
ISSN 0280–5316
ISRN LUTFD2/TFRT--5659--SE

Bluetooth in Control

Andreas Hörjel

Department of Automatic Control
Lund Institute of Technology

January 2001

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden

Document name
MASTER THESIS

Date of issue
January 2001

Document Number
ISRN LUTFD2/TFRT--5659--SE

Author(s)

Andreas Hörjel
Supervisor

Johan Eker, Anton Cervin,
Mats Andersson (ConnectBlue)

Sponsoring organisation

Title and subtitle
Bluetooth in Control

Abstract

This master thesis evaluates control algorithms for control applications using Bluetooth in the loop. It is
done in order to investigate whether Bluetooth can be used in hard real-time control loops or not. The
control algorithms suggested in this work are evaluated on a real process, the Furuta pendulum, due to
the unstable nature of the process. This will assure that the Bluetooth communication is pushed to its
limits, where problems can be found. Problems encountered are bandwidth limitations, retransmissions
in the low layers of Bluetooth and disturbances to the wireless communication.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280–5316

ISBN

Language
English

Number of pages
37

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.lu.se

 2

1. INTRODUCTION... 4

1.1 BACKGROUND.. 4
1.2 PROBLEM FORMULATION.. 5
1.3 ROADMAP .. 6

2. THE CONTROL APPLICATION .. 6

2.1 HARDWARE .. 7
2.2 SOFTWARE ... 8
2.3 BLUETOOTH COMMUNICATION... 10
2.4 THE CONTROLLER.. 13
2.5 THE REMOTE I/O.. 14

3. THE FURUTA PENDULUM... 14

3.1 THE FURUTA PENDULUM MODEL... 15
3.1.1 Stabilization of the pendulum... 16
3.1.2 Swing Up .. 17
3.1.3 Friction compensation.. 18

4. BLUETOOTH CONTROL ALGORITHMS... 18

4.1. DELAY COMPENSATION... 19
4.1.1 Static delay ... 19
4.1.2 Stochastic delay.. 20

4.2 BIT ERROR FILTER .. 21
4.2.1 Filter design ... 22
4.2.2 Simulated Bit error filter .. 23

4.3 CONTROL LAWS.. 24

5. BLUETOOTH CONTROL FUNCTIONS.. 25

5.1 CLOCK SYNCHRONIZATION... 25
5.1.1 Clock synchronization scheme ... 26

5.2 TIME STAMPS ... 27

6. EXPERIMENTS ... 27

7. GUI ... 29

8. RESULTS...30

8.1 Results with static delay compensation... 30
8.2 Results with stochastic delay Compensation... 31
8.3 Results simulated bit error filter ... 33
8.4 Results with implemented bit error filter... 35

9. FUTURE WORK .. 35

9.1 TIME-OUTS ... 35

10. CONCLUSIONS ... 36

 3

11. REFERENCES.. 37

 4

1. Introduction

Bluetooth is a short distance wireless communication network technology. It was recently
introduced to the market and is currently being evaluated for many future applications.
One application is Bluetooth in control loops, where Bluetooth is used as a
communication network in a distributed real-time control system.
The work in this report aims at evaluating control algorithms for a distributed real-time
control system using Bluetooth technology.
Bluetooth is a future technology due to low cost and the wireless properties. The
technology is well founded among many leading global companies, which makes
Bluetooth a coming technology.

1.1 Background

Bluetooth is wireless communication that transmits over radio. The range of Bluetooth is
10 meters within which the receiver must be in order to receive information. The
technique uses a frequency-hopping algorithm in order to avoid disturbance at a certain
frequency. These properties allow a study of Bluetooth in control applications in order to
reduce wiring.

Bluetooth is mostly known on the telecom market, e.g. for cellular phones, headsets, etc.
However, the Bluetooth application possibilities are many; industry applications
containing Bluetooth communication is a new area being investigated. Bluetooth could be
used for monitoring, transferring, and logging of data or operator communication. These
applications have little real-time requirements, which makes them easy to implement
using Bluetooth. However, this work aims at making a study of Bluetooth in a hard real-
time distributed control system. A hard real-time distributed control system is a system
with distributed actuator sensor and controller nodes that communicate over a network.
Bluetooth is not designed for hard real-time applications; it is designed for common voice
and data transmission, and this is a barrier to overcome.

The Bluetooth control system studied in this work is shown in Figure 1.1.

Bluetooth in control loops creates some design problems for developers of control
systems:

• Static delay in the control loop due to limited communication bandwidth. This is a
predictable delay between the sampling of the process and the putting out of the
control signal to the process.

• Stochastic delays due to retransmissions of Bluetooth data packets. This is an
unpredictable delay.

• Information scrambling due to external disturbances.
These types of delays and disturbances can be fatal to an unstable process.

 5

Bluetooth

()tcsτ
Bluetooth

()tscτ

Actuator node Sensor node

u(t) y(t)

Controller

()tcτ

Process Furuta

Remote I/O

Figure 1.1 The general setup of the control application.

1.2 Problem formulation

The first subobjective is to control the unstable process, even though the control system is
exposed to delays. The total delay is the total time it takes to complete one control loop,
from the sampling of the system in the sensor node, through the control node, and back to
the actuator node.
The round trip delay can thus be described as (see Figure 1.1):

()tccasc τττττ +++=

The delay τ(t) is the stochastic delay due to retransmissions in the loop. The other parts of
the total delay are static. The static delays depend on the bandwidth limitations in the
communication, which in this control loop are represented by RS232 and Bluetooth.
RS23 is for communicating between the PC and the Bluetooth chips (see Figure 3.1).

