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1. Introduction 
 
Bluetooth is a short distance wireless communication network technology. It was recently 
introduced to the market and is currently being evaluated for many future applications. 
One application is Bluetooth in control loops, where Bluetooth is used as a 
communication network in a distributed real-time control system.  
The work in this report aims at evaluating control algorithms for a distributed real-time 
control system using Bluetooth technology. 
Bluetooth is a future technology due to low cost and the wireless properties. The 
technology is well founded among many leading global companies, which makes 
Bluetooth a coming technology.   

1.1 Background 
 
Bluetooth is wireless communication that transmits over radio. The range of Bluetooth is 
10 meters within which the receiver must be in order to receive information. The 
technique uses a frequency-hopping algorithm in order to avoid disturbance at a certain 
frequency. These properties allow a study of Bluetooth in control applications in order to 
reduce wiring. 
 
Bluetooth is mostly known on the telecom market, e.g. for cellular phones, headsets, etc. 
However, the Bluetooth application possibilities are many; industry applications 
containing Bluetooth communication is a new area being investigated. Bluetooth could be 
used for monitoring, transferring, and logging of data or operator communication. These 
applications have little real-time requirements, which makes them easy to implement 
using Bluetooth. However, this work aims at making a study of Bluetooth in a hard real-
time distributed control system. A hard real-time distributed control system is a system 
with distributed actuator sensor and controller nodes that communicate over a network. 
Bluetooth is not designed for hard real-time applications; it is designed for common voice 
and data transmission, and this is a barrier to overcome.  
 
The Bluetooth control system studied in this work is shown in Figure 1.1. 
 
Bluetooth in control loops creates some design problems for developers of control 
systems: 

• Static delay in the control loop due to limited communication bandwidth. This is a 
predictable delay between the sampling of the process and the putting out of the 
control signal to the process. 

• Stochastic delays due to retransmissions of Bluetooth data packets. This is an 
unpredictable delay. 

•  Information scrambling due to external disturbances.  
These types of delays and disturbances can be fatal to an unstable process. 
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Figure 1.1 The general setup of the control application. 

 
 

1.2 Problem formulation 
 
The first subobjective is to control the unstable process, even though the control system is 
exposed to delays. The total delay is the total time it takes to complete one control loop, 
from the sampling of the system in the sensor node, through the control node, and back to 
the actuator node. 
The round trip delay can thus be described as (see Figure 1.1): 
 

( )tccasc τττττ +++=  

 
The delay τ(t) is the stochastic delay due to retransmissions in the loop. The other parts of 
the total delay are static. The static delays depend on the bandwidth limitations in the 
communication, which in this control loop are represented by RS232 and Bluetooth. 
RS23 is for communicating between the PC and the Bluetooth chips (see Figure 3.1).  
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The second subobjective is to reduce the effects of disturbances, with a filter, in order to 
assure stable control. External disturbances insert faulty information packets in the 
control loop, and the filter should attempt to correct the faulty packages. 
 
A third subobjective is to control an unstable process to investigate unknown problems 
between the relation between Bluetooth and distributed control systems. An unstable 
process is used to push Bluetooth to the extreme to force unknown problems to reveal 
themselves. 
 

1.3 Roadmap 
 
The rest of the report is outlined as follows. Section 2 gives an introduction to the 
dynamics of the process and discusses stabilization, swing up and friction.   
 
The main part of this work is presented in Sections 3 and 4. Section 3 defines the setup 
and problems with the setup when implementing Bluetooth in control loops. Section 4 
defines control algorithms suitable for Bluetooth in control loops.  
 
Section 5 explains the experimental fixes necessary to produce results to the control 
algorithms and experimental results and summarizes the results and conclusions of the 
tests. The demo interface is presented in Section 6.  
 
 

2. The control application 
 
The control application�s general software/hardware setup is displayed in Figure 3.1. It 
shows four objects, two hardware and two software. The heart of the control application 
is the two software instances, Remote I/O and Control, which run on a PC. The Remote 
I/O software is separated from the Control software that runs on other hardware. The 
communication between these instances is sent over Bluetooth. This setup eliminates the 
need for cables between the process and the controller.  
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Figure 2.1 The general hardware software setup. 

