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Chapter 1

Introduction

The vast majority of today’s growing robot population operate in factories
where the environment can be conditioned to suit the robots. For instance,
tasks such as assembly are set up so that the robots know the exact position
of the different objects to be grasped. Robots have had far less impact in
applications where the working environment and object placement cannot be
accurately controlled. This limitation is largely due to the lack of sensory
capability in contemporary commercial robots. It has long been recognised
that sensor integration is fundamental to increasing the versatility and appli-
cation of robots. Cameras are an example of such sensors, providing visual
capability for the robot on the environment.

Vision is a useful robotic sensor since it mimics the human sense of vision
and allows for non-contact measurement of the environment. Robot con-
trollers with fully integrated vision systems are now available. However, the
accuracy of the resulting operation depends directly on the accuracy of the
visual sensor and the robot manipulator. An alternative to increasing the
accuracy of these subsystems is to use a visual-feedback control loop that
will increase the overall accuracy of the system. The main idea is to use the
cameras as sensors, and the data extracted from the images of the camera in
a feedback loop. The goal is usually to align the robotic manipulator with
the desired object in order that the object can be grasped by the robotic
manipulator. Thus machine vision can provide closed-loop position control
for a robot manipulator. This is referred to as “visual servoing”. [1]

One problem when a new control system is built is the testing of the
new control system. Three-dimensional computer modeling is a useful and
economic way to simulate an experimental environment to understand the
cause and effect of control techniques on the simulated environment. It is
also quicker and easier to change parameters in a three-dimensional computer
model than the real world. After obtaining successful implementation in the



simulated environment, implementation can then be done on real objects in
the real world with much smoother results expected.

This project is a collabration between the author and his partner, Woon
Teck Her. The author’s work consists mainly of interpreting and processing
visual images captured by the two digital cameras, while his partner concen-
trated on developing a model to estimate the position and trajectory of the
ball. Although our responsibilities in this project were distinctive, our efforts
were not exclusive as we contributed to each other’s field of work during the
course of this project.

Three fundamental fields have been combined for the development of
this master thesis, namely robotics, computer vision and three-dimensional
computer modeling. These three fields have been popular topics for research
and the automative industry. The author shall now attempt to give a brief
historical accounts of the three fields as well as some basic introduction.

1.1 Robotics

A robot is:

‘A reprogrammable, multi-functional manipulator designed to move
materials, parts, tools or specialised devices through the various
programmed motions for the performance of a variety of tasks.’
Robot Institute of America(1979) 2]

The word ‘robot” was coined by the Czech playwright Karel éapek (see
Figure 1.1) naturally from the Czech word, for forced labour. The use of the

Figure 1.1: Karel éapek



word ‘robot’ was introduced to his play, Rossum’s Universal Robots (RUR),
which opened in Prague in January 1921. In RUR, Capek poses a paradise,
where the machines initially bring so many benefits but in the end bring
an equal amount of blight. The robots then were not mechanical in nature
though, but were created through chemical means. [3] It is interesting to note
the deviational route taken by modern robots, in contrast to the original
‘robot’ dreamt by éapek.

The term ‘robotics’ refers to the study and use of robots. The term was
first coined and used by the Russian-born American scientist and writer Isaac
Asimov. The word ‘robotics’ was first used in a short story published in 1942,
Roundaround. [4]

After the technology explosion during the World War II, a historic meet-
ing occured between two Americans, George C. Devol and Joseph F. Engel-
berg in 1956. The former was a successful inventor and entrepreuner while
the latter was an engineer. The two were discussing the writings of Asimov
over cocktail. Together they made a serious effort to develop a real, working
robot. They persuaded Norman Schafler of Condec Corporation in Danbury
that they had a basis for commercial success. Their first robot was nick-
named the ‘Unimate’ (see Figure 1.2). Engelberger started a manufacturing
company named ‘Unimation” while Devol wrote the necessary patents. Thus
the first commercial company to make robots was formed and as a result

Figure 1.2: A picture of a boy with the model of an ‘Unimate’, the first
commercial robot



of this, Engelberger has been called the ‘father of robotics’. The first Uni-
mate was installed at a General Motors plant to work with heated die-casting
machines. [5]

Modern industrial robots have increased in capability and performance
through controller and language development, improved mechanisms, sensing
and drive systems. In the early to middle of 1980s, the robot industry grew
very fast primarily due to large investments by the automotive industry.
Fully functioning androids (robots that look like human beings) are many
years away due to the many problems that must be solved. However, real,
working, sophisticated robots are in use today and they are revolutionising
the workplace. These robots do not resemble the romantic android concept of
robots. They are industrial manipulators and are really computer controlled
“arms and hands”. Industrial robots are so different to the popular image
that it would be easy for the average person not to recognise one. [6]

Today, robots with restricted sensor feedback are limited in the kinds
of behaviour they can exhibit. However, this is the way they are currently
used in industry. The needs for motion desciptions and operator interactions
clearly show that robot control needs its own control techniques. [7]

Robot control techniques traditionally uses world coordinate (Cartesian)
system as well as joint coordinate system to determine the position of the
robot and the desired positions and trajectories. This works satisfactorily
for static environments in industrial applications. However, most natural
settings are not structured and not easy to model and they are bound to
create problems in the process of controlling the robotic manipulator.

In this master thesis, a six degree-of-freedom industrial robot is guided
to grasp a ball moving with three-dimensinal Newtonian dynamics in an
unattended and less structured environment. The object of focus for imple-
menting control will be solely on the robotic arm.

1.2 Computer Vision

In robotics, we require a feedback control scheme for a task involving the
manipulation of three-dimensional objects. One easy way to acquire feedback
information is through an external sensor. A robotic manipulator may use as
feedback the information coming from different kinds of sensors. One such
kind of external semsor is a camera, where image of the three-dimensional
object is captured and then sent to the computer to be analysed. Hence
computer vision comes into play.

Unlike robotics, computer vision until recently was still regarded as a field
of research still in its infancy, not yet mature and stable enough to be con-



sidered part of a standard curriculum in computer science. A quick review of
the field reveals that image processing and pattern recognition has achieved
tremendous success in terms of delivering operational systems. Everyday
barcodes are used in supermarkets and pattern recognition techniques are
used for purposes such as identification, bill recognition and address recogni-
tion. Contrarily, full-scale computer vision applications that involves motion
estimation, depth recovery and scene interpretation have achieved fairly lim-
ited progress. The goal of computer vision is to make computers understand
and interpret visual information. [§]

Computer vision involves the capturing, understanding and processing of
images. The tools needed by a computer vision system include hardware for
acquiring and storing digital images in a computer, processing the images
and communicating results to users or other automated systems. [9] The
processing of information poses problems that are difficult to manage. For
example, it is difficult to distinguish objects of different material or even
of different geometrical shape because their image captured by the camera
could be the same.