 6

The second subobjective is to reduce the effects of disturbances, with a filter, in order to
assure stable control. External disturbances insert faulty information packets in the
control loop, and the filter should attempt to correct the faulty packages.

A third subobjective is to control an unstable process to investigate unknown problems
between the relation between Bluetooth and distributed control systems. An unstable
process is used to push Bluetooth to the extreme to force unknown problems to reveal
themselves.

1.3 Roadmap

The rest of the report is outlined as follows. Section 2 gives an introduction to the
dynamics of the process and discusses stabilization, swing up and friction.

The main part of this work is presented in Sections 3 and 4. Section 3 defines the setup
and problems with the setup when implementing Bluetooth in control loops. Section 4
defines control algorithms suitable for Bluetooth in control loops.

Section 5 explains the experimental fixes necessary to produce results to the control
algorithms and experimental results and summarizes the results and conclusions of the
tests. The demo interface is presented in Section 6.

2. The control application

The control application�s general software/hardware setup is displayed in Figure 3.1. It
shows four objects, two hardware and two software. The heart of the control application
is the two software instances, Remote I/O and Control, which run on a PC. The Remote
I/O software is separated from the Control software that runs on other hardware. The
communication between these instances is sent over Bluetooth. This setup eliminates the
need for cables between the process and the controller.

 7

Harald stack Harald stack

Remote I/O Control

Furuta Process

Software

Process hardware

Bluetooth hardware Bluetooth hardware

Bluetooth hardware

RS232 RS232

Radio

Software

Figure 2.1 The general hardware software setup.

2.1 Hardware

The Furuta pendulum allows sampling of all four states necessary for controlling the
process. This fact simplifies the control laws due to that all states are known and do not
need to be estimated. The states are represented by voltages in the interval �10 to +10 V.

Two Bluetooth Application and Training Toolkits from Ericsson (version P3D) constitute
the Bluetooth hardware. The Remote I/O and the Control tasks run on a computer that

 8

communicates with the toolkits through RS232 communication. The computer runs the
Linux real-time operating system KURT [9].

2.2 Software

The Remote I/O and the Control task are implemented as Java programs. They use a
Bluetooth stack, developed by Johan Eker [1]. The Bluetooth stack gives the tasks access
to methods for establishing links, reading and writing data and etc. The Control and the
Remote I/O tasks are designed specially for this work and contain all control laws and
testing tools necessary.
The whole structure of the program is displayed in Figure 2.2.
A Bluetooth instance starts the control application by creating either a Remote I/O or a
Control instance. The Remote I/O and the Control instances inherit from the BTUnit
class. The Remote I/O, Control and Local objects are the only objects that are involved in
the control loop, where the Remote I/O samples the process and Control calculates the
new control signal. The Local class is a class that gives the Remote I/O and Control
instances access to the Harald stack. The Container and Opcom classes are objects for
creating a GUI. The Container object is a transport object that sends sampled states and
the control signal to the Opcom class.

 9

H
arald stack instance

C
lass B

luetooth

C
lass B

T
U

nit

C
lass C

ontrol thread
C

lass R
em

oteI/O
 thread

1

C
lass Local

C
lass C

ontainer
C

lass O
pcom

1
1

static void m
ain();

setB
audrate();

connectionE
stab();

clockS
ynch();

run();

connectionE
stab();

run();

clockS
ynch();

run();

faultInjector();
faultC

orrector();
C

lass P
lot thread

updateC
ontrolP

aram
s();

states
control signal

Figure 2.2 The control applications class diagram. The diagram displays the most

important methods in each class, for more information look at source code.

 10

2.3 Bluetooth communication

The Bluetooth communication setup is based on the hardware configuration of the
Bluetooth Application and Training Toolkit. The Toolkit is comes with a RS232 port and
an USB port. The RS232 port was used due to that the Harald software contained a
RS232 driver but no USB driver. The setup of a communication chain where the user
communicates through RS232 is not an optimal setup and is probably not a setup that will
be used in the future. RS232 communication is much slower than the Bluetooth
communication, which means that the RS232 communication limits the baud rate
significantly. The USB port should be used in the future if available.

The limitations in the RS232 communication depend on configuration limitations on the
RS232 port on the computer. The baud rate could only be configured to 115200 bits/s.
The default baud rates of the Bluetooth chips are 56700 bits/s and they are configured to
115200 at each start up of the control application. Another problem was reading the
RS232 receive buffer in the computer. The buffer was emptied with an interval of 10 ms,
which resulted in a static delay in the communication chain of at least 50 ms. This delay
is reduced by configuring the RS232 port on the computer to empty its buffer more
frequently. The resulting delay was around 20 ms.
These alterations gave the communication chain properties sufficient for controlling the
pendulum. The alterations resulted in a time diagram, see figure 3.3, with a total loop
time of 18 ms. This can be compared to a loop time off 50 ms, which was obtained before
the modifications were introduced.

 11

Remote I/O

RS232

RS232

Bluetooth chip

Controller

t
[ms]

203 11

13

14

15

19

Figure 2.3 The timing diagram for the communication in the loop. The total duration of

the timing diagram is equal to the total duration from sampling the process until

receiving the control signal from the Control object.

