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Abstract

The work present in this master thesis relates to output feedback
adaptive control and observer design of nonlinear systems, and in
particular of robot manipulators. A continuous-time velocity observer
and a discrete-time adaptive velocity observer for robots are shown,
and an observer backstepping controller is also proposed, which can
be used together with both the observers. The resulting closed-loop
system is proven to be semiglobally asymptotically stable with re-
spect to both the velocity observation error and the tracking error,
and stable with respect to the parameter estimation error. Further-
more an on-line parameter estimation method for a class of nonlinear
system is presented, which can be easily extended for the robot equa-
tion. Unfortunately the way to use it in combination with the previous
observer-controller has not been found and it has not been used in the
experiments. In the Appendix A some technical details about the al-
gorithm implementation are included, and in the Appendix B a paper
already submitted to the 2002 Conference in Decision and Control
is included, in which the adaptive output-feedback control scheme is
extended for ship control. All the work has been conducted in the De-
partment of Automatic Control, Lund Institute of Technology, Lund
University.
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1. Introduction

In control engineering the objective is to achieve a feasible control signal,
that makes the considered plant behave in the desired way; this control
signal is based on the mathematical model of the plant, on reference signals
to be tracked, and on measured signals. There are several situations where
we have not only uncertainties in the model, but also partial measurement
of the state, and so this provides motivation in development of observer-
based adaptive control schemes.

1.1 Observers

In many applications it can be very expensive, or even impossible, to install
a physical sensor to measure directly certain quantities; in these cases,
since the knowledge of the unmeasurable quantities is desirable anyway,
a good solution is to provide an estimate by an observer. An observer is
an algorithm that reconstructs the internal unmeasurable states of the
system from the measurable output; in the linear case the observer theory
is well investigated and the observability and detectability properties are
closely connected to the existence of observers with strong convergence
properties. However in the nonlinear case, the observer design problem has
a systematic solution only if nonlinearities are functions of the measurable
output and the input.

Observers for linear systems
Consider the linear system{

ẋ = Ax + Bu

y = Cx
(1.1)

Under observability/detectability assumptions on the pair [A, C] an ob-
server for the system (1.1) can be constructed as{

˙̂x = Ax̂ + Bu+ K(y − ŷ)
ŷ = Cx̂

(1.2)

where K(y− ŷ) is the linear output injection. If the gain matrix K is chosen
such that (A−KC) is Hurwitz, then the error dynamics are asymptotically
stable, that is limt→∞ x̂(t) = x(t).

Observers for nonlinear systems
The notion of output injection can be applied also to a class of nonlinear
systems in the form {

ẋ = Ax + f (y, u)
y = Cx.

(1.3)
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1.2 Observer-based control

As the nonlinearity f only depends on the measurable output and the
known control signal, an observer for the system (1.3) can be constructed
as {

˙̂x = Ax̂ + f (y, u) + K(y − ŷ)
ŷ = Cx̂.

(1.4)

Still, if the gain matrix K is chosen such that (A− KC) is Hurwitz, then
the linear error dynamics are asymptotically stable.
Even if the system description is not directly in the form (1.3), there could
exist an invertible state transformation χ = S(x) to make the system in
the form (1.3), with linear error dynamics. The convergence limt→∞ χ̂ = χ
then implies limt→∞ x̂ = x.

Thau [28] has considered a system in the form{
ẋ = Ax + f (x, u, t) + φ(y, u, t)
y = Cx

(1.5)

For the observer{
˙̂x = Ax̂ + f (x̂, u, t) + φ(y, u, t) + L(y − ŷ)
ŷ = Cx̂

(1.6)

conditions for asymptotic stability of the error are given, provided that the
nonlinearity f (x, u, t) is Lipschitz with respect to the state x.

Arcak and Kokotovic have suggested an observer design for a class of
systems with monotone sector nonlinearities in the unmeasured states [1].
They have considered the system{

ẋ = Ax + Gψ (Hx) +ϕ (y, u)
y = Cx

(1.7)

and the observer{
˙̂x = Ax̂ + L(y − ŷ) + Gψ (Hx̂ + K(y − ŷ)) +ϕ (y, u)
ŷ = Cx̂.

(1.8)

The observer design decomposes the error dynamics into a linear system in
feedback with a multivariable sector nonlinearity. Linear matrix inequal-
ities are used to state the conditions for the existence of stable observer
error dynamics with respect to the imposed observer structure.

1.2 Observer-based control

The observer-based control is a way to solve the output feedback control
problem, that implies a restriction in the possibility to use all the states
directly for feedback. Still for linear system the well- known separation
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1.2 Observer-based control

Input Output

Observer

Plant

State estimate

Control
signal

Controller Plant

Observer

Output

State estimate

Reference signal

Figure 1.1 Observer scheme and observer-based control scheme

principle allows the problem to be decomposed in two sub-problems which
can be solved separately: the design of a state observer, and the design of
a state-feedback controller. For nonlinear system the separation principle
does not apply, and the design of a state observer is generally coupled with
the controller design. However, when the Input-To-State-Stability (ISS)
property can be assured for disturbances entering additively to the states in
a stabilizing state feedback law, estimates from a converging state observer
can be used in a certainty equivalence approach. Another fundamental
difference, correlated with the separation principle, in properties of linear
and nonlinear systems is the effect of bounded disturbances over a finite
time horizon. Consider a linear system for which there is a stabilizing state-
feedback law. If the states are replaced by estimated states, then the closed
loop system will still be stable if the observer errors converge to zero. This is
not ensured for nonlinear systems, even if we have exponential convergence
in the observer, because of the “finite escape time” phenomenon, that is
illustrated in the following example [20].

EXAMPLE 1.1
Consider the system {

ẋ = −x + x4 + x2ξ
ξ̇ = −kξ + u,

(1.9)

with k > 0. Using backstepping and defining the error variable z= ξ + x2,
a stabilizing state feedback-law can be found as

u = −cz− x3 + kξ − 2x
(
− x + x2 z

)
, (1.10)

with c > 0 a design constant. The asymptotically stable closed loop system
is {

ẋ = −x + x2 z

ż= −cz− x3.
(1.11)

Suppose now that the state ξ is not measured. However it can be estimated
by the observer

˙̂ξ = −kξ̂ + u, (1.12)
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1.2 Observer-based control

with the estimation error ξ̃ = ξ − ξ̂ converging exponentially to zero:

˙̃ξ = −kξ̃ ; ξ̃ (t) = ξ̃ (0)e−kt. (1.13)

By using the estimated state ξ̂ in the control law (1.10), we have the
following closed loop system

ẋ = −x + x2 z+ x2ξ̃
ż= −cz− x3 + 2x3ξ̃
˙̃ξ = −kξ̃ .

(1.14)

Consider the case of z� 0, then we have

ẋ = −x + x2ξ̃ , ξ̃ (t) = ξ̃ (0)e−kt (1.15)
with solution

x(t) = x(0)(1 + k)
[1+ k− ξ̃ (0)x(0)]et + ξ̃ (0)x(0)e−kt

(1.16)

which escapes to infinity in finite time for all initial conditions ξ̃ (0)x(0) >
1+ k.

Linear systems
Consider a linear time-invariant system{

ẋ = Ax + Bu

y = Cx + Du
(1.17)

which is controllable and observable. For such a system the separation
principle apply for both full order and reduced order observer. The solu-
tion to the Linear Quadratic Gaussian (LQG) optimization problem is a
combination of the state-feedback controller, that is the solution to the LQ
problem, and the optimal Kalman filter.

Nonlinear systems

Feedback linearization with an observer For the output feedback
case is not possible in general to achieve a feedback linearized system,
and methods based on pseudo-linearization have been proposed [29]. The
certainty equivalence approach using estimates provided with an observer
in the linearizing feedback law have been studied and stability results have
been proven, under Lipschitz conditions on the nonlinearities [13].

Observer backstepping In this procedure, first a nonlinear observer
is designed which provides exponentially convergent estimates of unmea-
sured states. Then, backstepping is applied to the error between the es-
timated states and the desired trajectory, instead of to the error between
the true states and the desired trajectories. At each step of the method,
observation errors are treated as disturbances to be compensated by us-
ing nonlinear damping. Observer backstepping can be used to construct
systematic design procedures applicable to nonlinear systems for which
exponential observers are available.
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1.3 Adaptive control

High-gain observers and bounded control Another approach to solve
the output-feedback control problem for nonlinear systems has been pre-
sented by Atassi and Khalil [5]. It consists in a high-gain observer, that
robustly estimates the unmeasured states, and a globally bounded state-
feedback control, usually obtained by saturating a continuous state-feedback
function outside a compact region of interest, that meets the design objec-
tives. Furthermore a separation theorem is presented, that is independent
of the state-feedback design, and not only the region of attraction is shown
to be recovered, but also the performance and the trajectories of the system
under state-feedback.

1.3 Adaptive control

In a large number of practical problems there are significant variations in
disturbances, uncertainties, or model parameters; in these cases a solution
of the control problem is given by adaptive control. Intuitively, an adap-
tive controller is a controller that can modify its behavior in response to
changes in the dynamics of the process and the character of the distur-
bances. This can be made by a controller with adjustable parameters and
a mechanism for adjusting the parameters. Again for linear systems with
unknown parameters there are several well-known adaptive schemes that
solve the control problem; instead there are restricted classes of nonlinear
systems for which the design problem is solvable.
An important feature of adaptive control is its reliance on “certainty equiva-
lence” controllers. This means that a controller is first designed as if all the
plant parameters were known, and the controller parameters are calculated
as functions of the plant parameters, by solving design equations. When
the actual plant parameters are not known, the controller parameters are
either estimated directly (direct schemes) or computed by solving the same
design equations with plant parameter estimates (indirect schemes). The
resulting controller is called a certainty equivalence controller. It is not at
all obvious that a certainty equivalence controller will work in an adaptive
feedback loop and achieve stability and tracking. Hence, it is significant
that certainty equivalence controllers have been proven to be satisfactory
for adaptive control of linear system.
The following example [20] show the difficulties arising in the adaptive
control problem for nonlinear systems:

EXAMPLE 1.2
Consider the nonlinear system

ẋ = u+ θ x2. (1.18)
A certainty equivalence control law is given by

u = −px − θ̂ x2, (1.19)
which, if θ̂ � θ , result in the asymptotically stable closed-loop system
ẋ = −px. Since ẋ is not available for measurement, we filter (1.19) by 1

s+1 ,
and defining

xf 1 =
1

s+ 1
x, xf 2 =

1
s+ 1

x2, uf =
1

s+ 1
u, (1.20)
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1.4 Observer-based adaptive control

we can rewrite (1.19) as

x − xf 1 = uf + θ xf 2 (1.21)

and replacing θ with its estimate θ̂ we obtain the corresponding predicted
value of x

x̂ = xf 1 + uf + θ̂ xf 2 (1.22)

and the prediction error

e = x − x̂ = (θ − θ̂)xf 2 = θ̃ xf 1. (1.23)

A possible parameter update law for θ̂ , derived to aim at a minimum of e2

is

ˆ̃θ = − ˙̂θ = −γ
x2

f 2

1+ x2
f 2

θ̃ . (1.24)

It is obvious that θ̃ cannot converge to zero faster than exponentially. Let
us consider the most favorable case, where

θ̃(t) = e−γ tθ̃(0). (1.25)

Setting p= 1 and γ = 1 for simplicity, the nonlinear closed-loop is

ẋ = −x + θ̃ x2 = −x + x2 e−tθ̃(0), (1.26)

whose explicit solution is

x(t) = 2x(0)
x(0)θ̃(0)e−t + [2− x(0)θ̃(0)]et

(1.27)

which escape to infinity in finite time if x(0)θ̃(0) > 2.

This example demonstrates why a traditional estimation-based design can-
not be applied to nonlinear systems, and hence, it needs faster identifiers,
which can be provided by Lyapunov-based design.

1.4 Observer-based adaptive control

Consider a plant with uncertain parameters and whose state is only par-
tially available by the measurements; for these systems a solution of the
control problem is the observer-based adaptive control, that is the combina-
tion of a time-varying controller, a state observer and a parameter tuning
mechanism. Although only for linear systems, thanks to the separation
principle, it is ensured the possibility of decomposing the problem in two
or three sub-problems, there are adaptive schemes which allow a separa-
tion of the controller, the parameter update law and the state observer also
for some classes of nonlinear systems [20].
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1.4 Observer-based adaptive control
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Figure 1.2 Adaptive control scheme and observer-based adaptive control scheme

Adaptive observer backstepping
Krstic et al. have proposed an observer-based adaptive control scheme for
systems in output-feedback form [20], that is{

ẋ = Ax + φ(y) + FT (y, u)θ
y = eT

1 x,
(1.28)

where θ is the unknown parameter vector, φ(y), FT (y, u) are nonlinear
functions, and

e1 =
(

1

0(n−1)�1

)
, A =

(
0(n−1)�1 I(n−1)�(n−1)

0 01�(n−1)

)
. (1.29)

The observer design procedure involves the K-filters as follows:
define the state estimate

x̂ = ξ + ΩTθ (1.30)
obtained with

ξ̇ = A0ξ + ky + φ(y) (1.31)
Ω̇T = A0ΩT + FT(y, u), (1.32)

where the vector k is chosen so that the matrix

A0 = A− keT
1 (1.33)

is Hurwitz. Thanks to the structure of FT(y, u), it can be written that

ẏ = ω0 +ω Tθ + ε2 (1.34)
where ε2 is the second component of ε = x − x̂, and ω0, ω T are the re-
gressors, depending on ΩT , ξ , FT (y, u) and φ(y). As only the state x1 is
measured, the backstepping is applied to the first column of ΩT . With this
procedure asymptotic tracking and boundedness of all signals are achieved.
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1.4 Observer-based adaptive control

High-gain observers and bounded control
Kahlil [19] has presented an output feedback adaptive control scheme, that
combine an high-gain observer with a globally bounded control, obtained by
saturating a state-feedback function outside a compact region of interest.
This is done because high-gain observers exhibit a peaking phenomenon
in their transient behaviour. The class of the considered systems is repre-
sented by the n-th order differential equation

y(n) = f0(⋅) +
p∑

i=1

f i(⋅)θ i +
(
n0 +

p∑
i=1

ni(⋅)θ i

)
u(m) (1.35)

where θ i are unknown constant parameters, ni are known constant pa-
rameters, u is the control input, y is the measured output, y(i) denotes the
i-th derivative of y, and m < n. Furthermore the functions f i are smooth
nonlinearities depending on y, y(1), . . . , y(n−1), u, u(1), . . . , u(m−1). It has been
shown that the output feedback control asymptotically recovers the region
of attraction achieved under state feedback.

