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ABSTRACT

Recent progress in parameterization of linear robust controllers has made it possible to
investigate advanced controller specifications numerically using convex optimization. The main
focus of this thess project is to investigate how to design a LTI controller for a LTI plant using
convex optimization, particularly Linear Programming technique. The concerned performance
specification is defined as lower and upper bounds of time domain responses to step inputs. With
the hep of Q-parameterization, this control design requirement is formulated as a linear

programming problem, which can be solved very easily and efficiently. As part of this thesis
work, a Matlab toolbox is developed for the calculation of a numeric controller by using linear
programming agorithm. Two practical design problems, double tank process and mass-spring
system, are solved using this toolbox. The calculated controllers have been put into smulation
for verification. Comparisons are aso conducted between optimization based design and other
control design methods. It has been found that optimizationbased design is particularly suitable
for the investigation of performance limitation and tradeoffs.
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1. Introduction

1.1 Background

During the past few decades, control engineering enjoyed great advancement in both
theoretic development and industrial applications. The purpose of control engineering is to
devise a strategy to improve the performance of a system by adding sensors, control processors,
and actuators. The sensors measure various signas in the system and command signals, the
control processors process these signals and then drive the actuator which will affect the

behavior of the system. A diagram of a genera control system is shown as follows:

Disturbances
Systemto be
controlled
Actuator .
signal Sensed signd
Control
| processor(s) |
Operator Command signal
display — | I

Figure 1-1: general control systemdiagram

Like any other theory in science and engineering, the establishment of control theory
requires the simplification of plant and disturbance moddl. In control terminology, a framework
has to be defined. Any design problem should be cast into this framework in order for the
corresponding design method to be applicable. Complementary to the theoretic development,
numeric/computationa approaches have become a separate topic in many areas because of the
growth of CPU power. Numerica methods, especially optimization theory, have achieved
significant advances in recent years. Controller design based on numerica methods, especidly



convex optimization, has attracted more and more attentions. The controller design problem is
converted to a pure numeric optimization problem and can be solved for a restricted set of
systems and a restricted set of design specifications by combining theoretical results with
numerical convex optimization techniques. The optimization problem is then solved numericaly
on acomputer.

As mentioned above, we need make the restrictions on the systems and design
specifications for applying the optimization algorithm to the controller design. The systems we
studied here must be linear and time-invariant (L TI). And the specifications must be closed-loop
convex. This restricted set of design specifications includes a wide class of performance
specifications (how the closed- loop system should perform).

For controller design problems of restricted form, we can determine if the given
specifications can be achieved or not, and the limits of performance can be easily studied for a

given system and a given control configuration.

1.2 Optimizationbased control design

Optimizationtbased control design is a very broad topic. The framework for the
concerned control design problem is shown in figure 1-2. G is the mode of the plant. It is often
caled augmented plant since extra models, inputs and outputs are often added to the original
process for the purpose of imposing performance requirement. C is the controller. y is the
measured signd, u is the controller output and aso the input of the process. w is the disturbance
or reference signal. z is the performance vector. The design requirement is specified on the

closed-loop map from w to z. Note that every signd in this figure could be a vector.

W G I:z_

u y

o

Figure 1-2 Controller design framework

In the most genera sense, plant P and controller C both could be nonlinear and time

varying. It is not difficult to convert the control design problem into numeric optimization



problem for any given design specification. The biggest problem lies in the solvability of the
derived optimization problem. Therefore, restrictions on the plant should be imposed. For afinite
dimensiona LTI plant, if aLTI controller is sought, then many design requirements can be cast

into convex optimization problem with the help of Q parameterization.

1.3 Organization of thereport

This thesis work is organized as follows:

Chapter 2 focuses on the theoretical derivation of optimization-based design method. In
this chapter, the so-caled Q parameterization and the controller caculation from the optimized Q
will be introduced. In order to formulate the linear programming problem, the control framework
for both stable and unstable plant will be formed. Finally, a smple example will be shown on
how to formulate the linear programming problem from a design specification.

Chapter 3 demonstrates the optimization-based design method for two real processes: the
stable double tank process and the unstable mass spring system. Closed loop performance will be
shown and verified through simulation. The results are also compared to those using other design
methods.

Chapter 4 discusses the possible difficulties in the use of optimization-based design
method. The focus is on the sdection of bounds which will influence the closed-loop
performance very sensitively. Performance specifications will be used to be the references of the
bounds define.

Chapter 5 summarizes this thess work. Suggestions for the future work will dso be
proposed.

The appendix will consst of smulation model, computer toolbox code and the
bibliography.



2. Theoretical Part

2.1 Introduction
Congder the framework in figure 1-2. Let us assume the generalized plant G to be finite
dimensiona and linear time invariant, having the form of

ézi_€G,,(s) G, (s)tamy

&4 %, Gkl (2:1)

where G,,, G,,, G, G, aretheopenloop transfer functions from inputs to outputs, or
&u €A B, B, Uxi
&U-%¢c D, D, Y (2-2)

&4 &£, D, D.fei
and now suppose the controller is operating, u=C*y , we can solve for z in terms of w to get

z=(G,,*+G,(I-C*G,)"'*C*G,, \*w (2-3)
The closed-loop map from w to z can be readily written as
Hy, =G, +G,(I- C*G,)*'*C*G,, (2-4)
Plant P
w z
_ | &9 Gu(9u
u B9 G0 y

Controller C

Figure 2-1. framework for optimization-based design

The control design problem can be posed as to find the stabilizing controller C to make the

closed loop system from w to z to satisfy certain convex constraints.



2.2 Design gtructure for stable plant
In equation (2-3), if we defineS= (1 - C* Gyu)‘l* C, if Sisused as optimization variables in
linear programming problem, after performing optimization agorithm, the controller can be
calculated from Sas

C=(1+S*G,)"'*S (2-5)
It isimportant that this design method is only valid for stable plant, for unstable plant, the so-call

Q parameterization will be used for the design.
We will explain in detail how to build the framework for the stable plant and to convert it to

linear programming problem

Firgt, we will consider a stable plant in the following structure:

d n
‘ ‘
— C + I F +
contraller u process yp y

Figure 2-2. disturbance and noise rejection for a plant

The input to the system is the step process disturbance and step sensor noise. Then the following

transfer function could be formulated
diu_é cp/l+cp -c/l+cpu &

u
= - 2-6
8078 piiecp  1/1+cp U Gl (=0)

In(2-6),z= gjgandw: gdg,dosedloop map fromw to zis
eya ena
_écp/l+cp - c/l+cpu

H
& p/ltcp  1l+cp Y

(27)



Each transfer function in H , is very important, the second row consists of the closed loop
transfer functions from the process disturbance and sensor noise to the output sgnd y. What we
need do is to make these two transfer functions “small”. The “size’ of these two transfer
functions told us something about the closed-loop control achieved by our control system. The
first row consists of the closed-loop transfer functions from the process disturbance and sensor
noise to the control signal u. We can notice that in H, all of the closed loop transfer functions of

interest in our controller design has been included. Therefore, the ecifications for a controller

design could be expressed in terms of the four transfer functionsinH .

In equation (2-6), c is the controller, p isthe plant, d isprocessdisturbance, n is sensor noise, for

smplicity, the d an n are al considered as the step inputs.

