
ISSN 0280-5316
ISRN LUTFD2/TFRT--5711--SE

 Combustion control of the
Homogenous Charge

Compression Ignition dynamics

Roland Pfeiffer

Department of Automatic Control
Lund Institute of Technology

September 2003

Document name
MASTER THESIS
Date of issue
September

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD2/TFRT--5711--SE
Supervisor
Rolf Johansson LTH, the Department of Automatic
Control.
Per Tunestål LTH, Division of Combustion Engines

Author(s)
Roland Pfeiffer

Sponsoring organization

Title and subtitle
Combustion control of the Homogenous Charge Compression Ignition dynamics (Förbränningsreglering av HCCI-
dynamik)

Abstract

The HCCI engine has potential to replace the spark ignition and compression ignition engines of today. One of the main
problems in making the engine commercially attractive is that there are no direct means of controlling the ignition phasing.
This thesis attempts to describe a method for system identification of the HCCI process, and development of an effective
LQG regulator for the combustion process. Matlab and Simulink are used in computations and simulations.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
59

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
Lund University Library , Box 3, SE-221 00 Lund, Sweden Fax +46 46 222 42 43

Master thesis

Combustion control of the
Homogenous Compression Charge

Ignition dynamics

System identification and development of an LQG

controller for the ignition phasing

Performed at Lund Institute of Technology
at the

Department of Automatic Control
in association with the

Division of Combustion Engines

 Performed by:

 Roland Pfeiffer

 Supervisors:
 Professor Rolf Johansson

 Ass. Professor Per Tunestål

 - - 2 - -

1 INTRODUCTION ... - 4 -
1.1 METHOD ..- 4 -
1.2 OBJECTIVE...- 4 -
1.3 OUTLINE OF THE TEXT...- 4 -

2 THE HCCI PROCESS.. - 4 -
2.1 THE ENGINE ...- 5 -
2.2 MEASURING IAT ...- 5 -

3 EXPERIMENTS.. - 5 -
3.1 PROCESS STABILITY...- 6 -
3.2 INITIAL EXPERIMENTS ...- 6 -

4 MAIN EXPERIMENTS ... - 7 -
5 SYSTEM IDENTIFICATION... - 9 -

5.1 METHOD ..- 9 -
5.2 MODEL ACCURACY..- 9 -
5.3 SAMPLING RATE ..- 9 -
5.4 RESULT ..- 9 -
5.5 CHOICE OF MODEL COMPLEXITY.. - 10 -

5.5.1 Method .. - 10 -
5.5.2 Result... - 10 -

5.6 ONE MODEL OR SEVERAL?.. - 10 -
5.6.1 Method .. - 10 -
5.6.2 Result... - 10 -

5.7 THE MODEL... - 11 -
5.7.1 Method .. - 11 -
5.7.2 Result... - 11 -
5.7.3 Poles and zeros ... - 11 -
5.7.4 Bode diagrams .. - 13 -
5.7.5 Observability and controllability ... - 13 -
5.7.6 Simulation capacity... - 14 -

5.8 VALIDATION ... - 14 -
5.8.1 Residuals ... - 14 -

5.9 MODEL AND SIMULINK .. - 15 -
5.9.1 Constructing an engine block in Simulink.. - 15 -

6 CONSTRUCTING A CONTROLLER .. - 16 -
6.1 METHOD ... - 16 -
6.2 A COMMENT ON THE FIGURES.. - 17 -
6.3 STEP ONE, NO NOISE ... - 17 -

6.3.1 Result... - 18 -
6.4 STEP TWO, ADDING NOISE... - 20 -

6.4.1 Result... - 21 -
6.5 STEP THREE, ADDING DELAYS .. - 21 -

6.5.1 Result... - 22 -
6.6 STEP FOUR, NON PERFECT MODEL .. - 22 -

6.6.1 Targeted operating points .. - 22 -
6.6.2 Tuning the controller .. - 23 -
6.6.3 Result... - 23 -

6.7 SENSITIVITY FUNCTION .. - 27 -
6.8 PERFORMANCE: LQG VS. PID.. - 27 -

6.8.1 Method .. - 28 -
6.8.2 The LQG controller .. - 28 -
6.8.3 The PID controller.. - 28 -
6.8.4 Disturbance rejection, result .. - 28 -
6.8.5 Reference following, result ... - 29 -

6.9 CYLINDER INDIVIDUAL TEMPERATURE CONTROL.. - 29 -

 - - 3 - -

6.9.1 Test set up.. - 31 -
6.9.2 Result... - 32 -

7 IMPLEMENTATION IN JAVA ... - 33 -
7.1 REAL TIME CONSIDERATIONS... - 33 -
7.2 RESULT ... - 33 -

8 CONCLUSIONS.. - 33 -
9 DISCUSSION... - 33 -

9.1 INCREASING PERFORMANCE... - 33 -
9.2 VARIABLE COMPRESSION RATIO AND FRICTION... - 34 -
9.3 SPEED OF THE THERMAL ELEMENT... - 34 -
9.4 OPERATING RANGE... - 34 -

10 REFERENCES .. - 35 -
11 ACKNOWLEDGEMENTS.. - 35 -
12 ABBREVIATIONS.. - 35 -
A OPERATING POINTS... - 36 -

A.1 PRELIMINARY EXPERIMENTS.. - 36 -
A.2 FIRST SET OF MAIN EXPERIMENTS .. - 36 -
A.3 SECOND SET OF MAIN EXPERIMENTS .. - 37 -
A.4 THIRD SET OF MAIN EXPERIMENTS ... - 37 -

B MATLAB FILES ... - 38 -
B.1 LOADDATA.M ... - 38 -
B.2 ZIZV.M... - 38 -
B.3 COMPLEXITY_TEST.M ... - 39 -
B.4 SINGLE_MANY_TEST.M... - 40 -
B.5 RESIDUAL_ANALYSIS.M.. - 43 -
B.6 CREATE_MODEL.M.. - 44 -
B.7 OBSERVABILITY_CONTROLLABILITY_TEST.M.. - 44 -
B.8 CREATE_SENSITIVITY_FUNCTION.M... - 45 -
B.9 HCCI.M .. - 45 -
B.10 CREATE_LQG.M... - 47 -
B.11 LQG_REGULATOR.M ... - 47 -
B.12 TEST_NOISE.M... - 51 -
B.13 CREATE_REGULATOR.M ... - 51 -
B.14 LQG_CONTROLLER.JAVA.. - 51 -

 - - 4 - -

1 Introduction
Combustion engines are very important to
every one of us. They are used to power
vehicles as well as electrical power
generators, mobile pumps and so on.
However current combustion engines all
have some drawback. Spark Ignition (SI)
engines have low emissions but high fuel
consumption. Compression Ignition (CI)
engines have low fuel consumption but high
emissions. An attempt to obtain the best
behaviour from both SI and CI engines is the
Homogeneous Charge Compression Ignition
(HCCI) engine. It has the low fuel
consumption of the CI engine combined
with the low emissions of the SI engine.

The HCCI engine does have its drawbacks
however. Due to its operation there is no
direct way of controlling the ignition
phasing. This means that it is very hard to
control the engine. As a step towards
building a better controller than is available
today, this master thesis aims at identifying
the process and subsequently developing an
effective controller. When a good model of
the engine process is obtained this model can
be transferred to a Matlab Simulink block.
This offers the possibility to develop and test
control strategies without having to test them
on the real engine right away.

1.1 Method

This Thesis is based on experimental work
performed on an engine located at Lund
Institute of Technology (LTH). The
particular engine on which this master thesis
is based is a five-cylinder prototype built by
SAAB and equipped with a system for
variable compression ratio (CR) and variable
inlet air temperature (IAT). The engine is
described in more detail in section 2.1.

Matlab is used to make the computations
necessary to create a Linear Quadratic
Gaussian (LQG) controller. The functions
used can be studied in the Matlab files listed
in App. B.

1.2 Objective

The goal of this master thesis is to develop a
model of how the ignition phasing of the
HCCI engine is affected by the different
input signals. This knowledge can be used to
build simulation blocks for Matlab Simulink,
which can be used for advanced simulations.

Another objective is to create a controller
that is more effective than the gain
scheduled PID-controllers used today. For
more information on gain scheduling see
(Åström and Wittenmark, 1995).

1.3 Outline of the text

The content of this text is outlined in the
same order the different parts have been
performed. It starts by describing how the
system identification is performed. This part
includes results and validation of the
obtained model.

The next part of the text describes the steps
taken to develop an LQG controller. This
section includes development of a controller
for an engine with cylinder individual IAT.
A suggestion of how the controller can be
implemented in Java is then given.

The next section sums up the most important
points made. This section is followed by a
discussion of problems and possible im-
provements.

After the describing text, there are two
Appendices containing listings of examined
operating points and Matlab m-files.

2 The HCCI process
When looking at the HCCI process the
ignition phasing is the output signal that we
want to control. This is affected by CR, IAT,
engine speed and injected fuel amount. The
HCCI process can thus be considered to be a
multi input, single output system. The model
can be expanded with more inputs as well as
outputs. This work however targets the
signals mentioned above.

The point of ignition is defined as the crank
angle degree where 50% of the fuel has been

 - - 5 - -

consumed (CA50). The crank angle degree
is measured from top dead centre (TDC),
which is located at 0˚. Top dead centre is
defined as the crank angle when the piston is
at its highest position after compression.
Another acronym that will be used in this
thesis is ATDC, which stands for After Top
Dead Centre.

In an HCCI engine the fuel is injected
outside the cylinder into the inlet manifold,
alternatively if direct injection is used, the
fuel is injected early enough so that the fuel
and air will have time to form a
homogeneous mixture. This is the same
procedure as in an ordinary SI engine. The
advantage of this injection strategy is that
the air/fuel mixture is homogeneous when
combustion occurs. This leads to cleaner
exhausts than would be the case with direct
injection as used in CI engines. The air/fuel
mixture then auto ignites from the
temperature rise that occurs as a result of the
piston compressing the mixture.

2.1 The engine

The engine used for the experiments
performed as a part of this master thesis has
five cylinders and a displacement volume of
1.6 litres. It is built by SAAB and originally
built as an SI engine with variable CR. The
engine has subsequently been converted to
HCCI operation at LTH, and equipped with
a heat exchange system which allows the
heat in the exhaust gas to be used to heat the
inlet air. A valve is then used to select how
much of the inlet air should be taken from
the heat-exchanging device or from unheated
air.

Table 1 Engine specifications

Displacement 1598 cm3 (320 cm3/cyl)
Nr. of cylinders 5
Compression
ratio

Adjustable 9 - 21:1

Bore x Stroke 68mm x 88mm

A problem is that the variable CR and IAT
affects all cylinders in parallel and thus give
no way to affect the ignition phasing for
each cylinder individually. To achieve ba-

lanced ignition phasing for all cylinders a
system that affects the cylinder individual
load is used. The engine and the load
balancing system are described in more
detail in (Haraldsson, 2003).

The system using cylinder individual load to
achieve balanced ignition phasing is quite
unfavourable since it makes it impossible to
obtain maximum load from all five cylinders
simultaneously. During the time this thesis is
written the engine is being rebuilt so that it
will be possible to use cylinder individual
IAT to balance the ignition phasing. This
strategy allows the individual cylinders to
work at the same load.

In these tests the engine is naturally
aspirated, i.e. the engine is not supercharged
in any way. The fuel used in these tests is
92-octane gasoline.

2.2 Measuring IAT

The first sets of experiments revealed that
the thermal element was too slow. This
meant that a change in IAT would be visible
in the output signal several engine cycles
before it was visible in the measured input
signal. As of the second set of main
experiments the thermal element has been
switched to a faster one.

3 Experiments
When performing system identification a
disturbance is added to the input signals of
the process and the output is then observed.
The real process (in this case the engine) will
always be subject to unwanted disturbances
such as noise. This means that the disturb-
ances that have been introduced on purpose
should be as large as possible to be possible
to distinguish from process noise. The real
engine, like most real processes, is a non
linear process. This means that it is
necessary to find linearity regions where it is
possible to fit a linear model to the real
process. This means that it is not possible to
use arbitrarily large disturbances since they
would push the process out of the linearity
region. A thorough description of the science

 - - 6 - -

of system identification can be found in
(Johansson, 1993) and (Ljung, 1993).

The first step is to obtain information about
linearity regions; this information is used to
decide how the main experiments should be
performed. The next step is to perform the
main experiments. However; analysis of the
main experiments may reveal that some
parts of the process have been overlooked.
This in turn leads to a need to revise the test
cycle and possibly to perform new initial
experiments.

3.1 Process stability

The HCCI process is not completely stable
over the entire operating range. This means
that some kind of closed loop control of the
process is necessary to keep the process in a
certain range. This kind of closed loop
operation can cause problems when
performing system identification since it will
introduce non-causal behaviour. However
this non-causal behaviour will be a problem
mainly when performing continuous time
identification. When performing discrete
time identification the non-causal behaviour
will not be problem. In this thesis only
discrete time identification is performed.

The process is stabilized using a weak
integral control of the CR at the operating
points where the process is unstable.

3.2 Initial experiments

The initial experiments are done by feeding
step changes to the process inputs and
observing the output. The magnitudes of the
step changes are increased until non linear
behaviour is observed, or until the input or
output are close to going outside of normal
operating range. The step response experi-
ments are performed on each of the input
signals, one at a time. The input signals are:

• Compression ratio
• Inlet air temperature
• Fuel amount
• Engine speed

Other input signals exists, for instance the
fuel composition (Olsson, 2002) can be used

to control the ignition phasing but this thesis
focuses on the input signals listed above.
Plots of the initial experiments can be
viewed in Figure 1 to Figure 4.

0 50 100 150 200 250 300 350 400 450 500
-5

0

5

10

15

20
Ignition phasing

Engine cycles

D
eg

re
es

 A
TD

C
0 50 100 150 200 250 300 350 400 450 500

16

17

18

19

20
Compression ratio

Engine cycles
C

R

Figure 1 Step disturbances applied to the

compression ratio.

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8
Ignition phasing

Engine cycles

D
eg

re
es

 A
TD

C

0 50 100 150 200 250 300 350 400 450 500
150

200

250

300
Fuel heat content

Engine cycles

Jo
ul

e

Figure 2 Step disturbances applied to the

engine load.

 - - 7 - -

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8
Ignition phasing

De
gr

ee
s

A
TD

C

Engine cycles

0 50 100 150 200 250 300 350 400 450 500
1000

2000

3000

4000

5000
Engine speed

Engine cycles

R
pm

Figure 3 Step disturbances applied to the

engine speed.

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10
Ignition phasing

D
eg

re
es

 A
TD

C

Engine cycles

0 50 100 150 200 250 300 350 400 450 500
150

160

170

180

190

200
Inlet air temperature

Engine cycles

D
eg

. C

Figure 4 Step disturbance applied to the

inlet air temperature. This Figure is
obtained using the faster thermal
element.

