
ISSN 0280–5316
ISRN LUTFD2/TFRT--5665--SE

Implementation of
a PID Controller

for Building Automation

Fredrik Holmberg

Department of Automatic Control
Lund Institute of Technology

March 2001

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden

Document name
MASTER THESIS

Date of issue
March 2001

Document Number
ISRN LUTFD2/TFRT--5665--SE

Author(s)

Fredrik Holmberg
Supervisor

Henrik Olsson, TAC
Tore Hägglund

Sponsoring organisation

Title and subtitle
Implementation of a PID Controller for Building Automation
(Implementering av en PID-regulator för byggnadsautomation)

Abstract

This master thesis project has been performed in cooperation with TAC, a building automation company
in Malmö and the Department of Automatic Control at LTH. TAC has experienced problems for some
time with their PID controllers. This master thesis has therefore investigated the use of PID control at
TAC, the problems with the existing controllers. The thesis also describes a new PID controller that has
been implemented at TAC.

The issues treated in the thesis are not only technical but also deal with the processes within a company
when changing a control algorithm. The non-technical issues are for instance how the force of habit affects
the development and that backward compatibility must be ensured. The new algorithm that was decided
on and implemented is of a parallel-positional form. This basic form of the PID algorithm is proven to be
the best choice. From a control point of view the controller successfully controls the processes in TAC’s
area of business. The PID controllers at TAC are used to control HVAC (Heating Ventilation and Air
Condition) systems. The conclusion that the new PID controller is successful is based on simulations as
well as tests at a commercial system. The PID controller is described in detail in the thesis. Features of
the controller like setpoint weighting is described, as well as a tracking signal that allows the controller
to be forced to externally specified values. Other features that are described include an offset added
during control without the integral part, bumpless transfer, a rate of change limiting mechanism and
other necessary features to make the controller practically usable.

An investigation concerning possible concepts that may be useful in a new application programming tool
has been performed as a part of the master thesis. The concepts determined to suit TAC are incorporated
in IEC 61131. The concepts discussed in detail are amongst others SFC, the use of processes-tasks,
instantiation and inheritance.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280–5316

ISBN

Language
English

Number of pages
47

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.lu.se

3

__

Table of Contents

ABSTRACT ...2

ACKNOWLEDGEMENTS..4

1 INTRODUCTION..4

2 BACKGROUND ..6

2.1 THE PROGRAMMING TOOLS ...6
2.2 PID ALGORITHMS TODAY AT TAC..8
2.3 USE OF PID CONTROL AT TAC..16
2.4 CONSIDERATIONS WHEN CHANGING THE ALGORITHM ...17

3 THE NEW CONTROLLER ...19

3.1 THE NEW ALGORITHM ...19
3.2 IMPLEMENTATION ..24

4 SIMULATION AND TESTING ...25

4.1 SIMULATION MODELS ..25
4.2 SIMULATION RESULTS..25
4.3 TEST RESULTS ..27
4.4 CONCLUSIONS FROM TESTS AND SIMULATIONS ...28

5 FUTURE APPLICATION PROGRAMMING TOOL ..29

5.1 INTRODUCTION...29
5.2 TAC MENTA

® ..29
5.3 THE FUTURE TOOL ...30
5.4 CONCLUSIONS AND RECOMMENDATIONS ...39

6 CONCLUSIONS ..40

7 BIBLIOGRAPHY ..41

8 APPENDIX...42

8.1 APPENDIX A, THE MODEL ZR...42
8.2 APPENDIX B, THE MODEL CHHE ..44
8.3 APPENDIX C, THE MODEL DHW ...46
8.4 APPENDIX D, THE MODEL OF A HEATING COIL ...46
8.5 APPENDIX E, THE MODEL OF A COOLING COIL..47
8.6 APPENDIX F, THE MODEL OF A HEAT EXCHANGER..47
8.7 APPENDIX G, THE MODEL OF A ROOM...47

4

__

Acknowledgements
I wish to express my gratitude to several people for making this master thesis possible, above

all Henrik Olsson at TAC for his support. I would also very much like to thank my advisor at
LTH Prof. Tore Hägglund for his insights, as well as several employees at TAC, which I will not
name so that I do not forget any single person.

1 Introduction
This thesis has been carried out in cooperation with the Department of Automatic Control at

LTH and TAC in Malmö.
TAC is a multinational company within the field of building automation and has about 2000

employees around the world. The turnover for the company is about three billion SEK. The
company’s ambition is to develop, produce and market products and open system solutions and
services which improve the indoor environment and provide the building owner with added value
in the form of lower operating costs and more attractive properties.

TAC has experienced problems for some time with their PID controllers, which has prompted
this master thesis. The aim of the master thesis has been to investigate the use of PID control at
TAC and if necessary implement a new PID controller that regulates HVAC (Heating Ventilation
and Air Condition) systems. The solution to the problem should be of high industrial standard
and the implementation should be easy and functional to use for programming of larger systems.
The solution should also be usable for many years ahead.

The aim of HVAC control is to maintain predefined levels of temperature, CO2 and so on.
These levels are specified in such a manner that they are within acceptable limits for a human
being. The levels should also take into consideration the work environment and the kind of work
that is carried out. Another consideration that is important for the industry is the energy
consumption. This must be kept down not only to make the customers satisfied, but also to satisfy
legal demands. The legal demands are for instance that heat is recovered from an airflow leaving
a building.

Within the field of HVAC the processes are generally not complicated enough to require an
advanced controller structure, it is generally enough to use a PID algorithm. This is also the case
within TAC. The company uses two different PID controllers for their applications today.
Considerations about the personnel working with the systems are also necessary, the application
programmers and commissioning personnel are simply not allowed to spend too much time on
the controller, for instance on tuning.

The master thesis work was initiated with a literature study to find information about the
specific problems that may be experienced within the field of HVAC. The problems at TAC were
also studied in detail during this phase. The work has then been focused on implementation and
testing of a PID controller.

To be able to use a controller in an industrial environment a lot of testing is needed, and has
been performed. The tests were performed both in a laboratory environment and in a commercial
system.

An investigation concerning possible concepts that may be incorporated in a new application
programming tool has been performed as a part of this master thesis. The concepts found to suit
TAC are incorporated in IEC 61131.

Chapter 2 of the thesis describes some of the background issues about the tools used at TAC
and goes into detail about the PID algorithms and the problems with them today. A more

5

__

extensive investigation about the features of the new algorithm is also given. Chapter 3 describes
the new algorithm both in function and in the mathematics behind it. Implementation issues that
have come up during the work are also described in Chapter 3. Chapter 4 contains simulation and
testing results. In Chapter 5 the description of possible concepts for a new application
programming tool is given. Conclusions are accounted for in Chapter 6.

6

__

2 Background
This chapter contains background material concerning both the tools used at TAC to program

applications and the PID algorithms used at TAC, see Section 2.1. The examination of the PID
algorithms also contains a problem description of the existing controllers, see Section 2.2. This
problem description leads up to a specification of the new algorithm that will be accounted for in
Chapter 3.

