
ISSN 0280-5316
ISRN LUTFD2/TFRT--5690--SE

6-DOF Visual Servoing Using the
Lie Group of Affine Transformations

Nikolaus Correll

Department of Automatic Control
Lund Institute of Technology

June 2002

Document name
MASTER THESIS
Date of issue
June 2002

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD2/TFRT--5690--SE
Supervisor
Rolf Johansson and Anders Robertsson (LTH)
Manfred Morari Automatic Control Lab. Zürich

Author(s)
Nicolaus Correll

Sponsoring organization

Title and subtitle
6-DOF Visual Servoing Using the Lie Group of Affine Transformations (Robotstyrning i sex frihetsgrader
med användning av datorseende och Lie-gruppen av Affina transformationer)

Abstract
In this thesis a visual servoing approach for uncalibrated systems with 6 degrees of freedom (DOF) is
evaluated. Assuming weak perspective, the observed motions of the robot end-effector are constrained to
affine trans-formations in the image space. This allows us to express the control error directly in terms of
an affine transformation in the camera images. By this approach, visual servoing is realized without
previous knowledge of the camera parameters or the kinematic properties of the robot. Similarly to
conventional image based visual servoing, but without the usual drawbacks, such as suboptimal
trajectories in cartesian space.
The system was evaluated for different camera configurations, regarding stability and precision, using
both a single camera and a stereo rig config-uration. Also, a motion primitive to define complex pick and
place tasks is proposed.
Applications of such an approach are in an industrial environment where a flexible behavior of the robot
is expected, e.g. handling slightly changing parts in a manufacturing line. Additional applications are in
harsh envi-ronments where conventional sensors are not suitable for some reasons or applications where
the kinematics of the robot are changing, resp. unknown, for example in the growing field of
reconfigurable robots.
Being an image based visual servoing approach, our method is more robust with respect to maintenance
and repair then position based visual servoing. The entity of sensor, actor and controller breaks up and
every system can be regarded in particular. A replacement of the camera, the end-effector or
even the whole kinematic setup does not involve modifications on the other parts of the system. Some
practical considerations were examined using a virtual robot envi-ronment and validated using a ABB 6-
DOF industrial robot and a stereo camera system.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
55

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.se

6-DOF Visual Servoing Using the Lie Group of

Affine Transformations

Nikolaus Correll

Supervision

Prof. Rolf Johansson∗

Prof. Manfred Morari‡

Dr. Anders Robertsson∗

Department of Automatic Control, Lund Institute of Technology∗

Automatic Control Laboratory, Swiss Federal Institute of Technology‡

June 29, 2002

Contents

1 Introduction 5
1.1 Outline of the report . 5
1.2 Visual Servoing . 6

1.2.1 Position based visual servoing 6
1.2.2 Image based visual servoing 6
1.2.3 Hybrid approaches . 7
1.2.4 Visual servoing using affine transformations 7

1.3 Problem formulation . 8

2 System description 9
2.1 The ABB IRB-2000 . 9
2.2 Camera System . 9
2.3 Vision System . 10
2.4 Virtual environment description 11

3 Methods 15
3.1 Mapping from task space to image space 15

3.1.1 Euclidean transformations in three dimensions 15
3.1.2 Projective transformations in two dimensions 15
3.1.3 General affine transformations in two dimensions . . . 16
3.1.4 Assumption of weak perspective 16
3.1.5 Lie groups and Lie algebras 17

3.2 Determining the control signal 18
3.3 Determining the control error 19
3.4 Calibration of the Jacobian 20

3.4.1 One Camera . 20
3.4.2 Multiple Cameras . 21
3.4.3 From image space to joint space - the inverse Jacobian 22

3.5 Controller . 22
3.5.1 Stability of the controller 24

3.6 Discrete time controller . 24
3.6.1 Stability of the discrete time controller 25

3.7 Image processing . 25

CONTENTS 2

3.7.1 Gaussian Pyramids . 26
3.7.2 Thresholding . 27
3.7.3 Contour detection . 27
3.7.4 Polygonal approximation 28
3.7.5 Point-in-polygon test 28
3.7.6 Floodfill . 29
3.7.7 Outlier rejection and IIR-filtering 29

4 Results 31
4.1 Image processing . 31
4.2 Experiments on the Virtual Robot 31

4.2.1 Calibration . 31
4.2.2 Single camera experiments 32
4.2.3 Stereo camera experiments 33
4.2.4 Camera placement . 34
4.2.5 Weighting of controller gain 34
4.2.6 Open-loop control . 35
4.2.7 Closed-loop without feed-forward 35

4.3 Experiments on the real robot 36
4.4 Motion primitives . 36

5 Discussion 45
5.1 Simulation and development with the Virtual Robot 45
5.2 Camera placement . 45
5.3 Precision vs. Imageresolution 46
5.4 Conclusions and further work 46

A Analytical derivation of the image Jacobian 49

B The epipolar constraint 51

Acknowledgements

I would like to thank Prof. Rolf Johansson from Department of Automatic
Control, Lund, and Prof. Manfred Morari, Automatic Control Laboratory,
Zurich, for the great opportunity to work on this thesis and the trust they
had into me.
Also, I thank my supervisors Anders Robertsson, Ph.D., Tomas Olsson, Jo-
han Bengtsson and Mathias Haage from whom I learnt a lot.
Finally, I would like to thank all the people of the department who provided
me with a friendly environment.
Being an exchange student at Lund University has been a great experience
for me and I am very happy to have been at the Department of Automatic
Control.

Nikolaus

Abstract

In this thesis a visual servoing approach for uncalibrated systems with 6
degrees of freedom (DOF) is evaluated. Assuming weak perspective, the
observed motions of the robot end-effector are constrained to affine trans-
formations in the image space. This allows us to express the control error
directly in terms of an affine transformation in the camera images. By
this approach, visual servoing is realized without previous knowledge of the
camera parameters or the kinematic properties of the robot. Similarly to
conventional image based visual servoing, but without the usual drawbacks,
such as suboptimal trajectories in cartesian space.
The system was evaluated for different camera configurations, regarding
stability and precision, using both a single camera and a stereo rig config-
uration. Also, a motion primitive to define complex pick and place tasks is
proposed.
Applications of such an approach are in an industrial environment where a
flexible behavior of the robot is expected, e.g. handling slightly changing
parts in a manufacturing line. Additional applications are in harsh envi-
ronments where conventional sensors are not suitable for some reasons or
applications where the kinematics of the robot are changing, resp. unknown,
for example in the growing field of reconfigurable robots.
Being an image based visual servoing approach, our method is more robust
with respect to maintenance and repair then position based visual servoing.
The entity of sensor, actor and controller breaks up and every system can
be regarded in particular. A replacement of the camera, the end-effector or
even the whole kinematic setup does not involve modifications on the other
parts of the system.
Some practical considerations were examined using a virtual robot envi-
ronment and validated using a ABB 6-DOF industrial robot and a stereo
camera system.

Chapter 1

Introduction

Automation is desired in environments which are unhealthy or for other
reasons unsuitable for human beings. Furthermore, automation can provide
immense time savings in certain applications, especially in system control
where the complexity of the plant is far beyond human capabilities [CRW98].
In both cases, automation increases the gain of the application, either due
to increased productivity or due to savings in personnel, not to mention the
prevention of injuries which are highly undesired and expensive. Thus, au-
tomation is highly demanded in an industrial environment, and has already
become very popular in manufacturing, as well as in domains which cope
with repetitive setups. In such cases, the environment is usually contrived
to suit the robot. This is not always feasible and makes automation difficult,
for example outdoors or in changing setups as at home e.g.
The latter cases demand for more complex approaches, usually involving a
higher number of sensors and a feedback control scheme to be more robust
to changes in the task setup. Expanding the perceptional capabilities of the
robot by vision is thereby an intuitive approach, not only due to the human
exemplar but also due to big advantages in hardware in the last decades.
Using vision in a feedback control scheme has become known as visual servo-
ing and many efforts have been made in this field, see for example [ECR92],
[HC94] or [HHC96] for a more comprehensive review.

1.1 Outline of the report

After a brief introduction to conventional visual servoing and our approach
in the remainder of this chapter, chapter 3 begins with a description of the
robot and camera system and the virtual environment used for simulation.
After that, the principles of affine and Euclidian transformations are pre-
sented, giving also a brief introduction to Lie groups and the Lie algebra.
After a description of the used control scheme, a brief outline to the used vi-

1.2 Visual Servoing 6

sion algorithms is given. Finally, the results with respect to different camera
positions and control strategies are presented and discussed.

1.2 Visual Servoing

State-of-the-Art visual servoing can be usually divided into two groups
which will be briefly described below. These are usually referred to as posi-
tion based visual servoing (PBVS) and image based visual servoing (IBVS)
[HHC96].