 12

Bluetooth

cs
τ

sc
τ

RS232

RS232

Bluetooth

RS232

RS232

Bluetooth

Figure 2.4 The test results sampling on the RS232 communication. The first picture

displays measurements from when sending from Remote I/O to the Controller, where the

measurements is obtained on Tx and Rx on the RS232 communication between the PC

and the Bluetooth chip.τ is the delay from Remote I/O to Controller and the peaks show

the serial communication over the RS232 cable. The second picture displays

measurements when sending in the other direction. The difference in time between the

communications peaks depends on the size of the package sent over RS232.

Information sent in the loop is e.g. controller settings, states and control signals. The
communication uses a protocol, which specifies where to position the information in time
and space, see Figure 2.5.

 13

state 1 state 2 state 3 state 4 timestamp

Communication Protocol

From Remote I/O to Controller

From Controller to Remote I/O

Control signalControl
law

byte 0 byte 10

byte 1byte 0

Figure 2.5 The communication protocol used in this work. State1-state4 are symbols for

the sampled states from the process. The control law field specifies which control law to

use in the system.

The Remote I/O is the master in the Bluetooth communication. The master in a Bluetooth
network is the Bluetooth unit that controls the communication in the network. It is set to
be master when the Bluetooth is initialized. The sampling in the Remote I/O is time-
driven and the rest of the actions in the loop are event-driven, see figure 3.6.

t write event

write event

read event

read event

Remote I/O Controller

Controller
code

states

control signal

clock event
sample

output

Figure 2.6 displays the interaction between the Remote I/O and the Controller. When the

Remote I/O or the Controller receives a write or read event it continues executing the

code as.

2.4 The Controller

The Controller is an instance of the data object Control (see Section 2.2) that contains the
control laws. The Controller receives states from the Remote I/O and sends the calculated
output control signal back to the Remote I/O. The Controller uses the communication
protocol specified in Section Bluetooth communication to switch the control laws in run

 14

time. The Controller allows switching of control laws when the pendulum is stabilised
after swing up.
The controllers decides:

• What states to sample.
• How often the system should sample the process.
• Should the Remote I/O do further calculations. This depends on which control

law that is used.

2.5 The Remote I/O

The Remote I/O samples the process and actuates the control signal to the process. The
Remote I/O is discussed around two concepts, intelligent I/O and ordinary I/O. The
ordinary I/O holds no intelligence, which means that the I/O only samples and puts out
control signals. The ordinary I/O takes no notice of whether the control signal is correct
or not. The ordinary I/O is easily implemented on an embedded microcomputer due to
low calculation demands.
The intelligent I/O holds calculation possibilities and can alter the control signal
depending on when it senses that something is incorrect with the control signal. The
intelligent I/O is used for implementing stochastic delay compensation, due to its
possibility to sense stochastic delays in the communication loop. Both the intelligent I/O
and the ordinary I/O are implemented in the Remote I/O; they are started through the
GUI.

3. The Furuta Pendulum

The Furuta pendulum was selected as a case study for this work on the basis of its
unstable nature. This makes it suitable as a testbench for control experiments. If
Bluetooth does not meet the communication demands for stable control of the Furuta
pendulum it will fall down.

ϕ

θ

x

y

z

u

Figure 3.1 The Furuta pendulum.

 15

3.1 The Furuta Pendulum Model

This section describes the mathematical model for the Furuta pendulum that was used
when deriving the control laws.
The process consists of a rotating arm, to which a pendulum is attached (see Figure 3.1).

The angle ! is defined to be zero in an upright position and positive when the pendulum
moves clockwise. The angle " is defined to be positive when the pendulum is moving in
counter clockwise. The pendulum�s vertical axis is connected to a DC-motor that is
controlled by the input u.

The complete derivation of the dynamics for the Furuta pendulum is excluded here. The
derivation is based on Lagrange theory and can be read in Gäfvert [5].

Using the definitions made above, the equations of motion can be written:

()() ()
()

umlJpMrmrJ

mlJMrlMrl

mMglMrlMlJ

p

p

=+++++

++−

=+−+−+

ϕθ

θθϕθθθθθ

θθϕθθϕθ

��

�����

�����

)sin)((

cossin2sincos

0sin2coscossin

2222

22

22

 (1)

Introducing

)2/lg(

22

2

mMd

Mrlc

mrMrJb

MlJa p

+=
=

++=

+=

the equations can be written:

uabacc

dcaa

=+++−

=−+−

ϕθθθϕθθθθθ
θθϕθθϕθ

�������

�����

)sin(cossin2sincos

0sincoscossin
22

2

 (2)

The coefficients for the pendulum used in the experiments are, see Svensson [6]:

kgm

kgmJ

mr

kgmJp

kgM

ml

02.0

05.0

235.0

0009.0

01.0

413.0

2

2

=

=

=

=

=

=

 16

3.1.1 Stabilization of the pendulum

The first objective in this work is to stabilize the pendulum in an upright position. The
derivation of the linearized system is described in Johan Åkesson [2] and used here.

