
ISSN 0280-5316
ISRN LUTFD2/TFRT--5683--SE

Scheduling of Real-Time Traffic
in a Switched Ethernet Network

Anders Martinsson

Department of Automatic Control
Lund Institute of Technology

March 2002

Document name
MASTER THESIS
Date of issue
March 2002

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD2/TFRT--5683--SE
Supervisor
Karl-Erik Årzén and Anders Blomdell

Author(s)
Anders Martinsson

Sponsoring organization

Title and subtitle
Scheduling of real-time traffic in a switched Ethernet network.
(Schemaläggning av realtidstrafik i ett switchat Ethernet).

Abstract
Traditional Ethernet networks are not suitable for real-time communication due to the nondeterministic
handling of the network communication. The reason for the nondeterministic behavior is the CSMA/CD
access control protocol that is used when the media is shared.
The protocol can cause collision in the transmission. If this happens the transmission ceases and after a
random amount of time a retransmission is tried. Over the years Ethernet transmission rate and
communication reliability have increased, which make it a more interesting alternative for periodic real-
time communication with a high update rate. This master thesis investigates if it is possible to avoid the
nondeterministic behavior of Ethernet, by scheduling the periodic real-time traffic in a switched network.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
50

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.se

Scheduling of real-time traffic
in a switched Ethernet network

Anders Martinsson

4 March 2002

2

Acknowledgment

I would like to thank my supervisors Professor Karl-Erik Årzén
and Research Engineer Anders Blomdell for their support.

A special thank to my great-hearted wife, Marisete, for her en-
couragement and faith during my studies in Lund. I would also
like to thank my nearly new born daughter, Felicia, for letting
me sleep almost every night.

3

4

Contents

1. Introduction . 7
1.1 Goal . 7
1.2 Problem . 7

2. Networking . 8
2.1 OSI reference model . 8
2.2 TCP/IP protocol suite . 9
2.3 Network interconnection . 10

3. Ethernet . 15
3.1 History . 15
3.2 Ethernet frame . 15
3.3 CSMA/CD access control . 16
3.4 Half-duplex . 16
3.5 Full-duplex . 17
3.6 IEEE 802.3 10BASE-T Medium specification 17
3.7 IEEE 802.3 100BASE-TX Medium specification 18
3.8 Summary . 19

4. Test program . 20
4.1 Introduction . 20
4.2 Throughput . 21
4.3 Latency . 23
4.4 Summary . 25

5. Scheduling . 26
5.1 Introduction . 26
5.2 Definitions . 26
5.3 Worst case scheduling . 27
5.4 Periodic update constraint . 28
5.5 Maximum latency constraint 30
5.6 NetGuard communication . 32
5.7 Fragmentation of the RT traffic 33
5.8 Traffic control . 37
5.9 Summary . 39

6. Test implementation . 40
6.1 Introduction . 40
6.2 Fragmentation of the RT traffic 41
6.3 RT-layer . 41
6.4 Clock synchronization . 42
6.5 IP fragmentation . 42
6.6 Dynamic vs Static . 43
6.7 Summary . 43

7. Future work . 45

8. Conclusions . 47

9. References . 48

5

6

1. Introduction

1.1 Goal

Networks for industrial communication are usually some kind of fieldbus.
The common characteristics for these networks are high reliability, low
data throughput, and a high price tag. Over the years Ethernet transmis-
sion rate and communication reliability have increased. This together with
serious attempts to adapt Ethernet hardware to industrial environments,
make it an interesting alternative for real-time communication.

Real-time traffic in a distributed control system is usually periodic, con-
sisting of reading of sensors values and setting of actuators. If the connect-
ing network has a fixed time for transmitting values, the distributed con-
trol system has to be designed for this period. If it is possible to schedule
real-time traffic on a Ethernet network, the periodic update frequency can
be chosen more freely. This will allow designers to test different types of
control systems.

This master thesis investigates if there is a possibility to run periodic
real-time traffic on a switched Ethernet network. The hardware used for
the network should be standard products.

1.2 Problem

The nondeterministic behavior of traditional Ethernet, caused by the CSMA/CD
access control, has prohibited this type of network to run periodic real-
time traffic. The CSMA/CD access control protocol is used when the media
is shared. The protocol can cause collisions in the transmission. If this
happens the transmission ceases and after a random amount of time a
retransmission is tried.

The development of new equipment for network interconnection, i.e.
Ethernet switches, has made a different approach possible. A data terminal
equipment connected to a switch communicating in full-duplex, does not
have to use the CSMA/CD access control. However new problems arise
with the buffer memory in the switch. To prevent the switch to run out of
memory space it utilizes a low level flow control. This flow control makes
the switched Ethernet network to behave almost as nondeterministic as
before. There is however a solution to this problem, that is to ensure that
the switch never runs out of memory. This can be done if all the traffic that
goes through the switch is scheduled.

7

2. Networking

This chapter will give some background to what network communication
protocols are, and how they are used. Finally there are some examples of
how networks can be interconnected to each other.

Among the large amount of books on network communication, I found
two books who answered most of my questions. The first one, William
Stallings book “Data & Computer Communicatio” [1], covers almost ev-
ery type of communication network available today. The second book is
“TCP/IP Illustrated Volume 1” by Richard Stevens [2], which describes the
TCP/IP protocol suite in an excellent way.

2.1 OSI reference model

The open system interconnection (OSI) reference model was developed by
the International Organization for Standardization (ISO). The final stan-
dard, ISO 7498, was published 1984. The model consists of seven layers.
The following list describes the layers briefly:

Application. Provides access to the OSI environment for users and also
provides distributed information services.

Presentation. Provides independence to the application processes from
differences in data representation.

Session. Provides the control structure for communication between ap-
plication; establishes, manages, and terminates connections between
cooperating applications.

Transport. Provides reliable, transparent transfer of data between end
points; provides end-to-end error recovery and flow control.

Network. Provides the upper layers with independence from the data
transmission and switching technologies used to connect the systems;
responsible for establishing, maintaining, and terminating connec-
tions.

Data link. Provides the reliable transfer of information across the physi-
cal link, sends frames with the necessary synchronization, error con-
trol, and flow control.

Physical. Concerned with the transmission of unstructed bit streams over
physical media; deals with the mechanical, electrical, functional, and
procedural characteristics to access the physical medium.

The layers are usually referred to with numbers, starting with the physical
layer as layer one.

8

2.2 TCP/IP protocol suite

Every layer encapsulates the data in a protocol. The encapsulation is
usually done by adding a header to the data, but one layer, the data link
layer, can also add a tail to the data. The physical layer is a little bit differ-
ent, the protocol instead specifies a set of rules and the physical interface.
The physical protocol can be divided into four specifications:

Mechanical: Specifies the pluggable connectors, signal conductors, and
wiring scheme.

Electrical: Specifies the representation of bit values and transmission
rates.

Functional: Specifies the functions performed between the physical in-
terface and the transmission media.

Procedural: Specifies the sequence of events by which bit streams are
exchanged across the physical medium.

Figure 2.1 shows how each layer adds and removes their protocol when
application A sends data to application B.

Application−layer protocol

Presentation−layer protocol

Session−layer protocol

Transport−layer protocol

Network−layer protocol

Data link−layer protocol

Physical−layer protocol

Application A Application B

Figure 2.1 OSI reference model protocol

2.2 TCP/IP protocol suite

The TCP/IP protocol suite is a result of protocol research and development
conducted on the experimental network, ARPANET, funded by the Defense
Advanced Research Project Agency (DARPA). The work started in the late
1960s and has become the most used protocols for network communication.
The is no official TCP/IP protocol model, as in the case of OSI. However,
based on the protocol standards that have been developed, it is possible to
organize the communications task into five relatively independent layers.

