react similarly to an increase in 
IAT they will produce different outputs at 
steady state since there are different heat 
losses for the inlet air for the different 
cylinders. 

5.5 Choice of model complexity 

It is often the case that a large order model 
will perform better than a small order model. 
However this does not mean that the larger 
order model is necessarily the better choice. 
In general it is better to choose a smaller 
order model as long as it performs almost as 
well as the larger order models. The smaller 
order model will have fewer parameters that 
have to be determined. The parameters can 
thus be determined more accurately. 

5.5.1 Method 

The order of the model is decided by 
comparing the accuracy of models of several 
orders. This test is performed using the 
measurements of data set three. For each 
model order between 1 and 15 a model is 
constructed using data from each of the 
measurements of the set. The correlation 
between measured and simulated process 
output is then calculated for each of the 
different operating points of the set. The 
minimum, maximum and mean correlation is 
then plotted in Figure 10. The Matlab script 
for these operations can be viewed in App. 
B.3. 

5.5.2 Result 

As can be seen in Figure 10, the accuracy 
seems to increase up to order 3. After that 
the accuracy is more or less constant up to 
order 12 where it deteriorates slightly. Since 
a low order model is to prefer to a high order 
model as long as the quality of the predicted 
output is in the same region, it is decided to 
use a third order model. The Matlab script 
used to create the plot can be viewed in App. 
B.3. The script produces two plots, they are 
similar that is why only one is shown here. 
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Figure 10 Correlations between measured 

and simulated process output for model 
orders between 1 and 15. The lines 
between the different model orders 
have the soul purpose of making the 
plot more readable. 

5.6 One model or several? 

It is a well-known fact that the engine 
changes behaviour from one operating point 
to another. The question that has to be 
answered is whether or not the process 
varies enough to demand several models to 
simulate its behaviour.  

5.6.1 Method 

One (third order) model for each operating 
point in experiment set three and four is 
created. The correlation between the models 
and validation data from that same operating 
point is then calculated. A model created 
using data from all operating points in set 
three and four is also created, this model will 
henceforth be called the merged model. The 
correlation between the merged model and 
validation data from each operating point is 
then calculated and compared to the value 
obtained using the operating point individual 
models. 

5.6.2 Result 

As can be expected the operating point 
individual models always produces a better 
result than the merged model. However, the 
merged model is at all operating points 
performing approximately equally well as 
the individual models. A graph showing the 
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result is found in Figure 11. The correlation 
even for the merged model is never below 
0.76. A correlation of 0.76 is a very good 
value indeed. It is thus decided that one 
model is sufficient to describe the process at 
all the examined operating points. The graph 
was produced using a Matlab script which 
can be viewed in App. B.4. 

 
Figure 11 Correlation between measured 

and simulated output for operating 
point individual models compared to a 
merged model. The lines between the 
operating points have the soul meaning 
of making the plot more readable. 

5.7 The model 

From the results obtained above it is 
reasonable to deduce that a single third order 
model is capable of simulating the process 
adequately over the range of tested operating 
points. 

5.7.1 Method 

The model is created using data from all 
cylinders in experiments indexed 15-21 and 
23-29. The Matlab code for creation of the 
model can be found in App. B.6. 

5.7.2 Result 

The model is a third order discrete state 
space model with the following structure: 

)()()()(
)()()()1(

tetDutCxty
twtButAxtx

++=
++=+

 
(2)

In Eq. (2), w(t) and e(t) are white process 
and measurement noise respectively. The 

variance of w(t) and e(t) is investigated in 
section 6.4. y(t) is CA50 and u(t) is a vector 
consisting of CR, IAT, fuel heat and engine 
speed. 

The matrices in (2) are as follows: 
















=

0.520310.0552780.19146
0.669330.623850.027976-
0.44665-0.574070.46236

A  

















⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅
=

6-5-3-3-

6-5-3-3-

-6-6-3-3

103.618-102.514101.875-102.746-
105.803103.631-101.256102.607

106.446-109.2023-102.381106.699
B

( )31.74277.984225.86=C    

( )-3-4 102.7276106.2237-1.4295-9.3840- ⋅⋅=D  
5.7.3 Poles and zeros 

The poles and zeros of the model are 
displayed in Figure 12 to Figure 15. Since 
there are four input signals there 
consequently are four pole-zero maps. The 
poles are the same for all maps, only the 
zeros change. 

As can be seen in the Figures the model is 
stable. However there is a pole close to 1 on 
the real axis. The real process is known to be 
unstable (Since the value of CA50 will drift 
at some operating points even though the 
input signals are held constant). It is then 
likely that this pole travels over to the right 
of 1 at these operating points. 

The zeros from CR, IAT and speed are all 
stable. But as with the poles there is one 
close to the unit circle for CR and two for 
IAT. From fuel heat to ignition phasing there 
are a couple of unstable resonant zeros. 
These might cause problems when it comes 
to controlling the process. 
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Figure 12 Pole-zero map from compression 

ratio to ignition phasing (CA50). Poles 
are denoted x and zeros are denoted o. 
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Figure 13 Pole-zero map from inlet air 

temperature to ignition phasing 
(CA50). Poles are denoted x and zeros 
are denoted o. 
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Figure 14 Pole-zero map from fuel heat to 

ignition phasing (CA50). Poles are 
denoted x and zeros are denoted o. 
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Figure 15 Pole-zero map from engine speed 

to ignition phasing (CA50). Poles are 
denoted x and zeros are denoted o. 
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5.7.4 Bode diagrams 

The Bode diagram from each of the four 
studied inputs to ignition phasing can be 
studied in Figure 16 to Figure 19.  
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Figure 16 Bode plot from compression ratio 

(CR) to ignition phasing (CA50) 
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Figure 17 Bode plot from inlet air 

temperature (IAT) to ignition phasing 
(CA50) 
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Figure 18 Bode plot from fuel heat to 

ignition phasing (CA50) 
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Figure 19 Bode plot from engine speed to 

ignition phasing (CA50) 

5.7.5 Observability and controllability 

The observability and controllability of the 
obtained model is examined using Matlab 
script observability_controllability_test.m 
which can be viewed in App. B.7.  
















=

2CA
CA
C

Wo  (3)

The observability matrix Wo obtained via (3) 
is  
















=

55.4172.738.9
32.2-180.1108.3
31.778.0225.9

oW  

which has full rank. This means that the 
model is observable. 
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( )BAABBWc
2=  (4)

The controllability matrix Wc given by (4) is 
a 12 by 3 matrix. Because of its large size it 
is not included here. It does however have 
rank 3, i.e. the model is controllable as well. 

If the model of the process is correct this 
means that the real process is observable as 
well as controllable. These are prerequisites 
when the process is to be controlled. 

5.7.6 Simulation capacity 

The most interesting property of the model is 
its capacity to mimic the behaviour of the 
real process, i.e. the engine. The final model 
is the model used to create Figure 11. As can 
be seen in this Figure; the lowest correlation 
of all operating points is obtained when the 
model is compared to the file indexed 17. 
Since this operating point is the one with the 
lowest correlation this is the operating point 
used to create Figure 20. The results from 
the other examined operating points are 
equally good or better. 

Even though this is the worst-case scenario 
(at least among the operating points that 
have been tested) the result is quite good. 
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Figure 20 Simulated and measured output. 

Data used is from file indexed 17. 

5.8 Validation 

With a perfect model the remaining res-
iduals, i.e. the part of the simulated output 
signal that does not match the measured 

output signal, is white noise1. All physical 
processes contain noise of some form.  

Most plots in this section are created using 
data from file indexed 17. This is done since 
this is the operating point with the lowest 
correlation between measured output and 
output simulated using the obtained model. 
All other operating points can thus be 
expected to produce results that are equally 
good or better. 

5.8.1 Residuals 

The frequency power spectrum of the 
residuals when comparing measured and 
simulated output at operating point indexed 
17 can be viewed in Figure 21. A perfect 
power spectrum would be completely flat at 
all frequencies. The power spectrum of 
white noise is flat, i.e. it contains an equal 
amount of all frequencies. The plots in this 
section have been created using the Matlab 
script residual_analysis.m. This can be 
viewed in App. B.5. 
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Figure 21 Power spectrum of the residuals 

when comparing measured and simu-
lated output at operating point 17. 

Obviously the model is not perfect at this 
operating point. Especially there is a spike at 
0.01 cycles-1. This might indicate that the 
system contains unmodelled dynamics. To 
check if this is the case, the same test is 

                                                 
1 The residual is ideally white noise, however it can be 

contaminated by interference from other sources; e.g. 
power supply. 
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performed on the data in the file indexed 24. 
This is the same operating point, but the 
experiment is performed three days later. 
The result of this can be seen in Figure 22. 
The spike at 0.01 cycles-1 is present in this 
plot as well. However the plots are not 
identical, this indicates that the plots are 
partly the result of noise.  

The unmodelled dynamics are at a very low 
frequency; this indicates that these dynamics 
can be effectively counteracted by an 
integrator. 
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Figure 22 Power spectrum of the residuals 

when comparing measured and simu-
lated output at operating point 24. 

The reason for the non-perfect shape of the 
residual power spectra is likely to largely 
depend on random disturbances of the real 
process or from added effect of the PRBS-
disturbances used to excite the process.  

5.9 Model and Simulink 

As stated in the introduction one of the 
objectives in this work is to create a 
Simulink block that can be used for 
simulations. This is useful when cons-
tructing controllers, since it is possible to 
implement controllers in Matlab and then 
test them against the simulated engine. This 
is of course preferable when a new controller 
is developed. There are several reasons why 
this is so. 

It is easy to implement a new controller in 
Matlab since it contains functions for cal-
culation of controller structures. The struc-

tures obtained can then be used directly to 
control the process.  

A poor controller design might potentially 
harm the real engine if it steers the engine 
into regions where it is not designed to be. 
This will of course not harm the model. This 
means that the engineer constructing a new 
controller has greater freedom when tuning a 
new controller. 

5.9.1 Constructing an engine block in 
Simulink 

The term engine block in this case denotes a 
Matlab-Simulink block simulating the 
behaviour of the real engine, or rather one 
cylinder. To make an engine block in 
Simulink it is necessary to create what is 
called an S-function. An S-function can be 
written either as a Matlab function or as a 
function in some programming language 
such as C. For a description on how to write 
S-functions; see the Mathworks web site  
(www.mathworks.com). 

For use in the continued work in this master 
thesis an m-file S-function has been created. 
The file is called HCCI.m and can be viewed 
in section B.7. This file describes how one 
cylinder of the engine responds to different 
input signals. In Simulink the file is masked 
with an interface where it is possible to enter 
the matrices describing the model. The 
interface can be viewed in Figure 23. To 
make the model mimic the behaviour of the 
real engine, noise has been added to the 
process states as well as the process output. 
It is possible to change the noise variance of 
the process and measurement noise 
individually via the interface. 
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Figure 23 Interface of the engine Simulink 

block. 

6 Constructing a controller 
Now that a model of the real process is 
present it is possible to make an attempt at 
designing an effective controller of the 
process. For the task an LQG controller 
structure is chosen. The LQG structure is 
chosen because it handles MIMO systems, 
and because it is good at handling process 
and measurement noise. For more 
information on LQG control see (Åström 
and Wittenmark, 1997). 