All states are measurable, which makes linear feedback control suitable. The state vector
of the system is

()T

x ϕϕθθ ��=

System (2) is linearized around, the upright equilibrium point:

()T

x 0000=

The linear system can be written:

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−

−
−

+

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−
−

−=+=

2

2

2

2

0

0

000

1000

000

0010

cab

a

cab

c

x

cab

cd

cab

bd

BuAxx� (3)

For digital control design, a sampled data description is used. The sampled system is
written

uxx nn 111 Γ+Φ=+

where the matrixes !1 and "1 depend on the sampling interval h. The control law used to
stabilize the pendulum is

)()(kLxku −=

The feedback L vector can be calculated in many ways. Here LQ design is used. This
design method is straightforward to apply. LQ design allows two design parameters, a Q
matrix and R matrix. Q and R are penalty matrixes for the states x and the input u.
Suitable Q and R matrixes were found to be:

 17

80

1000

06000

0010

000100

=

�
�
�
�

�

�

�
�
�
�

�

�

=

R

Q

3.1.2 Swing Up

Swing up of the pendulum is a nice demonstration feature. The pendulum is swung from
a downward position to an upright position using energy control. The idea is to fill the
system with energy until the pendulum is positioned in the upright position. When in the
upright position the pendulum is caught and stabilized. The strategy of swing up is
described in Åström and Furuta [4]: Below the algorithm is briefly described.

Swing up uses a simplified model of the Furuta pendulum, which neglects the arm
dynamics. This model is derived from an inverted pendulum on a linear rail and not a
Furuta pendulum, which is a sufficient approximation:

a

MlaMglJp

=
−=

ϕ
θθθ

��

�� cossin
 (4)

 Introduce the normalizations

g

a
u

Jp

Mgl

=

=0ω

and the equations can be written:

ug

u

=
−=

ϕ
θωθωθ

��

�� cossin 2
0

2
0

The control law for energy control is:

() ()()θθ cos�signEEksatu on −= (5)

Sat is saturation for the energy control law and k is proportional design parameter.
En describes the present energy of the system and E0 describes the desired energy of the
system and is thereby zero in a upright position. En is calculated using the same
definitions above:

 18

1cos
2

0

2

−+== θ
ω
θ�

Mgl

E
E

n

The control law (8) swings the pendulum to an upright position, where it must also be
caught. This is done with a modified control law that uses feedback from the arm angle
more gently. The design method used to derive this control law is LQ design with large
punishments on the θ states and smaller punishment on the ϕ states.

3.1.3 Friction compensation

Friction is a problem that shows up when trying to control the pendulum. Typically,
friction will cause the arm to move periodically around a position ϕn. The friction is
regarded as a Columbs friction with stiction in the arm. The friction in the pendulum
pivot point is neglected. Friction compensation for the Furuta pendulum is briefly
described in this report, for more information see Henrik Olsson [8].

The friction model can be written:

()

�
�
�

�

��
�

�

�

<
<=
<<=
>=

>

=

−

−−

+−

++

+

0

,0

,0

,0

0

,

ϕ
ϕ

ϕ
ϕ
ϕ

ϕ

�

�

�

�

�

�

c

ss

ss

cs

c

f

F

FuF

FuFu

FuF

F

uF

The friction model is simplified by:

−−

++

=

=

cs

cs

FF

FF

The control law is then altered to compensate for the friction by adding Ff to the control
law in use.

f
FLxu +−=

The friction compensation improves the control performance and reduces the periodic
movement of the pendulum arm. For more detailed information see Johan Åkesson [2].

4. Bluetooth control algorithms

In this section, control algorithm designed for distributed hard real-time control
application using Bluetooth as a communication network are described. These algorithms

 19

should improve the control performance when using Bluetooth despite the special
properties of retransmissions, delays and external disturbance.

4.1. Delay compensation

Delay compensation aims at reducing the effects of delays in the communication loop.
Two kinds of delays are discussed in this section, static delays and stochastic delays.
Static delays are represented by delays of equal size at all time. Stochastic delays are
represented by delays that vary in size in time.

4.1.1 Static delay

A distributed system using Bluetooth will always contain delays when communicating
from one node to another. A control system using Bluetooth as described in this work
will always contain a static delay (see figure 4.1). This delay can be regarded as static
within a unique pair of nodes if not exposed to external disturbances. A control system
exposed to a delay is less stable, due to loss of phase margin.

Process

Controller

Delay e-ststatic Delay e-ststatic

Figure 4.1 A system using Bluetooth with static delay. The static delay is due to that the

process and the controller communicates with Bluetooth.

The phase margin loss can be written:

c

w

s

cereductioninPhasem

eDelay

τωτ

τ

−=
=

−

−

)arg(:arg

where #c is the cross-over frequency of the system.

Introducing a new state, the previous control signal un-1, in the control law, reduces the
effect of static delay, see Karl Johan Åström and Björn Wittenmark [7]. The new control
law can be written:

 20

�
�

�
�
�

�
−=�−=

−1n

static
u

x
LuLxu

The extended description of the system is:

u
u

x

u

x

nn

n

n

n

�
�

�
�
�

�Γ
+�

�

�
�
�

�
�
�

�
�
�

� ΓΦ
=�

�

�
�
�

�

−

+

100
1

1

211

This system was used to calculate the new feedback vector L. The method used was a
discrete LQ-design with a static delay of 21 ms. The static delay increases when the code
in the application is enlarged.

4.1.2 Stochastic delay

Disturbance triggers retransmissions in the Bluetooth communication, which results in
stochastic delays, Johan Nilsson [3], in the loop see figure 4.3. The delays are said to be
stochastic due to the unpredictability of the retransmissions endurance and place in time.
A retransmission could range from 0 seconds (no retransmission) up to total shut down.