The performance requirement for the controller design is specified as step response bounds, that
is,

Given d(k)=1(k), u(k) < uby(k) or u(k)>Iby(Kk)

Given n(k)=1(k), u(k) < ubx(k) or u(k) > lby(k)
Given d(k)=1(k), y(k) < ubs(k) or y(k) > Ibs(k)
Given n(k)=1(k), y(K) < uba(k) or y(k) > Iba(k)

Compared with equation (2-5), controller will be calculated from

c=Q/(1-Q*p) (2-8)
which means Q=c/(1+c*p);
Then we got the following structure:
aiu_é QP Q u &u
&0 &-opr 1-orfl & &9
Until now, we have converted H , to the form in (2-9), as we can see, each element in H ) has
the form of R*Q+W which can be easly converted to the linear programming problem in the

future.



2.3 Design structurefor unstable plant.

Asis shown in figure 2-1, the generalized plant G could be formulated as follows:

© 0 1y éuy & € 0 10 &
_€e u u_ e.u_e Ux €.U
Gep 0 - pgand @P=G =gl O - Py &y
gp 1 - pg EYH gy er 1 - pg ey

As we dated before, for unstable plant, Q parameterization should be used to perform
optimization design.
Q- parameterization states that, any closed-loop transfer function H ,, achievable by a stabilizing

controller C, no matter if the openloop system G is stable or not, can be expressed in the linear
form of some stable Q:

Hop= Ty + T, *Q* Ty (2-10)
Here T,,,T,,, T,, areonly dependent on opertloop plant G, and can be calculated as follows:
Suppose that there exits matrices K and L such that A- B,L and A- KC, are stable (i.e.
stability and detectability). Then T,,,T,,,T,, aegiven as

é-I-ll T12 u —

& y=Ci(S - A)'B D, (2-11)
where
éA-BL BL U ¢ B, B
A=e o Akl 7% -kp, ol
&,-D,L D,Lu éD,, D,
"8 o o TTh. of

A nice interpretation of Q-parameterization is given in figure 2-3, and all stabilizing controller
can be represented based on an observer for the system in the following way:

SAX+ B u +Keu
N u
r-Lx 0

y- C,X- Dyqu]

(2-12)

CDGSD> C&(D);‘(D).
e enl any en Y end
I
DD M M D
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where r = Q(l )e for some admissible, stable transfer function Q.

w P z

u Observer

Figure 2-3: An interpretation of the Q-parametrizaiton(with D22=0).

In order to get the state space form of the controller, assume Q has the following state space

representation
&, u_6A, Byléx,u
T X X Qs (2-13)
grll & Dogel
Combining (2-12) and (2-13), the optimal controller can be derived as
C=C.(I1- A)'B, +D,

with

5A- B,L- KC,- B, D,C, B,C,u 5K + B, Dj U

=e L e G B=e Yy (2-14)

& - BoC, A @ & Bo

C,=|- L- D,C, Cql, Dy =Dy

2.4 Linear programming formulation

In this sction, we will derive the control design problem from above design structure. The

design objective is to have good rgection of disturbance and measurement noise. The

performance requirement is specified on step response. To make the problem smpler, the

11



controller is assumed to be single input and single output. So Q or S is aso a scale transfer
function. The parameterization of Q istaking the form of

Q=0 +qz "' +q,z%+---+q,z ", (2-15)

And for Q we only take m terms.

Note that for above plants, as seen from the derived equation (2-9), All of the elements in the
closed-loop transfer matrices are linear form of Q, with the following form:

H=R(2*Q+W(2) (2-16)

Where R(2)=r,+r,z ' +r,z% +---+r, 7"

W) =w, +Wz ' +w,z?+---+w z'"
are known, Please also note that at least n terms of the R should be used, i.e. The index of the last

bounds point we defined. The controller should be designed to make sure that the responses of
the system are within the bounds during the time instant which are defined by user. And the step
response of the system should converge to the desired value which is also defined by the user.

AssumH (z) =h,+hz*+h,z? +---+h z ", Then, by smple agebraic manipulations, we have

éh, u
éh U
a'l ] . N
eh,u ShU el
cn, U é u é_
e.u gy gy
€ " U_Eg ! (1+é ' U
eh U & g eée
gh U @nig Vo1
1 U A A .
é’
gh, g
&, 0 0 0
é U
where E=&, r, 1, 0U

. . . :l:I
. : . 0

a.n rn- 1 rn- 3 rn- m

» (D> (D>

-

As we can derive, for a plant H(z) =h,+hz*+h,z? +.--+h z ", its Step response has =
transform:
Y(@=hy+(hy +h)Z " +(h, +h +h,)z* 4.+ (b, +h +--+h )2

The bounds condition of its step response can be converted to the following LP problem:

12



Af* X< bf

And we form the problem in the following procedure:

First:
(:31 00 Ol:J éhol]
A=@ 1 1 - ou x=¢€
é: L. :[] gl:I
A / nU
g’ 1 1 1Hnlxn1

b. = upper bounds

b. =lower bounds

for example, if an upper bound at the time instant i is defined, then the i row of the A should be
the poditive, and the row of the b should be the upper bound, otherwise, the row of the A should
change the sign. And the lower bounds should aso change the sign and be put into i row of the b,
and then the following form will be formed:

A(Gg+w) < b it can be converted as (AG)q < b-Aw, and we denoteit as:

Afl* q < bfl (2-18)

In our problem not only above equation should be satisfied, we aso intend to minimize the
bounds such thet the optimal solution can be calculated, and at the same time, the response of the
system should aso converge to the desired value. Then a variable gamma will be introduced to

get the following formula

Afl * q - bdes <= gamma * (bfl - bdes) (2-19)
Gamma will be e of the design variables, i.e. x= g a tj After the trandations, the final
egamma (j

linear programming problem will be formulated in the following way:

[Af1, des-b] *[g;gamma] <=des-A* w0 (2-20)
From equation (2-19), the parameters for the LP problemis..

A =[Afl,des-b],b =[des- A *wQ]; (2-21)

and the objective function is to minimize variable gamma.

2.5 An smple example

13



In order to have a rough idea on how to formulate the Linear programming problem from
the performance specification, a smple example will be given in the following:
Consider the following control structure:

Controller Process

-1

Figure 2-4: a closed loop structure for demonstrating the linear programming formulation

froma control problem

The sengtivity function has been given in the form of

S2) = (q0+ql* z*-1+q2* - 2+g3* 2 -3)/(z0.5);
and the step response of the sengitivity function:

Y (2=S2)*z/(z1)
has the following specifications at different time instant:

& Ou é0 u

vy Ll

&r(2)0=¢3.4]d

§Ay Lo

&(48 doild
g0, g1, g2, g3 are design variables. The problem is that does such a §(z) exist such that the step
response of §(2), i.e. Y(z) are within the bounds as given above at different time instant? To
solve such problem, first,

Y@ =92 *2(z-1)

= z* (q0 + gl* 21+ q2* 22 + q3* 2*-3)/(z -0.5) * (z-1)

= (2/(z-1) -1(z - 0.5)) (Q0 + gl* -1+ R * Z-2 + 3 * -3),
Mapping Y (2) to Y (k), the following formula could be obtained:

Y(K) =q0* (2-0.5" (k-1)) * u(k -1) + ql* (2- 05" (k- 2) * u(k - 2))

+q2* (2- 05" (k- 3) *u(k - 3)) + gL* (2- 05" (k- 4) * u(k - 4))

k should be in the integer value of 0,1,2,3,4, insert vaue of k in above Y (k), then corresponding
vaueof the Y (k) is

14



éY(O)u é 0 u é 0 u

oy & qO G du2ly

@{(2)9—@ 1.5* g0 +ql u=g34]u (2-22)
u é . . a u

Y@y & 17*qo+l5rql+q2 o gL2ly

B(4)f @.875*q0+175*ql+1.5* 2 +q3f go1]H
To determine the existence of the feasible region, we can use a fake objective function in order to
use linear programming function from Matlab:

F=q0+ql+q2+qg3=F *X;

é10u
é U
X= eql
eq3u
&4
Linear programming problem is to minimize F *x, under the condition A*x<b, BL=<x<=BU. In
which
éu el 0O O Ou €lu &0
a é a é,u
:glil, AU= 15 1 0 U BL= g‘)’u BU :QAU
éu el 75 15 1 o é10’ €0
b Q875 175 15 11 S &b
Write in stack form:
é 1 0 0 O0u é2u
é a é,u
& 15 1 0 Oq §4 0
e 175 15 1 0u e2du
é a é_u
A= §1.875 175 15 1 Oy & 1 U—p (2-23)
g -1 0 0 03 g— 13
g-15 -1 0 Oy &3
€.175 -15 -1 00U &40
é a é
& 1875 -175 -15 -1 80§

Call Matlab function LINPROG (F,A,b,[],[]), then the solution will be calculated which mean
there has such a solution such that the step response of the given sengtivity function are within
the bounds defined.

15



3. Application results

3.1 Double tank process

3.1.1 Introduction of the process

Figure 3-1: diagram for the double tank process

The inflow to the upper tank is generated by a pump which is controlled by an externa voltage.
The outflow from the upper tank is then in turn the inflow to the lower tank. Two level sensors
make it possible to measure the levels in the two tanks. A tap placed on the upper tank to

introduce the load disturbance. In our problem, the input signa is the flow to the first tank and
the output is the level in the second tank.

The continuous transfer function of the double tank processis:
_0.0002456 s+ 0.06769

G(s 31
9 s® +0.3857 s+ 0.03627 1
Using sampling time of 1 second, discrete transfer function of the double tank will be
0.030q + 0.026
H(q) = 32
(@) q° - 1.65q+0.68 (2)

The pole, zeros map and bode diagram are shown in figure 3-2. it can be seen that thisis a stable
and dow process. The bandwidth of this processis 0.01rad/s.

16



Pole-Zero Map Bode Diagram

1 20
8 ¢
4" o
a5l T 20
o =
o [
B 40
] =
S 5D
e P RRELr e ;
s
£ JET
" g
U3 =135
§ 180
. : o205
g e =i 3 2 1
- 05 0 05 i 10 10° 0

Raal Lvis

Figure 3-2: poles and bode diagram for double tank process

3.1.2 Design with PID controller

Using the smple PI D design method, the following closed-loop step responses could be obtained
(figure 3-3) with kp=2, ki=0.2, kd=0. Due to the existence of the integrator in the controller, the
output y of the second tank settles to zero under the input disturbance d and sensor noise n. The
setting time is about 40 seconds. In the steady state, the control action u, which is the water
flowing into the first tank, will remain about 0.5. This can be verified from equation (3-1) by
setting s=0 or equation (3-2) by setting g=1.

dtou ntou
1.5 3
2
1
1
o5
u}
] 1
u} 20 A0 50 ] 20 A0 50
dto y nto vy
o5 1
0.4
o5
[WRE]
oz O
o1
] -0.5
u} 20 A0 50 ] 20 A0 50

Figure 3-3: Sep response of the u and y to the process disturbance d and sensor noise n

17



3.1.3 Optimization based design

Figure 34 shows the results from optimization-based design. Black * 0’ represents the desired
value. Blue one is the real response of the system. Thered * ** represents the bounds defined by
the user, and the green * *’ represent the tightest bounds which can be achieved (the tightest
bounds is defined as gamma* (bounds-des value)). It can be seen that the user-defined bounds
value can be reduced to the green one and the performance specification is ill be fulfilled.

B 20 40 B0 i 20 40 B0
Figure 3-4: Step response of u and y to d and n based on the optimization design.
In terms of closed-loop performance, optimizationbased design gives 25 seconds settling time,

and close to zero steady State error, which is better than the PID design in figure 3-3.
Controller calculated from optimization based design is of 17" order, Q isin order 15.

18
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Figure 3-5: poles, zeros of the controller calculated from optimi zation-based design

It can be shown that there is a pole approaching to 1 in the designed controller, which
corresponds to include an integrator in the controller. This explains why close to zero steady
error can be achieved in figure 3-4. It can aso be roticed that the exact integrator is not achieved
due to the numeric round error and bound definition. Therefore, theoreticaly zero steady state
error is not guaranteed.

After obtained the controller, a smulation model has been built to test the design, the results are
show below, compared with the PID controller we used before, It can be shown that the
computer tool box we have developed for the stable process works pretty well. The settling time
has become much shorter compared with PID design.
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d-=u n-=1

1.5 1.5
1
1
0.5
(I
o
0 -0.5
o 20 40 B0 ] 20 40 B0
d-=y n-=3
0.a 1
0.G
0.5
0.4
0z 0
0
0.2 0.5
o 20 40 B0 ] 20 40 B0

Figure 3-6: smulation result get from the optimization based design

3.2Mass-gpring system

3.2.1 Introduction of the process

mi1 4«/\/\/; mz
F
N
1] —
di < 7

d2

Figure 3-7: Diagram for the mass spring system

As we can see from above figure 3-7, there are two masses connected with a sring in the system.
The mass on one side of the spring can be moved by a linear motor. This sde is cdled the

“motor side” and the other sideis called the “load side” . In two damping, only d2 can be seen as

20



apart in the process. And d1 is modeled as in above figure. Our purpose is to control the position

p2. i.e. the position of the mass on the load side, but in many applications, only the position on

the motor side, pl can be measured. Therefore, the control problem now becomes to control a

signal whichwe can not measure. First, we will show how to get a linear model of the process:

the weights for the two masses are m1 and m2, and the damps of the two masses are d1 and d2

respectively. The spring constant between them is k. one of the masses is controlled by a DC-

motor, driven by a current controlled amplified. The dynamics of the motor and amplifier can be

neglected. The relationship between the driving force of the motor F and the input voltage of the

amplify u can be written as:. F=Km*u. Findly, the dynamica model for the force balance
equations can be obtained as follows:

L 4P,

e

dzP

2" a2

In which I(t) load disturbance and a state space representation with the state vector

=d- d, * ddpl I+ (1-p2)+E(0)+ (1) 33)

S d,* d;)z + k* (p1-p2) (34)

ep, U
Cp, Y .
x = €U can be written as:

P, ¢
é."u

et

X (D)=A*X()+B*u(t)+B, *I(t)=

6 0 1 0 0O o4 &0 0 60 U

8 u : u A/m, g

S kim -d/m kI 0 Ghyrors e/ My

& k/m /m m g*x(t)+gm/mlu*u(t)+ gtlmlu *1(t) (3-5)
é 0 0 0 1 e o u g o

gk/m, 0 -k/m, -d,/mQ§ & 0 § e 0a

_eC].U* é(y:L 0 0 OU
y(H)=C*x(t)=g . x(t)= eo 0 k, ou X(® (50

In our design, y2 is the variable which we want to cntrol, and y1 is the variable that can be

measured in practice. and k, d, m, k,, k,, m, are al congtants that could be measured from the

experiment.
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3.2.2 Design with state feedback controller

The control law we will use here is state space feedback including an integrator. In addition,
because in practice, only the variable y1 could be measured, so y2 will be observed from other
states, the structure is as follows:

Y2

Process

U s -Li Obsarver

OG

Figure 3-8: Sate feedback with integral action

Soecifications:

Soecifications are those requirements that we want the controlled system to fulfill. In our
problem, we only study the closed loop system behavior in the time domain. A well damped step
response with a rise time between 0.2 and 0.4 seconds is then specified. At the same time, the
control signal should not be too ‘ large’ because it will lead to undesirable damages on the motor.

Control strategy and design

It is difficult to control the process with feedback from only one state, so al of our four state will
be used to db feedback, the system is controllable, because [B AB A’B A B] has full rank.
So we can place dl the poles freely by the state feedback. Due to only the y1 can be measured,

so the estimation for other states is necessary. This is possible to do since the system is also
observable.

Howtoget L:
Assume that al the states could be measured in our problem. We could place the poles for the

closed loop system by using the control law

X (H)=A*x(t)+B*u(t) (37)
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u(t)=-Lx(t); (3-8)
Because the system is a 4" order system, so we just define four poles according to the
specification, now we want to caculate L such that A-BL get designed properties. The function
PLACE in Matlab will give a L-vector according to the pole defined by us. The poles we used in
the design can beillustrated by the following figure:

15

+ 50

+

Figure 3-9: The location of the poles
How to get K: (Reconstruction of the states)
As we mentioned before, it is impossible to measure dl the states in practice and only the
position on the motor side, y1 can be measured. Therefore, we will build up a so called observed
modd (or called Kaman filter), what we should do is just copy the process modd and feed it
with the same input signal as the real process. The difference between the output of the redl
process and the model is used to correct the model states such that they dhould approach the
process states. The observer can be written by:
%zA* X(0) +BHUHK*( v ()- ¢, * x(D)) (3.9
In equation (3-9), )A((t) is the states of the observer. K is the observer gain and can be set such that
the observer states are approaching the rea states with an arbitrary convergence speed. The
observer states instead of the red states (which we can not measure) will be wsed in the State
feedback design. Now we want to calculate K such that A-K*C1 gets designed properties. If we
just write the transpose (A-K* C,)"=A"-C, "*K"; take K" as the design variable, AT, C, " asinput
parameters, then the function PLACE will solve the K. Normally, the observer dynamics will be
chosen to be 1.5 to 2 times faster than the closed loop system.
How to get Li:
The pure date feedback works well when the model matches the red process and no

disturbances entered into the system. However, a stationary error will be presented for a constant
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load disturbance. To overcome this problem, introducing the integral action into the controller is

necessary. As shown in the figure 36, the controller states are the observer states x and the
integrator x. . Writing the following equations :

d Xt(t) SA* X HB* UK (y1-C1* X ); (3-10)

dx (t)

KO _ 1. 311
" y (3-11)

=L x-Li* X, (3-12)

Congder the u as the output from the controller, and y1 as the input to the controller, the sate
space form of the controller could be formulated:

éxu
dé YN
&x o - B*L- K*Cl - B*Lij, €U éK o
S e (@13)
dt & 0 0 0 af €k
u=[-L-Li]* &d (3-14)
exH

According to the obtained stated feedback gain L, observer gain K, set value for Li, then the
controller could be obtained:

Paole-Fera Map
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Figure 3-10: controller calculated from the state feedback design

Resultsfromthe L, K, Li design:

d-=u

1 I
0 0.2 0.4 0.6 D.Bd_;,ﬂ 1 1.2 1.4 1.6 1.8

1 1
a 0.2 0.4 0.6 D.Ein_>},2 1 1.2 1.4 1.6 1.8

1
a 0.2 0.4 0.6 D.Eln_;,},q 1 1.2 1.4 1.6 1.8

0 0.2 0.4 0.6 0.5 1 1.2 1.4 1.6 1.8

Figure 3-12: u, y2, y1 to step input n (h=0.05)
As we can notice from the above reaults, the setting time for u and y2, y1 to the process
disturbance d are much longer.
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3.2.3 Optimization based design

Now, we will explain how to formulate the Linear Programming for mass-spring process to
caculate the controller, Q parameterization will be used in the design since this process is a
potentialy unstable process which can be shown in the following figure:

vw1tou y2tou
1 — 1 :
kx |I:>If
05| 5 o, - 05 »
i J @ o
E E L
B - - - - - - - - - - oo - oo RO - - - ---------- - - - - -
T T ot
E ] : E .
05!t : ; ] 05 D
. , 0 gL
>$z \I::,;
1 - .
1 ] 1 2 -10 5 ] g

Figure 3-13: pole and zero maps for mass-spring process

As we know, y2- the position of the second mass is the variable which we want to control, y1-
the podtion of the first mass is the variable we can measure, then we formulate the following
closed loop transfer matrix to calculate the Q parameter using the Q parameterization. This
system has three inputs and four outputs.

éeuu é0 0 1 u

;e
u e u %
F2-gP2 0 - P g (3-15)
eyld épl 1 - pld ;;
e u e u
eyla epl 1 - plg
éuu il €0 Ou ¢l
Assuming Z= gyzﬂ anszgn 8,611: ng o‘f,Glzzg- pzlf',Gzlz[pl 1, G22=-p1
eylg erl 1§ & pl

Use the developed Matlab Computer ToolBox, Q will be calculated, use (2-12) to (2-14), the
optimized controller from Q parameterization can be caculated. The result of the system
response has the following properties:
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(Il S ey Gl ST S s =

Figure 3-14: responses of the closed loop system to the step inputsd and n

The controller obtained from the optimization based design is as follows, it is a 12 order

controller and there is an integrator has been included in the design. Q isin order 8.
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Figure 3-15: the poles and zeros of the controller calculated from optimization based design

The following plots are the smulation results obtained from the optimizationbased design.

d-=u n-=u

3 3
2 1 2
1 1 1
i} o

o 0.5 d_gyz 1.5 2 o 0.5 n_gyz 1.5 2
2 2
1 (\ - 1 (\
o 1 o
-1 -1

o 05 d—:gg,ﬂ 1.5 2 o 0.5 n—:gg,r1 1.5 2
2 2
o 1 o
-1 -1

o 0.5 1 1.5 2 o 0.5 1 1.5 2

Figure 3-16: the responses of u, y2,y1 to step disturbance d and sensor noise n.