9

Chapter 2. Networking

Application. Provides communication between processes or application
on separate hosts.

Transport. Provides end-to-end data transfer service. This layer may in-
clude reliability mechanisms. It hides the details of the underlying
network or networks from the application layer.

Internet. Concerned with the routing of data from source to destination
host on one or more networks connected by routers.

Network access. Concerned with the logical interface between an end
system and a network.

Physical. Defines the characteristics of the transmission medium, signal-
ing rate, and signal encoding scheme.

Figure 2.2 shows a comparison between the OSI reference model and the
TCP/IP model. The following list shows where in the TCP/IP protocol stack
some well-known protocols are located.

Application layer: File transfer protocol (FTP), Hypertext transfer pro-
tocol (HTTP), and telnet.

Transport layer: Transmission control protocol (TCP) and User data-
gram protocol (UDP).

Internet layer: Internet protocol (IP).

OSI reference model TCP/IP model

Internet

Application

Presentation

Session

Transport

Network

Data link

Physical Physical

Network access

Transport

Application

Figure 2.2 OSI reference model vs TCP/IP model

2.3 Network interconnection

This section briefly describes how local area networks (LAN), wide area
networks (WAN), and data terminal equipment (DTE) can be intercon-
nected.

10

2.3 Network interconnection

Network topologies
Figure 2.3, 2.4, and 2.5 show how Data Terminal Equipment (DTE) can be
connected to each other in a network. The star topology is usually inter-
connected with a hub or a switch. Networks of different topologies can be
connected to each other using a bridge, a hub, a switch, or a router.

DTE

DTE

DTEDTE

Figure 2.3 Ring topology

DTEDTE

DTE DTEDTE

Figure 2.4 Bus topology

11

Chapter 2. Networking

DTE

DTEDTE

DTE

DTE

Figure 2.5 Star topology

Bridge
A bridge is primarily used for interconnecting two LANs, with the same
physical layer and data link layer. Figure 2.6 shows two LANs, A and B,
connected with a bridge. The bridge makes forwarding decisions on the
OSI layer two. The function of the bridge can be described as:

• Read all frames transmitted on LAN A and accept those addressed
to any station on LAN B. Retransmit accepted frames to LAN B.

• Read all frames transmitted on LAN B and accept those addressed
to any station on LAN A. Retransmit accepted frames to LAN A.

The only problem for the bridge is to know where the stations are located.
This can be done by a fixed routing table or using automatic address learn-
ing.

LAN A LAN B

Data link

Physical Physical

Bridge

Figure 2.6 Connection of two LANs with a bridge

Router
The router is a more general purpose device, capable of interconnecting a
variety of LANs and WANs. Figure 2.7 shows how two LANs are connected
with each other using two routers. The router makes the routing decisions
on the OSI layer three, which means the Internet layer for the TCP/IP
model.

12

2.3 Network interconnection

LAN A LAN B

Router

Physical Physical

Data linkData link

Network

Router

Physical Physical

Data linkData link

Network

WAN

Figure 2.7 Connection of two LANs using two routers

Hub
A hub, also called multi-point repeater, is usually used to interconnect
DTEs together. When the hub senses a transmission on one port, it sim-
ply takes the incoming signal and repeats or amplifies it on all the other
connected ports. All the connected DTEs share the same capacity of the
media, and will also share the same collision domain.

Switch
A switch can be referred to as a multi-point bridge. Forwarding decision are
also made on the OSI layer two. The address learning function is usually
automatic update. Unlike the hub the switch only forwards the incoming
frame to all ports, if the frame is a broadcast or the switch does not know
on what port the destination address is located. There are two basic trans-
mission methods:

Cut-through switching starts sending packets as soon as they enter a
switch and their destination address is read (within the first 20-30
bytes of the frame). The entire frame is not received before a switch
begins forwarding it to the destination port. This reduces transmis-
sion latency between ports, but it can propagate bad packets.

Store-and-forward switching, a function traditionally performed by bridges
and routers, buffers incoming packets in memory until they are fully
received and a cyclic redundancy check (CRC) is run. Buffered mem-
ory adds latency to the processing time and increases in proportion to
the frame size. The store-and-forward switching reduces bad packets
and collisions that can adversely effect the overall performance of the
segment.

The switch can use one of the two transmission methods or possibly a
mixture of both. The advantages of a switch over a hub are:

• Every port on the switch has it own collision domain.

• If a switch port operates in full-duplex it can receive and transmit
simultaneously.

13

Chapter 2. Networking

Store-and-forward switches must buffer the frame, until the frame is
retransmitted, as described above. The common approaches are:

1. Input buffering. One buffer per port.

2. Output buffering. One buffer per port.

3. Internal buffering. One memory pool used by all ports.

The third approach is probably the most popular today, since it utilizes the
memory better. Low price switches may still use output buffering.

14

3. Ethernet

This chapter will emphasize some properties of Ethernet that are important
for this work.

3.1 History

The term Ethernet used to refer to a specification published in 1982 by Dig-
ital Equipment Corp., Intel Corp., and Xerox Corp. The original Ethernet
network operates at 10 Mbps and uses an access method called CSMA/CD,
which stands for Carrier Sense, Multiple Access with Collision Detection.

A few years later the IEEE 802 Committee published a slightly different
set of standards. The standard 802.3 covers the CSMA/CD networks, 802.4
covers token bus networks, and 802.5 covers token ring networks. Common
to all these three standards is the 802.2 standard that defines the logical
link control (LLC).

Ethernet is the predominant form of local area network technology used
with TCP/IP today. The IEEE 802.3 standard specifies both the physical
layer and the data link layer of the OSI-model. Most of the Ethernet net-
works today follow the IEEE 802.3 standard, but the original Ethernet
frame format is usually used instead of the IEEE 802.3 frame format.

3.2 Ethernet frame

As mentioned before there are the earlier Ethernet specification and the
IEEE 802.3 standard. Figure 3.1 shows the two frame formats. The frames
consist of the following fields:

Preamble 7-byte pattern of alternating 1s and 0s used by the receiver to
establish bit synchronization.

Start frame delimiter (SFD) The bit sequence 10101011, which indi-
cates the actual start of the frame and enables the receiver to locate
the first bit of the rest of the frame.

Destination address (DA) Specifies the station(s) for which the frame
is intended. It may be a unique physical address, a group address, or
a global address.

Source address (SA) Specifies the station that sent the frame.

Length Length of LLC header and data field in bytes. (Only for IEEE
802.3 frame.)

Type Ethernet type field for identifying the contents of the data field.
(This field is included in the LLC header for IEEE 802.3.)

LLC header Logical link control header, i.e. IEEE 802.2 protocol.

Data The data to send (usually a IP datagram). This field has a minimum
size and has to be padded if it is shorter.

15

Chapter 3. Ethernet

Frame check sequence (FCS) A 32-bit cyclic redundancy check, based
on all fields except preamble, SFD, and FCS.

IEEE 802.3 frame

SFD DA SA Type FCS

1 27 66 4

Ethernet frame

Data

46−1500

SFD DA SA FCS

1 2 87 66 4

Preamble Length LLC Header Data

Preamble

38−1492Bytes

Bytes

Figure 3.1 IEEE 802.3 frame and Ethernet frame

The length of both frames, excluding preamble and SFD, is between 64 and
1518 bytes. The minimum length of 64-bytes is to ensure a proper collision
detect. This is discussed in the next section.