In computer vision, when the position of a three-dimensional object is to
be determined using a two-dimensional image, the coordinate that indicates
the depth of the object is difficult to be determined. An example of human
processing of an image regarding the depth of an object is called “pictorial
depth cue”. A ‘cue’ may be the most familiar size, interposing or occlusion,
shade or shaded area, size related to the horizon line, motion and motion
parallax, binocular perception (stereoscopy). Stereoscopy is the study of
corresponding images for recreating three-dimensional coordinates. Depth is
calculated from the disparity between two or more images. [10]

A solution for improving depth information is to utilise several cameras
in a configuration such that the desired target is in the view of all cameras
involved. Most multi-camera configurations use two cameras, also called the
stereo rig configuration. This configuration allows the system to obtain a
complete Euclidean reconstruction of the observed objects. [11]

In this master thesis, the stereo rig configuration is adopted. Two digital
cameras are used as external sensors to feedback the visual image of the
environment, specifically the position and the trajectory of the ball.

1.3 Three-dimensional computer modeling

In recent years, computer graphics has made tremendous progress in visual-
ising three-dimensional models. Many techniques have reached maturity and
are being ported to hardware. This evolution causes an important demand



for more complex and realistic models. The problem is that even though the
tools that are available for three-dimensional computer modeling are getting
more and more powerful, synthesising realistic models is difficult and time-
consuming, not to mention very expensive. Many virtual objects are inspired
by real objects and it would therefore be interesting to be able to acquire the
models directly from the real object.

Researchers have been investigating methods to acquire three-dimensional
information from objects and scenes for many years. In the past the main ap-
plications were visual inspection and robot guidance. Nowadays however the
emphasis is shifting. There is more and more demand for three-dimensional
models in computer graphics, virtual reality and communication. This results
in a change in emphasis for the requirements. The visual quality becomes one
of the main points of attention. Therefore not only the position of a small
number of points have to be measured with high accuracy, but the geometry
and appearance of all points of the surface have to be measured.

Due to the convergence of these different factors, many techniques have
been developed over the last few years. Many of them do not require more
than a camera and a computer to acquire three-dimensional models of real
objects. What may have required a million pound computer a few years ago
can now be achieved by a personal computer costing a few hundred pounds.
The goal of three-dimensional computer modeling is to automatically extract
a realistic three-dimensional model by freely moving a camera around an
object. [12]

In this project, OpenGL is used for modelling three-dimensional objects
in the virtual environment setup. OpenGL is an environment for developing
portable, interactive three-dimensional graphics applications. OpenGL is a
cross-platform standard for three-dimensional rendering and three-dimensional
hardware acceleration. The software runtime library ships with all Windows,
Macintosh Operating System, Linux and Unix systems. [13] More impor-
tantly for our project, OpenGL standard has language bindings for Microsoft
Visual C++4, which has passed a set of conformance test.

1.4 Visual servo control

Visual servoing is the fusion of results from many elemental areas, including
robotics, computer vision and three-dimensional computer modeling. The
task of visual servoing is to control a robot to manipulate its environment
using vision, as opposed to just observing the environment.

Since the first visual servoing systems were reported in the early 1980s,
progress in visual control of robots has been fairly slow, but the last few years



has seen a marked increase in published research. This has been fueled by
personal computing crossing the threshold that allows analysis of scenes at a
sufficient rate. Prior to this, researchers required specialised and expensive
pipelined pixel processing hardware. The task of visual servoing is to control
the position of the robot’s end-effector using visual information obtained
from images.

There are two different kinds of visual servo control system, namely
Postion-Based Visual Servoing (PBVS) and Image-Based Visual Servoing
(IBVS). For the former, features are extracted from the camera image and
used to estimate the position of the target with reference to the camera.
Using these values, an error between the current and the desired position of
the robot is defined in the task space. In this way, PBVS neatly separates
the computation of feedback signal and the estimation problems involved
in computing position from the visual images obtained. For IBVS, control
values are computed on the basis of image features directly. A disadvantage
with IBVS is that there is no direct control over the Cartesian velocities of
the robot manipulator. As a result, the robot can execute trajectories that
are desirable in the image, but which are contorted in Cartesian space. [14]

In this master thesis, PBVS is adopted for the visual servoing of the
robot. Visual feedback from two different digital cameras will be used to track
the moving ball and image coordinate system will be introduced alongside
Cartesian coordinate system as well as joint coordinate system. The two-
dimensional image acquired from the digital cameras are converted into three-
dimensional Cartesian coordinates. New Cartesian coordinates for estimating
the expected position of the ball are then computed before being converted
into joint coordinate system. The joint coordinates are then fed back to the
robotic arm to be implemented so that the gripper of the robotic arm can
align itself to grasp the ball.

1.5 Thesis outline

The thesis is organised into various chapters as follows:

e Chapter 2: Problem Formulation

Chapter 3: Camera Model

Chapter 4: Experimental Setup

Chapter 5: System Overview

Chapter 6: Image Processing



Chapter 7: Three-dimensional Reconstruction

Chapter 8: Model-based Ball Grasping

Chapter 9: Results

Chapter 10:
Chapter 11:
Chapter 12:
Chapter 13:
Chapter 14:

Chapter 15:

Discussion
Conclusion

Future Work
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Appendices



Chapter 2

Problem Formulation

The main goal of this experiment is in controlling the virtual robot to grasp
the thrown virtual ball moving in three-dimensional Newtonian dynamics,
by using computer vision to analyse images captured from two virtual digital
cameras.

2.1 Experimental Setup

A framework need to be set up to place the virtual robot, the virtual ball and
the two virtual digital cameras at strategic positions in a virtual environment.
The virtual ball needs to be programmed to move in the three-dimensional
environment with Newtonian dynamics. The virtual environment needs to
be constantly updated of the change in position and trajectory of the virtual
ball as well as the position of the gripper of the robotic arm. A software
program called Microsoft Visual C+4 will be used to set up this virtual
framework.

2.2 Camera Placement

Special attention is to be given to the placement of the two virtual digital
cameras. It has to be ensured that image of every position of the vitual ball’s
trajectory can be captured by both the virtual digital cameras. The image
on both virtual digital cameras have to be captured simultaneously to ensure
that there is a good depth estimation of the virtual ball. This can be done
by orientating the virtual digital cameras and adjusting the focal length of
the virtual digital cameras.



2.3 Image Processing

The visual images obtained from the two virtual digital cameras will be sent
to a computer to be analysed. The center point of the virtual ball is to be
determined with reference to the images obtained from the two virtual digital
cameras. The colour of the virtual ball have to be chosen so that the image
of the ball can be segmented from its background. The method used for
segmenting the image of the virtual ball from its background will be feature
point extraction with thresholding. A software program called MATLAB
will be used for the segmentation of the image of the virtual ball.