1.2.1 Position based visual servoing

In position based visual servoing, the control error needed for feedback is
generally expressed in Cartesian space, mirroring industrial needs where
the coordinates of the goal and the robot end-effector are usually known
in cartesian coordinates. This usually requires a 3D-reconstruction of the
world based on (stereo) camera images. Besides that the exact transfor-
mation between the camera and the end-effector has to be known, a linear
approximation to the highly non-linear camera parameters has to be found,
known as the Camera Calibration problem, see also [Ols01].
After determination of the Cartesian error, a control signal has to be gen-
erated in actuator space, requiring prior knowledge about the inverse kine-
matic of the robot. The inverse kinematic of the robot is the transformation
from Euclidian 3D space to the actuator setup of the robot. This transfor-
mation is in most cases highly non-linear and often due to singularities not
unique solvable [Cra89].
Finally PBVS approaches inherently depend on having an accurate 3D
model of the target object [HHC96] what is not always available and makes
PBVS ineligible to handle with slightly changing parts, e.g. in a manufac-
turing environment.

1.2.2 Image based visual servoing

In image based visual servoing, the control error in the feedback loop is ex-
pressed directly in image coordinates. The non-linear relation between the
error in the image and the control signal for the robot is hereby approxi-
mated by a linear transformation, the so called image Jacobian, see section
3.4. An error could be for examples image features taken from two different
camera positions, usually provided by a stereo rig, to introduce information
about the three-dimensional setup of cameras and feature point.
The Jacobian can be generated either analytically, assuming a projective
camera projection, see A, or by doing linear-independent test movements
in actuator space [Jae97]. [Jae97] suggests also an adaptive update of the
Jacobian, based on the performed motions of the robot.

1.2 Visual Servoing 7

A drawback of IBVS are the presence of singularities in the Jacobian, lead-
ing to possible unstable control [HHC96]. Another problem is that the
performed trajectories are often not well behaved in Cartesian space. An
extreme version of this problem has become known as the Chaumette Co-
nundrum, and is depicted in Figure 1.1: The desired pose corresponds to
a pure rotation about the optical axis. As IBVS chooses the shortest path
in image space, which is a straight line, the end-effector, respectively the
camera, performs an infinite retreat, corresponding to a singularity in the
Jacobian [CM00].

Figure 1.1: Robot end-effector with four feature points and the desired pose
which is rotated by 180o, illustrating the Chaumette Conundrum: As IBVS
chooses the shortest path in image space, a straight line, the end-effector
performs an infinite retreat.

1.2.3 Hybrid approaches

The pros and cons with PBVS and IBVS has lead to a number of hybrid
approaches. For example, in [HC00] the z-axis rotational and translational
components become decoupled from the remaining degrees of freedom, pro-
viding a solution to the Chaumette Conundrum. Chaumette [CM00] himself
uses methods of 3D reconstruction, with the usual drawbacks as pointed out
in section 1.2.1.

1.2.4 Visual servoing using affine transformations

In this project, we constrain the perceived motions of the end-effector to
the Lie group (section 3.1.5) of affine transformations, consisting of trans-
lation, rotation, dilation, squash, shear and stretch (3.1.3). The group of
affine transformations describes the transformations that the image of a pla-
nar object which moves in 3D-space can undergo when viewed under weak

1.3 Problem formulation 8

perspective (3.1.4) from a camera. An important feature of this approach
is, that the representation of 3D-motions by affine transformations in a 2D-
single image embeds knowledge of the 3D-world configuration. The control
error in the feedback loop is hereby the difference between a desired affine
transformation of the robot and the performed transformation with respect
to an initial position of the end-effector (section 3.3).
Feedback control of a 5-DOF robot using this approach was realized in
[DC00]. The approach has none of the drawbacks of PBVS as it is not
necessary to have any prior knowledge of the camera configuration. Also,
the approach is not dependent on the kinematics of the robot, which makes
it interesting for robots with changing kinematics [YZD02].
The Chaumette Conundrum as an extreme formulation for the drawbacks in
IBVS does not play a role either, as the rotation is singled out in the affine
mode of rotation.

1.3 Problem formulation

The goal of this project is to implement visual servoing using the Lie Group
of affine transformations on a 6-DOF industrial robot. Thereby, it is as-
sumed, that prior knowledge of the kinematics of the robot and the camera
parameters are not available.
This involves computer vision as well as control problems: Feature points
on the end-effector have to be detected at frame rate and an appropriate
controller has to be found.
The involved systems, the robot kinematics and the camera projection, are
highly non-linear and the influence of this nonlinearities have to be exam-
ined.
Finally, motion primitives to run simple tasks, such as pick and place ap-
plications, have to be defined and implemented. All above mentioned steps
have first to be implemented in a virtual enviroment and then applied to
the ”real” system.

Chapter 2

System description

For experiments, a 6-DOF industrial robot and a stereo camera system are
available. Robot, controller and vision system form a distributed system,
connected by conventional 100BaseT-ethernet. The full system is depicted
in Figure 2.1 and is presented in the following sections.

2.1 The ABB IRB-2000

The ABB (Asea Brown Boveri) IRB 2000 is an industrial robot. The robot
is built up by two large arms and a wrist (Fig. 2.2), having 7 links connected
by 6 joints. Due to its 6 joints, the end-effector is able to reach any desired
position and orientation within its task space [Cra89].
The robot has a built-in controller for each of its joints for position control.
These controllers are cascaded PID1 Controllers with an outer position loop
around an inner velocity loop (Fig. 2.3). The velocity signal used in the inner
loop is obtained by differentiating and low-pass filtering the position signal.
The robot can be controlled from Matlab/Simulink by sending trajectories
of position- and velocity data to the robot through a local network. It is also
possible to send a position signal and the duration of the desired motion.
In this case, the user has no influence on the resulting trajectory. This is
usually not desired but simplifies experiments where the dynamics of the
robot are not of interest.

2.2 Camera System

The camera system consists of two Sony DFW-V300 digital cameras. The
cameras are operating with a frame rate of 30 images per second in 24Bit-
color mode. The user has full control over external parameters such as

1Proportional-Integral-Derivative

2.3 Vision System 10

Figure 2.1: The IRB 2000 is observed by two Sony IFW-V300 Cameras
which are connected using a Firewire connection to the image processing
workstation. The Matlab/Simulink controller polls feature points of the
robot end-effector and generates the new control signal for the robot. Robot,
image processing unit and controller are connected via a 100MBit TCP/IP
network connection.

orientation and pose in space and intrinsic parameters such as opening time,
shutter and gain.
The images are read into a dedicated computer using a FireWire (IEEE-
1394) connection. The frame rate of 30Hz is independent of the sampling
rate of the robot controller, as they form a distributed system.

2.3 Vision System

The image processing is a multi-threaded application and runs on a work-
station at frame rate. After capturing the images from the cameras, another
thread extracts the feature points of the end-effector in both images. The
former two steps are repeated continuously. A third thread performs a
blocking communication with the robot controller: The thread waits until
the controller requests new data and sends the latest feature points avail-

2.4 Virtual environment description 11

Figure 2.2: The six degrees of freedom of the ABB IRB 2000

able. This ensures that the robot controller does not get old data and can
operate on a different sampling rate then the cameras.
If necessary, the resulting time lag due to the network transfer can be mea-
sured and compensated [Bou01].

2.4 Virtual environment description

As experiments on the real robot are time consuming and dangerous - not to
mention that the robot usually is the ”bottle-neck” device, resp. experiments
are very expensive in a productive environment - a virtual environment was
developed at the Department of Automatic Control, Lund Institute of Tech-

Figure 2.3: The internal joint controllers for the six joints of the ABB IRB
2000 [Ols01]

2.4 Virtual environment description 12

Figure 2.4: The ”Virtual Robot”. Here, the IRB 2000 has been set up
for interaction with small dices lying on a table. The scene is observed by
three cameras, one attached to the end-effector and two cameras in a stereo
configuration in front of the robot (not shown in the Figure)

nology. The virtual environment can be controlled from Matlab/Simulink
similarly to the real robot, by providing joint angle references. The system
allows arbitrarily placement of an IRB-2000 and any three dimensional ob-
ject with different textures (Fig. 2.4) in a 3D OpenGL2 environment. The
objects can be defined using an Extended Markup Language (XML) descrip-
tion. Furthermore, it is possible to place any number of cameras into the
3D environment (Fig. 2.5), whereby the intrinsic parameters of the camera,
e.g. focal length, can be defined by the user. The whole system is depicted
in Figure 2.6.

Providing this functionality, the Virtual Robot allows fast development
of high-level control algorithms using vision. Thereby vision algorithms,
robot controller, network communication and simulation can be run on the
same machine or distributed.
Up to now, there are no dynamic effects implemented, the robot moves
instantaneously to the desired position and new images can be obtained.
To implement the robot dynamics, a system identification has to be made
and applied to the environment. This has been already done in a previous
version of the virtual robot based on Java3D3 and was examined in [dM02].

2OpenGL is a cross-platform standard for 3D rendering and 3D hardware acceleration
3Java3D is a platform-independent 3D graphics application programming interface for

2.4 Virtual environment description 13

Figure 2.5: To the left, one can see the image produced by the camera
mounted on the robot end-effector. To the right are the images taken from
the stereo camera setup. The images are 320 × 240 pixels in 24Bit color.
Compare with Figure 2.1.