4 Main experiments
Test series of 1000 engine cycles provide an
adequate amount of data from which the
identification can be made. The operating
points referred to in this section are listed in
App. A.

To create the disturbances needed to perform
identification of the process, Pseudo
Random Binary Sequence (PRBS) signals
are used. The initial experiments indicates
that the process could be excited using a
PRBS amplitude of ±40 J/cycle on the fuel
heat (this is the heat content of the injected
fuel), ±0.3 units on compression ratio, ±300

rpm on engine speed and ±0.5 % units on the
valve regulating the inlet air temperature.

When performing the tests, excitation is
applied to all four input signals concurrently.
This means that if all disturbances work in
the same direction the process will be
pushed out of the linear range even though
the individual input signals are in range. This
was found to be a problem when performing
the first round of main experiments. To
minimize the risk of this the concurrent
excitation levels are chosen to be 50% of the
values stated above.

Four sets of experiments were conducted. In
the first set the main focus was on step
response analysis. At this point it was
discovered that the thermal element
measuring the IAT was too slow to be of any
use in the subsequent tests, thus the position
of the valve controlling the air flow was
focused upon instead. This signal is called
PWM and is a value between 0 and 1 where
0 means; valve completely closed; only cold
air used, and 1 means valve completely
open; only hot air used. In the very first tests
performed the PWM signal was not stored.

The PWM signal is really a measure of the
valve position. This signal is then transferred
to the valve as a Pulse Width Modulated
(PWM) signal.

The second set of experiments aimed mainly
at investigating different amplitudes and
shortest period of the PRBS signals. It was
discovered at this point that a slower PRBS
excitation on the fuel amount allowed for
better results when performing system
identification. A slower PRBS means that
the shortest time a value is held is increased.

When performing the third set of experi-
ments the thermal element was changed to a
much faster one. This new element allows
the focus to be shifted from the PWM to the
IAT instead. This is of course much more
interesting since the results would be valid
even though the valve might be replaced. At
this time the possibility to add PRBS
disturbances to the engine speed has also
been added.

 - - 8 - -

The fourth set is largely the same as set
number three, and was performed mainly to
supply validation data.

Plots of the input and output signals obtained
from the experiment indexed 17 can be
viewed in Figure 5 to Figure 9. Only values
from engine cycle 200 up to 300 are
included in the plots. More values would
make the plots hard to read.

200 210 220 230 240 250 260 270 280 290 300
0

1

2

3

4

5

6

7

8
Ignition phasing

Engine cycle

D
eg

re
es

 A
TD

C

Figure 5 Measured ignition phasing for the

experiment indexed 17.

200 210 220 230 240 250 260 270 280 290 300
19.6

19.7

19.8

19.9

20

20.1

20.2

20.3

20.4

20.5
Compression ratio

Engine cycles

C
R

Figure 6 Compression ratio for the

experiment indexed 17.

200 210 220 230 240 250 260 270 280 290 300
265

270

275

280

285

290

295

300

305

310

315
Fuel heat content

Engine cycles

Jo
ul

e/
cy

cl
e

Figure 7 Engine load for the experiment

indexed 17.

200 210 220 230 240 250 260 270 280 290 300
1900

1950

2000

2050

2100

2150

2200
Engine speed

Engine cycles

R
P

M

Figure 8 Engine speed used at experiment

indexed 17.

200 210 220 230 240 250 260 270 280 290 300
166

168

170

172

174

176

178

180
Inlet air temperature

Engine cycles

D
eg

re
es

 c
en

tig
ra

de

Figure 9 Inlet air temperature used at

experiment indexed 17.

 - - 9 - -

5 System identification
To be able to perform system identification
it must be possible to distinguish the
disturbances in the output signal caused by
the excitation from the disturbances caused
by inherent noise. One way to measure the
amount of excitation of the output signal is
to calculate the signal to noise ratio. This can
be calculated using Eq. (1). In this Equation
std(CA50) denotes the standard deviation of
the output signal.

()
Unexcited

Excited

CAstd
CAstdNS

)50(
50/ = (1)

It is found that the signal to noise ratio is
approximately 2.6. This should be adequate
to succeed when performing identification.

5.1 Method

The Matlab function n4sid is used to per-
form system identification on the data
collected from the experiments. This fun-
ction makes use of a subspace algorithm
described in (Ljung 1999).

5.2 Model accuracy

This text contains numerous mentions of
correlation between simulated and measured
output. Whenever this is mentioned the
measured data will not be the same as the
data used to create the model. The reason for
this is of course that it is easy to create a
perfect model by means of interpolation if
the same data is used for identification as
well as validation. The “perfect” model
would however perform very poorly when
compared to another measurement.

Correlation between simulated and measured
output is a good measure of how well the
model manages to mimic the behaviour of
the real engine. The correlation is a value
that will be at most 1. 1 means that the
model is a perfect copy of the real process.

5.3 Sampling rate

The time base for the combustion process is
not seconds, but engine cycles. The com-
bustion event takes place every second

revolution of the crankshaft, i.e. every
engine cycle. The setting of the fuel
injection, and the output, i.e. CA50, are both
discrete signals, with one value for every
engine cycle. IAT, CR and engine speed are
continuous signals but only affect the
process once every cycle. Therefore, it
makes sense to base the identification, and
subsequently the controller, on the time base
of one engine cycle. As a consequence of
this the sampling rate is limited to 1 sample
per cycle. This approach avoids some of the
problems encountered in earlier approaches
to characterize the dynamic behaviour of the
reciprocating combustion engine, see
(Welbourn et al. 1959) or (Bowns 1971).

5.4 Result

Previous work (Olsson et al., To be
published 2004) has shown significant
cylinder-to-cylinder variation on an HCCI
engine operating on two different fuels. This
phenomenon was expected to be found in
this engine as well. However the analysis
shows that a model created by using data
from all five cylinders performed equally
well as a model created using only data from
the examined cylinder. Thus it is concluded
that there is little cylinder-to-cylinder
variations in the engine on which this thesis
is based.

Identification of a third order model from
file with id. 18 gives the correlations listed
in Table 2. In this table Corr. 1 indicates
correlations between measured output and
output produced by a model based only on
data from the same cylinder as the validation
data. Corr. 2 indicates correlations between
measured output and output created using a
model based on data from all five cylinders.
As can be seen the difference between the
models is small.

Table 2

Cylinder 1 2 3 4 5
Corr. 1 0.91 0.89 0.89 0.87 0.91
Corr. 2 0.90 0.89 0.89 0.88 0.90

The small cylinder-to-cylinder variations
refer to the dynamics of the different

 - - 10 - -

cylinders. Even though the different
cylinders react similarly to an increase in
IAT they will produce different outputs at
steady state since there are different heat
losses for the inlet air for the different
cylinders.

5.5 Choice of model complexity

It is often the case that a large order model
will perform better than a small order model.
However this does not mean that the larger
order model is necessarily the better choice.
In general it is better to choose a smaller
order model as long as it performs almost as
well as the larger order models. The smaller
order model will have fewer parameters that
have to be determined. The parameters can
thus be determined more accurately.

5.5.1 Method

The order of the model is decided by
comparing the accuracy of models of several
orders. This test is performed using the
measurements of data set three. For each
model order between 1 and 15 a model is
constructed using data from each of the
measurements of the set. The correlation
between measured and simulated process
output is then calculated for each of the
different operating points of the set. The
minimum, maximum and mean correlation is
then plotted in Figure 10. The Matlab script
for these operations can be viewed in App.
B.3.

5.5.2 Result

As can be seen in Figure 10, the accuracy
seems to increase up to order 3. After that
the accuracy is more or less constant up to
order 12 where it deteriorates slightly. Since
a low order model is to prefer to a high order
model as long as the quality of the predicted
output is in the same region, it is decided to
use a third order model. The Matlab script
used to create the plot can be viewed in App.
B.3. The script produces two plots, they are
similar that is why only one is shown here.

0 5 10 15
0.65

0.7

0.75

0.8

0.85

0.9

Model order

C
or

re
la

tio
n

Complexity test

Max correlation
Mean correlation
Min correlation

Figure 10 Correlations between measured

and simulated process output for model
orders between 1 and 15. The lines
between the different model orders
have the soul purpose of making the
plot more readable.

5.6 One model or several?

It is a well-known fact that the engine
changes behaviour from one operating point
to another. The question that has to be
answered is whether or not the process
varies enough to demand several models to
simulate its behaviour.

5.6.1 Method

One (third order) model for each operating
point in experiment set three and four is
created. The correlation between the models
and validation data from that same operating
point is then calculated. A model created
using data from all operating points in set
three and four is also created, this model will
henceforth be called the merged model. The
correlation between the merged model and
validation data from each operating point is
then calculated and compared to the value
obtained using the operating point individual
models.

5.6.2 Result

As can be expected the operating point
individual models always produces a better
result than the merged model. However, the
merged model is at all operating points
performing approximately equally well as
the individual models. A graph showing the

 - - 11 - -

result is found in Figure 11. The correlation
even for the merged model is never below
0.76. A correlation of 0.76 is a very good
value indeed. It is thus decided that one
model is sufficient to describe the process at
all the examined operating points. The graph
was produced using a Matlab script which
can be viewed in App. B.4.

Figure 11 Correlation between measured

and simulated output for operating
point individual models compared to a
merged model. The lines between the
operating points have the soul meaning
of making the plot more readable.

5.7 The model

From the results obtained above it is
reasonable to deduce that a single third order
model is capable of simulating the process
adequately over the range of tested operating
points.

5.7.1 Method

The model is created using data from all
cylinders in experiments indexed 15-21 and
23-29. The Matlab code for creation of the
model can be found in App. B.6.

5.7.2 Result

The model is a third order discrete state
space model with the following structure:

)()()()(
)()()()1(

tetDutCxty
twtButAxtx

++=
++=+

(2)

In Eq. (2), w(t) and e(t) are white process
and measurement noise respectively. The

variance of w(t) and e(t) is investigated in
section 6.4. y(t) is CA50 and u(t) is a vector
consisting of CR, IAT, fuel heat and engine
speed.

The matrices in (2) are as follows:
















=

0.520310.0552780.19146
0.669330.623850.027976-
0.44665-0.574070.46236

A

















⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅
=

6-5-3-3-

6-5-3-3-

-6-6-3-3

103.618-102.514101.875-102.746-
105.803103.631-101.256102.607

106.446-109.2023-102.381106.699
B

()31.74277.984225.86=C

()-3-4 102.7276106.2237-1.4295-9.3840- ⋅⋅=D
5.7.3 Poles and zeros

The poles and zeros of the model are
displayed in Figure 12 to Figure 15. Since
there are four input signals there
consequently are four pole-zero maps. The
poles are the same for all maps, only the
zeros change.

As can be seen in the Figures the model is
stable. However there is a pole close to 1 on
the real axis. The real process is known to be
unstable (Since the value of CA50 will drift
at some operating points even though the
input signals are held constant). It is then
likely that this pole travels over to the right
of 1 at these operating points.

The zeros from CR, IAT and speed are all
stable. But as with the poles there is one
close to the unit circle for CR and two for
IAT. From fuel heat to ignition phasing there
are a couple of unstable resonant zeros.
These might cause problems when it comes
to controlling the process.

16 17 18 19 20 21 23 24 25 26 27 28 29
0.76
0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94 Comparing operating point individual models to merged model

Operating point

Correlation

operating point individual model
Merged model

 - - 12 - -

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Pole-Zero Map

Real Axis

Im
ag

in
ar

y
Ax

is

Figure 12 Pole-zero map from compression

ratio to ignition phasing (CA50). Poles
are denoted x and zeros are denoted o.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Pole-Zero Map

Real Axis

Im
ag

in
ar

y
Ax

is

Figure 13 Pole-zero map from inlet air

temperature to ignition phasing
(CA50). Poles are denoted x and zeros
are denoted o.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Pole-Zero Map

Real Axis

Im
ag

in
ar

y
Ax

is

Figure 14 Pole-zero map from fuel heat to

ignition phasing (CA50). Poles are
denoted x and zeros are denoted o.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Pole-Zero Map

Real Axis

Im
ag

in
ar

y
Ax

is

Figure 15 Pole-zero map from engine speed

to ignition phasing (CA50). Poles are
denoted x and zeros are denoted o.

 - - 13 - -

5.7.4 Bode diagrams

The Bode diagram from each of the four
studied inputs to ignition phasing can be
studied in Figure 16 to Figure 19.

5

10

15

20

25

M
ag

ni
tu

de
 (d

B)

10
-3

10
-2

10
-1

10
0

10
1

180

190

200

210

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)
Figure 16 Bode plot from compression ratio

(CR) to ignition phasing (CA50)

-20

-15

-10

-5

0

5

10

M
ag

ni
tu

de
 (d

B)

10
-3

10
-2

10
-1

10
0

10
1

180

210

240

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)
Figure 17 Bode plot from inlet air

temperature (IAT) to ignition phasing
(CA50)

-60

-55

-50

-45

-40

-35

-30

-25

-20

M
ag

ni
tu

de
 (d

B)

10
-3

10
-2

10
-1

10
0

10
1

-180

-90

0

90

180

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)
Figure 18 Bode plot from fuel heat to

ignition phasing (CA50)

-65

-60

-55

-50

-45

M
ag

ni
tu

de
 (d

B)

10
-3

10
-2

10
-1

10
0

10
1

-45

0

45

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)
Figure 19 Bode plot from engine speed to

ignition phasing (CA50)

5.7.5 Observability and controllability

The observability and controllability of the
obtained model is examined using Matlab
script observability_controllability_test.m
which can be viewed in App. B.7.
















=

2CA
CA
C

Wo (3)

The observability matrix Wo obtained via (3)
is
















=

55.4172.738.9
32.2-180.1108.3
31.778.0225.9

oW

which has full rank. This means that the
model is observable.

 - - 14 - -

()BAABBWc
2= (4)

The controllability matrix Wc given by (4) is
a 12 by 3 matrix. Because of its large size it
is not included here. It does however have
rank 3, i.e. the model is controllable as well.

If the model of the process is correct this
means that the real process is observable as
well as controllable. These are prerequisites
when the process is to be controlled.

5.7.6 Simulation capacity

The most interesting property of the model is
its capacity to mimic the behaviour of the
real process, i.e. the engine. The final model
is the model used to create Figure 11. As can
be seen in this Figure; the lowest correlation
of all operating points is obtained when the
model is compared to the file indexed 17.
Since this operating point is the one with the
lowest correlation this is the operating point
used to create Figure 20. The results from
the other examined operating points are
equally good or better.

Even though this is the worst-case scenario
(at least among the operating points that
have been tested) the result is quite good.