Process

Controller

Delay e-ststatic

Delay e-ststochastic

Delay e-ststatic

Delay e-ststochastic

Figure 4.2 A system with stochastic delays. The stochastic delays are due to that the

process and the controller communicate with Bluetooth.

The control law must be altered in order to assure stable control when the system is
exposed to stochastic delays. The derivation of this control law is not explained in this
work, but is explained in Johan Nilsson [3]. It can gently be described as a dynamic
version of the static delay control law. An approximate version of the optimal stochastic
controller was used in this work:

 21

�
�

�
�
�

�∆−�
�

�
�
�

�−=�−=
−− 11

0
)(

nn

stochastic

u

x
x

d

dL

u

x
LuLxu τ

τ

The L-vector for each delay is plotted and a trend can be estimated from which dL/d#-

vector can be estimated.

L0 is the feedback gain for the nominal delay in the system where $# =0. The stochastic
control law becomes active and dynamic when $# is nonzero. Figure describes how the
dL/d# is estimated in order to get a linear model of the stochastic control law.

delay [ms]

L

20

L04
L03
L02
L01

L05

55

Figure 4.3 The plotted L vectors (dotted line) and the dL/d# (full line) estimations for the

L vectors. The estimations are done in order to get a linear function of the control law.

4.2 Bit error filter

A problem that can occur in the loop is bit errors in the Bluetooth packets sent in the air
due to disturbance. Disturbances are common in an industrial environment, which makes
bit errors a valid problem to study.
Bit errors can either be filtered by the Bluetooth baseband layer or by the user. If the
baseband layer filters the Bluetooth packets, it orders retransmissions until the target
receives intact packets. Retransmission works by CRC filtering in the baseband layer and
if the CRC doesn't match, a retransmission is ordered by the target and the transmission
procedure restarts. The retransmission scheme can result in large delays in the loop if the
disturbances are heavy. Choosing a certain Bluetooth packet type initializes the
retransmission scheme.
Another method of dealing with bit errors and reducing the delays is to disable the
retransmission scheme, which may result in bit errors in the target. However, the bit

 22

errors can be filtered and the Bluetooth packet can be used, even though it initially
contained bit errors. This scheme removes the retransmission delays and may prove more
successful in stabilizing the process. It does not know in advance if it receives a
Bluetooth packet containing bit errors or not. The filter must therefore decide whether the
packet contains errors or not, which isn't a trivial problem.

4.2.1 Filter design

The bit error filter is designed as an observer that runs concurrent with the process and
checks the validity of the Bluetooth packet the target receives. The target is the controller
and the packet contains the sampled states of the system. Concurrent in the controller is
the observer estimating process states.

Process
Furuta

Process
Furuta

simulated

Controller

Bit Error
Correcter

Xfiltered

Xerror

Xest

U

Figure 4.4 The bit error filter model. The filter consists of the BEC and simulated

process.

Bit faults are corrected by comparing the estimated states with the sampled states. The
comparison locates the bit error and flips the faulty bit if a faulty bit seems to exist. The
sampled states are represented by voltage span of 10-(-10) volts displayed by a bit array
of 12 bits. The states are thereby sent as a bit array with a value span of 0-4096. As the
states are converted to a value represented by a bit array of 12 bits, faulty bits can easily
be detected by looking at the difference between the sampled and the estimated states.
The estimated states must be converted to the same value span, 12 bits, in order to do a
correct comparison.

 23

LSG BitMSG Bit
011

State value [bits]

04095

-10v10v
State value in [V]

bitarray

Figure 4.5 Sampled state and its bit array representation

The observer design uses a linearized model of the Furuta pendulum with a static delay
compensation state (un-1). The observer is fed back with the corrected Xfiltered states to
keep equal to the real process. The observer equations are given by:

)(
100

1

1

211

nfiltered

nn

n

n

n

CxCxKu
u

x

u

x
−+�

�

�
�
�

�Γ+�
�

�
�
�

�
�
�

�
�
�

� ΓΦ
=�

�

�
�
�

�

−

+

Since all states are measurable, K is a 5 by 4 matrix.

The bit error corrector locates the faulty bit by looking at the difference ∆ between the
sampled state and the estimated state. The difference indicates which bit that is incorrect,
due to that the bit location is related to the flipped bits value (2n

bit).

bitn

errorest xx 2=∆=−

()
�
�
�

�
�
�
�

� −
=

)2log(

log errorest

bit

xx
roundn

The observer will estimate poorly if exposed to sequential bit errors. The filter can
therefore only filter certain bits on each state. This accuracy on each state is marked by a
threshold position in the bit array. The filter never flips bits under the threshold.

4.2.2 Simulated Bit error filter
The filter design was evaluated in Matlab, with the Simulink model shown in Figure 4.9.

 24

xconxrecon

xreconstructer

x xcon

xconverter1

x xcon

xconverter

x estimated1

bitfaults

Transport
Delay

Sampled x w/faults

Sampled x

[0.1 0.1 0.1 0.1]

Probability

u x

Pendulum Model

K

Matrix
Gain

1/g

Gain

0.58

Display

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete State−Space

Demux

[0 1 2 3]

Constant

Clock

MATLAB
Function

Bitfaultinjector2

MATLAB
Function

Bitfaulthandler

Figure 4.6 The filter design in simulink.