JavaTM

2.4 Virtual environment description 14

Figure 2.6: The core of the Virtual Robot is an OpenGL renderer engine.
Provided with an XML description of the scene and joint angles from Mat-
lab/Simulink over the network, images of the virtual environment are ren-
dered and processed. If desired, results from the image processing can be
used in a feedback loop with the controller.

Chapter 3

Methods

3.1 Mapping from task space to image space

To control the robot motion using cameras, we have to know how changes
in the actuator space of the robot, e.g. the joint positions, affect the images
taken from the camera(s). This problem is usually referred to as the visual
kinematics of the robot [CG96].

3.1.1 Euclidean transformations in three dimensions

Regarding a rigid body in cartesian1 space, any possible transformation is
a combination of translation and rotation. In a three dimensional space we
have translations along the axis X, Y and Z and rotations around them.
Altogether, the object has 6 degrees of freedom (DOF). These modes of
transformation on R3 together with the identity element, the transforma-
tion which maps each point to itself, build the SE(3) group, the group of
Euclidean2 transformations. The SE(3) group fully describes the possible
transformations of a rigid body in 3D-space.

3.1.2 Projective transformations in two dimensions

Observing this transformations with a camera, the observed object becomes
projected onto the image plane in R2. The group which describes all possible
projective transformations of a rigid body in two dimensional space has 8
dimensions and is known as the P (2) group. The number of dimensions can
be explained as follows: Transformations on R2 can be described by a 3× 3
matrix in homogeneous coordinates. Thereby, the third value of a point
in R2 is always scaled to 1. This implies a loss of one degree of freedom,
yielding 8 = 9− 1 modes of transformation.

1After René Descartes, French philosopher, 1596∗ in France, 1650† in Sweden
2After Euclid of Alexandria, Egyptian mathematician, 325∗ b.c- 265† b.c.

3.1 Mapping from task space to image space 16

3.1.3 General affine transformations in two dimensions

If the observed object is planar and viewed under weak perspective (section
3.1.4), the projective transformations in the camera images can be com-
pletely described by the GA(2) group, a 6-dimensional subgroup of the
P (2) group [DC00]. GA(2) is the group of all affine transformations on
two-dimensional space and can be broken down as follows:

1. x axis translation

2. y axis translation

3. Rotation about the origin

4. Dilation about the origin

5. Shear (squash y, stretch x)

6. Shear at 45o to (5)

These transformations can be parameterized by α and represented by ma-
trices in homogeneous coordinates, yielding pure transformations in each of
the above mentioned six modes of deformation:

M1 =

1 0 α
0 1 0
0 0 1

 M2 =

1 0 0
0 1 α
0 0 1

M3 =

cosα − sinα 0
sinα cosα 0

0 0 1

 M4 =

eα 0 0
0 eα 0
0 0 1

M5 =

eα 0 0
0 e−α 0
0 0 1

 M6 =

coshα sinhα 0
sinhα coshα 0

0 0 1

(3.1)

3.1.4 Assumption of weak perspective

Considering a pinhole camera model, the perspective projection of a point
P = (X, Y, Z)T in world coordinates to a point p = (x, y, f) in camera
coordinates, where f is the focal length of the camera, can be expressed as
follows (see also Fig. 3.1):

x = f X
Z

y = f Y
Z

(3.2)

Equations (3.2) are non-linear due to the factor 1/Z and do not preserve
distances between points or angles between lines [TV98]. To turn them into
linear equations a classical approximation is the weak perspective camera
model. This model requires, that distances between scene points are much
smaller then the average distance of the scene points from the camera center.

3.1 Mapping from task space to image space 17

Figure 3.1: The perspective (pin-hole) camera model

This assumption is reasonable where small objects are viewed from two or
three meters distance [HC94]. Equations (3.2) can then be approximated
by

x = f X
Z ≈ f

Ẑ
X

y = f Y
Z ≈ f

Ẑ
Y

(3.3)

where Ẑ is the average distance of the scene points from the viewing camera.
Note that the weak perspective camera model is a scaled orthographic pro-
jection and should not be confused with the affine projection camera model
as the scaled orthographic projection is a special case of affine projection
[HHC96].

3.1.5 Lie groups and Lie algebras

A Lie3 group is a differentiable manifold obeying the group properties which
also satisfies the additional condition that the group operations are continu-
ous. Group properties are the existence of an identity element and an inverse
element given an associative multiplication. A Lie algebra is a logarithm of
a Lie group and thus a Lie group is an exponential of a Lie algebra. A more
precise definition of Lie groups and algebras may be found in [BD85].
The matrices in Equation (3.1) are describing continuous one-dimensional
transformations on R2, parameterized by α. Note that setting α to zero
yields the identity element. Differentiating with respect to α and evaluating
at α = 0 yields generators Gi of a Lie Group and form a basis for a Lie

3After Marius Sophus Lie, Norwegian Mathematician, 1842∗-1899†

3.2 Determining the control signal 18

algebra. For GA(2) the generators are:

G1 =

0 0 1
0 0 0
0 0 0

 G2 =

0 0 0
0 0 1
0 0 0

G3 =

0 −1 0
1 0 0
0 0 0

 G4 =

1 0 0
0 1 0
0 0 0

G5 =

1 0 0
0 −1 0
0 0 0

 G6 =

0 1 0
1 0 0
0 0 0

(3.4)

whereby

L̃i =
dMi(α)

dα

α=0

x
y
1

 (3.5)

is a vector field and Gi is defined as

Gi =
dMi(α)

dα

α=0

(3.6)

Considering a Lie group as an exponential of a Lie algebra, an affine transformation
matrix A can be obtained from a vector A by the exponential map:

A = e
P

i AiGi (3.7)

where
eX = I + X +

1
2
X2 +

1
6
X3 + . . .

is the Taylor expansion of eX and i ∈ [1 . . . 6].

3.2 Determining the control signal

As was shown in section 3.1.3, the desired end-effector position in Euclidian space
is directly related to an affine transformation in image space. Knowing a goal in
Euclidian space, a straightforward approach is to move the robot to this position
and measure the affine transformation it performs in image space. This simple
proceeding is used throughout our experiments but is possibly not feasible in an
industrial context. In this case, we have to teach once how end-effector and object
”looks” in the desired position (Teach by showing).

Then we have to identify the goal object, by marking it manually in one image
or detecting it with some higher level image processing, and determine the affine
transformations for both the gripper and the goal object to the taught position,
~Adice and ~Agripper. The desired transformation is then given by

~Ades = ~Adice ⊕ ~Agripper, (3.8)

where
~A⊕ ~B = e

P
i AiGie

P
i BiGi , (3.9)

considering that a Lie group is an exponential of a Lie algebra.

3.3 Determining the control error 19

Figure 3.2: Identifying the dice and the gripper with higher level vision,
we can get the affine transformations to a once taught ”standard” position
(dark-gray). The desired affine transformation is the ”sum” of these both
transformations.

3.3 Determining the control error

The control error in the visual servoing approach realized in this thesis is the dif-
ference between the desired and the measured affine transformation with respect
to an initial position. For measuring the affine transformation of a planar object
between two subsequent images, one need at least 3 unique feature points located
on the object. The matrix A of the affine transformation can than be found by
solving the following equation system:

A

x1j

y1j

1

 =

x2j

y2j

1

 (3.10)

with

A =

a1 a2 a3

a4 a5 a6

0 0 1

 (3.11)

Here, x1j denotes the jth featurepoint in the initial image and x2i in the actual
image, y respectively.
Using (3.7) yields: ∑

i

AiGi = log A (3.12)

Looking at G1 and G2 in eq. (3.4) allows us to pick values for A1 and A2 directly
from log A. The other values of A can be found by solving four equations with four
unknowns, as the last row of log A is always 0 (compare with equation (3.11)).
Knowing the desired transformation the end-effector has to perform in the image,
the measured A can serve as control error.