200 210 220 230 240 250 260 270 280 290 300
-5

-4

-3

-2

-1

0

1

2

3

4

5

Engine cycles

D
eg

. A
TD

C

Ignition phasing

Measured output
Simulated output

Figure 20 Simulated and measured output.

Data used is from file indexed 17.

5.8 Validation

With a perfect model the remaining res-
iduals, i.e. the part of the simulated output
signal that does not match the measured

output signal, is white noise1. All physical
processes contain noise of some form.

Most plots in this section are created using
data from file indexed 17. This is done since
this is the operating point with the lowest
correlation between measured output and
output simulated using the obtained model.
All other operating points can thus be
expected to produce results that are equally
good or better.

5.8.1 Residuals

The frequency power spectrum of the
residuals when comparing measured and
simulated output at operating point indexed
17 can be viewed in Figure 21. A perfect
power spectrum would be completely flat at
all frequencies. The power spectrum of
white noise is flat, i.e. it contains an equal
amount of all frequencies. The plots in this
section have been created using the Matlab
script residual_analysis.m. This can be
viewed in App. B.5.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35
Power spectrum of the residuals

1/(Engine cycles)

P
ow

er

Figure 21 Power spectrum of the residuals

when comparing measured and simu-
lated output at operating point 17.

Obviously the model is not perfect at this
operating point. Especially there is a spike at
0.01 cycles-1. This might indicate that the
system contains unmodelled dynamics. To
check if this is the case, the same test is

1 The residual is ideally white noise, however it can be

contaminated by interference from other sources; e.g.
power supply.

 - - 15 - -

performed on the data in the file indexed 24.
This is the same operating point, but the
experiment is performed three days later.
The result of this can be seen in Figure 22.
The spike at 0.01 cycles-1 is present in this
plot as well. However the plots are not
identical, this indicates that the plots are
partly the result of noise.

The unmodelled dynamics are at a very low
frequency; this indicates that these dynamics
can be effectively counteracted by an
integrator.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30
Power spectrum of the residuals

1/(Engine cycles)

P
ow

er

Figure 22 Power spectrum of the residuals

when comparing measured and simu-
lated output at operating point 24.

The reason for the non-perfect shape of the
residual power spectra is likely to largely
depend on random disturbances of the real
process or from added effect of the PRBS-
disturbances used to excite the process.

5.9 Model and Simulink

As stated in the introduction one of the
objectives in this work is to create a
Simulink block that can be used for
simulations. This is useful when cons-
tructing controllers, since it is possible to
implement controllers in Matlab and then
test them against the simulated engine. This
is of course preferable when a new controller
is developed. There are several reasons why
this is so.

It is easy to implement a new controller in
Matlab since it contains functions for cal-
culation of controller structures. The struc-

tures obtained can then be used directly to
control the process.

A poor controller design might potentially
harm the real engine if it steers the engine
into regions where it is not designed to be.
This will of course not harm the model. This
means that the engineer constructing a new
controller has greater freedom when tuning a
new controller.

5.9.1 Constructing an engine block in
Simulink

The term engine block in this case denotes a
Matlab-Simulink block simulating the
behaviour of the real engine, or rather one
cylinder. To make an engine block in
Simulink it is necessary to create what is
called an S-function. An S-function can be
written either as a Matlab function or as a
function in some programming language
such as C. For a description on how to write
S-functions; see the Mathworks web site
(www.mathworks.com).

For use in the continued work in this master
thesis an m-file S-function has been created.
The file is called HCCI.m and can be viewed
in section B.7. This file describes how one
cylinder of the engine responds to different
input signals. In Simulink the file is masked
with an interface where it is possible to enter
the matrices describing the model. The
interface can be viewed in Figure 23. To
make the model mimic the behaviour of the
real engine, noise has been added to the
process states as well as the process output.
It is possible to change the noise variance of
the process and measurement noise
individually via the interface.

 - - 16 - -

Figure 23 Interface of the engine Simulink

block.

6 Constructing a controller
Now that a model of the real process is
present it is possible to make an attempt at
designing an effective controller of the
process. For the task an LQG controller
structure is chosen. The LQG structure is
chosen because it handles MIMO systems,
and because it is good at handling process
and measurement noise. For more
information on LQG control see (Åström
and Wittenmark, 1997).

In this section the controller will work with a
model that does not contain any delays.
Delays will however be added to the control
loop. The reason for this is to verify that the
controller manages to perform well even
though delays are not modelled perfectly.

6.1 Method

The task of constructing the controller is
broken down into small steps. The first step
is to construct an LQG controller based on
the model obtained in the system
identification part of this thesis. At this point
the work is focused on making the output
signal of the simulated engine follow a
reference signal. In other words this is

considered to be a servo problem (as
opposed to a controller problem where the
goal is to drive the output to zero). In this
step there is no process or measurement
noise added in the engine block.

In the second step both process and
measurement noise is added to the process.
The controller is tuned to deal with the now
noisy process. An attempt is made to make
the noise in the simulated process similar to
the noise in the real process. This is done
with regard to frequency content as well as
for amplitude.

The third step is to make the process even
more like the real process. This is done by
adding delays to the control signals. Even
though the model (as well as the real
process) reacts immediately to changes in
CR and IAT, it takes a few engine cycles
before the ordered CR or IAT is achieved.

The fourth step is to verify that the controller
manages to control the engine even though
the process deviates from the model used to
create the controller. If the controller is to be
capable of controlling the real engine it has
to perform well even though the model does
not look exactly like the one the controller
was designed for.

So far all work has been aimed at one
cylinder and not the entire engine. Since
both CR and IAT affect all cylinders in
parallel the controller will have to work with
mean values from the five cylinders.
However it is interesting to find out if the
controller developed here can be converted
to control cylinder individual IAT. This will
be done at the end of this section.

The controller is created using the Matlab
commands kalman, dlqr and lqgReg. An
example on how to use them can be found in
section B.10.

The controller is not allowed to control the
engine speed or fuel amount injected. These
inputs will be a result of the conditions under
which the engine is running. Thus the model
of the engine is altered before feeding it to
the Matlab functions used to create the

 - - 17 - -

controller. The model fed to the dlqr
function has had the B matrix altered to (see
Ap. B.10):

















⋅⋅
⋅⋅
⋅⋅

=
00101.88-102.75-
00101.26102.61
00102.38106.69

3-3-

3-3-

-3-3

B

This change hides the control signals engine
speed and load as far as the controller is
concerned.

6.2 A comment on the Figures

Many of the Figures in this section will
contain plots of the control signals (CR and
IAT). To save space sometimes they are

plotted in the same plot. In these plots the
IAT signal is always the one with the largest
fluctuations. One unit on the y-axis in these
plots represent either 1° C or 1 CR unit.

The control signals are plotted to illustrate
that there are no oscillations or large spikes.
These combined plots are sufficient in this
regard.

6.3 Step one, no noise

The thing to do is to create a Simulink model
where it is possible to test the developed
controller. The model can be viewed in
Figure 24.

Figure 24 The Simulink model where the controller can be tested.

The two leftmost blocks in the Figure are
input signals for fuel amount and engine
speed. These input signals can be chosen to
be constants with or without sinusoidal
disturbances added. In steps one to three, CR
has an offset of 270 J/cycle and speed 3000
rpm. The CA50 reference signal is always
centred on 0.

When performing the disturbance rejection
tests a sinusoidal signal with period of 200
cycles and amplitude of ±30 J/cycle is added

to the fuel heat input. For the Engine speed
the added disturbance has period 500 cycles
and amplitude ±300 rpm.

When performing the reference following
tests, no disturbances are added to CR and
engine speed. Instead a square wave with a
period of 1000/3 cycles and amplitude ±1° is
added to the CA50 reference signal.

The block named HCCI-engine is a mask for
the S-function HCCI.m that can be studied

 - - 18 - -

in App. B.7. The mask is a user interface
where it is possible to enter the values of the
model as state space matrices. The interface
can be studied in Figure 23.

Figure 25 User interface for the LQG-

controller mask. This interface is used
to enter data used to create an LQG-
controller.

The output of the engine block is the ignition
phasing. Since all offsets are removed from
the experiment data before system identi-
fication, the value 0° ATDC in the model
actually corresponds to 4° ATDC on the real
engine. The reason is that this is the mean
offset of the experiment data. Since this is
considered to be a servo problem the output
is then subtracted from the reference value
before the value is fed to the LQG-
controller.

Just as with the engine block the LQG-
controller block is a mask making it possible
for the user to enter input data for the
controller. The interface can be studied in
Figure 25. As is the case with the engine
block, the controller is an m-file S-function.
This file can be viewed in App. B.11.

6.3.1 Result

The first attempt at making a controller
proves to be a great disappointment. The
output from the engine model when
controlled by the LQG-controller in the set
up described in Figure 24 does not perform
well at all. The output of the first test can be
viewed in Figure 26 and Figure 27. As can
be seen in the plot, the controller is not
capable of suppressing the disturbances. It is
not even capable of following the reference
signal when there are no disturbances.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

 a
nd

 IA
T

Control signals

Figure 26 Ignition phasing (Upper plot) and

control signals (lower plot) when per-
forming a disturbance rejection test.

 - - 19 - -

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

 a
nd

 IA
T

Control signals

Figure 27 Ignition phasing (upper plot) and

control signals (lower plot) when
performing a reference following test.

The process has zeros close to 1 on the real
axis. This means that the process is
derivative in its behaviour. Adding an
integrator to the controller can counteract
this behaviour.

To solve the problem of the poor reference
signal following it is decided to add an
integrator acting on the error, i.e. on the
difference between the reference signal and
the process output. The Simulink set up is
now as in Figure 28.

Figure 28 Simulink model after adding the integrator.

This set up proves to be superior to the first
attempt. This controller manages to suppress
the disturbances to the input signals better
than the first attempt. The output is now
within one deg. of zero at all times (see
Figure 29 and Figure 30). It also manages to
follow the reference signal very well when
there are no disturbances. There is still room
for improvements, but it is already
performing fairly well.

 - - 20 - -

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

 a
nd

 IA
T

Control signals

Figure 29 Ignition phasing (upper plot) and

control signals (lower plots) when
performing a disturbance rejection test.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

an
d

IA
T

Control signals

Figure 30 Ignition phasing (upper plot) and

control signals when performing a
reference following test

6.4 Step two, adding noise

Before adding noise to the engine model it is
necessary to find out how much noise to add.
For this purpose the output from the
experiment indexed 3 is examined. This is a
step disturbance experiment, but the step
disturbances end after 400 engine cycles,
and the output after this is pure noise. The
reason for choosing this experiment is that
the variable compression is positioned at one
extreme; this minimizes the influence of
limit cycles (Slotine and Li 1991) due to
friction in the variable compression. The

output signal used for this analysis can be
viewed in Figure 31.

400 500 600 700 800 900 1000
-1

-0.5

0

0.5

1

1.5
Ignition phasing

Engine cycles

D
eg

Figure 31 Measured output after cycle 400

of experiment indexed 3

There is a small drift in the measured output.
This however should not cause any problems
when evaluating the noise properties. The
variance of the noise is calculated using
Matlab command var, and the result is a
noise variance of 0.128.

To see if the noise is white or coloured, the
power spectrum of the noise is plotted. The
power spectrum (Figure 32) is basically flat
and has no dominant peaks. This leads to the
conclusion that the noise is white.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Noise power spectrum

1/Engine cycles

P
ow

er

Figure 32 Power spectrum of the measured

noise.

The noise plot, as well as the power
spectrum and calculation of the noise
variation is produced using Matlab script

 - - 21 - -

test_noise.m, which can be viewed in App.
B.12.

Trial and error suggests a process noise
variance of 2*10-8 and a measurement noise
variance of 0.125. This amounts to a
variance of 0.135 for the simulated engine,
and a noise spectrum (see Figure 33 and
Figure 35) that is comparable to that
obtained from the measured noise.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Noise power spectrum

1/Engine cycles

P
ow

er

Figure 33 Power spectrum of the noise from

the Simulink engine block.

6.4.1 Result

The controller is now working against a
modelled engine containing both process and
measurement noise. The output (Figure 34)
is still very good. The controller is still
working with a perfect model of the engine
block including its noise properties. In other
words, the controller should do well under
circumstances like these.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

an
d

IA
T

Control signals

Figure 34 Ignition phasing (upper plot) and

control signals (lower plot) for
disturbance rejection experiment.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

 a
nd

 IA
T

Control signals

Figure 35 Ignition phasing (upper plot) and

control signals (lower plot) for
reference following experiment.

6.5 Step three, adding delays

Now that the controller has proved to be
working under nearly optimal operating
conditions with a perfect model and no
delays, it is time to add delays to the control
signals from the controller to the engine.
This aims at making the simulated controller
task resemble the task of controlling the real
engine.

A study of the delay from a reference change
to IAT to a noticeable change in CA50
indicates a delay of three engine cycles.
Since the engine in itself contains a delay of
one engine cycle, a delay of two cycles is

 - - 22 - -

added to the CR and IAT signals going from
the controller to the engine block.

6.5.1 Result

With the same controller settings as used to
create Figure 34 and Figure 35 the output
looks the same (Figure 36 and Figure 37).
This can probably be explained by the
controller being quite conservatively tuned
in addition to using a perfect model.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

an
d

IA
T

Control signals

Figure 36 Ignition phasing (upper plot) and

control signals (lower plot) for
disturbance rejection experiment.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

an
d

IA
T

Control signals

Figure 37 Ignition phasing (upper plot) and

control signals (lower plot) for
reference following experiment.

6.6 Step four, non perfect model

In the work so far the controller has been
constructed using a perfect process model.
This is of course highly unrealistic. The
main purpose so far has been to verify that

the chosen controller structure has potential
to control the engine. And so far it has
performed reasonably well.

In this step the controller will be tested
against engine models optimised for one
specific operating point. This means that the
model of the engine now performs very
much like the real engine would at a specific
operating point. To keep the engine speed
and load in the desired region, these signals
are centred on the same operating points
used to create the models. Added to them are
sinusoid disturbances.

So far the behaviour of the controller has not
been examined very closely. The tests so far
have only aimed at verifying that the
controller structure is capable of controlling
the engine model. However it is equally
important that the controller is not too
aggressive. Aggressive in this context means
that the controller tries too hard to make the
output follow the reference signal. A too
aggressive controller will cause excessive
wear on actuator valves as well as cause the
output to oscillate. The oscillations are partly
caused by the delays between controller and
engine. In this stage an attempt at optimising
the controller for good performance without
making it too aggressive is made.

6.6.1 Targeted operating points

The models used in this step are created
using data from files indexed 23 to 29 (see
A.4). These operating points cover a large
part of the operating range of the engine. If a
controller can be developed that works well
on all of these operating points, that
controller will be likely to perform well on
the real process. The offsets and perturbation
amplitudes used in the experiments are listed
in Table 3. The sinusoidal perturbations have
a period of 200 engine cycles for the load
and 500 engine cycles for the speed.