H∞-optimal output feedback adaptive control
Tezcan and Basar [27] have presented a systematic procedure for designing
H∞ adaptive controllers for systems in the output-feedback form (1.28).
Robust identifiers are used for both unknown parameters and unmeasured
states, together with backstepping and H∞-filtering to achieve tracking
of a smooth reference trajectory. It has been shown that arbitrarily small
disturbance attenuation levels can be obtained at the expense of increased
control effort.

14



2. A Reduced-Order Velocity
Observer for Rigid Link
Manipulators

The problem of estimating the velocity for robot manipulators is very rele-
vant, because very few industrial robots are equipped with tachometers for
velocity measurements of the links. A possible approach to this problem
is to numerically differentiate the position signal or using some derivative
filters; this method, known as ’dirty derivatives’ is conceptually very simple
and has been used extensively in applications. Although it can be adequate
in some cases, its performance for very low and very high frequencies is
not acceptable, and this motivates to look for an alternative method. In
this chapter we propose, following [25], a reduced-order velocity observer
for rigid link manipulators, analyze its stability properties and show the
results of four simulations, made with Matlab/Simulink, in which the con-
sidered observer was applied to rigid link systems.

2.1 System model and properties

Model equations of a n-links robotic system can be written in matrix form
as

M(q)q̈+ C(q, q̇)q̇+ G(q) = τ (2.1)

with

q positions and/or angular positions q ∈ Rn

q̇ velocities and/or angular velocities q̇ ∈ Rn

q̈ accelerations and/or angular accelerations q̈ ∈ Rn

M(q) moment of inertia M ∈ Rn�n

C(q, q̇)q̇ Coriolis, centripetal and frictional forces C ∈ Rn�n

G(q) gravitational forces G ∈ Rn�n

It is assumed that only the positions q are available for measurement.
The matrices in Eq. (2.1) have the following important properties:

PROPERTY 2.1
0 < Mm < iM(q)i < MM where Mm, MM are positive constants.

PROPERTY 2.2
C(q, q̇1)q̇2 = C(q, q̇2)q̇1

15



2.2 The velocity observer

PROPERTY 2.3
iC(q, q̇)i < CMiq̇i where CM is a positive constant.

It is further assumed that the robot velocity is bounded by a known con-
stant ω max such that

iq̇(t)i ≤ ω max, ∀t ∈ R. (2.2)

Choosing as state vector

x =
(

x1

x2

)
=
(

q̇

q

)
(2.3)

we have as state representation

ẋ1 = M−1(x2)
(

τ − C(x2, x1)x1 − G(x2)
)

(2.4)
ẋ2 = x1 (2.5)

2.2 The velocity observer

We propose the following reduced-order observer structure

ż = M−1[τ − C(q, x̂1)x̂1 − G(q)] − Kx̂1 (2.6)
x̂1 = z+ Kq (2.7)

with x̂1 velocity estimate, K ∈ Rn�n diagonal matrix and z ∈ Rn internal
state of the observer.

THEOREM 2.1
Consider the observer (2.6) and (2.7) and suppose x̂1(0) = 0. If σ =
λmin(K) > 3CMω max/Mm, then limt→∞ x̃1 = 0.

Proof. From (2.6) and (2.7) we can eliminate the internal state z and
write

˙̂x1 = M−1[τ − C(q, x̂1)x̂1 − G(q)] + K(x1 − x̂1). (2.8)

Now, subtracting (2.8) from (2.4) we obtain the following dynamics for the
observation error x̃1 = x1 − x̂1

˙̃x1 = M−1[−C(q, x1)x1 + C(q, x̂1)x̂1] − Kx̃1

= M−1[−2C(q, x1)x̃1 + C(q, x̃1)x̃1] − Kx̃1 (2.9)

where we used the property 2.2. Consider now the following positive defi-
nite Lyapunov function candidate

V (x̃1) = 1
2

x̃T
1 x̃1, (2.10)
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2.3 Simulations

Robot

ż= f (q, x̂1,τ )
x̂1 = h(z, q)

q(t)τ (t)

x̂1(t)

Figure 2.1 The block diagram of the observer

its time derivative along the solutions of (2.9) is

V̇ = x̃T
1

˙̃x1 = x̃T
1 M−1[−2C(q, x1)x̃1 + C(q, x̃1)x̃1] − x̃T

1 Kx̃1

≤
( CM

Mm
(2ω max + ix̃1i) − σ

)
ix̃1i2 (2.11)

where we used the properties 2.1, 2.3 and assumption (2.2). Supposing
that x̂1(0) = 0, from (2.11) we can conclude that if σ > 3CMω max/Mm then
there exists a constant α > 0 such that

V̇ < −α
2
ix̃1i2 = −α V ∀x̃1 �= 0 (2.12)

and the desired result follows.

REMARK 2.1
Although we supposed for simplicity that x̂1(0) = 0, it is important to note
that for any given bound of the velocity ω max, we are free to choose the
observer gain K such that we can guarantee exponential convergence for
all initial values satisfying

0 < ix̃1(0)i < Mm

CM
σ − 2ω max. (2.13)

As this region can be increased systematically by the gain K , we have
semi-global exponential stability.

2.3 Simulations

Free pendulum
Consider a free pendulum with mass m [Kg], length l [m], frictional con-
stant c [mKg/s]. Then the pendulum model can be written as (2.1) with

17



2.3 Simulations
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Figure 2.2 velocity estimate for a free pendulum

M = ml2, C = c, G = mnlsin(q) and τ = 0.
Simulation parameters:

K = 2− (c/ml2), m = 0.5 [Kg], l = 0.5 [m], c = 0.1 [mKg/s],
q(0) = 2 [rad], q̇(0) = 0 [rad/s], x̂1(0) = 2.2 [rad/s].

then , as shown in figure 2.2, the velocity estimate converges successfully
to the real velocity.

Two-link manipulator
Consider a two-link manipulator with masses m1, m2 [Kg], lengths l1, l2
[m], angles q1, q2 [rad], frictional constants c1, c2 [mKg/s]; then the model
equations can be written as (2.1) with

M(q) =
(

m2l2
2 + 2m2l1l2cos(q2) + (m1 +m2)l2

1 m2l2
2 +m2l1l2cos(q2)

m2l2
2 +m2l1l2cos(q2) m2l2

2

)

C(q, q̇) =
(

c1− 2m2l1l2sin(q2)q̇2 −m2l1l2sin(q2)q̇2

m2l1l2sin(q2)q̇1 c2

)

G(q) =
(

m2l2ncos(q1 + q2) + (m1 +m2)l1ncos(q1)
m2l2ncos(q1 + q2)

)
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2.3 Simulations
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Figure 2.3 two-link manipulator: joint angle trajectories
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Figure 2.4 q̇1 and q̇2 estimates for the two-link manipulator

Simulation parameters:

K = 5I , m1 = 0.5 [Kg], m2 = 0.7 [Kg], l1 = 1 [m],
l2 = 1.5 [m], c1 = 0.5 [mKg/s], c2 = 0.1 [mKg/s], τ1 = 2 [Nm],

τ2 = 1 [Nm], q1(0) = q2(0) = −π
4 [rad], q̇1(0) = q̇2(0) = 0 [rad/s],

x̂1(0) = ( −4 −4 ) [rad/s].

The results are shown in figures 2.3 and 2.4.

Pendulum-on-the-coach
Consider an inverted pendulum with mass m2 [Kg], length l [m], angle q2
[rad], frictional constant c2 [mKg/s], connected to a sliding mass m1 [Kg]
with position q1 [m] and frictional constant c1 [Kg/s]. The model equations
can be written as (2.1) with

M(q) =
(

m1 +m2 m2lcos(q2)
m2lcos(q2) m2l2

)

C(q, q̇) =
(

c1 −m2lsin(q2)q̇2

0 c2

)
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2.3 Simulations
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Figure 2.5 Pendulum-on-the-coach: angle and position trajectories
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Figure 2.6 q̇1 and q̇2 estimates for the Pendulum-on-the-coach

G(q) =
(

0

−m2 lnsin(q2)

)

Simulation parameters:

K = 5I , m1 = 2 [Kg], m2 = 0.2 [Kg], l = 0.5 [m],
c1 = 0.4 [Kg/s], c2 = 0.1 [mKg/s], τ1 = F(t) [N], τ2 = 0 [Nm],

q1(0) = −1 [m], q2(0) = 1 [rad], q̇1(0) = 0 [m/s], q̇2(0) = 0 [rad/s],
x̂1(0) = ( −5 5 ) [m/s, rad/s].

The results are shown in figures 2.5 and 2.6.

Furuta pendulum
Consider the Furuta pendulum, that consists in a center pillar with mo-
ment of inertia J [m2Kg], rigidly connected to a horizontal arm with length
l1 [m] and homogeneously line distributed mass m1 [Kg]. The pendulum
arm with length l2 [m] and homogeneously line distributed mass m2 [Kg],
and the balancing body with point distributed mass m3. Furthermore there
are two frictional constants c1 and c2 [mKg/s]. Introducing
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2.3 Simulations
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Figure 2.7 Furuta pendulum: angles trajectories

α = J + (m3 + 1
3 m1 +m2)l2

1, β = (m3 + 1
3 m2)l2

2,

γ = (m3 + 1
2 m2)l1l2, δ = (m3 + 1

2 m2)nl2,

the model equations can be written as (2.1) with

M(q) =
(

α + βsin2(q2) γ cos(q2)
γ cos(q2) β

)

C(q, q̇) =
(

c1 + βcos(q2)sin(q2)q̇2 βcos(q2)sin(q2)q̇1 − γ sin(q2)q̇2

−βcos(q2)sin(q2)q̇1 c2

)

G(q) =
(

0

−δ sin(q2)

)

Simulation parameters:

K = 5I , J = 1 [m2Kg], m1 = 0.4 [Kg], m2 = 0.1 [Kg],
m3 = 0.5 [Kg], l1 = 0.7 [m], l2 = 0.5 [m], c1 = 0.4 [mKg/s],

c2 = 0.2 [mKg/s], τ1 = τ (t) [Nm], τ2 = 0 [Nm],
q1(0) = 1 [rad], q2(0) = −1 [rad], q̇1(0) = q̇2(0) = 0 [rad/s],

x̂1(0) = ( −5 −5 ) [rad/s].

The results are shown in figures 2.7 and 2.8.
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2.3 Simulations
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Figure 2.8 q̇1 and q̇2 estimates for the Furuta pendulum
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3. On-Line Parameter
Estimation for Affine
Parametric Nonlinear
Systems

In this chapter we shall examine a linear estimation algorithm for affine
parametric nonlinear systems following the method proposed by Middle-
ton and Goodwin in [23] and simulate it for some rigid-link manipulators
with Matlab/Simulink. In particular we shall show how estimation may
be performed based solely on measurement of the state variables, and how
this method can be applied to estimate the inertial parameters of rigid
link manipulator systems, when the link accelerations are not available
for measurements.

3.1 On-line parameter estimation

Consider the following affine parametric nonlinear model{
ẋ1 = f0(x) + FT(x, u)θ
ẋ2 = x1

(3.1)

with

x1, x2 ∈ Rn state variables

f0(x) ∈ Rn, FT(x, u) ∈ Rn�p nonlinear functions

θ ∈ Rp vector of unknown constant parameters

and suppose that x1 and x2 are known, but not ẋ1. Let us apply the stable
filter 1

s+1 to the first equation of (3.1), then we have

s
s+ 1

x1 = 1
s+ 1

f0(x) + 1
s+ 1

FT(x, u)θ (3.2)

Denoting the filtered versions of the known quantities x1, f0(x) and FT(x, u)
by

x1, f = 1
s+ 1

x1 (3.3)

f0, f (x) = 1
s+ 1

f0(x) (3.4)

FT
f (x, u) = 1

s+ 1
FT(x, u) (3.5)

we can rewrite (3.2) as

x1 = f0, f (x) + FT
f (x, u)θ + x1, f (3.6)
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3.1 On-line parameter estimation

-

+

e(t)

1
s+1

1
s+1

1
s+1

1
s

FT(x, u)

f0(x)

x1(t) x1, f (t)

FT
f (x, u)

f0, f (x)

θ̂ (t)

˙̂θ (t)

h

x̂1(t)

(⋅)T

Figure 3.1 the block diagram of the estimator

If instead of the unknown θ we use its estimate θ̂ , the corresponding pre-
dicted value of x1 is

x̂1 = f0, f (x) + FT
f (x, u)θ̂ + x1, f (3.7)

and the prediction error e is related to the estimation error θ̃ = θ − θ̂ as
follows:

e = x1 − x̂1 = x̃1 = FT
f (x, u)θ̃ (3.8)

We propose the following unnormalized gradient-type estimation algorithm:

˙̂θ = hFf (x, u)e (3.9)

with h positive constant
The following lemma establishes some of the properties of the above esti-
mator.