2.1 Hardware 
 
The Furuta pendulum allows sampling of all four states necessary for controlling the 
process. This fact simplifies the control laws due to that all states are known and do not 
need to be estimated. The states are represented by voltages in the interval �10 to +10 V. 
 
Two Bluetooth Application and Training Toolkits from Ericsson (version P3D) constitute 
the Bluetooth hardware. The Remote I/O and the Control tasks run on a computer that 
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communicates with the toolkits through RS232 communication. The computer runs the 
Linux real-time operating system KURT [9]. 

2.2 Software 
 
The Remote I/O and the Control task are implemented as Java programs. They use a 
Bluetooth stack, developed by Johan Eker [1]. The Bluetooth stack gives the tasks access 
to methods for establishing links, reading and writing data and etc. The Control and the 
Remote I/O tasks are designed specially for this work and contain all control laws and 
testing tools necessary. 
The whole structure of the program is displayed in Figure 2.2.  
A Bluetooth instance starts the control application by creating either a Remote I/O or a 
Control instance. The Remote I/O and the Control instances inherit from the BTUnit 
class. The Remote I/O, Control and Local objects are the only objects that are involved in 
the control loop, where the Remote I/O samples the process and Control calculates the 
new control signal. The Local class is a class that gives the Remote I/O and Control 
instances access to the Harald stack. The Container and Opcom classes are objects for 
creating a GUI. The Container object is a transport object that sends sampled states and 
the control signal to the Opcom class.  
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Figure 2.2 The control applications class diagram. The diagram displays the most 

important methods in each class, for more information look at source code. 
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2.3 Bluetooth communication 
 
The Bluetooth communication setup is based on the hardware configuration of the 
Bluetooth Application and Training Toolkit. The Toolkit is comes with a RS232 port and 
an USB port. The RS232 port was used due to that the Harald software contained a 
RS232 driver but no USB driver. The setup of a communication chain where the user 
communicates through RS232 is not an optimal setup and is probably not a setup that will 
be used in the future. RS232 communication is much slower than the Bluetooth 
communication, which means that the RS232 communication limits the baud rate 
significantly. The USB port should be used in the future if available.  
 
The limitations in the RS232 communication depend on configuration limitations on the 
RS232 port on the computer. The baud rate could only be configured to 115200 bits/s. 
The default baud rates of the Bluetooth chips are 56700 bits/s and they are configured to 
115200 at each start up of the control application. Another problem was reading the 
RS232 receive buffer in the computer. The buffer was emptied with an interval of 10 ms, 
which resulted in a static delay in the communication chain of at least 50 ms. This delay 
is reduced by configuring the RS232 port on the computer to empty its buffer more 
frequently. The resulting delay was around 20 ms. 
These alterations gave the communication chain properties sufficient for controlling the 
pendulum.  The alterations resulted in a time diagram, see figure 3.3, with a total loop 
time of 18 ms. This can be compared to a loop time off 50 ms, which was obtained before 
the modifications were introduced. 



 11

 
 

Remote I/O

RS232

RS232

Bluetooth chip

Controller

t
[ms]

203 11

13

14

15

19

 
Figure 2.3 The timing diagram for the communication in the loop. The total duration of 

the timing diagram is equal to the total duration from sampling the process until 

receiving the control signal from the Control object. 
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Figure 2.4 The test results sampling on the RS232 communication. The first picture 

displays measurements from when sending from Remote I/O to the Controller, where the 

measurements is obtained on Tx and Rx on the RS232 communication between the PC 

and the Bluetooth chip.τ is the delay from Remote I/O to Controller and the peaks show 

the serial communication over the RS232 cable. The second picture displays 

measurements when sending in the other direction. The difference in time between the 

communications peaks depends on the size of the package sent over RS232. 
 
Information sent in the loop is e.g. controller settings, states and control signals. The 
communication uses a protocol, which specifies where to position the information in time 
and space, see Figure 2.5. 
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Figure 2.5 The communication protocol used in this work. State1-state4 are symbols for 

the sampled states from the process. The control law field specifies which control law to 

use in the system. 