 - - 23 - -

Table 3 Engine speeds and loads used in the
tests.

Operating
point id.

Engine speed
(rpm)

Engine load
(J/cycle)

23 2000 ±300 240 ±30
24 2000 ±300 310 ±30
25 3000 ±300 250 ±30
26 3000 ±300 300 ±30
27 4000 ±300 240 ±30
28 4000 ±300 300 ±30
29 5000 ±300 240 ±30

6.6.2 Tuning the controller

LQG controllers aim at minimizing the loss
function

)2(uNxRuuQxxJ TTT∑ ++= (5)
where the weighting matrices Q, R and N are
at least positive semi definite.

The Q matrix should be chosen as CTC
where C is the C matrix of the model to be
controlled. N is usually chosen to be zero.
The R-matrix is chosen relative in size to the
Q-matrix. A large value on the Q-matrix
compared to the R-matrix means that the
controller mainly aims at minimizing the
variance of the process output at the expense
of the control signals. The opposite is true if
the R-matrix is large compared to the Q-
matrix. The N-matrix indicates that the
controller should strive to minimize the
covariance of the control signal and process
output.

In addition to the Q, R and N matrices, the
controller design procedure needs the
process and measurement noise of the
process to control. These do not necessarily
have to be the correct values. A large value
on the measurement noise indicates that the
controller should be conservative in its
response to changes in the process output. A
large value on the process noise indicates
that the controller should be conservative in
its response to changes in the process states.

6.6.3 Result

Optimisation by trial and error indicates that
the controller performs well on all operating

points when it is designed using the
following parameters:

















=
−

−

−

4

4

4

10
10
10

w

5=e

CCQ T=









=

30
0150

R

0=N

where w denotes process noise and e
measurement noise. Using the mentioned
parameters generates a controller

)()()(
)()()1(

tDutCxty
tButAxtx

+=
+=+

where u(t) is the integrated difference
between CA50ref and CA50 at time t and y(t)
is a vector containing CR and IAT settings
to be used as inputs to the engine. The x-
vector contains the controller states. The
matrices have the following values:
















=

0.52440.14560.2114
0.65810.52910.08874-
0.4646-0.40940.3753

A

















⋅
⋅
⋅

=
5-

4-

-5

109.134
101.095
109.413

B









=

2.442-50.09-18.7-
0.9619-3.316-1.281-

C








 ⋅
=

0.01091-
107.817 -4

D

With the settings mentioned above the
simulation results are as indicated in Figure
38 to Figure 51. In the mentioned Figures
the simulated output as well as the control
signals used to obtain them can be viewed.

The results for all tested operating points are
acceptable. The process is noisy but the
control signals are still relatively smooth.
This is important since it means that the

 - - 24 - -

actuators are not excessively worn. Further
optimisation work might result in better
performance. However this will not be done
at this point.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

an
d

IA
T

Control signals

Figure 38 Ignition phasing (upper plot) and

control signals (lower plot) for
disturbance rejection experiment.
Engine model used is optimised for op.
23.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

an
d

IA
T

Control signals

Figure 39 Ignition phasing (upper plot) and

control signals (lower plot) for
reference following experiment. Engine
model used is optimised for op. 23.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

 a
nd

 IA
T

Control signals

Figure 40 Ignition phasing (upper plot) and

control signals (lower plot) for
disturbance rejection experiment.
Engine model used is optimised for op.
24.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

 a
nd

 IA
T

Control signals

Figure 41 Ignition phasing (upper plot) and

control signals (lower plot) for
reference following experiment. Engine
model used is optimised for op. 24.

 - - 25 - -

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

an
d

IA
T

Control signals

Figure 42 Ignition phasing (upper plot) and

control signals (lower plot) for
disturbance rejection experiment.
Engine model used is optimised for op.
25.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

an
d

IA
T

Control signals

Figure 43 Ignition phasing (upper plot) and

control signals (lower plot) for
reference following experiment. Engine
model used is optimised for op. 25.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

 a
nd

 IA
T

Control signals

Figure 44 Ignition phasing (upper plot) and

control signals (lower plot) for
disturbance rejection experiment.
Engine model used is optimised for op.
26.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

 a
nd

 IA
T

Control signals

Figure 45 Ignition phasing (upper plot) and

control signals (lower plot) for
reference following experiment. Engine
model used is optimised for op. 26.

 - - 26 - -

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

an
d

IA
T

Control signals

Figure 46 Ignition phasing (upper plot) and

control signals (lower plot) for
disturbance rejection experiment.
Engine model used is optimised for op.
27.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

an
d

IA
T

Control signals

Figure 47 Ignition phasing (upper plot) and

control signals (lower plot) for
reference following experiment. Engine
model used is optimised for op. 27.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

 a
nd

 IA
T

Control signals

Figure 48 Ignition phasing (upper plot) and

control signals (lower plot) for
disturbance rejection experiment.
Engine model used is optimised for op.
28.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

 a
nd

 IA
T

Control signals

Figure 49 Ignition phasing (upper plot) and

control signals (lower plot) for
reference following experiment. Engine
model used is optimised for op. 28.

 - - 27 - -

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

 a
nd

 IA
T

Control signals

Figure 50 Ignition phasing (upper plot) and

control signals (lower plot) for
disturbance rejection experiment.
Engine model used is optimised for op.
29.

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

Engine cycles

D
eg

Ignition phasing

0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

Engine cycles

C
R

an
d

IA
T

Control signals

Figure 51 Ignition phasing (upper plot) and

control signals (lower plot) for
reference following experiment. Engine
model used is optimised for op. 29.

The simulations so far have been on one
cylinder only. To make the controller valid
for the complete five-cylinder engine is an
easy task however. IAT and CR will then be
based on a mean value of CA50 from each
of the individual cylinders. This method is
used when performing the tests in section
6.8.

6.7 Sensitivity function
The sensitivity function is the transfer
function from e to y in Figure 52. This is a

measure of how well the controller manages
to suppress load disturbances.

Figure 52 Set up of model and controller.

The Bode plot (see Figure 53) indicates that
the controller manages to suppress
disturbances well in the mid range. The
controller does not counteract high
frequency disturbances. This is actually the
desired behaviour of the controller since this
would lead to excessive wear on the
actuators.

The controller does not manage to suppress
really low frequency disturbances. It is likely
that the reason for this is that the process
contains zeros close to 1 on the real axis.
These zeros cancel out the integrator in the
controller.

-80

-60

-40

-20

0

20
From: CA50 To: CA50

M
ag

ni
tu

de
 (d

B)

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-540

-360

-180

0

180

360

540

Ph
as

e
(d

eg
)

Sensitivity function

Frequency (rad/sec)

Figure 53 Bode plot of the sensitivity

function.

6.8 Performance: LQG vs. PID
As mentioned previously the ignition
phasing is presently controlled using PID
controllers of the IAT and CR. The set up
currently used only allows for one of the
input signals at a time to be used to control
the engine. If the developed controller
cannot perform at least equally well as the

 - - 28 - -

existing controller there will be no use for it.
Thus their performances are compared here.

The ability of the controller to make the
process follow a reference signal, as well as
suppressing perturbations to engine speed
and load is examined for a PID controller as
well as for the developed LQG controller.

In section 6.6.3 it can be seen that the LQG
controller performs worse at operating point
indexed 23 than it does at any other tested
operating point. Thus the performance of the
LQG controller is compared against a PID
controller optimised for this operating point.
The LQG controller is not optimised for this
operating point. This means that if the LQG
controller manages to perform equally well
as the PID at this point, it is likely to
perform equally well or better at all other
operating points. The noise model for the
engine is the same as the one obtained in
section 6.4.

6.8.1 Method

The first step is to compare the two
controllers’ ability to suppress disturbances
to the engine speed and load. In this test the
CA50 reference signal is constant zero. A
sinusoidal disturbance with amplitude ±30
J/cycle and period 200 cycles is added to the
offset value 240 J/cycle for the engine load.
A sinusoidal disturbance with amplitude
±300 rpm and period 500 cycles is added to
the offset value 2000 rpm for the engine
speed.

The second step is to compare how well the
controllers can make the engine output
follow a reference signal. In this test no
perturbation is added to the engine speed and
load. The constant offsets are the same as for
the disturbance rejection test. The ignition
phasing reference signal is a square wave
centred on 0 with amplitude ±1° and period
1000/3 cycles

In this test the PID controller is using only
IAT to control the process since this is the
way it is done on the real engine.

The engine model used in this experiment is
a five-cylinder model. The output from the

model is considered to be a mean of the
output from each of the five cylinders. No
cylinder balancing is used. The plots show
the mean of the output for the five cylinders.

6.8.2 The LQG controller

The LQG controller used in this test is the
same as the one obtained in section 6.6.3.
The input to the controller will be a mean of
the ignition phasing for the five cylinders.
The same control signals will then be sent to
each of the individual cylinders.

6.8.3 The PID controller

The PID controller used in these tests use
Eq. (6), where KP=0.2, KI=0.35 and
KD=0.15. Optimisation of the PID
parameters is performed using trial and
error. The parameters used in the controller
of the real engine can not be used here since
they are designed to control the IAT
actuator, and not the temperature. This is the
controller structure used on the real engine.
The input to the controller is a mean of the
ignition phasing for the five cylinders.

))1()(()(

))()(()1()(

))()(()(
)()()()(

−−=

−+−=

−=
++=

tytyKtD

tytyKtItI

tytyKtP
tDtItPtu

D

refI

refP
 (6)

6.8.4 Disturbance rejection, result

The results of the disturbance rejection tests
can be viewed in Figure 54 and Figure 55.
The PID controller manages to keep the
ignition phasing within one degree of the
reference value. The LQG controller
manages to keep the ignition phasing within
0.8 degrees of the reference value. In other
words the LQG controller is 20% better at
rejecting disturbances.

 - - 29 - -

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Engine cycles

D
eg

re
es

 A
TD

C

Figure 54 Disturbance rejection of the PID
controller.

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Engine cycles

D
eg

re
es

 A
TD

C

Figure 55 Disturbance rejection of the LQG

controller.

6.8.5 Reference following, result

The results of the reference following tests
can be viewed in Figure 56 and Figure 57.
The PID controller manages to get the
ignition phasing to a within 5% of the
desired value within approximately 100
cycles after a step change. The LQG
controller manages to get the ignition
phasing within 5% of the desired value
within approximately 80 cycles. Again the
LQG controller outperforms the PID
controller by 20%.

0 100 200 300 400 500 600 700 800 900 1000
-1.5

-1

-0.5

0

0.5

1

1.5

Engine cycles

D
eg

re
es

 A
TD

C

Figure 56 Reference following for the PID

controller.

0 100 200 300 400 500 600 700 800 900 1000
-1.5

-1

-0.5

0

0.5

1

1.5

Engine cycles

D
eg

re
es

 A
TD

C

Figure 57 Reference following for the LQG

controller.

6.9 Cylinder individual temperature
control

In the work done so far it has been assumed
that CR and IAT affect all cylinders in
parallel. However it is planned that the
engine examined in this thesis will have
cylinder individual IAT control. An attempt
is now made to convert the controller
developed in the previous section to these
circumstances.