2.1 The Programming Tools
TAC uses a graphical programming tool called TAC Menta® to program control systems for

HVAC. In this graphical tool, blocks are used for defining different operations, such as PID
control and enthalpy calculations. In the programming tool, two different building blocks exist
that uses a PID algorithm. These blocks are used for all the company’s control applications. The
tool also contains all the other different programming expressions that are needed for controlling
such systems.

Figure 2-1 View from TAC Menta® of a macro block.

The two programming blocks in TAC Menta® that contain the PID algorithm are named PIDI

and PIDA. Further details about the blocks and the differences between them are given in Section
2.2 below.

TAC´s development department has implemented several larger blocks, called macro blocks.
These macro blocks solve different control application problems, see Figure 2-1 for an example
of a macro block. Another macro block shows a very nice solution of how to perform sequential
control of a heating coil, a heat exchanger and a cooling coil, see Figure 2-10.

With these blocks, a problem solving philosophy is spread to the users of the programming
tool. These blocks are also intended as a timesaver during programming of applications, which is
increasingly important in the automation business today.

7

__

TAC has also developed TAC Design+. This tool is programmed using symbols that show for
instance a heat exchanger and a fan, see Figure 2-2. These blocks then correspond to specific
applications from TAC Menta®. These applications have been pre-programmed in TAC Menta®
and are added together to a complete Menta application. This application can be downloaded to
the hardware and perform the needed tasks. The tool also produces labels for the hardware,
several descriptions of for instance the functionality of the system and designs the valves.

The construction of all the applications produced by TAC Design+ is performed by using the
predefined Menta applications. These applications are often not the most efficient ones for the
specific task. Since the PID controllers are used in several of the blocks it is important to
understand that the amount of time spent on a good control strategy is limited.

Figure 2-2 TAC-Design+ showing a typical programming view.

8

__

2.2 PID Algorithms Today at TAC
TAC uses the incremental form of the PID control algorithm. The PIDI block uses the basic

incremental algorithm and the PIDA block uses an altered incremental version that is capable of
giving a positional reference.

Figure 2-3 View from TAC Menta® of a PIDA block that is used as an ordinary positional controller.

The algorithm that is used in the PIDA block has been afflicted with some built-in problems

that during the years have been experienced as troublesome. The problems have primarily been
handled by using controllers that are careful, i.e. low gains and long integral times. The derivative
part has not been used at all, partly because of an implementation that simply is not usable in
practice. Since the problems were well known the employees could handle them. The PIDA
block uses an old, and compared with controllers of today, not very efficient algorithm. This has
also contributed to the problem with the controllers.

The effects of the problems are primarily discovered at building inspections and do not appear
during normal operating conditions. This is a major reason why the control algorithms have not
been changed. The control algorithms are generally not something that are changed easily
because of the great impact it has on the behaviour of the company’s products.

The Incremental Algorithm
To fully understand the problem, a short description of the incremental PID algorithm is given

before details about the two algorithms are discussed.
Basic action of the incremental form, or velocity form, of the PID algorithm is to calculate the

change in control signal that is needed, the increment. The name velocity form comes from the
fact that the algorithm normally gives a velocity reference as output. This is efficient when the
actuator has some sort of integrating action already built in. Like for example a valve that
remains in position when the control signal is zero.

9

__

Another feature is that integrator windup is not a problem that has to be considered, since the
valve cannot move beyond 100% open and cannot move beneath 0%. This means that integration
stops automatically when the actuator reaches its end position, either max or min.

A bumpless transfer means that there are no changes in the output if the parameters are
changed when the error is zero. All incremental algorithms meet this statement.

Eq 2-1 shows the variant of the incremental PID algorithm used at TAC, where MV(k) is the
measured value and E(k) is the error between the setpoint and the measured value at time k.

() () () () () () ()





 −+−−−+−−=
h

kMVkMVkMV
TkE

T

h
kEkEGkdu d

i

212
1 Eq. 2-1

The PIDI and PIDA Blocks
The PIDI algorithm is based completely on the incremental algorithm and it is therefore only

capable of calculating an increment. This makes it especially well suited for decrease/increase
signals to a valve or a damper.

These decrease/increase signals are active for a specific amount of the stroketime, dt, for the
valve or damper; see Eq. 2-2 below. Where du is the amount of increase, the increment, which
has been calculated by Eq. 2-1.

[]
[] StrokeTime

du
dt ⋅=

%100

%
 Eq. 2-2

What makes the PIDA block different is the input for feedback of signals, see Figure 2-4. The

reconnected feedback-signal is called the tracking signal, TSg. The PIDA algorithm is therefore
capable of calculating a position reference. The position reference is possible because of the
summation of increments, or velocities, that will be carried out automatically. The position
reference can then be used for instance in cascaded control. The algorithm in the PIDA block is
still basically the incremental algorithm. Figure 2-4 shows a block diagram of the PIDA
algorithm. Figure 2-5 also shows the algorithm, with a focus on the information carried in the
signals.

10

__

Figure 2-4 Block-diagram showing the incremental algorithm, together with the reconnected tracking signal
TSg.

The output from the PIDA is limited both in rate of change and maximum and minimum i.e.

the user sets limit for minimum and maximum values for both actions.
The reconnected signal is often manipulated in some way, before it is fed back. The

manipulations aim to make sure that the controller does not reach some sort of forbidden state.
For example a valve is often not allowed to be completely closed or completely open, to ensure
some circulation of for example air.

The output from PIDA will be a position reference if the output is reconnected to the TSg
input, instead of a velocity that is the normal signal from an incremental algorithm, as in the PIDI
block. The TSg input could also be used for example to connect an offset value. In conclusion,
the outputs from the two blocks are very different in their applications. The effects of these
differences are given more attention in Section 2.4, when discussing merging of the two blocks.

E(k)

E(k)

iT

Gh +

2MV(k-1)

MV(k-2)

+

+

-

-

h

GTd

TSg(k)

+

+ Ud(k)
+

E(k-1)

+

-

G

MV(k)

11

__

The Problems with the Old Controllers
TAC has had problems with the controllers at saturation. These problems can be referred to

the fact that the algorithm does not contain any internal state variables that have accurate and
complete information about the amount of saturation or the history of the controller. The only
information of this kind is incorporated in the reconnected signal, the signal that is called TSG in
Figure 2-5. This variable is limited between a maximum and a minimum value and possibly
altered in calculations between the output from and the input to the controller. During these
limitations and calculations, information is lost.

This problem will be present as long as the TSG signal is a reconnection of the output, and
consequently as long as the controller is producing positional references.

Figure 2-5 shows the structure of the PIDA algorithm as well as where the limitations and
calculations are performed on the reconnected signal. It also shows what information the different
signals are supposed to contain.

Figure 2-5 The overall structure of the PIDA algorithm. The figure also shows the intended information in the
different signals.

What could and has happened is that a change in the setpoint, or the measured value, could

dramatically change the control signal output. This change is independent of earlier values of the
control signal.

Consider for example a setpoint of 20ºC and a measured value at 15ºC, this value is constant
for a longer period of time and the controller saturates. An increase in the measured value
however small will imply that the output from the controller is decreased. This behaviour is not
acceptable because it is unlikely that since the controller has been saturated for a longer period of
time that the energy need would decrease even if the measured value increases.