2.4 Three-dimensional Reconstruction

The stereo rig configuration setup of the two virtual digital cameras should
solve the reconstruction problem. Depth can be calculated from the disparity
between corresponding feature points found in both the visual images. The
reconstruction problem reconstructs the three-dimensional world coordinate
using the images from both the virtual digital cameras.

2.5 System Identification

The position of the gripper of the robotic arm is constrained to lie in the ver-
tical plane one metre away in front of the robot. Linear system identification
method such as linear regression is needed to identify the system, which is
non-linear because the Newtonian dynamics of the ball are non-linear. With
the initial velocity, intial angles and initial three-dimensional position iden-
tified recursively, the robotic arm have to be manipulated to align itself at
the estimated position that the virtual ball will reach in the vertical plane
specified.

10



Chapter 3
Camera Model

In the visual system of man, the process of image formation begins with light
rays coming from the outside world and impinging on the photoreceptors in
the retina of the eye. This chapter gives a short theoretical orientation of
problems in computer vision. It shows image acquisition and the necessary
processing methods to produce estimation of three-dimensional data.

3.1 The Human Eye

The human eye (see Figure 3.1) is approximately spherical with a diameter of
15 millimeters and light is sensed by the photoreceptors located in the retina
at the back of the eye. In normal daylight conditions, the photoreceptors
are active and the colour sensitivities are: 65% red, 33% green and 2% blue.
The distance between the lens and the retina is approximately constant at
15 millimeters, so focusing is achieved by muscles that change the shape of
the lens.

Understanding of the human eye provides the basic fundamentals into the
theory of optics.

3.2 Basic Optics

As with many natural visual system, the process of image formation in com-
puter vision begins with the light rays that enter the camera through an
angular arpeture and hits a screen (image plane). The image plane is the
camera’s photosensitive device that registers light intensities. Most of these
rays are the result of the reflections of the rays emitted by the light sources
hitting object surfaces.

11
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Figure 3.1: A human eye

Any single point of a scene reflects light coming from many directions, so
that many rays reflected by the same point may enter the camera. In order
to obtain sharp images, all rays coming from a single point of the scene, P
must converge onto a single point on the image plan, p. If this happens, the
image of P is in focus; if not, the image of P is spread over a circle. There
are two ways to make the image of P in focus:

1. Reducing the camera’s aperture to a single point, which is also called
a pinhole camera. Thus only one ray from any given point in the scene
can enter the camera and this creates a one-to-one correspondence be-
tween the visible points in the scene, rays and points on the image plan.
This results in very sharp, undistorted images of objects at different
distances from the camera.

2. Introducing an optical system composed of lenses and apertures, ex-
plicitly designed to make all rays coming from the same point in the
scene converge onto a single image point.

12
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3.2.1 Pinhole Camera

A pinhole camera is a box that has a infinitely small hole, through which
light enters and forms an inverted image on the image plane. Usually the
image plane is placed between the focal point of the camera and the object
so that the image is not inverted. This mapping of three dimensions onto
two dimension is called perspective projection.

In Figure 9, a three-dimensional feature point, P = (X ,Y ,Z) is pro-
jected onto an image plane with perspective rays originating at the center of
projection (COP). The origin of the coordinate system is traditionally taken
to be the COP. The focal length, f is the distance from COP to the image
plane along the optical axis. The optical axis is traditionally aligned with
the z-axis. By geometry, the image coordinates (u; ,v;) on the x-axis and
y-axis respectively are related to the object coordinates of (X; ,Y; , Z;) by:

Xi Y;
w,=f— and v;=f— 3.1
These equations can be easily expressed by introducing homogeneous
transformation, which is a matter of placing Euclidean geometry into the

projective geometry space. In homogeneous equations, the perspective pro-

13



jection onto the plane is given by:

w; f 000 f,
Mo =10 Ff 00 Z% (3.2)
1 0010 12

where A = Z; is the depth of the point found on the image plan of the camera.

An obvious disadvantage of a pinhole camera is its exposure time (length
of time the image plane is allowed to receive light). A digital camera needs
a minimum amount of light to register a clear image. As a pinhole camera
allows very little light into the camera per unit of time, the exposure time of
several seconds is needed to form the image. [15]

3.2.2 Optical System

An optical system (see Figure 3.3) instead can be regarded as a device that
aims to produce the same image obtained by a pinhole camera, but by means
of a larger aperture and a shorter exposure time. Morever, an optical sys-
tem enhances the light gathering power. The optical behaviour of a lens is
characterised by two elements:

1. An optical axis going through the center of the lens and perpendicular
to the scene

2. Two special points called left focus, F; and right focus F,. respectively.
They are placed on the optical axis, on opposite sides of the lens and
the same distance from the center of the lens. This distance is usually
called focal length, f.

By construction, a thin lens deflects all rays coming from one side and
parallel to the optical axis, onto the focus on the other side. Assuming the
lens is relatively thin, it operates according to the following law:

111 (33)
u v f
where u and v are are the distance of a point on an object from the image
plan and the distance of a point on the focused image from the image plan
respectively.

The image formed by a lens is not ideal. Lenses used for imaging are
usually compound lenses containing several simple lenses in order to achieve
a compact optical system. Imperfections in the shape or alignment of the

14



Figure 3.3: An optical system

simple lenses lead to degraded image quality. Non-idealities include aberra-
tions that lead to image blur and geometric distortions cause the image to
fall in wrong places. [16]

Since the experiment is done in a simulated three-dimensional computer
modeled environment, the pinhole camera model is a sufficient model for the
two virtual digital cameras used in this experiment.

3.3 Projective Geometry

Projective geometry is fundamental to the understanding of image analysis.

Although focal length is the most emphasised internal camera geometry
parameter, there exists more complex parameters. For an ideal optically-
modelled camera to deliver a perspective image, a mapping that completely
characterise the camera model must be done.

15



3.3.1 Intrinsic Conditions

This mapping can be characterised completely by using the intrinsic param-
eters, which entails six of the following parameters:

f = focal length in pixels

u, = camera’s x-coordinate of the center of the projection
v, = camera’s y-coordinate of the center of the projection
v = skew between the camera axes

«a = scaling of the image plane along the camera’s x-axis
[ = scaling of the image plane along the camera’s y-axis

The intrinsic camera matrix K includes all six of these intrinsic param-
eters for the camera model, which is effectively reduced to 5 since o and 3
are dependent on each other. The intrinsic camera matrix K is given as the
following:

fa fv u,
K=1| 0 fB8 v (3.4)
0 0 1

3.3.2 Extrinsic Conditions

There are two extrinsic parameters for the camera model:

R(3x3) = orthogonal matrix that specifies the orientation of the
image plane coordinate frame
t3x1) = matrix that specifies the translation from the COP

Since |R| = 1, this corresponds to the matrix relation that RRT = RTR =
I and thus R~! = RT. The final projection equation for a point (X; ,Y; , Z;)
in Cartesian space for the perspective camera is given by:

i Y;

A Vi =K R(gxg) t(3><1) 7. (35)
1 (2
1

where \ is a non-zero scalar factor indicating the depth of a point on the
image plan.