LEMMA 3.1
The estimator (3.9) applied to the system (3.8), yields the following prop-
erties:

1) θ̃ is bounded.

2) If rank
(

Ff (x, u)FT
f (x, u)

)
= p, then limt→∞ θ̃ = 0.
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3.2 Simulations

Proof. Consider the Lyapunov function

V (θ̃) = 1
2

θ̃ Tθ̃ (3.10)

using (3.9) and (3.8) we can show that

V̇ = −hθ̃ T Ff (x, u)FT
f (x, u)θ̃ (3.11)

V̇ is negative definite whenever rank
(

Ff (x, u)FT
f (x, u)

)
= p, otherwise is

negative semidefinite, then the desired results follow.

3.2 Simulations

In this section we use the previous algorithm to estimate the inertial pa-
rameters of rigid-link manipulators. Although these systems are not in the
form (3.1), it is possible to reorder the robot equation

M(q)q̈+ C(q, q̇)q̇+ G(q) = τ (3.12)

as

τ = ϕ (q̈, q̇, q)θ +ϕ0(q̈, q̇, q) (3.13)

and after the filtering with 1
s+1 we have

τ f = ϕ f (q̇, q)θ +ϕ0, f (q̇, q) (3.14)

where ϕ f = 1
s+1ϕ and ϕ0, f = 1

s+1ϕ0 are not affected by q̈. Replacing θ with
its estimate θ̂ we have

τ̂ f = ϕ f (q̇, q)θ̂ +ϕ0, f (q̇, q) (3.15)

and

e= τ f − τ̂ f = ϕ f (q̇, q)θ̃ (3.16)

so we can use the algorithm (3.9).

Pendulum
Consider a pendulum with mass m [Kg], length l [m]. Then the pendulum
model can be written as (3.12) with M = ml2, G = mnlsin(q).

Simulation 1 We consider the mass as unknown and piecewise constant
parameter, then we can write the pendulum equation as (3.13) with ϕ0 = 0
and ϕ = l2 q̈+ nlsin(q).
Simulation parameters:

q(0) = 1 [rad], q̇(0) = 0 [rad/s], m̂(0) = 1 [Kg],
l = 1.5 [m], h = 10.

Results in figure (3.2) show good tracking properties.

25



3.2 Simulations
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Figure 3.2 estimation of the mass for the pendulum
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Figure 3.3 estimation of ml2 and ml for the pendulum

Simulation 2 Now we consider unknown both the mass and the length

of the pendulum and, choosing θ =
(

ml2

ml

)
, we can write the pendulum

equation as (3.13) with ϕ0 = 0 and ϕ =
(

q̈ nsin(q)
)

.
Simulation parameters:

q(0) = 0 [rad], q̇(0) = 0 [rad/s], θ̂1(0) = 4.5 [m2Kg],
θ̂2(0) = 2 [mKg], h = 100.

Results in figure (3.3) show that the estimates converge again to the true
values, although this property is not guaranteed anymore, because in this
case rank

(
Ff (x, u)FT

f (x, u)
)
< p.
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4. A Reduced-Order
Adaptive Velocity
Observer for Robot
Manipulators

Adaptive observers can be used together with adaptive controllers to build
observer-based adaptive control schemes; in [9] a combination of an adap-
tive control law with a sliding state observer is proposed, resulting in
an asymptotically stable closed-loop system. However, a drawback of this
method is that the switching could still excite unmodeled high frequency
dynamics. In order to avoid this problem, in this chapter we want to extend
the reduced-order velocity observer proposed in chapter 2 for adaptation,
following the method shown by Erlic and Lu in [12]; the result is that the
signal produced by the observer is smooth and the excitation of unmodeled
high frequency dynamics is less likely.

4.1 System model and properties

Let us remind the robot equation (2.1)

M(q)q̈+ C(q, q̇)q̇+ G(q) = τ (4.1)

It is assumed that only the positions q are available for measurement and
that some parameters of the matrices in (4.1) are unknown but constant.
The matrices in (4.1), in addition to 2.1, 2.2 and 2.3, have the following
two properties:

PROPERTY 4.1
M(q) − 2C(q, q̇) is skew symmetric.

PROPERTY 4.2
M(q)ψ + C(q, ξ )ξ + G(q) = ϕ0(q, ξ ,ψ ) +ϕ (q, ξ ,ψ )θ
where ξ ,ψ ∈ Rn and θ ∈ Rp is the unknown parameter vector.

Furthermore the bounded velocity assumption (2.2) still holds. As in chap-
ter 2, we define the state vector as

x =
(

x1

x2

)
=
(

q̇

q

)
(4.2)

then, from Eq. (4.1) we can write

ẋ1 = M−1(x2)
(

τ − C(x2, x1)x1 − G(x2)
)

(4.3)
ẋ2 = x1 (4.4)
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4.2 The reduced-order adaptive observer

4.2 The reduced-order adaptive observer

Consider a reduced-order adaptive observer for estimating the angular ve-
locity and the unknown parameter vector, when the angle is measurable.
The observer equation is given by

˙̂x1 = ψ (q, x̂1,τ , θ̂) + Kx̃1 (4.5)
ψ (q, x̂1,τ , θ̂) = M̂(q)−1

(
τ − Ĉ(q, x̂1)x̂1 − Ĝ(q)

)
(4.6)

where x̂1 is the velocity estimate, x̃1 = x1 − x̂1 is the observation error,
K > 0 is a diagonal gain matrix. The estimated parameters used in (4.5)
and (4.6) are obtained with the following adaptation law:

˙̂θ = −Γϕ T (q, x̂1,ψ )x̃1 (4.7)

where ϕ T(q, x̂1,ψ ) is the regressor determined by property 4.2 and Γ > 0
is a diagonal gain matrix.

4.3 Stability of the observer

The following theorem establish the stability properties for the above ob-
server:

THEOREM 4.1
Consider the observer (4.5) and (4.6) with the adaptation law (4.7). Define

σ = λmin(K M(q) + M(q)K)/2, (4.8)

the initial estimation error as

e(0) =
(

x̃T
1 (0) θ̃ T(0)

)T
(4.9)

and

pl = λmin(P), pu = λmax(P) (4.10)

with P = diag
{

M(q) Γ−1
}

. If

σ > CMω max + β (4.11)

where CM is given in property 2.3, β > 0 is a fixed constant, and the initial
estimation error e(0) belongs to the ball Be, defined by

Be =
{

e(0) ∈ Rn+p : ie(0)i <
√

pl

pu

( 1
CM
(σ − β) −ω max

)}
(4.12)

then

lim
t→∞ x̃1 = 0 (4.13)
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4.3 Stability of the observer

Proof. Consider the Lyapunov function

V (e(t)) = 1
2

eT(t)Pe(t), (4.14)

where

e(t) =
(

x̃T
1 (t) θ̃ T(t)

)
(4.15)

it follows that

1
2

plie(t)i2 ≤ V (e(t)) ≤ 1
2

puie(t)i2. (4.16)

The time derivative of V (e(t)) along trajectories of x̃1 and θ̃ is

V̇ = x̃T
1 M(q) ˙̃x1 + 1

2
x̃T

1 Ṁ(q)x̃1 + θ̃ T Γ−1 ˙̃θ . (4.17)

Subtracting (4.5) from (4.3), we have

M(q) ˙̃x1 = −C(q, x1)x1 + C(q, x̂1)x̂1 − M(q)Kx̃1 − Θ (4.18)

where

Θ =
(

M(q)ψ + C(q, x̂1)x̂1 + G(q)
)
−
(

M̂(q)ψ + Ĉ(q, x̂1)x̂1 + Ĝ(q)
)
(4.19)

By applying property 4.2, we have

Θ = ϕ0(q, x̂1,ψ ) +ϕ (q, x̂1,ψ )θ −ϕ0(q, x̂1,ψ ) −ϕ (q, x̂1,ψ )θ̂
= ϕ (q, x̂1,ψ )θ̃ (4.20)

and (4.18) becomes

M(q) ˙̃x1 = −C(q, x1)x1 + C(q, x̂1)x̂1 − M(q)Kx̃1 −ϕ (q, x̂1,ψ )θ̃ . (4.21)

Now, substituting (4.21) into (4.17) and using property 2.2, we have

V̇ = −x̃T
1

(
M(q)K + C(q, x1) − C(q, x̃1)

)
x̃1 + x̃T

1

(1
2

Ṁ(q) − C(q, x1)
)

x̃1

+ θ̃ T
(
− Γ−1 ˙̂θ −ϕ T(q, x̂1,ψ )x̃1

)
(4.22)

which in conjunction with (4.7), properties 2.1, 2.3 and 4.1, and assumption
(2.2), gives

V̇ ≤ −(σ − CMω max − CMix̃1i)ix̃1i2. (4.23)

Hence V̇ ≤ −βix̃1i2 if

σ > CMω max + CMix̃1i + β. (4.24)

Since iei > ix̃1i, (4.24) holds if

iei < 1
CM

(σ − β) −ω max. (4.25)
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4.4 An implementable approximation of the observer

From (4.23), (4.25) and (4.16), if follows that if

ie(0)i <
√

pl

pu

( 1
CM

(σ − β) −ω max

)
(4.26)

then

V̇ ≤ −βix̃1(t)i2 ∀t ≥ 0 (4.27)

and the desired result follows.

The main assumption made in Theorem 4.1 is that joint velocities are
bounded and the bound is known. Although this assumption could appear
to be quite restrictive, the result of Theorem 4.1 can be interpreted as a
quantitative relation of the region of attraction to the magnitude of joint
velocity. Furthermore, this assumption can be eliminated when the pro-
posed observer is combined with an adaptive controller in a feedback loop
for robot motion control. Finally, Theorem 4.1 also quantifies the relation
of the observer gain K to the region of attraction, indicating how the gain
matrix K is selected to make the observer work for a given e(0).

REMARK 4.1
It is important to note that the observer (4.5), (4.6), (4.7) is not imple-
mentable in case the velocity measurements are not available. This is be-
cause (4.5) and (4.7) involve the use of x̃1 = x − x̂1.

4.4 An implementable approximation of the
observer

Integrating (4.5) and (4.7) over the time interval [t0, t] and using the esti-
mated initial conditions x̂1(t0) and θ̂(t0) we obtain

x̂1(t) = f (t) +
∫ t

t0

[ψ (q, x̂1,τ , θ̂) − Kx̂1]dt (4.28)

where

f (t) = x̂1(t0) + K [q(t) − q(t0)] (4.29)

is known, and

θ̂(t) = θ̂(t0) − Γ
∫ t

t0

ϕ T(q, x̂1,ψ )x̃1dt. (4.30)

Using x̃1 = x − x̂1 with x = dq/dt, (4.30) becomes

θ̂(t) = θ̂(t0) − Γ
∫ q(t)

q(t0)
ϕ T(q, x̂1,ψ )dq+ Γ

∫ t

t0

ϕ T (q, x̂1,ψ )x̂1dt. (4.31)

The system of integral (4.28) and (4.31), together with initial conditions
x̂1(t0) and θ̂(t0), provides an equivalent version of the adaptive observer
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4.5 Passivity

(4.5) and (4.7), but is also not implementable since the evaluation of θ̂(t)
in (4.31) involves the differentiation of the joint position q(t).
From (4.28) and (4.31), it follows that for an arbitrary fixed time interval
∆ > 0, we have

x̂1(t) = x̂1(t− ∆) + K [q(t) − q(t− ∆)] +
∫ t

t−∆
[ψ (q, x̂1,τ , θ̂) − Kx̂1]dt(4.32)

and

θ̂(t) = θ̂(t− ∆) − Γ
∫ q(t)

q(t−∆)
ϕ T (q, x̂1,ψ )dq+ Γ

∫ t

t−∆
ϕ T(q, x̂1,ψ )x̂1dt. (4.33)

Assuming that ψ (q, x̂1,τ , θ̂), ϕ (q, x̂1,ψ ) and q(t) are continuous time func-
tions and that ∆ is sufficiently small, (4.32) and (4.33) suggest a discrete
implementation of the proposed observer as follows

x̂1(i) = (I − ∆ K)x̂1(i− 1) + ∆ψ (i− 1) + K [q(i) − q(i− 1)] (4.34)
θ̂(i) = θ̂(i− 1) + Γϕ T (i− 1)[∆ x̂1(i− 1) − q(i) + q(i− 1)]. (4.35)

REMARK 4.2
Although (4.34) and (4.35) are only an approximation of the proposed ob-
server (4.28) and (4.31), anyway they are implementable and approach
to (4.28) and (4.31) as ∆ approaches to zero. Therefore (4.34) and (4.35)
stand for a good representative of the observer if the sampling interval ∆
is sufficiently small.