Inter frame gap (IFG) is the minimum time between two frames. This
time depends on the transmission speed because it is defined as 96-bits.
So for a 10 Mbps LAN it is 9.6 µs and for a 100 Mbps LAN it is 0.96 µs.

3.3 CSMA/CD access control

When using Carrier Sense, Multiple Access with Collision Detection the
DTEs communicate with half-duplex, see Section 3.4. The CSMA/CD is
an improvement of the CSMA access control technique. The difference is
that in CSMA/CD the station continues to listen to the medium while
transmitting. This leads to the following rules for CSMA/CD.

1. If the medium is idle, start transmit; otherwise go to Step 2.

2. If the medium is busy, continue listen until the channel is idle, then
start transmit immediately.

3. If a collision is detected during transmission, transmit a brief jam-
ming signal to assure that all stations know that there has been a
collision and then cease to transmit.

4. After transmitting the jamming signal, wait a random amount of
time, then attempt to transmit again.

To ensure that all DTEs detect a collision the segment length of the
network has a maximum value. The IEEE 802.3 specifies this value for
different physical layer media. The two most common used physical layer
media are further described in Section 3.6 and 3.7

3.4 Half-duplex

For a Ethernet network with shared medium, the DTEs must use the
CSMA/CD access control. This means that only one DTE is allowed to

16

3.5 Full-duplex

transmit at a time. Examples of network topologies that have shared medium
are the bus topology, and the star topology interconnected with a hub.

Backpressure flow-control is very commonly used, but is is not stan-
dardized. Backpressure simply mean that the receiver sends a jamming
signal when it detects an upcoming buffer overflow. The transmitting side
makes attempts for retransmission after a random period of time. During
this time the receiver gets some additional time for processing the frames
in the buffer.

3.5 Full-duplex

Full-duplex Ethernet can be used between two DTEs. This also includes
a network with star topology interconnected with a switch. Full-duplex
means that transmission can be made simultaneously in both directions.
This also means that the sending DTE does not have to sense that the
medium is idle before transmitting.

IEEE 802.3 defines a flow-control for full-duplex Ethernet, namely the
MAC Control Pause. When a DTE detects an upcoming buffer overflow, it
will transmit a PAUSE control frame to the sender, requesting it to stop
transmission for a certain period of time. The time is expressed as an
multiple of 512 bit-times, which for a 100 Mbps LAN is equal to 5.12 µs. If
sufficient buffers will become free in the meantime, the DTE can re-admit
transmission by sending a PAUSE control frame with a pause duration
parameter of zero to the sender. Usually the PAUSE control frames are
used to turn transmission on and off, because it is difficult to calculate
an appropriate pause timeout. The Pause control frame is not forwarded
through switches, but can of cause propagate through switches.

The switch propagation of the pause control frame is easiest explained
with an example. Figure 3.2 shows a LAN with two DTEs and two switches,
with the communication speed on each segment specified. If the DTE #1
starts to send with 100% of the capacity, the buffer in switch B will become
full, since the DTE #2 only can receive 10% of the capacity. Switch B will
send a pause control frame to switch A, causing switch A to stop the for-
warding of frames. Eventually switch As buffer will also become full, and
switch A will then send a pause control frame to DTE #1.

3.6 IEEE 802.3 10BASE-T Medium specification

The IEEE 802.3 10BASE-T Medium specification is the most common
10 Mbps LAN medium specification used in office buildings today. The
10BASE-T specification defines a star topology, where the DTEs are con-
nected to a multi point repeater, i.e. a hub or a switch. The wiring method
is unshielded twisted pair cable, where two pairs are used for communica-
tion. Due to the poor transmission quality of the unshielded twisted pair,
the maximum segment length is limited to 100 meters.

The encoding technique is differential Manchester. The encoding scheme
for differential Manchester is the following:

• Always a transition in the middle of a interval.

17

Chapter 3. Ethernet

DTE #1 DTE #2

Switch A Switch B

100 Mbps

100 Mbps
10 Mbps

Ethernet
Switch

Ethernet
Switch

Figure 3.2 Pause control propagation

• Bit value zero leads to a transition at the beginning of a interval

• Bit value one leads to no transition at the beginning of a interval.

Figure 3.3 shows an example of differential Manchester encoding. Since
there is an extra transition in the middle of a interval, the actual data
rate is only 50% of the physical. To reach 10 Mbps the clock rate for the
physical interface has to be 20 MHz.

0 1 1 0 0 1 0 1 0

Figure 3.3 Example of differential Manchester encoding

3.7 IEEE 802.3 100BASE-TX Medium specification

The 100 Mbps specification is usually called Fast Ethernet, where the
100BASE-TX medium specification corresponds to the 10BASE-T speci-
fication for the 10 Mbps LAN. The network topology is star shaped and the
wiring method is two pairs in an unshielded twisted pair cable.

Two encoding technique are used in 100BASE-TX. First the bit values
are encoded with 4B5B. The 4B5B encoding takes 4 bit data and converts
it into a 5 bit code. Then the resulting code is transmitted with the MLT-3
encoding. The MLT-3 encoding uses three voltage levels; a positive voltage
(+V), a negative voltage (-V), and no voltage (0). The encoding scheme can
be described as:

1. If the next bit value is zero, the preceding output voltage level is
used.

2. If the next bit value is one, the output voltage level changes to:

18

3.8 Summary

• If the preceding output voltage level is +V or -V, the next output
voltage changes to 0.

• If the preceding output voltage level is 0, the next output voltage
changes to the opposite sign of the last output level that was not
0.

Figure 3.4 shows an example of MLT-3 encoding. The MLT-3 encoding is
added to concentrate the energy in the transmitted signal below 30 MHz.
This reduces the radiated emissions in the transmitted signal. To reach
100 Mbps the clock rate for the physical interface has to be 125 MHz, due
to the 4B5B encoding.

0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 0

0

−V

+V

Figure 3.4 Example of MLT-3 encoding

3.8 Summary

The new Ethernet networks that are built today are usually designed to run
at 100 Mbps and they usually consist of interconnected Ethernet switches,
where every switch is connected to a small number of DTEs.

If it is possible to control the traffic in a simple 100 Mbps LAN, con-
sisting only of DTEs connected to one switch, and with all the DTEs using
full duplex communication, it should be possible to send periodic real-time
traffic between the DTEs with a high frequency and with a predictable
maximum latency. By controlling the traffic, it should be possible to avoid
the low level flow control in the switch from being activated.

19

4. Test program

4.1 Introduction

The technical specification that the switch manufacturers deliver with the
equipment only gives some values of performance. This is usually for 64-
bytes Ethernet frames. So what about other frame sizes?

In order to find the throughput and latency for the switch you have
to test it. Unable to find a test program free of charge, the only solution
was to write my own program. The test program was written in C, sending
UDP-packets with sockets. The concept for how the test was supposed to
be done, was inspired by the RFC2889 [3].

The switch that was tested was a DES 1016D from D-Link. The trans-
mission method for the switch is "store and forward". Eight identical nodes
were connected to the switch, see Figure 4.1. Each node was equipped with
a 100 Mbps Ethernet card, which communicates in full-duplex with the
switch. The nodes were running Linux.

Ethernet
Switch

Figure 4.1 Test network

20

4.2 Throughput

4.2 Throughput

Goal
With the throughput test it should be possible to check that the switch is
capable to forward frames without performance losses.

Description
All of the nodes in Figure 4.1 are used in this test. Each node transmits
and receives frames simultaneously.

