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ABSTRACT 

Recent progress in parameterization of linear robust controllers has made it possible to 

investigate advanced controller specifications numerically using convex optimization. The main 

focus of this thesis project is to investigate how to design a LTI controller for a LTI plant using 

convex optimization, particularly Linear Programming technique. The concerned performance 

specification is defined as lower and upper bounds of time domain responses to step inputs. With 

the help of Q-parameterization, this control design requirement is formulated as a linear 

programming problem, which can be solved very easily and efficiently. As part of this thesis 

work, a Matlab toolbox is developed for the calculation of a numeric controller by using linear 

programming algorithm. Two practical design problems, double tank process and mass-spring 

system, are solved using this toolbox. The calculated controllers have been put into simulation 

for verification. Comparisons are also conducted between optimization based design and other 

control design methods. It has been found that optimization-based design is particularly suitable 

for the investigation of performance limitation and tradeoffs. 
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1. Introduction 

1.1 Background 

During the past few decades, control engineering enjoyed great advancement in both 

theoretic development and industrial applications. The purpose of control engineering is to 

devise a strategy to improve the performance of a system by adding sensors, control processors, 

and actuators. The sensors measure various signals in the system and command signals; the 

control processors process these signals and then drive the actuator which will affect the 

behavior of the system. A diagram of a general control system is shown as follows: 

 
Figure 1-1: general control system diagram 

 

Like any other theory in science and engineering, the establishment of control theory 

requires the simplification of plant and disturbance model. In control terminology, a framework 

has to be defined. Any design problem should be cast into this framework in order for the 

corresponding design method to be applicable. Complementary to the theoretic development, 

numeric/computational approaches have become a separate topic in many areas because of the 

growth of CPU power.  Numerical methods, especially optimization theory, have achieved 

significant advances in recent years. Controller design based on numerical methods, especially 
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convex optimization, has attracted more and more attentions. The controller design problem is 

converted to a pure numeric optimization problem and can be solved for a restricted set of 

systems and a restricted set of design specifications by combining theoretical results with 

numerical convex optimization techniques. The optimization problem is then solved numerically 

on a computer. 

As mentioned above, we need make the restrictions on the systems and design 

specifications for applying the optimization algorithm to the controller design. The systems we 

studied here must be linear and time- invariant (LTI). And the specifications must be closed-loop 

convex. This restricted set of design specifications includes a wide class of performance 

specifications (how the closed- loop system should perform).  

 For controller design problems of restricted form, we can determine if the given 

specifications can be achieved or not, and the limits of performance can be easily studied for a 

given system and a given control configuration.  

 

1.2 Optimization-based control design  

Optimization-based control design is a very broad topic. The framework for the 

concerned control design problem is shown in figure 1-2. G is the model of the plant. It is often 

called augmented plant since extra models, inputs and outputs are often added to the original 

process for the purpose of imposing performance requirement.  C is the controller. y is the 

measured signal, u is the controller output and also the input of the process. w is the disturbance 

or reference signal. z is the performance vector. The design requirement is specified on the 

closed-loop map from w to z.  Note that every signal in this figure could be a vector.  

 

 

 

 

 

Figure 1-2 Controller design framework 

 

In the most general sense, plant  P and controller C both could be nonlinear and time 

varying. It is not difficult to convert the control design problem into numeric optimization 

y
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z
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problem for any given design specification. The biggest problem lies in the solvability of the 

derived optimization problem. Therefore, restrictions on the plant should be imposed. For a finite 

dimensional LTI plant, if a LTI controller is sought, then many design requirements can be cast 

into convex optimization problem with the help of Q parameterization. 

 

1.3 Organization of the report 

This thesis work is organized as follows: 

Chapter 2 focuses on the theoretical derivation of optimization-based design method. In 

this chapter, the so-called Q parameterization and the controller calculation from the optimized Q 

will be introduced. In order to formulate the linear programming problem, the control framework 

for both stable and unstable plant will be formed. Finally, a simple example will be shown on 

how to formulate the linear programming problem from a design specification.  

Chapter 3 demonstrates the optimization-based design method for two real processes: the 

stable double tank process and the unstable mass-spring system. Closed loop performance will be 

shown and verified through simulation. The results are also compared to those using other design 

methods.  

Chapter 4 discusses the possible difficulties in the use of optimization-based design 

method. The focus is on the selection of bounds which will influence the closed-loop 

performance very sensitively. Performance specifications will be used to be the references of the 

bounds define. 

Chapter 5 summarizes this thesis work. Suggestions for the future work will also be 

proposed. 

The appendix will consist of simulation model, computer toolbox code and the 

bibliography.  
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2. Theoretical Part 

2.1 Introduction 

Consider the framework in figure 1-2. Let us assume the generalized plant G to be finite 

dimensional and linear time invariant, having the form of 
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where zwG ,  zuG , ywG , yuG  are the open-loop transfer functions from inputs to outputs, or 
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and now suppose the controller is operating, u=C*y , we can solve for z in terms of w to get 

z  = ( ywyuzuzw GCGCIGG **)*( 1−−+ )* w     (2-3) 

The closed-loop map from w to z can be readily written as 

 ywyuzuzwclp GCGCIGGH **)*( 1−−+=      (2-4) 

 

 

 

 

 

 

 

 

 

Figure 2-1. framework for optimization-based design 

 

The control design problem can be posed as to find the stabilizing controller C to make the 

closed loop system from w to z to satisfy certain convex constraints. 
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2.2 Design structure for stable plant 

In equation (2-3), if we define S = ( CGCI yu *)* 1−− , if S is used as optimization variables in 

linear programming problem, after performing optimization algorithm, the controller can be 

calculated from S as  

C= ( SGSI yu *)* 1−+       (2-5) 

It is important that this design method is only valid for stable plant, for unstable plant, the so-call 

Q parameterization will be used for the design. 

We will explain in detail how to build the framework for the stable plant and to convert it to 

linear programming problem 

First, we will consider a stable plant in the following structure:  

 
Figure 2-2. disturbance and noise rejection for a plant 

 

The input to the system is the step process disturbance and step sensor noise. Then the following 

transfer function could be formulated 
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Each transfer function in clpH is very important, the second row consists of the closed loop 

transfer functions from the process disturbance and sensor noise to the output signal y. What we 

need do is to make these two transfer functions “small”. The “size” of these two transfer 

functions told us something about the closed-loop control achieved by our control system. The 

first row consists of the closed- loop transfer functions from the process disturbance and sensor 

noise to the control signal u. We can notice that in clpH all of the closed loop transfer functions of 

interest in our controller design has been included. Therefore, the specifications for a controller 

design could be expressed in terms of the four transfer functions in clpH . 

 

In equation (2-6), c is the controller, p is the plant, d is process disturbance, n is sensor noise, for 

simplicity, the d an n are all considered as the step inputs. 