 
The Remote I/O is the master in the Bluetooth communication. The master in a Bluetooth 
network is the Bluetooth unit that controls the communication in the network. It is set to 
be master when the Bluetooth is initialized. The sampling in the Remote I/O is time-
driven and the rest of the actions in the loop are event-driven, see figure 3.6. 
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Figure 2.6 displays the interaction between the Remote I/O and the Controller. When the 

Remote I/O or the Controller receives a write or read event it continues executing the 

code as. 

2.4 The Controller 
 
The Controller is an instance of the data object Control (see Section 2.2) that contains the 
control laws. The Controller receives states from the Remote I/O and sends the calculated 
output control signal back to the Remote I/O. The Controller uses the communication 
protocol specified in Section Bluetooth communication to switch the control laws in run 
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time. The Controller allows switching of control laws when the pendulum is stabilised 
after swing up.  
The controllers decides: 

• What states to sample. 
• How often the system should sample the process. 
• Should the Remote I/O do further calculations. This depends on which control 

law that is used.  
 
 

2.5 The Remote I/O 
 
The Remote I/O samples the process and actuates the control signal to the process. The 
Remote I/O is discussed around two concepts, intelligent I/O and ordinary I/O. The 
ordinary I/O holds no intelligence, which means that the I/O only samples and puts out 
control signals. The ordinary I/O takes no notice of whether the control signal is correct 
or not. The ordinary I/O is easily implemented on an embedded microcomputer due to 
low calculation demands. 
The intelligent I/O holds calculation possibilities and can alter the control signal 
depending on when it senses that something is incorrect with the control signal. The 
intelligent I/O is used for implementing stochastic delay compensation, due to its 
possibility to sense stochastic delays in the communication loop.  Both the intelligent I/O 
and the ordinary I/O are implemented in the Remote I/O; they are started through the 
GUI.  
 

3. The Furuta Pendulum 
 
The Furuta pendulum was selected as a case study for this work on the basis of its 
unstable nature. This makes it suitable as a testbench for control experiments. If 
Bluetooth does not meet the communication demands for stable control of the Furuta 
pendulum it will fall down. 
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θ
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y

z

u

  
Figure 3.1 The Furuta pendulum. 
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3.1 The Furuta Pendulum Model 
 
This section describes the mathematical model for the Furuta pendulum that was used 
when deriving the control laws.  
The process consists of a rotating arm, to which a pendulum is attached (see Figure 3.1). 
 
The angle ! is defined to be zero in an upright position and positive when the pendulum 
moves clockwise. The angle " is defined to be positive when the pendulum is moving in 
counter clockwise. The pendulum�s vertical axis is connected to a DC-motor that is 
controlled by the input u. 
 
The complete derivation of the dynamics for the Furuta pendulum is excluded here. The 
derivation is based on Lagrange theory and can be read in Gäfvert [5]. 
 
Using the definitions made above, the equations of motion can be written: 
 

( )( ) ( )
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Introducing 
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the equations can be written: 
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The coefficients for the pendulum used in the experiments are, see Svensson [6]: 
 

kgm

kgmJ

mr

kgmJp

kgM

ml

02.0

05.0

235.0

0009.0

01.0

413.0

2

2

=

=

=

=

=

=

 



 16

 
 

3.1.1 Stabilization of the pendulum 
 
The first objective in this work is to stabilize the pendulum in an upright position. The 
derivation of the linearized system is described in Johan Åkesson [2] and used here.  
 
All states are measurable, which makes linear feedback control suitable. The state vector 
of the system is 
 

( )T

x ϕϕθθ ��=  

 
System (2) is linearized around, the upright equilibrium point: 
 

( )T

x 0000=  

 
The linear system can be written: 
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For digital control design, a sampled data description is used. The sampled system is 
written 

 
uxx nn 111 Γ+Φ=+  

 
where the matrixes !1 and "1 depend on the sampling interval h. The control law used to 
stabilize the pendulum is 

 
)()( kLxku −=  

 
The feedback L vector can be calculated in many ways. Here LQ design is used. This 
design method is straightforward to apply. LQ design allows two design parameters, a Q 
matrix and R matrix. Q and R are penalty matrixes for the states x and the input u. 
Suitable Q and R matrixes were found to be: 
 



 17

80

1000

06000

0010

000100

=

�
�
�
�

�

�

�
�
�
�

�

�

=

R

Q
 

 

3.1.2 Swing Up 
 
Swing up of the pendulum is a nice demonstration feature. The pendulum is swung from 
a downward position to an upright position using energy control. The idea is to fill the 
system with energy until the pendulum is positioned in the upright position. When in the 
upright position the pendulum is caught and stabilized. The strategy of swing up is 
described in Åström and Furuta [4]: Below the algorithm is briefly described. 
 