Given a frame size and a number of packets to send, the nodes start to
send frames to each other according to Table 4.1, without any extra delay
between the frames. The total time for sending and receiving all packets
is measured by reading the real-time clock in each node at transmission
start and transmission end.

Table 4.1 Node transmit order

Source Node Destination Nodes (in order of transmission)
Node #1 2 3 4 5 6 7 8 2...

Node #2 3 4 5 6 7 8 1 3...

Node #3 4 5 6 7 8 1 2 4...

Node #4 5 6 7 8 1 2 3 5...

Node #5 6 7 8 1 2 3 4 6...

Node #6 7 8 1 2 3 4 5 7...

Node #7 8 1 2 3 4 5 6 8...

Node #8 1 2 3 4 5 6 7 1...

Result
The measured time from the throughput test is used with Equation 4.1
and 4.2 and as an reference the theoretical performance is calculated with
Equation 4.3 and 4.4. The result is presented in Figure 4.2 and 4.3. The
160 extra bits in the equation origin from the sum of bits for inter frame
gap (IFG), preamble, and start frame delimiter (SFD).

21

Chapter 4. Test program

Measured performance [Mbps] = (4.1)

= nbr of frames ∗ frame size ∗ 8
measured time [s] ∗ 106

Measured performance [f rames/s] = (4.2)

= nbr of frames
measured time [s]

Theoretical performance [Mbps] = (4.3)

= LAN speed [Mbps] ∗ frame size [byte] ∗ 8
frame size [byte] ∗ 8 + 160 [bits]

Theoretical performance [f rames/s] = (4.4)

= LAN speed [Mbps] ∗ 106

frame size [byte] ∗ 8 + 160 [bits]

0 200 400 600 800 1000 1200 1400 1600
0

10

20

30

40

50

60

70

80

90

100

Frame size [byte]

P
er

fo
m

an
ce

 [M
bp

s]

Measured performance
Theoretical performance

Figure 4.2 Switch performance [Mbps]

22

4.3 Latency

0 200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

12

14

16
x 10

4

Frame size [byte]

P
er

fo
m

an
ce

 [f
ra

m
es

/s
]

Measured performance
Theoretical performance

Figure 4.3 Switch performance [frames/s]

Figure 4.2 and 4.3 both show that for frame sizes less than 400 byte the
measured performance is less than the theoretical performance. This does
however not depend on the switch. The cpu usage when running the test
program with small frames is close to 100%. The test node performance
with small frames becomes a bottle neck, and the measurement is not
only showing the switch performance. One reason for why the cpu usage
increases is the context switches. Since small frames come more frequent
there will also be more frequent context switches.

With frame size over 400 bytes the switch performs as it should. So the
conclusion is that the switch throughput is as good as it can be.

4.3 Latency

Goal
The purpose of this test is to verify that the average latency sending frames
through the switch is not deviating too much from what could be expected.

Description
Only two of the nodes are used in this, one node is selected as a sender and
one node is selected as a receiver. Figure 4.4 shows the reduced network.
The real-time clocks in the two nodes are synchronized immediately before
a new test run is started.

Given a transmit rate, frame size and a number of packets to send,
the sending node starts to transmit frames. The frame includes the time
just before the transmission. When the receiving node receives the frame
it calculates the latency for the frame and saves the value. After receiving
all the frames the receiver calculates the average latency.

23

Chapter 4. Test program

Sending node Receiving node

Ethernet
Switch

Figure 4.4 Test network for latency test

Result
The transmit rate for the test was one percentage of maximum rate. The
test result is presented in Figure 4.5. As a reference a minimum latency is
calculated with Equation 4.7 and included in Figure 4.5.

The transmission method for the switch is "store-and-forward", causing
the factor 2 for LAN transmit time. The frame is also copied twice on the
PCI-bus, one time in the sender and one time in the receiver. The 160 extra
bits in the equations origin from the sum of bits for inter frame gap (IFG),
preamble, and start frame delimiter (SFD).

LAN transmit time [µs] = (4.5)

= frame size [byte] ∗ 8 + 160 [bits]
LAN speed [Mbps]

PCI-bus copy time [µs] = (4.6)

= frame size [byte]
133 [Mbps]

Minimum latency [µs] = (4.7)
= 2 ∗ LAN transmit time [µs] + 2 ∗ PCI-bus copy time [µs]

Figure 4.5 shows that the difference between measured average latency
and minimum latency increases with larger frames. The trend for this extra
latency can be expressed as:

Extra latency = C1 + C2 ∗ frame size

The term “C2∗frame size” is probably caused by memory copy in the test
node. The memory copy is introduced when the frame is passed through

24

4.4 Summary

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

200

250

300

350

Frame size [byte]

La
te

nc
y

[µ
s]

Average latency
Minimum latency

Figure 4.5 Switch latency [µs]

the UDP- and IP-layers in the test node. The term “C1” is constant for
every frame size and depends mainly on the necessary context switches
when the frame is sent and received.

The conclusion is that the switch does not add more latency to the
transmission than the transmission time caused by the "store-and-forward"
function.

4.4 Summary

Both the throughput test and latency test show that the DES 1016D from
D-Link performs as expected. The throughput test also shows that the node
can become a weak link if there is a lot of traffic with small frame sizes.

25

5. Scheduling

5.1 Introduction

The goal for scheduling the traffic in a switched Ethernet LAN is to let
ordinary traffic, such as telnet, ftp, and http traffic, coexist with the periodic
real-time traffic. This means that the ordinary traffic has to be restricted
so it does not interfere with the periodic real-time traffic. By this you can
say that the ordinary traffic is scheduled as well.

The intention was to investigate different scheduling approaches, but
the lack of time prevented the intention. So this chapter only investigates
one type of scheduling, the worst case scheduling.

5.2 Definitions

This is a list of terms that are used in this chapter. The purpose of the list
is to clearly define important term so there is no confusion.

Scheduler: See NetGuard.

NetGuard: The node which schedules the RT traffic. Since it handles more
tasks than the scheduling, it is called the NetGuard. The following
list contains example of the tasks that the NetGuard has to handle:

• Schedule the requested RT traffic.
• Update the nodes when the schedule is changed. If the sched-

ule can change dynamically, the NetGuard has to send the new
schedule to the nodes when it changes.

• Keep track of nodes connected to the LAN. The NetGuard has
to check and update a list of nodes, that are connected to the
network.

• Act as a router for non RT traffic. See non RT traffic.
• Keep a global real-time clock for the nodes. The global real-time

clock can be used for clock synchronization.
• Convert broadcast to unicast. When the NetGuard routes a broad-

cast into the scheduled network, it is transmitted to all the con-
nected nodes with their unique address. The transmission is con-
trolled so it does not interfere with the scheduled RT traffic.

Node: A data terminal equipment connected to the LAN.

RT traffic: Scheduled periodic real-time traffic between the nodes.

Non RT traffic: Scheduled ordinary traffic, such as telnet, ftp, and http
traffic. The non RT traffic is either sent or received by the NetGuard.

RTC: Periodic real-time channel, a collection of properties describing the
RT traffic, used by the NetGuard to schedule the traffic. The follow-
ing list is a minimum of properties needed for the schedule, but a
implemented version of the list may look different.

26

5.3 Worst case scheduling

• Send node. Can be identified by Ethernet address or IP-address.

• Receive node. Can be identified by Ethernet address or IP-address.

• Transmit time [µs]. The transmit time includes all overhead,
also inter frame gap, preamble, and start frame delimiter. The
minimum network latency, using a store-and-forward switch, is
the transmit time multiplied by two.