Compared with state feedback design, optimization-based design gives shorter setting time.
From Figure 3-14, it dso can be seen that the step response from n to u, d to y1, d to y2 reach
critical bounds. This demonstrates which performance requirement is easier to be satisfied, and
which one is not. If the limits of control action can be loosen, better output disturbance rejection
can be achieved. In this sense, optimizationtbased design gives quantitative description on
performancetradeoffs and limitations.

Compared to state feedback results, control action in figure 314 has more oscillations. The
reason is that higher order controller in the optimizationbased design gives potentidly higher
bandwidth to the closed-loop system. To reduce the oscillations in the output, one suggestion is
to model the actuator as alow pass system, which means the process model has to be changed.
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4. Bounds Definition

4.1 Bounds structure:

The bounds should be defined by the user. It is a critical parameter that will help us to get the
correct optimized solution. The Matlab function STRUCT will help to form the structure of the
bounds. The bounds structure is as follows:

B. T: the counter of the bounds, T*h (sampling time) equals the time instant(s) at which the
bounds defined.

B. bound: the values that limit the system responses.

B. desired: the desired vaue that the system should converge to.

B. output: integer vaue, the row of the output signa in vector Z.

B. input: integer vaue, the row of the input sgnd in vector W.

4.2 bounds define instruction for the user

4.2.1 Generate bounds from perfor mance specifications

For users, it is alittle difficult to define the bounds if they are not aware how the system response
will behave, improper definition of the bounds will not get the optimization solution or even the
optimization will terminated successfully, the value of the gamma will be too large, which means
we need to change the value of the bounds such that the designed specification be fulfilled. To
solve this problem, performance specification will be used to be the references for the bounds
define .Then our question has becomes how to automatically generate bounds from step response

performance specification?

4.2.2 Parametersin performance specification
The performance specifications will be used as the tool to give the appropriate bounds value.

For rejection:
The parameters normaly include: Limit, setTime, steadyError, (normally desired=0)
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Limit
O R = steadyError
N . _
desired R
////% g
setTime t

Figure 4-1: rejection response for bounds definition

For control action or controller output:

Only need to define the upper limit and lower limit, in order for the controller output not
saturated.

Upper Limit

» _ ]

Lower Limit

Figure 4-2: control action for bounds definition

30



5. Conclusions and Future work

5.1 Conclusions

The research area of this thesis project is on the optimizationbased control design. Compared to
other modern control design theories like LQR/LQG, optimization based design produces the so
caled numeric controller. In the thesis, we emphasized on the formulation of a general design
problem into an optimization problem.

A disturbance rgection problem for a LTI plant under step inputs is then studied. The design
goal is specified as step response setting time and steady state error etc. Derivation from origina
performance specification to the final linear programming form is performed and implemented as
aset of Matlab functions.

These Matlab functions have been applied for two real applications. double tank process and
mass-spring system. Simulation model have been built to verify the correctness of the
optimization formulation. Comparison is aso conducted among optimization based control
design, output feedback design and PID design for these two applications. The advantage of
optimization based design is that it is quite easy to see the limits of the performance, and the
tradeoffs between performance requirements. The disadvantage is that the designed controller
often has very high order. So it is very important to perform mode rediction.

5.2 Future Work

There are many things need to be improved. Due to the time limit, this thes's work only make the
design for single input and single output system. The future work will of course to continue on
the development of Matlab toolbox for MIMO system. The Q will be in matrix form, In this case,
the adgorithm will become more complex. And the controller order reduction should aso be
further studied.
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6. Appendix

6.1.1 Smulation model for Double Tank processusing Pl D controller

n
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To Miokspace

6.1.2 Smulation model for Double Tank process using optimization based controller
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To Watspace
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6.1.3 Smulation mode for mass-spring processusing state feedback and integr ator

controller and optimization based controller
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u
To MWokspaced
u

To Wokspace

6.2 Matlab code for Computer Tool Box for Optimization based design.
6.2.1List of the code

TestTank: design for the double tank process using Q parameterization.
TestMass. design for the mass-spring system using Q parameterization
gparlp: Get the Q parameters and calculate the controller

sendp: cortroller design using linear programming method

formlp: Linear Programming agorithm

getbounds:. get the bounds value defined by users

plotres: plot responses of the closed loop system to the step inputs
Actionbounds: define the bounds for the control signal to step input
Reectionbounds: define the bounds for the measurement to step input
plotfigureTank: plot the results for smulink model of double tank process
plotfigureMass:. plot the results for the smulink model of mass-spring system
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6.2.2. Structure of the programming

Stable Plant

sendp
I

G11+G12*Q*G21

qperlp

Unstable Plant

gparlp

T11*Q*T12+T21

formlp

R*Q+W

Q=LinProg

Controller Calculaion

6.3.2 Matlab Code
TestTank
clear al

% define the sampling time

h=1;

% stable double tank process

sys=tf([0.03 0.026],[1-1.65 0.68],h); % discrete system
sysc=tf([0.0002456 0.06769],[ 1 0.3857 0.03627]);

% formulate the generalized opert loop plant

G11=[00; sys 1];
G12=[1; -sys);
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G21=[sys 1];
G22=-sys,
G=[G11 G12,G21 G22];

% specify the bounds for closed loop system step response
B=[l;

nsamples=50;

%nsamples=100;

Tf=(nsamples-1)*h;

tbnds=(0:nsamples-1);

% from input 1 to outputl (d to u)
% B=[B actionBounds(1,1,h,Tf,1,4,-2)];
ubnds=2* ones(1,50);
% |bnds=-0.5* ones(1,50);
for k=1:length(tbnds),
B=[B struct('T",tbnds(k), bound’,ubnds(k),'desired’,1,'output’,1,'input’,1)] ;
% B=[B struct('T",tbnds(k), bound',|bnds(k),'desired’,1,'output’,1,'input',1)];
end

% from input2 to outputl (n to u)

%B=[B actionBounds(1,2,h, Tf,0,3,-3)];

ubnds=1.5* ones(1,50);

Ibnds=-0.5* ones(1,50);

for k=1:length(tbnds),
B=[B struct('T",tbnds(k), bound',ubnds(k),'desired’,0.5,'out put’, 1,'input',2)] ;
B=[B struct('T",tbnds(k), bound',Ibnds(k),'desired',0.5,'output’, 1,'input’,2)] ;

end

% define settle time
EtTime=25;
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% define steady Error
steadyError=0.01;

% get the couter for the whole bounds interval

Nf=cell (Tf/h);

% get the counter for the bounds after the settling time
Ns=floor(setTime/h);