4.5 Passivity

Consider the observation error system

M(q) ˙̃x1 =
(
− 2C(q, x1) + C(q, x̃1) − M(q)K

)
x̃1

− ϕ (q, x̂1,ψ )θ̃ (4.36)
˙̃θ = Γϕ T (q, x̂1,ψ )x̃1 (4.37)

obtained from (4.1), (4.5) and by using property 2.2. This system has an
important passivity property. We can write

d
dt

(1
2

x̃T
1 M(q)x̃1

)
= x̃T

1

(
− 2C(q, x1) + C(q, x̃1) − M(q)K

)
x̃1

+ 1
2

x̃T
1 Ṁ(q)x̃1 − x̃T

1 ϕ (q, x̂1,ψ )θ̃ (4.38)

and, following the proof or Theorem 4.1, we have

d
dt

(1
2

x̃T
1 M(q)x̃1

)
≤ −(σ − CMω max − CMix̃1i)ix̃1i2

− x̃T
1 ϕ (q, x̂1,ψ )θ̃ . (4.39)
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θ̃ −ϕ T (q, x̂1,ψ )x̃1
M(q) ˙̃x1 = (−2C(q, x1) + C(q, x̃1) − M(q)K)x̃1

−ϕ(q, x̂1 ,ψ )θ̃

Γ
s

Figure 4.1 The resulting negative feedback connection for the observation error
system

By integrating (4.39) over [0, t], we get∫ t

0
(−ϕ (s)T x̃1(s))Tθ̃(s)ds ≥ 1

2
x̃T

1 (t)M(t)x̃(t) −
1
2

x̃T
1 (0)M(0)x̃(0)

+
∫ t

0
(σ − CMω max − CMix̃1(s)i)ix̃1(s)i2ds. (4.40)

If the condition

σ > CMω max + CMix̃1i (4.41)

is fulfilled, (4.40) implies that the system

M(q) ˙̃x1 =
(
− 2C(q, x1) + C(q, x̃1) − M(q)K

)
x̃1

− ϕ (q, x̂1,ψ )θ̃ (4.42)

is strictly passive with θ̃ as its input, −ϕ T (q, x̂1,ψ )x̃1 as its output, V (x̃1) =
1
2 x̃T

1 M(q)x̃1 as the storage function, and

ξ (x̃1) = (σ − CMω max − CMix̃1i)ix̃1i2 (4.43)

as the dissipation rate. Furthermore, the integrator system

−θ̃ = −Γ
s

ϕ T(q, x̂1,ψ )x̃1 (4.44)

is passive from −ϕ T (q, x̂1,ψ )x̃1 to −θ̃ . Hence, the observation error system
represents a negative feedback connection of the strictly passive system
(4.42) with the passive system (4.44), as shown in figure 4.1.

4.6 The problem of the ill-conditioning of M̂(q)
As ˙̂x1 contains the term M̂(q), a problem in the continuity of the velocity
estimation could arise if the adaptation of θ̂ causes an ill-conditioned M̂(q).
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One way to avoid this is to restrict the estimated parameters to lie in a
fixed compact region about the true parameters. If the parameter estimate
leaves this fixed region, the estimation algorithm should be designed to
reset θ̂ to the boundary of the region. In order to do this, according to
[11], we modify the update law for the parameter vector θ with the reset
conditions {

θ̂ i(t+) = li, if θ̂ i(t) ≤ li − µ
θ̂ i(t+) = hi, if θ̂ i(t) ≥ +hi + µ

(4.45)

where we know that the actual value θ i lies between li and hi, the lower
and the upper bound, respectively, and µ > 0 is chosen such that M̂(q)
remains positive definite. Now we can write the value of the Lyapunov
function before and after the reset of θ i to its lower bound, for instance, at
time t j as

V (t j) = x̃T
1 M(q)x̃1 +

p∑
k=1
k�=i

1
γ k

θ̃ 2
k +

1
γ i
(θ i − li + µ)2 (4.46)

V (t+j ) = x̃T
1 M(q)x̃1 +

p∑
k=1
k�=i

1
γ k

θ̃ 2
k +

1
γ i
(θ i − li)2, (4.47)

where Γ = diag[γ 1, . . . , γ p]. Therefore the change in V due to the resetting
of θ̂ i at time t j is

−ε j = V (t+j ) − V (t j) = −(2(θ i − li) − µ) µ
γ i

(4.48)

where ε j > 0. With this addition of parameter resetting, (4.23) becomes

V̇ ≤ −(σ − CMω max − CMix̃1i)ix̃1i2 −
r∑
j

δ (t− t j)ε j , (4.49)

where r resets take place and δ (⋅) is the unit impulse function. Hence, the
parameter resetting maintains the nonpositiveness of V̇ , and the system
goes on being semiglobally asymptotically stable with respect to the velocity
error and stable with respect to the unknown parameters.

4.7 Robustness to bounded disturbances

Consider the robot equation

M(q)q̈+ C(q, q̇)q̇+ G(q) = τ , (4.50)

and suppose that the angle q only is available for measurement.

33



4.7 Robustness to bounded disturbances

Force disturbances and modeling error
Let us first consider the case of a disturbance vector ν added to the equation
(4.50) as

M(q)q̈+ C(q, q̇)q̇+ G(q) = τ +ν , (4.51)
where ν(t) is completely unknown but is upper bounded by

iν(t)i ≤ ν max. (4.52)
The vector ν can be interpreted as an external force disturbance or a mod-
eling error, or both of them. Consider the adaptive observer (4.5), (4.6) and
(4.7); choosing as Lyapunov function

V (x̃1, θ̃) = x̃T
1 M(q)x̃1 + θ̃ T Γ−1θ̃ , (4.53)

and following the proof of theorem (4.1), we obtain

V̇ ≤ −(σ − CMω max − CMix̃1i)ix̃1i2 + x̃T
1 ν . (4.54)

that is less than zero when

(σ − CMω max)2 > 4ν max (4.55)
and

σ − CMω max −
√
(σ − CMω max)2 − 4ν max

2
< ix̃1i

< σ − CMω max +
√
(σ − CMω max)2 − 4ν max

2
(4.56)

This result means that the disturbance ν can actually destabilize the sys-
tem, because if the condition (4.55) is not fulfilled, boundedness of x̃1 and
θ̃ is not guaranteed. On the other hand, if σ is chosen such that (4.55) is
fulfilled, and the initial estimation error is sufficiently small, we have an
upper bound for x̃1, that is

ix̃1i ≤ σ − CMω max −
√
(σ − CMω max)2 − 4ν max

2
(4.57)

and this upper bound can be made arbitrarily small increasing σ , as

lim
σ→+∞

σ − CMω max −
√
(σ − CMω max)2 − 4ν max

2
= 0. (4.58)

Note that the above analysis does not guarantee that θ̃ remains bounded.
However, with the resetting rules seen in the previous section, we are
assured that the estimates will remain bounded at all times.

Measurement disturbances
If a bounded disturbance vector w is added to the measurement, we have

M(q+w)q̈+ C(q+w, q̇)q̇+ G(q+ w) = τ (4.59)
where the the matrices M , C, G are nonlinear in w. If w is sufficiently
small, we can assume M , C, G linear in w and the left side of (4.59) can be
rewritten as

M(q+w)q̈+ C(q+w, q̇)q̇+ G(q+ w)
∼= M(q)q̈+ C(q, q̇)q̇+ G(q) + h(q, q̇, q̈)w. (4.60)
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4.7 Robustness to bounded disturbances

EXAMPLE 4.1
Consider a two-link manipulator that is described by (4.50) with

M(q) =
(

m2l2
2 + 2m2l1l2c2 + (m1 +m2)l2

1 m2l2
2 +m2l1l2c2

m2l2
2 +m2l1l2c2 m2l2

2

)
(4.61)

C(q, q̇) =
(
−2m2l1l2s2 q̇2 −m2l1l2s2q̇2

m2l1l2s2q̇1 0

)
(4.62)

G(q) =
(

m2l2nc12+ (m1 +m2)l1nc1

m2l2nc12

)
(4.63)

with the short notation c2 = cos(q2), c12 = cos(q1 + q2), etc.
Using the formulas

cos(α + β) = cos(α )cos(β) − sin(α )sin(β) (4.64)
sin(α + β) = sin(α )cos(β) + cos(α )sin(β) (4.65)

and the assumption that w is sufficiently small, we can write

cos(w) ∼= 1, sin(w) ∼= w (4.66)

and

cos(qi + wi) ∼= cos(qi) −wi sin(qi) (i = 1, 2) (4.67)
sin(qi + wi) ∼= sin(qi) + wi cos(qi) (i = 1, 2) (4.68)

cos(q1 + q2 + w1 +w2) ∼= cos(q1 + q2) − (w1 + w2)sin(q1 + q2)(4.69)

Hence, the system can be rewritten as (4.60) with

h(q, q̇, q̈) =


−m2l2ns12 −m2 l1l2(2s2q̈1 + s2q̈2

−(m1 +m2)l1ns1 +2c2q̇1 q̇2 + c2q̇2
2) −m2l2ns12

−m2l2ns12 −m2 l1l2(s2 q̈1 − c2q̇2
2) −m2l2ns12



LEMMA 4.1
Consider the system

M(q)q̈+ C(q, q̇)q̇+ G(q) + h(q, q̇, q̈)w = τ (4.70)

with the adaptive observer (x1 = q̇)
˙̂x1 = ψ (q, x̂1,τ , θ̂) + Kx̃1 (4.71)

ψ (q, x̂1,τ , θ̂) = M̂(q)−1
(

τ − Ĉ(q, x̂1)x̂1 − Ĝ(q)
)

(4.72)
˙̂θ = −Γϕ T (q, x̂1,ψ )x̃1. (4.73)
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Using the definitions in theorem (4.1), if

σ > CMω max + CMix̃1i, (4.74)

then a strictly passive mapping exists from w to −hT(q, q̇, q̈)x̃1 with

V (x̃1, θ̃) = 1
2

(
x̃T

1 M(q)x̃1 + θ̃ T Γ−1θ̃
)

(4.75)

as the storage function and

ξ (x̃1) = (σ − CMω max − CMix̃1i)ix̃1i2 (4.76)

as the dissipation rate.

Proof. Following the same method of theorem (4.1) we can write

V̇ ≤ −(σ − CMω max − CMix̃1i)ix̃1i2 − (hT(q, q̇, q̈)x̃1)Tw (4.77)

and by integrating (4.77) over [0, t], and using the definition of strictly
passive mapping, the desired result follows.

4.8 Simulation Results

In this section we will show the results of a simulation, made with Mat-
lab/Simulink, in which the above adaptive observer is applied to a pendu-
lum. Consider a free pendulum with mass m [Kg] unknown and length l
[m]; then the pendulum model can be written as (4.1)with M = ml2, C = 0,
G = mnlsin(q) and τ = τ (t). For the implementation of the observer we
have θ = m,

ψ (q, x̂1,τ , θ̂) = τ
θ̂ l2

− n
l

sin(q),

and
ϕ (q, x̂1,ψ ) = τ

θ̂
.

Simulation parameters:

K = 20, m = 1 [Kg], l = 1.5 [m], Γ = 10, θ̂(0) = 0.1 [Kg],
q(0) = 0 [rad], x1(0) = q̇(0) = −1 [rad/s],

x̂1(0) = 0 [rad/s], ∆ = 10 [ms].

As shown in figure 4.2, the velocity estimate converges successfully to the
real velocity.
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Figure 4.2 Velocity and parameter estimates for the pendulum
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Figure 4.3 Long-term parameter estimate for the pendulum
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5. Output Feedback
Adaptive Control of Robot
Manipulators Using
Observer Backstepping

In this chapter we shall show how the problem of observer-based adaptive
control for robot manipulators can be solved using an observer backstep-
ping method. This procedure allows the adaptive observer to be designed
independently from a state-feedback controller, that uses damping terms
to compensate the presence of the estimation error in the tracking error
dynamics. As the adaptive observer design problem has been solved in the
previous chapter, in this one we shall use those results in combination
with a state-feedback controller. The idea of backstepping is to design a
controller recursively by considering some of the state variables as “vir-
tual controls” and designing for them intermediate control laws. This ap-
proach is more flexible than feedback linearization design and do not force
the designed system to appear linear. It can avoid cancellations of useful
nonlinearities and often introduces additional nonlinear terms to improve
transient performance [20].