The idea is to rewrite the controller to
control IAT individually for each cylinder
and CR for all cylinders in parallel. In the
new controller the matrices will be called:

~~~~~~
,,,, yandxDCBA . The new controller is 

built according to the following scheme: 



 - - 30 - - 























=

A
A

A
A

A

A
0
0
0
0

0

0
0
0

0
0

0
0

0
0
0

0

0
0
0
0

~  























=

B
B

B
B

B

B

0000
0000
0000
0000
0000

~  



























=

:),2(
:),2(

:),2(
:),2(

:),2(
5/:),1(5/:),1(5/:),1(5/:),1(5/:),1(

~

C
C

C
C

C
CCCCC

C

0000
0000
0000
0000
0000  



























=

)2(
)2(

)2(
)2(

)2(
5/)1(5/)1(5/)1(5/)1(5/)1(

~

D
D

D
D

D
DDDDD

D

0000
0000
0000
0000
0000

 























=

5

4

3

2

1

~

x
x
x
x
x

x   























=

5

4

3

2

1

~

u
u
u
u
u

u  



























=

temp

temp

temp

temp

temp

cr

y
y
y
y
y
y

y

5

4

3

2

1

~
 

using Matlab notation. A, B, C and D in the 
above matrices are the ones given in section 
6.6.3. xz and temp

zy  denotes controller states 
and temperature set point for cylinder z 
whereas cry  denotes CR set point for the 
entire cylinder bank. uz Denotes the 
integrated output error from the process for 
cylinder z. The extended controller structure 
now is 
  

)()()(

)()()1(
~~~~~

~~~~~

tuDtxCty

tuBtxAtx

+=

+=+
 (7)



 - - 31 - - 

 
Figure 58 Picture of the Simulink model simulating the complete engine with cylinder 

individual IAT control. In this Simulink model the integrators has been included in the 
controller block. 

The full model of the five-cylinder engine 
with the cylinder individual IAT control can 
be viewed in Figure 58. 

Even though the cylinders on the real engine 
display little difference in their response to 
perturbations in the input signals there is still 
the matter of offsets in their outputs. These 
offsets are the result of different heat loss for 
the different cylinders. To verify if the 
suggested controller structure is capable of 
handling these differences a test is perfor-
med.  

Each of the five cylinders in the engine 
model is supplied with a model optimised 
for different operating points; the operating 
points used are listed in Table 4. 

Table 4 Models for the individual cylinders 
are optimised for the operating points 
listed here. 

Cyl. nr. Model optimised for op. index 
1 29 
2 28 
3 27 
4 26 
5 25 

6.9.1 Test set up 

The test is performed using the set up and 
controller described in the previous section. 
The engine load used is 280 J/cycle and the 
engine speed is 3500 rpm. These values are 
chosen since they are in the centre of the 
examined load and speed ranges. In addition 
a sine perturbation with period 200 cycles 
and amplitude 30 J/cycle is added to the 
engine load. To the engine speed a sine 
perturbation with period 500 cycles and 



 - - 32 - - 

amplitude 300 rpm is added. The ignition 
phasing reference signal is a square wave 
centred on zero with a period of 250 cycles 
and amplitude ±1.5˚. 

6.9.2 Result 

The result of the test performed according to 
the previously described set up can be 
viewed in Figure 59 to Figure 64. 

The results of the test are promising. The 
controller manages to keep the ignition 
phasing close to the reference signal for each 
of the cylinders even though it has to 
manage different models for each cylinder.  

0 100 200 300 400 500 600 700 800 900 1000
-4

-2

0

2

4

0 100 200 300 400 500 600 700 800 900 1000
-15

-10

-5

0

5

10
Cylinder 1

 
Figure 59 Ignition phasing and IAT for 

cylinder 1. 

0 100 200 300 400 500 600 700 800 900 1000
-4

-2

0

2

4

6

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

4

6
Cylinder 2

 
Figure 60 Ignition phasing and IAT for 

cylinder 2. 

 

0 100 200 300 400 500 600 700 800 900 1000
-4

-2

0

2

4

0 100 200 300 400 500 600 700 800 900 1000
-4

-2

0

2

4
Cylinder 3

 
Figure 61 Ignition phasing and IAT for 

cylinder 3. 

 

0 100 200 300 400 500 600 700 800 900 1000
-3

-2

-1

0

1

2

3

0 100 200 300 400 500 600 700 800 900 1000
-5

0

5

10
Cylinder 4

 
Figure 62 Ignition phasing and IAT for 

cylinder 4. 

0 100 200 300 400 500 600 700 800 900 1000
-3

-2

-1

0

1

2

3

0 100 200 300 400 500 600 700 800 900 1000
-5

0

5

10
Cylinder 5

 
Figure 63 Ignition phasing and IAT for 

cylinder 5. 

 



 - - 33 - - 

0 100 200 300 400 500 600 700 800 900 1000
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 
Figure 64 Compression ratio during the test 

using different models for each 
cylinder. 

7 Implementation in Java 
In this section the controller suggested in 
section 6.9 is implemented in Java. An 
attempt is made to make the suggested 
implementation independent of the size of 
the matrices of the controller.  

7.1 Real time considerations 

In section 6.9 the suggested controller 
calculates the control signals for all cylinders 
in parallel. This strategy works well in 
theory, but not so in practice.  

If the engine is working at full speed (6000 
rpm) the time for a complete engine cycle is 
only 2/6000*60=0.02 seconds. However the 
ignition of the five cylinders is evenly spread 
over the engine cycle, thus the time between 
the last ignition of an engine cycle to the 
first ignition of the next cycle is only 
0.02/5=0.004 seconds. In this time measure-
ment data has to be collected, computations 
made and signals sent to the actuators. It is 
obviously advantageous to have 0.02 second 
instead of 0.004 to perform these tasks. Thus 
the control problem is broken down so that it 
is possible to perform as much computations 
as possible as soon as the data is available.  

7.2 Result 

The suggested implementation can be 
viewed in App.  B.14. This implementation 
demands that the controller has two outputs; 
namely CR and IAT, and that CR is 

controlled for all cylinders in parallel and 
that IAT is controlled individually for the 
different cylinders. The complexity of the 
controller and the number of inputs is 
arbitrary. 

For the controller suggested in this paper the 
input to the controller should be the 
integrated difference between CA50 and 
CA50ref. This paper gives no suggestion on 
how to write an integrator since this is very 
simple. 

The Java file represents only the controller 
and not the interface between hardware and 
software. In other words; this file is intended 
to be used by some kind of intermediate 
interface. 

8 Conclusions 
The model obtained when performing 
system identification shows high correlation 
between simulated and measured output. 
This indicates that using several input 
signals to the engine when performing 
system identification is a good strategy. 

The controller developed in this paper is 
very simple indeed. It does not model any 
delays. It does not make use of any form of 
gain scheduling. And it does not use feed 
forward. Even though it is so simple it 
performs well in the simulations. This 
indicates that this controller structure might 
be effective also on the real engine. It also 
indicates the LQG controller is the strategy 
to prefer when controlling the ignition 
phasing on the real engine. However, it is 
important to realise that the controller only 
has been tested against linearised models of 
the real process. There is no guarantee that it 
will work equally well on the real process. 

9 Discussion 
This section addresses some points that 
might benefit from a further investigation.  

9.1 Increasing performance 
It is quite possible that increased perfor-
mance can be obtained by modelling the 



 - - 34 - - 

delays. Modelling the delays is not hard; all 
that needs to be done is to add a few new 
states to the model, representing the delays. 

Developing some kind of feed forward 
compensation for disturbances caused by 
changes in injected fuel amount and engine 
speed might increase the controller’s ability 
to suppress disturbances.  

The suggested methods to increase the 
performance of the controller lead to a more 
complex structure. This also means that 
there will be more parameters to tune; this 
might lead to a controller that is very hard to 
tune. 

An advanced approach to reach high 
performance is to use adaptive control. This 
approach can be combined with the 
expanded models mentioned above.  

Adaptive control has the potential to produce 
excellent results. However it does have it’s 
drawbacks as well. One is that it is com-
putationally heavy. Another is that it can be 
difficult to tune. Other problems might occur 
as well but are not listed here.  

The PID controllers currently used on the 
engine use gain scheduling, this strategy is 
applicable to the LQG controller as well. 
This can be combined with all the 
performance increasing strategies mentioned 
above. 

9.2 Variable compression ratio and 
friction 

The variable CR is obtained by means of a 
system that allows the cylinder bank to lean 
more or less. This system works very well, 
however it is subject to friction. Limit cycles 
in the variable compression has been 
observed in initial experiments. These limit 
cycles are no major problem as far as the 
ignition phasing is concerned, but it is likely 
that this phenomenon will cause unnecessary 
wear on the mechanics involved.  

9.3 Speed of the thermal element 

Even though the thermal element has been 
changed to a faster one during the work on 
this paper, it is still quite slow. The IAT step 

response test (section 3.2 Figure 4) shows 
that the engine response does not match the 
temperature very well. If we instead look at 
the PWM signal to the valve controlling the 
inlet air temperature (Figure 65), and CA50 
there is a very strong correlation. The reason 
is that the thermal element is too slow. 
Measuring air temperature fast is quite hard. 

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

4

6

8

10

Engine cycles

D
eg

re
es

 A
TD

C

0 100 200 300 400 500 600 700 800 900 1000
-0.98

-0.975

-0.97

-0.965

-0.96

Engine cycles

S
ig

na
l t

o 
IA

T 
va

lv
e

 
Figure 65 Ignition phasing (upper plot) and 

PWM signal (lower plot) for the 
temperature step response experiment. 
In this plot the PWM signal has been 
inverted to illustrate the close cor-
relation between the signals. 

In simulations temperature can be changed 
immediately thus the slow thermal element 
is not a problem. When it comes to 
controlling the real engine however it is 
likely that looking at the PWM instead will 
produce better results.  

One difference now is that there will be a 
noticeable delay from a change in the PWM 
signal to a change in ignition phasing. When 
looking at the temperature there is no delay 
since the thermal element is slow. 

9.4 Operating range 

This paper addresses combustion control at 
engine speeds of at least 2000 rpm. A few 
experiments at idle speed have been per-
formed. The results however have been very 
poor.  

The work done so far indicates that the 
process is a lot harder to identify at very low 
engine speed than it is at speeds above 2000 



 - - 35 - - 

rpm. The conclusion is that more work needs 
to be done to create a model for the engine at 
low engine speed. 

In the experiments performed as part of this 
work the engine has been naturally aspirated. 
A comparison of the model obtained under 
these circumstances to a model or models 
valid for the super charged case would be 
interesting. 

10 References 
Johansson, R., (1993) System Modelling 

and Identification, Prentice Hall, 
Englewood Cliffs 

Ljung, L, (1999) System Identification, 
Theory for the user, Prentice Hall 

Haraldsson, Göran, (2003) Combustion 
Control of the Homogeneous Charge 
Compression Ignition engine Thesis for 
the degree of Licentiate, LTH, ISRN: 
LUTMDN/TMHP--03/7010--SE 

Olsson, Jan-Ola, (2002) Performance and 
Control of the Homogeneous Charge 
Compression Ignition (HCCI) Engine 
Thesis for the degree of Licentiate, LTH, 
ISRN: LUTMDN/TMHP--02/7002--SE 

Olsson, Jan-Ola, et. al. (To be published at 
IFAC 2004) Closed Loop Identification 
of the HCCI Process 

Åström, J. Karl and Wittenmark, Björn 
(1997) Computer Controlled Systems, 
Theory and design, Prentice Hall, Upper 
Saddle River, NJ 

Slotine, Jean-Jacques E. and Li, Weiping 
(1991) Applied Nonlinear Control, 
Prentice Hall, Upper Saddle River, NJ 

Bowns, D., (1971) The Dynamic Transfer 
Characteristics of Reciprocating 
Engines, Proc. Inst. Mech. Engrs., Vol. 
185, pp.185-201. 

Welbourn, D.B., Roberts, D.K., Fuller, 
R.A., (1959) Governing of Compression-
Ignition Oil Engines, Proc. Inst. mech. 
Engrs., Vol. 173, pp. 575-604. 

Åström, J. Karl and Wittenmark, Björn 
(1995) Adaptive control, Addison-
Wessley Publishing Company 

11 Acknowledgements 
I would like to thank the people at the 
Division of Combustion Engines for their 
help. Göran Haraldsson helped me perform 
the practical experiments. Göran, Jari 
Hyvönen and Jan-Ola Olsson were valuable 