In this section the controller will work with a 
model that does not contain any delays. 
Delays will however be added to the control 
loop. The reason for this is to verify that the 
controller manages to perform well even 
though delays are not modelled perfectly. 

6.1 Method 

The task of constructing the controller is 
broken down into small steps. The first step 
is to construct an LQG controller based on 
the model obtained in the system 
identification part of this thesis. At this point 
the work is focused on making the output 
signal of the simulated engine follow a 
reference signal. In other words this is 

considered to be a servo problem (as 
opposed to a controller problem where the 
goal is to drive the output to zero). In this 
step there is no process or measurement 
noise added in the engine block.  

In the second step both process and 
measurement noise is added to the process. 
The controller is tuned to deal with the now 
noisy process. An attempt is made to make 
the noise in the simulated process similar to 
the noise in the real process. This is done 
with regard to frequency content as well as 
for amplitude. 

The third step is to make the process even 
more like the real process. This is done by 
adding delays to the control signals. Even 
though the model (as well as the real 
process) reacts immediately to changes in 
CR and IAT, it takes a few engine cycles 
before the ordered CR or IAT is achieved.  

The fourth step is to verify that the controller 
manages to control the engine even though 
the process deviates from the model used to 
create the controller. If the controller is to be 
capable of controlling the real engine it has 
to perform well even though the model does 
not look exactly like the one the controller 
was designed for. 

So far all work has been aimed at one 
cylinder and not the entire engine. Since 
both CR and IAT affect all cylinders in 
parallel the controller will have to work with 
mean values from the five cylinders. 
However it is interesting to find out if the 
controller developed here can be converted 
to control cylinder individual IAT. This will 
be done at the end of this section. 

The controller is created using the Matlab 
commands kalman, dlqr and lqgReg. An 
example on how to use them can be found in 
section B.10. 

The controller is not allowed to control the 
engine speed or fuel amount injected. These 
inputs will be a result of the conditions under 
which the engine is running. Thus the model 
of the engine is altered before feeding it to 
the Matlab functions used to create the 
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controller. The model fed to the dlqr 
function has had the B matrix altered to (see 
Ap. B.10): 

















⋅⋅
⋅⋅
⋅⋅

=
00101.88-102.75-
00101.26102.61
00102.38106.69

3-3-

3-3-

-3-3

B  

This change hides the control signals engine 
speed and load as far as the controller is 
concerned.  

6.2 A comment on the Figures 

Many of the Figures in this section will 
contain plots of the control signals (CR and 
IAT). To save space sometimes they are 

plotted in the same plot. In these plots the 
IAT signal is always the one with the largest 
fluctuations. One unit on the y-axis in these 
plots represent either 1° C or 1 CR unit. 

The control signals are plotted to illustrate 
that there are no oscillations or large spikes. 
These combined plots are sufficient in this 
regard.  

6.3 Step one, no noise 

The thing to do is to create a Simulink model 
where it is possible to test the developed 
controller. The model can be viewed in 
Figure 24.  

 
 

 
Figure 24 The Simulink model where the controller can be tested. 

The two leftmost blocks in the Figure are 
input signals for fuel amount and engine 
speed. These input signals can be chosen to 
be constants with or without sinusoidal 
disturbances added. In steps one to three, CR 
has an offset of 270 J/cycle and speed 3000 
rpm. The CA50 reference signal is always 
centred on 0. 

When performing the disturbance rejection 
tests a sinusoidal signal with period of 200 
cycles and amplitude of ±30 J/cycle is added 

to the fuel heat input. For the Engine speed 
the added disturbance has period 500 cycles 
and amplitude ±300 rpm.  

When performing the reference following 
tests, no disturbances are added to CR and 
engine speed. Instead a square wave with a 
period of 1000/3 cycles and amplitude ±1° is 
added to the CA50 reference signal. 

The block named HCCI-engine is a mask for 
the S-function HCCI.m that can be studied 
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in App. B.7. The mask is a user interface 
where it is possible to enter the values of the 
model as state space matrices. The interface 
can be studied in Figure 23.  

 
Figure 25 User interface for the LQG-

controller mask. This interface is used 
to enter data used to create an LQG-
controller. 

The output of the engine block is the ignition 
phasing. Since all offsets are removed from 
the experiment data before system identi-
fication, the value 0° ATDC in the model 
actually corresponds to 4° ATDC on the real 
engine. The reason is that this is the mean 
offset of the experiment data. Since this is 
considered to be a servo problem the output 
is then subtracted from the reference value 
before the value is fed to the LQG-
controller. 

Just as with the engine block the LQG-
controller block is a mask making it possible 
for the user to enter input data for the 
controller. The interface can be studied in 
Figure 25. As is the case with the engine 
block, the controller is an m-file S-function. 
This file can be viewed in App. B.11. 

6.3.1 Result 

The first attempt at making a controller 
proves to be a great disappointment. The 
output from the engine model when 
controlled by the LQG-controller in the set 
up described in Figure 24 does not perform 
well at all. The output of the first test can be 
viewed in Figure 26 and Figure 27. As can 
be seen in the plot, the controller is not 
capable of suppressing the disturbances. It is 
not even capable of following the reference 
signal when there are no disturbances. 
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Figure 26 Ignition phasing (Upper plot) and 

control signals (lower plot) when per-
forming a disturbance rejection test. 
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Figure 27 Ignition phasing (upper plot) and 

control signals (lower plot) when 
performing a reference following test. 

The process has zeros close to 1 on the real 
axis. This means that the process is 
derivative in its behaviour. Adding an 
integrator to the controller can counteract 
this behaviour.  

To solve the problem of the poor reference 
signal following it is decided to add an 
integrator acting on the error, i.e. on the 
difference between the reference signal and 
the process output. The Simulink set up is 
now as in Figure 28. 

 

 

 

 

 
Figure 28 Simulink model after adding the integrator. 

 
This set up proves to be superior to the first 
attempt. This controller manages to suppress 
the disturbances to the input signals better 
than the first attempt. The output is now 
within one deg. of zero at all times (see 
Figure 29 and Figure 30). It also manages to 
follow the reference signal very well when 
there are no disturbances. There is still room 
for improvements, but it is already 
performing fairly well. 
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Figure 29 Ignition phasing (upper plot) and 

control signals (lower plots) when 
performing a disturbance rejection test. 
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Figure 30 Ignition phasing (upper plot) and 

control signals when performing a 
reference following test 

6.4 Step two, adding noise 

Before adding noise to the engine model it is 
necessary to find out how much noise to add. 
For this purpose the output from the 
experiment indexed 3 is examined. This is a 
step disturbance experiment, but the step 
disturbances end after 400 engine cycles, 
and the output after this is pure noise. The 
reason for choosing this experiment is that 
the variable compression is positioned at one 
extreme; this minimizes the influence of 
limit cycles (Slotine and Li 1991) due to 
friction in the variable compression. The 

output signal used for this analysis can be 
viewed in Figure 31.  
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Figure 31 Measured output after cycle 400 

of experiment indexed 3 

 
There is a small drift in the measured output. 
This however should not cause any problems 
when evaluating the noise properties. The 
variance of the noise is calculated using 
Matlab command var, and the result is a 
noise variance of 0.128. 

To see if the noise is white or coloured, the 
power spectrum of the noise is plotted. The 
power spectrum (Figure 32) is basically flat 
and has no dominant peaks. This leads to the 
conclusion that the noise is white. 
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Figure 32 Power spectrum of the measured 

noise. 

The noise plot, as well as the power 
spectrum and calculation of the noise 
variation is produced using Matlab script 
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test_noise.m, which can be viewed in App. 
B.12. 

Trial and error suggests a process noise 
variance of 2*10-8 and a measurement noise 
variance of 0.125. This amounts to a 
variance of 0.135 for the simulated engine, 
and a noise spectrum (see Figure 33 and 
Figure 35) that is comparable to that 
obtained from the measured noise. 
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Figure 33 Power spectrum of the noise from 

the Simulink engine block. 

6.4.1 Result 

The controller is now working against a 
modelled engine containing both process and 
measurement noise. The output (Figure 34) 
is still very good. The controller is still 
working with a perfect model of the engine 
block including its noise properties. In other 
words, the controller should do well under 
circumstances like these. 
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Figure 34 Ignition phasing (upper plot) and 

control signals (lower plot) for 
disturbance rejection experiment. 
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Figure 35 Ignition phasing (upper plot) and 

control signals (lower plot) for 
reference following experiment. 

6.5 Step three, adding delays 

Now that the controller has proved to be 
working under nearly optimal operating 
conditions with a perfect model and no 
delays, it is time to add delays to the control 
signals from the controller to the engine. 
This aims at making the simulated controller 
task resemble the task of controlling the real 
engine. 

A study of the delay from a reference change 
to IAT to a noticeable change in CA50 
indicates a delay of three engine cycles. 
Since the engine in itself contains a delay of 
one engine cycle, a delay of two cycles is 
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added to the CR and IAT signals going from 
the controller to the engine block.  

6.5.1 Result 

With the same controller settings as used to 
create Figure 34 and Figure 35 the output 
looks the same (Figure 36 and Figure 37). 
This can probably be explained by the 
controller being quite conservatively tuned 
in addition to using a perfect model. 
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Figure 36 Ignition phasing (upper plot) and 

control signals (lower plot) for 
disturbance rejection experiment. 
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Figure 37 Ignition phasing (upper plot) and 

control signals (lower plot) for 
reference following experiment. 

6.6 Step four, non perfect model 

In the work so far the controller has been 
constructed using a perfect process model. 
This is of course highly unrealistic. The 
main purpose so far has been to verify that 

the chosen controller structure has potential 
to control the engine. And so far it has 
performed reasonably well.  

In this step the controller will be tested 
against engine models optimised for one 
specific operating point. This means that the 
model of the engine now performs very 
much like the real engine would at a specific 
operating point. To keep the engine speed 
and load in the desired region, these signals 
are centred on the same operating points 
used to create the models. Added to them are 
sinusoid disturbances. 

So far the behaviour of the controller has not 
been examined very closely. The tests so far 
have only aimed at verifying that the 
controller structure is capable of controlling 
the engine model. However it is equally 
important that the controller is not too 
aggressive. Aggressive in this context means 
that the controller tries too hard to make the 
output follow the reference signal. A too 
aggressive controller will cause excessive 
wear on actuator valves as well as cause the 
output to oscillate. The oscillations are partly 
caused by the delays between controller and 
engine. In this stage an attempt at optimising 
the controller for good performance without 
making it too aggressive is made. 

6.6.1 Targeted operating points 

The models used in this step are created 
using data from files indexed 23 to 29 (see 
A.4). These operating points cover a large 
part of the operating range of the engine. If a 
controller can be developed that works well 
on all of these operating points, that 
controller will be likely to perform well on 
the real process. The offsets and perturbation 
amplitudes used in the experiments are listed 
in Table 3. The sinusoidal perturbations have 
a period of 200 engine cycles for the load 
and 500 engine cycles for the speed. 
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Table 3 Engine speeds and loads used in the 
tests. 

Operating 
point id. 