  

The performance requirement for the controller design is specified as step response bounds, that 

is,  

 

   Given d(k)=1(k), u(k) < ub1(k) or  u(k)>lb1(k)  

   Given n(k)=1(k), u(k) < ub2(k) or u(k) > lb2(k) 

   Given d(k)=1(k), y(k) < ub3(k) or  y(k) > lb3(k)    

   Given n(k)=1(k), y(k) < ub4(k) or  y(k) > lb4(k)  

 

Compared with equation (2-5), controller will be calculated from 

                                          c=Q/(1-Q*p)     (2-8) 

which means Q=c/(1+c*p); 

Then we got the following structure: 
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Until now, we have converted clpH to the form in (2-9), as we can see, each element in clpH  has 

the form of R*Q+W which can be easily converted to the linear programming problem in the 

future. 
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2.3 Design structure for unstable plant. 

As is shown in figure 2-1, the generalized plant G could be formulated as follows: 
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As we stated before, for unstable plant, Q parameterization should be used to perform 

optimization design.  

Q-parameterization states that, any closed-loop transfer function clpH  achievable by a stabilizing 

controller C, no matter if the open- loop system G is stable or not, can be expressed in the linear 

form of some stable Q:   

clpH = 211211 ** TQTT + .       (2-10) 

Here 211211 ,, TTT  are only dependent on open- loop plant G, and can be calculated as follows: 

Suppose that there exits matrices K and L such that LBA u−  and yKCA −  are stable (i.e. 

stability and detectability). Then 211211 ,, TTT  are given as 
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A nice interpretation of Q-parameterization is given in figure 2-3, and all stabilizing controller 

can be represented based on an observer for the system in the following way: 
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where eQr )(λ=  for some admissible, stable transfer function Q.  

Figure 2-3: An interpretation of the Q-parametrizaiton(with D22=0). 

 

In order to get the state space form of the controller, assume Q has the following state space 

representation 
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Combining (2-12) and (2-13), the optimal controller can be derived as  
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2.4 Linear programming formulation 

In this section, we will derive the control design problem from above design structure. The 

design objective is to have good rejection of disturbance and measurement noise. The 

performance requirement is specified on step response. To make the problem simpler, the 
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controller is assumed to be single input and single output. So Q or S is also a scale transfer 

function. The parameterization of Q is taking the form of  

m
m zqzqzqqQ −−− ++++= L2

2
1

10 ,     (2-15) 

And for Q we only take m terms. 

Note that for above plants, as seen from the derived equation (2-9), All of the elements in the 

closed-loop transfer matrices are linear form of Q, with the following form:  

H=R(z)*Q+W(z)                                                 (2-16) 

Where  l
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are known, Please also note that at least n terms of the R should be used, i.e. The index of the last 

bounds point we defined. The controller should be designed to make sure that the responses of 

the system are within the bounds during the time instant which are defined by user. And the step 

response of the system should converge to the desired value which is also defined by the user.  
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As we can derive, for a plant n
nzhzhzhhzH −−− ++++= L2
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10)( , its step response has z-

transform: 
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The bounds condition of its step response can be converted to the following LP problem: 
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Af*x<bf                                                                            

And we form the problem in the following procedure: 

First: 
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for example, if an upper bound at the time instant i is defined, then the i row of the A should be 

the positive, and the row of the b should be the upper bound, otherwise, the row of the A should 

change the sign. And the lower bounds should also change the sign and be put into i row of the b, 

and then the following form will be formed: 

A(Gq+w) < b ,it  can be converted as (AG)q < b-Aw, and we denote it as:  

bflq*Afl <     (2-18)  

In our problem not only above equation should be satisfied, we also intend to minimize the 

bounds such that the optimal solution can be calculated, and at the same time, the response of the 

system should also converge to the desired value. Then a variable gamma will be introduced to 

get the following formula:  

bdes)-(bfl*gammabdes-q*Afl <=     (2-19) 

Gamma will be one of the design variables, i.e. x= 







gamma

q
. After the translations, the final 

linear programming problem will be formulated in the following way: 

w0*A-desgamma][q;*b]-des[Af1, <=     (2-20) 

From equation (2-19), the parameters for the LP problem is:. 

 w0];*A-[desb b],-des[Af1,A ==       (2-21) 

and the objective function is to minimize variable gamma. 

 

2.5 An simple example 
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In order to have a rough idea on how to formulate the Linear programming problem from 

the performance specification, a simple example will be given in the following: 

Consider the following control structure: 

 
Figure 2-4: a closed loop structure for demonstrating the linear programming formulation 

from a control problem 
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Y(z)=S(z)*z/(z-1)  

has the following specifications at different time instant:  
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q0, q1, q2, q3 are design variables. The problem is that does such a S(z) exist such that the step 

response of S(z), i.e. Y(z) are within the bounds as given above at different time instant? To 

solve such problem, first,  

 z^-3),*q3z^-2*q2z^-1*q1(q0 0.5))-1/(z- 1)-(2/(z

1)-(z*0.5)-z^-3)/(z*q3z^-2*q2z^-1*q1(q0*z

1)-z/(z*S(z)Y(z)

+++=

+++=
=

 

Mapping Y(z) to Y(k), the following formula could be obtained:  

4))-u(k*4)-(k0.5^-(2*q1 3))-u(k*3)-(k0.5^-(2*q2             

2))-u(k*2)-(k0.5^-(2*q11)-u(k*1))-(k0.5^-(2*q0Y(k)

++
+=

 

k should be in the integer value of 0,1,2,3,4, insert value of k in above Y(k), then corresponding 

value of the Y(k) is  

Controller Process 

   -1 
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    (2-22) 

To determine the existence of the feasible region, we can use a fake objective function in order to 

use linear programming function from Matlab: 

F=q0+q1+q2+q3=F’*x;    
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Linear programming problem is to minimize F’*x, under the condition A*x<b, BL=<x<=BU. In 

which 

F=



















1

1
1
1

;  AU=



















15.175.1875.1

015.175.1
0015.1
0001

;  BL=



















0

1
3
1

; BU=



















1

2
4
2

 

Write in stack form:  

A=
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=b     (2-23) 

Call Matlab function LINPROG (F,A,b,[],[]), then the solution will be calculated which mean 

there has such a solution such that the step response of the given sensitivity function are within 

the bounds defined.  
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3. Application results 

3.1 Double tank process 

3.1.1 Introduction of the process 

 
Figure 3-1: diagram for the double tank process 

 

The inflow to the upper tank is generated by a pump which is controlled by an external voltage. 

The outflow from the upper tank is then in turn the inflow to the lower tank. Two level sensors 

make it possible to measure the levels in the two tanks. A tap placed on the upper tank to 

introduce the load disturbance. In our problem, the input signal is the flow to the first tank and 

the output is the level in the second tank. 