sources of ideas and support throughout my 
work. 

From the department of Automatic Control I 
would like to thank Johan Bengtsson who 
helped me when I had control related 
problems. 

I would also like to thank my supervisors 
Professor Rolf Johansson at the Department 
of Automatic Control and ass. Professor Per 
Tunestål at the department of Automatic 
Control for letting me do this work and for 
their inputs in the work of writing this paper.  

12 Abbreviations 
ATDC – After Top Dead Centre 
TDC – Top Dead Centre 
CR – Compression Ratio 
IAT – Inlet Air Temperature 
OP – Operating point 
LQG – Linear Quadratic Gaussian 
CA50 – Crank angle degree where 50% of 

the fuel has been consumed. 
HCCI – Homogeneous Compression 

Charge Ignition 
CI – Compression Ignition 
SI – Spark ignition 
LTH – Lunds Tekniska Högskola (Lund 

Institute of Technology) 
PWM – Pulse Width Modulation 
RPM – Revolutions Per Minute 
 



 - - 36 - - 

A Operating points 
In this Appendix the operating points of the test runs are listed. 

A.1 Preliminary experiments 

These are the preliminary experiments whose main objective is to find linearity regions. In the 
first tests the PWM signal was not saved since it was not known that the thermal element was to 
slow. After experiment indexed 6 this was corrected. 
Id. File name Mean 

load 
(J/cycle) 

CR PWM Mean 
temp.

Speed CA50 
mean 

Comments 

1 0306120936 220 17-19 ? 224 2000 6.7 CR step changes 
2 0306120954 220 21 ? 140 - 

175 
2000 3.8 Temperature step 

changes 
3 0306121008 180 - 

280 
21 ? 159 2000 3.8 Load step changes.

4 0306121109 220 21 ? 168 1500 - 
4000 

3.3 Speed step 
changes. Hot air 
valve 97% open 

5 0306121121 220 21 ? 243 1500 - 
4000 

3.7 Speed step 
changes. Hot air 
valve 100% open 

6 0306121414 220 18.6 ±0.3 ? 208 2027 3.9 CR excitation 
7 0306121509 240 21 0.98 ±0.005 167 1999 4.1 PWM excitation 

A.2 First set of main experiments 

From now on the PWM signal is available in all files. The objective of these experiments is to 
find out what excitation levels can be used when excitation is applied to all input signals 
concurrently. Different PRBS frequencies are tested on the load excitation. 
Id. File name Mean 

load 
(J/cycle) 

CR PWM 

(%) 

Mean 
temp.

Speed CA50 
mean 

Comments 

8 0306171059 240 18 ±0.3 98 215 2001 4 CR excitation 
9 0306171104 240 17.8 ±0.3 98 215 2002 4.7 CR excitation 
10 0306171108 240 17.7 98 ±0.5 209 2003 6.2 PWM excitation 
11 0306171113 240 ±40 17.6 98 219 2004 4.2 Load excitation, 

fast 
12 0306171122 240 ±20 17.6 

±0.15 
98 ±0.25 215 2003 5 50% excitation, 

Fast excitation of 
load 

13 0306171128 240 ±60 17.6 
±0.45 

98 ±0.75 217 2005 4.6 150% excitation, 
Fast excitation of 
load 

14 0306171200 240 ±40 18.4 98 204 2005 4.8 Load excitation 



 - - 37 - - 

A.3 Second set of main experiments 

It is now decided to lower the excitation amplitude by 50% since the added effect of the PRBS 
signals to all the input signals causes the engine to misfire. From now on it is also possible to add 
PRBS disturbances to the engine speed. This set is used for system identification. 
Id. File name Mean 

load 
(J/cycle) 

CR PWM 

(%) 

Mean 
temp.

Speed CA50 
mean 

Comments 

15 0306240949 240 ±20 21+0 -
0.25 

97.2 ±0.15 176 2000 
±200 

3.9 Concurrent 
excitation 

16 0306241002 240 ±20 20 ±0.15 97.45 ±0.25 192 2000 
±200 

3 Concurrent 
excitation 

17 0306241011 310 ±20 20 ±0.15 96.9 ±0.25 171 2000 
±200 

3.7 Concurrent 
excitation 

18 0306241145 250 ±20 20 ±0.15 96.9 ±0.25 189 3000 
±200 

3.9 Concurrent 
excitation 

19 0306241150 300 ±20 18.85 
±0.15 

96.9 ±0.25 193 3000 
±200 

4,7 Concurrent 
excitation 

20 0306241154 240 ±20 18.5 
±0.15 

96.9 ±0.25 203 4000 
±200 

4.8 Concurrent 
excitation 

21 0306241200 300 ±20 17.5 
±0.15 

96.9 ±0.25 207 4000 
±200 

5.7 Concurrent 
excitation 

A.4 Third set of main experiments 

The second set of main experiments proved to contain the data needed to perform system 
identification. This set of experiments is intended to be used for validation, and for checking the 
reproducibility of the experiments. 
Id. File name Mean 

load 
(J/cycle) 

CR PWM 

(%) 

Mean 
temp.

Speed CA50 
mean 

Comments 

22 0306271113 240 21 97 174 2018 4.1 Temp step 
23 0306271119 240 ±20 20 ±0.15 97.4 ±0.25 189 2020 

±200 
3.4 Concurrent 

excitation 
24 0306271123 310 ±20 20 ±0.15 96.6 ±0.25 160 2011 

±200 
6.4 Concurrent 

excitation 
25 0306271129 250 ±20 19.7 

±0.15 
96.8 ±0.25 189 3030 

±200 
5.7 Concurrent 

excitation 
26 0306271134 300 ±20 18.6 ±0.1 96.8 ±0.2 196 3037 

±150 
5.7 Concurrent 

excitation 
27 0306271142 240 ±20 18.0 ±0.1 96.9 ±0.2 204 4031 

±100 
5.8 Concurrent 

excitation 
28 0306271146 300 ±15 17.5 ±0.1 96.9 ±0.2 203 4018 

±100 
5.9 Concurrent 

excitation 
29 0306271154 240 ±10 16.8 ±0.1 97.0 ±0.2 210 5022 

±50 
7.1 Concurrent 

excitation 



 - - 38 - - 

B Matlab files 
This Appendix contains all the Matlab files used to obtain the results in the text. 

B.1 loadData.m 

This file is used to extract relevant data from the data-files. In the data files all data is stored in 
vectors. In this file the data is rearranged into matrices with one column for each cylinder and one 
row for each engine cycle. At this point offsets and linear trends are removed from the data 
before it is returned. 

 
% [CA50, CR, pwm, Temp, IMEP,Speed] = loadData(fileName) 
function [CA50,CR,PWM,Temp,FuelHeat,Speed] = loadData(fileName) 
 
load(fileName); 
NbrOfCyl = 5; 
CA50 = double(CA50); 
Temp = double(TInlet); 
CR = double(CR); 
PWM = double(PWM); 
FuelHeat = double(FuelHeat); 
Speed = double(Speed); 
 
[n, m] = size(CA50); 
cols = n*m/NbrOfCyl; 
 
CA50 = detrend(reshape(CA50, NbrOfCyl, cols)'); 
CR = detrend(reshape(CR, NbrOfCyl, cols)'); 
Temp = detrend(reshape(Temp, NbrOfCyl, cols)'); 
FuelHeat = detrend(reshape(FuelHeat, NbrOfCyl, cols)'); 
PWM = detrend(reshape(PWM, NbrOfCyl, cols)'); 
Speed = detrend(reshape(Speed,NbrOfCyl, cols)'); 

B.2 zizv.m 

This file is used to store the data obtained from the loadData file in structs containing one iddata 
object for each cylinder. The names of the input and output signals are stored in the iddata 
objects. 
% [zi,zv] = zizv(fileName) 
% Returns two structs containing iddata objects containing input signals 
% [CR, TInlet, FuelHeat, Speed] and output signal CA50 
% for each of the five cylinders. 
 
function [zi,zv] = zizv(fileName) 
 
[CA50,CR,PWM,Temp,FuelHeat,Speed]= loadData(fileName); 
for i = 1:5 
    eval(['zi.cyl', int2str(i),'= iddata(CA50(1:500,',int2str(i),... 
            '), [CR(1:500,',int2str(i),'),Temp(1:500,',int2str(i),... 
            '), FuelHeat(1:500,',int2str(i),'),Speed(1:500,',... 
            int2str(i),')],''OutputName'',''CA50'',' 
            '''InputName'',{''CR'',''TInlet'',''FuelHeat'',''Speed''});']); 
 
    eval(['zv.cyl', int2str(i),'= iddata(CA50(501:1000,',int2str(i),... 
            '), [CR(501:1000,',int2str(i),'),Temp(501:1000,',int2str(i),... 
            '), FuelHeat(501:1000,',int2str(i),'),Speed(501:1000,',... 
            int2str(i),')],''OutputName'',''CA50'','... 
            '''InputName'',{''CR'',''TInlet'',''FuelHeat'',''Speed''});']); 



 - - 39 - - 

end 

B.3 complexity_test.m 
% Collect the data from set 3 
[zi1 zv1] = zizv('0306241002_Status.mat'); 
[zi2 zv2] = zizv('0306241011_Status.mat'); 
[zi3 zv3] = zizv('0306241145_Status.mat'); 
[zi4 zv4] = zizv('0306241150_Status.mat'); 
[zi5 zv5] = zizv('0306241154_Status.mat'); 
[zi6 zv6] = zizv('0306241200_Status.mat'); 
everything = merge(zi1.cyl1,zi1.cyl2,zi1.cyl3,zi1.cyl4,zi1.cyl5,... 
                   zi2.cyl1,zi2.cyl2,zi2.cyl3,zi2.cyl4,zi2.cyl5,... 
                   zi3.cyl1,zi3.cyl2,zi3.cyl3,zi3.cyl4,zi3.cyl5,... 
                   zi4.cyl1,zi4.cyl2,zi4.cyl3,zi4.cyl4,zi4.cyl5,... 
                   zi5.cyl1,zi5.cyl2,zi5.cyl3,zi5.cyl4,zi5.cyl5,... 
                   zi6.cyl1,zi6.cyl2,zi6.cyl3,zi6.cyl4,zi6.cyl5); 
 
for i = 1:15 
 eval(['merged_1{',int2str(i),'}=n4sid(everything,',int2str(i),... 
            ',''trace'',''on'',''DisturbanceModel'',''None'',''nk''',... 
            ',[0,0,0,0]);']); 
end 
     
% Collect the data from set four 
[zi11 zv11] = zizv('0306271119_Status.mat'); 
[zi22 zv22] = zizv('0306271123_Status.mat'); 
[zi33 zv33] = zizv('0306271129_Status.mat'); 
[zi44 zv44] = zizv('0306271134_Status.mat'); 
[zi55 zv55] = zizv('0306271142_Status.mat'); 
[zi66 zv66] = zizv('0306271146_Status.mat'); 
[zi77 zv77] = zizv('0306271154_Status.mat'); 
everything = merge(zi11.cyl1,zi11.cyl2,zi11.cyl3,zi11.cyl4,zi11.cyl5,... 
                   zi22.cyl1,zi22.cyl2,zi22.cyl3,zi22.cyl4,zi22.cyl5,... 
                   zi33.cyl1,zi33.cyl2,zi33.cyl3,zi33.cyl4,zi33.cyl5,... 
                   zi44.cyl1,zi44.cyl2,zi44.cyl3,zi44.cyl4,zi44.cyl5,... 
                   zi55.cyl1,zi55.cyl2,zi55.cyl3,zi55.cyl4,zi55.cyl5,... 
                   zi66.cyl1,zi66.cyl2,zi66.cyl3,zi66.cyl4,zi66.cyl5,... 
                   zi77.cyl1,zi77.cyl2,zi77.cyl3,zi77.cyl4,zi77.cyl5); 
for i = 1:15 
 
 eval(['merged_2{',int2str(i),'}=n4sid(everything,',int2str(i),... 
            ',''trace'',''on'',''DisturbanceModel'',''None'',''nk''',... 
            ',[0,0,0,0]);']); 
end 
 
for i = 1:15 
    eval(['[yh, Trash] = compare(zi11.cyl3,merged_1{',int2str(i),... 
            '},merged_2{',int2str(i),'});']); 
    temp = corrcoef(zi11.cyl3.y,yh{1}.y); 
    corr1(i,1) = temp(2,1); 
    temp = corrcoef(zi11.cyl3.y,yh{2}.y); 
    corr1(i,2) = temp(2,1); 
    eval(['[yh, Trash] = compare(zi22.cyl3,merged_1{',int2str(i),... 
            '},merged_2{',int2str(i),'});']); 
    temp = corrcoef(zi22.cyl3.y,yh{1}.y); 
    corr2(i,1) = temp(2,1); 
    temp = corrcoef(zi22.cyl3.y,yh{2}.y); 
    corr2(i,2) = temp(2,1); 
    eval(['[yh, Trash] = compare(zi33.cyl3,merged_1{',int2str(i),... 
            '},merged_2{',int2str(i),'});']); 



 - - 40 - - 

    temp = corrcoef(zi33.cyl3.y,yh{1}.y); 
    corr3(i,1) = temp(2,1); 
    temp = corrcoef(zi33.cyl3.y,yh{2}.y); 
    corr3(i,2) = temp(2,1); 
    eval(['[yh, Trash] = compare(zi44.cyl3,merged_1{',int2str(i),... 
            '},merged_2{',int2str(i),'});']); 
    temp = corrcoef(zi44.cyl3.y,yh{1}.y); 
    corr4(i,1) = temp(2,1); 
    temp = corrcoef(zi44.cyl3.y,yh{2}.y); 
    corr4(i,2) = temp(2,1); 
    eval(['[yh, Trash] = compare(zi55.cyl3,merged_1{',int2str(i),... 
            '},merged_2{',int2str(i),'});']); 
    temp = corrcoef(zi55.cyl3.y,yh{1}.y); 
    corr5(i,1) = temp(2,1); 
    temp = corrcoef(zi55.cyl3.y,yh{2}.y); 
    corr5(i,2) = temp(2,1); 
    eval(['[yh, Trash] = compare(zi66.cyl3,merged_1{',int2str(i),... 
            '},merged_2{',int2str(i),'});']); 
    temp = corrcoef(zi66.cyl3.y,yh{1}.y); 
    corr6(i,1) = temp(2,1); 
    temp = corrcoef(zi66.cyl3.y,yh{2}.y); 
    corr6(i,2) = temp(2,1); 
    eval(['[yh, Trash] = compare(zi77.cyl3,merged_1{',int2str(i),... 
            '},merged_2{',int2str(i),'});']); 
    temp = corrcoef(zi77.cyl3.y,yh{1}.y); 
    corr7(i,1) = temp(2,1); 
    temp = corrcoef(zi77.cyl3.y,yh{2}.y); 
    corr7(i,2) = temp(2,1); 
end 
 
mean_corr = (corr1 + corr2 + corr3 + corr4 + corr5 + corr6 + corr7)'/7; 
min_corr = [min([corr1(:,1)';corr2(:,1)';corr3(:,1)';corr4(:,1)';... 
            corr5(:,1)';corr6(:,1)';corr7(:,1)']);min([corr1(:,2)';... 
            corr2(:,2)';corr3(:,2)';corr4(:,2)';corr5(:,2)';... 
            corr6(:,2)';corr7(:,2)'])]; 
max_corr = [max([corr1(:,1)';corr2(:,1)';corr3(:,1)';corr4(:,1)';... 
            corr5(:,1)';corr6(:,1)';corr7(:,1)']);max([corr1(:,2)';... 
            corr2(:,2)';corr3(:,2)';corr4(:,2)';corr5(:,2)';... 
            corr6(:,2)';corr7(:,2)'])]; 
     
figure(1); 
plot(max_corr(1,:),'r-x'); 
hold on; 
grid on; 
plot(mean_corr(1,:),'b-'); 
plot(min_corr(1,:),'g-+'); 
legend('Max correlation','Mean correlation','Min correlation',0); 
hold off; 
     
figure(2); 
plot(max_corr(2,:),'r-x'); 
hold on; 
grid on; 
plot(mean_corr(2,:),'b-'); 
plot(min_corr(2,:),'g-+'); 
legend('Max correlation','Mean correlation','Min correlation',0); 
hold off; 

B.4 single_many_test.m 
[zi1 zv1] = zizv('0306241002_Status.mat'); 



 - - 41 - - 

[zi2 zv2] = zizv('0306241011_Status.mat'); 
[zi3 zv3] = zizv('0306241145_Status.mat'); 
[zi4 zv4] = zizv('0306241150_Status.mat'); 
[zi5 zv5] = zizv('0306241154_Status.mat'); 
[zi6 zv6] = zizv('0306241200_Status.mat'); 
[zi7 zv7] = zizv('0306271119_Status.mat'); 
[zi8 zv8] = zizv('0306271123_Status.mat'); 
[zi9 zv9] = zizv('0306271129_Status.mat'); 
[zi10 zv10] = zizv('0306271134_Status.mat'); 
[zi11 zv11] = zizv('0306271142_Status.mat'); 
[zi12 zv12] = zizv('0306271146_Status.mat'); 
[zi13 zv13] = zizv('0306271154_Status.mat'); 
everything = merge(zi1.cyl1,zi1.cyl2,zi1.cyl3,zi1.cyl4,zi1.cyl5,... 
                   zi2.cyl1,zi2.cyl2,zi2.cyl3,zi2.cyl4,zi2.cyl5,... 
                   zi3.cyl1,zi3.cyl2,zi3.cyl3,zi3.cyl4,zi3.cyl5,... 
                   zi4.cyl1,zi4.cyl2,zi4.cyl3,zi4.cyl4,zi4.cyl5,... 
                   zi5.cyl1,zi5.cyl2,zi5.cyl3,zi5.cyl4,zi5.cyl5,... 