Swing up uses a simplified model of the Furuta pendulum, which neglects the arm 
dynamics. This model is derived from an inverted pendulum on a linear rail and not a 
Furuta pendulum, which is a sufficient approximation: 
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ϕ
θθθ
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 Introduce the normalizations  
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and the equations can be written: 
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The control law for energy control is: 
 

( ) ( )( )θθ cos�signEEksatu on −=                (5) 

Sat is saturation for the energy control law and k is proportional design parameter. 
En describes the present energy of the system and E0 describes the desired energy of the 
system and is thereby zero in a upright position. En is calculated using the same 
definitions above: 
 



 18

1cos
2

0

2

−+== θ
ω
θ�

Mgl

E
E

n

 

 
The control law (8) swings the pendulum to an upright position, where it must also be 
caught. This is done with a modified control law that uses feedback from the arm angle 
more gently. The design method used to derive this control law is LQ design with large 
punishments on the θ states and smaller punishment on the ϕ states. 

3.1.3 Friction compensation 
 
Friction is a problem that shows up when trying to control the pendulum. Typically, 
friction will cause the arm to move periodically around a position ϕn. The friction is 
regarded as a Columbs friction with stiction in the arm. The friction in the pendulum 
pivot point is neglected. Friction compensation for the Furuta pendulum is briefly 
described in this report, for more information see Henrik Olsson [8]. 
 
The friction model can be written: 
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The friction model is simplified by: 
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The control law is then altered to compensate for the friction by adding Ff to the control 
law in use. 
  

f
FLxu +−=  

 
The friction compensation improves the control performance and reduces the periodic 
movement of the pendulum arm. For more detailed information see Johan Åkesson [2]. 
 
 
 

4. Bluetooth control algorithms 
 
In this section, control algorithm designed for distributed hard real-time control 
application using Bluetooth as a communication network are described. These algorithms 
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should improve the control performance when using Bluetooth despite the special 
properties of retransmissions, delays and external disturbance.   
 
 

4.1. Delay compensation 
 
Delay compensation aims at reducing the effects of delays in the communication loop. 
Two kinds of delays are discussed in this section, static delays and stochastic delays. 
Static delays are represented by delays of equal size at all time. Stochastic delays are 
represented by delays that vary in size in time.  

4.1.1 Static delay 
 
A distributed system using Bluetooth will always contain delays when communicating 
from one node to another. A control system using Bluetooth as described in this work 
will always contain a static delay (see figure 4.1). This delay can be regarded as static 
within a unique pair of nodes if not exposed to external disturbances. A control system 
exposed to a delay is less stable, due to loss of phase margin.  

 

Process

Controller

Delay e-ststatic Delay e-ststatic

 
Figure 4.1 A system using Bluetooth with static delay. The static delay is due to that the 

process and the controller communicates with Bluetooth.  

 
The phase margin loss can be written: 
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where #c is the cross-over frequency of the system. 

Introducing a new state, the previous control signal un-1, in the control law, reduces the 
effect of static delay, see Karl Johan Åström and Björn Wittenmark [7].   The new control 
law can be written: 
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The extended description of the system is: 
 

u
u

x

u

x

nn

n

n

n

�
�

�
�
�

�Γ
+�

�

�
�
�

�
�
�

�
�
�

� ΓΦ
=�

�

�
�
�

�

−

+

100
1

1

211  

 
This system was used to calculate the new feedback vector L. The method used was a 
discrete LQ-design with a static delay of 21 ms. The static delay increases when the code 
in the application is enlarged. 
 
  

4.1.2 Stochastic delay 
 
Disturbance triggers retransmissions in the Bluetooth communication, which results in 
stochastic delays, Johan Nilsson [3], in the loop see figure 4.3. The delays are said to be 
stochastic due to the unpredictability of the retransmissions endurance and place in time. 
A retransmission could range from 0 seconds (no retransmission) up to total shut down.   
 