% from inputl to output2 (d to y)
%B=[B regjectBounds(2,1,h,Tf,0,1,15,0.01)];
%B=[B rgjectBounds(2,1,h,Tf,0,1,20,0.01)];
for k=1:Nf+1
uB{ k} =struct('T",tbnds(k),'bound’, 1, 'desired’, O, 'output’, 2, 'input’, 1);
IB{ k} =struct('T",tbnds(k),'bound’, - 1,'desired’, O, 'output’, 2, ‘input’, 1);
end

for k=Ns+1:Nf+1
uB{ k} =struct('T",tbnds(k), bound’, steadyError, 'desired, 0, 'output’, 2, ‘input’, 1);
IB{ k} =struct('T",tbnds(k),'bourd’, - steadyError, ‘desired’, O, ‘output’, 2, 'input’, 1);
end

for k=1:Nf+1
B=[B uB{k} IB{k}];
end

%from input2 to output2 (n to y)
%B=[B regjectBounds(2,2,h,Tf,0,2,15,0.01)];
%B=[B rgjectBounds(2,2,h,Tf,0,2,20,0.01)];
for k=1:Nf+1
uB{ k} =struct('T" ,tbnds(k),'bound', 2, ‘desired’, O, ‘output’, 2, 'input’, 2);
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IB{ k} =struct('T",tbnds(k),'bound', -2,'desired', 0, 'output’, 2, 'input’, 2);
end

for k=Nst+1:Nf+1
uB{ k} =struct('T",tbnds(k),'bound’, steadyError, 'desired’, 0, ‘'output’, 2, 'input’, 2);
IB{ k} =struct('T",tbnds(k),' bound, -steadyError, 'desired, O, ‘output’, 2, ‘input’, 2);
end

for k=1:Nf+1
B=[B uB{k} IB{k}];
end

% use Q- parametrization to do optimal design
[contr,closel. ,gama, AF,BF,Q,Ac,bc]=gparlp(G,B,15); % Q-parametrization based design
plotres(closel ,B,gama, Tf);

gama

% get the data from controller for smulation purpose
[NumC1,DenC1]=tfdata(contr);

NumC=NumC1{ 1};

DenC=DenC1{1};

TestMass
clear al

% system modding
m1=2.29;
m2=2.044;
d1=3.12;

d2=3.73,
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k=400;
km=2.96;
ky1=280;
ky2=280;
h=0.05;

A=[0100;-k/ml-dl/m1k/m10; 000 1; k/m20-k/m2-d2/m2];
B=[0 km/m100Q]}

Cl=[ky1000];

C2=[00ky20];

D=0;

% get the state space form from u to y1
Gl=s5(A,B,C1,D);

% get the transfer function form from utoyl
Gf1=tf(GL);

% get the discrete form of the Gfl
Hf1=c2d(Gf1,h);

% get the state space form from u to y2
G2=s5(A,B,C2D);

% get the transfer function form from u to y2
Gf2=tf(G2);

% get the discrete form of the Gf2
Hf2=c2d(Gf2,h);

% formulate the generalized opert loop plant
G11=[0 0; Hf2 0; Hf1 1];

G121, -Hf2; -Hf1];

G21=[Hf11];

G22=-Hf1;

G=[Gl1 G12,G21 G22];
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% specify the bounds for closed loop system step response

B=(I;

nsamples=20;

Tf=(nsamples-1)*h;

Nf=nsamples 1,

tbnds=0:nsamples-1;

% from input 1 to outputl

%B=[B actionbounds(1,1,h,Tf,1,4,-4)];

ubnds=4* ones(1,nsamples);

[bnds=4* ones(1,nsampl es);

for k=1:Nf+1
B=[B struct('T",tbnds(k), bound’,ubnds(k),'desired’,1,'output’,1,'input’,1)];
B=[B struct('T",tbnds(k),'bound’,|bnds(k),'desired’,1,'output’,1,'input’,1)];

end

% from input2 to outputl

%B=[B actionbounds(1,2,h,Tf,0,4,-4)];

ubnds=4* oneg(1,nsamples);

[bnds=4* ones(1,nsampl es);

for k=1:Nf+1
B=[B struct('T",tbnds(k), bound’,ubnds(k),'desired’,0,'output’,1,'input’,2)] ;
B=[B struct('T",tbnds(k),'bound’, Ibnds(k),'desired',0,'output’,1,'input’,2)] ;

end

% define the settling time
SetTime=0.8;

% get the counter for the bounds after the settling time
Ns=floor(setTime/h);
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% define the steadyError after the settling time
steadyError=0.01;

% from inputl to output2
%B=[B regjectbounds(2,1,h,Tf,0,3,0.8,0.01)];
for k=1:Nf+1
uB{ k} =struct('T",tbnds(k), bound', 3, ‘desired’, O, ‘output’, 2, 'input’, 1);
IB{ k} =struct('T",tbnds(k), bound', -3, ‘desired’, O, ‘output’, 2, input’, 1);
end

for k=Ns+1:Nf+1
uB{ k} =struct('T",tbnds(k),'bound’, steadyError, 'desired’, O, ‘output’, 2, 'input’, 1);
IB{k} =struct('T",tbnds(k), bound', - steadyError, ‘desired’, O, ‘output’, 2, 'input’, 1);
end

for k=1:Nf+1
B=[B uB{k} IB{k}];
end

% from input2 to output2
%B=[B rejectbounds(2,2,h,Tf,-1,3,0.8,0.01)];
for k=1:Nf+1
uB{ k} =struct('T",tbnds(k),'bound’, 2, 'desired’, -1, ‘output’, 2, ‘input’, 2);
IB{ k} =struct('T",tbnds(k),'bound', -4,'desired’, -1, ‘output’, 2, input’, 2);
end

for k=Ns+1:Nf+1
uB{ k} =struct(T",tbnds(k),'bound', - 1+steadyError, 'desired’, -1, 'output’, 2, 'input’, 2);
IB{k} =struct('T",tbnds(k), bound', - 1- steadyError, 'desired’, - 1, ‘'output’, 2, 'input’, 2);
end
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for k=1:Nf+1
B=[B uB{k} IB{k}];
end

% from inputl to output3
%B=[B rejectbounds(3,1,h,Tf,0,3,0.8,0.01)];
for k=1:Nf+1,
uB{k} =struct('T",tbnds(k),'bound', 3, 'desired’, O, ‘output’, 3, 'input’, 1);
IB{ k} =struct('T",tbnds(k), bound', - 3,'desired', 0,'output’, 3, 'input’, 1);
end

for k=Nst+1:Nf+1
uB{ k} =struct('T",tbnds(k), bound’, steadyError, ‘desired’, 0, ‘'output’, 3, ‘input’, 1);
IB{ k} =struct('T",tbnds(k),' bound, -steadyError, 'desired, O, 'output’, 3, ‘input’, 1);
end

for k=1:Nf+1
B=[B uB{k} IB{k}];
end

% from input2 to output3
%B=[B rejectbounds(3,2,h,Tf,0,3,0.8,0.01)];
for k=1:Nf+1,
uB{ k} =struct('T",tbnds(k), bound', 3, ‘desired’, O, ‘output’, 3, 'input’, 2);
IB{k} =struct('T",tbnds(k), bound', - 3,'desired’, 0, 'output’, 3, 'input’, 2);
end

for k=Ns+1:Nf+1

uB{ Kk} =struct('T",tbnds(k),'bound’, steadyError, 'desired’, O, 'output’, 3, 'input’, 2);
IB{ k} =struct('T",tbnds(k), bound', - steadyError, ‘desired’, O, ‘output’, 3, 'input’, 2);
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end

for k=1:Nf+1,
B=[B uB{k} IB{k}];
end

% Q-parameterization based-design

[contr,closel. ,gama,AF,BF,QAc,bc]=gparlp(G,B,8);
plotres(closel,B,gama, Tf);

gama

% get the datafrom u to y1
[Num1P,DenlP|=tfdata(Gf1);
NumP1=Num1P{1};
DenP1=DenlP{1};

% get the data from u to y2
[Num2P,Den2P|=tfdata(Gf2);
NumP2=Num2P{ 1};
DenP2=Den2P{1};

% get the data from the controller
[NumOP1,DenOP1]=tfdata(contr);
NumOP=NumOP1{ 1};
DenOP=DenOP1{ 1} ;

gparlp

% Controller design using linear programming method and Q- parameterization.