                   zi6.cyl1,zi6.cyl2,zi6.cyl3,zi6.cyl4,zi6.cyl5,... 
                   zi7.cyl1,zi7.cyl2,zi7.cyl3,zi7.cyl4,zi7.cyl5,... 
                   zi8.cyl1,zi8.cyl2,zi8.cyl3,zi8.cyl4,zi8.cyl5,... 
                   zi9.cyl1,zi9.cyl2,zi9.cyl3,zi9.cyl4,zi9.cyl5,... 
                   zi10.cyl1,zi10.cyl2,zi10.cyl3,zi10.cyl4,zi10.cyl5,... 
                   zi11.cyl1,zi11.cyl2,zi11.cyl3,zi11.cyl4,zi11.cyl5,... 
                   zi12.cyl1,zi12.cyl2,zi12.cyl3,zi12.cyl4,zi12.cyl5,... 
                   zi13.cyl1,zi13.cyl2,zi13.cyl3,zi13.cyl4,zi13.cyl5); 
zi1 = merge(zi1.cyl1,zi1.cyl2,zi1.cyl3,zi1.cyl4,zi1.cyl5); 
zi2 = merge(zi2.cyl1,zi2.cyl2,zi2.cyl3,zi2.cyl4,zi2.cyl5); 
zi3 = merge(zi3.cyl1,zi3.cyl2,zi3.cyl3,zi3.cyl4,zi3.cyl5); 
zi4 = merge(zi4.cyl1,zi4.cyl2,zi4.cyl3,zi4.cyl4,zi4.cyl5); 
zi5 = merge(zi5.cyl1,zi5.cyl2,zi5.cyl3,zi5.cyl4,zi5.cyl5); 
zi6 = merge(zi6.cyl1,zi6.cyl2,zi6.cyl3,zi6.cyl4,zi6.cyl5); 
zi7 = merge(zi7.cyl1,zi7.cyl2,zi7.cyl3,zi7.cyl4,zi7.cyl5); 
zi8 = merge(zi8.cyl1,zi8.cyl2,zi8.cyl3,zi8.cyl4,zi8.cyl5); 
zi9 = merge(zi9.cyl1,zi9.cyl2,zi9.cyl3,zi9.cyl4,zi9.cyl5); 
zi10 = merge(zi10.cyl1,zi10.cyl2,zi10.cyl3,zi10.cyl4,zi10.cyl5); 
zv11 = zi11.cyl1; 
zi11 = merge(zi11.cyl1,zi11.cyl2,zi11.cyl3,zi11.cyl4,zi11.cyl5); 
zv12 = zi12.cyl1 
zi12 = merge(zi12.cyl1,zi12.cyl2,zi12.cyl3,zi12.cyl4,zi12.cyl5); 
zi13 = merge(zi13.cyl1,zi13.cyl2,zi13.cyl3,zi13.cyl4,zi13.cyl5); 
 
m1 = n4sid(zi1, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m2 = n4sid(zi2, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m3 = n4sid(zi3, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m4 = n4sid(zi4, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m5 = n4sid(zi5, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m6 = n4sid(zi6, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m7 = n4sid(zi7, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m8 = n4sid(zi8, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m9 = n4sid(zi9, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m10 = n4sid(zi10, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 



 - - 42 - - 

m11 = n4sid(zi11, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m12 = n4sid(zi12, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
m13 = n4sid(zi13, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
merged = n4sid(everything, 3, 'trace', 'off', 'DisturbanceModel', 
'None','nk',[0,0,0,0]); 
correlations = zeros(2,13); 
[yh, Trash] = compare(zv1.cyl3,m1,merged); 
c1 = corrcoef(zv1.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv1.cyl3.y,yh{2}.y); 
correlations(1,1) = c1(1,2); 
correlations(2,1) = c2(1,2); 
[yh, Trash] = compare(zv2.cyl3,m2,merged); 
c1 = corrcoef(zv2.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv2.cyl3.y,yh{2}.y); 
correlations(1,2) = c1(1,2); 
correlations(2,2) = c2(1,2); 
[yh, Trash] = compare(zv3.cyl3,m3,merged); 
c1 = corrcoef(zv3.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv3.cyl3.y,yh{2}.y); 
correlations(1,3) = c1(1,2); 
correlations(2,3) = c2(1,2); 
[yh, Trash] = compare(zv4.cyl3,m4,merged); 
c1 = corrcoef(zv4.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv4.cyl3.y,yh{2}.y); 
correlations(1,4) = c1(1,2); 
correlations(2,4) = c2(1,2); 
[yh, Trash] = compare(zv5.cyl3,m5,merged); 
c1 = corrcoef(zv5.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv5.cyl3.y,yh{2}.y); 
correlations(1,5) = c1(1,2); 
correlations(2,5) = c2(1,2); 
[yh, Trash] = compare(zv6.cyl3,m6,merged); 
c1 = corrcoef(zv6.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv6.cyl3.y,yh{2}.y); 
correlations(1,6) = c1(1,2); 
correlations(2,6) = c2(1,2); 
[yh, Trash] = compare(zv7.cyl3,m7,merged); 
c1 = corrcoef(zv7.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv7.cyl3.y,yh{2}.y); 
correlations(1,7) = c1(1,2); 
correlations(2,7) = c2(1,2); 
[yh, Trash] = compare(zv8.cyl3,m8,merged); 
c1 = corrcoef(zv8.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv8.cyl3.y,yh{2}.y); 
correlations(1,8) = c1(1,2); 
correlations(2,8) = c2(1,2); 
[yh, Trash] = compare(zv9.cyl3,m9,merged); 
c1 = corrcoef(zv9.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv9.cyl3.y,yh{2}.y); 
correlations(1,9) = c1(1,2); 
correlations(2,9) = c2(1,2); 
[yh, Trash] = compare(zv10.cyl3,m10,merged); 
c1 = corrcoef(zv10.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv10.cyl3.y,yh{2}.y); 
correlations(1,10) = c1(1,2); 
correlations(2,10) = c2(1,2); 
[yh, Trash] = compare(zv11,m11,merged); 
c1 = corrcoef(zv11.y,yh{1}.y); 



 - - 43 - - 

c2 = corrcoef(zv11.y,yh{2}.y); 
 
correlations(1,11) = c1(1,2); 
correlations(2,11) = c2(1,2); 
[yh, Trash] = compare(zv12,m12,merged); 
c1 = corrcoef(zv12.y,yh{1}.y); 
c2 = corrcoef(zv12.y,yh{2}.y); 
correlations(1,12) = c1(1,2); 
correlations(2,12) = c2(1,2); 
[yh, Trash] = compare(zv13.cyl3,m13,merged); 
c1 = corrcoef(zv13.cyl3.y,yh{1}.y); 
c2 = corrcoef(zv13.cyl3.y,yh{2}.y); 
correlations(1,13) = c1(1,2); 
correlations(2,13) = c2(1,2); 
 
hold off; 
plot(correlations(1,:),'r-'); 
hold on; 
plot(correlations(2,:),'b-+'); 
legend('operating point individual model','Merged model'); 
title('Comparing cylinder individual models to merged model'); 
xlabel('Operating point'); 
ylabel('Correlation'); 
grid on; 

B.5 residual_analysis.m 
[zi,zv] = zizv('0306271123_Status.mat'); 
if ~exist('model') 
    create_model; 
end 
simulated = zeros(500,5); 
simulated(:,1) = idsim(zv.cyl1.u,model); 
simulated(:,2) = idsim(zv.cyl2.u,model); 
simulated(:,3) = idsim(zv.cyl3.u,model); 
simulated(:,4) = idsim(zv.cyl4.u,model); 
simulated(:,5) = idsim(zv.cyl5.u,model); 
 
residuals = zeros(500,5); 
residuals(:,1) = zv.cyl1.y-simulated(:,1); 
residuals(:,2) = zv.cyl2.y-simulated(:,2); 
residuals(:,3) = zv.cyl3.y-simulated(:,3); 
residuals(:,4) = zv.cyl4.y-simulated(:,4); 
residuals(:,5) = zv.cyl5.y-simulated(:,5); 
figure(1); 
mean_res = mean(residuals')'; 
plot(mean_res,'b-'); 
title('Mean residuals'); 
xlabel('Engine cycles'); 
ylabel('Degrees ATDC'); 
 
figure(2); 
[P,F] = spectrum(mean_res, 256, 100, [], 1); 
plot(F, P(:, 1), 'b-'); 
title('Power spectrum of the residuals'); 
xlabel('Frequency'); 
ylabel('Power'); 
 
figure(3); 
hold off; 
plot(simulated(:,2),'b'); 



 - - 44 - - 

hold on; 
plot(zv.cyl2.y,'r'); 
grid on; 
title('Measured and simulated output'); 
xlabel('Engine cycles'); 
ylabel('Degrees ATDC'); 
legend('Simulated output','Measured output',0); 

B.6 create_model.m 

This is the file that creates a model from all data contained in the files indexed 15-21 and 23-28. 
All data in the mentioned files is first merged into one big iddata object, this object is then used 
as a parameter to the function n4sid which creates the model. 
 
[zi1 trash] = zizv('0306241002_Status.mat'); 
[zi2 trash] = zizv('0306241011_Status.mat'); 
[zi3 trash] = zizv('0306241145_Status.mat'); 
[zi4 trash] = zizv('0306241150_Status.mat'); 
[zi5 trash] = zizv('0306241154_Status.mat'); 
[zi6 trash] = zizv('0306241200_Status.mat'); 
[zi7 trash] = zizv('0306271119_Status.mat'); 
[zi8 trash] = zizv('0306271123_Status.mat'); 
[zi9 trash] = zizv('0306271129_Status.mat'); 
[zi10 trash] = zizv('0306271134_Status.mat'); 
[zi11 trash] = zizv('0306271142_Status.mat'); 
[zi12 trash] = zizv('0306271146_Status.mat'); 
[zi13 trash] = zizv('0306271154_Status.mat'); 
everything = merge(zi1.cyl1,zi1.cyl2,zi1.cyl3,zi1.cyl4,zi1.cyl5,... 
                   zi2.cyl1,zi2.cyl2,zi2.cyl3,zi2.cyl4,zi2.cyl5,... 
                   zi3.cyl1,zi3.cyl2,zi3.cyl3,zi3.cyl4,zi3.cyl5,... 
                   zi4.cyl1,zi4.cyl2,zi4.cyl3,zi4.cyl4,zi4.cyl5,... 
                   zi5.cyl1,zi5.cyl2,zi5.cyl3,zi5.cyl4,zi5.cyl5,... 
                   zi6.cyl1,zi6.cyl2,zi6.cyl3,zi6.cyl4,zi6.cyl5,... 
                   zi7.cyl1,zi7.cyl2,zi7.cyl3,zi7.cyl4,zi7.cyl5,... 
                   zi8.cyl1,zi8.cyl2,zi8.cyl3,zi8.cyl4,zi8.cyl5,... 
                   zi9.cyl1,zi9.cyl2,zi9.cyl3,zi9.cyl4,zi9.cyl5,... 
                   zi10.cyl1,zi10.cyl2,zi10.cyl3,zi10.cyl4,zi10.cyl5,... 
                   zi11.cyl1,zi11.cyl2,zi11.cyl3,zi11.cyl4,zi11.cyl5,... 
                   zi12.cyl1,zi12.cyl2,zi12.cyl3,zi12.cyl4,zi12.cyl5,... 
                   zi13.cyl1,zi13.cyl2,zi13.cyl3,zi13.cyl4,zi13.cyl5); 
 
model = n4sid(everything, 3, 'trace', 'off', 'DisturbanceModel',... 
        'None','nk',[0,0,0,0]); 

B.7 observability_controllability_test.m 
if ~exist('model') 
    create_model; 
end 
W_o = obsv(model.A,model.C) 
if rank(W_o) == size(model.A,1) 
    disp('Model is observable'); 
else 
    disp('Model is NOT observable'); 
end 
 
W_c = ctrb(model.A,model.B) 
if rank(W_c) == size(model.A,1) 
    disp('Model is controllable'); 
else 
    disp('Model is not controllable'); 



 - - 45 - - 

end 

 

B.8 create_sensitivity_function.m 
if ~exist('model') 
    create_model; 
end 
if ~exist('RLQG') 
    create_kalman; 
end 
plant_tf = tf(ss(model.A,model.B,model.C,model.D,1,'InputName',... 
    {'CR','TInlet','FuelHeat','Speed'},'OutputName','CA50')); 
regulator_tf = tf([1],[1,-1],1) * tf(ss(RLQG.A,RLQG.B,RLQG.C,RLQG.D,1,... 
    'InputName','CA50','OutputName',{'CR','TInlet','FuelHeat','Speed'})); 
L = plant_tf * regulator_tf; 
S = (1 - L)^-1 
T = 1 - S 
figure(1); 
bode(S); 
grid on; 
title('Sensitivity function'); 
figure(2); 
bode(T); 
grid on; 
title('Complementary sensitivity function'); 

B.9 HCCI.m 
function [sys,x0,str,ts] = HCCI(t,x,u,flag,A,B,C,D,w_power,e_power) 
%HCCI(t,x,u,flag,A,B,C,D,w_power,e_power) 
%    
%   Parameters A, B, C and D are the matrices of the discrete state space 
%   representation of the engine. 
%   w_power and e_power are the variances of the noise. 
%   x(t+1) = A*x(t) + B*u(t) + w(t) 
%   y(t)   = C*x(t) + D*u(t) + e(t) 
 
switch flag, 
 
  % Initialization % 
  case 0, 
    [sys,x0,str,ts]=mdlInitializeSizes(A,B,C); 
 
  % Derivatives % Not used here 
  case 1, 
    sys=mdlDerivatives(t,x,u); 
 
  % Update % 
  case 2, 
    sys=mdlUpdate(t,x,u,A,B,w_power); 
 
  % Outputs % 
  case 3, 
    sys=mdlOutputs(t,x,u,C,D,e_power); 
 
  % GetTimeOfNextVarHit % 
  case 4, 
    sys=mdlGetTimeOfNextVarHit(t,x,u); 
 
  % Terminate % 
 



 - - 46 - - 

  case 9, 
    sys=mdlTerminate(t,x,u); 
 
  % Unexpected flags % 
  otherwise 
    error(['Unhandled flag = ',num2str(flag)]); 
 
end 
% end HCCI 
 
%========================================================================== 
% mdlInitializeSizes 
% Return the sizes, initial conditions, and sample times for the S-function. 
%=========================================================================== 
function [sys,x0,str,ts]=mdlInitializeSizes(A,B,C) 
 sizes = simsizes; 
 sizes.NumContStates  = 0; 
 sizes.NumDiscStates  = size(A,1); 
 sizes.NumOutputs     = size(C,1); 
 sizes.NumInputs      = size(B,2); 
 sizes.DirFeedthrough = 1; 
 sizes.NumSampleTimes = 1;   % at least one sample time is needed 
  
 sys = simsizes(sizes); 
 % initialize the initial conditions 
 x0  = zeros(1,size(A,1)); 
 % str is always an empty matrix 
 str = []; 
 % initialize the array of sample times 
 ts  = [1 0]; 
% end mdlInitializeSizes 
 
%=========================================================================== 
% mdlDerivatives 
% Return the derivatives for the continuous states. 
%=========================================================================== 
function sys=mdlDerivatives(t,x,u) 
    sys = []; 
% end mdlDerivatives 
 
%=========================================================================== 
% mdlUpdate 
% Handle discrete state updates, sample time hits, and major time step 
% requirements. 
%=========================================================================== 
function sys=mdlUpdate(t,x,u,A,B,w_power) 
    w = zeros(length(w_power),1); 
    for i = 1:length(w) 
        w(i) = randn*sqrt(w_power(i)); 
    end 
    sys = A*x+B*u+w; 
% end mdlUpdate 
 
%=========================================================================== 
% mdlOutputs 
% Return the block outputs. 
%=========================================================================== 
function sys=mdlOutputs(t,x,u,C,D,e_power) 
    e = randn*sqrt(e_power); 
    sys = C*x + D*u + e; 
% end mdlOutputs 



 - - 47 - - 

 
%=========================================================================== 
% mdlGetTimeOfNextVarHit 
% Return the time of the next hit for this block.  Note that the result is 
% absolute time.  Note that this function is only used when you specify a 
% variable discrete-time sample time [-2 0] in the sample time array in 
% mdlInitializeSizes. 
%=========================================================================== 
function sys=mdlGetTimeOfNextVarHit(t,x,u) 
    sampleTime = 1;    %  Example, set the next hit to be one second later. 
    sys = t + sampleTime; 
% end mdlGetTimeOfNextVarHit 
 
%=========================================================================== 
% mdlTerminate 
% Perform any end of simulation tasks. 
%=========================================================================== 
function sys=mdlTerminate(t,x,u) 
    sys = []; 
% end mdlTerminate 

B.10 create_lqg.m 