3.4 Calibration of the Jacobian 20

3.4 Calibration of the Jacobian

After determination of the control error we need to find a control signal in robot
actuator space. This is usually done by considering a function f(d~x) which maps
positions ~x in robot-control space to values in sensor space ~s. This can be expressed
as

~s = f(~x), (3.13)

where f(~x) is a (usually) nonlinear function and therefore hard to estimate, es-
pecially if the the sensor setup is unknown. Assuming that all partial derivatives
for f(~x) exist, the relation in (3.13) can be approximated by a first-order Taylor
expansion, yielding:

~s(~x) ≈ ~s(~x0) + J(~x− ~xo)
⇒ ~s(~x)− ~s(~x0)︸ ︷︷ ︸

d~s

= J (~x− ~x0)︸ ︷︷ ︸
d~x

⇒ d~s = J · d~x, (3.14)

where J is the Jacobian4 Matrix of f(~x). The Jacobian is a matrix build up by the
derivative of each input to each output and thus is an indicator for how much an
output, a sensor value, is affected by a certain input, a motion of the robot.
In IBVS J has become known as image Jacobian (section 1.2.2) and is an ap-
proximation of the non-linear camera calibration and the robot kinematics. An
analytical approach to the image Jacobian is given in A.
Here, the Jacobian relates motions of the robot, given by a velocity in jointspace
d~j, to the perceived motion in image space, given by their affine transformation
dA. Thus,

dA = Jd~j. (3.15)

3.4.1 One Camera

Using only one camera, d~x and d~s are vectors in R6 according to the 6 degrees
of freedom of the robot and the 6 degrees of freedom in affine space (see section
3.1.3). The Jacobian indicates in this case how much a change in joint space affects
a changes in affine space.
If the transformation from camera space to robot space is unknown, in this case
by using uncalibrated cameras in unknown positions, the Jacobian can only be
estimated by performing a series of test motions, yielding the following matrix
equation: (

d ~A1 . . . d ~An

)
= Jest ·

(
d~x1 . . . d~xn

)
, (3.16)

where n is the number of test movements and d~x and d ~A are column vectors in
joint space, respectively affine space. To get a unique solution to (3.16), it is ob-
vious that both matrices must have rank 6. Therefore, it is a necessary condition
that there is a minimum of 6 test movements to perform, where every joint has to
be excited at least once. On the right hand side of (3.16), this is guaranteed by
choosing d~x = kei where ei is a basis vector of R6 with i ∈ {1 . . . 6} and k 6= 0 a
weight. In this configuration, each joint will be excited separately and the resulting

4After Carl Gustav Jacobi, German mathematician, 1804∗ − 1851†

3.4 Calibration of the Jacobian 21

affine transformation can be measured in image space.
Unfortunately, this proceeding does not guarantee a well conditioned matrix on the
left hand side of (3.16). Bad conditioment occurs then, when motions in joint space
generate only little changes in the image. Then, the measurement noise caused by
the computer vision may be greater than the actual transformation, resulting in
an almost random entry in the Jacobian for this particular joint to affine mode
relation. Some of those cases are more obvious than others. For example one may
consider a situation where the image plane is parallel to the end-effector and the
end-effector moves towards the camera. In affine space this causes only to a change
in scaling but, due to the bad depth resolution of the camera image this change will
be relatively small. In the worst case, the scale mode of the affine transformation
becomes equally weighted as transformations in other modes, due to image noise.
This leads to an ill-conditioned Jacobian and unstable control. A similar problem
was already pointed out in [DC00] and referred to as extrinsic degeneracy. Hereby,
the rank of the Jacobian drops from 6 to 4.
To get rid of the measurement noise, an approach is to change the weight k for
each movement to emphasize some joints more then others, and though the change
in image space. In this case, a prior knowledge of the camera setup is necessary.
Changing k dynamically with respect to a maximum change in affine space may be
feasible in certain configurations but can not assure equal excitation in every affine
mode with finite test movements.
Finally, if the range between the minimum and the maximum weight k becomes
to big, the Jacobian becomes ill-conditioned as well, as changing k does not influ-
ence the matter that, due the camera setup, the Jacobian predicts wrong relation
between certain combinations of joint movements and affine transformations.

3.4.2 Multiple Cameras

A work-around to the problems mentioned in the former section is to use more
than one camera. If the cameras are well placed (see section 5.2), movements in
joint space will lead to k linear independent transformations in affine space, where
k denotes the number of cameras used. Formula (3.16) will then expand to

d ~A1, 1 . . . d ~An, 1
...

. . .
...

d ~A1, k . . . d ~An, k

 =

Jest1
...

Jestk

 · (d~x1 . . . d~xn

)
. (3.17)

For a setup with two cameras (k = 2) and 6 test movements (n = 6), the matrix
of affine transformations will be a (12× 6) matrix, the Jacobian a (12× 6) and the
matrix of changes in joint space a (6×6) matrix. Now eq. (3.17) is over-constrained,
promising a well-conditioned Jacobian. As can be seen in section (5.2) one has to
be cautious: If the cameras are badly placed, the affine transformations Ai, k for
the different cameras may become linear dependent in all modes which yields to
the same problems as in section (3.4.1), as the second camera becomes obsolete.
Last but not least, the rank of the matrix of stacked affine transformations will be
reduced by one because one mode of deformation will always be linear dependent.
This phenomenon can be observed as well in “classical” visual servoing where the
Jacobian maps directly to translations in the image space. Assuming a stereoscopic
setup, a featurepoint will perform a 4-DOF translation in image space, whereby

3.5 Controller 22

one translation is linear dependent on one of the other three (see [HHC96]). This
can be expressed via the epipolar constraint [TV98].

3.4.3 From image space to joint space - the inverse Jacobian

In the previous section we showed how to relate motion of the robot end-effector
to perceived motion in the images. However, as we want to control the robot joints
using camera information we need a rule to map from image to joint space. In the
simple case where J is quadratic and non-singular (section 3.4.1) this is given by

d~x = J−1d ~A (3.18)

Using a multiple camera setup to estimate the Jacobian (section 3.4.2) yields an
over-determined Jacobian. Then, the (pseudo)-inverse is given by [HHC96]

J+ = (JT J)−1JT (3.19)

and equation (3.18) becomes
d~x = J+d ~A. (3.20)

3.5 Controller

The robot is controlled using a PID-controller with additional feed-forward as sug-
gested in [CG96]. Furthermore, the controller gain P is enhanced by a diagonal
gain matrix G.
The control scheme is depicted in Fig. 3.3. Latencies in the system, depending
on network transfer and image processing, are depicted with latency blocks in the
control scheme.

J + JR(z)

J +

PARef A
est

est

VisionRobot

A

Performed
Affine Transformation

PID

PID Controller

K*u

K*u G*u

Gain-Matrix

T

z-1

Discrete-Time
Integrator

z-1

1/Tz

Discrete Time
Derivative

Aref

Desired
Affine Transformation

Figure 3.3: The full control scheme with additional feed-forward path. La-
tencies in the control path are depicted with latency blocks.

Neglecting the latencies and reducing the PID controller to a proportional con-
troller, yields the continuous time ”transfer function” (MIMO5 system) for the

5Multiple-Input-Multiple-Output

3.5 Controller 23

feedback loop (no feed-forward):

~A =
1
s
JGPJ+

estR(s)(~Aref − ~A)

⇔ ~A = (JGPJ+
estR(s))(Is + JGPJ+

estR(s))−1 ~Aref (3.21)

Note, that Jest is the estimated Jacobian from section 3.4 and J is the real world
Jacobian. J+

est is the (Pseudo)-Inverse according to section 3.4.3. Finally, ~A is a
vector of the Lie Algebra of GA(2) according to section 3.1.5 and I is the identity
matrix.
If we assume that the robot has negligible dynamics, that is

R(s) ≈ I (3.22)

and that the estimated Jacobian equals the real world Jacobian,

JJ+
est ≈ I (3.23)

equation 3.21 simplifies to
~A =

GP

s + GP
~Aref (3.24)

The step response to (3.24) can be seen in Figure 3.4. One can observe, that the
time until a steady state is reached is considerable and depends on the controller
gain GP .
Including the feed-forward into (3.21) yields

Step Response

Time (sec)

A
m

pl
itu

de

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.4: The step response for eq. (3.24) and GP = 1

~A =
1
s
JR(s)

(
sJ+

est
~Aref + GPJ+

est(~Aref − ~A)
)

~A = (sJJ+
estR(s) + GPJJ+

estR(s))(Is + GPJJ+
estR(s))−1 ~Aref (3.25)

3.6 Discrete time controller 24

Employing the same assumptions as in eq. (3.22) and eq. (3.23) simplifies the
transfer function for the system with both feed-back and feed-forward (eq. (3.25))
to

~A = ~Aref (3.26)

This behavior is obviously preferable to a control scheme without feed-forward
because the trajectory following becomes better.

3.5.1 Stability of the controller

Looking at the control signal in Figure 3.3, velocities in joint space, and disregard
the feed-forward, as it has no influence to stability (compare the ”poles” of (3.25)
and (3.21)), we have

d~j

dt
= GPJ+

est(~Aref −A)

J
d~j

dt
= JGPJ+

est(~Aref −A)

J
d~j

dt
= −GPJJ+

est
~A+ GPJJ+

est
~Aref (3.27)

Remembering the state-space description form [FPEN95]

~̇x = F~x + G~u

~y = H~x + J~u

and comparing with 3.27 yields to a stable system if all eigenvalues of F = −GPJJ+
est

are in the left half plane. This is equivalent to the well known sufficient condition
to ensure global asymptotic stability in visual servoing [CM00]

J+
estJ > 0 (3.28)

for positive gain (GP > 0).
In our approach to determine J+

est (section 3.4) we have a fixed Jacobian, that is
J+

est = J+
est(t). In that case, it is impossible to demonstrate when condition (3.28)

is ensured. However, this condition is difficult to check and exploit in practise.
Here, the stability of the system seems to be independent of the controller gain,
but with increasing gain, the assumption of no robot-dynamics does not hold any
longer and the system becomes unstable.