5.1 Observer Backstepping

Consider the robot equation (2.1), and suppose that the estimates of the
unmeasured velocity x1 and the unknown parameters θ are given by the
adaptive observer (4.5), (4.6) and (4.7). Define a smooth reference trajec-
tory qd satisfying

q̈d, q̇d, qd ∈ L∞. (5.1)

and the first error variable z1 = q− qd. We have

ż1 = x1 − q̇d. (5.2)

The main idea of backstepping is to choose one of the state variables as
virtual control. It turns out that

ξ1 = x̂1 = z2 + α 1 (5.3)

is an excellent choice for the virtual control. ξ1 is defined as the sum of
the next error variable z2, and α 1 which can be interpreted as a stabilizing
function. Hence

ż1 = z2 +α 1 + x̃1 − q̇d. (5.4)

We choose the following stabilizing function

α 1 = −C1z1 − D1z1 + q̇d (5.5)
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5.2 Stability Analysis of the Closed-Loop System

where C1 ∈ Rn�n is a strictly positive constant feedback design matrix,
usually diagonal, and D1 ∈ Rn�n is a positive diagonal damping matrix
defined as

D1 = diag[d1, . . . , dn] (5.6)

where di > 0 (i = 1, . . . , n). The damping term −D1z1 has been added
because x̃1 in (5.2) can be treated as a disturbance term to be compensated.
Then we can write

ż1 = −
(

C1 + D1

)
z1 + z2 + x̃1. (5.7)

The next step is to specify the desired dynamics of z2; from (5.3), we have

ż2 = ξ̇1 − α̇ 1

= ˙̂x1 +
(

C1 + D1

)
ż1 − q̈d

= −
(

C1 + D1

)2
z1 +

(
C1 + D1

)
(z2 + x̃1)

− q̈d + M̂(q)−1
(

τ − Ĉ(q, x̂1)x̂1 − Ĝ(q)
)
+ Kx̃1 . (5.8)

Now we choose the control law as follows

τ = −M̂(q)
[
−
(

C1 + D1

)2
z1 +

(
C1 + D1

)
z2 − q̈d + C2z2 + D2z2 + z1

]
+ Ĉ(q, x̂1)x̂1 + Ĝ(q), (5.9)

where C2 ∈ Rn�n is a strictly positive constant feedback design matrix,
usually diagonal. Substituting (5.9) into (5.8), we have

ż2 = −C2z2 − D2z2 − z1 + Ω x̃1 (5.10)

where

Ω =
(

C1 + D1

)
+ K . (5.11)

The damping matrix D2 ∈ Rn�n is defined in terms of the rows of Ω as

D2 = diag[dn+1ω T
1 ω1, . . . , d2nω T

n ω n] (5.12)

where ΩT = [ω1, . . . ,ω n] and di > 0 (i = n+ 1, . . . , 2n).

5.2 Stability Analysis of the Closed-Loop System

From (5.7), (5.10) and (4.21), we can write the error dynamics as

ż = −(Cz+ Dz + E)z+ Wx̃1 (5.13)
M(q) ˙̃x1 = −C(q, x1)x1 + C(q, x̂1)x̂1 − M(q)Kx̃1

− ϕ (q, x̂1,ψ )θ̃ (5.14)
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5.2 Stability Analysis of the Closed-Loop System

where

z =
[

z1

z2

]
, Cz =

[
C1 0

0 C2

]
, Dz =

[
D1 0

0 D2

]
(5.15)

E =
[

0 I

−I 0

]
, W =

[
I

Ω

]
. (5.16)

Consider the following Lyapunov function candidate

V (z, x̃1, θ̃) = 1
2

(
zT z+ x̃T

1 M(q)x̃1 + θ̃ T Γ−1θ̃
)

(5.17)

its time derivative along the solutions of (5.13) and (5.14) is

V̇ = −zT Czz− zT Dzz+ zT Wx̃1 − x̃T
1

(
M(q)K + C(q, x1) − C(q, x̃1)

)
x̃1

+ x̃T
1

(1
2

Ṁ(q) − C(q, x1)
)

x̃1 − θ̃ T
(

ϕ T (q, x̂1,ψ )x̃1 + Γ−1 ˙̂θ
)

(5.18)

where we have used the fact that zT Ez= 0, and property 2.2. Now, using
(4.7), property 4.1 and adding the zero term

1
4

(
x̃T

1 Px̃1 − x̃T
1 Px̃1

)
= 0 (5.19)

(5.18) becomes

V̇ = −zT Czz− zT Dzz+ zT Wx̃1 − 1
4

x̃T
1 Px̃1

− x̃T
1

(
M(q)K + C(q, x1) − C(q, x̃1) − 1

4
P
)

x̃1. (5.20)

Defining the matrix P as

P = pI (5.21)

where

p =
6∑

i=1

1
di

(5.22)

we have

−zT Dzz+ zT Wx̃1 − 1
4

x̃T
1 Px̃1 ≤ 0. (5.23)

Actually, consider the left side of (5.23), which can be expanded as

− zT Dzz+ zT Wx̃1 − 1
4

x̃T
1 Px̃1 +

= −zT
1 D1z1 − zT

2 D2z2 + zT
1 x̃1 + zT

2 Ω x̃1 − p
4

x̃T
1 x̃1. (5.24)
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5.3 A Simulated Example

Using definitions (5.6), (5.11), and (5.12) together with z1 = [ z̄1, z̄2, z̄3]T
and z2 = [ z̄4, z̄5, z̄6]T , (5.24) can be rewritten as follows

− zT Dzz+ zT Wx̃1 − 1
4

x̃T
1 Px̃1

= −
3∑

i=1

[
di

(
z̄i − 1

2di
x̃1

)T(
z̄i − 1

2di
x̃1

)
+ di+3

(
z̄i+3ω i+3 − 1

2di+3
x̃1

)T(
z̄i+3ω i+3 − 1

2di+3
x̃1

)]
≤ 0 (5.25)

because all the quadratic terms in (5.25) are less than or equal to zero.
Hence we can write

V̇ ≤ −zT Czz− x̃T
1

(
M(q)K + C(q, x1) − C(q, x̃1) − 1

4
P
)

x̃1 (5.26)

and using properties 2.1, 2.3, and assumption (2.2), we have

V̇ ≤ −zT Czz− (σ − CMω max − CMix̃1i − 1
4

p)ix̃1i2, (5.27)

where σ = λmin(K M(q) + M(q)K)/2.
Hence V̇ ≤ 0 if

σ > CMω max + CMix̃1i + 1
4

p. (5.28)

As the region of attraction can be arbitrarily increased by the gain K, we
have semi-global exponential stability.

REMARK 5.1
Using again (4.34) and (4.35) for the implementation of the adaptive ob-
server, the implementation of controller (5.9) involves simply the calcula-
tion of τ (t) at time instant t = i∆.

5.3 A Simulated Example

We consider the two-link example from chapter 2, with masses m1, m2 [Kg],
lengths l1, l2 [m], angles q1, q2 [rad], and torquesτ1,τ2 [Nm]. The end-effector
load m2 is assumed to be unknown but constant. The equations are

M(q)q̈+ C(q, q̇)q̇+ G(q) = τ , θ = m2 (5.29)

M(q) =
(

m2l2
2 + 2m2l1l2c2 + (m1 +m2)l2

1 m2l2
2 +m2l1l2c2

m2l2
2 +m2l1l2c2 m2l2

2

)
(5.30)

C(q, q̇) =
(
−2m2l1l2s2 q̇2 −m2l1l2s2q̇2

m2l1l2s2q̇1 0

)
(5.31)
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5.3 A Simulated Example

Control law:

τ = −M̂(q)
[
−
(

C1 + D1

)2
z1 +

(
C1 + D1

)
z2 − q̈d + C2z2 + D2z2 + z1

]
+Ĉ(q, x̂1)x̂1 + Ĝ(q)
z1 = q− qd

z2 = x̂1 − α 1

Stabilizing function:

α 1 = −C1z1 − D1z1 + q̇d

Observer:
˙̂x1 =ψ (q, x̂1,τ , θ̂) + Kx̃1

ψ (q, x̂1,τ , θ̂) = M̂(q)−1
(

τ − Ĉ(q, x̂1)x̂1 − Ĝ(q)
)

˙̂θ = −Γϕ T (q, x̂1,ψ )x̃1

Damping:

Ω =
(

C1 + D1

)
+ K

ΩT = [ω1, . . . ,ω n]
D1 = diag[d1, . . . , dn]
D2 = diag[dn+1ω T

1 ω1, . . . , d2nω T
n ω n]

Design matrices and constants:

K positive definite

σ = λmin(K M(q) + M(q)K)/2
σ > CMω max + CMix̃1i + 1

4 p

C1 strictly positive

C2 strictly positive

di > 0 (i = 1, . . . , 2n)
Table 5.1 Observer backstepping: summary

G(q) =
(

m2l2nc12+ (m1 +m2)l1nc1

m2l2nc12

)
(5.32)

with the short notation c2 = cos(q2), c12 = cos(q1 + q2), etc. The model
parameters are m1 = 1 [Kg], m2 = 1.5 [Kg], l1 = 1 [m], l2 = 1 [m].
Furthermore the regressor associated with the unknown parameter m2 is

ϕ (q, q̇, q̈) =


(l2

2 + 2l1l2c2 + l2
1)q̈1 + (l2

2 + l1l2c2)q̈2

−(2l1l2s2 q̇1 q̇2 + l1l2s2 q̇2
2) + (l2nc12+ l1nc1)

(l2
2 + l1l2c2)q̈1 + l2

2 q̈2 + l1l2s2q̇2
1 + l2nc12

 (5.33)

The velocity estimate provided by the reduced-order adaptive observer
at the ith time instant is calculated with

x̂1(i) = (I − ∆ K)x̂1(i− 1) + ∆ψ (i− 1) + K [q(i) − q(i− 1)] (5.34)
θ̂(i) = θ̂(i− 1) + Γϕ T (i− 1)[∆ x̂1(i− 1) − q(i) + q(i− 1)]. (5.35)
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5.3 A Simulated Example
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Figure 5.1 Simulation results for the first link
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Figure 5.2 Simulation results for the second link
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5.3 A Simulated Example
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where

ψ (i− 1) = M̂(q(i− 1))−1
(

τ (i− 1) − Ĉ(q(i− 1), x̂1(i− 1))x̂1(i− 1)

− Ĝ(q(i− 1)
)

(5.36)

M̂(q) =
(

θ̂ l2
2 + 2θ̂ l1l2c2 + (m1 + θ̂)l2

1 θ̂ l2
2 + θ̂ l1l2c2

θ̂ l2
2 + θ̂ l1l2c2 m2l2

2

)
(5.37)

Ĉ(q, x̂1) =
(
−2θ̂ l1l2s2 x̂12 −θ̂ l1l2s2x̂12

θ̂ l1l2s2x̂11 0

)
(5.38)

Ĝ(q) =
(

θ̂ l2nc12+ (m1 + θ̂)l1nc1

θ̂ l2nc12

)
(5.39)

x1 =
(

x11

x12

)
, ψ =

(
ψ 1

ψ 2

)
(5.40)

ϕ (q, x̂1,ψ ) =


(l2

2 + 2l1l2c2 + l2
1)ψ 1 + (l2

2 + l1l2c2)ψ 2

−(2l1l2s2 x̂11 x̂12 + l1l2s2 x̂2
12) + (l2nc12+ l1nc1)

(l2
2 + l1l2c2)ψ 1 + l2

2ψ 2 + l1l2s2 x̂2
11 + l2nc12

 (5.41)

The reference signals q̈d, q̇d, qd are obtained with a third-order filter with
poles in −a, that is

F(s) = a3

(s+ a)3 . (5.42)
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5.3 A Simulated Example

Furthermore the observer-controller parameters and the initial conditions
are

K = 5I , ∆ = 0.01 [s], Γ = 0.1, a = 2, di = 1 (i = 1, . . . , 4)
C1 = 2I , C2 = 2I , q(0) = {0, 0} [rad], q̇(0) = {0, 0} [rad/s]

x̂1(0) = {1, 1} [rad/s], θ̂(0) = 0.7 [Kg].

Results in figures 5.1, 5.2 and 5.3 show a good behaviour of the proposed
adaptive observer-controller, even if the input torques have high peaks in
the very first seconds, due to the initial velocity estimation error.
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6. Experiment: Furuta
Pendulum

In this chapter we will show the results of some experiments made by
applying the algorithms presented in the previous chapters to the Furuta
pendulum. In the first three experiments the objective was to make the
pendulum angle track a desired reference signal, and at the same time the
arm velocity remained bounded, but without any constraints for the arm
angle. In the fourth experiment we stabilized the pendulum in the upright
position. The angular velocities were supposed unknown, even if analog
velocity signals obtained by differentiation were available for the pendu-
lum. In the first experiment we used the velocity observer shown in the
chapter 2 together with the backstepping controller of the previous chapter.
The resulting scheme was an observer-based control without adaptation.
The second, the third and the fourth experiments were made by using the
adaptive velocity observer of chapter 4 with the same controller, to estimate
the Coulomb friction parameter in the second and fourth experiments, and
both the Coulomb friction parameter and an inertial parameter in the third
one. The position measurements were affected by a quantization noise of
0.001 rad for the θ -angle and 0.01 rad for the φ-angle. The reference signals
θ d, θ̇ d, θ̈ d were obtained by using the filter (5.42). Furthermore, we used
the Simulink Real-Time Workshop as interface to the pendulum, with the
Euler solver and a fixed step size Fs = 7.5 [ms]. As the algorithms imple-
mented in Simulink was too slow, we decided to use the Dymola/Modelica
environment for the implementation of the observer-controllers, and im-
ported them in Simulink as shown in Appendix A, with a big improvement
in the algorithm velocity.