The process and the simulated process execute concurrent in time. The bit error filter
compares the sampled states and the estimated state and produces correct states. A bit
fault injector injects stochastic bit errors in each state in each packet sent from the
process to the controller. The filter doesn't know in advance where and when to find a bit
error. The convert functions convert states to fit the bit array model and the reconstruct
model transforms the converted states back to normal states with the right unit of
measurement.
The model simulates Bluetooth properties with the transport delay block between
sampling and actuating.

4.3 Control laws

The control application contains six different control laws, which are shifted in runtime.
The following control laws are available:

 25

The control law for stochastic delays are divided between the Remote I/O and the Control
tasks. This is due to that $# must be calculated in the Remote I/O. The Catch and Stable
control laws are used when the pendulum is caught in a upright position.

5. Bluetooth control functions

This section describes some functions necessary in a distributed control systems using
Bluetooth, clock synchronization and time stamps.

5.1 Clock synchronization

In order for the clocks in the system to not differ, a clock synchronization method is
executed in the beginning of initialization of the controller and the remote I/O. The clock
needs to be synchronized in order to recognize delays in the system, due to that the
Control and Remote I/O tasks runs on separate hardware with separate clocks. If the
native clocks are not synchronized they cannot correctly decide at which time a data
packet is received. The implemented clocks on the Remote I/O and the Control tasks are
cyclic clocks with a resolution of a millisecond and cycle length of 65536 ticks.

The clock synchronization scheme is derived from a model described in Johan Nilsson
[3]. This clock synchronization is built around two assumptions, which Bluetooth meets:

• The time to send a data packet from master unit to receiving it in the slave unit is
equal to the time to send and receiving the same data packet in the reverse order.

• The difference in time between the native clocks is small.

[]
[]

()

))cos()((
0

1

11

1

θθ

ττ

�signEEksatu

u

x
Lu

u

x

dL

d

u

x
Lu

u

x
Lu

xLu

xLu

nswingup

n

edisturbancdisturbanc

nn

stochasticstochastic

n

staticstatic

stablestable

catchcatch

−=

�
�

�
�
�

�−=

�
�

�
�
�

�∆−�
�

�
�
�

�−=

�
�

�
�
�

�−=

−=
−=

−

−−

−

 26

5.1.1 Clock synchronization scheme

The scheme is implemented such that the master unit will contain the system clock and a
slave unit synchronizes its clock to the master unit.

i

M

i

S

i

i

unit

unit

tfromdeviationtime

Mintimeabsolutet

Sintimeabsolutet

timeabsoltet

slaveS

masterM

=

=

=

=

=
=

δ

The absolute time in the master unit is regarded as the reference time:

S

i

S

i

i

M

i

tt

tt

δ−=

=

The slave unit�s offset from the master unit is:

δδ ==− SS

i

M

i tt

The scheme starts with a time request from the master unit, and the slave unit answers
with a time response. The start time and the stop time are registered.

t
t3

Mt2
St1

M

TSMTMS

Figure 5.1

According to the time diagram (see figure 4.5.) it follows that:

()
()δ
δ

−−=−=

−−=−=
SMMM

MSMM

ttttTSM

ttttTMS

2323

1212

According to the assumptions,

 27

�
�
�

�
�
� −−

=�=
2

2 312
MMS ttt

ETSMTMS δ

The E operator stands for the expected value of δ. The expected value of δ has been
implemented as a mean value of 9 consecutive estimations of δ.

5.2 Time stamps

Time stamps are implemented on every package sent in the control application. The
stamps are used for recognizing delays in the system. Each time a unit receives a data
packet from a remote unit it can control the validity of the received packet through the
time stamp. If the data packet is too old it is useless in the control application. A
condition for the time stamps to be relevant is that the native clocks in the system are
synchronized. Without the clock being synchronized, a comparison is without value.

The protocol for sending timestamps is displayed in figure 5.2. Each timestamp is
positioned last in all packages sent.

byten

Timestamp

byten-1

Figure 5.2

6. Experiments

The static and stochastic delay compensation and the bit error filter were tested on the
Furuta pendulum. These three experiments were carried out in order to validate the
control algorithms. Each experiment had to be carried out with its own special properties:

• Static delay compensation: a static delay of 21 ms.
• Stochastic delay: a static delay of 21 ms and stochastic delays. The stochastic

delays are introduced in the control loop with a assumed exponential probability
distribution shown in Figure 6.1.

 28

][msτ∆

probability

1

0

0
35

Figure 6.1Exponential distribution of the stochastic delay. It is most likely that a

short delay is inserted into the loop.

• Bit error filter: bit errors are injected into the sampled states, and a static

delay of 21 ms.

It is important the realize that the static delay of 21 ms is a natural delay inserted into the
loop due to the use of Bluetooth, while the bit errors and the stochastic delays are
artificially inserted into the loop. The fault injector does this.

The fault injector is an instrument for testing the control laws and ideas. A fault injector
is used in the loop in order to have control over which fault that is inserted into the
control loop. There is no easy way of exposing the system to fault caused by natural
disturbance. The fault injector is discussed as a unit but is distributed in the control loop.
One part is situated in the Remote I/O and the rest in the Controller.