3.6 Discrete time controller

In discrete time, the process given by equation (3.15) becomes

4 ~Ak = J4~jk, (3.29)

where
4 ~Ak = ~Ak+1 − ~Ak

and
4~jk = ~jk+1 −~jk.

3.7 Image processing 25

3.6.1 Stability of the discrete time controller

Looking at the control signal in discrete time, we get

~jk+1 −~jk

h
= GPJ+

est(~Aref − ~Ak), (3.30)

where h is the sampling interval. Plugging now equation (3.30) into (3.29), yields

~Ak+1 − ~Ak = J(~jk+1 −~jk)

J(~jk+1 −~jk) = JhGPJ+
est(~Aref − ~Ak)

~Ak+1 = ~Ak + hGPJJ+
est(~Aref − ~Ak) (3.31)

Considering now the state-space description for discrete time [FPEN95]

~xk+1 = Φ~xk + Γ~uk

~yk = H~xk + J~uk

(3.32)

we can rewrite equation (3.31) to

~Ak+1 = (I− hGPJJ+
est)Ak + hGPJJ+

est
~Aref . (3.33)

A discrete-time, linear system is stable, if all eigenvalues of Φ = I − hGPJJ+
est

are inside the unit circle. If we get back to our assumption for perfect calibration
(3.23), Φ becomes

Φ = I− hGP I, (3.34)

being stable for

0 ≤ GP ≤ 2
h
I. (3.35)

Thus, the system stability is dependent on the sampling interval.

3.7 Image processing

To determine an affine transformation it is necessary to keep track of some features
in image space, at least three (section 3.3). In our experiments four feature points
were attached to the face of the gripper (Figure 3.5) by four red dots on a blue
trapezoid. The marked feature points are then detected at frame-rate by the fol-
lowing algorithm.
After lowpass filtering of the Image using Gaussian Pyramids (3.7.1) to smooth

the image and thresholding (3.7.2) to get rid of image components which do not
have the expected intensity, respectively color, the blue plane of the RGB6 image
will be searched for contours (3.7.3), respectively connected areas with similar in-
tensity/color. Then, contours which match certain criteria on size will be passed to
a polygon approximation algorithm (3.7.4). Polygons, which are convex and have
exactly four vertices may be the outer contour of the trapezoid corners.
Unfortunatly the vertices of the polygon are, especially for estimating the Jaco-
bian, not sufficiently accurate. To gain sub-pixel accuracy, it is necessary to find

6Red-Green-Blue color model

3.7 Image processing 26

Figure 3.5: The robot end-effector. Four feature points are marked with red
dots on a blue trapezoid.

the feature points which are manually attached to the gripper, where the polygon
found in the previous step constrains the search window (3.7.5). Using this search
window, the red plane will be searched for contours and the contours will be drawn
in an empty image. In the next step, this binary image will be segmented using a
floodfilling algorithm (3.7.6). The segmented areas are considered as feature points
and their center of gravity yields an observation of there coordinates with sub-
pixel accuracy. If four feature points are found, they are sorted clock-wise with the
upper-left featurepoint first and returned to the controller after IIR-Filtering and
outlier-rejection (3.7.7).
The algorithms below are implemented using the Open Source Computer Vision
Library (OpenCV) and the Intelr Image Processing Library (IPL). OpenCV is
mainly developed by the Intel Corporation and supports the user with a wide va-
riety of tools for image interpretation. Building on IPL that implements low-level
operations on digital images, OpenCV provides high-level algorithms for calibra-
tion techniques, feature detection and tracking, shape analysis, motion analysis,
3D reconstruction and object segmentation and recognition. Most of the functions
have been assembler optimized to take advantage of Intelr architecture [Cor01].

3.7.1 Gaussian Pyramids

First of all, we have to get rid of acquisition noise. Therefore, the image becomes
convoluted with a 5× 5 pixels gaussian kernel. After that, it will be down-sampled
by rejecting even rows and columns, reducing the image to a fourth of its original
size. Then, the image will be up-sampled by injecting even zero rows and columns
and convolution with with the same kernel as before multiplied by 4 for interpolation
[Cor01]. As the gaussian kernel is separable, the 2D-convolution can be replaced
by first convolving all rows and then all columns with a 1D gaussian kernel having
the same σ [TV98]. The 1D gaussian kernel can be built by sampling a continuous
Gaussian:

p(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (3.36)

3.7 Image processing 27

where σ is the desired standard deviation, the ”width” of the gaussian shape and
µ is half the filter width.

3.7.2 Thresholding

As we are only interested in certain intensities, respectively colors, we threshold the
color plane of interest. Hereby, a pixel value y remains unchanged if it is above a
certain threshold θ, otherwise it will be set to zero [Cor01]:

y = (y > θ y : 0). (3.37)

The result of such a thresholding operation is depicted in Figure 3.6.

Figure 3.6: The blue color-plane of an image of the robot end-effector after
thresholding. As the blue trapezoid is much brighter then the background
it is clearly to spot. The detected vertices of the trapezoid are marked with
circles.

3.7.3 Contour detection

To find the outer contour of the robot end-effector, respectively the blue trapezoid,
the choice of an appropriate threshold in 3.7.2 is necessary. After that, the image
is treated as a binary image, pixels with value zero are treated as 0-pixels, pixels
with values different from zero are treated as 1-pixels. Then, the algorithm find
connected areas of 0-pixels and 1-pixels. There are two common sorts of connectiv-
ity, the 4-connectivity and the 8-connectivity. Two pixels with coordinates (x′, y′)
and (x′′, y′′) are called 4-connected if

|x′ − x′′|+ |y′ − y′′| = 1

and 8-connected if
max(|x′ − x′′|, |y′ − y′′|) = 1.

Graphically, these relations are looking like that

♦ ¨ ♦
¨ ¥ ¨
♦ ¨ ♦

3.7 Image processing 28

where ¨ are 4- and 8-connected to ¥, and ♦ are 8-connected to ¥.
Using this relationship, the image is broken into several non-overlapped 4-connected
and 8-connected components, whereby 8-connectivity is used with 1-pixels and 4-
connectivity with 0-pixels to avoid topological contradiction [Cor01].
0-components making up the background, a 0-component directly surrounded by
a 1-component is called the hole of the 1-component. An example can be seen in
Figure 3.7 where 1-components and holes are depicted by their borders.

Figure 3.7: To the left the blue color-plane of an image of the end effector
is shown. After thresholding with a suitable value, 1-component borders
(white) and holes (black) have been marked (right image).

3.7.4 Polygonal approximation

As we have an a-priori knowledge about the expected geometry of the contour, we
try now to find contours, which are quadrangular and neither to large nor to small.
As the latter conditions are easily satisfied, the first condition requires a polygonal
approximation.
The main idea behind a polygonal approximation is to find and keep only dominant
points of the contour, for example inflection points or local maxima and connect
them by straight lines. The underlying algorithms are too extensive to be covered
in this report, for a brief introduction the reader may refer to [Cor01].
An example of a successful polygonal approximation of the end-effector contour can
be seen in Figure 3.8.

3.7.5 Point-in-polygon test

As Figure 3.8 shows, the polygon vertices are determined with low accuracy. As
the edges of the trapezoid are not very reliable after thresholding due to lighting
effects, accuracy can only be increased by finding the red dots on the blue trapezoid.
Therefore, we threshold the red color plane of the image with a suitable threshold
and search for contours (section 3.7.3) within the trapezoid. To determine whether
a point is within the trapezoid or not, we use the following algorithm:
Considering a polygon with N vertices pi, we connect every point pi with the
test-point. This divides the polygon into slices with angles αi, where αi is always
determined for subsequent points (compare Figure 3.9). If the sum

∑N
i=1 αi = 2π

the point is within the polygon, if the sum equals zero, it lies outside.

3.7 Image processing 29

Figure 3.8: Polygonal approximation of the trapezoid contour. Outer ver-
tices are marked with circles. It can be observed, that, due to thresholding,
the vertices of the polygon are not very accurate.

Figure 3.9: Point-in-polygon test: If the sum
∑N

i=1 αi = 2π the point is
within the polygon (left), if the sum equals zero, it lies outside (right).

3.7.6 Floodfill

To segment areas in a binary image, floodfilling them is a suitable method. When-
ever a pixel value is 1, it will be taken as seed-pixel for the floodfilling algorithm
and marked with an increasing color. Then, the the flood filling process propagates
and analyzes the 8-connectivity of the seed point until it reaches the image borders
or cannot find any new pixels to fill. The result are connected components in the
image, each marked with an individual color.

3.7.7 Outlier rejection and IIR-filtering

A measurement of the four feature points is considered as an outlier, when the
Euclidian distance of at least one featurepoint to his predecessor in the former
image is greater than a certain threshold. In this case, the feature point detector
holds the last value.