if ~exist('model'); 
    create_model; % Creates a model of the engine. 
end 
weights; % Initializes the Q and R matrices. 
 
[kest,L,P] = kalman(ss(model.A,[model.B,eye(3)],model.C,[model.D,0,0,1]... 
    ,1,'InputName',{'CR','TInlet','FuelHeat','Speed','noise_1','noise_2'... 
    ,'noise_3'},'OutputName','CA50'),diag(process_noise),measurement_noise); 
 
[K,S,E] = DLQR(model.A,[model.B(:,1:2),zeros(3,2)],Q,R); 
RLQG = LQGREG(kest,K,'current'); 

B.11 lqg_regulator.m 
function [sys,x0,str,ts] = lqg_regulator(t,x,u,flag,... 
    A,B,C,D,w_power,e_power,Q,R,N) 
% lqg_regulator(t,x,u,flag,A,B,C,D,w_power,e_power,Q,R,N) 
%      Creates and acts as a LQG regulator for the process described by the 
%      matrices A, B, C and D and the noise variances w_power and e_power. 
%      The process is described by the following equations 
% 
%          x(t+1) = A*x(t) + B*u(t) + w(t) 
%          y(t) = C*x(t) + D*u(t) + e(t) 
%    
%      The matrices Q, R and N are the weighting matrices of the loss 
%      function 
%          
%          sum(x' Q x + u' R u + u' N x) 
 
switch flag, 
 
  % Initialization % 
  case 0, 
    [sys,x0,str,ts]=mdlInitializeSizes(A,B,C,D,w_power,e_power,Q,R,N); 
 
  % Derivatives % 
  case 1, 
    sys=mdlDerivatives(t,x,u); 
 



 - - 48 - - 

  % Update % 
  case 2, 
    sys=mdlUpdate(t,x,u); 
 
  % Outputs % 
  case 3, 
    sys=mdlOutputs(t,x,u); 
 
  % GetTimeOfNextVarHit % 
  case 4, 
    sys=mdlGetTimeOfNextVarHit(t,x,u); 
 
  % Terminate % 
  case 9, 
    sys=mdlTerminate(t,x,u); 
 
  % Unexpected flags % 
  otherwise 
    error(['Unhandled flag = ',num2str(flag)]); 
 
end 
% end lqg_regulator 
 
%=========================================================================== 
% mdlInitializeSizes 
% Return the sizes, initial conditions, and sample times for the S-function. 
%=========================================================================== 
function [sys,x0,str,ts]=mdlInitializeSizes(A,B,C,D,w_power,e_power,Q,R,N) 
 sizes = simsizes; 
 RLQG = createLQGRegulator(A,B,C,D,w_power,e_power,Q,R,N) 
  
 sizes.NumContStates  = 0; 
 sizes.NumDiscStates  = size(RLQG.A,2) + prod(size(RLQG.A)) +... 
        prod(size(RLQG.B)) + prod(size(RLQG.C)) + prod(size(RLQG.D)) + 8; 
 sizes.NumOutputs     = 2; 
 sizes.NumInputs      = 1; 
 sizes.DirFeedthrough = 1; 
 sizes.NumSampleTimes = 1;    
  
 sys = simsizes(sizes); 
  
 x0  = zeros(sizes.NumDiscStates,1); 
 currentIndex = size(RLQG.A,2)+1; % Reserve space for the states. 
 % The regulator needs to be carried as states 
 for i = 1:size(RLQG.A,1) 
        x0(currentIndex:currentIndex+size(RLQG.A,2)-1) = RLQG.A(i,:); 
        currentIndex = currentIndex+size(RLQG.A,2); 
 end 
  
 for i = 1:size(RLQG.B,1) 
        x0(currentIndex:currentIndex+size(RLQG.B,2)-1) = RLQG.B(i,:); 
        currentIndex = currentIndex+size(RLQG.B,2); 
 end 
  
 for i = 1:size(RLQG.C,1) 
        x0(currentIndex:currentIndex+size(RLQG.C,2)-1) = RLQG.C(i,:); 
        currentIndex = currentIndex+size(RLQG.C,2); 
 end 
  
 for i = 1:size(RLQG.D,1) 
        x0(currentIndex:currentIndex+size(RLQG.D,2)-1) = RLQG.D(i,:); 



 - - 49 - - 

        currentIndex = currentIndex+size(RLQG.D,2); 
 end 
 % Finally add the sizes of the matrices 
 x0(currentIndex:currentIndex+7) = 
[size(RLQG.A),size(RLQG.B),size(RLQG.C),size(RLQG.D)]; 
  
 % str is always an empty matrix 
 str = []; 
  
 % initialize the array of sample times 
 ts  = [1 0]; 
% end mdlInitializeSizes 
 
%=========================================================================== 
% mdlDerivatives 
% Return the derivatives for the continuous states. 
%=========================================================================== 
function sys=mdlDerivatives(t,x,u) 
    sys = []; 
% end mdlDerivatives 
 
%=========================================================================== 
% mdlUpdate 
% Handle discrete state updates, sample time hits, and major time step 
% requirements. 
%=========================================================================== 
function sys=mdlUpdate(t,x,u) 
 [A,B,C,D] = getMatrices(x); 
    sys(1:3) = A * x(1:3) + B * u; 
    sys(4:size(x,1)) = x(4:size(x,1)); 
% end mdlUpdate 
 
%=========================================================================== 
% mdlOutputs 
% Return the block outputs. 
%=========================================================================== 
function sys=mdlOutputs(t,x,u) 
 [A,B,C,D] = getMatrices(x); 
 sys = C * x(1:3) + D * u; 
    sys = saturate(sys); 
% end mdlOutputs 
 
%=========================================================================== 
% mdlGetTimeOfNextVarHit 
% Return the time of the next hit for this block.  Note that the result is 
% absolute time.  Note that this function is only used when you specify a 
% variable discrete-time sample time [-2 0] in the sample time array in 
% mdlInitializeSizes. 
%=========================================================================== 
function sys=mdlGetTimeOfNextVarHit(t,x,u) 
 sampleTime = 1;   
 sys = t + sampleTime; 
% end mdlGetTimeOfNextVarHit 
 
%=========================================================================== 
% mdlTerminate 
% Perform any end of simulation tasks. 
%=========================================================================== 
function sys=mdlTerminate(t,x,u) 
 sys = []; 
% end mdlTerminate 



 - - 50 - - 

 
%=========================================================================== 
% Creates the kalman filter 
%=========================================================================== 
function RLQG = createLQGRegulator(A,B,C,D,w_power,e_power,Q,R,N) 
 Q1 = diag(w_power); 
 R1 = e_power; 
    InputName = {'CR','TInlet','FuelHeat','Speed'}; 
    for i = 1:length(w_power) 
        InputName{length(InputName) + 1} = ['noise_',int2str(i)]; 
    end 
 [kest,L,P] = kalman(ss(A,[B,eye(size(A,1))],C,[D,0,0,1],1,... 
        'InputName', InputName,'OutputName','CA50'),Q1,R1); 
    % The last two process inputs are removed since these are not 
    % accessible to the regulator. 
    [K,S,E] = DLQR(A,[B(:,1:2),zeros(3,2)],Q,R,N); 
    RLQG = LQGREG(kest,K,'current'); 
% end createKalman 
 
function [A,B,C,D] = getMatrices(x); 
    % Start by obtaining the matrix sizes 
    currentIndex = length(x)-7; 
     
    size_A = x(currentIndex:currentIndex+1); 
    currentIndex = currentIndex + 2; 
    size_B = x(currentIndex:currentIndex+1); 
    currentIndex = currentIndex + 2; 
    size_C = x(currentIndex:currentIndex+1); 
    currentIndex = currentIndex + 2; 
    size_D = x(currentIndex:currentIndex+1); 
    A = zeros(size_A'); 
    B = zeros(size_B'); 
    C = zeros(size_C'); 
    D = zeros(size_D'); 
 
    currentIndex = size_A(1) + 1; % This is where the matrices begin 
    for i = 1:size_A(1) 
        A(i,:) = x(currentIndex:currentIndex+size_A(2)-1)'; 
        currentIndex = currentIndex+size_A(2); 
    end 
    for i = 1:size_B(1) 
        B(i,:) = x(currentIndex:currentIndex+size_B(2)-1)'; 
        currentIndex = currentIndex+size_B(2); 
    end 
    for i = 1:size_C(1) 
        C(i,:) = x(currentIndex:currentIndex+size_C(2)-1)'; 
        currentIndex = currentIndex+size_C(2); 
    end 
    for i = 1:size_D(1) 
        D(i,:) = x(currentIndex:currentIndex+size_D(2)-1)'; 
        currentIndex = currentIndex+size_D(2); 
    end 
% end getMatrices 
 
function sys = saturate(s) 
    % Saturate CR 
    sys(1) = max(s(1),-9); 
    sys(1) = min(s(1),3); 
    % Saturate IAT 
    sys(2) = max(s(2),-100); 
    sys(2) = min(s(2),100); 



 - - 51 - - 

% end saturate 

B.12 test_noise.m 
function test_noise 
    load('0306121008_Status.mat'); 
    CA50 = reshape(CA50, 5, 1000)'; 
    noise = detrend(CA50(400:1000,1)'); 
    figure(1) 
    plot(400:1000,noise); 
    grid on; 
    figure(2) 
    [P,F] = spectrum(noise, 256, 100, [], 1); 
    plot(F, P(:, 1)); 
    var(noise) 

B.13 create_regulator.m 
[kest,L,P] = 
kalman(ss(model.A,[model.B,eye(3)],model.C,[model.D,0,0,1],1,... 
    
'InputName',{'CR','TInlet','FuelHeat','Speed','noise_1','noise_2','noise_3'}
,'OutputName','CA50')... 
    ,diag(regulator_process_noise),regulator_measurement_noise); 
 
[K,S,E] = DLQR(model.A,[model.B(:,1:2),zeros(3,2)],Q,R); 
RLQG = LQGREG(kest,K,'current'); 
 
A = RLQG.A; 
B = RLQG.B; 
C = RLQG.C; 
D = RLQG.D; 
 
z = zeros(size(A)); 
regulator_A = [A,z,z,z,z;z,A,z,z,z;z,z,A,z,z;z,z,z,A,z;z,z,z,z,A]; 
regulator_B = [B,zeros(3,4);... 
               zeros(3,1),B,zeros(3,3);... 
               zeros(3,2),B,zeros(3,2);... 
               zeros(3,3),B,zeros(3,1);... 
               zeros(3,4),B]; 
regulator_C = [C(1,:)/5,C(1,:)/5,C(1,:)/5,C(1,:)/5,C(1,:)/5;... 
               C(2,:),zeros(1,12);... 
               zeros(1,3),C(2,:),zeros(1,9);... 
               zeros(1,6),C(2,:),zeros(1,6);... 
               zeros(1,9),C(2,:),zeros(1,3);... 
               zeros(1,12),C(2,:)]; 
regulator_D = 
[D(1)/5,D(1)/5,D(1)/5,D(1)/5,D(1)/5;D(2),0,0,0,0;0,D(2),0,0,0;... 
        0,0,D(2),0,0;0,0,0,D(2),0;0,0,0,0,D(2)]; 
 
clear A B C D kest L P z K S E RLQG; 

B.14 LQG_Controller.java 
/** 
 * Regulator for ignition phasing control of the five cylinder 
 * variable CR HCCI Engine. 
 * It is assumed that the controller has six outputs. These are 
 * CR (for the five cylinders in parallel and IAT (individual 
 * control for each cylinder). CR is controlled for all cylinders  
 * in paralell.  
 * The number of inputs to the controller is arbitrary, and 
 * so is the complexity of the controller. 



 - - 52 - - 

 */ 
public class LQG_Controller { 
 
  // Regulator matrices 
  private double[][] A, B, C, D, x, oldInputs; 
  private int index; 
  private double CR; 
 
  /** 
   * Constructs a controller object. 
   * The parameters are the matrices of the regulator for 
   * one cylinder in state space form. 
   */ 
  public LQG_Controller(double[][] A, double[][] B,  
                        double[][] C, double[][] D) { 
    this.A = A; 
    this.B = B; 
    this.C = C; 
    this.D = D; 
    index = 0; 
    // Reserve space for the five latest inputs 
    oldInputs = new double[5][B[0].length]; 
    // Reserve space for the states of all five cylinders 
    x = new double[5][A.length]; 
  } 
 
  /** 
   * Updates the controller states for cylinder cylNbr. 
   */ 
  public void updateStates(double[] inputs, int cylNbr) { 
    double[] newX = new double[A.length]; 
    for (int i = 0; i < A.length; i++) { 
      // Calculate the contribution from the A matrix 
      for (int k = 0; k < A.length; k++) { 
        newX[i] = newX[i] + A[i][k] * x[cylNbr][k]; 
      } 
      // Calculate the contribution from the B matrix 
      for (int k = 0; k < inputs.length; k++) { 
        newX[i] = newX[i] + B[i][k] * inputs[k]; 
      } 
    } 
    // Update the states in the x-matrix 
    for (int i = 0; i < A.length; i++) { 
      x[cylNbr][i] = newX[i]; 
    } 
  } 
 
  /** 
   * Calculates the CR output. 
   * This function uses stored values of the inputs 
   * to the different cylinders. 
   */ 
  public double calculateCR() { 
    double[] meanStates = new double[A.length]; 
    double[] meanInputs = new double[B[0].length]; 
    double output = 0; 
    // Calculate the mean of the states 
    for (int i = 0; i < meanStates.length; i++) { 
      for (int k = 0; k < 5; k++) { 
        meanStates[i] = meanStates[i] + x[k][i]; 
      } 



 - - 53 - - 

      meanStates[i] = meanStates[i] * 0.2; 
    } 
    // Calculate the mean of the inputs 
    for (int i = 0; i < meanInputs.length; i++) { 
      for (int k = 0; k < 5; k++) { 
        meanInputs[i] = meanInputs[i] + oldInputs[k][i]; 
      } 
      meanInputs[i] = meanInputs[i] * 0.2; 
    } 
    // Calculate the contribution from the states 
    for (int i = 0; i < meanStates.length; i++) { 
      output = output + C[0][i] * meanStates[i]; 
    } 
    // Calculate the contribution from the inputs 
    for (int i = 0; i < meanInputs.length; i++) { 
      output = output + D[0][i] * meanInputs[i]; 
    } 
    return output; 
  } 
 
  /** 
   * Calculates the IAT output. 
   * This method also updates the stored input values 
   */ 
  public double calculateIAT(double[] inputs,int cylNbr) { 
    double output = 0; 
    // Calculate the contribution from the states 
    for (int i = 0; i < x[0].length; i++) { 
      output = output + C[1][i] * x[cylNbr][i]; 
    } 
    // Calculate the contribution from the inputs 
    // and update the stored values 
    for (int i = 0; i < inputs.length; i++) { 
      output = output + C[1][i] * inputs[i]; 
      oldInputs[cylNbr][i] = inputs[i]; 
    } 
    return output; 
  } 
 
  /** 
   * Calculates the controller output after each cylinder 
   * cycle. IAT is updated at every call of this method. 
   * CR is update once per engine cycle (after cylinder 
   * five has compled a cycle). 
   */ 
  public double[] cycleFinished(double[] inputs, int cylNbr) { 
    double IAT = calculateIAT(inputs, cylNbr); 
    if (cylNbr == 5) { 
      CR = calculateCR(); 
    } 
    return new double[]{CR,IAT}; 
  } 
} 
 