% G isthe generdized open loop system as

% [Z] [G1l1G12][w]

% []=[ ][] wherew isdisturbance, u isthe controller output, z is controlled variable
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% [y] [G21 G22][u] y isthe measurement for the controller inpuit.

% w haswidth of nw, u has width of nu, z has width of nz, y has width of ny.

% Q parameterization tells that the closed loop system having the linear form of Q:
T11+T12*Q*T21,

% where Q isany stable system.

% Thisprogram ONLY ded with the case where Q is SISO, which means nu=1 and ny=1
% The performance is specified as the step response bounds of the closed loop system, as
defined in

% dtructure B.

% misthe order of Q parameter. Q=q0+ql* Z\(-1)+...+gm*z’\(-m)

% For the outputs:

% contr---the designed controller

% closel--closed loop system

% gama---- how the bounds are satisfied

% AF,BF,Q---LP problem parameter: AF*Q<BF

% Ac,bc----LP parameter for each input-output pair. Ac{i}{j} b{i}{j} are A and b from jth
input to ith-output

function [contr,closel ,gama,AF,BF,Q,Ac,bc]=gparlp(G,B,m)
% get thesizeof G

[rT,cT]=9z&(G);

nz=rT-1,;

nw=cT-1;

% call function dQpar, get the stable T
[T.A L K,B2,C2]=dQparState(G,nz,nw);

% to get T11, T12,T21 to formulate LP problem
T11=T(1:nz,1:nw);

T12=T(L:nz,(nw+1):cT);
T21=T((nz+1):rT,1:nw);
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% closed loop transfer function Z=(T11+T12*Q*T21)*W

% to formulate the LP problem for each component of w to each component of z
AF=[]; BF=];
for i=1:nz,
for j=L:nw,
[ubt,desU,ubs,Ibt,desL,Ibs|=getBounds(B,i,j);
el=zeros(1,nz); el(i)=1;
e2=zeros(nw,1); €2(j)=1,
R=el*T12*T21*€2,
W=el*T11*e2;
[Ac{i}{j},bc{i}{]}]=formLP(m,R,W,ubt,desU,ubs,bt,desL,|bs);
AF=[ARAC{i}}];
BF=[BF;bc{i}{j}];
end
end

% get thesizeof AF

[r.cl=size(AF);

% to give the objective function, and to minimize gama
f=zerog(c,1);

f(c)=1;

% to solve the LP problem to get the minimized gama
QT=linprog(f,AF,BF,[].[]);

% to get the gama
gama=QT(m+2);

% to get the Q polynomials



Q=QT(L:(m+1));

% get the transfer function of Q
tmpNum=Q(1:m+1);
tmpDen=zerog(m+1,1);
tmpDen(1)=1,

QF=tf(tmpNum’, tmpDen’,G.ts);
closel=T11+T12*T21*QF;

% get the state space form of controller from Q parameterization
% get state space form of the Q

[NumQ, DenQ]=tfdata(QF,'v");
[AQ,BQ,CQ,DQ]=tf2ss(NumQ,DenQ);

AAC=[A-B2*L-B2*DQ*C2-K*C2 B2*CQ; -BQ*C2 AQ];
BBC=[BZ*DQ+K; BQ];

CCC=[-DQ*C2-L CQ;

DDC=DQ;

contr=ss(AAC,BBC,CCC,DDC,G.ts);

senslp

% Control design using linear programming method.

% The closed-loop system is formulated as linear form of Q

% G isthe generalized open loop system as

% [Z] [G1l1l G12][w]

% []=] I[1 wherew isdisturbance, u is the controller output, z is controlled variable
%
% w haswidth of nw, u has width of nu, z has width of nz, y has width of ny.

(=)

o

[y] [G21 G22][u] Y isthe measurement for the controller input.

o

% The controller is u=Cy, the closed loop system is then
% Gl1+G12*(I-C*G22)"\(-1)*C*G21
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% A smplest case isthe regulation of a SISO plant P under the input disturbance and noise:

% [u] [QP Q] [d]
% [ ]1=] 1T ]
% [yl [PQPP 1-QP][n]

%

% If Gisgable let Q=(I-C*G22)"(-1)* C, we can formulate LP based on thisQ
% Q=q0+ql*z*-1)+...+gm*Z(-1)

% m---order of Q (terms taken from z*-1 series)

% B---structure for the bounds definition.

%

% For the outputs:

o

% contr---the designed controller

% closel--closed loop system

% gama---- how the bounds are satisfied

% AF,BF,Q---LP problem parameter: AF*Q<BF

% Ac,bc ----LP parameter for each input-output pair

%

% Limitation: this program ONLY deals with the case where controller is SISO and the plant is
dable

function [contr,closel. ,gama,AF,BF,Q,Ac,bc]=sensL P(G,B,m)
% get thesizeof G

[rT,cT]=5z&(G);

nz=rT-1; % control input isonly 1-dimensiond

nw=cT-1; % control output is 1-dimensiona

G11=G(1:nz,1:nw);
G12=G(1:nz,(nw+1):cT);
G21=G((nz+1):rT,1:nw);
G22=G((nz+1):rT,(nw+1):cT);
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% closed loop transfer function Z=(G11+G12* Q* G21)* W

% to formulate the LP problem for each component of w to each component of z
AF=[]; BF=];
for i=1:nz,
for j=L:nw,
[ubt,desU,ubs,Ibt,desL,Ibs|=getBounds(B,i,j);
el=zeros(1,nz); el(i)=1;
e2=zeros(nw,1); €2(j)=1,
R=el*G12*G21*e2;
W=el*G11*e2;
[Ac{i}{j} .bcfi}{j}]=formLP(m,R,W,ubt,desU,ubs,bt,desL, Ibs);
AF=[ARAC{i}}];
BF=[BF;bc{i}{j}];
end
end

% get thesizeof AF

[r.cl=size(AF);

% to give the objective function, and to minimize gama
f=zerog(c,1);

f(c)=1;

% to solve the LP problem to get the minimized gama
QT=linprog(f,AF,BF,[1.[]);

% to get the gama
gama=QT(m+2);

% to get the Q polynomials
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Q=QT(L:(m+1));

% get the transfer function of Q
tmpNum=Q(1:m+1);
tmpDen=zerog(m+1,1);
tmpDen(1)=1;

QF=tf(tmpNum’, tmpDen’,G.ts);
closel =G11+G12* G21*QF;

% get the controller from Q,Q=(I-C* G22)"(-1)* C, C=(G22* Q+)"-1)*Q
contr=QF/(G22* QF+1);

forml

% [Af,bf]=formLP(m,R,W)

% formulate LP problem Ax<b for linear form H=RQ+W as defined in the following

% Q=qg0+ql*z\-1)+q2* 2/\(-2)+...+gm*Z\(-m), where q0,ql,...,gm to be determined,

% m 5the max order of z*\(-1)

% Ris SISO discrete system

% W is SISO discrete system

% the design parameter x=[q0 g1 ... gm]".