The result of the matrix multiplication, Hzys = K[ R@xs)y tix } is the
calibration matrix, also known as the projective tranformation matrix. This
transformation matrix gives the relation between points in the image plan
and the pixels in the sampled image.

16



3.4 Camera Calibration

The key idea behind camera calibration is to write the projection equations
linking the known coordinates of a set three-dimensional points as well as
their projections and solve for the camera parameters. In order to know the
coordinates of some three-dimensional points, camera calibration methods
rely on one or more images of a calibration pattern. A calibration pattern is
a three-dimensional object of known geometry located in a known position
in space and generating features that can be located accurately.

Many methods for camera calibrations use a number of images of a planar
calibration object to estimate the camera parameters. The images are taken
from many different positions as well as orientations, and the calibration
estimates both the intrinsic and extrinsic camera parameters. [17]

17



Chapter 4

Experimental Setup

A software program called ‘WinRobot’ was written Tomas Olsson, a doc-
toral student in the Department of Automatic Control, Lund Institute of
Technology, Univeristy of Lund. ‘WinRobot’ was written using a platform
in Microsoft Visual C++ and it uses OpenGL to model all the objects in
‘WinRobot’, as found in the robotic laboratory.

‘WinRobot’ is created from a scene graph and the scene graph is as-
sembled from objects to define the geometry, lighting, location, orientation
and appearance of visual objects. “‘WinRobot’ provides a free and uninhib-
ited control of the robot workspace, thus enabling various experiments and
robotic studies to be carried out.

4.1 Robotic Laboratory

The industrial robotic manipulator, ABB IRB-2000 (see Figure 4.1) is found
in the robotic laboratory with Open Robot Control architecture developed
at the Department of Automatic Control, Lund Institute of Technology, Uni-
versity of Lund. The robot has one built-in controller for each of the 6 joint
angles. These controllers are cascaded Proportional, Integral and Derivative
(PID) controllers, with an outer position loop around an inner velocity loop.
The velocity signal used in the inner loop is obtained by differentiating and
low-pass filtering the position signal. MATLAB interfaces for downloading
and dynamically linking new control algorithms to the robot system as well
as the integration of external sensors such as digital cameras. [18]

In the lab, there are also two Sony DFW-V300 digital cameras (see also
Figure 4.1), which utilises the IEEE 1394 high performance serial bus to
send non-compressed digital data and allows control functions such as colour
tone, brightness, picture quality white balance and automatic gain control

18



Figure 4.1: ABB IRB-2000 robot and Sony DFW-V300 camera

(AGC). The digital cameras can take about 30 images per second and the
images are in the YUV format. Y represents the luminance of the images
while U and V represents the colour. The picture format of 640 x 480 pixels
(4:1:1) can be modified to 320 x 240 pixels (4:2:2). The images are read
by the computer using a IEEE-1394 (FireWire) connection, using the Fire-i
API from UniBrain. FireWire is a high-speed, non-propietry, scalable digital
serial bus that can transport data rates of 100, 200 and 400 Mbits per second.
FireWire enables true plug and play, which allows the user to connect new
devices, with the system still switched on and the bus active.

4.2 Coordinate System

In robotics, most tasks are specified with respect to a specific coordinate. It
is often a need to relate the position and orientation of the objects in the
simulated environment to each other.

Each point in the world can be specified by three numbers, the X-coordinate,
the Y-coordinate and the Z-coordinate of that point. These three numbers
together: (X, Y, Z) is known as a vector and it can specify any point in the
three-dimensional space. A vector can also represent a relative movement in
three-dimensional space. [19]

Usually the world is perceived as a Euclidean three-dimensional space.
Euclidean transformations have six degrees of freedom, three for orientation

19



e X,

Figure 4.2: Transformation between frames

and three for translation. A Euclidean transformation has the following form:

Rsxs t3x1
Rt = 4.1
[ O1><3 1 ( )
Since R is a rotation matrix, i.e. |R| = 1, then this transformation

represents a rigid motion in space. This also corresponds to the matrix
relation that RRT = RTR = I and thus R~ = R”.

A pose, Tf (see Figure 4.2) is used to change the coordinate system from
frame b to frame a. T} consists of a 3 x 1 vector, ¢} and a 3 x 3 orthogonal
matrix Rj. t7 is the vector from the origin of frame a to the origin of frame
b, expressed in the coordinate system of frame a. The column vectors in
the matrix Rj are the unit x-vector, y-vector and z-vector of the frame b,
expressed in the coordinate system of frame a, where R = (X2)(Y*)(Z7).

To change the coordinates from frame b to frame a, the following equation
can be applied:

Xe X
Yo | =Ry YY |+t (4.2)
Z° A

The transformation matrix, 7' can now be defined as:

o_ | By B
Ty = [01x3 : 1 (4.3)

Due to the special structure of the matrix 7}?, the inverse can be easily
calculated as:

= [ 7~ ) "

20



4.3 WinRobot

‘WinRobot’ consists of an industrial robot, Virtual IRB-2000 and a pair of
virtual digital cameras.

4.3.1 Lighting

Lighting had to be first created in ‘WinRobot’ so that all the three-dimensional
objects can be seen.

The lighting model incorporates three kinds of real world lighting reflec-
tion: ambient, diffuse and specular. Ambient reflection results from constant
low level light in a scene, diffuse reflection is the normal reflection of a light
source from a visual object while specular reflection is the highlight of a light
source from an object. The lighting model is applied for each of the RGB
colour components.

The array for lighting of room was defined in ‘WinRobot’ as:

GLfloat LightDiffuse = (1, 1, 1, 1)
GLfloat LightSpecular = (1, 1, 1, 1)
GLfloat LightAmbient = (0.5, 0.5, 0.5, 1)

The lighting was placed in three different coordinates of: (0,0, 4), (5, —5,4)
and (—5,5,4).

4.3.2 Virtual IRB-2000

The Virtual IRB-2000 (see Figure 4.3) is built by two large arms and a wrist.
The virtual robot has six degrees of freedom, which means the end-effector
of the robotic arm can be moved to any desired position and orientation
within a task space. Joint 1, joint 4 and joint 6 of the Virtual IRB-2000 are
cylindrical joints while joint 2, joint 3 and joint 5 of the Virtual IRB-2000
are revolute joints. The robot is controlled by using MATLAB to send the
desired position of the robotic arm through the network.