Engine speed 
(rpm) 

Engine load 
(J/cycle) 

23 2000 ±300 240 ±30 
24 2000 ±300 310 ±30 
25 3000 ±300 250 ±30 
26 3000 ±300 300 ±30 
27 4000 ±300 240 ±30 
28 4000 ±300 300 ±30 
29 5000 ±300 240 ±30 

6.6.2 Tuning the controller 

LQG controllers aim at minimizing the loss 
function 

)2( uNxRuuQxxJ TTT∑ ++=  (5)
where the weighting matrices Q, R and N are 
at least positive semi definite.  

The Q matrix should be chosen as CTC 
where C is the C matrix of the model to be 
controlled. N is usually chosen to be zero. 
The R-matrix is chosen relative in size to the 
Q-matrix. A large value on the Q-matrix 
compared to the R-matrix means that the 
controller mainly aims at minimizing the 
variance of the process output at the expense 
of the control signals. The opposite is true if 
the R-matrix is large compared to the Q-
matrix. The N-matrix indicates that the 
controller should strive to minimize the 
covariance of the control signal and process 
output. 

In addition to the Q, R and N matrices, the 
controller design procedure needs the 
process and measurement noise of the 
process to control. These do not necessarily 
have to be the correct values. A large value 
on the measurement noise indicates that the 
controller should be conservative in its 
response to changes in the process output. A 
large value on the process noise indicates 
that the controller should be conservative in 
its response to changes in the process states. 

6.6.3 Result 

Optimisation by trial and error indicates that 
the controller performs well on all operating 

points when it is designed using the 
following parameters: 
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where u(t) is the integrated difference 
between CA50ref and CA50 at time t and y(t) 
is a vector containing CR and IAT settings 
to be used as inputs to the engine. The x-
vector contains the controller states. The 
matrices have the following values: 
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With the settings mentioned above the 
simulation results are as indicated in Figure 
38 to Figure 51. In the mentioned Figures 
the simulated output as well as the control 
signals used to obtain them can be viewed. 

The results for all tested operating points are 
acceptable. The process is noisy but the 
control signals are still relatively smooth. 
This is important since it means that the 
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actuators are not excessively worn. Further 
optimisation work might result in better 
performance. However this will not be done 
at this point. 
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Figure 38 Ignition phasing (upper plot) and 

control signals (lower plot) for 
disturbance rejection experiment. 
Engine model used is optimised for op. 
23. 
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Figure 39 Ignition phasing (upper plot) and 

control signals (lower plot) for 
reference following experiment. Engine 
model used is optimised for op. 23. 
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Figure 40 Ignition phasing (upper plot) and 

control signals (lower plot) for 
disturbance rejection experiment. 
Engine model used is optimised for op. 
24. 
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Figure 41 Ignition phasing (upper plot) and 

control signals (lower plot) for 
reference following experiment. Engine 
model used is optimised for op. 24. 
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Figure 42 Ignition phasing (upper plot) and 

control signals (lower plot) for 
disturbance rejection experiment. 
Engine model used is optimised for op. 
25. 
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Figure 43 Ignition phasing (upper plot) and 

control signals (lower plot) for 
reference following experiment. Engine 
model used is optimised for op. 25. 
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Figure 44 Ignition phasing (upper plot) and 

control signals (lower plot) for 
disturbance rejection experiment. 
Engine model used is optimised for op. 
26. 
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Figure 45 Ignition phasing (upper plot) and 

control signals (lower plot) for 
reference following experiment. Engine 
model used is optimised for op. 26. 

 



 - - 26 - - 

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R 

an
d 

IA
T

Control signals

 
Figure 46 Ignition phasing (upper plot) and 

control signals (lower plot) for 
disturbance rejection experiment. 
Engine model used is optimised for op. 
27. 
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Figure 47 Ignition phasing (upper plot) and 

control signals (lower plot) for 
reference following experiment. Engine 
model used is optimised for op. 27. 
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Figure 48 Ignition phasing (upper plot) and 

control signals (lower plot) for 
disturbance rejection experiment. 
Engine model used is optimised for op. 
28. 

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

 a
nd

 IA
T

Control signals

 
Figure 49 Ignition phasing (upper plot) and 

control signals (lower plot) for 
reference following experiment. Engine 
model used is optimised for op. 28. 
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Figure 50 Ignition phasing (upper plot) and 

control signals (lower plot) for 
disturbance rejection experiment. 
Engine model used is optimised for op. 
29. 
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Figure 51 Ignition phasing (upper plot) and 

control signals (lower plot) for 
reference following experiment. Engine 
model used is optimised for op. 29. 

The simulations so far have been on one 
cylinder only. To make the controller valid 
for the complete five-cylinder engine is an 
easy task however. IAT and CR will then be 
based on a mean value of CA50 from each 
of the individual cylinders. This method is 
used when performing the tests in section 
6.8. 

6.7 Sensitivity function 
The sensitivity function is the transfer 
function from e to y in Figure 52. This is a 

measure of how well the controller manages 
to suppress load disturbances. 

 
Figure 52 Set up of model and controller. 

The Bode plot (see Figure 53) indicates that 
the controller manages to suppress 
disturbances well in the mid range. The 
controller does not counteract high 
frequency disturbances. This is actually the 
desired behaviour of the controller since this 
would lead to excessive wear on the 
actuators.  

The controller does not manage to suppress 
really low frequency disturbances. It is likely 
that the reason for this is that the process 
contains zeros close to 1 on the real axis. 
These zeros cancel out the integrator in the 
controller. 
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Figure 53 Bode plot of the sensitivity 

function. 

6.8 Performance: LQG vs. PID  
As mentioned previously the ignition 
phasing is presently controlled using PID 
controllers of the IAT and CR. The set up 
currently used only allows for one of the 
input signals at a time to be used to control 
the engine. If the developed controller 
cannot perform at least equally well as the 
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existing controller there will be no use for it. 
Thus their performances are compared here. 

The ability of the controller to make the 
process follow a reference signal, as well as 
suppressing perturbations to engine speed 
and load is examined for a PID controller as 
well as for the developed LQG controller.  

In section 6.6.3 it can be seen that the LQG 
controller performs worse at operating point 
indexed 23 than it does at any other tested 
operating point. Thus the performance of the 
LQG controller is compared against a PID 
controller optimised for this operating point. 
The LQG controller is not optimised for this 
operating point. This means that if the LQG 
controller manages to perform equally well 
as the PID at this point, it is likely to 
perform equally well or better at all other 
operating points. The noise model for the 
engine is the same as the one obtained in 
section 6.4. 

6.8.1 Method 

The first step is to compare the two 
controllers’ ability to suppress disturbances 
to the engine speed and load. In this test the 
CA50 reference signal is constant zero. A 
sinusoidal disturbance with amplitude ±30 
J/cycle and period 200 cycles is added to the 
offset value 240 J/cycle for the engine load. 
A sinusoidal disturbance with amplitude 
±300 rpm and period 500 cycles is added to 
the offset value 2000 rpm for the engine 
speed. 

The second step is to compare how well the 
controllers can make the engine output 
follow a reference signal. In this test no 
perturbation is added to the engine speed and 
load. The constant offsets are the same as for 
the disturbance rejection test. The ignition 
phasing reference signal is a square wave 
centred on 0 with amplitude ±1° and period 
1000/3 cycles 

In this test the PID controller is using only 
IAT to control the process since this is the 
way it is done on the real engine. 

The engine model used in this experiment is 
a five-cylinder model. The output from the 

model is considered to be a mean of the 
output from each of the five cylinders. No 
cylinder balancing is used. The plots show 
the mean of the output for the five cylinders. 

6.8.2 The LQG controller 

The LQG controller used in this test is the 
same as the one obtained in section 6.6.3. 
The input to the controller will be a mean of 
the ignition phasing for the five cylinders. 
The same control signals will then be sent to 
each of the individual cylinders. 

6.8.3 The PID controller 

The PID controller used in these tests use 
Eq. (6), where KP=0.2, KI=0.35 and 
KD=0.15. Optimisation of the PID 
parameters is performed using trial and 
error. The parameters used in the controller 
of the real engine can not be used here since 
they are designed to control the IAT 
actuator, and not the temperature. This is the 
controller structure used on the real engine. 
The input to the controller is a mean of the 
ignition phasing for the five cylinders. 
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6.8.4 Disturbance rejection, result 

The results of the disturbance rejection tests 
can be viewed in Figure 54 and Figure 55. 
The PID controller manages to keep the 
ignition phasing within one degree of the 
reference value. The LQG controller 
manages to keep the ignition phasing within 
0.8 degrees of the reference value. In other 
words the LQG controller is 20% better at 
rejecting disturbances. 
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Figure 54 Disturbance rejection of the PID 
controller. 
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Figure 55 Disturbance rejection of the LQG 

controller. 

6.8.5 Reference following, result 

The results of the reference following tests 
can be viewed in Figure 56 and Figure 57. 
The PID controller manages to get the 
ignition phasing to a within 5% of the 
desired value within approximately 100 
cycles after a step change. The LQG 
controller manages to get the ignition 
phasing within 5% of the desired value 
within approximately 80 cycles. Again the 
LQG controller outperforms the PID 
controller by 20%. 
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Figure 56 Reference following for the PID 

controller. 
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Figure 57 Reference following for the LQG 

controller. 

6.9 Cylinder individual temperature 
control 

In the work done so far it has been assumed 
that CR and IAT affect all cylinders in 
parallel. However it is planned that the 
engine examined in this thesis will have 
cylinder individual IAT control. An attempt 
is now made to convert the controller 
developed in the previous section to these 
circumstances.  