3.7 Image processing 30

Otherwise, the detected feature points are IIR (Infinite Impulse Response)7 filtered
and returned to the controller. This is done by an Exponential Averager :

~Fnew = ~Fold + α
(
~Fnew − ~Fold

)
, (3.38)

where ~F is a vector of feature points. Hereby, a suitable value for α has to be
chosen, preferably in the interval of

1 ≥ α ≥ Sampling rate of the robot controller
Sampling rate of the image processing

(3.39)

as a trade-off between tracking performance (optimum with α = 1) and noise
reduction (α ¿ 1).

7An IIR filter produces an output that is the weighted sum of the current and last
inputs and the past outputs

Chapter 4

Results

Most experiments in this thesis were carried out using the virtual environment
(2.4). We assume, that experiments with unsatisfying results in the virtual world,
such as instability or lack of precision, become worse in the real world. In such
cases, we waived the experiments on the real robot.
Furthermore, we assume for our particular experiments, that methods we found as
being better then others in the simulation are also better in the real world.

4.1 Image processing

The image processing emerged as being the most delicate part in visual servoing.
As the feature point detection is very reliable in the virtual environment - the fea-
ture points are detected in almost every possible orientation and position of the
end-effector, as long as they are visible - in the real world, a rotation of the end-
effector requires an adaption of the chosen thresholds what is not feasible in real
time control. However, under good lighting conditions, experiments are possible.
An example of a successful detection of the end-effector feature points is shown in
Figure 4.1.

4.2 Experiments on the Virtual Robot

As pointed out in section 3.4, the first and most important step in visual servoing
is the calibration of the Jacobian (4.2.1). Using calibration method that showed
the best performance, we run experiments with only one camera (4.2.2). Using one
camera yields good results, but the system is not stable in all camera configurations.
Therefore, we try different setups using two cameras (4.2.3). This yields to robust
visual servoing and is further examined regarding camera placement (4.2.4) and
open-loop control error (4.2.6).

4.2.1 Calibration

For calibration of the Jacobian the best results were obtained using the method
described in section 3.4.1. That is, moving the robot end-effector in every possible
direction in joint space by a fixed angle. It is also possible to move in arbitrary,

4.2 Experiments on the Virtual Robot 32

Figure 4.1: Using the real cameras, we are able to detect the feature points
on the robot end-effector. Here, the outer contour of the gripper was not
accurately identified, but the feature points are detected correctly.

linear independent directions in joint-space.
An obviously drawback of our approach is, that some joints cause more change in
the images than others. For example, one may consider joint 1 and joint 6 moved
by 5o degrees. While joint 1 provokes a big change in the image, the influence of
joint 6 is only very small. A work around to this problem is to define the motions in
linear independent directions in Cartesian space, but this does not match with the
philosophy of this thesis, visual servoing unaware of robot kinematics and vision
setup.

4.2.2 Single camera experiments

Under the condition of weak perspective (3.1.4), 6-DOF visual servoing is theoreti-
cally possible, because a three point pose configuration in image space corresponds
to an unique location in Euclidian space [HBHN95]. In Figure 4.3 results are shown
for a trajectory from a position according to Figure 2.4 to a grasping position for
the rear dice (Figure 4.2). The camera was hereby placed at an angle of 22.5o rel-
ative to the initial end-effector normal. Setups with smaller angles yield to highly
unstable control. This behavior was also examined in [DC00], referred to as extrin-
sic degeneracy. Instability occurs then, when the camera plane is parallel to the
plane of the end-effector.

A trajectory in Cartesian space where the robot goes instable for a camera
angle of 11o degree is depicted in Figure 4.4. One can observe, that the robot
tries to perform the desired trajectory to grasp the middle dice (Figure 4.2), but
quickly becomes unstable. For reference, the achieved trajectory with a camera
angle of 22.5o is depicted as well. One can observe a control error which is due the
dominating feed-forward but is corrected by the feed-back when the feed-forward
becomes zero.

4.2 Experiments on the Virtual Robot 33

Figure 4.2: The robot is grasping the rear dice. This position was achieved
using a single-camera setup. In the upper left of the image, a camera image
after image processing is depicted. The detected feature points are marked.

4.2.3 Stereo camera experiments

Using two cameras we obtain more robust visual servoing. The system was stable
over the whole field of view, using two cameras with a distance of 3m form the
initial end-effector position and angles between the cameras between 15o − 90o.
With increasing distance, the precision and stability behavior became worse. In
particular, a distance of 4m yields to unstable behavior in the outer regions of the
field of view, whereby the Jacobian was calibrated in the center of the field of view.
A response to a feed-forward trajectory is depicted in Figure 4.5. The trajectory
is describing a motion from initial position (Figure 2.4) to one of the dices (Figure
4.6), depicted in Figure 4.7.

Also by using two cameras, the control error does not diminishes when the feed-
forward becomes zero. This is due to the non-linearity of the transformation from
joint space to affine space, which is only approximated by the Jacobian (3.4). This
effect becomes smaller for higher gain in the feed-back loop but on cost of ”shaky”
behavior.
For a controller gain near the theoretical limit according to (3.35), the robot be-
comes unstable. A trajectory in cartesian space is shown in Figure 4.8. Hereby, the
sampling rate of the controller is 1

20s and the gain was set to 35.

4.2 Experiments on the Virtual Robot 34

0 200 400
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0 200 400
0

0.02

0.04

0.06

0.08

0 200 400
−0.01

0

0.01

0.02

0.03

0.04

0.05

0 200 400
−0.2

−0.15

−0.1

−0.05

0

0.05

0 200 400
−0.08

−0.06

−0.04

−0.02

0

0 200 400
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Trans u Trans v Rot

Scale Shear Shear 45

Figure 4.3: The reference trajectory and the achieved trajectory for feed-
forward with feed-back are shown for every mode of affine transformation
according to (3.1.3). The controller gain was set to 3, the camera was
installed at an angle of 22.5o in front of the robot.

4.2.4 Camera placement

A straightforward approach to increase the depth information in a two cameras
setup, is to increase the angle between them. To measure the performance of the
different camera setups, we measure the mean error between reference and actual
affine transformation for each mode of two cameras. This is depicted in Figure
4.9. It can be observed, that the mean of the error decreases with an greater
angle between the two cameras. Hereby, stereo setups with very small angles yield
to unstable behavior, similar to the setup with a single camera. Setups with large
angles become problematic in terms of image processing, because the feature points
are hardly visible due to the strong shear of the end-effector.

4.2.5 Weighting of controller gain

For high controller gains, the motion of the robot is shaky. Although the noise
in the shear modes (compare Figure 4.5 and Figure 4.9) is much higher than the
noise level of the translation modes (1,2,6 and 7 in Figure 4.9), the translations
are the main transformation in our application. By changing the gain matrix G as
introduced in section 3.5 from the identity matrix to for example

G =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 .2 0 0 0
0 0 0 .2 0 0
0 0 0 0 .2 0
0 0 0 0 0 .2

,

respectively a diagonal stacked version for multiple cameras, the affine modes of
translation become emphasized. The result for such a gain matrix is shown in Figure
4.10. One can observe that the noise level of the translation modes has become very

4.2 Experiments on the Virtual Robot 35

800

1000

1200

1400

1600

−500

−400

−300

−200

−100

0
900

1000

1100

1200

1300

1400

1500

Z

Figure 4.4: End-effector trajectory in Cartesian space. The robot goes un-
stable for an camera angle of 11o degrees. A trajectory achieved with a
camera angle of 22.5o is depicted as reference. Axes are in millimeters.

little. Observing the motion of the robot, the shaky behavior diminishes.
The trade-off of such an approach is decreased performance in the under-emphasized
affine modes, yielding to higher rise-times for this transformations. However, a
smart choice of G will allow a fast motion to the desired position with maintainable
delay in end-effector orientation.

4.2.6 Open-loop control

As we use only a linear approximation of the highly non-linear transformation from
robot actuator to affine image space, we examine the emerging error. This can be
done for example by disabling the feed-back loop in the controller (3.5). A ramp
response for the same trajectory as used in Figure 4.5 is depicted in Figure 4.11.
Experiments have shown, that the error increases with growing distance from the
point of calibration, due to the non-linear effects.
Looking at Figure 4.11 one can observe, that corresponding translations, for ex-
ample the first translation modes, differ significantly from each other. This is due
the end-effector is near the epipolar line of one camera, yielding only small error in
image space. Compare Figure B.1 in Appendix B.