The Virtual IRB-2000 is used to test algorithms for image processing and
model-based control. Using Virtual IRB-2000, it is possible to avoid collisions
and implementing bad trajectories in the robotic laboratory. It is a fast and
safe benchmark test for the system.

The Virtual IRB-2000 was rotated 25 degrees from the negative x-axis
towards the negative y-axis and the robot was placed 4 meters away from
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Figure 4.3: Virtual IRB-2000

the origin on the negative x-axis. The position of the Virtual IRB-2000
specified in three-dimensional Euclidean space is:

0.9064 04233 0 —4
—0.4233 0.9064 0 O
0 0 1 0
0 0 0 1

Rtrobot — (45)

A gripper is attached to the end-effector of the robotic arm and its coor-
dinate system is relative to the coordinate system of the end-effector of the
robotic arm.

4.3.3 Virtual Ball

A ball moving with Newtonian dynamics was needed in this experiment,
so a three-dimensional virtual ball was designed using OpenGL. The design
was written using Extensive Markup Language (XML). XML is a markup
language for documents containing structured information. [20]

OpenGL only allows creation of two-dimensional triangles and quadran-
gles by specifying the coordinates for the vertex points of the triangles and
quadrangles. The virtual ball was designed to be made up of 26 surfaces, of
which 18 of the surfaces are squares and 8 of the surfaces are triangles. Since
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Figure 4.4: The virtual ball

the design of the virtual ball is to mimic a tennis ball in the real world, a
diameter of 6 cm was set for the virtual ball (see Figure 4.4). In addition
to that, the shading of the virtual ball were set to smooth so that it is more
realistic. The virtual ball was set to be green in colour, just like a tennis ball
in the real world.

The virtual ball’s colour is very important for image processing in the
simplified virtual environment. Colours are sensed as non-linear combina-
tion of long, medium and short wavelengths, which correspond to the three
primary colours that are used in the camera system: Red(R), Green(G) and
Blue(B). Therefore, for each pixel of image information, there is a matrix of
colours (R, G, B).

The initial position of the virtual ball was placed 1 metre away from
the origin on the z-axis and the virtual ball was not orientated. The initial
position of the virtual ball specified in three-dimensional Euclidean space is:

Rtba” = (46)

o O OO
o~ O O
— = O O

1
0
0
0

The virtual ball’s trajectory was modeled with three-dimensional Newto-
nian dynamics (see Figure 4.5) and the dynamic equations of the virtual ball
in the x-coordinate, y-coordinate as well as z-coordinate can be seen below:

r =xg—vXcost xsing xt
=yp—v X cosf X cosp xt (4.8
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Side View Aerial View
Figure 4.5: Aeriel and side view of the virtual ball’s trajectory
. 1 2
z :z0+v><s1n9><t—§><g><t (4.9)

where

v = initial velocity of 7.5ms™!

0 = 30°
¢ = tan~'(4)
{ = time

(0, Yo, 20) = coordinate of (0,0, 1) for the initial position of the
virtual ball

g = gravitational constant of 9.82ms 2

4.3.4 Virtual Digital Cameras

The two virtual digital cameras were labeled Camera 2 and Camera 3. Cam-
era 1 was another virtual camera being used to observe the experimental
environment during the simulation process. Both Camera 2 and Camera 3
were placed 1 meter away from the origin on the x-coordinate and 1.1 meter
away from the origin on the z-coordinate. The difference between Camera 2
and Camera 3 is that they are placed -0.5 meter and 0.5 meter away from
the origin on the y-coordinate respectively.
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Camera 2 and Camera 3 were orientated as well as having their focal
length readjusted so that the full trajectory of the ball could be captured
by Camera 2 and Camera 3 simultaneously. The position of Camera 2 and
Camera 3 in Euclidean form are shown below:

02065 0 09785 1

Rbcamz = | 0.9785 0 —0.2065 —0.5 (4.10)
0o 1 0 1.1
02065 0 09785 1

Rteams = | 0.9785 0 —0.2065 0.5 (4.11)
o 1 0 11

Camera 2 and Camera 3 did not require any calibration in the simulated
environment. The intrinsic parameters of Camera 2 and Camera 3 after
having their focal length readjusted are shown below:

[ 456.2578 0 175.5991 ]
Keams 0 485.4411 113.8451 (4.12)
0 0 1
[ 629.6043 0 194.6277
Keams 0 657.8963 152.6292 (4.13)
0 0 1

25




Chapter 5

System Overview

5.1 MatComm

The MATLAB software program was found in the UNIX operating system,
while Microsoft Visual C++ was found in the Windows operating system.
This procedure was adopted because it mimics the same setup found in the
robotic laboratory. MatComm reconciles the difference between the two op-
erating system so that communication can be established beween the two
different software programs based in two different platforms (see Figure 5.1).

MatComm is a software package that was developed at the Department of
Automatic Control, Lund Institute of Technology, Univeristy of Lund. This
software uses the Transmission Control Protocol (TCP) / Internet Protocol

,,,,,,,,,,,,,,,,,,

| MatComm |
Microsoft MATLAR i
| Visual C4++ MatComm |
: UNIX Windows 3
1 Operating Operating 3
| System System l

Figure 5.1: Communciation and control system of the virtual robot
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(IP) to transmit data between computers on the network where different
operating system might exist. Data are sent through MatComm in an array
format using Berkeley sockets. MatComm can be used in both the UNIX
and Windows platform. The reason that MatComm was used is because it
is a fast and easy way to connect between computers without the necessity
of setting all the parameters.

5.2 Overall System

The overall system can be seen in Figure 5.2.

The system is a closed-loop system that begins with the virtual digital
cameras. The virtual digital cameras are used as visual sensors in the vir-
tual environment. Images captured by the vitual digital cameras are sent
from Microsoft Visual C++ to MATLAB using MatComm. Feature point
extraction is applied on the images to determine the center of the virtual ball,
(ug , vg) with reference to the two-dimensional images. Time stamped data is
needed to calculate the exact time for the position of the virtual ball. After
the images are processed, the coordinates of the virtual ball are then saved
into an array that hold the time instances when the images were received.

(ug ,vg) obtained from both the images are then used to reconstruct the
three-dimensional coordinate of the virtual ball, (X} , Y% , Zx). The method
used for three-dimensional reconstruction from two two-dimensional images
is Triangulation. After six iterations of the process described, enough sam-
ple data are collected from Triangulation to start identifying the trajectory
of the virtual ball. In the process of system identification, the unknown
parameters are computed using linear regression. The calculated unknown
parameters are then used to predict the virtual ball grasping position in the
three-dimensional coordinate, (X, ,Y, ,Z,). Virtual ball grasping position
prediction estimates the best position for the robotic arm to align itself to
grasp the virtual ball. (X, ,Y, ,Z,) is then sent for inverse kinematics to
convert the three-dimensional coordinate into robot joint coordinates. The
robot joint coordinates are then sent back from MATLAB to Microsoft Visual
C++ using MatComm.