The continuous transfer function of the double tank process is: 

03627.03857.0
06769.00002456.0

)( 2 ++
+

=
ss
s

sG      (3-1) 

Using sampling time of 1 second, discrete transfer function of the double tank will be  

68.065.1
026.0030.0

)( 2 +−
+

=
qq

q
qH         (3-2) 

The pole, zeros map and bode diagram are shown in figure 3-2. it can be seen that this is a stable 

and slow process. The bandwidth of this process is 0.01rad/s. 
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Figure 3-2: poles and bode diagram for double tank process 

 

3.1.2 Design with PID controller  

Using the simple PID design method, the following closed- loop step responses could be obtained 

(figure 3-3) with kp=2, ki=0.2, kd=0. Due to the existence of the integrator in the controller, the 

output y of the second tank settles to zero under the input disturbance d and sensor noise n. The 

setting time is about 40 seconds. In the steady state, the control action u, which is the water 

flowing into the first tank, will remain about 0.5. This can be verified from equation (3-1) by 

setting s=0 or equation (3-2) by setting q=1. 

 
Figure 3-3: Step response of the u and y to the process disturbance d and sensor noise n 
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3.1.3 Optimization based design 

Figure 3-4 shows the results from optimization-based design. Black ‘o’ represents the desired 

value. Blue one is the real response of the system. The red ‘*’ represents the bounds defined by 

the user, and the green ‘*’ represent the tightest bounds which can be achieved (the tightest 

bounds is defined as gamma*(bounds-des_value)). It can be seen that the user-defined bounds 

value can be reduced to the green one and the performance specification is still be fulfilled. 

  
Figure 3-4: Step response of u and y to d and n based on the optimization design. 

 

In terms of closed- loop performance, optimization-based design gives 25 seconds settling time, 

and close to zero steady state error, which is better than the PID design in figure 3-3. 

Controller calculated from optimization based design is of 17th order, Q is in order 15.  
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Figure 3-5: poles, zeros of the controller calculated from optimization-based design 

 

It can be shown that there is a pole approaching to 1 in the designed controller, which 

corresponds to include an integrator in the controller. This explains why close to zero steady 

error can be achieved in figure 3-4. It can also be noticed that the exact integrator is not achieved 

due to the numeric round error and bound definition. Therefore, theoretically zero steady state 

error is not guaranteed. 

After obtained the controller, a simulation model has been built to test the design, the results are 

show below, compared with the PID controller we used before, It can be shown that the 

computer tool box we have developed for the stable process works pretty well. The settling time 

has become much shorter compared with PID design.  
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Figure 3-6: simulation result get from the optimization based design 

 

3.2 Mass-spring system 

3.2.1 Introduction of the process 

 

 

 

 

 

 

 

 

 

 

Figure 3-7: Diagram for the mass spring system 

 

As we can see from above figure 3-7, there are two masses connected with a spring in the system. 

The mass on one side of the spring can be moved by a linear motor. This side is called the 

“motor side” and the other side is called the “load side”. In two damping, only d2 can be seen as 

m1 m2 
F 

 p1  p2 

 d1  d2 
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a part in the process. And d1 is modeled as in above figure. Our purpose is to control the position 

p2. i.e. the position of the mass on the load side, but in many applications, only the position on 

the motor side, p1 can be measured. Therefore, the control problem now becomes to control a 

signal which we can not measure. First, we will show how to get a linear model of the process: 

the weights for the two masses are m1 and m2, and the damps of the two masses are d1 and d2 

respectively. The spring constant between them is k. one of the masses is controlled by a DC-

motor, driven by a current controlled amplified. The dynamics of the motor and amplifier can be 

neglected. The relationship between the driving force of the motor F and the input voltage of the 

amplify u can be written as: F=Km*u. Finally, the dynamical model for the force balance 

equations can be obtained as follows: 

m 1*
2
1

2

dt
Pd

=-d
dt

dp
d

1
*1− - k*(p1-p2)+F(t)+l(t);      (3-3) 

m 2 *
2
2

2

dt
Pd

=
dt

dp
d 2

2 *− + k*(p1-p2)     (3-4) 

In which l(t) load disturbance and  a state space representation with the state vector 
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 can be written as: 

            
.

x (t)=A*x(t)+B*u(t)+B l *l(t)= 
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
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 y(t)=C*x(t)= 







2

1

C

C
*x(t)= 








000

000

2

1

y

y

k

k
 x(t)     (3-6) 

   

In our design, y2 is the variable which we want to control, and y1 is the variable that can be 

measured in practice. and k, 1d  1m  2yk  1yk 2m  are all constants that could be measured from the 

experiment. 
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3.2.2 Design with state feedback controller 

The control law we will use here is state space feedback including an integrator. In addition, 

because in practice, only the variable y1 could be measured, so y2 will be observed from other 

states, the structure is as follows: 

 
Figure 3-8: State feedback with integral action 

 

Specifications:   

Specifications are those requirements that we want the controlled system to fulfill. In our 

problem, we only study the closed loop system behavior in the time domain. A well damped step 

response with a rise time between 0.2 and 0.4 seconds is then specified. At the same time, the 

control signal should not be too ‘large’ because it will lead to undesirable damages on the motor. 

Control strategy and design 

It is difficult to control the process with feedback from only one state, so all of our four state will 

be used to do feedback, the system is controllable, because [ ]BABAABB 32  has full rank. 

So we can place all the poles freely by the state feedback. Due to only the y1 can be measured, 

so the estimation for other states is necessary. This is possible to do since the system is also 

observable.  

How to get L: 

Assume that all the states could be measured in our problem. We could place the poles for the 

closed loop system by using the control law 

.

x (t)=A*x(t)+B*u(t)     (3-7) 

 
  Process 

-L x
)  

-Li 1/s 

U 
Y2 

Y1 

- 

ix  

Observer 
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u(t)=-Lx(t);     (3-8) 

Because the system is a 4th order system, so we just define four poles according to the 

specification, now we want to calculate L such that A-BL get designed properties. The function 

PLACE in Matlab will give a L-vector according to the pole defined by us. The poles we used in 

the design can be illustrated by the following figure: 

 
Figure 3-9: The location of the poles 

How to get K: (Reconstruction of the states) 

As we mentioned before, it is impossible to measure all the states in practice and only the 

position on the motor side, y1 can be measured. Therefore, we will build up a so called observed 

model (or called Kalman filter), what we should do is just copy the process model and feed it 

with the same input signal as the real process. The difference between the output of the real 

process and the model is used to correct the model states such that they should approach the 

process states. The observer can be written by: 

dt
txd )(

^

=A* )(
^

tx +B*u(t)+K*( 1y (t)- 1c  * )(
^

tx )        (3-9)  ̈

In equation (3-9), )(
^

tx is the states of the observer. K is the observer gain and can be set such that 

the observer states are approaching the real states with an arbitrary convergence speed. The 

observer states instead of the real states (which we can not measure) will be used in the state 

feedback design. Now we want to calculate K such that A-K*C1 gets designed properties. If we 

just write the transpose (A-K* 1C )T=AT- 1C T*KT; take KT  as the design variable, AT , 1C T  as input 

parameters, then the function PLACE will solve the K. Normally, the observer dynamics will be 

chosen to be 1.5 to 2 times faster than the closed loop system. 