The bit error injector is located in the Controller and injects bit faults in the sampled
states from the Remote I/O. The Controller receives the sampled states from the Remote
I/O, which send the states to the fault injector. The fault injector then injects faults in the
states and sends them to the bit error corrector (see figure 4.7).

The delay injector is located in the Remote I/O and injects delays into the control loops.
This is done between sampling and putting out the control signal in order to simulate
delays in the system. The static delay is not simulated in the control loop due to that it
exists naturally. The stochastic delays are injected by updating a delay variable in the
Remote I/O before putting out the control signal simulates the stochastic delays.

 29

7. GUI

The GUI (Graphical User Interface) is a demo feature for easy understanding and control
of the process. The GUI gives the user of the demo easy access to all features of the
pendulum demo.

The layout of the GUI is shown in Figure 7.1:

Figure 7.1 The layout of the GUI..

The power panel gives the user possibility to start and stop the demo. The off and on
buttons are connected to the Controller, which checks the power state every time a loop
begins. If off is set the Controller becomes inactive and the whole communication loop is
stopped and thereby the whole demo.
The Control panel gives the user easy access to enable different control laws at any time
in the demo. It is important to know that control laws are automatically switched when
the pendulum has fallen down. The GUI doesn�t reflect this, which means that controls
shouldn�t be switched until the pendulum is stabilised.
The filter panel gives the user easy access to the state of the filter. The filter is shut off
whenever the filter off button is set, and this will inevitable lead to that the pendulum will

 30

fall down. The filter is turned on when the filter on button is set; this gives the pendulum
stable characteristics although exposed to injected faults.
The delay compensation panel allows the user to switch the state of the delay
compensation. These buttons are related to both static and stochastic delays. These
buttons should therefore be observed whenever switching delays.
The L panel updates the feedback gains when a control law is switched in the GUI.
The calibrate panel is used when the power off is set in order to allow calibration of
offsets to measured states.

8. Results

This section presents the results of the suggested control algorithms. The results are
promising and could with further work be implemented in the industry.

8.1 Results with static delay compensation

The test of the static compensation was done with a extreme sampling interval in order to
get a visual effect of the static delay compensation:

h=0.07 s
The effect off not using the static delay compensation, when the system is exposed to a
static delay, is that the pendulum becomes highly unstable. This fact is displayed in figure
8.1.

 31

Figure 8.1 The effects of static delay compensation. One can clearly see where the static

delay compensation is switched. The pendulum becomes highly unstable when the static

delay compensation is turned off and finally falls down. This fact is displayed in the

figure by the states in the figure. The amplitude off the states is larger when the static

delay is turned off. By t=210, the delay comp is turned off.

The penalty matrixes Q and R for the new static control law chosen were:

20

00000

010000

001000

000100

000010

=
�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

R

Q

8.2 Results with stochastic delay Compensation

The result of the stochastic delay compensation is positive. The test of the stochastic
compensation was done with an extreme sampling interval in order to get a visual effect:

 32

h=0.06 s
The effect of not using the stochastic delay compensation when the system is exposed to
stochastic delays is that the pendulum becomes highly unstable or falls down. This fact is
displayed in Figure 8.2.

Figure 8.2 The effects of stochastic delay compensation when the system is exposed to
stochastic delays. The figure is taken from the GUI when the stochastic delay
compensation is switched. One can clearly see that the pendulum becomes unstable and
may fall down when the compensation is switched off. By t=244, the delay compensation
is switched off.

The penalty matrixes Q and R for the stochastic control law were chosen as:

100

00000

01000

006000

00010

0000100

=
�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

R

Q

 33

8.3 Results simulated bit error filter

The simulated bit error filter filtered the bit errors sufficiently to keep the process stable,
although that there was no information when a bit error occurred in time and in which
state. Figure 8.3 shows the performance if the system with filter and when exposed to
static delay.

0 2 4 6 8 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

te
ta

 [r
ad

]

t [s]
0 2 4 6 8 10

−3

−2

−1

0

1

2

te
ta

do
t [

ra
d/

s]

t [s]

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

fi [
ra

d]

t [s]
0 2 4 6 8 10

−10

−5

0

5

10

fid
ot

 [r
ad

/s]

t [s]

Sampled states with system delay

Figure 8.3 The sampled states from the process before the bit faults are injected.

 34

0 2 4 6 8 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

tet
a [

rad
]

t [s]
0 2 4 6 8 10

−3

−2

−1

0

1

2

3

4

tet
ad

ot
[ra

d/s
]

t [s]

0 2 4 6 8 10
−4

−2

0

2

4

fi [
rad

]

t [s]
0 2 4 6 8 10

−10

−5

0

5

10

fid
ot

[ra
d/s

]
t [s]

Estimated states with system delay

Figure 8.4 The estimated states the bit error corrector uses to compare the sampled

states containing bit errors. These states are filtered; the bit faults shown are due to the

accuracy of the filter. The filter does not correct bit fault under the specified accuracy

specified in the application. State fi is plotted with a larger scale than in Figure 8.3.

One can see that some faults are present in the sampled states this is due to the bit fault
filters accuracy. The bit errors are injected to each state with a probability of 0.1 for each
state. Figure 8.5 displays the states with injected bit faults.