Thus the joint angles of the six robot joints can be controlled to move
the gripper attached to the end-effector of the virtual robot to the predicted
virtual ball grasping position. The number of samples for the virtual ball
to travel from its original position to the region of the predicted virtual ball
grasping position was about 17 samples. Thus the process mentioned above
was decided to be repeated for 20 samples.
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Figure 5.2: Overall System
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Chapter 6

Image Processing

The sequence of operations for most computer vision system begins by de-
tecting and locating some features in the input images. Image features can
be edges, points, corners, surfaces, lines or curves.

6.1 Image Features

Image features are local, meaningful, detectable parts of the image. Mean-
ingful means that the features are associated to interesting scene elements
via the image formation process. Typical examples of meaningful features
are sharp intensity variations created by the contours of the objects in the
scene, or image regions with uniform grey level, for instance image of planar
surfaces. Detectable means that location algorithms must exist, otherwise a
particular feature is of no use. Different features are associated to different
detection algorithms; these algorithms output collections of feature descrip-
tors, which specify the position and other essential properties of the features
found in the image.

Edge points are pixels at or around the image values undergoing a sharp
variation. There are various reasons for interest in edges. The contours of
potentially interesting scene elements such as solid objects, marks on surfaces
and shadows all generate intensity edges. Morever, image lines, curves and
contours are detected from chains of edge points. Finally, line drawings are
common and suggestive images for humans.

In this project, feature extraction is an intermediate step, not the goal of
the system. Features are not extracted just to obtain feature representation,
but to locate the position of the virtual ball with reference to the visual
images.
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6.2 Images

The image constitution follows a three-colour model and its respective RGB
components can be retrieved from the image buffer. MatComm is used to
send the image buffer to MATLAB. The loop starts in the Microsoft Vi-
sual C++ and it sends image information from Camera 2 and Camera 3
all the time. Digital images obtained from virtual digital cameras are two-
dimensional array of numbers and they were sent in the 320 x 240 picture
format. The image information consists of the position of the virtual ball
with reference to the visual images.

The two virtual digital cameras are synchronised to operate at 33.33
Hertz, just like the capability of the digital cameras in the robotic laboratory.
This means the visual information obtained from both the digital cameras are
about 30 milliseconds per sample. After the images are processed and the de-
sired coordinates of the virtual ball extracted, the coordinates are then saved
into an array that holds the time instances when the images were received.

6.3 Feature Point Extraction with Thresh-
olding

Feature point extraction of the image of the virtual ball is done using thresh-
olding, which can be thought as an extreme form of gray-level quantisation.
Thresholding is the most common method applied to images that can be
characterised as having bimodal histograms. These histograms are often as-
sociated with images that can contain objects and backgrounds having a
significantly different average brightness. The goal is to separate the objects
from the background, in this case the virtual ball from its background. The
virtual ball is assigned a binary number ‘1’ while the background is assigned
a binary number ‘0’.

The image constitution follows a three-colour model and its respective
RGB components can be retrieved from the image buffer. The algorithm
of detection programmed in MATLAB scans each pixel from the image in-
formation of Camera 2 and Camera 3 and segmentation is done for pixels
with only pure green colour, which indicates the image of the virtual ball.
The threshold limit for segmenting the image of the virtual ball from its
background is:

1 if R(u,v) =0,G(u,v) =127 and B(u,v) =0

0 otherwise (6.1)

Ball(u, v) = {
The threshold limit was set to such a high level for segmenting only pure
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green colour for the virtual ball because the colour of the virtual ball was
made to be irrelevant to the lighting in the simulated environment.

The position of the center of the virtual ball with reference to the visual
image obtained from the digital cameras are calculated as shown below:

> Uy >y

S Ball(u) = ‘1" 7 ¥, Ball(v) = 41,) (6.2)

(o, vo) = (

where u; and vy are the u and v for when Ball(u ,v) is equivalent to binary
1.
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Chapter 7

Three-dimensional
Reconstruction

This section of work falls under the responsibility of my partner, Woon Teck
Her.

In humans, the three-dimensional perception of the world is due to the
interpretation that the brain gives of the computed differences in the retinal
position between items, also called disparity. The disparities of all the image
points form the disparity map, which can be displayed as an image. Given
a number of corresponding parts of both the images, it is possible to obtain
the three-dimensinal location and structure of the observed objects.

The disparity measures the difference in position between corresponding
points of two images. Depth is inversely proportional to disparity as moving
objects further away seem to move slower than the nearer ones.

The three-dimensional reconstruction that can be obtained depends on
the amount of priori knowledge available on the the parameters of the system.
Since the intrinsic and extrinsic parameters are known for the stereo rig
configuration in this experiment, three-dimensional reconstruction becomes
straightforward and reconstruction by triangulation is the simplest case.

7.1 Stereo Rig Configuration

The geometry of stereo rig configuration, known as epipolar geometry is
shown in Figure 7.1.

The figure shows two pinhole cameras, their projection centers Oy and
Or as well as their image planes, 77, and 7. Each camera identifies a three-
dimensional reference frame, the origin that coincides with the projection
centers and and the z-axis aligned with the optical axes. The vectors P, =
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Figure 7.1: The epipolar geometry

(X ,Yr ,Zp) and Pr = (Xgr ,Yr , Zg) refer to the same three-dimensional
point, P. P is thought of as a vector in the left and right camera reference
frames respectively. The vectors py, = (1 ,yr, ,2.) and pr = (g ,Yr , 2R)
refer to the projections of P onto the left and right image planes respectively.

The name epipolar geometry is used because this points at which the
line through the centers of projection intersects the image planes are called
epipoles. The epipoles are denoted by e, and eg. The plane identified by P,
Or, and Op, is called a epipolar plane while the lines where the epipolar plane
intersects the image planes are called conjugated epipolar lines. The practical
importance of epipolar geometry stems from the fact that an epipolar plane
intersects conjugated epipolar lines.

The important fact of epipolar constraint is that corresponding points
must lie on conjugated epipolar lines. Thus it establishes a mapping between
points in the left image and lines in the right image as well as points in the
right image and lines in the left image. Since all rays include the projection
center by construction, thus all epipolar lines go through the epipole.