How to get Li: 

The pure state feedback works well when the model matches the real process and no 

disturbances entered into the system. However, a stationary error will be presented for a constant 

15 

50o 
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load disturbance. To overcome this problem, introducing the integral action into the controller is 

necessary. As shown in the figure 3-6, the controller states are the observer states 
^

x  and the 

integrator xi . Writing the following equations : 

 
dt

txd )(
^

=A*
^

x +B*u+K*(y1-c1*
^

x );       (3-10) 

 
)(

dt

tdxi =-y1;          (3-11) 

 u=-L*
^

x -Li* xi          (3-12) 

Consider the u as the output from the controller, and y1 as the input to the controller, the sate 

space form of the controller could be formulated: 

dt

x

x
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u = [-L -Li]* 

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
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
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x
^

         (3-14) 

According to the obtained stated feedback gain L, observer gain K, set value for Li, then the 

controller could be obtained: 
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Figure 3-10: controller calculated from the state feedback design 

 

Results from the L, K, Li design: 

 
Figure 3-11: u, y2, y1 to the step input d. (h=0.05) 

 
Figure 3-12: u, y2, y1 to step input n (h=0.05) 

As we can notice from the above results, the setting time for u and y2, y1 to the process 

disturbance d are much longer. 
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3.2.3 Optimization based design 

Now, we will explain how to formulate the Linear Programming for mass-spring process to 

calculate the controller, Q parameterization will be used in the design since this process is a 

potentially unstable process which can be shown in the following figure: 

 
Figure 3-13: pole and zero maps for mass-spring process 

 

As we know, y2- the position of the second mass is the variable which we want to control, y1- 

the position of the first mass is the variable we can measure, then we formulate the following 

closed loop transfer matrix to calculate the Q parameter using the Q parameterization. This 

system has three inputs and four outputs. 
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
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Use the developed Matlab Computer ToolBox, Q will be calculated, use (2-12) to (2-14), the 

optimized controller from Q parameterization can be calculated. The result of the system 

response has the following properties: 
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Figure 3-14: responses of the closed loop system to the step inputs d and n 

 

The controller obtained from the optimization based design is as follows, it is a 12th order 

controller and there is an integrator has been included in the design. Q is in order 8. 
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Figure 3-15: the poles and zeros of the controller calculated from optimization based design 

 

The following plots are the simulation results obtained from the optimization-based design.  

 
Figure 3-16: the responses of u, y2,y1 to step disturbance d and sensor noise n. 

 

Compared with state feedback design, optimization-based design gives shorter setting time. 

From Figure 3-14, it also can be seen that the step response from n to u, d to y1, d to y2 reach 

critical bounds. This demonstrates which performance requirement is easier to be satisfied, and 

which one is not. If the limits of control action can be loosen, better output disturbance rejection 

can be achieved. In this sense, optimization-based design gives quantitative description on 

performance t radeoffs and limitations. 

Compared to state feedback results, control action in figure 3-14 has more oscillations. The 

reason is that higher order controller in the optimization-based design gives potentially higher 

bandwidth to the closed- loop system. To reduce the oscillations in the output, one suggestion is 

to model the actuator as a low pass system, which means the process model has to be changed. 
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4. Bounds Definition   

4.1 Bounds structure: 

The bounds should be defined by the user. It is a critical parameter that will help us to get the 

correct optimized solution. The Matlab function STRUCT will help to form the structure of the 

bounds. The bounds structure is as follows: 

B. T: the counter of the bounds, T*h (sampling time) equals the time instant(s) at which the 

bounds defined. 

B. bound : the values that limit the system responses. 

B. desired: the desired value that the system should converge to. 

B. output: integer value, the row of the output signal in vector Z. 

B. input: integer value, the row of the input signal in vector W. 

 

4.2 bounds define instruction for the user  

4.2.1 Generate bounds from performance specifications  

For users, it is a little difficult to define the bounds if they are not aware how the system response 

will behave, improper definition of the bounds will not get the optimization solution or even the 

optimization will terminated successfully, the value of the gamma will be too large, which means 

we need to change the value of the bounds such that the designed specification be fulfilled. To 

solve this problem, performance specification will be used to be the references for the bounds 

define .Then our question has becomes how to automatically generate bounds from step response 

performance specification? 

 

4.2.2 Parameters in performance specification 

The performance specifications will be used as the tool to give the appropriate bounds value.  

For rejection: 

The parameters normally include: Limit, setTime, steadyError, (normally desired=0) 
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Figure 4-1: rejection response for bounds definition 

 

For control action or controller output: 

Only need to define the upper limit and lower limit, in order for the controller output not 

saturated. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: control action for bounds definition 
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5. Conclusions and Future work  

5.1 Conclusions 

The research area of this thesis project is on the optimization-based control design. Compared to 

other modern control design theories like LQR/LQG, optimization based design produces the so 

called numeric controller. In the thesis, we emphasized on the formulation of a general design 

problem into an optimization problem.  

A disturbance rejection problem for a LTI plant under step inputs is then studied. The design 

goal is specified as step response setting time and steady state error etc. Derivation from original 

performance specification to the final linear programming form is performed and implemented as 

a set of Matlab functions. 

These Matlab functions have been applied for two real applications: double tank process and 

mass-spring system. Simulation model have been built to verify the correctness of the 

optimization formulation. Comparison is also conducted among optimization based control 

design, output feedback design and PID design for these two applications. The advantage of 

optimization based design is that it is quite easy to see the limits of the performance, and the 

tradeoffs between performance requirements. The disadvantage is that the designed controller 

often has very high order. So it is very important to perform model reduction. 

 

5.2 Future Work 

There are many things need to be improved. Due to the time limit, this thesis work only make the 

design for single input and single output system. The future work will of course to continue on 

the development of Matlab toolbox for MIMO system. The Q will be in matrix form, In this case, 

the algorithm will become more complex. And the controller order reduction should also be 

further studied.  
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6. Appendix 

6.1.1 Simulation model for Double Tank process using PID controller 

 
6.1.2 Simulation model for Double Tank process using optimization based controller 
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6.1.3 Simulation mode for mass-spring process using state feedback and integrator 

controller and optimization based controller 

 

 

6.2 Matlab code for Computer Tool Box for Optimization based design. 

6.2.1 List of the code 

TestTank: design for the double tank process using Q parameterization. 