6.1 The Furuta pendulum

As shown in chapter 2, we can write the equations of motions for the Furuta
pendulum as

(α + βsin2θ)φ̈ + γ cosθθ̈ + 2βcosθsinθφ̇θ̇ − γ sinθθ̇ 2 = τ (6.1)
γ cosθφ̈ + βθ̈ − βcosθsinθφ̇2 − δ sinθ = 0 (6.2)

Equations (6.1) and (6.2) can be written in matrix form as as (2.1) with

q =
(

φ
θ

)
, M(q) =

(
α + βsin2θ γ cosθ

γ cosθ β

)

C(q, q̇) =
(

βcosθsinθθ̇ βcosθsinθφ̇ − γ sinθθ̇
−βcosθsinθφ̇ 0

)

G(q) =
(

0

−δ sinθ

)
.
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6.2 Experiment I
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Figure 6.1 A schematic picture of the Furuta pendulum

Furthermore the external torques τ can be divided into a driving torque
and dissipation terms as

τ = τu − τ F. (6.3)

For all the experiments we used the simple Coulomb friction model,
that is

τ F = τ Csgnφ̇ (6.4)

The numeric values for the parameters, taken from [4], are

α = 0.00354, β = 0.00384

γ = 0.00258, δ = 0.103.

6.2 Experiment I

In first Experiment we used the continuous-time velocity observer of chap-
ter 2 and the observer backstepping controller of the previous chapter, to
build a continuous-time output-feedback control scheme without any adap-
tation law. We considered

z1 = θ − θ d (6.5)
z2 = x̂12 − θ̇ d + c1z1 + d1z1 (6.6)

as tracking errors, with c1, d1 positive constants and x1 = q̇ = (x11, x12)T .
By applying the observer backstepping procedure shown in chapter 5 to
these variables we had

ż1 = z2 − c1z1 − d1z1 + x̃12 (6.7)
ẋ2 = ˙̂x12 + (c1+ d1)ż1 − θ̈ d

= [0, 1]
(

M−1(q)
(
[1, 0]Tτ − C(q, x̂1)x̂1 − G(q)

)
+ Kx̃1

)
+ (c1 + d1)

(
z2 − c1z1 − d1z1 + x̃1

)− θ̈ d (6.8)
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6.3 Experiment II

and the resulting control law

τu = τ Csgnx̂11 + 1
M−1

21 (q)

(
− [0, 1]

(
M−1(q)(− C(q, x̂1)x̂1 − G(q)))

− (c1 + d1)
(
z2 − c1z1 − d1z1

)+ θ̈ d − (c2 + d2)z2 − z1

)
, (6.9)

where c2, d2 are positive constants and τ C = 0.028 [Nm].
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Figure 6.2 Experiment I: reference signal and actual angles
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Figure 6.3 Experiment I: estimated and analog pendulum velocity

The observer-controller parameter and initial values we used are

K = 5I , d1 = 1, d2 = 2, c1 = 10,
c2 = 10, x̂1(0) = {0, 0} [rad/sec], a = 3.

Results are shown in figures 6.2, 6.3, 6.4 and 6.5.

6.3 Experiment II

In the second experiment we used the adaptive observer of chapter 4 to-
gether with the backstepping controller of the previous one, and in this

48



6.3 Experiment II
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Figure 6.4 Experiment I: estimated and analog arm velocity
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Figure 6.5 Experiment I: control signal

case we have a discrete time adaptive observer-controller. The parame-
ter we decided to estimate with the adaptation law is τ C, as it is slowly
time-varying. Choosing again (6.5) and (6.6) as tracking errors we had as
resulting control law

τu = τ̂ Csgnx̂11 + 1
M−1

21 (q)

(
− [0, 1]

(
M−1(q)(− C(q, x̂1)x̂1 − G(q)))

− (c1 + d1)
(
z2 − c1z1 − d1z1

)+ θ̈ d − (c2 + d2)z2 − z1

)
, (6.10)

Furthermore we implemented the resetting rules shown in section 4.6 with
τ Cl and τ Ch lower and upper bound of τ C, respectively.

The observer-controller parameters and initial values we used are

K = 5I , d1 = 1, d2 = 1, c1 = 10,
c2 = 10, x̂1(0) = {0, 0} [rad/sec], a = 3,

Γ = 0.01, ∆ = 0.0075 [sec], τ̂ C(0) = 0.001 [Nm],
τ Cl = 0.001, τ Ch = 0.04, µ = 0.0001.

Results in figures 6.6, 6.7, 6.8 and 6.9 show a good behaviour of the discrete-
time approximated algorithm, and the adaptation law seems to work very
well.
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6.4 Experiment III
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Figure 6.6 Experiment II: reference signal and actual angles
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Figure 6.7 Experiment II: estimated and analog pendulum velocity

6.4 Experiment III

In the third experiment we used the same control scheme of the previous
one, but with both the parameters τ C, and α to estimate. Choosing again
(6.5) and (6.6) as tracking errors we had as resulting control law

τu = τ̂ Csgnx̂11 + 1

M̂−1
21 (q)

(
− [0, 1]

(
M̂−1(q)(− C(q, x̂1)x̂1 − G(q)))

− (c1 + d1)
(
z2 − c1z1 − d1z1

)+ θ̈ d − (c2 + d2)z2 − z1

)
, (6.11)

As in the previous experiment, resetting rules for parameters were imple-
mented with τ Cl and τ Ch lower and upper bound of τ C, α l and α h lower
and upper bound of α .
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6.5 Experiment IV
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Figure 6.8 Experiment II: estimated and analog arm velocity
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Figure 6.9 Experiment II: parameter estimation and control signal

The observer-controller parameters and initial values we used are

K = 5I , d1 = 1, d2 = 1, c1 = 10,
c2 = 10, x̂1(0) = {0, 0} [rad/sec], a = 3,
Γ = diag{0.01, 0.001}, ∆ = 0.0075 [sec],

τ̂ C(0) = 0.001 [Nm], α̂ (0) = 0.0001[Kg m2],
τ Cl = 0.001, τ Ch = 0.04, α l = 0.0001,

α h = 0.005, µ = 0.00001.

Results in figures 6.10, 6.11, 6.12, 6.13 and 6.14 show that after the tran-
sient, due to the parameter initial estimation errors, the discrete-time
adaptive observer controller has a good performance.

6.5 Experiment IV

In this experiment we used the same adaptive observer-controller we used
in the second one, but the objective was to stabilize the pendulum in the
upright position. The observer-controller parameters and initial values we
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6.5 Experiment IV

0 5 10 15 20 25 30

2.8

3

3.2

3.4

3.6

ra
d

sec

reference signal
actual pendulum angle

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

ra
d

sec

actual arm angle

Figure 6.10 Experiment III: reference signal and actual angles
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Figure 6.11 Experiment III: estimated and analog pendulum velocity

used are

K = 5I , d1 = 1, d2 = 1, c1 = 10,
c2 = 10, x̂1(0) = {0, 0} [rad/sec], a = 3,

Γ = 0.003, ∆ = 0.0075 [sec], τ̂ C(0) = 0.001 [Nm],
τ Cl = 0.001, τ Ch = 0.04, µ = 0.0001.

Results in figures 6.15, 6.16, 6.17 and 6.18 show that although there
is not any control in the arm angle and velocity, these signal remain quite
small and the performance is good.
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6.5 Experiment IV
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Figure 6.12 Experiment III: estimated and analog arm velocity
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Figure 6.13 Experiment III: parameter estimations
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Figure 6.14 Experiment III: control signal
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6.5 Experiment IV
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Figure 6.15 Experiment IV: reference signal and actual angles
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Figure 6.16 Experiment IV: estimated and analog pendulum velocity
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Figure 6.17 Experiment IV: estimated and analog arm velocity
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6.5 Experiment IV
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Figure 6.18 Experiment IV: parameter estimation and control signal

Figure 6.19 Furuta pendulum, Department of Automatic Control, Lund
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7. Concluding Remarks

7.1 Discussion

Many output feedback control schemes for robot manipulators were pre-
sented in the last decade, based on different approaches. Nicosia and Tomei
used Lyapunov design [24], Berghuis and Nijmeijer the passivity concept
[7], while Lim et al. suggested an observed integrator backstepping pro-
cedure [21]. In all those schemes, an observer which reconstructs the un-
measured velocity was used in combination with a controller. As the ob-
server exploits the physical structure of the robot, the velocity estimation
is more accurate than the one obtained by using position differentiation
algorithms, and consequently the controller performance is higher. The
adaptive observer-controller proposed in this thesis is an extension of those
results, covering also parameter uncertainties and smooth time-varying pa-
rameters, thanks to the adaptation law. Furthermore, it allows us to elimi-
nate the need of tachometers, that are required by adaptive controllers [17]
and introduce some noise anyway. With sensor noise, controller gains are
not allowed to be high, so it results in larger tracking errors, and velocity fil-
tering can be only partially a solution because of the introduced time delay
that can not be accepted in high performance tracking. A passivity-based
approach for designing observer-based adaptive robot control was shown
by Berghuis in [6], by using a bounded adaptation law, but achieving only
stability for the tracking error dynamics. Instead, as pointed out above,
the control scheme presented in this paper achieves semiglobal asymptotic
stability both for the observer estimation error and the tracking errors.

7.2 Conclusion

An output feedback adaptive control scheme for robot manipulators has
been presented, that allows the separate design of the adaptive observer
from the state-feedback controller. By applying Lyapunov stability theory,
for the closed-loop system semiglobal asymptotic stability has been proven,
with respect to position and velocity tracking errors and velocity estimation
error. Using this approach, the behaviour of the closed-loop system seems
to be good even for small observer gains, that means low sensitivity to noise
and smooth control signals. Even if convergence to zero is not guaranteed
for the parameter estimation error, simulations show that in absence of
noise the closed loop system has this property too. Four experiments have
been made on the Furuta pendulum to check the performance of the pre-
sented algorithms on a real plant. Results show a good behaviour even in
presence of position measurement noise and the adaptation law seems to
work very well.
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7.3 Future Work

7.3 Future Work

Many further works can be made from the results presented here. First, as
the closed loop system seems to be asymptotically stable with respect to the
parameter estimation error also, a proof of this property could be found. It
may depend on some kind of persistent excitation condition. Furthermore
it could be possible to include an on-line parameter identification method
in the control scheme, as the one proposed in chapter 3, but using posi-
tion measurement only. An interesting extension of the output-feedback
adaptive control scheme proposed in this thesis could be made for flexible
joint robots, or in general for other classes of Euler-Lagrange equations.
In particular the adaptive observer of chapter 4 seems to be widely appli-
cable, and an extension for ships has already been made and is shown in
Appendix B.
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A. The Dymola-Simulink
interface on Unix and
Linux platforms

As pointed out in the previous chapter, some problems arose in the Simulink
implementation of the adaptive algorithms, and in particular we could not
reduce the sample time below 20 ms in the real process. By using Dy-
mola/Modelica instead of Matlab/Simulink for the algorithm implementa-
tion, we were able to reach a sample time of 7.5 ms, with a considerable
improvement of the discrete-time observer-controller performance. How-
ever, there were some problems in importing the Dymola models into the
Simulink environment on Unix and Linux platforms, because a direct in-
terface exists for Windows only. In this appendix we will show how we
solved this problem.

A.1 Dymola-Simulink Windows interface

By including

• dymola\mfiles

• dymola\mfiles\traj

in the Matlab path, we can find a Dymola block in Simulink’s library
browser as Dymola Block/DymolaBlock, that represents the Modelica model.
This block is a shield around a S-function MEX block, or in other words,
the interface to the C-code generated by Dymola for the Modelica model.

DymolaBlock

untitled

untitled

page 1/1printed  16−Apr−2002  17:12

 

Figure A.1 Dymola block before compiling

Once we got the block in our Simulink model, a double click on it opens a
dialog window where it is possible to change parameters and initial values.
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A.2 How to import Modelica models into Simulink on Unix or Linux platforms

By clicking on the “Compile model” button is also possible to compile the
model, and as result we have a dll file executable by the S-function in the
Dymola block on the Windows version of Simulink.

Figure A.2 Dialog window for a Dymola model in Simulink

A.2 How to import Modelica models into Simulink
on Unix or Linux platforms

Unfortunately we have not a direct interfaces like the previous one on
Linux or Unix, hence we must compile the models in another way. First
we have to compile the model on Windows and take the temporary C-
source file of our model from dymola\tmp and copy it somewhere else.
Then we can use in Matlab the “dymmex” function in dymola\mfiles as
dymmex(’filename.c’) to compile the model.
At this point we have a mexsol file in Unix or a mexglx file in Linux,
which are executable by an S-function in Simulink. Hence we can take an
S-function from the Simulink library and write the filename in the right
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A.2 How to import Modelica models into Simulink on Unix or Linux platforms
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Figure A.3 Dymola block after compiling

field of the dialog box.
To pass the parameters and the initial values to the S-function, we have
to know the exact order of them, and we can see it in the dialog window of
the Dymola block on the Windows version of Simulink or we can use the
“loaddsin” function in dymola\mfiles to load the dsin.txt file, which is in
the same directory of our Modelica model and contains all the parameters
and the initial values. It is important to note that we can pass to the S-
function the initial values of the continuous-time variables only. For the
discrete-time variables we must treat the initial values as parameters if we
want to change them, and this has to be specified in the original Modelica
model.
Now the S-function is ready to be used, but the last trick is that it has one
input port and one output port only, even if our Modelica model is multi-
input multi-output, so we have to know which are the input and output
signals and in which order they are. We can see it in the Dymola block
on the Windows Simulink after compiling the model, and after that use
multiplexer/demultiplexer to select the desired input/output. Finally, if we
decide to pass directly (without using the loaddsin function) the parameters
and the initial values to the S-function, we have to remember that they
must be written as column vectors.
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B. An Adaptive Observer for
Control of Dynamically
Positioned Ships Using
Vectorial Observer
Backstepping

Fossen and Grøvlen proposed an observer-based backstepping method that
allows the decomposition of nonlinear output feedback control into an ob-
server and a state feedback control [14]. However the observer design does
not cover unstable ship dynamics, and an extension for these cases have
been proposed by Robertsson and Johansson in [25], under a detectability
condition. The adaptive observer proposed in this chapter is a modified
version of the reduced-order one proposed by Erlic and Lu in [12] for ma-
nipulator control, and does not require any condition for its application,
except a bound for the unknown parameters. However, in this case a full-
order observer is required, in order to have a good filtering of x and y,
which are measured by DGPS, with a noise in the range of 1-3 [m]. The
yaw angle ψ is assumed to be measured by using a gyro compass, which
is quite accurate (the noise will be less than 0.1 [deg]). Furthermore, the
control law is the one shown in [14], where the unknown parameters are
replaced by estimates obtained with the proposed adaptive observer.