4.2.7 Closed-loop without feed-forward

The system was simulated using only a feed-back loop. The results for GP = 5I
are shown in Figure 4.12 for the ramp response and Figure 4.13 for the trajectory in
Cartesian space. As expected according to equation (3.24), the trajectory following
is worse then with feed-forward. On the other hand, the end position is reached
in a ”smooth” motion without the observable correction in a feed-forward/feed-
back configuration (compare Figure 4.7 The stability properties of the system are
identical to the case with feed-forward (3.5.1

4.3 Experiments on the real robot 36

0 200 400 600
−0.03

−0.02

−0.01

0

0 200 400 600
0

0.05

0.1

0 200 400 600
−0.1

0

0.1

0 200 400 600
−0.1

0

0.1

0 200 400 600
−0.04

−0.02

0

0.02

0 200 400 600
−0.01

0

0.01

0.02

0 200 400 600
0

0.01

0.02

0.03

0 200 400 600
0

0.05

0.1

0 200 400 600
−0.05

0

0.05

0 200 400 600
−0.1

0

0.1

0 200 400 600
−0.03

−0.02

−0.01

0

0 200 400 600
−0.02

0

0.02

Trans u Trans v Rot

Scale Shear Shear 45

Trans u Trans v Rot

Scale Shear Shear 45

C
am

era 1
C

am
era 2

Figure 4.5: Ramp response to a trajectory in affine space using feedback
and feed-forward. The controller gain was set to 5 for all affine modes. The
first two rows correspond to the 6 affine transformations in the left camera,
the last two rows correspond to the right camera.

4.3 Experiments on the real robot

Using the same Jacobian estimation as in the virtual environment, we did experi-
ments on the real robot with a stereo camera setup. We observed good trajectory
following and transient behavior in a neighborhood of the estimation point of the
Jacobian (compare Figure 4.14 and Figure 4.15). Farer away, the ramp response
showed considerable over-shoot (compare Figure 4.16). This behavior was also ob-
served during simulation with inaccurate definition of the end-position in affine
space: if the desired affine transformation is only roughly estimated, the trajec-
tory is possibly not feasible for the robot. In such cases, the feedback will cause
oscillating behavior or instability.

To increase the transient behavior, an option is to send a ”non-causal” trajec-
tory to the feed-forward, that is

~Aref,feed−forward[t] = ~Aref,feed−back[t +4t],

where 4t is the time the feed-forward is looking ahead.

4.4 Motion primitives

We are able to define desired trajectories in Euclidian space by their projection to
affine space (3.1.3) using a Teach by showing approach or by the knowledge of the

4.4 Motion primitives 37

Figure 4.6: The robot is grasping a dice. The camera images are projected
to the upper left, their angle is 45o and the distance is 3m.

objects we want to interact with, described in section 3.2. Hence, an appropriate
motion primitive could be defined as follows:

move(object, affinetrans, time, J)

Provided with the knowledge, where the gripper is, given by object, move performs
an affine transformation in image space, given by affinetrans in the given time
time and using the Jacobian J.
This motion primitive was implemented and used to define a complex task, collect-
ing dices and put them on top of each other to construct a tower (Figure 4.17). An
example for a subset of such a task is given as pseudo code below:

10 J=do_testmovements
20 object=vision_find_gripper
30 dice=vision_find_dice
40 affinetrans=determine_affine_transformation(object, dice)
50 time=10s
60 move(object, affinetrans, time, J)

After determination of the Jacobian for a neighborhood of the actual end-effector
position (10), a high-level vision algorithm has to determine the end-effector (20)
and dice (30) position in image space. Then, the affine transformation from the
end-effectors actual position to the dice has to be calculated (40). After setting of
the duration of the motion (50) it is executed by (60).

4.4 Motion primitives 38

850 900 950 1000−100

0

100

1200

1250

1300

1350

1400

1450

1500

X
Y

Z

Figure 4.7: Trajectory in cartesian space. The robot is grasping the dice.
Axes are in millimeters.

750

800

850

900

950

−300
−250

−200
−150

−100
−50

0
1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

X

Y

Z

Figure 4.8: Trajectory in cartesian space. For a controller gain near the
theoretical limit according to (3.35), the robot becomes unstable.

4.4 Motion primitives 39

1 2 3 4 5 6 7 8 9 10 11 12
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Affine Mode * Camera

||m
ea

ne
rr

or
||

Absolute Mean−Error for 11 (broad) and 45 (narrow) degree camera setup

Figure 4.9: The mean error for a given trajectory in affine space is shown.
The narrow blue bars are corresponding to a camera setup with 45o (compare
with Figure 4.5), the bold green bars correspond to a 11o setup. One can
observe a significantly higher mean error for the 11o degree setup.

0 100 200 300
−0.03

−0.02

−0.01

0

0 100 200 300
0

0.05

0.1

0 100 200 300
−0.1

0

0.1

0 100 200 300
−0.1

0

0.1

0 100 200 300
−0.04

−0.02

0

0.02

0 100 200 300
−0.01

0

0.01

0.02

0 100 200 300
0

0.01

0.02

0.03

0 100 200 300
0

0.05

0.1

0 100 200 300
−0.05

0

0.05

0 100 200 300
−0.1

0

0.1

0 100 200 300
−0.04

−0.02

0

0.02

0 100 200 300
−0.02

0

0.02

Trans u Trans v Rot

Trans u Trans v Rot

Scale Shear Shear 45

Scale Shear Shear 45

C
am

era 1
C

am
era 2

Figure 4.10: For the same trajectory as in figure 4.5 the controller gain was
changed. The translation modes are weighted with 10 and the other with
2. One can observe a decrease in noise in the translation modes. Observing
the motion of the robot, the ”shaky” behavior diminishes.

4.4 Motion primitives 40

0 100 200 300
−0.03

−0.02

−0.01

0

0 100 200 300
0

0.05

0.1

0 100 200 300
−0.1

0

0.1

0 100 200 300
−0.1

0

0.1

0 100 200 300
−0.04

−0.02

0

0.02

0 100 200 300
−0.01

0

0.01

0.02

0 100 200 300
0

0.02

0.04

0.06

0 100 200 300
0

0.05

0.1

0 100 200 300
−0.1

0

0.1

0 100 200 300

0

0.1

0 100 200 300
−0.03

−0.02

−0.01

0

0 100 200 300
−0.02

0

0.02Scale Shear Shear 45

Scale Shear Shear 45

Trans u Trans v Rot

Trans u Trans v Rot

Figure 4.11: Ramp response using only feed-forward. Compare with 4.5.
The steady-state error rises with growing distance from the point of calibra-
tion.

0 100 200 300
−0.04

−0.02

0

0.02

0 100 200 300
0

0.05

0.1

0 100 200 300
−0.1

0

0.1

0 100 200 300
−0.1

0

0.1

0 100 200 300
−0.04

−0.02

0

0.02

0 100 200 300
−0.01

0

0.01

0.02

0 100 200 300
0

0.01

0.02

0.03

0 100 200 300
0

0.05

0.1

0 100 200 300
−0.05

0

0.05

0 100 200 300
−0.1

0

0.1

0 100 200 300
−0.04

−0.02

0

0.02

0 100 200 300
−0.02

0

0.02

Trans u Trans v Rot

Scale Shear Shear 45

Scale Shear Shear 45

Trans u Trans v Rot

C
am

era 1
C

am
era 2

Figure 4.12: Ramp response for a controller using only feed-back (2 Cam-
eras). GP = 5I.

4.4 Motion primitives 41

850 900 950 1000
−5

0

5

10
1200

1250

1300

1350

1400

1450

1500

x

y

z

Figure 4.13: Trajectory in Cartesian space for a controller using only feed-
back (2 Cameras). GP = 5I.

4.4 Motion primitives 42

Figure 4.14: In a neighborhood of the estimation point of the Jacobian (big
picture), the robot showed good trajectory following and transient behavior
(the small picture shows the achieved end-position).

4.4 Motion primitives 43

0 100 200 300
−0.02

0

0.02

0.04

Trans u 0 100 200 300
−0.05

0

0.05

Trans v 0 100 200 300
−0.06

−0.04

−0.02

0

Rot

0 100 200 300
−0.02

0

0.02

0.04

Scale 0 100 200 300
0

0.005

0.01

0.015

Shear 0 100 200 300
−10

−5

0

5
x 10

−3

Shear 45

0 100 200 300
−0.02

0

0.02

0.04

0 100 200 300
−0.02

0

0.02

0.04

0 100 200 300
−0.05

0

0.05

0 100 200 300
−0.02

−0.01

0

0.01

0 100 200 300
−0.05

0

0.05

0 100 200 300
−0.02

−0.01

0

0.01
Trans u Trans v Rot

Shear 45ShearScale

Figure 4.15: Response for a complex trajectory. The endeffector has first to
take a position right above the dice and then to move straight down to grip
it. Plotted is the achieved and the reference trajectory.

4.4 Motion primitives 44

0 10 20 30
−0.15

−0.1

−0.05

0

0 10 20 30
−0.02

0
0.02
0.04
0.06
0.08

0 10 20 30
−5

0

5

10
x 10

−3

0 10 20 30
−0.2

0

0.2

0 10 20 30
−0.02

0

0.02

0.04

0 10 20 30
−5

0

5

10
x 10

−3

0 10 20 30
−0.1

0

0.1

0 10 20 30

0

0.1

0 10 20 30
−0.04

−0.02

0

0.02

0 10 20 30
0

0.1

0.2

0 10 20 30
−0.1

−0.05

0

0 10 20 30
−0.02

−0.01

0

0.01

Trans u Trans v Rot

Trans u Trans v Rot

Scale Shear Shear 45

Trans u Trans v Rot

C
am

era 1
C

am
era 2

Figure 4.16: With increasing distance from the calibration Point of the
Jacobian, the transient behavior gets worse. The controller was running
at 10 Hz with a proportional gain of P = 1. Y-Axis: 1/1000 image pixel,
X-Axis: Samples.