7.2 'Triangulation
Triangulation is the method used is this project for reconstructing a three-

dimensional image from two two-dimensional images.
As two images are used for triangulation, two projective equations are
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used for Camera 2 and Camera 3 respectively and they as follow:

_ ' X T
UpA
A | voa | = Hazxa }; for Camera 2 (7.1)
1 - 1
_ X 7
UoB
A | voB | = Hpsxa )Z/ for Camera 3 (7.2)
1
u L 1 |

By combining and solving the equations we can obtain:

[ Aauoa | [ HanX + Ha2Y + Hai3Z + Hpg |
AAVoA H 01 X + Hp00Y + Hup3Z + H o4
A _ | Hann X + HazY + HagsZ + Hasy (7.3)
AAloa Hyn X + Hp12Y + Hp13Z + Hpy ‘
AAVoa Hpn X + HpoyY + HpysZ + Hpyy
A | Hp1 X + HpspY + HpssZ + Hpay |

With the six equations, the they can be manipulated to become the ho-
mogeneous form of:

[ —Han —Hap —Hgiz uoa 0 ¥ Hapiy |
—Hao —Hpoo —Haxs wvoa 0 y H 424
—Hpzt —Hpzp —Hpzz 10 7 | = H p34 (7.4)
—Hpy1 —Hpis —Hpiz 0 ugp A\ Hpiy '
—Hpoy —Hpy —Hpz 0 wp )\A Hpay
| —Hps1 —Hpss —Hpsz 0 1 |24 | Hps |
c b %

Since the matrix H is known and the center point of the virtual ball
(ug,vp) can be obtained after image processing has been applied onto the
visual images obtained from Camera 2 and Camera 3, thus we can obtain D
with the following equation:

D=C'E (7.5)

where CT is the pseudoinverse of C.
This renders a least square solution for D as C' is not a square matrix.
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Chapter 8
Model-Based Ball Grasping

This section of work falls under the responsibility of my partner, Woon Teck
Her.

8.1 Newtonian Dynamic Equations

The Newtonian dynamic equations for the virtual are non-linear. The un-
known parameters to be identified include: v, xq, yo, 20, 0 and ¢.
Let

a = cos ¢ (8.1)
B = cosf (8.2)

Using the trigonometric identity of: sin? + cos?v = 1, the Newtonian
dynamic equations can be modified to become:

Xr =x9—v0(V1—a?)t (8.3)
Y., =uyo— vlaty (8.4)

1
Zry =z +v(yJ1— )t — 5gtz (8.5)

where X}, Yy, Zi, tr and g are known parameters.
The method used to identify the Newtonian dynamic equations is Linear
Regression. [21]

8.2 Linear Regression

The equation of linear regression is:

yn = PnU +e (8.6)
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where

N = total number of samples

] is the vector of observations

YN = [yl yY2.- YN

On = [p1 ,p2...on]T is the regression vector

¥ = matrix with unknwon parameters to be identified
e = [e1 ,es...en]? is the error

Interpreting the Newtonian dynamic equation in the form of Linear Re-
gression gives us:

[ Xi Yo Zi+ 594 } - [ L b } [ —Uﬂh —goﬂa v\/lzoﬂ? (8.7)

YN CI>N

0,

The unbiased estimate of ¥ is calculated using the following equation:
0= dlyy (8.8)

where &7 = (&1 ®y)~1®% is the pseudoinverse of ®.

Since ¢ is a 2 X 3 matrix, a minimum of six samples are needed before the
Newtonian dynamic equations can be identified. The unknown parameters
Zo, Yo and zy are easy to be identified as they can be obtained straight from
the matrix 9. The other unknown parameters involve some mathematical
manipulation.

Let

I =—vB/1-a2 (8.9)
J =-vfa (8.10)

K =u/1-3 (8.11)

Solving the equations simultaneously, we obtain:

v ="+ +K° (8.12)
| P4 J?
_ -1
9 = COS ( m) (813)
RPN E
¢ = COS ( m) (814)
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8.3 Virtual Ball Grasping Position Prediction

The virtual ball grasping position was set as 1 meter in front of the robot,
which corresponds to 3 meters away from the origin on the x-coordinate. A
minimum of six samples were needed before the virtual ball grasping position
can be predicted. The six samples are needed to identify the six unknwon
parameters of the Newtonian dynamic equations. With the x-coordinate
fixed, the time, y-coordinate and z-coordinate of the predicted virtual ball
grasping position can be easily calculated as shown below:

X, =-3 (8.15)
X — Xy
t =7 = 1
P —v cosfsin ¢ (8.16)
Y, =wyo—vcosfcosqt, (8.17)
1
Z, =z +usinbt, — gt (8.18)

2

The virtual ball grasping position prediction was done for 20 samples, 15
samples in total if the first 5 samples were excluded.

8.4 Inverse Kinematics

There are two kinds of kinematics: one is called forward kinematics and
the other is called inverse kinematics. The forward kinematics calculate the
position and orientation of the robot end-effector with the input of the robot
joint angles while the inverse kinematics calculate the robot joint angles with
the input of the robot end-effector position and orientation. [21]

In order to move the gripper attached to the end-effector of the virtual
robot to the predicted virtual ball grasping position, the inverse kinematics
is used. A MATLAB program called invkin2400.m was used for doing
the inverse kinematics calculation. This program was written by Anders
Robertsson from the Department of Automatic Control, Lund Institute of
Technology, University of Lund. The function for the inverse kinematics is:

q = invkin2400(robot_coordinate,1,1,gripper_length)

Before doing the inverse kinematics, the predicted virtual ball grasping
position has to be converted to be relative to the robot’s coordinate system.
The three-dimensional coordinates of the predicted virtual ball grasping po-
sition too has to be converted into millimeters. The conversion can be seen
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below:

0 0 1 X,x 1000
0 1 0 Y,x1000
robot_coordinate = (Rt,opor) P 8.19
Rtroro) ™| 1 ¢ g Z, x 1000 (8.19)
0 0 0 1

The measurement for gripper_length was to be specified in milimeters
and it was set to 350 milimeters. The output of the function, q were six
joint angles of the virtual robot in radians and they have to be converted to
degrees before being sent to the virtual robot via MatComm. The conversion
can be seen below:

180°

™

q(degrees) = g(radians) x (8.20)
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Chapter 9

Results

Figure 9.1 shows the experimental setup in the simulated virtual environ-
ment. The experimental setup closely mimics the robotic laboratory envi-
ronment in terms of room dimension.

The top picture in Figure 9.2 shows the image obatined from Camera 2
when the virtual ball is placed at its initial position, also the image obtained
from Camera 2 for the first sample. The bottom picture in Figure 9.2 displays
the result after feature point extraction with thresholding has been applied
to the image. The image of the of the ball was assigned a binary number 1,
which renders the image of the virtual ball to be white while the background
was assigned a binary number '0’, which renders the background to be black.
It can be observed that the image of the virtual ball after feature point
extraction with thresholding is at the exactly the same position as the image
of the virtual ball initially obtained from Camera 2. Thus the algorithm for
feature point extraction with thresholding was successful.