Figure 2-6 shows the effects mentioned above, the step in the measured value is in the plot 1ºC
to make the effect visible. A plot of how a positional controller performs under these
circumstances is also added as a reference.

PIDA

Inputs
Increment.
Calculation ()∑

−∞=

k

n

nInc

()∑
−

−∞=

1k

n

nInc

Inc(k)
Output
(Pos.Ref.)

TSg

Calculations

12

__

Figure 2-6 Plot showing the effects at saturation for an incremental and a positional controller.

TAC has had another problem with their controllers, the problem appears as a process output

with a stationary oscillating fault, and an oscillating control signal see Figure 2-7. The problems
appear when using a PI controller in fast and nonlinear processes.

The problem is known as “P-part dominance” at TAC.
The behavior can be referred to three factors:

• Badly tuned controllers.
• Large differences in process gains in nonlinear processes.
• A built in “error” in the PIDA algorithm.

The problems in Figure 2-7 are due to a nonlinear process and controller parameters that are
not perfectly tuned. The figure nonetheless shows the behavior of the problems in all three cases.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
1 4

1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2
M V - & S P -T e m p

M V
S P

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
0

2 0

4 0

6 0

8 0

1 0 0

P ID A & P ID P O u t

P ID A
P ID P

13

__

Figure 2-7 Plot showing the process output, the setpoint and the control signal for a PIDA block controlling a
domestic hot water process.

That the controller is badly tuned is something that all controllers can be, this cannot be blamed

on the algorithm. The problem with large differences in process gains is the same problem as
with a badly tuned controller and therefore nothing that the algorithm can take care of.

However, this problem could easily be solved if TAC starts to use gain scheduling when
controlling nonlinear processes. This problem is in reality limited to one of TAC’s processes, the
domestic hot water-process and the employees at TAC have very limited knowledge of gain
scheduling. Because of this TAC does not use gain scheduling for this purpose.

The built in errors are something that a user cannot affect, but they can give just as powerful
effects as a bad tuning.

The saturation problem and its negative effects on the control signal will affect also this type of
problem. In short, vital information about the history of the control will be lost.

If the proportional part is broken out of the algorithm, the effects that are described below can
be seen. See also Figure 2-4 and Figure 2-5:

() () () () () ()() () ()()∑∑∑∑
−∞=−∞=−∞=−∞=

−−−−−=−−=∆⇒=
k

n

k

n

k

n

k

n

nMVnSPnMVnSPGnEnEGnPnIncU 111

Eq. 2-3

Under the assumption that SP is constant, the proportional part is equal to:

() () () () () ()() ()kMVGkMVkMVnPGnMVnMVGnP
k

n

k

n

k

n

⋅−=




 −−+∆=−−=∆ ∑∑∑

−

−∞=−∞=−∞=

11
1

Eq. 2-4

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80
M V & S P

M V
S P

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20
Contro l

14

__

This will mean that the proportional part depends only of MV(k) as long as all the history is

available, and no setpoint changes are made. Should on the other hand the history, ()∑
−

−∞=

1k

n

nP be

lost because of limitations etc., the proportional part will mainly depend on the difference
between two consecutive measured values. This is a derivative approximation. Because this is not
intended and the controller is not tuned for this case, problems with stability might arise.

If the controller had internal variables that was not affected by limitations and calculations and
that contained the total history of the controller this problem could have been solved. The
algorithm would in this case have been close to the, in this case, better-suited positional
algorithm. It would not be worth the effort to make the changes compared to implementing
something altogether new.

Together and by themselves the causes discussed above have contributed to and caused the
problem of “P-part dominance”. These problems will disappear in a positional algorithm to some
degree. The problems concerning bad tuning will remain, this problem does not depend of the
algorithm and cannot be removed by changes in the PID algorithm. Bad tuning is something the
user has to verify and control. The causes mentioned as built in will on the other hand disappear.

In the PIDA algorithm the setpoint is allowed to affect the controller output immediately. The
example below describes some of the effects of this.

The controller is run as a PI-controller and the sampling period, h, is 1s.
Gain, G=5. Integral time Ti=100. A setpoint at 22ºC and a constant measured value at 14ºC.

The proportional part will become zero since the error is considered constant at 8ºC for at least
two samples. (The measured value can be considered constant if the process is slow.) Under the
condition that the controller is at a state of 80%, the output will be according to Eq. 2-3.

()() %8080
100

85
885 ≈+





 ⋅+−=U Eq. 2-5

The assumption of controller state is randomly chosen just as the other values, as seen in

Figure 2-8 it is however a relevant figure.
If a step change in the setpoint takes place for example to 19ºC, the following will happen

with the control signal. The effect is shown in Figure 2-8 at t=200:

()() %6580
100

55
855 ≈+





 ⋅+−=U Eq. 2-6

15

__

Figure 2-8 Showing the effects of a setpoint change from the example.

The conclusions that can be drawn from this example is that although the error between the

measured value and the setpoint value has the same sign the control signal is decreased. The
algorithm is designed to allow the setpoint to affect the control signal immediately, this effect is a
feature in the algorithm. However, it will give undesirable effects. The design could mean that
the controller is forced to unwanted and forbidden states.

The example above is only a small example to show the effects. When considering for
example a controller with an output of 10% this setpoint step will force the controller from a
heating mode to a cooling mode in one sample. This effect is not acceptable.

The derivative part is implemented in such a way that a high frequency disturbance or the high
frequency part of a step in the measured value, is allowed to affect the control value without any
filtering. Normally this is conducted via a built in low pass filter, since this is missing the
derivative part is not practically usable.

The faults in the PIDA algorithm can be summarized as:
• Derivative action useless in practice.
• Poor performance for large setpoint steps and setpoint steps during high gains.
• The performance of the controller is difficult to analyse.

0 50 100 150 200 250 300
18

20

22

24
SPTemp

0 50 100 150 200 250 300
0

20

40

60

80

100
PIDAOut

16

__

2.3 Use of PID Control at TAC
When discussing the topic of control at TAC it is important not to forget where the regulators

actually are used. These basic units have a limited processor and memory space, because of
money saving issues. The majority of TAC´s regulators control dampers in a room, a temperature
valve or an airflow damper. The valves or dampers can be of different type and control different
physical units such as heat, carbon dioxide concentration and airflow. The physical position of
the valve can also differ greatly from a large fan room to a small office.

The performance of the single regulator is therefore in general not critical because it does not
control a critical process by itself.

Figure 2-9 Picture of a TAC Xenta® 301, programmable regulator from TAC.

Two different situations for PID control were isolated in TAC´s systems.
Primary use for the PID block, either PIDA or PIDI, is as a controller that controls the position

of a valve or damper. The difference between the two blocks is, as mentioned before, primarily
the output.

The situations when a PIDI block is used for increase/decrease output signals to a valve are
interesting. The increase signal means that a valve opening action is activated for a specified
amount of time, and a decrease signal means the opposite. The amount of time is given by the
PIDI signal. This situation is as concluded before very well suited for the incremental PID
algorithm.

In the second situation a PIDA block generates a setpoint value for another PID block, of both
types, so called cascaded control.

Common for the different situations are that the control signal often is limited in some way
before it reaches the actuator, or in the cascade situation the second controller. This action means
that many logical expressions are used to take care of different situations that can come up, see
for instance Figure 2-7.