The idea is to rewrite the controller to 
control IAT individually for each cylinder 
and CR for all cylinders in parallel. In the 
new controller the matrices will be called: 

~~~~~~
,,,, yandxDCBA . The new controller is 

built according to the following scheme: 
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using Matlab notation. A, B, C and D in the 
above matrices are the ones given in section 
6.6.3. xz and temp

zy  denotes controller states 
and temperature set point for cylinder z 
whereas cry  denotes CR set point for the 
entire cylinder bank. uz Denotes the 
integrated output error from the process for 
cylinder z. The extended controller structure 
now is 
  

)()()(

)()()1(
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tuDtxCty
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Figure 58 Picture of the Simulink model simulating the complete engine with cylinder 

individual IAT control. In this Simulink model the integrators has been included in the 
controller block. 

The full model of the five-cylinder engine 
with the cylinder individual IAT control can 
be viewed in Figure 58. 

Even though the cylinders on the real engine 
display little difference in their response to 
perturbations in the input signals there is still 
the matter of offsets in their outputs. These 
offsets are the result of different heat loss for 
the different cylinders. To verify if the 
suggested controller structure is capable of 
handling these differences a test is perfor-
med.  

Each of the five cylinders in the engine 
model is supplied with a model optimised 
for different operating points; the operating 
points used are listed in Table 4. 

Table 4 Models for the individual cylinders 
are optimised for the operating points 
listed here. 

Cyl. nr. Model optimised for op. index 
1 29 
2 28 
3 27 
4 26 
5 25 

6.9.1 Test set up 

The test is performed using the set up and 
controller described in the previous section. 
The engine load used is 280 J/cycle and the 
engine speed is 3500 rpm. These values are 
chosen since they are in the centre of the 
examined load and speed ranges. In addition 
a sine perturbation with period 200 cycles 
and amplitude 30 J/cycle is added to the 
engine load. To the engine speed a sine 
perturbation with period 500 cycles and 
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amplitude 300 rpm is added. The ignition 
phasing reference signal is a square wave 
centred on zero with a period of 250 cycles 
and amplitude ±1.5˚. 

6.9.2 Result 

The result of the test performed according to 
the previously described set up can be 
viewed in Figure 59 to Figure 64. 

The results of the test are promising. The 
controller manages to keep the ignition 
phasing close to the reference signal for each 
of the cylinders even though it has to 
manage different models for each cylinder.  
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Figure 59 Ignition phasing and IAT for 

cylinder 1. 
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Figure 60 Ignition phasing and IAT for 

cylinder 2. 
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Figure 61 Ignition phasing and IAT for 

cylinder 3. 
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Figure 62 Ignition phasing and IAT for 

cylinder 4. 
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Figure 63 Ignition phasing and IAT for 

cylinder 5. 
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Figure 64 Compression ratio during the test 

using different models for each 
cylinder. 

7 Implementation in Java 
In this section the controller suggested in 
section 6.9 is implemented in Java. An 
attempt is made to make the suggested 
implementation independent of the size of 
the matrices of the controller.  

7.1 Real time considerations 

In section 6.9 the suggested controller 
calculates the control signals for all cylinders 
in parallel. This strategy works well in 
theory, but not so in practice.  

If the engine is working at full speed (6000 
rpm) the time for a complete engine cycle is 
only 2/6000*60=0.02 seconds. However the 
ignition of the five cylinders is evenly spread 
over the engine cycle, thus the time between 
the last ignition of an engine cycle to the 
first ignition of the next cycle is only 
0.02/5=0.004 seconds. In this time measure-
ment data has to be collected, computations 
made and signals sent to the actuators. It is 
obviously advantageous to have 0.02 second 
instead of 0.004 to perform these tasks. Thus 
the control problem is broken down so that it 
is possible to perform as much computations 
as possible as soon as the data is available.  

7.2 Result 

The suggested implementation can be 
viewed in App.  B.14. This implementation 
demands that the controller has two outputs; 
namely CR and IAT, and that CR is 

controlled for all cylinders in parallel and 
that IAT is controlled individually for the 
different cylinders. The complexity of the 
controller and the number of inputs is 
arbitrary. 

For the controller suggested in this paper the 
input to the controller should be the 
integrated difference between CA50 and 
CA50ref. This paper gives no suggestion on 
how to write an integrator since this is very 
simple. 

The Java file represents only the controller 
and not the interface between hardware and 
software. In other words; this file is intended 
to be used by some kind of intermediate 
interface. 

8 Conclusions 
The model obtained when performing 
system identification shows high correlation 
between simulated and measured output. 
This indicates that using several input 
signals to the engine when performing 
system identification is a good strategy. 

The controller developed in this paper is 
very simple indeed. It does not model any 
delays. It does not make use of any form of 
gain scheduling. And it does not use feed 
forward. Even though it is so simple it 
performs well in the simulations. This 
indicates that this controller structure might 
be effective also on the real engine. It also 
indicates the LQG controller is the strategy 
to prefer when controlling the ignition 
phasing on the real engine. However, it is 
important to realise that the controller only 
has been tested against linearised models of 
the real process. There is no guarantee that it 
will work equally well on the real process. 

9 Discussion 
This section addresses some points that 
might benefit from a further investigation.  

9.1 Increasing performance 
It is quite possible that increased perfor-
mance can be obtained by modelling the 
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delays. Modelling the delays is not hard; all 
that needs to be done is to add a few new 
states to the model, representing the delays. 

Developing some kind of feed forward 
compensation for disturbances caused by 
changes in injected fuel amount and engine 
speed might increase the controller’s ability 
to suppress disturbances.  

The suggested methods to increase the 
performance of the controller lead to a more 
complex structure. This also means that 
there will be more parameters to tune; this 
might lead to a controller that is very hard to 
tune. 

An advanced approach to reach high 
performance is to use adaptive control. This 
approach can be combined with the 
expanded models mentioned above.  

Adaptive control has the potential to produce 
excellent results. However it does have it’s 
drawbacks as well. One is that it is com-
putationally heavy. Another is that it can be 
difficult to tune. Other problems might occur 
as well but are not listed here.  

The PID controllers currently used on the 
engine use gain scheduling, this strategy is 
applicable to the LQG controller as well. 
This can be combined with all the 
performance increasing strategies mentioned 
above. 

9.2 Variable compression ratio and 
friction 

The variable CR is obtained by means of a 
system that allows the cylinder bank to lean 
more or less. This system works very well, 
however it is subject to friction. Limit cycles 
in the variable compression has been 
observed in initial experiments. These limit 
cycles are no major problem as far as the 
ignition phasing is concerned, but it is likely 
that this phenomenon will cause unnecessary 
wear on the mechanics involved.  

9.3 Speed of the thermal element 

Even though the thermal element has been 
changed to a faster one during the work on 
this paper, it is still quite slow. The IAT step 

response test (section 3.2 Figure 4) shows 
that the engine response does not match the 
temperature very well. If we instead look at 
the PWM signal to the valve controlling the 
inlet air temperature (Figure 65), and CA50 
there is a very strong correlation. The reason 
is that the thermal element is too slow. 
Measuring air temperature fast is quite hard. 
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Figure 65 Ignition phasing (upper plot) and 

PWM signal (lower plot) for the 
temperature step response experiment. 
In this plot the PWM signal has been 
inverted to illustrate the close cor-
relation between the signals. 

In simulations temperature can be changed 
immediately thus the slow thermal element 
is not a problem. When it comes to 
controlling the real engine however it is 
likely that looking at the PWM instead will 
produce better results.  

One difference now is that there will be a 
noticeable delay from a change in the PWM 
signal to a change in ignition phasing. When 
looking at the temperature there is no delay 
since the thermal element is slow. 

9.4 Operating range 

This paper addresses combustion control at 
engine speeds of at least 2000 rpm. A few 
experiments at idle speed have been per-
formed. The results however have been very 
poor.  

The work done so far indicates that the 
process is a lot harder to identify at very low 
engine speed than it is at speeds above 2000 