TestMass: design for the mass-spring system using Q parameterization 

qparlp:  Get the Q parameters and calculate the controller  

senslp: controller design using linear programming method 

formlp: Linear Programming algorithm 

getbounds: get the bounds value defined by users 

plotres: plot responses of the closed loop system to the step inputs 

Actionbounds: define the bounds for the control signal to step input 

Rejectionbounds: define the bounds for the measurement to step input 

plotfigureTank: plot the results for simulink model of double tank process 

plotfigureMass: plot the results for the simulink model of mass-spring system 
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6.2.2. Structure of the programming 

 
 

 

 

 

6.3.2 Matlab Code  

TestTank 

clear all 

 

% define the sampling time 

h=1; 

 

% stable double tank process 

sys=tf([0.03 0.026],[1 -1.65 0.68],h); % discrete system 

sysc=tf([0.0002456 0.06769],[1 0.3857 0.03627]); 

 

% formulate the generalized open- loop plant 

G11=[0 0; sys 1]; 

G12=[1; -sys]; 

Stable Plant Unstable Plant 

T11*Q*T12+T21 

Q=LinProg 

Controller Calculation 

G11+G12*Q*G21 

  R*Q+W 

senslp qparlp qparlp 

formlp 
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G21=[sys 1]; 

G22=-sys; 

G=[G11 G12;G21 G22]; 

 

% specify the bounds for closed loop system step response 

B=[]; 

nsamples=50; 

%nsamples=100; 

Tf=(nsamples-1)*h; 

tbnds=(0:nsamples-1); 

 

% from input 1 to output1 (d to u)  

% B=[B actionBounds(1,1,h,Tf,1,4,-2)]; 

ubnds=2*ones(1,50); 

% lbnds=-0.5*ones(1,50); 

for k=1:length(tbnds), 

  B=[B struct('T',tbnds(k),'bound',ubnds(k),'desired',1,'output',1,'input',1)]; 

%  B=[B struct('T',tbnds(k),'bound',lbnds(k),'desired',1,'output',1,'input',1)]; 

end 

 

% from input2 to output1 (n to u) 

%B=[B actionBounds(1,2,h,Tf,0,3,-3)]; 

ubnds=1.5*ones(1,50); 

lbnds=-0.5*ones(1,50); 

for k=1:length(tbnds), 

  B=[B struct('T',tbnds(k),'bound',ubnds(k),'desired',0.5,'output',1,'input',2)]; 

  B=[B struct('T',tbnds(k),'bound',lbnds(k),'desired',0.5,'output',1,'input',2)]; 

end 

 

% define settle time 

setTime=25; 
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% define steady Error 

steadyError=0.01; 

 

% get the couter for the whole bounds interval 

Nf=ceil(Tf/h); 

% get the counter for the bounds after the settling time 

Ns=floor(setTime/h); 

 

% from input1 to output2 (d to y) 

%B=[B rejectBounds(2,1,h,Tf,0,1,15,0.01)]; 

%B=[B rejectBounds(2,1,h,Tf,0,1,20,0.01)]; 

for k=1:Nf+1 

    uB{k}=struct('T',tbnds(k),'bound', 1, 'desired', 0, 'output', 2, 'input', 1); 

    lB{k}=struct('T',tbnds(k),'bound', -1,'desired', 0, 'output', 2, 'input', 1); 

end 

 

for k=Ns+1:Nf+1 

    uB{k}=struct('T',tbnds(k),'bound', steadyError, 'desired', 0, 'output', 2, 'input', 1); 

    lB{k}=struct('T',tbnds(k),'bound', -steadyError, 'desired', 0, 'output', 2, 'input', 1); 

end 

 

for k=1:Nf+1 

    B=[B uB{k} lB{k}]; 

end 

 

%from input2 to output2 (n to y) 

%B=[B rejectBounds(2,2,h,Tf,0,2,15,0.01)]; 

%B=[B rejectBounds(2,2,h,Tf,0,2,20,0.01)]; 

for k=1:Nf+1 

    uB{k}=struct('T' ,tbnds(k),'bound', 2, 'desired', 0, 'output', 2, 'input', 2); 
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    lB{k}=struct('T',tbnds(k),'bound', -2,'desired', 0, 'output', 2, 'input', 2); 

end 

 

for k=Ns+1:Nf+1 

    uB{k}=struct('T',tbnds(k),'bound', steadyError, 'desired', 0, 'output', 2, 'input', 2); 

    lB{k}=struct('T',tbnds(k),'bound', -steadyError, 'desired', 0, 'output', 2, 'input', 2); 

end 

 

for k=1:Nf+1 

    B=[B uB{k} lB{k}]; 

end 

 

 

% use Q-parametrization to do optimal design 

[contr,closeL,gama,AF,BF,Q,Ac,bc]=qparlp(G,B,15); % Q-parametrization based design 

plotres(closeL,B,gama,Tf); 

gama 

 

% get the data from controller for simulation purpose 

[NumC1,DenC1]=tfdata(contr); 

NumC=NumC1{1}; 

DenC=DenC1{1}; 

 

TestMass 

clear all 

 

% system modeling 

m1=2.29; 

m2=2.044; 

d1=3.12; 

d2=3.73; 
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k=400; 

km=2.96; 

ky1=280; 

ky2=280; 

h=0.05; 

 

A=[0 1 0 0; -k/m1 -d1/m1 k/m1 0; 0 0 0 1; k/m2 0 -k/m2 -d2/m2]; 

B=[0 km/m1 0 0]'; 

C1=[ky1 0 0 0]; 

C2=[0 0 ky2 0]; 

D=0; 

 

% get the state space form from u to y1 

G1=ss(A,B,C1,D); 

% get the transfer function form from u to y1 

Gf1=tf(G1); 

% get the discrete form of the Gf1 

Hf1=c2d(Gf1,h); 

% get the state space form from u to y2 

G2=ss(A,B,C2,D); 

% get the transfer function form from u to y2 

Gf2=tf(G2); 

% get the discrete form of the Gf2 

Hf2=c2d(Gf2,h); 

 

% formulate the generalized open- loop plant 

G11=[0 0; Hf2 0; Hf1 1]; 

G12=[1; -Hf2; -Hf1]; 

G21=[Hf1 1]; 

G22=-Hf1; 

G=[G11 G12;G21 G22]; 
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% specify the bounds for closed loop system step response 

B=[]; 

nsamples=20; 

Tf=(nsamples-1)*h; 

Nf=nsamples-1; 

tbnds=0:nsamples-1; 

% from input 1 to output1 

%B=[B actionbounds(1,1,h,Tf,1,4,-4)]; 

ubnds=4*ones(1,nsamples); 

lbnds=-4*ones(1,nsamples); 

for k=1:Nf+1 

  B=[B struct('T',tbnds(k),'bound',ubnds(k),'desired',1,'output',1,'input',1)]; 