% the controller performance requirement is defined as the bounds of H's step response

% desU,ubs,ubt---define upper bounds values, ubt is the sampling counter at which the desired
vaue

% desU and upper bound ubs are specified for H's step response

% desL,Ibs,|bt---define lower bounds values, Ibt is the sampling counter a which the desired
vaue

% desL and lower bound Ibs are specified for H's step response

% Note:

% (1) ubt,Ibt are NOT time points, but sampling counters. That is, the red time for ubt is
ubt*R.ts
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function [AfL,bfL,Af,bf]=formLP(m,R,W,ubt,desU,ubs,| bt,desL,|bs)

nl=length(ubt);

n2=length(lbt);

n=length(ubs)+length(lbs);

newN=max([ubt Ibt]); % find out what is the max samping counter a which the bound is defined

% convert R and W into FIR form.
RI=impulse(R,newN* R.ts);
WI=impulse(W,newN*W.ts);

% define GG, H=Gg+W,

GG=zeros(newN+1,m+1);

for i=L:m+1
GG(i:newN+1,)=RI(1:(newN+1-i+1));

end

% formulate A and b, blt: upper bounds, bgt: lower bounds
AA=zerog(newN+1,newN+1);
for i=1:newN+1
for j=1:i
AA()=1;
end
end

% row i of AA corresponds to sampling counter- 1. For instance, row 1 is defined for sample O
A=zeros(n,newN+1);
b=zerog(n,1);

des=zeros(n,1);

% get A and b for the upper bounds
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for k=1:n1,
tU=ubt(k);
AK,)=AA(tU+1,);
b(k)=ubs(k);
des(k)=desU(k);

end

% get A and b for the lower bounds

for k=1:n2
tL=Ibt(k);
A(nl+k,)=AA(tL+1,);
b(n1+k)=-Ibs(k);
des(n1+k)=-desL (k);

end

% to formulate final Af and bf
Af=A*G;
bf=b-A*WI;

% introduce the gama, convert the problem to A(Ggtw)-des<gam* (b-des),
% x=[q;gama]' then get the final AfL and bfL, and to solve the LP problem
AfL=[Af,desb]; bfL=des-A*WI,

getbounds
% get the bounds which are produced by the users

% Ubt: the sampling counter at which the upper bounds defined.
% Lbt: the sampling counter at which the lower bounds defined.

function [Ubt,DesU,Ubs,Lbt,DesL,L bs|=getBounds(B,out,in)

DesU=[];
DesL =[];
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Ubs=[];
Lbs=[];
Ubt=[];
Lbt=[];
for k=1:length(B)
if B(k).output==out & B(K).input==in,
if B(k).desired<B(k).bound,
Ubs=[Ubs B(k).bound];
Ubt=[Ubt B(k).T];
DesU=[DesU B(k).desired];
ds
Lbs=[Lbs B(k).bound];
Lbt=[Lbt B(k).T];
Desl=[Desl. B(k).desired];
end

end
end

plotres
% plot the step response of the closed loop system

function plotRes(closel. ,bnds,gama, Tf)

[nz,nw]=sze(closel);

ts=closel .ts;

[Y,T] = step(closel, Tf);

figure;

for i=1:nz,

for j=L:nw,

[ubt,desU,ubs,|bt,desL,|bs|=getBounds(bnds,i ,j);
subplot(nz,nw,(i-1)* nw+j);

% plot bounds
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plot(ubt* ts,desU,'ko’,ubt* ts,ubs,'r**,ubt* ts,(ubs desU)* gamatdesU,'g* );
hold on;
plot(Ibt*ts,desL ,'ka',Ibt*ts,Ibs,'r+'|bt* ts,(Ibs-desL )* gama+desL,'g+);
hold on;
% plot step response
plot(T,Y (:,1,)),"-"; title(['input ' num2str(j) ' to output ' num2str(i)]);
hold off;
grid;
end
end

Actionbounds:

% actionBounds. given step response specification, generate bounds for the optimization
% sampTime: the sampletime of the system

% finad Time: the period during which bounds are defined

% upperLimit, lowerLimit: limit value, absolute value

% performance specification:

% for control action: just ssmple the constant lower/upper bounds

function B=actionBounds(whichOut, whichin, sampTime, fina Time, desired, upperLimit,

lowerLimit)

B=(];
Nf=cell(find Time/sampTime);
sampl el dx=0:Nf;

for k=1:length(sampleldx),

uB{ k} =struct('T",samplel dx(k), bound',upperLimit, ‘desired’, desired, 'output’, whichOut,
‘input’, whichin);

IB{ k} =struct('T",samplel dx(k),'bound',lowerLimit, 'desired’, desired, 'output’, whichOut, 'input’,
whichin);

52



end

for k=1:length(samplel dx),
B=[B uB{k} IB{k}];
end

rejectbounds

% rejectBounds: given step response specification, generate bounds for the optimization
% sampTime: the sampletime of the system

% fina Time: the period during which bounds are defined, it must be larger than setTime
% limit: in relative vaue

% steadyError: in relative value

% performance specification:

% for rejection:

function B=rejectBounds(whichOut, whichin, sasmpTime, final Time, desired, limit, setTime,
steadyError)

B=(I;
Nf=ceil(fina Time/sampTime);
samplel dx=0:Nf;

for k=1:length(samplel dx),

uB{ k} =struct('T",samplel dx(k), bound',desired+limit, ‘desired’, desired, 'output’, whichOut,
‘input’, whichin);

IB{ k} =struct('T",samplel dx(k), bound’,desired- limit, ‘desired’, desired, "output’, whichOut,
‘input’, whichin);
end

if nargin >=8,
if setTime > find Time,
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error('In defBounds, setTime > find Time);
ese,
Ns=floor(setTime/sampTime);
for k=Ns+1:Nf+1,
uB{ k}=struct('T",sampleldx(k), bound',desired+steadyError, 'desired’, desired, 'output’,
whichOut, 'input’, whichlin);
IB{K} =struct('T",sampl el dx(k), bound',desired-steadyEtrror, 'desired’, desired, ‘output’,
whichOut, 'input’, whichin);
end
end
end

for k=1:length(samplel dx),
B=[B uB{k} IB{k}];
end

plotfiguretank:
subplot(2,2,1);plot(tout(1:50),ul(1:50));title('d>u’);
subplot(2,2,2);plot(tout(1:50),u2(1:50));title('n>u’);
subplot(2,2,3);plot(tout(1:50),y1(1:50));title('d->Y");
subplot(2,2,4);plot(tout(1:50),y2(1:50));title('n>y");

plotfiguremass.

subplot(3,2,1); plot(tout(1:50),ud(1:50));title('d>u);
subplot(3,2,3);plot(tout(1:50),yd2(1:50));title('d>y2);
subplot(3,2,5);plot(tout(1:50),yd1(1:50));title('d>y1);
subplot(3,2,2);plot(tout(1:50),un(1:50));title('n>u’);
subplot(3,2,4);plot(tout(1:50),yn2(1:50));title('n>y2);
subplot(3,2,6);plot(tout(1:50),yn1(1:50));title('r>y1);
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