Process

Controller

Delay e-ststatic

Delay e-ststochastic

Delay e-ststatic

Delay e-ststochastic

 
 

Figure 4.2 A system with stochastic delays. The stochastic delays are due to that the 

process and the controller communicate with Bluetooth. 
 
The control law must be altered in order to assure stable control when the system is 
exposed to stochastic delays. The derivation of this control law is not explained in this 
work, but is explained in Johan Nilsson [3]. It can gently be described as a dynamic 
version of the static delay control law. An approximate version of the optimal stochastic 
controller was used in this work: 
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The L-vector for each delay is plotted and a trend can be estimated from which dL/d#-

vector can be estimated. 
 
 

 
L0 is the feedback gain for the nominal delay in the system where $# =0. The stochastic 
control law becomes active and dynamic when $# is nonzero.  Figure describes how the 
dL/d# is estimated in order to get a linear model of the stochastic control law. 
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20
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Figure 4.3 The plotted L vectors (dotted line) and the dL/d# (full line) estimations for the 

L vectors. The estimations are done in order to get a linear function of the control law. 

4.2 Bit error filter 
 
A problem that can occur in the loop is bit errors in the Bluetooth packets sent in the air 
due to disturbance. Disturbances are common in an industrial environment, which makes 
bit errors a valid problem to study. 
Bit errors can either be filtered by the Bluetooth baseband layer or by the user. If the 
baseband layer filters the Bluetooth packets, it orders retransmissions until the target 
receives intact packets. Retransmission works by CRC filtering in the baseband layer and 
if the CRC doesn't match, a retransmission is ordered by the target and the transmission 
procedure restarts. The retransmission scheme can result in large delays in the loop if the 
disturbances are heavy. Choosing a certain Bluetooth packet type initializes the 
retransmission scheme.  
Another method of dealing with bit errors and reducing the delays is to disable the 
retransmission scheme, which may result in bit errors in the target. However, the bit 



 22

errors can be filtered and the Bluetooth packet can be used, even though it initially 
contained bit errors. This scheme removes the retransmission delays and may prove more 
successful in stabilizing the process. It does not know in advance if it receives a 
Bluetooth packet containing bit errors or not. The filter must therefore decide whether the 
packet contains errors or not, which isn't a trivial problem. 
 

4.2.1 Filter design 
 
The bit error filter is designed as an observer that runs concurrent with the process and 
checks the validity of the Bluetooth packet the target receives. The target is the controller 
and the packet contains the sampled states of the system. Concurrent in the controller is 
the observer estimating process states. 
 

Process
Furuta

Process
Furuta
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Controller

Bit Error
Correcter

Xfiltered

Xerror

Xest

U

 
 

Figure 4.4 The bit error filter model. The filter consists of the BEC and simulated 

process. 

 
Bit faults are corrected by comparing the estimated states with the sampled states. The 
comparison locates the bit error and flips the faulty bit if a faulty bit seems to exist. The 
sampled states are represented by voltage span of 10-(-10) volts displayed by a bit array 
of 12 bits. The states are thereby sent as a bit array with a value span of 0-4096. As the 
states are converted to a value represented by a bit array of 12 bits, faulty bits can easily 
be detected by looking at the difference between the sampled and the estimated states. 
The estimated states must be converted to the same value span, 12 bits, in order to do a 
correct comparison. 
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Figure 4.5 Sampled state and its bit array representation 

 
The observer design uses a linearized model of the Furuta pendulum with a static delay 
compensation state (un-1 ). The observer is fed back with the corrected Xfiltered states to 
keep equal to the real process. The observer equations are given by: 
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Since all states are measurable, K is a 5 by 4 matrix. 
 
The bit error corrector locates the faulty bit by looking at the difference ∆ between the 
sampled state and the estimated state. The difference indicates which bit that is incorrect, 
due to that the bit location is related to the flipped bits value (2n

bit). 
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The observer will estimate poorly if exposed to sequential bit errors. The filter can 
therefore only filter certain bits on each state. This accuracy on each state is marked by a 
threshold position in the bit array. The filter never flips bits under the threshold.  

4.2.2 Simulated Bit error filter  
The filter design was evaluated in Matlab, with the Simulink model shown in Figure 4.9. 
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Figure 4.6 The filter design in simulink. 