B.1 Ship Model and Properties

The earth-fixed positions (x, y) and yaw angle ψ of the vessel is expressed
in vector form as η = [x, y,ψ ]T, and the body-fixed velocities are repre-
sented by the vector ν = [u, v, r]T . The elements in η and ν describe the
surge, sway, and yaw modes, respectively. Using the problem formulation
from [14], we have the following system model:

η̇ = J(η)ν (B.1)
Mν̇ + Dν + Kη = τ , (B.2)

where

J(η) =

 cos(ψ ) −sin(ψ ) 0

sin(ψ ) cos(ψ ) 0

0 0 1

 , K =

 k11 0 0

0 k22 0

0 0 k33

 (B.3)

D =

 d11 0 0

0 d22 d23

0 d32 d33

 > 0, M =

 m11 0 0

0 m22 m23

0 m32 m33

 > 0.(B.4)

J(η) is the rotation matrix in yaw, M is the inertia matrix, K represents
the mooring forces and τ is the control vector of forces from the thruster
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B.2 Observer Design and Stability Analysis

system. For details about the model, see [14], and the references therein.
We suppose that some parameters of the matrices M , D, K are unknown
but constant, and that only position (η) measurements are available.
From the structure of the model, we can write the left side of (B.2) as

Mν̇ + Dν + Kη = ϕ0(ν̇ ,ν ,η) +ϕ (ν̇ ,ν ,η)θ (B.5)

where θ ∈ Rp is the unknown parameter vector, and we suppose to know
a bound for M , D and K , that is

0 < Mmin < iMi < Mmax (B.6)
0 < Dmin < iDi < Dmax (B.7)
0 < iKi < Kmax. (B.8)

Furthermore, it is important to note that J−1(η) = JT(η), and iJ(η)i = 1.

REMARK B.1
As in [25] and [14], eq. (B.2) can be rewritten as

ν̇ = A1η + A2ν + Bτ (B.9)

where A1 = −M−1 K , A2 = −M−1 D, B = M−1, but, from a viewpoint
of parameter identification, eq. (B.2) is a better description of the system.
If, for instance, only the inertia matrix M is unknown, using (B.2) we
shall have to estimate only the matrix M , but using (B.9) we shall have
to estimate A1, A2 and B, because all these matrices contain M .

B.2 Observer Design and Stability Analysis

We propose the following adaptive observer for the system (B.1) and (B.2):
˙̂η = J(η)ν̂ + K1(η − η̂) (B.10)
˙̂ν = M̂−1

(
τ − D̂ν̂ − K̂η̂

)
+ K2(ν − ν̂) (B.11)

˙̂θ = −Γϕ T(ξ ,ν̂ , η̂)[ν − ν̂ ] (B.12)

where η̂,ν̂ , θ̂ are the position, velocity, and parameter estimates, respec-
tively, ξ (η̂,ν̂ , θ̂ ,τ ) = M̂−1

(
τ− D̂ν̂− K̂η̂

)
, and K1 > 0, K2 > 0 are constant

gain matrices.
Subtracting (B.10) from (B.1), and (B.11) from (B.2), we have the obser-
vation error dynamics

˙̃η = J(η)ν̃ − K1η̃ (B.13)
M ˙̃ν = −M̃

(
˙̂ν − K2ν̃

)
− D̃ν̂ − K̃η̂ − Dν̃ − Kη̃ − M K2ν̃ (B.14)

where η̃ = η − η̂ and ν̃ = ν − ν̂ are the position and velocity estimation
errors, respectively, and M̃ = M − M̂ , D̃ = D − D̂, K̃ = K − K̂ . Let us
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B.2 Observer Design and Stability Analysis

define the parameter estimation error θ̃ = θ − θ̂ and consider the following
Lyapunov function candidate:

V (η̃,ν̃ , θ̃) = 1
2

(
η̃Tη̃ + ν̃ T Mν̃ + θ̃ TΓ−1θ̃

)
, (B.15)

its time derivative along the solutions of (B.13) and (B.14) is

V̇ = η̃T ˙̃η + ν̃ T M ˙̃ν + θ̃ T Γ−1 ˙̃θ

= −η̃T K1η̃ − ν̃ T
(

D + M K2

)
ν̃ + η̃T

(
J(η) − K

)
ν̃

− ν̃ T
(

M̃ξ + D̃ν̂ + K̃η̂
)
+ θ̃ T Γ−1 ˙̃θ . (B.16)

Using the property (B.5) and noting that ˙̃θ = − ˙̂θ for constant parameters,
(B.16) becomes

V̇ = −η̃T K1η̃ − ν̃ T
(

M K2 + D
)

ν̃ + η̃T
(

J(η) − K
)

ν̃

− θ̃ T
(

ϕ T (ξ ,ν̂ , η̂)ν̃ + Γ−1 ˙̂θ
)

, (B.17)

and furthermore, using Eq. (B.12) and assumptions (B.6), (B.7) and (B.8),
we have

V̇ ≤ −σ 1iη̃i2 −
(

σ 2 + Dmin

)
iν̃i2 +

(
1+ Kmax

)
iη̃iiν̃i, (B.18)

where σ 1 = λmin(K1) and σ 2 = λmin(KT
2 MT + M K2)/2. Rewriting (B.18)

as

V̇ ≤ −[iη̃i, iν̃i]Q(σ 1,σ 2)[iη̃i, iν̃i]T , (B.19)

it can be verified readily that Q is positive definite if

σ 1 >
(1+ Kmax)2

4(σ 2 + Dmin) , σ 2 > 0 (B.20)

and in this case we have global asymptotic stability with respect to the ship
positions and velocities, and global stability with respect to the unknown
parameters.

REMARK B.2
The observer (B.10), (B.11) and (B.12) is not directly implementable be-
cause of the presence of the unknown signal ν into the equations (B.11)
and (B.12). However a discrete-time approximation of the above observer
can be implemented as shown below.
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B.3 The Discrete-Time Approximation of the
Adaptive Observer

Integrating (B.10), (B.11) and (B.12), we have

η̂(t) = η̂(t0) +
∫ t

t0

[J(η)ν̂ + K1(η − η̂)]dt (B.21)

ν̂(t) = ν̂(t0) +
∫ t

t0

[ξ (η̂,ν̂ , θ̂ ,τ ) − K2ν̂ ]dt+
∫ η(t)

η(t0 )
K2 JT(η)dη (B.22)

θ̂(t) = θ̂(t0) + Γ
∫ t

t0

ϕ T(ξ ,ν̂ , η̂)ν̂ dt

− Γ
∫ η(t)

η(t0 )
ϕ T(ξ ,ν̂ , η̂)JT(η)dη, (B.23)

and replacing t0 with t− ∆, ∆ > 0, we can write

η̂(t) = η̂(t− ∆) +
∫ t

t−∆
[J(η)ν̂ + K1(η − η̂)]dt (B.24)

ν̂(t) = ν̂(t− ∆) +
∫ t

t−∆
[ξ (η̂,ν̂ , θ̂ ,τ ) − K2ν̂ ]dt

+
∫ η(t)

η(t−∆)
K2 JT(η)dη (B.25)

θ̂(t) = θ̂(t− ∆) + Γ
∫ t

t−∆
ϕ T(ξ ,ν̂ , η̂)ν̂dt

− Γ
∫ η(t)

η(t−∆)
ϕ T (ξ ,ν̂ , η̂)JT(η)dη. (B.26)

Assuming that ∆ is sufficiently small, (B.24), (B.25) and (B.26) suggest a
discrete implementation of the proposed observer as follows

η̂(i) = η̂(i− 1) + ∆
(

J(i− 1)ν̂(i− 1) + K1η̃(i− 1)
)

(B.27)

ν̂(i) =
(

I − ∆ K2

)
ν̂(i− 1) + ∆ξ (i− 1)

+ K2 JT(i− 1)
(

η(i) −η(i− 1)
)

(B.28)
θ̂(i) = θ̂(i− 1)

+ Γϕ T (i− 1)
[
∆ν̂(i− 1) − JT(i− 1)

(
η(i) −η(i− 1)

)]
. (B.29)

REMARK B.3
Obviously (B.27), (B.28) and (B.29) are only an approximation of the pro-
posed observer (B.10), (B.11) and (B.12). However, they are implementable
and stand for a good representation of the observer if the sampling interval
∆ is sufficiently small.

B.4 Observer Backstepping

Referring to [14], we define a smooth reference trajectory ηd = [xd, yd,ψ d]T
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satisfying

η̈d, η̇d,ηd ∈ L∞. (B.30)

Since the measurement of η is affected by sensor noise and the observer
guarantees that η̂ → η, the tracking error η−ηd is replaced by η̂−ηd, and
is used for observer backstepping. Defining z1 = η̂ −ηd we have

ż1 = J(η)ν̂ + K1η̃ − η̇d. (B.31)

The main idea of backstepping is to choose one of the state variables as
virtual control. It turns out that

ξ1 = J(η)ν̂ = z2 +α 1 (B.32)

is an excellent choice for the virtual control. ξ1 is defined as the sum of
the next error variable z2, and α 1 which can be interpreted as a stabilizing
function. Hence

ż1 = z2 +α 1 + K1η̃ − η̇d. (B.33)

We choose the following stabilizing function

α 1 = −C1z1 − D1z1 + η̇d (B.34)

where C1 is a constant strictly positive feedback design matrix, usually
diagonal, and D1 is a positive diagonal damping matrix defined as

D1 =

 d1kT
1 k1 0 0

0 d2kT
2 k2 0

0 0 d3kT
3 k3

 (B.35)

where di > 0 (i = 1 . . . 3), and ki (i = 1 . . . 3) are the column vectors of
KT

1 = [k1, k2, k3]. The damping term −D1z1 has been added because K1η̃
in (B.31) can be treated as a disturbance term to be compensated. Then
we can write

ż1 = −
(

C1 + D1

)
z1 + z2 + K1η̃. (B.36)

The next step is to specify the desired dynamics of z2; from (B.32), we have

ż2 = ξ̇1 − α̇ 1 = J(η) ˙̂ν + J̇(η)ν̂ +
(

C1 + D1

)
ż1 − η̈d

= −
(

C1 + D1

)2
z1 +

(
C1 + D1

)
(z2 + K1η̃) − η̈d

+ J̇(η)ν̂ + J(η)
(
− M̂−1 K̂η̂ − M̂−1 D̂ν̂ + M̂−1τ + K2ν̃

)
. (B.37)

Defining

ρ =

 0

0

r

 , S(ρ) =

 0 −r 0

r 0 0

0 0 0

 (B.38)

66



B.4 Observer Backstepping

and ρ̃ = ρ − ρ̂, we can write

J̇(η) = J(η)S(ρ) = J(η)S(ρ̃) + J(η)S(ρ̂) (B.39)

and

J̇(η)ν̂ = J(η)S(ρ̃)ν̂ + J(η)S(ρ̂)ν̂
= J(η)T(ν̂ )ν̃ + J(η)S(ρ̂)ν̂ (B.40)

where

T(ν̂ ) =

 0 0 −v̂

0 0 û

0 0 0

 . (B.41)

Substituting (B.40) into (B.37), yields

ż2 = −
(

C1 + D1

)2
z1 +

(
C1 + D1

)
(z2 + K1η̃)

− η̈d + J(η)T(ν̂ )ν̃ ++J(η)S(ρ̂)ν̂
+ J(η)

(
− M̂−1 K̂η̂ − M̂−1 D̂ν̂ + M̂−1τ + K2ν̃

)
. (B.42)

Now we choose the control law as follows

τ = −M̂ JT(η)
[
−
(

C1 + D1

)2
z1 +

(
C1 + D1

)
z2 − η̈d + C2z2 + D2z2 + z1

]
− M̂S(ρ̂)ν̂ + K̂η̂ + D̂ν̂ , (B.43)

where C2 is a constant strictly positive feedback design matrix, usually
diagonal. Substituting (B.43) into (B.42), we have

ż2 = −C2z2 − D2z2 − z1 + Ω1η̃ + Ω2ν̃ (B.44)

where

Ω1 =
(

C1 + D1

)
K1 (B.45)

Ω2 = J(η)
(

T(ν̂) + K2

)
(B.46)