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rpm. The conclusion is that more work needs 
to be done to create a model for the engine at 
low engine speed. 

In the experiments performed as part of this 
work the engine has been naturally aspirated. 
A comparison of the model obtained under 
these circumstances to a model or models 
valid for the super charged case would be 
interesting. 
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12 Abbreviations 
ATDC – After Top Dead Centre 
TDC – Top Dead Centre 
CR – Compression Ratio 
IAT – Inlet Air Temperature 
OP – Operating point 
LQG – Linear Quadratic Gaussian 
CA50 – Crank angle degree where 50% of 

the fuel has been consumed. 
HCCI – Homogeneous Compression 

Charge Ignition 
CI – Compression Ignition 
SI – Spark ignition 
LTH – Lunds Tekniska Högskola (Lund 

Institute of Technology) 
PWM – Pulse Width Modulation 
RPM – Revolutions Per Minute 
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A Operating points 
In this Appendix the operating points of the test runs are listed. 

A.1 Preliminary experiments 

These are the preliminary experiments whose main objective is to find linearity regions. In the 
first tests the PWM signal was not saved since it was not known that the thermal element was to 
slow. After experiment indexed 6 this was corrected. 
Id. File name Mean 

load 
(J/cycle) 

CR PWM Mean 
temp.

Speed CA50 
mean 

Comments 

1 0306120936 220 17-19 ? 224 2000 6.7 CR step changes 
2 0306120954 220 21 ? 140 - 

175 
2000 3.8 Temperature step 

changes 
3 0306121008 180 - 

280 
21 ? 159 2000 3.8 Load step changes.

4 0306121109 220 21 ? 168 1500 - 
4000 

3.3 Speed step 
changes. Hot air 
valve 97% open 

5 0306121121 220 21 ? 243 1500 - 
4000 

3.7 Speed step 
changes. Hot air 
valve 100% open 

6 0306121414 220 18.6 ±0.3 ? 208 2027 3.9 CR excitation 
7 0306121509 240 21 0.98 ±0.005 167 1999 4.1 PWM excitation 

A.2 First set of main experiments 

From now on the PWM signal is available in all files. The objective of these experiments is to 
find out what excitation levels can be used when excitation is applied to all input signals 
concurrently. Different PRBS frequencies are tested on the load excitation. 
Id. File name Mean 

load 
(J/cycle) 

CR PWM 

(%) 

Mean 
temp.

Speed CA50 
mean 

Comments 

8 0306171059 240 18 ±0.3 98 215 2001 4 CR excitation 
9 0306171104 240 17.8 ±0.3 98 215 2002 4.7 CR excitation 
10 0306171108 240 17.7 98 ±0.5 209 2003 6.2 PWM excitation 
11 0306171113 240 ±40 17.6 98 219 2004 4.2 Load excitation, 

fast 
12 0306171122 240 ±20 17.6 

±0.15 
98 ±0.25 215 2003 5 50% excitation, 

Fast excitation of 
load 

13 0306171128 240 ±60 17.6 
±0.45 

98 ±0.75 217 2005 4.6 150% excitation, 
Fast excitation of 
load 

14 0306171200 240 ±40 18.4 98 204 2005 4.8 Load excitation 
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A.3 Second set of main experiments 

It is now decided to lower the excitation amplitude by 50% since the added effect of the PRBS 
signals to all the input signals causes the engine to misfire. From now on it is also possible to add 
PRBS disturbances to the engine speed. This set is used for system identification. 
Id. File name Mean 

load 
(J/cycle) 

CR PWM 

(%) 

Mean 
temp.

Speed CA50 
mean 

Comments 

15 0306240949 240 ±20 21+0 -
0.25 

97.2 ±0.15 176 2000 
±200 

3.9 Concurrent 
excitation 

16 0306241002 240 ±20 20 ±0.15 97.45 ±0.25 192 2000 
±200 

3 Concurrent 
excitation 

17 0306241011 310 ±20 20 ±0.15 96.9 ±0.25 171 2000 
±200 

3.7 Concurrent 
excitation 

18 0306241145 250 ±20 20 ±0.15 96.9 ±0.25 189 3000 
±200 

3.9 Concurrent 
excitation 

19 0306241150 300 ±20 18.85 
±0.15 

96.9 ±0.25 193 3000 
±200 

4,7 Concurrent 
excitation 

20 0306241154 240 ±20 18.5 
±0.15 

96.9 ±0.25 203 4000 
±200 

4.8 Concurrent 
excitation 

21 0306241200 300 ±20 17.5 
±0.15 

96.9 ±0.25 207 4000 
±200 

5.7 Concurrent 
excitation 

A.4 Third set of main experiments 

The second set of main experiments proved to contain the data needed to perform system 
identification. This set of experiments is intended to be used for validation, and for checking the 
reproducibility of the experiments. 
Id. File name Mean 

load 
(J/cycle) 

CR PWM 

(%) 

Mean 
temp.

Speed CA50 
mean 

Comments 

22 0306271113 240 21 97 174 2018 4.1 Temp step 
23 0306271119 240 ±20 20 ±0.15 97.4 ±0.25 189 2020 

±200 
3.4 Concurrent 

excitation 
24 0306271123 310 ±20 20 ±0.15 96.6 ±0.25 160 2011 

±200 
6.4 Concurrent 

excitation 
25 0306271129 250 ±20 19.7 

±0.15 
96.8 ±0.25 189 3030 

±200 
5.7 Concurrent 

excitation 
26 0306271134 300 ±20 18.6 ±0.1 96.8 ±0.2 196 3037 

±150 
5.7 Concurrent 

excitation 
27 0306271142 240 ±20 18.0 ±0.1 96.9 ±0.2 204 4031 

±100 
5.8 Concurrent 

excitation 
28 0306271146 300 ±15 17.5 ±0.1 96.9 ±0.2 203 4018 

±100 
5.9 Concurrent 

excitation 
29 0306271154 240 ±10 16.8 ±0.1 97.0 ±0.2 210 5022 

±50 
7.1 Concurrent 

excitation 
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B Matlab files 
This Appendix contains all the Matlab files used to obtain the results in the text. 

B.1 loadData.m 

This file is used to extract relevant data from the data-files. In the data files all data is stored in 
vectors. In this file the data is rearranged into matrices with one column for each cylinder and one 
row for each engine cycle. At this point offsets and linear trends are removed from the data 
before it is returned. 

 
% [CA50, CR, pwm, Temp, IMEP,Speed] = loadData(fileName) 
function [CA50,CR,PWM,Temp,FuelHeat,Speed] = loadData(fileName) 
 
load(fileName); 
NbrOfCyl = 5; 
CA50 = double(CA50); 
Temp = double(TInlet); 
CR = double(CR); 
PWM = double(PWM); 
FuelHeat = double(FuelHeat); 
Speed = double(Speed); 
 
[n, m] = size(CA50); 
cols = n*m/NbrOfCyl; 
 
CA50 = detrend(reshape(CA50, NbrOfCyl, cols)'); 
CR = detrend(reshape(CR, NbrOfCyl, cols)'); 
Temp = detrend(reshape(Temp, NbrOfCyl, cols)'); 
FuelHeat = detrend(reshape(FuelHeat, NbrOfCyl, cols)'); 
PWM = detrend(reshape(PWM, NbrOfCyl, cols)'); 
Speed = detrend(reshape(Speed,NbrOfCyl, cols)'); 

B.2 zizv.m 

This file is used to store the data obtained from the loadData file in structs containing one iddata 
object for each cylinder. The names of the input and output signals are stored in the iddata 
objects. 
% [zi,zv] = zizv(fileName) 
% Returns two structs containing iddata objects containing input signals 
% [CR, TInlet, FuelHeat, Speed] and output signal CA50 
% for each of the five cylinders. 
 
function [zi,zv] = zizv(fileName) 
 
[CA50,CR,PWM,Temp,FuelHeat,Speed]= loadData(fileName); 
for i = 1:5 
    eval(['zi.cyl', int2str(i),'= iddata(CA50(1:500,',int2str(i),... 
            '), [CR(1:500,',int2str(i),'),Temp(1:500,',int2str(i),... 
            '), FuelHeat(1:500,',int2str(i),'),Speed(1:500,',... 
            int2str(i),')],''OutputName'',''CA50'',' 
            '''InputName'',{''CR'',''TInlet'',''FuelHeat'',''Speed''});']); 
 
    eval(['zv.cyl', int2str(i),'= iddata(CA50(501:1000,',int2str(i),... 
            '), [CR(501:1000,',int2str(i),'),Temp(501:1000,',int2str(i),... 
            '), FuelHeat(501:1000,',int2str(i),'),Speed(501:1000,',... 
            int2str(i),')],''OutputName'',''CA50'','... 
            '''InputName'',{''CR'',''TInlet'',''FuelHeat'',''Speed''});']); 
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end 

B.3 complexity_test.m 
% Collect the data from set 3 
[zi1 zv1] = zizv('0306241002_Status.mat'); 
[zi2 zv2] = zizv('0306241011_Status.mat'); 
[zi3 zv3] = zizv('0306241145_Status.mat'); 
[zi4 zv4] = zizv('0306241150_Status.mat'); 
[zi5 zv5] = zizv('0306241154_Status.mat'); 
[zi6 zv6] = zizv('0306241200_Status.mat'); 
everything = merge(zi1.cyl1,zi1.cyl2,zi1.cyl3,zi1.cyl4,zi1.cyl5,... 
                   zi2.cyl1,zi2.cyl2,zi2.cyl3,zi2.cyl4,zi2.cyl5,... 
                   zi3.cyl1,zi3.cyl2,zi3.cyl3,zi3.cyl4,zi3.cyl5,... 
                   zi4.cyl1,zi4.cyl2,zi4.cyl3,zi4.cyl4,zi4.cyl5,... 
                   zi5.cyl1,zi5.cyl2,zi5.cyl3,zi5.cyl4,zi5.cyl5,... 
                   zi6.cyl1,zi6.cyl2,zi6.cyl3,zi6.cyl4,zi6.cyl5); 
 
for i = 1:15 
 eval(['merged_1{',int2str(i),'}=n4sid(everything,',int2str(i),... 
            ',''trace'',''on'',''DisturbanceModel'',''None'',''nk''',... 
            ',[0,0,0,0]);']); 
end 
     
% Collect the data from set four 
[zi11 zv11] = zizv('0306271119_Status.mat'); 
[zi22 zv22] = zizv('0306271123_Status.mat'); 
[zi33 zv33] = zizv('0306271129_Status.mat'); 
[zi44 zv44] = zizv('0306271134_Status.mat'); 
[zi55 zv55] = zizv('0306271142_Status.mat'); 
[zi66 zv66] = zizv('0306271146_Status.mat'); 
[zi77 zv77] = zizv('0306271154_Status.mat'); 
everything = merge(zi11.cyl1,zi11.cyl2,zi11.cyl3,zi11.cyl4,zi11.cyl5,... 
                   zi22.cyl1,zi22.cyl2,zi22.cyl3,zi22.cyl4,zi22.cyl5,... 
                   zi33.cyl1,zi33.cyl2,zi33.cyl3,zi33.cyl4,zi33.cyl5,... 
                   zi44.cyl1,zi44.cyl2,zi44.cyl3,zi44.cyl4,zi44.cyl5,... 
                   zi55.cyl1,zi55.cyl2,zi55.cyl3,zi55.cyl4,zi55.cyl5,... 
                   zi66.cyl1,zi66.cyl2,zi66.cyl3,zi66.cyl4,zi66.cyl5,... 
                   zi77.cyl1,zi77.cyl2,zi77.cyl3,zi77.cyl4,zi77.cyl5); 
for i = 1:15 
 
 eval(['merged_2{',int2str(i),'}=n4sid(everything,',int2str(i),... 
            ',''trace'',''on'',''DisturbanceModel'',''None'',''nk''',... 
            ',[0,0,0,0]);']); 
end 
 
for i = 1:15 
    eval(['[yh, Trash] = compare(zi11.cyl3,merged_1{',int2str(i),... 
            '},merged_2{',int2str(i),'});']); 
    temp = corrcoef(zi11.cyl3.y,yh{1}.y); 
    corr1(i,1) = temp(2,1); 
    temp = corrcoef(zi11.cyl3.y,yh{2}.y); 
    corr1(i,2) = temp(2,1); 
    eval(['[yh, Trash] = compare(zi22.cyl3,merged_1{',int2str(i),... 
            '},merged_2{',int2str(i),'});']); 
    temp = corrcoef(zi22.cyl3.y,yh{1}.y); 
    corr2(i,1) = temp(2,1); 
    temp = corrcoef(zi22.cyl3.y,yh{2}.y); 
    corr2(i,2) = temp(2,1); 