This was done for Camera 3 as well and the whole process was repeated
for 20 samples. Figure 9.3 shows the graphs of two-dimensional images of the
center of the virtual ball captured by Camera 2 and Camera 3. From both
the graphs obtained, we can observe the whole trajectory of the virtual ball
from its initial position to the last (twentieth) sample. This indicates that
that the placement of the cameras were good. These two images were used
for three-dimensional reconstruction.

Figure 9.4 shows the parameters identified for the Newtonian dynamic
equations. The blue line indicates the parameters identified for different
sampled data while the red line indicates the actual parameters of the New-
tonian dynamic equations. It can be observed that the identified parameters
are very close to the actual parameters. Thus the identification on the New-
tonian dynamic equations was good.

Figure 9.5 shows the the three-dimensional reconstruction of the position
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Figure 9.1: Aerial view of the experimental Setup

and trajectory of the center of the virtual ball. The reconstructed three-
dimensional trajectory of the virtual ball was compared to the actual tra-
jectory of the virtual ball and the error was found to be very small. Thus
the three-dimensional reconstruction of the trajectory of the vitual ball was
successful.

Figure 9.6 shows the predicted virtual ball grasping positions with the
Newtonian dynamic equations identified for different sampled data.The first
predicted virtual ball grasping point (the sixth sample) is denoted by a red
“¢' " The green dotted lines traces up to the last predicted virtual ball grasping
point. The actual virtual ball grasping position is denoted by a red ‘*.

Figure 9.7 shows the computed errors between the predicted virtual ball
grasping position for different sampled data and the actuall virtual ball grasp-
ing position. It can be observed that the error is structured and the mag-
nitude of the error is very small. Thus the predicted virtual ball grasping
position is good.
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Figure 9.2: Initial image of Camera 2 after feature point extraction with
thresholding
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Figure 9.3: Trajectory tracking of the center of the virtual ball captured by
Camera 2 and Camera 3
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Figure 9.4: Identification of the parameters for the Newtonian dynamic equa-
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Chapter 10

Discussion

When two different software programs are used to communicate with each
other, discrepancies are bound to exist between them as they are written
on different platforms and for differing applications. These discrepancies
require solutions to overcome them in order that the two software programs
can communicate effectively. In this project, three major discrepancies were
found between Microsoft Visual C++ and MATLAB.

The first discrepancy was the different definition of ‘char’ in both the
software programs. Feature point extraction with thresholding was initially
done in Microsoft Visual C4++ before being sent over to MATLAB via Mat-
Comm. The problem was that every pixel of the camera image is made up
of a character, defined as a ‘char’. The ‘char’ is signed and is made up of
256 different characters, ranging from —128 to 127 in Microsoft Visual C++.
The 256 characters of ‘char’ in MATLAB are unsigned and ranges from 0 to
255. Thus when MATLAB receives the image information from Microsoft
Visual C++, half the information was lost and the image of the virtual ball
could not be detected in the visual images. To overcome this discrepancy, it
was decided to have image processing done in MATLAB instead using only
the unsigned 'char’ ranging from 0 to 127 to restore the visual images.

Microsoft Visual C++ defines the origin of the pixels of the image at the
top left of the image. As u and v increases, the pixel in question becomes fur-
ther right and further down respectively. Conversely, MATLAB defines the
origin of the pixels at the bottom left of the image. As u and v increases, the
pixel in question becomes further right and further up respectively. Thus a
simple mathematical equation was manipulated to overcome this discrepancy
between the camera’s y-coordinate:

v(MATLAB) = 240 — v(Microsoft Visual C++) (10.1)

The virtual digital cameras in Microsoft Visual C++ were modeled using
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OpenGL coordinate system while the images in MATLAB mimics the images
obatined from the digital cameras in the robotic laboratory. The coordinate
system adopted by OpenGL is different from the real world’s coordinate
system. The y-axis and z-axis of the OpenGL’s coordinate system have to
be inverted to overcome this discrepancy.

Y I

A

8penGL Real World
oordinate System Coordinate System

Figure 10.1: Inversion from OpenGL coordinate system to real world coor-
dinate system
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Chapter 11

Conclusion

The subject of this master thesis has been the application of position-based
visual servoing in a simulated virtual environment. The task chosen to illus-
trate this invloves using a virtual robot with six degree-of-freedom to grasp
a virtual ball moving in three-dimensional Newtonian dynaimecs. Virtual
digital cameras were used to capture the whole trajectory of the ball simul-
taneously. The virtual digital cameras did not require calibration.

The images captured by the virtual digital cameras were sent from Mi-
crosoft Visual C++ to MATLAB in order to be processed. The image pro-
cessing method used was feature point extraction with thresholding. There
were various problems encountered during this process as different conven-
tions were adopted for both the software programs in definition of charac-
ters, image coordinates and camera coordinate system. These problems were
solved using mathematical manipulations. The difficulty did not lie in solving
the problems, but in detecting them during image processing.

Triangulation was used to reconstruct the virtual ball in Cartesian coordi-
nate from two-dimensional images obtained from the virtual digital cameras.
Linear regression is then used to identify the trajectory of the ball so that
the virtual ball grasping position can be predicted. The predicted virtual
ball grasping position was then converted to robot joint angles before being
sent to the robotic arm from MATLAB to Microsoft Visual C++-.

Errors between the predicted virtual ball grasping positions and the actual
virtual ball grasping position were found to be structured. The results were
considered satisfactory as the maximum error was found to be less than 1.5
millimeters. This experiment was successful as the gripper attached to the
end-effector of the virtual robot managed to grasp the virtual ball moving in
three-dimensional Newtonian dynamics.
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Future Work

Since the experiment was successful in the simulated virtual environment,
various methods could be included to make the experiment even better. One
of them is to increase the robustness of the system by introducing errors into
the images obtained from the virtual digital cameras. Then a controller such
as a PID controller can be implemented to minimise the errors to increase
the robustness of the system.

After that, the system can then be implemented in the robotic laboratory.
In the robotic laboratory, the digital cameras will have to be calibrated. Var-
ious calibration techniques could be used to obtain the intrinsic and extrinsic
parameters of the camera.

Feature point extraction with thresholding can still be used for image
processing but new thresholds would have to be found for the ball as the
colour of the virtual ball was only given a simple colour of pure green in
the virtual environment. In real life, a tennis ball might look green on the
surface, but it is a actually combination of red and blue colour as well, which
cannot be seen by the naked eye.
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Appendices

Pictures on the next three pages shows the simulation of the experiment.
The position of the virtual ball and the six joint angles for Virtual IRB-2000
are updated for sample 1, sample 4, sample 8, sample 12, sample 17 and
sample 20 in chrolonogical order.
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