 
The process and the simulated process execute concurrent in time. The bit error filter 
compares the sampled states and the estimated state and produces correct states. A bit 
fault injector injects stochastic bit errors in each state in each packet sent from the 
process to the controller. The filter doesn't know in advance where and when to find a bit 
error. The convert functions convert states to fit the bit array model and the reconstruct 
model transforms the converted states back to normal states with the right unit of 
measurement.  
The model simulates Bluetooth properties with the transport delay block between 
sampling and actuating.  
 

4.3 Control laws  
 
The control application contains six different control laws, which are shifted in runtime.  
The following control laws are available: 
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The control law for stochastic delays are divided between the Remote I/O and the Control 
tasks. This is due to that $# must be calculated in the Remote I/O. The Catch and Stable 
control laws are used when the pendulum is caught in a upright position. 
 

5. Bluetooth control functions 
 
This section describes some functions necessary in a distributed control systems using 
Bluetooth, clock synchronization and time stamps. 

5.1 Clock synchronization  
 
In order for the clocks in the system to not differ, a clock synchronization method is 
executed in the beginning of initialization of the controller and the remote I/O. The clock 
needs to be synchronized in order to recognize delays in the system, due to that the 
Control and Remote I/O tasks runs on separate hardware with separate clocks. If the 
native clocks are not synchronized they cannot correctly decide at which time a data 
packet is received.  The implemented clocks on the Remote I/O and the Control tasks are 
cyclic clocks with a resolution of a millisecond and cycle length of 65536 ticks. 
 
The clock synchronization scheme is derived from a model described in Johan Nilsson 
[3]. This clock synchronization is built around two assumptions, which Bluetooth meets: 
 

• The time to send a data packet from master unit to receiving it in the slave unit is 
equal to the time to send and receiving the same data packet in the reverse order. 

• The difference in time between the native clocks is small. 
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5.1.1 Clock synchronization scheme 
 
The scheme is implemented such that the master unit will contain the system clock and a 
slave unit synchronizes its clock to the master unit. 
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The absolute time in the master unit is regarded as the reference time: 
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The slave unit�s offset from the master unit is: 
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The scheme starts with a time request from the master unit, and the slave unit answers 
with a time response. The start time and the stop time are registered. 
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Figure 5.1 

 

According to the time diagram (see figure 4.5.) it follows that: 
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According to the assumptions, 
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The E operator stands for the expected value of δ.  The expected value of δ has been 
implemented as a mean value of 9 consecutive estimations of δ. 
 

5.2 Time stamps 
 
Time stamps are implemented on every package sent in the control application. The 
stamps are used for recognizing delays in the system. Each time a unit receives a data 
packet from a remote unit it can control the validity of the received packet through the 
time stamp. If the data packet is too old it is useless in the control application. A 
condition for the time stamps to be relevant is that the native clocks in the system are 
synchronized. Without the clock being synchronized, a comparison is without value.   
 
The protocol for sending timestamps is displayed in figure 5.2. Each timestamp is 
positioned last in all packages sent. 
 

byten

Timestamp

byten-1
 

Figure 5.2 

6. Experiments 
 
The static and stochastic delay compensation and the bit error filter were tested on the 
Furuta pendulum. These three experiments were carried out in order to validate the 
control algorithms. Each experiment had to be carried out with its own special properties: 

• Static delay compensation: a static delay of 21 ms. 
• Stochastic delay: a static delay of 21 ms and stochastic delays. The stochastic 

delays are introduced in the control loop with a assumed exponential probability 
distribution shown in Figure 6.1.  

 



 28

][msτ∆

probability

1

0

0
35

 
Figure 6.1Exponential distribution of the stochastic delay. It is most likely that a 

short delay is inserted into the loop. 
 
• Bit error filter: bit errors are injected into the sampled states, and a static 

delay of 21 ms. 
 

 
It is important the realize that the static delay of 21 ms is a natural delay inserted into the 
loop due to the use of Bluetooth, while the bit errors and the stochastic delays are 
artificially inserted into the loop. The fault injector does this. 
 
The fault injector is an instrument for testing the control laws and ideas. A fault injector 
is used in the loop in order to have control over which fault that is inserted into the 
control loop. There is no easy way of exposing the system to fault caused by natural 
disturbance. The fault injector is discussed as a unit but is distributed in the control loop. 
One part is situated in the Remote I/O and the rest in the Controller.  
 