17

__

Figure 2-10 View from TAC Menta® of a macro block. Notice the manipulations of the reconnected signal.

Another situation that is common to both types of control, when using the PIDA block, is that

the tracking signal is used in many places. For example:
• It is used to keep different controllers at the same state independently of which

controller or logical expression that has computed the present control signal.
• To change controller parameters when the same controller is used for different

processes, as in the case in the macro block in Figure 2-10. Where three different
processes are controlled and different sets of parameters are necessary for each
process.

2.4 Considerations when Changing the Algorithm
It is important to understand that the solving of a problem with the control algorithms are not

performed over night, even if the solution should be relatively easy from a theoretical point of
view.

The solution must be allowed to grow in the company, to make sure that the change is
accepted and above all used in the programming in the future. Even if a fault could be proven to
exist in a controller, the reasoning could very easily be that it has worked until now and why
should it not work in the future.

Therefore, many discussions took place during the work of this thesis with people in different
places in the corporation both geographically and administratively. During these discussions, an
extensive mapping of how TAC uses PID control was made and several ideas were presented
both to and from the staff at TAC.

The task given in the master thesis actually contains two different angles of the problem, the
question of which and what kind of blocks that should be available and which algorithm the
controller should use in the future. Primarily because of the limited memory available in the
controllers, it has been a part of the master thesis to investigate whether the two blocks could be
merged.

Since it is only in one of the blocks that TAC has experienced an actual fault, it would have
been sufficient to take care of only that problem. The two existing blocks are also very similar in
their actions and could possibly be merged into one.

18

__

The problem about the different blocks is in many ways a problem of philosophy. The
problem concerns which operations that should be performed in the controller and how these
actions are to be performed. To use another form of the PID algorithm will mean that the well-
known responses, by TAC´s applications programmers, from the controller will be slightly
altered. The tracking signal will for instance be affected. This means that a somewhat new
thinking about the control will have to be used.

Which algorithm that should be used is more focused on engineering issues such as step
responses in measured and setpoint values and implementation issues.

In conclusion, the arguments for and against a new algorithm could be summarized as:

For a change:

• The problems and actual faults in the algorithm. See for instance the examples in
Section 2.2.

• Increased performance of the controller.
Against a change:

• The force of habit. The algorithm has proven successful for the company up to now.
• A slightly more complicated algorithm.

The part of the problem about which programming blocks that was going to be used, was the

most complicated one to solve. When this problem was first brought to attention at TAC, a
discussion started with employees in the company about which programming blocks that should
be used. Since application programmers are individuals, it has been very difficult to find a
solution that everybody are happy with, because it is primarily a question of what kind of
philosophy the application programmers want to use.

The merging was natural since the two blocks were so similar in their implementation and
internal action. This idea was discarded primarily because it was deemed to be too confusing for
the users, in comparison to the relatively little gain in memory capacity that would be the primary
gain of the operation. The merging would mean that a mode variable in the block would have to
be used with a tremendous power, because of the effects of a faulty value. This mode variable
should be used to separate the two cases of action, incremental and positional, that the new block
would perform.

This whole reasoning about the variable may sound simple but the force of habit should not be
overlooked. Since merging meant that some kind of signal had to be used, it would not be as
obvious as desired.

Finally, the solution that was accepted was to make small improvements to the PIDI and PIDA
block that is used in the controllers today and to further develop a new block that uses a more
sophisticated algorithm. The new effective block should take care of the problems experienced
today. The improvements in the PIDI and PIDA block were intended to make more efficient use
of both memory and processor capacity. The new block should be able to take care of all the
operations that the PIDA block does today and if possible a substitution would be made.

The issue of backward compatibility is important when a change like this is performed. This
has however not been a specific consideration in the master thesis but TAC as a company has
taken this matter very seriously.

19

__

3 The New Controller
The new controller should contain all the basic features of a modern PID controller. The

improvements in the already existing blocks should not alter the performance of the actual PID
control in any major way.

Other features of a PID controller of today such as gain scheduling should not be included in
the algorithm. These actions are to be performed outside of the actual PID block.

3.1 The New Algorithm
The algorithm that was chosen is the positional parallel form. The basic idea behind this

choice is that it is well known and easy to understand for everyone who has basic knowledge in
mathematics and control theory. The algorithm was specified to contain bumpless transfer,
setpoint weighting, anti windup and a possibility to use a reconnected tracking signal. The
tracking signal should be used to perform limit actions for the integral part. The algorithm should
also include a rate of change limiting mechanism. Internal states should be present in the
algorithm, thereby solving several of the problems from the PIDA algorithm.

Below follows the mathematical formulas for the different parts of the algorithm and a block
diagram of the algorithm. The notation used in these formulas and the block diagram differs
somewhat from what is customary in the literature. The setpoint value is called SP(k), the
measured value is called MV(k) and the error is called E(k). Other variables are more self-
explanatory and follow the standard notation.

The Proportional Part
The proportional part is implemented with setpoint weighting. The setpoint weighting solves

the problem that the earlier algorithm has experienced where a change in the setpoint
dramatically affects the output. The original proportional part with setpoint weighting:

() () ()()kMVkSPbGkP −⋅= Eq. 3-1

Default value of the setpoint weighting is b=0 during control using the integral part, i.e. PID

and PI control. This means that the proportional part is only influenced by the measured value,
see Eq. 3-2.

() ()kMVGkP ⋅−= Eq. 3-2

The proportional part is altered during P- and PD-control, during these types of control the

controller uses b=1 and an offset value is added to the control signal. The offset given by Eq. 3-4
is used because it is assumed that the systems are balanced. A control signal between the
maximum and minimum value is in this case preferable when the control error is zero.

The proportional part during control without the integral part:

() () ()() OffsetkMVkSPGkP +−= Eq. 3-3

20

__

The offset:

2
MinMax UU

Offset
+

= Eq. 3-4

The Integral Part
The integral part uses the forward approximation. Anti windup strategy for the controller

incorporates a tracking signal, TSg. The tracking signal is a feedback signal, the same signal as
the one used in the PIDA block. The signal makes it possible to force the controller to states
given by external logic or other controllers.

A general rule of thumb that is given in the literature for the tracking time of a PID controller
is that it should be larger than Td and smaller than Ti, and that a good choice is the square root of
Ti times Td. This rule gives rather short tracking times as the integral time grows, see Figure 3-1.
It is also more rational to have an algorithm that uses a linear rule for the tracking time.

Since the Ziegler-Nichols method for tuning of PID controllers suggest that Td=Ti/4.The

choice of /2TT it == diTT was natural, when using a PID controller. For the PI controller the

choice was made to use a smaller time, Tt=Ti/4. A smaller tracking time gives faster responses to
steps in measured or setpoint values.

Figure 3-1 Plot showing the different rules discussed for the tracking time.

In conclusion, the tracking time is given by the integral time constant divided by 4 for a
controller using only the I-part. For a controller using the D-part as well, it is equal to the more
conservative Ti divided by 2. Naturally, the tracking time is set to infinity if the integral part is
deactivated.