• Frequency [Hz]. The frequency for the periodic update.

• Maximum latency [µs]. The maximum allowed network latency.

Minimum transmit time: Transmit time for a 64-byte Ethernet frame,
including all overhead.

Maximum transmit time: Transmit time for a 1518-byte Ethernet frame,
including all overhead.

5.3 Worst case scheduling

Assume that the RT traffic is forwarded to the network with the single
restriction that the time between the frames has to be at least the period
that is requested. This means that when a node sends a RTC frame it
simply calculates the next time for this channel using Equation 5.1. Thus
it is possible that all the RT traffic is forwarded at the same time. This
is also known as the worst case. The scheduler only has to verify that the
worst case is within the limits that the RTC specifies.

RTC[j].Next send time = (5.1)

= Current time + 106

RT C[j].Frequency

By using worst case scheduling there is actually no need for synchro-
nizing the nodes. This is of course only possible if the real-time clocks in
the nodes are not drifting too much.

Example
It is always easier to understand using an example. Figure 5.1 shows how
the network is interconnected. All the nodes and the NetGuard, are com-
municating with 100 Mbps in full-duplex with the switch. The transmission
method for the switch is store-and-forward. This gives the following values
for the network:

Minimum transmit time = 6.72µs � 7µs

Maximum transmit time = 123.04µs � 123µs

Table 5.1 specifies an example of RT traffic that is used throughout this
chapter.

27

Chapter 5. Scheduling

Table 5.1 Requested RT traffic

RTC[1] RTC[2] RTC[3] RTC[4]
Send node Node[1] Node[2] Node[2] Node[4]
Receive node Node[3] Node[3] Node[4] Node[1]
Transmit time [µs] 50 50 10 40

Frequency [H z] 1000 1000 10000 5000

Maximum latency [µs] 500 500 100 350

Ethernet frame size [byte] 605 605 105 480

Node[2]Node[1] Node[4]Node[3]

NetGuard

Internet

Ethernet
Switch

Figure 5.1 Network interconnection

5.4 Periodic update constraint

The minimum check to do for a worst case schedule, is that is possible so
send and receive all the RT traffic at all. In addition to this the node has
to be able to communicate with the NetGuard.

The worst case period is defined as the shortest periodic update time
for sending and receiving. This gives us Equation 5.2 and 5.3. The amount
of traffic that can be forwarded in the worst case period is defined as worst
case duration. The worst case duration is calculated with Equation 5.4 and
5.5.

node[i].Worst case send period [µs] = (5.2)

= min
∀ jhRT C[j].send node=node[i]

(
106

RTC[j].Frequency

)

28

5.4 Periodic update constraint

node[i].Worst case receive period [µs] = (5.3)

= min
∀ jhRT C[j].receive node=node[i]

(
106

RT C[j].Frequency

)

node[i].Worst case send duration [µs] = (5.4)

=
∑

∀ jhRT C[j].send node=node[i]

(
RT C[j].Transmit time

)

node[i].Worst case receive duration [µs] = (5.5)

=
∑

∀ jhRT C[j].receive node=node[i]

(
RT C[j].Transmit time

)

With the equations above it is possible to calculate how much unused
time there is available, with Equation 5.6 and 5.7. To ensure the NetGuard
communication the free periodic duration has to be greater than the mini-
mum transmit time.

node[i].Free periodic send duration [µs] = (5.6)
= node[i].Worst case send period −

node[i].Worst case send duration

node[i].Free periodic receive duration [µs] = (5.7)
= node[i].Worst case receive period −

node[i].Worst case receive duration

Example
Table 5.2 shows the calculated values for the requested RT traffic, using
the equations above. The ∞ for the period actually means that there is no
requested RT traffic. All the free periodic durations are greater than the
minimum transmit time, so the requested RT traffic passes the periodic
update constraint.

Table 5.2 Free periodic duration for the requested RT traffic. Unit: µs

node[1] node[2] node[3] node[4]
Worst case send period 1000 100 ∞ 200

Worst case receive period 200 ∞ 1000 100

Worst case send duration 50 60 0 40

Worst case receive duration 40 0 100 10

Free periodic send duration 950 40 ∞ 160

Free periodic receive duration 160 ∞ 900 90

29

Chapter 5. Scheduling

5.5 Maximum latency constraint

At a quick glance the network latency for a RT frame, sent from node #1 to
node #2, should be the worst case send duration for node #1 and the worst
case receive duration for node #2. The worst case send duration means,
in this case, that all the scheduled RT traffic was sent at the same time
and is waiting in the output buffer for node #1. The frame we are looking
at is the last one in this queue. When the frame we are looking at finally
is transmitted, it arrives to the switch buffer at the same time as all the
scheduled RT traffic to node #2 arrives. Let’s assume that the frame we are
looking at is the last one in the switch buffer queue. The time before our
frame arrives to node #2, is of course the worst case receive duration for
node #2. Figure 5.2 shows that there are exceptions from this assumption.
In this case it is because there is multiple traffic between node #1 and node
#2, so the network latency for frame A is not influenced by frame B and C
in the switch buffer.

A B C

C

B

A

A

C

B C

A

BA

B C

Output buffer node #1 Switch buffer Input buffer node #2

Figure 5.2 Example of switch latency

It becomes even more difficult to calculate a correct maximum latency,
if there are intermixed RT frames from other nodes. So if this phenomenon
is ignored, and the network latency is calculated as the sum of the worst
case send duration and the worst case receive duration, it is possible to
calculate a worst case network latency for each RT frame. By subtracting
the worst case network latency from the allowed maximum latency, we get
the unused duration. Equation 5.8 gives us the available latency duration
for each RT channel.

30

5.5 Maximum latency constraint

RTC[j].Available latency duration [µs] = (5.8)
= RTC[j].Maximum latency −

node[RTC[j].send node].Worst case send duration −
node[RTC[j].receive node].Worst case receive duration

The RTC available latency duration can be used in the sending node or
in the receiving node. To ensure the NetGuard communication, the assigned
duration has to be greater than the minimum transmit time. To really
calculate the correct free latency duration, a two-step procedure is used.

The first step calculates the free latency duration for all the sending
nodes, with Equation 5.9. The division by two is done to divide the available
latency duration equally between the sending node and the receiving node.

node[i].Free latency send duration [µs] = (5.9)

= min
∀ jhRT C[j].send node=node[i]

(
RT C[j].Available latency duration

2

)
The second step calculates the free latency duration for all the receiv-

ing nodes, with Equation 5.10. This step just assigns what is left of the
available latency duration to the receiving node, and selects the worst case.

node[i].Free latency receive duration [µs] = (5.10)

= min
∀ jhRT C[j].recive node=node[i]

(
RT C[j].Available latency duration−

node[RTC[j].send node].Free latency send duration
)

Example
Table 5.3 shows the calculated values for the requested RT traffic, using
Equation 5.8.

Table 5.3 Available latency duration for the requested RT traffic. Unit: µs

RTC[1] RTC[2] RTC[3] RTC[4]
Maximum latency 500 500 100 350

Worst case send duration 50 60 60 40

Worst case receive duration 100 100 10 40

Available latency duration 350 340 30 270

Table 5.4 shows the free latency duration for the different nodes with
the requested RT traffic. All the free latency durations are greater than the
minimum transmit time, so the requested RT traffic passes the maximum
latency constraint.