The bit error injector is located in the Controller and injects bit faults in the sampled 
states from the Remote I/O. The Controller receives the sampled states from the Remote 
I/O, which send the states to the fault injector. The fault injector then injects faults in the 
states and sends them to the bit error corrector (see figure 4.7). 
 
The delay injector is located in the Remote I/O and injects delays into the control loops. 
This is done between sampling and putting out the control signal in order to simulate 
delays in the system. The static delay is not simulated in the control loop due to that it 
exists naturally. The stochastic delays are injected by updating a delay variable in the 
Remote I/O before putting out the control signal simulates the stochastic delays. 
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7. GUI 
 
The GUI (Graphical User Interface) is a demo feature for easy understanding and control 
of the process. The GUI gives the user of the demo easy access to all features of the 
pendulum demo.  
 
The layout of the GUI is shown in Figure 7.1: 
 

 
Figure 7.1 The layout of the GUI.. 

 
The power panel gives the user possibility to start and stop the demo. The off and on 
buttons are connected to the Controller, which checks the power state every time a loop 
begins. If off is set the Controller becomes inactive and the whole communication loop is 
stopped and thereby the whole demo.  
The Control panel gives the user easy access to enable different control laws at any time 
in the demo. It is important to know that control laws are automatically switched when 
the pendulum has fallen down. The GUI doesn�t reflect this, which means that controls 
shouldn�t be switched until the pendulum is stabilised. 
The filter panel gives the user easy access to the state of the filter. The filter is shut off 
whenever the filter off button is set, and this will inevitable lead to that the pendulum will 
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fall down. The filter is turned on when the filter on button is set; this gives the pendulum 
stable characteristics although exposed to injected faults. 
The delay compensation panel allows the user to switch the state of the delay 
compensation. These buttons are related to both static and stochastic delays. These 
buttons should therefore be observed whenever switching delays. 
The L panel updates the feedback gains when a control law is switched in the GUI. 
The calibrate panel is used when the power off is set in order to allow calibration of 
offsets to measured states. 
 

8. Results 
 
This section presents the results of the suggested control algorithms. The results are 
promising and could with further work be implemented in the industry. 

8.1 Results with static delay compensation 
 
The test of the static compensation was done with a extreme sampling interval in order to 
get a visual effect of the static delay compensation: 

h=0.07 s 
The effect off not using the static delay compensation, when the system is exposed to a 
static delay, is that the pendulum becomes highly unstable. This fact is displayed in figure 
8.1. 
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Figure 8.1 The effects of static delay compensation. One can clearly see where the static 

delay compensation is switched.  The pendulum becomes highly unstable when the static 

delay compensation is turned off and finally falls down. This fact is displayed in the 

figure by the states in the figure. The amplitude off the states is larger when the static 

delay is turned off. By t=210, the delay comp is turned off. 

 
The penalty matrixes Q and R for the new static control law chosen were: 
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8.2 Results with stochastic delay Compensation 
 
The result of the stochastic delay compensation is positive. The test of the stochastic 
compensation was done with an extreme sampling interval in order to get a visual effect: 
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h=0.06 s 
The effect of not using the stochastic delay compensation when the system is exposed to 
stochastic delays is that the pendulum becomes highly unstable or falls down. This fact is 
displayed in Figure 8.2. 
 

 
Figure 8.2 The effects of stochastic delay compensation when the system is exposed to 
stochastic delays. The figure is taken from the GUI when the stochastic delay 
compensation is switched. One can clearly see that the pendulum becomes unstable and 
may fall down when the compensation is switched off. By t=244, the delay compensation 
is switched off. 
 
The penalty matrixes Q and R for the stochastic control law were chosen as: 
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8.3 Results simulated bit error filter 
 
The simulated bit error filter filtered the bit errors sufficiently to keep the process stable, 
although that there was no information when a bit error occurred in time and in which 
state. Figure 8.3 shows the performance if the system with filter and when exposed to 
static delay. 
 