The tracking time constant is in its nature a delicate engineering problem. The motivation for
different choices is that the derivative part alters the behaviour of the controller greatly. The

21

__

derivative part could by reacting to disturbances cause saturation of the output. If a too small
tracking time is used the integral part could be affected incorrectly and may be reset. It is
therefore necessary to choose different rules for the tracking time and to use a longer tracking
time when the derivative part is activated. The integral part, where Eq. 3-11 gives Ud, CInt and
CTrack are algorithm constants that will be precalculated:

() () () ()() () ()()
() () ()() () ()()kUkTCkMVkSPCkI

kUkT
T

h
kMVkSP

T

Gh
kIkI

dsgTrackInt

dsg
ti

−+−+=

=−+−+=+1
 Eq. 3-5

The Derivative Part
For the derivative part a backward approximation is used, which is numerically stable. The

filtering constant N is chosen by default to eight, the user cannot alter this value. The filter in the
derivative part makes the derivative part practically usable in contrast to the earlier
implementation. The derivative part in continuous time:

() ()sMV
s

N

T
sT

GsD
d

d

+
−=

1
 Eq. 3-6

In discrete time with the backward approximation:

() () () ()()111 −−





+

−−−
+

= kMVkMV
NhT

T

h

GT
kD

NhT

T
kD

d

dd

d

d Eq. 3-7

Which is rewritten as:

() ())1(1 −+





+

−−= kDkMV
NhT

T

h

GT
kD State

d

dd Eq. 3-8

Where DState is given by:

() ()

() ()

()kMV
NhT

T

NhT

T

h

GT
kD

NhT

T

kMV
NhT

T

h

GT
kMV

NhT

T

h

GT
kD

NhT

T

kMV
NhT

T

h

GT
kD

NhT

T
kD

d

d

d

dd
State

d

d

d

dd

d

dd
State

d

d

d

dd

d

d
State







+

−





+

−+−
+

=

=





+

−+











+

−−−
+

=

=





+

−+





+

=

11)1(

11)1(

1)(

 Eq. 3-9

22

__

The entire rewriting of these equations aims on a more efficient use of processor capacity and
the result is that D(k) can be calculated immediately when the MV(k) signal is available. This
means that a new control signal value is available with a minimum of calculation delay.

The equations Eq. 3-7 and Eq. 3-8 are rewritten with algorithm constants as:

() ()
()




+−=
−+−=

kMVCkDCkD

kDkMVCkD

DerStateDerState

StateDer

31

2

)1()(

)1(
 Eq. 3-10

Computational Aspects
The parameters used in the algorithm, the algorithm constants, are precalculated from G, Ti,

Td, and can be stored to achieve better performance and more efficient use of the processor. The
constants are given in Eq. 3-5 and Eq. 3-10 and they are: CInt, CTrack, CDer1, CDer2 and CDer3.

Block diagram
The figure below, Figure 3-2, shows the principal structure of the algorithm. The limitations

are performed on Ud(k) before it is made available as an output value.

Figure 3-2 Block diagram of the new algorithm in discrete time.

+

E(k)

I(k)

I(k+1)

D(k-1)

NhT

T

d

d

+

+

E(k)
b

G

SP(k)

MV(k)

+

+

iT

Gh

-TSg +

+

+

+

+
+ Ud(k)

tT

h

-

+

D(k) MV(k-1)
NhT

NGT

d

d

+

-

-

Offset

+

+

23

__

Limitations and Bumpless Transfer
The unlimited control signal is given by:

() () () ()kDkIkPkU d ++= Eq. 3-11

Naturally, the control signal has to be limited. The maximum and minimum limitation is

performed between two values that are given by the user, UMax and UMin. These values are the
same ones that are used for the offset calculation in Eq. 3-4.

It is also possible to limit the rate of change of the control signal. This is done by a user-
defined value of the stroketime for the valve or the object that is controlled. The limitation is then
performed so that the rate of change never exceeds the limit that is calculated according to
Eq. 3-12

()

StrokeTime

hUU
C MinMax

MaxChange

−
= Eq. 3-12

To achieve bumpless transfer, a check is performed that the parameters G, Ti and Td have not

been changed. If they have been changed a new set of algorithm constants are calculated.
By forcing the derivative part to zero and using the integral part as a memory for the present

control signal value, bumpless transfer is achieved. The DState is assigned as:

()kMV
NhT

T

h

GT
kD

d

dd
State 





+

−= 1)(Eq. 3-13

This value will force D(k) to zero according to Eq. 3-8.
The integral part during bumpless transfer is given below, where U is the limited control

signal output:

() () ()kPkUkI −−= 1 Eq. 3-14

These values of DState(k) and I(k) will ensure that the output is the same before and after the

changes in G, Ti or Td, when they are put into Eq. 3-11.
The transfer problem between automatic and manual control is not considered in this structure

neither is it considered at TAC.
A deadzone is also incorporated that operates from the input, MV(k). The effect of the

deadzone is that it freezes the control signal to the latest value. When the input value, MV(k),
leaves the deadzone a bumpless transfer is needed and performed. Bumpless transfer is needed
since the deadzone has introduced a non-linearity and the controller might have lost valuable
information of its states.

Controller parameters should be tuned in the manner that is preferred by the different
operators and no limitations have been imposed concerning this issue.

24

__

3.2 Implementation
The programming language that is used by TAC for embedded systems is C and the algorithm

was implemented using this language. Implementation of the new block in TAC Menta® was
made with great assistance of programmers from TAC´s development department, Engineering
Tools, in Malmö. The implementation did not give rise to any problems above normal
programming errors.

A weighting between memory usage and usage of processor capacity has been made and since
the present controllers have a very limited amount of memory the emphasis has been placed on
reducing this. However, TAC will in the future use a controller with more memory capacity and
the algorithm has therefore been designed in a manner that easily can be altered to focus on
reduction of processor usage, on the expense of memory usage.

25

__

4 Simulation and Testing
Simulation work has been focused on two issues:

• Differences between the new algorithm and the one used earlier in the PIDA block.
• Making sure that the new controller actually performs as well as expected.

This has meant that the controller has been run in a great number of cases, of which only a few
key simulations are presented below.

Testing were performed to ensure that the controller did not encounter any problems when
used in an actual application and an environment outside lab and computer:

4.1 Simulation Models
The modelling language that has been used is SimulinkTM. Three models have been built up

from three different specific cases of control at TAC. Printouts from the simulation models are
added in Appendix A-C

The models are:
• A zone controller that primarily is used to control a room. Zone Regulator-ZR.
• A controller that is used for control of a cooling coil, a heat exchanger and a heating

coil, in sequence. Cooling, Heating, Heat Exchanger-CHHE.
• Control of a domestic hot water process. Domestic Hot Water-DHW.

To be able to use the models a set of process models had to be built. Printouts from the process
models are added in Appendix D-G. The process models that have been used are:

• Model of a heating coil.
• Model of a cooling coil.
• Model of a heat exchanger.
• Model of a room.

The process models are first order transfer functions, with some expressions added to the
models. The process models are kept quite simple because it is only of interest to make sure that
the algorithm is working as it is supposed to do, not to study complicated effects in detail.