31

Chapter 5. Scheduling

Table 5.4 Free latency duration for the requested RT traffic. Unit: µs

node[1] node[2] node[3] node[4]
Free latency send duration 175 15 ∞ 135

Free latency receive duration 135 ∞ 175 15

5.6 NetGuard communication

Now the scheduler has to decide how much time there is available for
the NetGuard communication, e.g. the non RT traffic. This means that
the maximum time for NetGuard communication can be calculated with
Equation 5.11 and 5.12. The time has an upper bound in the maximum
transmit time.

node[i].Node send time [µs] = (5.11)

= min

 Maximum transmit time,
node[i].Free latency send duration,
node[i].Free periodic send duration

node[i].NetGuard send time [µs] = (5.12)

= min

 Maximum transmit time,
node[i].Free latency receive duration,
node[i].Free periodic receive duration

Example
Table 5.5 shows the maximum time for the NetGuard communication. Only
two of the values are less than the maximum transmit time. Not so sur-
prisingly it is the RTC[3] who causes this, which is sent from node #2 and
received by node #4. This can however be improved which will be investi-
gated in the next section. Figure 5.3 shows the network latency for RTC[3]
with the worst case traffic between node #2 and node #4.

Table 5.5 NetGuard communication for the requested RT traffic. Unit: µs

node[1] node[2] node[3] node[4]
Node send time 123 15 123 123

NetGuard send time 123 123 123 15

Finally we can calculate the worst case network latency, as the sum
of the worst case duration and the maximum values for the NetGuard
communication. Table 5.6 show the calculated values for each RT channel.

32

5.7 Fragmentation of the RT traffic

B C E

E

D

C

from

from
NetGuard

Node[2]

to node[4]

A

network latency
Worst case Best case

network latency

RTC[2](B)>
non RT(D)> RTC[3](E)>Frame to

buffer event

Frames
sent to
switch

Frames
sent from

switch

Frame from
buffer event

non RT(D)>
RTC[3](C)>

RTC[3](E)>

Time [us]
0 10020 40 60 80 120

D

non RT(A)>

RTC[3](C)>

Figure 5.3 Network latency for RTC[3]

Table 5.6 Worst case network latency for the requested RT traffic. Unit: µs

RTC[1] RTC[2] RTC[3] RTC[4]
Worst case send duration 50 60 60 40

Worst case receive duration 100 100 10 40

Node send time 123 15 15 123

NetGuard send time 123 123 15 123

Worst case network latency 396 298 100 326

5.7 Fragmentation of the RT traffic

There are two reasons for fragmentation of the RT traffic:

1. The requested RT traffic does not pass the constraints stated earlier.

2. To improve NetGuard communication abilities.

Fragmentation can not be seen as a pure advantage. One of the draw-
backs is that the overhead in the transmission increases. If the header for
handling the fragmentation is 20 bytes, the overhead time in the example
will become.

Overhead time = 4.64µs � 5µs

Another drawback is that each fragment causes extra interrupts in the
sending and receiving nodes. This will increase the system load for the
nodes, and maybe jeopardize the whole RT function.

33

Chapter 5. Scheduling

The equations in the periodic update constraint are still valid if, for
the fragmented RT traffic, the values for frequency and transmit time are
substituted with fragmentation frequency and fragment transmit time. The
fragmentation transmit time is calculated with Equation 5.13. For the max-
imum latency constraint, Equation 5.8 has to be substituted with Equation
5.14, for the fragmented RT traffic.

RTC[j].Fragment transmit time [µs] = (5.13)

= RTC[j].Transmit time−Overhead time
RTC[j].#fragment

+ Overhead time

RTC[j].Available latency duration [µs] = (5.14)
= RT C[j].Maximum latency −

(RTC[j].#fragment − 1) ∗
106

RTC[j].Fragment frequency
−

node[RTC[j].send node].Worst case send duration −
node[RTC[j].receive node].Worst case receive duration

First fragmentation example
Let go back to the example. Assume that RTC[2] is fragmented three times
with the fragmentation frequency 10 kHz. Table 5.7 shows the free periodic
duration, using the transmit time for RTC[2] calculated in Equation 5.15.
Notice that the fragmentation frequency for RTC[2], will also change the
worst case receive period for node #3.

RTC[2].Fragment transmit time = (5.15)
= (50 − 5)/3 + 5 = 20µs

Table 5.7 Free periodic duration for the requested RT traffic, with RTC[2] frag-
mented three times at 10kHz. Unit: µs

node[1] node[2] node[3] node[4]
Worst case send period 1000 100 ∞ 200

Worst case receive period 200 ∞ 100 100

Worst case send duration 50 30 0 40

Worst case receive duration 40 0 70 10

Free periodic send duration 950 70 ∞ 160

Free periodic receive duration 160 ∞ 30 90

34

5.7 Fragmentation of the RT traffic

The available latency duration for RTC[2] will decrease due to the frag-
mentation. The new available latency duration is calculated in Equation
5.16. Table 5.8 shows the new values for all the free latency durations.

RTC[2].Available latency duration = (5.16)
= 500− (3− 1) ∗ 100− 30− 70 = 200µs

Table 5.8 Free latency duration for the requested RT traffic, with RTC[2] frag-
mented three times at 10kHz. Unit: µs

node[1] node[2] node[3] node[4]
Free latency send duration 190 30 ∞ 135

Free latency receive duration 135 ∞ 170 30

The final result for trying to improve the NetGuard communication is
presented in Table 5.9. The fragmentation manages to increase the Net-
Guard communication for node #2 and #4, but it also decreases the Net-
Guard send time for node #3.

Table 5.9 NetGuard communication for the requested RT traffic, with RTC[2]
fragmented three times at 10kHz. Unit: µs

node[1] node[2] node[3] node[4]
Node send time 123 30 123 123

NetGuard send time 123 123 30 30

The worst case network latency is calculated in Table 5.10, where the
worst case send duration for RTC[2] is calculated as:

RTC[2].Worst case send duration =
= (3− 1) ∗ 100+ 30 = 230µs

Table 5.10 Worst case network latency for the requested RT traffic, with RTC[2]
fragmented three times at 10kHz. Unit: µs

RTC[1] RTC[2] RTC[3] RTC[4]
Worst case send duration 50 230 30 40

Worst case receive duration 70 70 10 40

Node send time 123 30 30 123

NetGuard send time 30 30 30 123

Worst case network latency 273 360 100 326

35

Chapter 5. Scheduling

Second fragmentation example
The first attempt to improve NetGuard communication was maybe not the
best. If the fragmentation of RTC[2] instead is two times with the frequency
5kHz, Table 5.11 shows the new values for free periodic duration, using
the transmit time for RTC[2] calculated with Equation 5.17.

RTC[2].Fragment transmit time = (5.17)
= (50− 5)/2 + 5 � 28µs

Table 5.11 Free periodic duration for the requested RT traffic, with RTC[2] frag-
mented two times at 5kHz. Unit: µs

node[1] node[2] node[3] node[4]
Worst case send period 1000 100 ∞ 200

Worst case receive period 200 ∞ 200 100

Worst case send duration 50 38 0 40

Worst case receive duration 40 0 78 10

Free periodic send duration 950 62 ∞ 160

Free periodic receive duration 160 ∞ 122 90

The available latency duration for RTC[2] can now be calculated with
Equation 5.18. All the values for free latency duration are presented in
Table 5.12.

RTC[2].Available latency duration = (5.18)
= 500− (2− 1) ∗ 200− 38− 70 = 192µs

Table 5.12 Free latency duration for the requested RT traffic, with RTC[2] frag-
mented two times at 5kHz. Unit: µs

node[1] node[2] node[3] node[4]
Free latency send duration 181 26 ∞ 135

Free latency receive duration 135 ∞ 168 26

Table 5.13 shows the final result for the second attempt to improve the
NetGuard communication. The improvement for node #2 and #4 is not as
good as in the first attempt, but the NetGuard send time for node #3 is a
lot better.