0 2 4 6 8 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

te
ta

 [r
ad

]

t [s]
0 2 4 6 8 10

−3

−2

−1

0

1

2

te
ta

do
t [

ra
d/

s]

t [s]

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

fi [
ra

d]

t [s]
0 2 4 6 8 10

−10

−5

0

5

10

fid
ot

 [r
ad

/s]

t [s]

Sampled states with system delay 

 
Figure 8.3 The sampled states from the process before the bit faults are injected. 
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Figure 8.4 The estimated states the bit error corrector uses to compare the sampled 

states containing bit errors. These states are filtered; the bit faults shown are due to the 

accuracy of the filter. The filter does not correct bit fault under the specified accuracy 

specified in the application.   State fi is plotted with a larger scale than in Figure 8.3. 

    
One can see that some faults are present in the sampled states this is due to the bit fault 
filters accuracy. The bit errors are injected to each state with a probability of 0.1 for each 
state. Figure 8.5 displays the states with injected bit faults. 
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Figure 8.5 The sampled states with injected bit faults. These tastes are not filtered, which 

shows in the large bitfaults. 
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Figure 8.6 Bit faults injected into each state. Each black line is a bit fault injected to a 

state. 

 
The filter works sufficiently when simulated in Matlab. 

8.4 Results with implemented bit error filter 
 
The bit error filter was implemented on the process with Bluetooth communication and 
tests. The same setting as in the simulated filter was used. The process is a bit unstable 
which is natural depending on the accuracy of the bit error corrector�s accuracy, when ran 
with the filter. The results can be seen in the demo 

 
9. Future Work 
 

9.1 Time-outs 
 
Time-outs are an idea not tested in this work, however the idea is to have some safety 
when the Bluetooth communication is completely shut down. Such a disruption can be 
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fatal in some applications and must therefore be avoided.  
 
One solution is to implement a watchdog timer on the communication channel in order to 
discover shut down in the communication. The watchdog timer should be implemented in 
the remote I/O due to that isolation of the process and the remote I/O in case of a 
communication breakdown.  
The watchdog timers give the read and write methods a time window to work within. The 
communication is regarded as shut down if this time window is exceeded.  
The remote I/O must contain a communication breakdown method in case of watchdog 
timer overflow. This method should secure graceful degradation of the process.  
 

10. Conclusions 
 
The static delay compensation is effective in distributed communication networks to fight 
bandwidth (loss off phase margin in control application) problems. The demo uses large 
samplings interval in order to get a visual effect in the demo, however static delay 
compensation gives effects at small sampling intervals. Static delay compensation should 
be used when control application is exposed to bandwidth limitations. Choosing USB 
communication with the Bluetooth chip can reduce this problem. 
 
The stochastic delay compensation is effective in distributed communication networks to 
fight unpredictable delays and bandwidth problems (loss off phase margin in control 
application). The unpredictable delays are an effect off retransmissions in Bluetooth 
chips. The demo uses large samplings interval in order to get a visual effect, however 
stochastic delay compensation gives effects at small sampling intervals. Stochastic delay 
compensation should be used the control application is exposed to disturbance which 
gives retransmissions in the Bluetooth communication and bandwidth problems.  
 
Static delay compensation does not demand an intelligent I/O, which is the case with 
stochastic delays. This is due to that stochastic delay demands calculation power in the 
Remote I/O. Calculation power of results in a more advanced I/O and thereby a more 
expensive I/O. 
 
The bit error filter can be used to reduce retransmissions to shorten delay time in a 
system. The bit error filter works well making the pendulum stable although exposed to 
bit errors. The strength of the filter is that it doesn�t need to have knowledge about when 
and where a bit fault occurs in order to work. The filter is an interesting idea applicable to 
hard real-time distributed systems. The filter could be developed further to filter multi bit 
errors. The idea is to flip several bits instead of single bit faults. This would make the 
filter more applicable to real process. Further development could be done be give the 
filter notice on when to suspect errors and maybe the location of the bit faults. Using the 
information from the CRC coding implemented in Bluetooth could do this. The bit error 
filter should be used when the control application is exposed to disturbance. It is 
important to know that this idea is built around that the Bluetooth chip does not filter any 
bit errors. Removing the retransmissions scheme could do this. 
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The conclusion is that much can be done in order to improve the sometimes-bad 
characteristics of Bluetooth in control applications. The suggested control algorithms are 
effective in their specific areas and each should be selected to fit the environment at site. 
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