    eval(['[yh, Trash] = compare(zi33.cyl3,merged_1{',int2str(i),... 
            '},merged_2{',int2str(i),'});']); 
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    temp = corrcoef(zi33.cyl3.y,yh{1}.y); 
    corr3(i,1) = temp(2,1); 
    temp = corrcoef(zi33.cyl3.y,yh{2}.y); 
    corr3(i,2) = temp(2,1); 
    eval(['[yh, Trash] = compare(zi44.cyl3,merged_1{',int2str(i),... 
            '},merged_2{',int2str(i),'});']); 
    temp = corrcoef(zi44.cyl3.y,yh{1}.y); 
    corr4(i,1) = temp(2,1); 
    temp = corrcoef(zi44.cyl3.y,yh{2}.y); 
    corr4(i,2) = temp(2,1); 
    eval(['[yh, Trash] = compare(zi55.cyl3,merged_1{',int2str(i),... 
            '},merged_2{',int2str(i),'});']); 
    temp = corrcoef(zi55.cyl3.y,yh{1}.y); 
    corr5(i,1) = temp(2,1); 
    temp = corrcoef(zi55.cyl3.y,yh{2}.y); 
    corr5(i,2) = temp(2,1); 
    eval(['[yh, Trash] = compare(zi66.cyl3,merged_1{',int2str(i),... 
            '},merged_2{',int2str(i),'});']); 
    temp = corrcoef(zi66.cyl3.y,yh{1}.y); 
    corr6(i,1) = temp(2,1); 
    temp = corrcoef(zi66.cyl3.y,yh{2}.y); 
    corr6(i,2) = temp(2,1); 
    eval(['[yh, Trash] = compare(zi77.cyl3,merged_1{',int2str(i),... 
            '},merged_2{',int2str(i),'});']); 
    temp = corrcoef(zi77.cyl3.y,yh{1}.y); 
    corr7(i,1) = temp(2,1); 
    temp = corrcoef(zi77.cyl3.y,yh{2}.y); 
    corr7(i,2) = temp(2,1); 
end 
 
mean_corr = (corr1 + corr2 + corr3 + corr4 + corr5 + corr6 + corr7)'/7; 
min_corr = [min([corr1(:,1)';corr2(:,1)';corr3(:,1)';corr4(:,1)';... 
            corr5(:,1)';corr6(:,1)';corr7(:,1)']);min([corr1(:,2)';... 
            corr2(:,2)';corr3(:,2)';corr4(:,2)';corr5(:,2)';... 
            corr6(:,2)';corr7(:,2)'])]; 
max_corr = [max([corr1(:,1)';corr2(:,1)';corr3(:,1)';corr4(:,1)';... 
            corr5(:,1)';corr6(:,1)';corr7(:,1)']);max([corr1(:,2)';... 
            corr2(:,2)';corr3(:,2)';corr4(:,2)';corr5(:,2)';... 
            corr6(:,2)';corr7(:,2)'])]; 
     
figure(1); 
plot(max_corr(1,:),'r-x'); 
hold on; 
grid on; 
plot(mean_corr(1,:),'b-'); 
plot(min_corr(1,:),'g-+'); 
legend('Max correlation','Mean correlation','Min correlation',0); 
hold off; 
     
figure(2); 
plot(max_corr(2,:),'r-x'); 
hold on; 
grid on; 
plot(mean_corr(2,:),'b-'); 
plot(min_corr(2,:),'g-+'); 
legend('Max correlation','Mean correlation','Min correlation',0); 
hold off; 

B.4 single_many_test.m 
[zi1 zv1] = zizv('0306241002_Status.mat'); 
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[zi2 zv2] = zizv('0306241011_Status.mat'); 
[zi3 zv3] = zizv('0306241145_Status.mat'); 
[zi4 zv4] = zizv('0306241150_Status.mat'); 
[zi5 zv5] = zizv('0306241154_Status.mat'); 
[zi6 zv6] = zizv('0306241200_Status.mat'); 
[zi7 zv7] = zizv('0306271119_Status.mat'); 
[zi8 zv8] = zizv('0306271123_Status.mat'); 
[zi9 zv9] = zizv('0306271129_Status.mat'); 
[zi10 zv10] = zizv('0306271134_Status.mat'); 
[zi11 zv11] = zizv('0306271142_Status.mat'); 
[zi12 zv12] = zizv('0306271146_Status.mat'); 
[zi13 zv13] = zizv('0306271154_Status.mat'); 
everything = merge(zi1.cyl1,zi1.cyl2,zi1.cyl3,zi1.cyl4,zi1.cyl5,... 
                   zi2.cyl1,zi2.cyl2,zi2.cyl3,zi2.cyl4,zi2.cyl5,... 
                   zi3.cyl1,zi3.cyl2,zi3.cyl3,zi3.cyl4,zi3.cyl5,... 
                   zi4.cyl1,zi4.cyl2,zi4.cyl3,zi4.cyl4,zi4.cyl5,... 
                   zi5.cyl1,zi5.cyl2,zi5.cyl3,zi5.cyl4,zi5.cyl5,... 
                   zi6.cyl1,zi6.cyl2,zi6.cyl3,zi6.cyl4,zi6.cyl5,... 
                   zi7.cyl1,zi7.cyl2,zi7.cyl3,zi7.cyl4,zi7.cyl5,... 
                   zi8.cyl1,zi8.cyl2,zi8.cyl3,zi8.cyl4,zi8.cyl5,... 
                   zi9.cyl1,zi9.cyl2,zi9.cyl3,zi9.cyl4,zi9.cyl5,... 
                   zi10.cyl1,zi10.cyl2,zi10.cyl3,zi10.cyl4,zi10.cyl5,... 
                   zi11.cyl1,zi11.cyl2,zi11.cyl3,zi11.cyl4,zi11.cyl5,... 
                   zi12.cyl1,zi12.cyl2,zi12.cyl3,zi12.cyl4,zi12.cyl5,... 
                   zi13.cyl1,zi13.cyl2,zi13.cyl3,zi13.cyl4,zi13.cyl5); 
zi1 = merge(zi1.cyl1,zi1.cyl2,zi1.cyl3,zi1.cyl4,zi1.cyl5); 
zi2 = merge(zi2.cyl1,zi2.cyl2,zi2.cyl3,zi2.cyl4,zi2.cyl5); 
zi3 = merge(zi3.cyl1,zi3.cyl2,zi3.cyl3,zi3.cyl4,zi3.cyl5); 
zi4 = merge(zi4.cyl1,zi4.cyl2,zi4.cyl3,zi4.cyl4,zi4.cyl5); 
zi5 = merge(zi5.cyl1,zi5.cyl2,zi5.cyl3,zi5.cyl4,zi5.cyl5); 
zi6 = merge(zi6.cyl1,zi6.cyl2,zi6.cyl3,zi6.cyl4,zi6.cyl5); 
zi7 = merge(zi7.cyl1,zi7.cyl2,zi7.cyl3,zi7.cyl4,zi7.cyl5); 
zi8 = merge(zi8.cyl1,zi8.cyl2,zi8.cyl3,zi8.cyl4,zi8.cyl5); 
zi9 = merge(zi9.cyl1,zi9.cyl2,zi9.cyl3,zi9.cyl4,zi9.cyl5); 
zi10 = merge(zi10.cyl1,zi10.cyl2,zi10.cyl3,zi10.cyl4,zi10.cyl5); 
zv11 = zi11.cyl1; 
zi11 = merge(zi11.cyl1,zi11.cyl2,zi11.cyl3,zi11.cyl4,zi11.cyl5); 
zv12 = zi12.cyl1 
zi12 = merge(zi12.cyl1,zi12.cyl2,zi12.cyl3,zi12.cyl4,zi12.cyl5); 
zi13 = merge(zi13.cyl1,zi13.cyl2,zi13.cyl3,zi13.cyl4,zi13.cyl5); 
 
m1 = n4sid(zi1, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m2 = n4sid(zi2, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m3 = n4sid(zi3, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m4 = n4sid(zi4, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m5 = n4sid(zi5, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m6 = n4sid(zi6, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m7 = n4sid(zi7, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m8 = n4sid(zi8, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m9 = n4sid(zi9, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m10 = n4sid(zi10, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
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m11 = n4sid(zi11, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m12 = n4sid(zi12, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m13 = n4sid(zi13, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
merged = n4sid(everything, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
correlations = zeros(2,13); 
[yh, Trash] = compare(zv1.cyl3,m1,merged); 
c1 = corrcoef(zv1.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv1.cyl3.y,yh{2}.y); 
correlations(1,1) = c1(1,2); 
correlations(2,1) = c2(1,2); 
[yh, Trash] = compare(zv2.cyl3,m2,merged); 
c1 = corrcoef(zv2.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv2.cyl3.y,yh{2}.y); 
correlations(1,2) = c1(1,2); 
correlations(2,2) = c2(1,2); 
[yh, Trash] = compare(zv3.cyl3,m3,merged); 
c1 = corrcoef(zv3.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv3.cyl3.y,yh{2}.y); 
correlations(1,3) = c1(1,2); 
correlations(2,3) = c2(1,2); 
[yh, Trash] = compare(zv4.cyl3,m4,merged); 
c1 = corrcoef(zv4.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv4.cyl3.y,yh{2}.y); 
correlations(1,4) = c1(1,2); 
correlations(2,4) = c2(1,2); 
[yh, Trash] = compare(zv5.cyl3,m5,merged); 
c1 = corrcoef(zv5.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv5.cyl3.y,yh{2}.y); 
correlations(1,5) = c1(1,2); 
correlations(2,5) = c2(1,2); 
[yh, Trash] = compare(zv6.cyl3,m6,merged); 
c1 = corrcoef(zv6.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv6.cyl3.y,yh{2}.y); 
correlations(1,6) = c1(1,2); 
correlations(2,6) = c2(1,2); 
[yh, Trash] = compare(zv7.cyl3,m7,merged); 
c1 = corrcoef(zv7.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv7.cyl3.y,yh{2}.y); 
correlations(1,7) = c1(1,2); 
correlations(2,7) = c2(1,2); 
[yh, Trash] = compare(zv8.cyl3,m8,merged); 
c1 = corrcoef(zv8.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv8.cyl3.y,yh{2}.y); 
correlations(1,8) = c1(1,2); 
correlations(2,8) = c2(1,2); 
[yh, Trash] = compare(zv9.cyl3,m9,merged); 
c1 = corrcoef(zv9.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv9.cyl3.y,yh{2}.y); 
correlations(1,9) = c1(1,2); 
correlations(2,9) = c2(1,2); 
[yh, Trash] = compare(zv10.cyl3,m10,merged); 
c1 = corrcoef(zv10.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv10.cyl3.y,yh{2}.y); 
correlations(1,10) = c1(1,2); 
correlations(2,10) = c2(1,2); 
[yh, Trash] = compare(zv11,m11,merged); 
c1 = corrcoef(zv11.y,yh{1}.y); 



 - - 43 - - 

c2 = corrcoef(zv11.y,yh{2}.y); 
 
correlations(1,11) = c1(1,2); 
correlations(2,11) = c2(1,2); 
[yh, Trash] = compare(zv12,m12,merged); 
c1 = corrcoef(zv12.y,yh{1}.y); 
c2 = corrcoef(zv12.y,yh{2}.y); 
correlations(1,12) = c1(1,2); 
correlations(2,12) = c2(1,2); 
[yh, Trash] = compare(zv13.cyl3,m13,merged); 
c1 = corrcoef(zv13.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv13.cyl3.y,yh{2}.y); 
correlations(1,13) = c1(1,2); 
correlations(2,13) = c2(1,2); 
 
hold off; 
plot(correlations(1,:),'r-'); 
hold on; 
plot(correlations(2,:),'b-+'); 
legend('operating point individual model','Merged model'); 
title('Comparing cylinder individual models to merged model'); 
xlabel('Operating point'); 
ylabel('Correlation'); 
grid on; 

B.5 residual_analysis.m 
[zi,zv] = zizv('0306271123_Status.mat'); 
if ~exist('model') 
    create_model; 
end 
simulated = zeros(500,5); 
simulated(:,1) = idsim(zv.cyl1.u,model); 
simulated(:,2) = idsim(zv.cyl2.u,model); 
simulated(:,3) = idsim(zv.cyl3.u,model); 
simulated(:,4) = idsim(zv.cyl4.u,model); 
simulated(:,5) = idsim(zv.cyl5.u,model); 
 
residuals = zeros(500,5); 
residuals(:,1) = zv.cyl1.y-simulated(:,1); 
residuals(:,2) = zv.cyl2.y-simulated(:,2); 
residuals(:,3) = zv.cyl3.y-simulated(:,3); 
residuals(:,4) = zv.cyl4.y-simulated(:,4); 
residuals(:,5) = zv.cyl5.y-simulated(:,5); 
figure(1); 
mean_res = mean(residuals')'; 
plot(mean_res,'b-'); 
title('Mean residuals'); 
xlabel('Engine cycles'); 
ylabel('Degrees ATDC'); 
 
figure(2); 
[P,F] = spectrum(mean_res, 256, 100, [], 1); 
plot(F, P(:, 1), 'b-'); 
title('Power spectrum of the residuals'); 
xlabel('Frequency'); 
ylabel('Power'); 
 
figure(3); 
hold off; 
plot(simulated(:,2),'b'); 
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hold on; 
plot(zv.cyl2.y,'r'); 
grid on; 
title('Measured and simulated output'); 
xlabel('Engine cycles'); 
ylabel('Degrees ATDC'); 
legend('Simulated output','Measured output',0); 

B.6 create_model.m 

This is the file that creates a model from all data contained in the files indexed 15-21 and 23-28. 