  B=[B struct('T',tbnds(k),'bound',lbnds(k),'desired',1,'output',1,'input ',1)]; 

end 

 

% from input2 to output1 

%B=[B actionbounds(1,2,h,Tf,0,4,-4)]; 

ubnds=4*ones(1,nsamples); 

lbnds=-4*ones(1,nsamples); 

for k=1:Nf+1 

  B=[B struct('T',tbnds(k),'bound',ubnds(k),'desired',0,'output',1,'input',2)]; 

  B=[B struct('T',tbnds(k),'bound', lbnds(k),'desired',0,'output',1,'input',2)]; 

end 

 

% define the settling time 

setTime=0.8; 

 

% get the counter for the bounds after the settling time 

Ns=floor(setTime/h); 
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% define the steadyError after the settling time 

steadyError=0.01; 

 

% from input1 to output2 

%B=[B rejectbounds(2,1,h,Tf,0,3,0.8,0.01)]; 

for k=1:Nf+1 

    uB{k}=struct('T',tbnds(k),'bound', 3, 'desired', 0, 'output', 2, 'input', 1); 

    lB{k}=struct('T',tbnds(k),'bound', -3, 'desired', 0, 'output', 2, 'input', 1); 

end 

 

for k=Ns+1:Nf+1 

    uB{k}=struct('T',tbnds(k),'bound', steadyError, 'desired', 0, 'output', 2, 'input', 1); 

    lB{k}=struct('T',tbnds(k),'bound', -steadyError, 'desired', 0, 'output', 2, 'input', 1); 

end 

 

for k=1:Nf+1 

    B=[B uB{k} lB{k}]; 

end 

 

% from input2 to output2 

%B=[B rejectbounds(2,2,h,Tf,-1,3,0.8,0.01)]; 

for k=1:Nf+1 

    uB{k}=struct('T',tbnds(k),'bound', 2, 'desired', -1, 'output', 2, 'input', 2); 

    lB{k}=struct('T',tbnds(k),'bound', -4,'desired', -1, 'output', 2, 'input', 2); 

end 

 

for k=Ns+1:Nf+1 

    uB{k}=struct('T',tbnds(k),'bound', -1+steadyError, 'desired', -1, 'output', 2, 'input', 2); 

    lB{k}=struct('T',tbnds(k),'bound', -1-steadyError, 'desired', -1, 'output', 2, 'input', 2);  

end 
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for k=1:Nf+1 

    B=[B uB{k} lB{k}]; 

end 

 

 

% from input1 to output3 

%B=[B rejectbounds(3,1,h,Tf,0,3,0.8,0.01)]; 

for k=1:Nf+1, 

    uB{k}=struct('T',tbnds(k),'bound', 3, 'desired', 0, 'output', 3, 'input', 1); 

    lB{k}=struct('T',tbnds(k),'bound', -3,'desired', 0,'output', 3, 'input', 1); 

end 

 

for k=Ns+1:Nf+1 

    uB{k}=struct('T',tbnds(k),'bound', steadyError, 'desired', 0, 'output', 3, 'input', 1); 

    lB{k}=struct('T',tbnds(k),'bound', -steadyError, 'desired', 0, 'output', 3, 'input', 1); 

end 

 

for k=1:Nf+1 

    B=[B uB{k} lB{k}]; 

end 

 

% from input2 to output3 

%B=[B rejectbounds(3,2,h,Tf,0,3,0.8,0.01)]; 

for k=1:Nf+1, 

    uB{k}=struct('T',tbnds(k),'bound', 3, 'desired', 0, 'output', 3, 'input', 2); 

    lB{k}=struct('T',tbnds(k),'bound', -3,'desired', 0, 'output', 3, 'input', 2); 

end 

 

for k=Ns+1:Nf+1 

    uB{k}=struct('T',tbnds(k),'bound', steadyError, 'desired', 0, 'output', 3, 'input', 2); 

    lB{k}=struct('T',tbnds(k),'bound', -steadyError, 'desired', 0, 'output', 3, 'input', 2); 
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end 

 

for k=1:Nf+1, 

    B=[B uB{k} lB{k}]; 

end 

 

% Q-parameterization based-design 

[contr,closeL,gama,AF,BF,Q,Ac,bc]=qparlp(G,B,8); 

plotres(closeL,B,gama,Tf); 

gama 

 

% get the data from u to y1 

[Num1P,Den1P]=tfdata(Gf1); 

NumP1=Num1P{1}; 

DenP1=Den1P{1}; 

 

% get the data from u to y2 

[Num2P,Den2P]=tfdata(Gf2); 

NumP2=Num2P{1}; 

DenP2=Den2P{1}; 

 

% get the data from the controller 

[NumOP1,DenOP1]=tfdata(contr); 

NumOP=NumOP1{1}; 

DenOP=DenOP1{1}; 

 

qparlp 

%   Controller design using linear programming method and Q-parameterization. 

%   G is the generalized open loop system as 

%    [z]  [G11 G12][w] 

%    [ ]= [       ][ ]   where w is disturbance, u is the controller output, z is controlled variable  
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%    [y]  [G21 G22][u]         y is the measurement for the controller input.  

%    w has width of nw, u has width of nu, z has width of nz, y has width of ny.  

%   Q parameterization tells that the closed loop system having the linear form of Q: 

T11+T12*Q*T21, 

%   where Q is any stable system. 

%   This program ONLY deal with the case where Q is SISO, which means nu=1 and ny=1 

%   The performance is specified as the step response bounds of the closed loop system, as 

defined in 

%   structure B. 

%   m is the order of Q parameter. Q=q0+q1*z^(-1)+...+qm*z^(-m) 

%   For the outputs: 

%   contr---the designed controller 

%   closeL--closed loop system 

%   gama----how the bounds are satisfied 

%   AF,BF,Q---LP problem parameter: AF*Q<BF 

%   Ac,bc ----LP parameter for each input-output pair. Ac{i}{j} b{i}{j} are A and b from jth-

input to ith-output 

 

function [contr,closeL,gama,AF,BF,Q,Ac,bc]=qparlp(G,B,m) 

% get the size of G 

[rT,cT]=size(G); 

nz=rT-1; 

nw=cT-1; 

 

% call function dQpar, get the stable T 

[T,A,L,K,B2,C2]=dQparState(G,nz,nw); 

% to get T11, T12,T21 to formulate LP problem 

T11=T(1:nz,1:nw); 

T12=T(1:nz,(nw+1):cT); 

T21=T((nz+1):rT,1:nw); 
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% closed loop transfer function Z=(T11+T12*Q*T21)*W 

 