4.2 Simulation Results
The models have been linked up in such a manner that the result should mimic the reality, and

have then been put through situations that can come up under normal operation. Situations such
as load disturbances, measurements noise and setpoint step responses have been studied.

The following results are taken from the model CHHE, since this model demands the most
from the controller. CHHE also includes all of the process models. The controllers have been run
as PI-controllers in the experiments presented below. The use of the derivative part when
comparing the two controllers gives completely irrelevant data because of the poor
implementation in the PIDA algorithm.

The effects can be studied in Figure 4-1 and Figure 4-2, where the first contains the results
from the new algorithm and the second contains the results from the old algorithm.

At time equal 4000 a setpoint change is introduced in the system, the setpoint is given an
additional value of 5. The effects of this change are not dramatic and the controller handles the
change satisfactorily.

26

__

A load disturbance is introduced in the system at time equal 6000, the controller adapts to this
disturbance without any major problems.

At time equal 8000 a measurement disturbance is introduced in the system, it appears as a very
small step of about 0.05% in the controller output.

The tests that have been performed on the controller depend highly on the process and its
parameters. However, during simulations the controller has shown excellent handling of all the
different process models and a wide variety of parameters.

Figure 4-1 Plots showing load disturbance, setpoint handling and measurement noise for model CHHE, using
the new algorithm.

Figure 4-2 shows the results for the same experiments as has been presented earlier. A

simulated model of the earlier algorithm at TAC has been used this time. The results from the
new and improved algorithm are in comparison with the old implementation dramatically
improved. The setpoint change gives rise to a jump in the control signal that is not acceptable, the
overshoot is too big and too fast. The load disturbance at time equal 6000 is handled just about
the same as with new algorithm. The measurement noise affects the system terribly as can be
seen by the noise introduced at time 8000.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30
SupplyTemp

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40
HeatOut

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100
HEXOut

27

__

Figure 4-2 Plots showing load disturbance, setpoint handling and measurement noise for model CHHE, using
the old algorithm.

4.3 Test Results
The controller has been run in the TAC building during a period of a little more than a week, it

has there been controlling the temperature in the ventilation system. (The system is about the
same as the model CHHE.) Since the outside temperature during this period has been
approximately between -10°C and 10°C the controller has been controlling a heat exchanger and
a heating coil. During the test period the controller has performed satisfactory.

To make any comparisons between the two algorithms based on this test is difficult. The
system where the test has been carried out is not considered troublesome at TAC. The system is
very well suited for a PI controller and during normal operating conditions, PIDA has had no
problems with this system in the past.

However, one conclusion that can be made is that the new algorithm is correctly implemented
since it has performed as expected.

To make accurate comparisons between the algorithms mean that they will have to be
subjected to more advanced tests. There is however no need for more evidence of the behavior of
the two controllers in this thesis.

An interesting test would have been to put the new controller in a system where TAC has
experienced problems in the past. This test has not been performed during this master thesis,
because of different circumstances.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30
SupplyTemp

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40
HeatOut

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100
HEXOut

28

__

4.4 Conclusions from Tests and Simulations
The greatest concern about the difference between the new and old algorithm has been when

the controller saturates and how much time it spends in saturation. Another concern was how the
new controller reacts to different logical and arithmetic operations to the reconnected tracking
signal.

Simulations showed that the controller does behave differently in comparison with the
previous algorithm, but the differences were very small, during normal operating conditions.
These differences depend primarily on the fact that the new algorithm has a completely new
implementation of how the tracking signal is incorporated. The problems experienced earlier with
the PIDA block have been removed in the new algorithm.

Logical and arithmetic operations to the reconnected signal are part of the same question as
the saturation, because the tracking time affects both issues. Therefore, the issues were treated
simultaneously and a weighting has been made on how long the tracking time should be. The
starting point was to make it as short as possible, to be able to get as fast answers from the
controller as possible. The other consideration was if the controller could end up in forbidden
states if the tracking time were too short, primarily because of the logical operations. Different
strategies were simulated and the ones presented in Section 3.1 were accepted.

To conclude, the simulations and tests have shown that the new algorithm is more than
adequate to use for the different cases of control that it can be used for at TAC.

29

__

5 Future Application Programming Tool

5.1 Introduction
As a part of this master thesis, an investigation of a future application programming tool has

been carried out. Since the development of the existing tool, TAC Menta® started out some years
ago, it is now time for TAC to take a look into what has happened during the years in this area
and perhaps to develop their existing tools further.

The investigation has focused on the standard that is used in association with automation, IEC
61131, as well as thoughts and ideas within TAC about the future. The investigation includes
possible improvements to Menta that could be an alternative to a completely new tool. A short
comparative investigation between five commercial application programming tools is also
included.

The present tool, Menta, was from the beginning developed in Spain by a smaller company
that TAC acquired during the 90s. The tool has then been developed further in Malmö for several
years and has been used as a practical programming tool “in the field” since 1996.

Discussions with several employees at TAC have been carried out to obtain the information
and ideas from within the company. These employees are primarily people that have a
background in industrial automation or have worked for a longer period with Menta. The ideas
gathered during this part were very similar to the standard IEC 61131.

If a suitable tool exists already, which follows a standard, this should not be considered as a
disadvantage. However, TAC has no need for all the features in a general PLC application
programming tool used in the automation industry and specified in IEC 61131. The tool TAC is
looking for should cover their specific needs and fit in with the other tools in TAC´s product
family.

5.2 TAC Menta®
Introduction
TAC Menta® is a programming tool that uses a graphical programming language, so called

Function Block language, which makes it possible for the engineers to develop specific
applications. In the tool, several predefined blocks are used to calculate many different things as
enthalpy, time-schedules, PID control and so on. These blocks as well as the tool in general are
implemented in C++.

TAC Menta® is a 32-bit program fully adapted to Microsoft® Windows. The tool also contains
tools for downloading of an application, tools for creating databases for network configuration,
functions to alter values on-line, a simulation tool for debugging of applications and so on. Since
this investigation focuses only on the programming of applications, using the graphical
programming language, the other tools incorporated in Menta are not further analysed.

TAC Menta® has been experienced by employees at TAC as a stable and easy to use tool. The
best feature of Menta is that it is easy to get started in Menta. The tool lacks many of the features
found in a general PLC programming tool and it is therefore easier in Menta. That Menta does
not contain some features is not something that immediately should be considered as a
disadvantage, it is merely a specialisation for a specific area of automation.

Since Menta is a graphical programming tool, it has many similarities with the graphical
programming language, FBD-Function Block Diagram, described in IEC 61131-3.

30

__

5.3 The Future Tool
Below is a short description of some concepts that could be interesting for TAC. The

investigation of existing application programming tools is also found below.

Sequential Function Chart
SFC, Sequential Function Chart, is a graphical representation of the application program

control flow and state transitions. SFC was developed for structuring of complex structures in
applications. In a small application, it may not be necessary to use SFC. However, when the
complexity of the applications increase, it is necessary to organize the applications in a manner
that is understandable and readable.

The basic components of SFC are initial step, states and transitions. The initial step is the first
step in the sequence where e.g. initialisations are performed. A transition is the condition or
conditions that change state of the application. A transition between states is not allowed to occur
unless the state prior to the transition is active. A state is where the application performs some
kind of action, for instance calculates a new control signal or sets an alarm.