The worst case network latency is calculated in Table 5.14, where the
worst case send duration for RTC[2] is calculated as:

RTC[2].Worst case send duration =
= (2− 1) ∗ 200+ 38 = 238µs

36

5.8 Traffic control

Table 5.13 NetGuard communication for the requested RT traffic, with RTC[2]
fragmented two times at 5kHz. Unit: µs

node[1] node[2] node[3] node[4]
Node send time 123 26 123 123

NetGuard send time 123 123 122 26

Table 5.14 Worst case network latency for the requested RT traffic, with RTC[2]
fragmented two times at 5kHz. Unit: µs

RTC[1] RTC[2] RTC[3] RTC[4]
Worst case send duration 50 238 38 40

Worst case receive duration 78 78 10 40

Node send time 123 24 26 123

NetGuard send time 122 122 26 123

Worst case network latency 373 462 100 326

5.8 Traffic control

Next time for RT traffic
If there is fragmented RT traffic the simple restriction stated in Equation
5.1, has to be modified. The modification can be expressed in three steps.

1. When the node sends the first fragment, the current time is saved
for later use. The next time is then calculated with Equation 5.20

RTC[j].Last time = Current time (5.19)

2. When the node sends a fragment except the first and the last, the
next time is calculated with Equation 5.21

3. When the node sends the last fragment, the next time is calculated
with Equation 5.22

RTC[j].Next time = Current time + (5.20)
106

RTC[j].Fragmentation frequency

RTC[j].Next time = RTC[j].Next time + (5.21)
106

RTC[j].Fragmentation frequency

37

Chapter 5. Scheduling

RTC[j].Next time = RTC[j].Last time + (5.22)
106

RTC[j].Frequency

Next time for NetGuard communication
The calculation of the next time for the NetGuard communication is more
complicated than for the RT traffic. First the bandwidth for NetGuard
communication has to be divided among the nodes. The reason for doing
this is to ensure that not too much non RT traffic is forwarded. This leads
to Equation 5.23. The NetGuard can change the division by allowing the
nodes to request a preferred fraction of the bandwidth. The best fairness
is to divide the bandwidth equally.

∑
∀i

node[i].Node bandwidth fraction ≤ 1 (5.23)∑
∀i

node[i].NetGuard bandwidth fraction ≤ 1

Another problem when calculating the next time is that the non RT
traffic does not have a specific transmit time. A non RT traffic frame can
either have longer or shorter transmit time than the scheduled send time.
If a frame has longer transmit time than the send time it has to be frag-
mented, before it is sent. By considering the actual time it takes to send
a frame (fragmented or not) and to ensure that the node or the NetGuard
does not forward too much traffic, the next time for non RT traffic can be
calculated with Equation 5.24 and 5.25. The first part of the maximum
expression ensures that the worst case RT traffic can pass before new non
RT traffic is sent. The second part ensures that not more than the allowed
bandwidth is used.

node[i].Node next send time = Buffer free time + (5.24)

max

(
Frame transmit time +

node[i].Worst case send duration

)
,

(
Frame transmit time

node[i].Node bandwidth fraction

)

node[i].NetGuard next send time = Buffer free time + (5.25)

max

(
Frame transmit time +

node[i].Worst case receive duration

)
,

(
Frame transmit time

node[i].NetGuard bandwidth fraction

)

38

5.9 Summary

The buffer free time used in the Equation 5.24 and 5.25, means the time
when the output buffer on the network card is empty. For every frame that
is sent the buffer free time is updated in two steps. Equation 5.26 is used
before the calculation of next time and Equation 5.27 is used after.

Buffer free time = (5.26)
= max(Buffer free time, Current time)

Buffer free time = (5.27)
= Buffer free time + Frame transmit time

5.9 Summary

The simple restriction for forwarding the frames stated in Section 5.8, is
the result of the worst case scheduling. This control has to be implemented
in every node connected to the switch and in the NetGuard. Design ideas
and implementation problem are discussed in the next chapter.

The observant reader has noticed that there is no algorithm for the
fragmentation of the RT traffic. To develop an algorithm you have to de-
cide which parameter you what to optimize. The two fragmentation exam-
ple shows that the NetGuard communication can be improved. There is
however a dilemma to this improvement. The NetGuard does not know if
there really is any non RT traffic that needs to be improved. If the Net-
Guard had more information about the amount of non RT traffic that can
be expected to be sent and received by the nodes, a better optimized deci-
sion can be made. I wish there was more time to investigate the problem
more thoroughly, but for now I can only postpone the problem.

The worst case scheduling theory has some properties that is interest-
ing for distributed control system. The following list of "pros and cons"
summarizes these properties:

+ The frequency for periodic updates can be chosen more freely for dis-
tributed control system.

+ The system load for forwarding network traffic is not so high.

+ Synchronization is not so important. Since the worst case is allowed the
frames can be sent without mutual synchronization.

– The network latency is not constant.

– Mixing high and low frequencies for periodic updates, could lead to poor
network utilization.

39

6. Test implementation

The intention with the test implementation was to test the worst case
scheduling before a real version was implemented. Unfortunately there was
no time to make a complete test implementation. Therefore this chapter
will focus on the design ideas and implementation problems.

6.1 Introduction

We assume that all applications running in the nodes use the TCP/IP
protocol suite for network communication. The traffic control for the worst
case scheduling can then be implemented as an extra layer. Let us denote
the extra layer as the RT-layer. The RT-layer is added between the Internet-
layer and the Ethernet hardware interface, see Figure 6.1. By adding the
RT-layer an application running in the node does not have to be modified.

The RT-layer also adds a header when an IP-frame is forwarded to the
Ethernet-layer. The header is mainly used for handle the fragmentation
caused by the worst case scheduling traffic control.

TCP UDP

IP

RT

Ethernet

hardware

interface

Figure 6.1 Protocol layer model

40

6.2 Fragmentation of the RT traffic

6.2 Fragmentation of the RT traffic

Since the previous chapter did not include any algorithm for fragmenta-
tion of the RT traffic, the fragmentation decision has to be made manually.
It can be done by adding the fragmentation frequency and the number of
fragment to the RT traffic request. The advantage by doing the fragmen-
tation decision manually, is that the impact on the target system can be
tested in a controlled way.

6.3 RT-layer

In the RT-layer there is a set of send channels and receive channels. The
NetGuard assigns one send channel and one receive channel for each RT
traffic request. Since the RT-layer has to identify if the IP-frame is sched-
uled or not, the request for RT traffic to the NetGuard has to include:

• Source IP-address

• Destination IP-address

• Source port

• Destination port

When the NetGuard changes the schedule due to a new request, the RT-
layer has to receive the new schedule. This can be solved by sending a
predefined frame to the nodes, and when the frame passes the RT-layer,
the information is extracted.

Since the traffic control for non RT traffic is different from the traffic
control for the RT traffic, the RT-layer in the NetGuard looks a little bit
different. In the NetGuard RT-layer all send channels are used for non RT
traffic and in the node RT-layer only one send channel is used for non RT
traffic. The easiest thing to do is to implement two types of RT-layer, but
this is maybe not so appealing.

Frame buffers
The RT-layer needs to be able to buffer frames, both when sending and
receiving frames. When the RT-layer receives frames it needs one buffer per
receive channel, due to the fragmentation ability. The send channels need
at least one buffer per channel, due to the traffic control which includes
fragmentation.