The damping matrix D2 is defined in terms of Ω1 and Ω2 as

D2 = diag[d4(ω T
1 ω1 +ω T

4 ω4), d5(ω T
2 ω2 +ω T

5 ω5),
d6(ω T

3 ω3 +ω T
6 ω6)] (B.47)

where ΩT
1 = [ω1,ω2,ω3], ΩT

2 = [ω4,ω5,ω6] and di > 0 (i = 4 . . . 6).
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B.5 Stability Analysis of the Closed-Loop System

We can write the error dynamics as

ż = −(Cz+ Dz+ E)z+W1η̃ + W2ν̃ (B.48)
˙̃η = J(η)ν̃ − K1η̃ (B.49)

M ˙̃ν = −M̃
(

˙̂ν − K2ν̃
)
− D̃ν̂ − K̃η̂ − Dν̃ − Kη̃ − M K2ν̃ (B.50)

where

z =
[

z1

z2

]
, Cz =

[
C1 0

0 C2

]
, Dz =

[
D1 0

0 D2

]
, (B.51)

E =
[

0 I

−I 0

]
, W1 =

[
K1

Ω1

]
, W2 =

[
0

Ω2

]
. (B.52)

Consider the following Lyapunov function candidate

V (z, η̃, ν̃ , θ̃) = 1
2

(
zT z+ η̃Tη̃ + ν̃ T Mν̃ + θ̃ T Γ−1θ̃

)
(B.53)

its time derivative along the solutions of (B.48), (B.49) and (B.50) is

V̇ = −zT Czz− zT Dzz+ zT W1η̃ + zT W2ν̃

− η̃T K1η̃ − ν̃ T
(

M K2 + D
)

ν̃ + η̃T
(

J(η) − K
)

ν̃

− θ̃ T
(

ϕ T(ξ ,ν̂ , η̂)ν̃ + Γ−1 ˙̂θ
)

(B.54)

where we have used the fact that zT Ez= 0. Now, using (B.12), and adding
the zero terms

1
4

(
η̃T G1η̃ − η̃T G1η̃

)
= 0 (B.55)

1
4

(
ν̃ T G2ν̃ − ν̃ T G2ν̃

)
= 0 (B.56)

(B.54) becomes

V̇ = −zT Czz− zT Dzz+ zT W1η̃ + zT W2ν̃

− 1
4

(
η̃T G1η̃ + ν̃ T G2ν̃

)
− η̃T

(
K1 − 1

4
G1

)
η̃

− ν̃ T
(

M K2 + D − 1
4

G2

)
ν̃ + η̃T

(
J(η) − K

)
ν̃ . (B.57)

Defining the matrices G1 and G2 as

G1 = n1 I , G2 = n2 I (B.58)

where

n1 =
6∑

i=1

1
di

, n2 =
3∑

i=1

1
di+3

(B.59)
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we have, as shown below,

− zT Dzz+ zT W1η̃ + zT W2ν̃ − 1
4

(
η̃T G1η̃ + ν̃ T G2ν̃

)
≤ 0. (B.60)

Actually consider the left side of (B.60), which can be expanded as

− zT Dzz+ zT W1η̃ + zT W2ν̃ − 1
4

(
η̃T G1η̃ + ν̃ T G2ν̃

)
= −zT

1 D1z1 − zT
2 D2z2 + zT

1 K1η̃ + zT
2 Ω1η̃ + zT

2 Ω2ν̃ − n1

4
η̃Tη̃

− n2

4
ν̃ Tν̃ (B.61)

Using definitions (B.35), (B.45), (B.46) and (B.47) together with z1 =
[ z̄1, z̄2, z̄3]T and z2 = [ z̄4, z̄5, z̄6]T , (B.61) can be rewritten as follows

− zT Dzz+ zT W1η̃ + zT W2ν̃ − 1
4

(
η̃T G1η̃ + ν̃ T G2ν̃

)
= −

3∑
i=1

[
di

(
z̄iki − 1

2di
η̃
)T(

z̄iki − 1
2di

η̃
)

+ di+3

(
z̄i+3ω i − 1

2di+3
η̃
)T(

z̄i+3ω i − 1
2di+3

η̃
)

+ di+3

(
z̄i+3ω i+3 − 1

2di+3
ν̃
)T(

z̄i+3ω i+3 − 1
2di+3

ν̃
)]
≤ 0 (B.62)

because all the quadratic terms in (B.62) are less than or equal to zero.
Hence we can write

V̇ ≤ −zT Czz− η̃T
(

K1 − 1
4

G1

)
η̃ − ν̃ T

(
M K2 + D − 1

4
G2

)
ν̃

+ η̃T
(

J(η) − K
)

ν̃ (B.63)

and using assumptions (B.6), (B.7), (B.8) we have

V̇ ≤ −zT Czz−
(

σ 1 −
1
4
n1

)
iη̃i2 −

(
σ 2 + Dmin− 1

4
n2

)
iν̃i2

+
(

1+ Kmax

)
iη̃iiν̃i

= −zT Czz− [iη̃i, iν̃i]Q̄(σ 1,σ 2)[iη̃i, iν̃i]T . (B.64)

It can be verified that Q̄ is positive definite if

σ 1 > 1
4
n1 + (1+ Kmax)2

4(σ 2 + Dmin− 1
4n2)

(B.65)

σ 2 > max
[
0,

(1
4
n2 − Dmin

)]
(B.66)

and in this case we have global asymptotic stability with respect to the ship
positions and velocities, and global stability with respect to the unknown
parameters.
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Figure B.1 DP of a supply vessel: tracking of a time-varying reference trajectory
and tracking errors

REMARK B.4
Using (B.27), (B.28) and (B.29) for the implementation of the adaptive
observer, the implementation of controller (B.43) involves simply the cal-
culation of τ (t) at time instant t = i∆.

B.6 Simulation Results

To show the performance of the proposed adaptive observer-controller, we
consider the case of dynamic positioning of an offshore supply vessel (see
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Fig. 8 in [15]), which is described by the following matrices [15]

M =

 5.3122 ⋅ 106 0 0

0 8.2831 ⋅ 106 0

0 0 3.7454 ⋅ 109



D =

 5.0242 ⋅ 104 0 0

0 2.7229 ⋅ 105 −4.3993 ⋅ 106

0 −4.3993 ⋅ 106 4.1894 ⋅ 108


K = 0.

We suppose that the inertial parameter m11 is unknown, that is θ = m11.
The observer-controller parameters are chosen according to

K1 = 10−3I , K2 = 10−3I , Γ = 103,
C1 = 0.1I , C2 = 0.1I , di = 0.1 (i = 1, . . . , 6).

Reference trajectories are generated by using a third-order filter with poles
in −0.1, that is

F(s) = 0.13

(s+ 0.1)3 (B.67)

Furthermore the sampling time ∆ is 0.1 [s], and white noise is added to
the measurements in order to illustrate the filtering properties of the ob-
server. Results in Figs. B.1 . . . B.4 show a good performance of the proposed
adaptive observer-controller.

B.7 Conclusion

In this chapter an adaptive observer has been proposed and combined
with an adaptive controller for dynamically positioned ship control. Global
asymptotic stability of both the observer and the control law and global
stability of the parameter update law have been proven by applying Lya-
punov stability theory. In order to have a good filtering of noisy position
measurements, a full-order observer has been used. Although only an ap-
proximate implementation of the proposed adaptive observer-controller is
possible, this solution overcomes the difficulties in designing adaptive ob-
servers for nonlinear systems in which the unknown parameters and the
unmeasured states are coupled. Therefore, the approximated implementa-
tion of this control scheme approaches the real one as the sampling interval
approaches zero. The proposed adaptive observer does not require any con-
ditions for its application, except a bound for the unknown parameters. In
particular it is an extension of the one proposed in [14], as it covers unsta-
ble ship dynamics, parameter uncertainties and smooth time-varying pa-
rameters. Furthermore simulation results show good filtering and tracking
properties also in presence of highly noise contaminated measurements.
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Figure B.2 DP of a supply vessel: measured and filtered positions, control signals
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Figure B.3 DP of a supply vessel: actual and estimated velocities, velocity esti-
mation errors
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74



C. Bibliography

[1] M. Arcak, P. Kokotovic: Nonlinear Observers: A Circle Criterion
Design (Proc. of 38th Conf. on Decision and Control, December 1999)

[2] M. Arcak, P. Kokotovic: Observer-Based Control of Systems with
Slope-Restricted Nonlinearities (IEEE Transaction on Automatic Con-
trol, Vol. 46, No. 7, July 2001)

[3] K.J. Åström, B. Wittenmark: Adaptive Control (Addison-Wesley 1995)
[4] K.J. Åstrom, J. Åkesson: Dynamics of the Furuta Pendulum (2002)
[5] A.N. Atassi, H.K. Khalil: A Separation Principle for the Stabilization

of a Class of Nonlinear Systems (IEEE Transaction on Automatic
Control, Vol. 44, No. 9, September 1999)

[6] H. Berghuis: Model-Based Robot Control: From Theory to Practice
(PhD thesis, University of Twente, The Netherlands, 1993)

[7] H. Berghuis, H.Nijmeijer: A Passivity Approach to Controller-
Observer Design for Robots (IEEE Transactions on Robotics and
Automation, Vol. 9, No. 6 December 1993)

[8] C. Canudas De Wit, N. Fixot: Robot Control via Robust Estimated
State Feedback (IEEE Transaction on Automatic Control, Vol. 36, No.
12, December 1991)

[9] C. Canudas De Wit, N. Fixot: Adaptive Control of Robot Manipulators
via Velocity Estimated Feedback (IEEE Transaction on Automatic
Control, Vol. 37, No. 8, August 1992)

[10] Y.M. Cho, R. Rajamani: A Systematic Approach to Adaptive Observer
Synthesis for Nonlinear Systems (IEEE Transactions on Robotics and
Automation, Vol. 42, No. 4, April 1997)

[11] J.J. Craig: Adaptive Control of Mechanical Manipulators (Addison-
Wesley, 1988)

[12] M. Erlic, W.-S. Lu: A Reduced-Order Adaptive Velocity Observer for
Manipulator Control (IEEE Transactions on Robotics and Automation,
Vol. 11, No. 2, April 1995)

[13] M. Etchechoury, J. Solsona, C. Muravchik: On the Stability of Nonlin-
ear Plants that Include an Observer for Their Feedback Linearization
(International Journal of Systems Science, 1996)

[14] T.I. Fossen, Å. Grøvlen. Nonlinear Output Feedback Control of Dy-
namically Positioned Ships Using Vectorial Observer Backstepping
(IEEE Transactions on Control Systems Technology , Vol. 6, No. 1,
January 1998)

[15] T.I. Fossen, J.P. Strand. Passive Nonlinear Observer Design for Ships
Using Lyapunov Methods: Full-Scale Experiments with a Supply
Vessel (May 1998)

[16] M. Jankovic: Adaptive Nonlinear Output Feedback Tracking with a
Partial High-Gain Observer and Backstepping (IEEE Transaction on
Automatic Control, Vol. 42, No. 1, January 1997)

75



[17] R. Johansson: Adaptive Control of Robot Manipulator Motion (IEEE
Transactions on Robotics and Automation, Vol. 6, No. 4, August 1990)

[18] H.K. Khalil: Nonlinear Systems (Prentice Hall, 1996)
[19] H.K. Khalil: Adaptive Output Feedback Control of Nonlinear Sys-

tems Represented by Input-Output Models (IEEE Transaction on Au-
tomatic Control, Vol. 41, No. 2, February 1996)

[20] M. Krstic, I. Kanellakopoulos, P. Kokotovic: Nonlinear and Adaptive
Control Design (Wiley, 1995)

[21] S.Y. Lim, D.M. Dawson, K. Anderson: Re-Examining the Nicosia-
Tomei Robot Observer-Controller from a Backstepping Perspective
(IEEE Transactions on Robotics and Automation, Vol. 4, No. 3, May
1996)

[22] R. Marino, G.L. Santosuosso, P. Tomei: Robust Adaptive Observers for
Nonlinear Systems with Bounded Disturbances (IEEE Transaction on
Automatic Control, Vol. 46, No. 6, June 2001)

[23] R.H. Middleton, G.C. Goodwin: Adaptive Computed Torque Control
for Rigid Link Manipulators (Proc. 25th IEEE Conf. Decision Control,
1986)

[24] S. Nicosia, P. Tomei: Robot Control by Using Only Joint Position
Measurements (IEEE Transaction on Automatic Control, Vol. 35, No.
9, September 1990)

[25] A. Robertsson: On Observer-Based Control of Nonlinear Systems
(1999)

[26] M.W. Spong, M. Vidyasagar: Robot Dynamics and Control (Wiley,
1989)

[27] I.E. Tezcan, T. Basar: Disturbance Attenuating Adaptive Controllers
for Parametric Strict Feedback Nonlinear Systems with Output
Measurements (Proceedings of the American Control Conference,
June 1997)

[28] F. Thau: Observing the State of Nonlinear Dynamic Systems (Inter-
national Journal of Control, 1973)

[29] J. Wang, W.J. Rugh: On the Pseudo-Linearization Problem for Non-
linear Systems (System and Control Letters, 1989)

[30] E. Zergeroglu, D.M. Dawson, M.S. de Queiroz, M. Krstic: On Global
Output Feedback Tracking Control of Robot Manipulators (Proc. of
39th Conf. on Decision and Control, December 2000)

76