All data in the mentioned files is first merged into one big iddata object, this object is then used 
as a parameter to the function n4sid which creates the model. 
 
[zi1 trash] = zizv('0306241002_Status.mat'); 
[zi2 trash] = zizv('0306241011_Status.mat'); 
[zi3 trash] = zizv('0306241145_Status.mat'); 
[zi4 trash] = zizv('0306241150_Status.mat'); 
[zi5 trash] = zizv('0306241154_Status.mat'); 
[zi6 trash] = zizv('0306241200_Status.mat'); 
[zi7 trash] = zizv('0306271119_Status.mat'); 
[zi8 trash] = zizv('0306271123_Status.mat'); 
[zi9 trash] = zizv('0306271129_Status.mat'); 
[zi10 trash] = zizv('0306271134_Status.mat'); 
[zi11 trash] = zizv('0306271142_Status.mat'); 
[zi12 trash] = zizv('0306271146_Status.mat'); 
[zi13 trash] = zizv('0306271154_Status.mat'); 
everything = merge(zi1.cyl1,zi1.cyl2,zi1.cyl3,zi1.cyl4,zi1.cyl5,... 
                   zi2.cyl1,zi2.cyl2,zi2.cyl3,zi2.cyl4,zi2.cyl5,... 
                   zi3.cyl1,zi3.cyl2,zi3.cyl3,zi3.cyl4,zi3.cyl5,... 
                   zi4.cyl1,zi4.cyl2,zi4.cyl3,zi4.cyl4,zi4.cyl5,... 
                   zi5.cyl1,zi5.cyl2,zi5.cyl3,zi5.cyl4,zi5.cyl5,... 
                   zi6.cyl1,zi6.cyl2,zi6.cyl3,zi6.cyl4,zi6.cyl5,... 
                   zi7.cyl1,zi7.cyl2,zi7.cyl3,zi7.cyl4,zi7.cyl5,... 
                   zi8.cyl1,zi8.cyl2,zi8.cyl3,zi8.cyl4,zi8.cyl5,... 
                   zi9.cyl1,zi9.cyl2,zi9.cyl3,zi9.cyl4,zi9.cyl5,... 
                   zi10.cyl1,zi10.cyl2,zi10.cyl3,zi10.cyl4,zi10.cyl5,... 
                   zi11.cyl1,zi11.cyl2,zi11.cyl3,zi11.cyl4,zi11.cyl5,... 
                   zi12.cyl1,zi12.cyl2,zi12.cyl3,zi12.cyl4,zi12.cyl5,... 
                   zi13.cyl1,zi13.cyl2,zi13.cyl3,zi13.cyl4,zi13.cyl5); 
 
model = n4sid(everything, 3, 'trace', 'off', 'DisturbanceModel',... 
        'None','nk',[0,0,0,0]); 

B.7 observability_controllability_test.m 
if ~exist('model') 
    create_model; 
end 
W_o = obsv(model.A,model.C) 
if rank(W_o) == size(model.A,1) 
    disp('Model is observable'); 
else 
    disp('Model is NOT observable'); 
end 
 
W_c = ctrb(model.A,model.B) 
if rank(W_c) == size(model.A,1) 
    disp('Model is controllable'); 
else 
    disp('Model is not controllable'); 
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end 

 

B.8 create_sensitivity_function.m 
if ~exist('model') 
    create_model; 
end 
if ~exist('RLQG') 
    create_kalman; 
end 
plant_tf = tf(ss(model.A,model.B,model.C,model.D,1,'InputName',... 
    {'CR','TInlet','FuelHeat','Speed'},'OutputName','CA50')); 
regulator_tf = tf([1],[1,-1],1) * tf(ss(RLQG.A,RLQG.B,RLQG.C,RLQG.D,1,... 
    'InputName','CA50','OutputName',{'CR','TInlet','FuelHeat','Speed'})); 
L = plant_tf * regulator_tf; 
S = (1 - L)^-1 
T = 1 - S 
figure(1); 
bode(S); 
grid on; 
title('Sensitivity function'); 
figure(2); 
bode(T); 
grid on; 
title('Complementary sensitivity function'); 

B.9 HCCI.m 
function [sys,x0,str,ts] = HCCI(t,x,u,flag,A,B,C,D,w_power,e_power) 
%HCCI(t,x,u,flag,A,B,C,D,w_power,e_power) 
%    
%   Parameters A, B, C and D are the matrices of the discrete state space 
%   representation of the engine. 
%   w_power and e_power are the variances of the noise. 
%   x(t+1) = A*x(t) + B*u(t) + w(t) 
%   y(t)   = C*x(t) + D*u(t) + e(t) 
 
switch flag, 
 
  % Initialization % 
  case 0, 
    [sys,x0,str,ts]=mdlInitializeSizes(A,B,C); 
 
  % Derivatives % Not used here 
  case 1, 
    sys=mdlDerivatives(t,x,u); 
 
  % Update % 
  case 2, 
    sys=mdlUpdate(t,x,u,A,B,w_power); 
 
  % Outputs % 
  case 3, 
    sys=mdlOutputs(t,x,u,C,D,e_power); 
 
  % GetTimeOfNextVarHit % 
  case 4, 
    sys=mdlGetTimeOfNextVarHit(t,x,u); 
 
  % Terminate % 
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  case 9, 
    sys=mdlTerminate(t,x,u); 
 
  % Unexpected flags % 
  otherwise 
    error(['Unhandled flag = ',num2str(flag)]); 
 
end 
% end HCCI 
 
%========================================================================== 
% mdlInitializeSizes 
% Return the sizes, initial conditions, and sample times for the S-function. 
%=========================================================================== 
function [sys,x0,str,ts]=mdlInitializeSizes(A,B,C) 
 sizes = simsizes; 
 sizes.NumContStates  = 0; 
 sizes.NumDiscStates  = size(A,1); 
 sizes.NumOutputs     = size(C,1); 
 sizes.NumInputs      = size(B,2); 
 sizes.DirFeedthrough = 1; 
 sizes.NumSampleTimes = 1;   % at least one sample time is needed 
  
 sys = simsizes(sizes); 
 % initialize the initial conditions 
 x0  = zeros(1,size(A,1)); 
 % str is always an empty matrix 
 str = []; 
 % initialize the array of sample times 
 ts  = [1 0]; 
% end mdlInitializeSizes 
 
%=========================================================================== 
% mdlDerivatives 
% Return the derivatives for the continuous states. 
%=========================================================================== 
function sys=mdlDerivatives(t,x,u) 
    sys = []; 
% end mdlDerivatives 
 
%=========================================================================== 
% mdlUpdate 
% Handle discrete state updates, sample time hits, and major time step 
% requirements. 
%=========================================================================== 
function sys=mdlUpdate(t,x,u,A,B,w_power) 
    w = zeros(length(w_power),1); 
    for i = 1:length(w) 
        w(i) = randn*sqrt(w_power(i)); 
    end 
    sys = A*x+B*u+w; 
% end mdlUpdate 
 
%=========================================================================== 
% mdlOutputs 
% Return the block outputs. 
%=========================================================================== 
function sys=mdlOutputs(t,x,u,C,D,e_power) 
    e = randn*sqrt(e_power); 
    sys = C*x + D*u + e; 
% end mdlOutputs 
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%=========================================================================== 
% mdlGetTimeOfNextVarHit 
% Return the time of the next hit for this block.  Note that the result is 
% absolute time.  Note that this function is only used when you specify a 
% variable discrete-time sample time [-2 0] in the sample time array in 
% mdlInitializeSizes. 
%=========================================================================== 
function sys=mdlGetTimeOfNextVarHit(t,x,u) 
    sampleTime = 1;    %  Example, set the next hit to be one second later. 
    sys = t + sampleTime; 
% end mdlGetTimeOfNextVarHit 
 
%=========================================================================== 
% mdlTerminate 
% Perform any end of simulation tasks. 
%=========================================================================== 
function sys=mdlTerminate(t,x,u) 
    sys = []; 
% end mdlTerminate 

B.10 create_lqg.m 
if ~exist('model'); 
    create_model; % Creates a model of the engine. 
end 
weights; % Initializes the Q and R matrices. 
 
[kest,L,P] = kalman(ss(model.A,[model.B,eye(3)],model.C,[model.D,0,0,1]... 
    ,1,'InputName',{'CR','TInlet','FuelHeat','Speed','noise_1','noise_2'... 
    ,'noise_3'},'OutputName','CA50'),diag(process_noise),measurement_noise); 
 
[K,S,E] = DLQR(model.A,[model.B(:,1:2),zeros(3,2)],Q,R); 
RLQG = LQGREG(kest,K,'current'); 

B.11 lqg_regulator.m 
function [sys,x0,str,ts] = lqg_regulator(t,x,u,flag,... 
    A,B,C,D,w_power,e_power,Q,R,N) 
% lqg_regulator(t,x,u,flag,A,B,C,D,w_power,e_power,Q,R,N) 
%      Creates and acts as a LQG regulator for the process described by the 
%      matrices A, B, C and D and the noise variances w_power and e_power. 
%      The process is described by the following equations 
% 
%          x(t+1) = A*x(t) + B*u(t) + w(t) 
%          y(t) = C*x(t) + D*u(t) + e(t) 
%    
%      The matrices Q, R and N are the weighting matrices of the loss 
%      function 
%          
%          sum(x' Q x + u' R u + u' N x) 
 
switch flag, 
 
  % Initialization % 
  case 0, 
    [sys,x0,str,ts]=mdlInitializeSizes(A,B,C,D,w_power,e_power,Q,R,N); 
 
  % Derivatives % 
  case 1, 
    sys=mdlDerivatives(t,x,u); 
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  % Update % 
  case 2, 
    sys=mdlUpdate(t,x,u); 
 
  % Outputs % 
  case 3, 
    sys=mdlOutputs(t,x,u); 
 
  % GetTimeOfNextVarHit % 
  case 4, 
    sys=mdlGetTimeOfNextVarHit(t,x,u); 
 
  % Terminate % 
  case 9, 
    sys=mdlTerminate(t,x,u); 
 
  % Unexpected flags % 
  otherwise 
    error(['Unhandled flag = ',num2str(flag)]); 
 
end 
% end lqg_regulator 
 
%=========================================================================== 
% mdlInitializeSizes 
% Return the sizes, initial conditions, and sample times for the S-function. 
%=========================================================================== 
function [sys,x0,str,ts]=mdlInitializeSizes(A,B,C,D,w_power,e_power,Q,R,N) 
 sizes = simsizes; 
 RLQG = createLQGRegulator(A,B,C,D,w_power,e_power,Q,R,N) 
  
 sizes.NumContStates  = 0; 
 sizes.NumDiscStates  = size(RLQG.A,2) + prod(size(RLQG.A)) +... 
        prod(size(RLQG.B)) + prod(size(RLQG.C)) + prod(size(RLQG.D)) + 8; 
 sizes.NumOutputs     = 2; 
 sizes.NumInputs      = 1; 
 sizes.DirFeedthrough = 1; 
 sizes.NumSampleTimes = 1;    
  
 sys = simsizes(sizes); 
  
 x0  = zeros(sizes.NumDiscStates,1); 
 currentIndex = size(RLQG.A,2)+1; % Reserve space for the states. 
 % The regulator needs to be carried as states 
 for i = 1:size(RLQG.A,1) 
        x0(currentIndex:currentIndex+size(RLQG.A,2)-1) = RLQG.A(i,:); 
        currentIndex = currentIndex+size(RLQG.A,2); 
 end 
  
 for i = 1:size(RLQG.B,1) 
        x0(currentIndex:currentIndex+size(RLQG.B,2)-1) = RLQG.B(i,:); 
        currentIndex = currentIndex+size(RLQG.B,2); 
 end 
  
 for i = 1:size(RLQG.C,1) 
        x0(currentIndex:currentIndex+size(RLQG.C,2)-1) = RLQG.C(i,:); 
        currentIndex = currentIndex+size(RLQG.C,2); 
 end 
  
 for i = 1:size(RLQG.D,1) 
        x0(currentIndex:currentIndex+size(RLQG.D,2)-1) = RLQG.D(i,:); 
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        currentIndex = currentIndex+size(RLQG.D,2); 
 end 
 % Finally add the sizes of the matrices 