0 2 4 6 8 10
1500

2000

2500

3000

3500

tet
a [

bit
 ve

cto
r]

t [s]
0 2 4 6 8 10

0

1000

2000

3000

4000

5000

tet
ad

ot
[bi

t v
ec

tor
]

t [s]

0 2 4 6 8 10
0

1000

2000

3000

4000

fi [
bit

 ve
cto

r]

t [s]
0 2 4 6 8 10

0

1000

2000

3000

4000

5000

fid
ot

[bi
t v

ec
tor

]

t [s]

Sampled states with faults and system delay

Figure 8.5 The sampled states with injected bit faults. These tastes are not filtered, which

shows in the large bitfaults.

 35

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

bit
fau

lts
[bit

]

t [s]
0 2 4 6 8 10

1

1.2

1.4

1.6

1.8

2

bit
fau

lts
[bit

]

t [s]

0 2 4 6 8 10
2

2.2

2.4

2.6

2.8

3

bit
fau

lts
[bit

]

t [s]
0 2 4 6 8 10

3

3.2

3.4

3.6

3.8

4

bit
fau

lts
[bit

]

t [s]

Bit faults with system delay

Figure 8.6 Bit faults injected into each state. Each black line is a bit fault injected to a

state.

The filter works sufficiently when simulated in Matlab.

8.4 Results with implemented bit error filter

The bit error filter was implemented on the process with Bluetooth communication and
tests. The same setting as in the simulated filter was used. The process is a bit unstable
which is natural depending on the accuracy of the bit error corrector�s accuracy, when ran
with the filter. The results can be seen in the demo

9. Future Work

9.1 Time-outs

Time-outs are an idea not tested in this work, however the idea is to have some safety
when the Bluetooth communication is completely shut down. Such a disruption can be

 36

fatal in some applications and must therefore be avoided.

One solution is to implement a watchdog timer on the communication channel in order to
discover shut down in the communication. The watchdog timer should be implemented in
the remote I/O due to that isolation of the process and the remote I/O in case of a
communication breakdown.
The watchdog timers give the read and write methods a time window to work within. The
communication is regarded as shut down if this time window is exceeded.
The remote I/O must contain a communication breakdown method in case of watchdog
timer overflow. This method should secure graceful degradation of the process.

10. Conclusions

The static delay compensation is effective in distributed communication networks to fight
bandwidth (loss off phase margin in control application) problems. The demo uses large
samplings interval in order to get a visual effect in the demo, however static delay
compensation gives effects at small sampling intervals. Static delay compensation should
be used when control application is exposed to bandwidth limitations. Choosing USB
communication with the Bluetooth chip can reduce this problem.

The stochastic delay compensation is effective in distributed communication networks to
fight unpredictable delays and bandwidth problems (loss off phase margin in control
application). The unpredictable delays are an effect off retransmissions in Bluetooth
chips. The demo uses large samplings interval in order to get a visual effect, however
stochastic delay compensation gives effects at small sampling intervals. Stochastic delay
compensation should be used the control application is exposed to disturbance which
gives retransmissions in the Bluetooth communication and bandwidth problems.

Static delay compensation does not demand an intelligent I/O, which is the case with
stochastic delays. This is due to that stochastic delay demands calculation power in the
Remote I/O. Calculation power of results in a more advanced I/O and thereby a more
expensive I/O.

The bit error filter can be used to reduce retransmissions to shorten delay time in a
system. The bit error filter works well making the pendulum stable although exposed to
bit errors. The strength of the filter is that it doesn�t need to have knowledge about when
and where a bit fault occurs in order to work. The filter is an interesting idea applicable to
hard real-time distributed systems. The filter could be developed further to filter multi bit
errors. The idea is to flip several bits instead of single bit faults. This would make the
filter more applicable to real process. Further development could be done be give the
filter notice on when to suspect errors and maybe the location of the bit faults. Using the
information from the CRC coding implemented in Bluetooth could do this. The bit error
filter should be used when the control application is exposed to disturbance. It is
important to know that this idea is built around that the Bluetooth chip does not filter any
bit errors. Removing the retransmissions scheme could do this.

 37

The conclusion is that much can be done in order to improve the sometimes-bad
characteristics of Bluetooth in control applications. The suggested control algorithms are
effective in their specific areas and each should be selected to fit the environment at site.

11. References

[1]. Eker Johan: Harald stack. Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.
[2]. Åkesson Johan: Safe Manual Control of Unstable Systems. Master thesis ISRN
LUTFD2/TFRT --5646 --SE. Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden, 2000.
[3]. Nilsson Johan: Real-Time Control Systems with Delays PhD thesis, ISRN
LUTFD2/TFRT--1049--SE, February 1998, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden, May 1996.
[4]. Åström K.J and K Furuta: Swinging up a pendulum by energy control. Automatica

(1999).

[5]. Gäfvert Magnus: Modeling the Furuta Pendulum Technical Report, ISRN
LUTFD2/TFRT--7574�SE, Dept. of Automatic Control,Lund Institute of Technology,
August 1998.
[6]. Svensson J: Effects of friction on the Furuta Pendulum. Master thesis ISRN
LUTFD2/TFRT-- 5593 --SE. Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden, 1998.
[7]. Karl Johan Åström and Björn Wittenmark: Computer controlled systems�

Theory and design. Prentice-Hall, third edition 1997.
[8]. Henrik Olsson: Control systems with friction. Doctoral Dissertation ISRN
LUTFD2/TFRT --1045-- SE, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden, April 1996.
[9]. Kurt: http://ittc.ukans.edu/utime/