Three types of combinations exist in the control flow:
• Simple sequences.
• Branching - alternative sequences. One of several sequences is performed.
• Splitting - simultaneous sequences. Two or more sequences are performed

simultaneously.

Figure 5-1 Figure showing the three types of combinations in SFC. From left to right: Simple, Branching and
Splitting. The sequences have been implemented with CoDeSys® 2.1 by Smart Software Solutions.

A common situation in TAC’s applications is that a variable is set or reset, for instance an

alarm. Other examples could be during start-up or shutdown sequences when different valves and
control signals have to be set or calculated in a specific order. These examples could be both

31

__

event and time-driven, certain events or time specifications activate specific actions or sequences.
The events are transitions and the setting of alarms or calculations of control signals are states.

The quote below, from R. W. Lewis, serves as a summation of why SFC is needed in an
application programming tool at TAC.

SFC: “A graphical language for depicting sequential behaviour of a control system. It is used
for defining control sequences that are time- and event-driven.”

This is a very good description of how SFC could be used by TAC

SFC Examples
An interesting example is a start-up sequence, a similar example from TAC Menta® is not

available since the start-up sequences are distributed in too many parts of the applications to fit in
this report.

The example below describes a small start-up sequence of a heating system with a heating
battery and a heat exchanger. First in this sequence, the temperature is increased in the heating
battery by opening the valve in the heating battery. The amount of heat, i.e. the percentage the
valve is opened, depends on for instance the outside temperature.

When the heat in the battery has reached a specified temperature a transition occurs and the
supply fan is started. When the energy-boost has had a certain time to take effect, the next
transition to the heat exchanger is made. The system will start the heat exchanger at maximum in
the final state of this sequence.

Figure 5-2 Figure showing an SFC of a start-up sequence for a heating system.

The advantage with SFC in this case, compared to TAC Menta®, is the compact manner it is

described in. In comparison with TAC Menta® it is always obvious in which state the system is,
thereby making debugging easy.

32

__

The short sequence above could be part of a sequence for controlling the entire system. In this
case the sequence would return to its father sequence when it has performed the desired tasks. In
the example presented below in Figure 5-3, the example from above is inserted in the Start_Up
state.

Figure 5-3 Figure showing an SFC for a state sequence of an entire heating system.

If the maximum heat recovered is not enough for the system, the heating battery will have to
be activated again. This action is however done in the state of Normal_C, where the system will
perform normal operations. Several additions to the example will have to be done for this
sequence to be practically usable, like for instance alarm handling.

33

__

Figure 5-4 shows a small example from TAC Menta®, it is not too hard to read and
understand. However, when smaller applications are connected the complexity grows and the
applications become very difficult to read and understand.

The example is an alarm handler for pressures, if the pressure is not within acceptable limits
the high- or low-alarm is triggered.

Figure 5-4 Figure showing the example implemented in Menta. The block RT counts the time it has been
active, the Run Time. The other blocks are self-explanatory.

Figure 5-5 to Figure 5-9 show how this could be conducted with SFC. Since TAC has used

graphical programming for some time now it would be nice for the employees to be able to
continue using an environment that they are used to. All the programming of the transitions and
the steps should therefore, in a possible future, be programmed using a graphical programming
language. Figure 5-6 to Figure 5-9 below shows the transitions and steps programmed using
FBD.

Figure 5-5 Figure showing the main SFC of the example Function block, implemented in CoDeSys® from
Smart Software Solutions.

34

__

In the example the sequence will remain in its initial condition until the transition Activate is
fulfilled, see Figure 5-6 below. The transition determines whether the measured value is within
acceptable limits or not, a check is also performed that the fan is not stopped by the Fan_Stopped
signal.

Figure 5-6 Figure showing the transition Activate.

In the state DelayAlarm, Figure 5-7, a timer delays the setting of the boolean variable

AlarmDelay , this variable is used in the next transition as a condition for its activation. The
effect will be that the transition is delayed for a specific amount of time the AlarmDelayTime.

Figure 5-7 Figure showing the step action DelayAlarm.

According to IEC 61131-3 transitions are not allowed to contain function blocks that have

internal state variables, like a counter that is present in the TON-function block. However, in
several tools deviations are made from this.

If the system recovers during the delay time, see Figure 5-8, the sequence will automatically
return to its first state and await a new Activate signal.

Figure 5-8 Figure showing the transition LevelOK

If the system does not recover the alarm is set by the state AlarmOn, Figure 5-9.

Figure 5-9 Figure showing the step action AlarmON.

35

__

SFC in TAC Menta®
An approach to SFC could be to incorporate it in the present tool Menta by developing

existing features further. Possibly by taking an already existing block, the HFB (Hierarchal
Function Block) and develop an enable-disable signal to this blocks. The enable-disable signal
should prevent evaluation of the blocks within this block i.e. when the state is not active it is not
allowed to set any values, neither internally within the SFC block, nor externally like for instance
an alarm.

Within these new SFC blocks, the programming would be performed using the same set of
function blocks as today. The transitions would return an output of boolean type. The states
should perform actions like PID control and alarm handling.

Figure 5-10 Figure showing a possible view of a new SFC-block in Menta.

The boolean variable that is returned from the transitions should be used to disable the

preceding block and to enable the following block of the current transition. The enable-disable
signals will have to be sent between the blocks at the moment of transition. The signals are
necessary, to make certain which state that is active, i.e. it is significant that the block before the
transition is disabled and the block after is enabled. Furthermore, the transition after the activated
state will have to be activated i.e. allowed calculating its transition condition.

The signals that go between the blocks should be transmitted via the same line, preferably the
line connecting the SFC-blocks, no matter of the type or the direction the signals are going in.
This transmission of the signals is not vital for the function of the SFC blocks. The signals could
for instance be sent via send and receive blocks inside the SFC blocks. It is however vital that the
signals are sent via the same line to increase readability, and if any advantages are to be made in
structure from this concept.

The enable-disable signal together with a structured signal transmission between the blocks
could be an alternative to the use of the standardized SFC environment.

These changes will mean that a lot of development will have to be made in Menta because of
the limitations today of amongst other things the lack of enable disable signals in the blocks.

Further features like jumps, branching and splitting should also be available when
implementing this into Menta. These features are a question of which SFC block that should be
activated.

36

__

Sophisticated and Specialized Function Blocks
A new tool could contain the possibility that highly specialized function blocks written in C, or

another text based programming language, easily could be implemented and downloaded to a
target system. This is a desired feature from employees at TAC’s R&D department. In most
general tools for automation, it is possible to download C-code as a highly specialised function
block.

When a new block is added to Menta today, for example a new PID controller, extensive
programming efforts have to be made not only in Menta but also in the Xenta systems.

Structured Types
Menta only accepts simple types like REAL, INT and BOOL as signals between blocks unlike

IEC 61131-3, which accepts structured types.
This deficit affects the structure of the program by making it hard to read and get a grip on

because of the dispersion of signals in the applications.
Consider for instance a pump. The pump needs several signals, only a few presented below:

• An input value - for required speed.
• A status signal - determines whether the pump is operational or not.
• An output value - for actual speed.
• Run time- amount of active time.