 x0(currentIndex:currentIndex+7) = 
[size(RLQG.A),size(RLQG.B),size(RLQG.C),size(RLQG.D)]; 
  
 % str is always an empty matrix 
 str = []; 
  
 % initialize the array of sample times 
 ts  = [1 0]; 
% end mdlInitializeSizes 
 
%=========================================================================== 
% mdlDerivatives 
% Return the derivatives for the continuous states. 
%=========================================================================== 
function sys=mdlDerivatives(t,x,u) 
    sys = []; 
% end mdlDerivatives 
 
%=========================================================================== 
% mdlUpdate 
% Handle discrete state updates, sample time hits, and major time step 
% requirements. 
%=========================================================================== 
function sys=mdlUpdate(t,x,u) 
 [A,B,C,D] = getMatrices(x); 
    sys(1:3) = A * x(1:3) + B * u; 
    sys(4:size(x,1)) = x(4:size(x,1)); 
% end mdlUpdate 
 
%=========================================================================== 
% mdlOutputs 
% Return the block outputs. 
%=========================================================================== 
function sys=mdlOutputs(t,x,u) 
 [A,B,C,D] = getMatrices(x); 
 sys = C * x(1:3) + D * u; 
    sys = saturate(sys); 
% end mdlOutputs 
 
%=========================================================================== 
% mdlGetTimeOfNextVarHit 
% Return the time of the next hit for this block.  Note that the result is 
% absolute time.  Note that this function is only used when you specify a 
% variable discrete-time sample time [-2 0] in the sample time array in 
% mdlInitializeSizes. 
%=========================================================================== 
function sys=mdlGetTimeOfNextVarHit(t,x,u) 
 sampleTime = 1;   
 sys = t + sampleTime; 
% end mdlGetTimeOfNextVarHit 
 
%=========================================================================== 
% mdlTerminate 
% Perform any end of simulation tasks. 
%=========================================================================== 
function sys=mdlTerminate(t,x,u) 
 sys = []; 
% end mdlTerminate 
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%=========================================================================== 
% Creates the kalman filter 
%=========================================================================== 
function RLQG = createLQGRegulator(A,B,C,D,w_power,e_power,Q,R,N) 
 Q1 = diag(w_power); 
 R1 = e_power; 
    InputName = {'CR','TInlet','FuelHeat','Speed'}; 
    for i = 1:length(w_power) 
        InputName{length(InputName) + 1} = ['noise_',int2str(i)]; 
    end 
 [kest,L,P] = kalman(ss(A,[B,eye(size(A,1))],C,[D,0,0,1],1,... 
        'InputName', InputName,'OutputName','CA50'),Q1,R1); 
    % The last two process inputs are removed since these are not 
    % accessible to the regulator. 
    [K,S,E] = DLQR(A,[B(:,1:2),zeros(3,2)],Q,R,N); 
    RLQG = LQGREG(kest,K,'current'); 
% end createKalman 
 
function [A,B,C,D] = getMatrices(x); 
    % Start by obtaining the matrix sizes 
    currentIndex = length(x)-7; 
     
    size_A = x(currentIndex:currentIndex+1); 
    currentIndex = currentIndex + 2; 
    size_B = x(currentIndex:currentIndex+1); 
    currentIndex = currentIndex + 2; 
    size_C = x(currentIndex:currentIndex+1); 
    currentIndex = currentIndex + 2; 
    size_D = x(currentIndex:currentIndex+1); 
    A = zeros(size_A'); 
    B = zeros(size_B'); 
    C = zeros(size_C'); 
    D = zeros(size_D'); 
 
    currentIndex = size_A(1) + 1; % This is where the matrices begin 
    for i = 1:size_A(1) 
        A(i,:) = x(currentIndex:currentIndex+size_A(2)-1)'; 
        currentIndex = currentIndex+size_A(2); 
    end 
    for i = 1:size_B(1) 
        B(i,:) = x(currentIndex:currentIndex+size_B(2)-1)'; 
        currentIndex = currentIndex+size_B(2); 
    end 
    for i = 1:size_C(1) 
        C(i,:) = x(currentIndex:currentIndex+size_C(2)-1)'; 
        currentIndex = currentIndex+size_C(2); 
    end 
    for i = 1:size_D(1) 
        D(i,:) = x(currentIndex:currentIndex+size_D(2)-1)'; 
        currentIndex = currentIndex+size_D(2); 
    end 
% end getMatrices 
 
function sys = saturate(s) 
    % Saturate CR 
    sys(1) = max(s(1),-9); 
    sys(1) = min(s(1),3); 
    % Saturate IAT 
    sys(2) = max(s(2),-100); 
    sys(2) = min(s(2),100); 
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% end saturate 

B.12 test_noise.m 
function test_noise 
    load('0306121008_Status.mat'); 
    CA50 = reshape(CA50, 5, 1000)'; 
    noise = detrend(CA50(400:1000,1)'); 
    figure(1) 
    plot(400:1000,noise); 
    grid on; 
    figure(2) 
    [P,F] = spectrum(noise, 256, 100, [], 1); 
    plot(F, P(:, 1)); 
    var(noise) 

B.13 create_regulator.m 
[kest,L,P] = 
kalman(ss(model.A,[model.B,eye(3)],model.C,[model.D,0,0,1],1,... 
    
'InputName',{'CR','TInlet','FuelHeat','Speed','noise_1','noise_2','noise_3'}
,'OutputName','CA50')... 
    ,diag(regulator_process_noise),regulator_measurement_noise); 
 
[K,S,E] = DLQR(model.A,[model.B(:,1:2),zeros(3,2)],Q,R); 
RLQG = LQGREG(kest,K,'current'); 
 
A = RLQG.A; 
B = RLQG.B; 
C = RLQG.C; 
D = RLQG.D; 
 
z = zeros(size(A)); 
regulator_A = [A,z,z,z,z;z,A,z,z,z;z,z,A,z,z;z,z,z,A,z;z,z,z,z,A]; 
regulator_B = [B,zeros(3,4);... 
               zeros(3,1),B,zeros(3,3);... 
               zeros(3,2),B,zeros(3,2);... 
               zeros(3,3),B,zeros(3,1);... 
               zeros(3,4),B]; 
regulator_C = [C(1,:)/5,C(1,:)/5,C(1,:)/5,C(1,:)/5,C(1,:)/5;... 
               C(2,:),zeros(1,12);... 
               zeros(1,3),C(2,:),zeros(1,9);... 
               zeros(1,6),C(2,:),zeros(1,6);... 
               zeros(1,9),C(2,:),zeros(1,3);... 
               zeros(1,12),C(2,:)]; 
regulator_D = 
[D(1)/5,D(1)/5,D(1)/5,D(1)/5,D(1)/5;D(2),0,0,0,0;0,D(2),0,0,0;... 
        0,0,D(2),0,0;0,0,0,D(2),0;0,0,0,0,D(2)]; 
 
clear A B C D kest L P z K S E RLQG; 

B.14 LQG_Controller.java 
/** 
 * Regulator for ignition phasing control of the five cylinder 
 * variable CR HCCI Engine. 
 * It is assumed that the controller has six outputs. These are 
 * CR (for the five cylinders in parallel and IAT (individual 
 * control for each cylinder). CR is controlled for all cylinders  
 * in paralell.  
 * The number of inputs to the controller is arbitrary, and 
 * so is the complexity of the controller. 
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 */ 
public class LQG_Controller { 
 
  // Regulator matrices 
  private double[][] A, B, C, D, x, oldInputs; 
  private int index; 
  private double CR; 
 
  /** 
   * Constructs a controller object. 
   * The parameters are the matrices of the regulator for 
   * one cylinder in state space form. 
   */ 
  public LQG_Controller(double[][] A, double[][] B,  
                        double[][] C, double[][] D) { 
    this.A = A; 
    this.B = B; 
    this.C = C; 
    this.D = D; 
    index = 0; 
    // Reserve space for the five latest inputs 
    oldInputs = new double[5][B[0].length]; 
    // Reserve space for the states of all five cylinders 
    x = new double[5][A.length]; 
  } 
 
  /** 
   * Updates the controller states for cylinder cylNbr. 
   */ 
  public void updateStates(double[] inputs, int cylNbr) { 
    double[] newX = new double[A.length]; 
    for (int i = 0; i < A.length; i++) { 
      // Calculate the contribution from the A matrix 
      for (int k = 0; k < A.length; k++) { 
        newX[i] = newX[i] + A[i][k] * x[cylNbr][k]; 
      } 
      // Calculate the contribution from the B matrix 
      for (int k = 0; k < inputs.length; k++) { 
        newX[i] = newX[i] + B[i][k] * inputs[k]; 
      } 
    } 
    // Update the states in the x-matrix 
    for (int i = 0; i < A.length; i++) { 
      x[cylNbr][i] = newX[i]; 
    } 
  } 
 
  /** 
   * Calculates the CR output. 
   * This function uses stored values of the inputs 
   * to the different cylinders. 
   */ 
  public double calculateCR() { 
    double[] meanStates = new double[A.length]; 
    double[] meanInputs = new double[B[0].length]; 
    double output = 0; 
    // Calculate the mean of the states 
    for (int i = 0; i < meanStates.length; i++) { 
      for (int k = 0; k < 5; k++) { 
        meanStates[i] = meanStates[i] + x[k][i]; 
      } 
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      meanStates[i] = meanStates[i] * 0.2; 
    } 
    // Calculate the mean of the inputs 
    for (int i = 0; i < meanInputs.length; i++) { 
      for (int k = 0; k < 5; k++) { 
        meanInputs[i] = meanInputs[i] + oldInputs[k][i]; 
      } 
      meanInputs[i] = meanInputs[i] * 0.2; 
    } 
    // Calculate the contribution from the states 
    for (int i = 0; i < meanStates.length; i++) { 
      output = output + C[0][i] * meanStates[i]; 
    } 
    // Calculate the contribution from the inputs 
    for (int i = 0; i < meanInputs.length; i++) { 
      output = output + D[0][i] * meanInputs[i]; 
    } 
    return output; 
  } 
 
  /** 
   * Calculates the IAT output. 
   * This method also updates the stored input values 
   */ 
  public double calculateIAT(double[] inputs,int cylNbr) { 
    double output = 0; 
    // Calculate the contribution from the states 
    for (int i = 0; i < x[0].length; i++) { 
      output = output + C[1][i] * x[cylNbr][i]; 
    } 
    // Calculate the contribution from the inputs 
    // and update the stored values 
    for (int i = 0; i < inputs.length; i++) { 
      output = output + C[1][i] * inputs[i]; 
      oldInputs[cylNbr][i] = inputs[i]; 
    } 
    return output; 
  } 
 
  /** 
   * Calculates the controller output after each cylinder 
   * cycle. IAT is updated at every call of this method. 
   * CR is update once per engine cycle (after cylinder 
   * five has compled a cycle). 
   */ 
  public double[] cycleFinished(double[] inputs, int cylNbr) { 
    double IAT = calculateIAT(inputs, cylNbr); 
    if (cylNbr == 5) { 
      CR = calculateCR(); 
    } 
    return new double[]{CR,IAT}; 
  } 
} 
 