% to formulate the LP problem for each component of w to each component of z 

AF=[]; BF=[]; 

for i=1:nz, 

    for j=1:nw, 

        [ubt,desU,ubs,lbt,desL,lbs]=getBounds(B,i,j); 

        e1=zeros(1,nz); e1(i)=1; 

        e2=zeros(nw,1); e2(j)=1; 

        R=e1*T12*T21*e2;  

        W=e1*T11*e2; 

        [Ac{i}{j},bc{i}{j}]=formLP(m,R,W,ubt,desU,ubs,lbt,desL,lbs); 

        AF=[AF;Ac{i}{j}]; 

        BF=[BF;bc{i}{j}];  

    end 

end 

 

% get the size of AF 

[r,c]=size(AF); 

 

% to give the objective function, and to minimize gama 

f=zeros(c,1); 

f(c)=1; 

 

% to solve the LP problem to get the minimized gama 

QT=linprog(f,AF,BF,[],[]); 

 

% to get the gama 

gama=QT(m+2); 

 

% to get the Q polynomials 
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Q=QT(1:(m+1)); 

 

% get the transfer function of Q 

tmpNum=Q(1:m+1); 

tmpDen=zeros(m+1,1); 

tmpDen(1)=1; 

QF=tf(tmpNum', tmpDen',G.ts); 

closeL=T11+T12*T21*QF; 

 

% get the state space form of controller from Q parameterization 

% get state space form of the Q 

[NumQ, DenQ]=tfdata(QF,'v'); 

[AQ,BQ,CQ,DQ]=tf2ss(NumQ,DenQ); 

 

AAC=[A-B2*L-B2*DQ*C2-K*C2 B2*CQ; -BQ*C2 AQ]; 

BBC=[B2*DQ+K; BQ]; 

CCC=[-DQ*C2-L CQ]; 

DDC=DQ; 

 

contr=ss(AAC,BBC,CCC,DDC,G.ts); 

 

senslp 

%  Control design using linear programming method. 

%  The closed- loop system is formulated as linear form of Q 

%  G is the generalized open loop system as 

%    [z]  [G11 G12][w] 

%    [ ]= [       ][ ]   where w is disturbance, u is the controller output, z is controlled variable  

%    [y]  [G21 G22][u]   y is the measurement for the controller input.  

%   w has width of nw, u has width of nu, z has width of nz, y has width of ny. 

%   The controller is u=Cy, the closed loop system is then 

%    G11+G12*(I-C*G22)^(-1)*C*G21 
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%   A simplest case is the regulation of a SISO plant P under the input disturbance and noise: 

%   [ u ]   [ QP      Q   ]  [ d ] 

%   [   ] = [             ] [   ]  

%   [ y ]   [ P-QPP  1-QP ] [ n ] 

% 

%  If G is stable, let Q=(I-C*G22)^(-1)*C, we can formulate LP based on this Q 

%  Q=q0+q1*z^(-1)+...+qm*z^(-1) 

%  m---order of Q (terms taken from z^-1 series) 

%  B---structure for the bounds definition. 

%  

%   For the outputs: 

%    contr---the designed controller 

%    closeL--closed loop system 

%    gama----how the bounds are satisfied 

%    AF,BF,Q---LP problem parameter: AF*Q<BF  

%    Ac,bc ----LP parameter for each input-output pair 

% 

%   Limitation: this program ONLY deals with the case where controller is SISO and the plant is 

stable 

 

function [contr,closeL,gama,AF,BF,Q,Ac,bc]=sensLP(G,B,m) 

% get the size of G 

[rT,cT]=size(G); 

nz=rT-1; % control input is only 1-dimensional 

nw=cT-1; % control output is 1-dimensional 

 

G11=G(1:nz,1:nw); 

G12=G(1:nz,(nw+1):cT); 

G21=G((nz+1):rT,1:nw); 

G22=G((nz+1):rT,(nw+1):cT); 
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% closed loop transfer function Z=(G11+G12*Q*G21)*W 

 

% to formulate the LP problem for each component of w to each component of z 

AF=[]; BF=[]; 

for i=1:nz, 

    for j=1:nw, 

        [ubt,desU,ubs,lbt,desL,lbs]=getBounds(B,i,j); 

        e1=zeros(1,nz); e1(i)=1; 

        e2=zeros(nw,1); e2(j)=1; 

        R=e1*G12*G21*e2; 

        W=e1*G11*e2; 

        [Ac{i}{j},bc{i}{j}]=formLP(m,R,W,ubt,desU,ubs,lbt,desL, lbs); 

        AF=[AF;Ac{i}{j}]; 

        BF=[BF;bc{i}{j}];  

    end 

end 

 

% get the size of AF 

[r,c]=size(AF); 

 

% to give the objective function, and to minimize gama 

f=zeros(c,1); 

f(c)=1; 

 

% to solve the LP problem to get the minimized gama 

QT=linprog(f,AF,BF,[],[]); 

 

% to get the gama 

gama=QT(m+2); 

 

% to get the Q polynomials 
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Q=QT(1:(m+1)); 

 

% get the transfer function of Q 

tmpNum=Q(1:m+1); 

tmpDen=zeros(m+1,1); 

tmpDen(1)=1; 

QF=tf(tmpNum', tmpDen',G.ts); 

closeL=G11+G12*G21*QF; 

 

% get the controller from Q,Q=(I-C*G22)^(-1)*C, C=(G22*Q+I)^(-1)*Q 

contr=QF/(G22*QF+1); 

 

formlp 

% [Af,bf]=formLP(m,R,W) 

%  formulate LP problem Ax<b for linear form H=RQ+W as defined in the following 

%  Q=q0+q1*z^(-1)+q2*z^(-2)+...+qm*z^(-m), where q0,q1,...,qm to be determined,  

%  m is the max order of z^(-1) 

%  R is SISO discrete system 

%  W is SISO discrete system 

%  the design parameter x=[q0 q1 ... qm]'. 

%  the controller performance requirement is defined as the bounds of H's step response 

%  desU,ubs,ubt---define upper bounds values, ubt is the sampling counter at which the desired 

value  

%  desU and upper bound ubs are specified for H's step response 

%  desL,lbs,lbt---define lower bounds values, lbt is the sampling counter at which the desired 

value  

%  desL and lower bound lbs are specified for H's step response 

%  Note:  

%   (1) ubt,lbt are NOT time points, but sampling counters. That is, the real time for ubt is 

ubt*R.ts 
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function [AfL,bfL,Af,bf]=formLP(m,R,W,ubt,desU,ubs,lbt,desL,lbs) 

 

n1=length(ubt); 

n2=length(lbt); 

n=length(ubs)+length(lbs); 

newN=max([ubt lbt]); % find out what is the max samping counter at which the bound is defined 

 

% convert R and W into FIR form.  