No matter how many buffers per send channel that are chosen there is
still a possibility to run out of buffer space. If this happens the only thing
to do for the RT-layer is to throw away the IP-frame. If the non RT traffic
uses the TCP-protocol, the frame will be retransmitted again. For the RT
traffic it only means that one periodic update is lost.

If the RT-layer uses many buffers for each send channel, there is a
possibility that this will cause a lot of cache memory misses. This will add
more latency, when the RT traffic is supposed to be forwarded. Considering
this it maybe is best to only have one buffer per send channel.

41

Chapter 6. Test implementation

Node traffic identification
First the source IP-address, the destination IP-address, the source port,
and the destination port have to be extracted from the IP-frame. Then
the values are compared to the scheduled RT traffic. If the IP-frame is
scheduled it is put in the corresponding send buffer, otherwise the IP-frame
is put in the send buffer for non RT traffic.

NetGuard traffic identification
The RT-layer in the NetGuard only needs to handle non RT traffic. This
means that only the destination IP-address needs to be extracted. The IP-
address is compared with a list of nodes, and if the IP-address is found in
the list, the IP-frame is put in the corresponding send buffer.

RT-frame identification
To make a fast identification of the RT-frame content, the receive channel
number should be included in the RT-frame. If the RT-frame is fragmented,
the receiver must buffer all fragment until the last fragment arrives. When
the frame is complete it is forwarded to the IP-layer.

6.4 Clock synchronization

Even though clock synchronization is not important for worst case schedul-
ing, there are some reasons for implementing this function. The first rea-
son is that if the nodes have a global time, each RTC-frame can be time
stamped. By doing this the network latency can be checked when the frame
is received. This information can be used for statistics and detection of net-
work problem.

The second reason is switch related. The automatic address learning
function in the switch only keeps the information for a short period. If a
node in the network only receives frames, the switch will forget on which
port the node is connected. So for every frame sent to the node, the switch
will forward the frame on all the other ports. This phenomenon will jeop-
ardize the real-time function. This problem is avoided, if the node is forced
to send periodic message. So why not use the periodic message for clock
synchronization.

6.5 IP fragmentation

Figure 6.2 shows a fragmented UDP/IP datagram. Notice that the UDP
header, which includes the fields for source port and destination port, only
is sent in the first frame. This could be a problem in the RT-layer when
the IP-frame is supposed to be identified. Using the restriction that the IP-
frame for the RT traffic never is fragmented, the RT-layer can then start
the identification by looking on the fragmentation bits for the IP-frame,
and if the IP-frame is fragmented, assume that it is a non RT traffic.

42

6.6 Dynamic vs Static

8 bytes

UDP

header

20 bytes

IP

header

IP

header

UDP

header

IP

header

20 bytes 8 bytes 1472 bytes 20 bytes 1 byte

UDP data (1473 byte)

First frame Second frame

Figure 6.2 Example of UDP fragmentation

6.6 Dynamic vs Static

So far there has been no discussion about whether the scheduling should
be dynamic or static. Of course a dynamic solution is more appealing.

If a dynamic implementation is considered, there are some problems to
be discussed. If neither the NetGuard nor a node knows that they are in
the same network, the only way is if the NetGuard or the node sends a
broadcast trying to find the other. Let’s assume that the node is allowed
to send this broadcast. The switch forwards the broadcast on all channels,
except on the channel where it received the broadcast. This means that
this broadcast should not be generated too often, since it interferes with
the RT traffic. There also has to be a specific broadcast channel in the RT-
layer, since no send channel or receive channel has been assigned to the
node yet.

6.7 Summary

As argued above the RT-frame for the test implementation should contain
the following fields:

• Fragmentation information

• Receive channel number

• Time stamp

The following information is necessary for the test implementation to
schedule the RT traffic:

RT traffic request
• Source IP-address. The IP-address for the sending node.

• Destination IP-address. The IP-address for the receiving node.

• Source port. The socket port used by the sending application.

• Destination port. The socket port used by the receiving application.

43

Chapter 6. Test implementation

• Transmit time [µs]. The transmit time for the periodic RT frame,
including all overhead, when the frame is sent as a single fragment.
The minimum network latency, using a store-and-forward switch, is
the transmit time multiplied by two.

• Frequency [H z]. The periodic update frequency.

• Fragment frequency [H z]. The send frequency that is used when the
RT traffic is fragmented.

• Number of fragment. The number of fragments that the RT-layer
should divide the periodic RT frame into, before it is transmitted.

• Maximum latency [µs]. The maximum allowed network latency.

44

7. Future work

The first step is to implement a real version in order to verify that the
theory works in practice. One thing that could jeopardize the function is
the increase of system load that the worst case scheduling traffic control
fragmentation adds to the target system.

The second step is to develop fragmentation algorithms for the RT traf-
fic. Since fragmentation is not purely an advantage, and it is not only
one parameter to optimize, I would like to characterize this as a complex
problem.

The third step would be to add more switches to the network. Figure
7.1 shows a example of an expanded network with four switches. The top
switch can be considered as a backbone for the network. The connections
between the switches are potential bottlenecks for the network. One solu-
tion which makes the situation better, is to use a Gigabit switch as back-
bone. This will decrease the network latency between the sub switches.
Another thing to do is to add routers for the non RT traffic to each sub
switch. By doing this the control of traffic in the bottlenecks will be better
and more predictable.

NetGuard

Internet

Ethernet
Switch

Ethernet
Switch

Ethernet
Switch

Ethernet
Switch

Figure 7.1 Ethernet network with four switches

45

Chapter 7. Future work

Figure 7.2 shows the suggested changes to the network. The SubNet-
Guard is responsible for retransmitting the non RT traffic, sent by the
nodes in the sub-network, in a controlled way so that the RT traffic in
the up-link for the sub-switch is not interfered. Some of the problems that
remain to be investigated are:

• The impact of broadcast in the network.

• Identification of what sub switch a node is connected to.

If the network has a static configuration, it should be possible to avoid the
problems above. So the last thing to find out would be a dynamic solution
for the expanded network.

NetGuard

Internet

SubNetGuard SubNetGuard

Gigabit switch

SubNetGuard

Ethernet
Switch

Ethernet
Switch

Ethernet
Switch

Ethernet
Switch

Figure 7.2 Future real-time switched Ethernet LAN

46

8. Conclusions

The test result in Chapter 4 shows that the tested switch performs as
expected. However, it also reveals that the node can become a weak link if
there is a lot of traffic with small frame sizes. If the node system load gets
close to 100% the RT behavior for a scheduled switched Ethernet network
can be jeopardized.

Chapter 5 investigates how the traffic in the network can be controlled
by using worst case scheduling. The scheduler takes the buffers in the
switch and in the network interface card into account to guarantee that
the maximum allowed network latency is not exceeded. The result of the
scheduling is a number of simple equations that calculate the time for when
it is allowed to send another frame through the switch. The problem with
the node system load can be avoided if a lower utilization of the bandwidth
is acceptable.

Finally, Chapter 6 shows that the worst case schedule traffic control
can be implemented as an extra layer in the TCP/IP protocol suite.

47

9. References

[1] William Stalling. Data & Computer Communication Sixth Edition,
Prentice-Hall Inc, 2000.

[2] W. Richard Stevens. TCP/IP Illustrated Volume 1, Addison Wesley,
1994.

[3] RFC2889, Benchmarking Methodology for LAN Switching Devices.

48