Figure 4.17: The robot has built a tower. The task was defined by trajec-
tories in affine space.

Chapter 5

Discussion

5.1 Simulation and development with the Virtual
Robot

The virtual robot for simulation has been an invaluable tool for solving the given
task. Besides that the evaluation cycles become much faster, some experiments, e.g.
where topological changes of the cameras are desired, would not have been feasible
in the real world, either due to lack of hardware or spatial limitations. Above all,
some considered control strategies have lead to instability, which could have caused
severe damages in the real world, if carried out on the real robot.
Another aspect is the repeatability of the virtual environment, especially on the
vision part. Changing lighting conditions during the day, complicate the develop-
ment of a robust vision mainly in the early stage of design.
In this thesis image processing and control was developed on the virtual environ-
ment and transferred in a fraction of time to the real robot. To handle changing
light conditions, the fixed thresholds mentioned in section 3.7 were substituted by
slider bars but the robot controller remained unchanged. As expected, the perfor-
mance was slightly worse due to an increased noise level.

5.2 Camera placement

To maximize the effect of using more than one camera, the cameras should be placed
with the angle between optical axes as large as possible. If the camera planes are
parallel, then all 6 possible modes of affine transformations will almost be linear
dependent of the affine transformation occurring in the other images. For example,
a translation of the gripper will result in all camera images as an affine translation
with different scale. This would give the same drawbacks as for a single-camera
setup.
If the camera projection planes are perpendicular, a transformation in joint space
leads to changes in different modes of affine space. For example, if the gripper is
moving towards one camera, leading to a change in scale in affine space, the perpen-
dicular camera will record a translation in image- and in affine space. Depending on
the application it may be hard to realize perpendicularity between the projection
planes as in this cases the gripper with the sampled feature points, may be difficult

5.3 Precision vs. Imageresolution 46

to detect in different images at the same time.

5.3 Precision vs. Imageresolution

Assuming a linear projection of the light to the camera CCD, the intersection of two
camera fields of view yields to a 3-D grid with different voxel size. The voxel size
is increasing with growing distance to the cameras, yielding decreased resolution
in the image. The voxel size in function of their position in space using the focal
length, the resolution and the angle between the two cameras is a constraint for
the achievable precision of visual servoing and has be taken into account for task
specifications.

5.4 Conclusions and further work

It was demonstrated that visual servoing using the Lie algebra of affine transfor-
mation is a feasible approach to robust control a 6-DOF robot using two cameras.
Hereby, the computer vision was the least robust aspect of visual servoing. As
pointed out earlier, noise in detection of the visual features yields to incorrect Ja-
cobians, outliers, resp. loose of tracking yield to unstable control. Noise reduction
in image processing can be achieved by using of affine Snakes as shown in [HC94]
and/or by an adaptive change of camera parameters to minimize the influence of
changes in lighting.
Using a fixed Jacobian, we can only expect stability and accurate control in a neigh-
borhood around the calibration point. Better results will arise if the Jacobian is
not fix but changes dependent on location in task-space.
To increase the performance of the visual servo, dynamic effects and latencies in
the system have to be taken into account. As the handling of latencies is well
known [Bou01], a compensation for the dynamic effects can be found by a system-
identification of the robot and vision system.

Bibliography

[BD85] T. Broecker and T. Dieck. Representations of Compact Lie Groups.
Graduate Texts in Mathematics. Springer Verlag, 1985.

[Bou01] M. Bourmpos. Vision based robotic grasping tracking of a moving ob-
ject. Master’s thesis, Department of Automatic Control, Lund Institute
of Technology, September 2001.

[CG96] P. Corke and M. Good. Dynamic effects in visual closed-loop systems.
IEEE Transactions on Robotics and Automation, 12(5):671–683, Oct.
1996.

[CM00] F. Chaumette and E. Malis. 2 1/2 d visual servoing: a possible solution
to improve image-based and position-based visual servoings. Proceedings
of the 2000 IEEE International Conference on Robotics & Automation,
pages 630–635, 2000.

[Cor01] Intel Corporation. Open Source Computer Vision Library, Reference
Manual. Intel Corporation, 1999-2001.

[Cra89] J. Craig. Introduction to Robotics: Mechanics and Control (2nd Edi-
tion). Addison-Wesley, 1989.

[CRW98] P. Corke, J. Roberts, and G. Winstanley. Vision-based control for min-
ing automation. IEEE Robotics & Automation Magazine, 1998.

[DC00] T. Drummond and R. Cipolla. Application of lie algebras to visual
servoing. International Journal of Computer Vision, 37(1), 2000.

[dM02] J. Luis de Menas. Virtual environment for development of visual ser-
voing control algorithms. Master’s thesis, Department of Automatic
Control, Lund Institute of Technology, March 2002.

[ECR92] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual
servoing in robotics. IEEE Transactions on Robotics and Automation,
8(3), 1992.

[FPEN95] G. Franklin, J. Powell, and A. Emami-Naeini. Feedback Control of Dy-
namic Systems. Addison-Wesley, 1995.

[HBHN95] Thomas S. Huang, Alfred M. Bruckstein, Robert J. Holt, and Arun N.
Netravali. Uniqueness of 3d pose under weak perspective: A geometri-
cal proof. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 17:1220–1221, 1995.

BIBLIOGRAPHY 48

[HC94] N. Hollinghurst and R. Cipolla. Uncalibrated stereo hand-eye coordi-
nation. Image and Vision Computing, 12, 1994.

[HC00] S. Hutchinson and P. Corke. A new hybrid image-based visual servo
control scheme. Proceedings of the 39th IEEE Conference on Decision
and Control Sydney, Australia, pages 2521–2526, December 2000.

[HHC96] S. Hutchinson, D. HaGer, and P. Corke. A tutorial to visual servo
control. IEEE Transactions on Robotics and Automation, 12(5), 1996.

[Jae97] M. JaegersAnd. On-line Estimation of Visual-Motor Models for Robot
Control and Visual Simulation. PhD thesis, University of Rochester,
1997.

[Ols01] T. Olsson. Vision guided force control in robotics. Master’s thesis,
Department of Automatic Control, Lund Institute of Technology, 2001.

[TV98] E. Trucco and A. Verri. Introductory Techniques for 3-D Computer
Vision. Prentice Hall, 1998.

[YZD02] M. Yim, Y. Zhang, and D. Duff. Modular robots. IEEE Spectrum,
February 2002.

Appendix A

Analytical derivation of the
image Jacobian

Assuming a point ~P = [x, y, z]T is moving with translational velocity ~T = (Tx, Ty, Tz)
and angular velocity ~Ω = [ωx, ωy, ωz] in Euclidian space with respect to the camera
frame.
We are interested in finding the Jacobian J, that

[
u̇
v̇

]
= J

[
~T
~Ω

.

]
(A.1)

Therefore, we begin to express the velocity of ~P by

~̇P = ~Ω× ~P + ~T ,

respectively

ẋ = zωy − yωz + Tx (A.2)
ẏ = xωz − zωx + Ty

ż = yωx − xωy + Tz

Using a projective camera model as depicted in Figure 3.1, ~P = [x, y, z]T will
project onto the image plane with coordinates ~p = [u, v]T given by

[
u
v

]
=

λ

z

[
x
y

.

]
(A.3)

Plugging equations A.3 into equations A.2 yields

ẋ = zωy − vz

λ
ωz + Tx (A.4)

ẏ =
uz

λ
ωz − zωx + Ty

ż =
z

λ
(vωx − uωy) + Tz

50

Using A.3, we calculate u̇ and v̇ using the quotient rule

u̇ = λ
zẋ− xż

z2
(A.5)

v̇ = λ
zẏ − yż

z2
.

Plugging A.4 into A.5 and using matrix notation according to A.1 yields:

[
u̇
v̇

]
=

[
λ
z 0 −u

z −uv
λ

λ2+u2

λ

0 λ
z −v

z −λ2+v2

λ
uv
λ

]

Tx

Ty

Tz

ωx

ωy

ωz

.

(A.6)

This derivation can be fund in a number of references including [HHC96].

Appendix B

The epipolar constraint

Figure B.1: Epipoles and Epipolar lines.

Looking at a point P in 3D-space, for example a point on the dice in Figure
B.1, it spans a plane π with the centers of projection of the two cameras, C1 and
C2. The plane π is called epipolar plane and the lines where π intersects with the
image planes is called conjugated epipolar lines. The image in one camera of the
projection center of the other is called epipole. The epipolar constraint is defined
as follows:

Corresponding points must lie on conjugated epipolar lines.

For a more comprehensive introduction to epipolar geometry, refer to [TV98].