RI=impulse(R,newN*R.ts); 

WI=impulse(W,newN*W.ts); 

 

% define GG, H=Gq+W; 

GG=zeros(newN+1,m+1);  

for i=1:m+1 

    GG(i:newN+1,i)=RI(1:(newN+1-i+1)); 

end     

 

% formulate A and b, blt: upper bounds, bgt: lower bounds 

AA=zeros(newN+1,newN+1);  

for i=1:newN+1 

    for j=1:i 

        AA(i,j)=1;    

    end 

end            

 

% row i of AA corresponds to sampling counter-1. For instance, row 1 is defined for sample 0 

A=zeros(n,newN+1);  

b=zeros(n,1);  

des=zeros(n,1); 

 

% get A and b for the upper bounds 
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for k=1:n1, 

    tU=ubt(k); 

    A(k,:)=AA(tU+1,:); 

    b(k)=ubs(k); 

    des(k)=desU(k); 

end 

% get A and b for the lower bounds 

for k=1:n2 

    tL=lbt(k); 

    A(n1+k,:)=-AA(tL+1,:); 

    b(n1+k)=- lbs(k); 

    des(n1+k)=-desL(k); 

end 

 

% to formulate final Af and bf 

Af=A*G;  

bf=b-A*WI; 

 

% introduce the gama, convert the problem to A(Gq+w)-des<gam*(b-des),  

% x=[q;gama]' then get the final AfL and bfL, and to solve the LP problem 

AfL=[Af,des-b]; bfL=des-A*WI; 

 

 

getbounds 

% get the bounds which are produced by the users 

% Ubt: the sampling counter at which the upper bounds defined. 

% Lbt: the sampling counter at which the lower bounds defined. 

 

function [Ubt,DesU,Ubs,Lbt,DesL,Lbs]=getBounds(B,out,in) 

DesU=[]; 

DesL=[]; 
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Ubs=[]; 

Lbs=[]; 

Ubt=[]; 

Lbt=[]; 

for k=1:length(B) 

if B(k).output==out & B(k).input==in, 

        if B(k).desired<B(k).bound, 

            Ubs=[Ubs B(k).bound]; 

            Ubt=[Ubt B(k).T]; 

            DesU=[DesU B(k).desired];     

        else 

            Lbs=[Lbs B(k).bound]; 

            Lbt=[Lbt B(k).T]; 

            DesL=[DesL B(k).desired];                 

        end     

     

    end 

end 

 

plotres 

% plot the step response of the closed loop system 

function plotRes(closeL,bnds,gama,Tf) 

[nz,nw]=size(closeL); 

ts=closeL.ts; 

[Y,T] = step(closeL,Tf); 

figure; 

for i=1:nz, 

    for j=1:nw, 

        [ubt,desU,ubs,lbt,desL,lbs]=getBounds(bnds,i,j); 

        subplot(nz,nw,(i-1)*nw+j); 

        % plot bounds 
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        plot(ubt*ts,desU,'ko',ubt*ts,ubs,'r*',ubt*ts,(ubs-desU)*gama+desU,'g*'); 

        hold on;          

        plot(lbt*ts,desL,'ko',lbt*ts,lbs,'r+',lbt*ts,(lbs-desL)*gama+desL,'g+'); 

        hold on; 

        % plot step response 

        plot(T,Y(:,i,j),'-'); title(['input ' num2str(j) ' to output ' num2str(i)]); 

        hold off;  

        grid; 

    end 

end 

 

Actionbounds: 

% actionBounds: given step response specification, generate bounds for the optimization 

% sampTime: the sample time of the system 

% finalTime: the period during which bounds are defined 

% upperLimit, lowerLimit: limit value, absolute value 

% performance specification:  

% for control action: just simple the constant lower/upper bounds 

 

function B=actionBounds(whichOut, whichIn, sampTime, finalTime, desired, upperLimit, 

lowerLimit) 

 

B=[]; 

Nf=ceil(finalTime/sampTime); 

sampleIdx=0:Nf; 

 

for k=1:length(sampleIdx), 

    uB{k}=struct('T',sampleIdx(k),'bound',upperLimit, 'desired', desired, 'output', whichOut, 

'input', whichIn); 

    lB{k}=struct('T',sampleIdx(k),'bound',lowerLimit, 'desired', desired, 'output', whichOut, 'input', 

whichIn); 
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end 

 

for k=1:length(sampleIdx), 

    B=[B uB{k} lB{k}]; 

end 

 

rejectbounds 

% rejectBounds: given step response specification, generate bounds for the optimization 

% sampTime: the sample time of the system  

% finalTime: the period during which bounds are defined, it must be larger than setTime 

% limit: in relative value 

% steadyError: in relative value 

% performance specification:  

% for rejection:  

 

function B=rejectBounds(whichOut, whichIn, sampTime, finalTime, desired, limit, setTime, 

steadyError) 

 

B=[]; 

Nf=ceil(finalTime/sampTime); 

sampleIdx=0:Nf; 

 

for k=1:length(sampleIdx), 

    uB{k}=struct('T',sampleIdx(k),'bound',desired+limit, 'desired', desired, 'output', whichOut, 

'input', whichIn); 

    lB{k}=struct('T',sampleIdx(k),'bound',desired- limit, 'desired', desired, 'output', whichOut, 

'input', whichIn); 

end 

 

if nargin >=8, 

    if setTime > finalTime, 
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        error('In defBounds, setTime > finalTime'); 

    else, 

       Ns=floor(setTime/sampTime); 

       for k=Ns+1:Nf+1, 

           uB{k}=struct('T',sampleIdx(k),'bound',desired+steadyError, 'desired', desired, 'output', 

whichOut, 'input', whichIn); 

           lB{k}=struct('T',sampleIdx(k),'bound',desired-steadyError, 'desired', desired, 'output', 

whichOut, 'input', whichIn); 

       end     

    end 

end 

 

for k=1:length(sampleIdx), 

    B=[B uB{k} lB{k}]; 

end 

 

plotfiguretank: 

subplot(2,2,1);plot(tout(1:50),u1(1:50));title('d>u'); 

subplot(2,2,2);plot(tout(1:50),u2(1:50));title('n>u'); 

subplot(2,2,3);plot(tout(1:50),y1(1:50));title('d->y'); 

subplot(2,2,4);plot(tout(1:50),y2(1:50));title('n->y'); 

 

plotfiguremass: 

subplot(3,2,1); plot(tout(1:50),ud(1:50));title('d>u'); 

subplot(3,2,3);plot(tout(1:50),yd2(1:50));title ('d>y2'); 

subplot(3,2,5);plot(tout(1:50),yd1(1:50));title('d>y1'); 

subplot(3,2,2);plot(tout(1:50),un(1:50));title('n>u'); 

subplot(3,2,4);plot(tout(1:50),yn2(1:50));title('n->y2'); 

subplot(3,2,6);plot(tout(1:50),yn1(1:50));title('n->y1'); 
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