If all of these signals were put in a pump data structure, instead of being transmitted one by
one, the amount of transmission lines in the Menta applications would be decreased. This concept
will also help structure the entire application, since all information concerning the pump is
collected in one structure.

Processes
A process, or task, is an application or part of an application that normally is running on a

different sample time and with a different priority than other parts of the application. Different
priorities mean that the process is more or less important than other processes, the priority then
decides the amount of access the process has to the central processing unit. It is not necessary that
the processes run on different sample times and priorities.

In many cases it would be useful to give certain parts of an application smaller sample times,
for instance to make sure that every change in the inputs are observed. This should be done
without having to increase the amount of calculations and I/O operations performed in other parts
of the application.

The concept of priorities could be very useful in many cases, especially in cooperation with
different sample times. The concepts could be used for instance when controlling processes
which have different dynamics.

Both of these concepts are described in IEC 61131-3 and are available in programming tools
used in industrial automation.

37

__

Instantiation and Inheritance
The concepts of instantiation and inheritance are very interesting in a programming tool for

automation. An instance is a copy of another programming block that is still linked with the
original block. A change in the original block affects the copy, the instance, i.e. the instance
inherits the changes and the new functionality. This is very useful especially when code is reused
in several places in the same application. The instance will in this case only be a represented by
one single block that is linked to the original structure.

These concepts should be central in a new programming tool and are available in tools for
industrial automation. Today in TAC Menta® the use of macro blocks is the closest to this
concept, more information about macro blocks is available in Section 2-1. A large drawback with
the macro blocks is that the concept of instantiation and inheritance are lacking. When a macro
block is used today, it is copied into the application and the concept of hierarchy is lost.

The concept of macro blocks and where the macro blocks are stored i.e. the macro block
library is more developed in a general automation programming tool than in Menta. In a general
tool, it is easier to use what is stored and above all this makes sure that it is used. The macro
block library is applications or parts of applications that is saved and then loaded into the present
application, the macro blocks are loaded using Microsoft’s file system. This solution is crude and
compared to what is found in a general automation programming tool not user friendly.

Figure 5-11. The figure shows a screenshot from a general programming tool, where several libraries are
used. The libraries are located in folders in a separate window next to the programming area for
easy access. Screenshot from CoDeSys® v 2.1by smart Software Solutions.

38

__

Other Possible Additions
In IEC 61131-3, hierarchy is a major concept and is built into the basis of the standard.

Therefore all tools based on it, will have a highly functional hierarchy. The hierarchy supports
and encourages reuse of code, and is closely linked to other concepts like instantiation.

The concept of hierarchy is present in TAC Menta®, by the HFB, Hierarchal Function blocks.
However, these blocks are rarely used in practice since the implementation has not satisfied the
users.

In Menta, there is very little support if two or more programmers need to work on the same
application. There is no natural manner to divide the applications for these purposes, concerning
both variables and functionality. Since a tool based on IEC 61131 has a more developed
structure, it is possible to make a natural division of applications between several developers.

General IEC 61131 Programming Tools
To take a new approach to the problem may mean that a completely new programming tool

could be used. A new tool will mean that a completely new strategy and philosophy of
programming will have to be used at TAC. To make such a profound change could be
unfortunate if the advantages were not obvious, since programmers, as well as people in general,
tend to stick to what they are used to. It would also mean that many hours of education would
have to be invested in every employee.

A completely new tool could be acquired from another company that has already developed it
to near perfection, with some alterations to make it perfect for TAC. The list of suppliers could be
made long, since it exists several suppliers of general IEC 61131 programming tools.

The tools for this purpose, found in the industry today, share several common features and are
built up around the same ideas. To make a decision on a specific tool, several tests would have to
be performed and several specifications concerning the tool would have to be conducted. This is
outside the scope of this thesis, but a smaller investigation of five different tools has been
performed.

The tools investigated are:

• ISaGRAF® Pro and ISaGRAF® 3.3 by CJ International.
• softCONTROL® 3.0 by Softing GmbH.
• CoDeSys® 2.1 by Smart Software Solutions GmbH.
• MULTIPROG® 2.1 by Klöpper und Wiege Software GmbH.
• OpenPCS® 4.0 by infoteam Software GmbH

The investigation was performed by implementing a small example found in TAC Menta®, the
same example as found above in Figure 5-4, in the different tools. During this implementation,
the programming environment and the different features in the tools were reviewed, as well as if
some features were missing in any tool. During this investigation the tool concluded to be the
most suitable for TAC was CoDeSys® by Smart Software Solutions.

This conclusion is subjective and a much more extensive investigation would as mentioned
before have to be conducted by TAC, before any decision concerning a specific tool can be made.
Since the basis of all of the tools is IEC 61131, the tools are built up around the same concepts.
The tools also have a similar GUI and it is up to the specific user which tool that suits best.

39

__

5.4 Conclusions and Recommendations
Several, if not all, of the concepts above should be very interesting in a new tool for

application programming at TAC.
All of the above-discussed concepts could of course be implemented in the existing tool TAC

Menta®, problems might however arise if concepts from IEC 61131 are applied to the existing
tool since it does not follow the standard in other aspects.

The conclusion of the investigation is that a new tool, or a fundamental revision of the existing
tool, is needed. The concepts mentioned above, for instance SFC, are widely used in the
automation industry of today. Even if TAC is not a company that is involved in any industrial
automation systems, the advantages of concepts from this field of automation are clear and
obvious even for the inexperienced user.

An estimate of the amount of work that has to be put in to alter Menta to make it fit the new
concepts as well as to correct existing faults will have to be conducted at TAC. The amount of
work this investigation finds that is needed to change Menta should be weighed against the cost
of purchasing, or other ways of developing, a new tool. Several other costs will be associated
with changing tool for instance the education cost for the new tool and adaptation of other tools
in TAC´s product family.

The conclusion of this master thesis is that the best course of action is to purchase a new tool.
Primarily since the problems and the new concepts in TAC Menta® will mean that a lot of work
has to be performed if the old tool is to be used as a base. TAC has little to gain from producing a
new tool that includes several features from IEC 61131, when considering that several companies
specialises in producing these tools.

The recommendation based on the conclusions above is that TAC acquires an adapted tool
from a supplier of a general IEC 61131 programming tool. Since the tools based on
IEC 61131 are widespread and many suppliers of these tools exist, a tool should not be too
expensive or difficult to acquire. An alternative tool is for instance CoDeSys® from smart
Software Solutions. The adaptation of the tool should be e.g. to remove the programming
languages that TAC has no need for and to make the tool work well together with TAC´s other
tools.

40

__

6 Conclusions
The master thesis work that has been carried out at TAC and has been reported above focused

not only on the implementation of a PID algorithm, but also on the process leading up to this
implementation.

The process leading up to an implementation is an important topic for every engineer, but not
easy to teach to students as it is something very specific for each company and each industry. It
has been interesting for the author as a fresh engineer to experience some of these issues treated
above.

The problems with the old PID controllers have been thoroughly investigated and described in
the thesis. Since the old controllers were decided to remain in use at TAC the description of the
problems could be useful for TAC’s application programmers to make sure they do not use the
old controllers in a situation that could be troublesome.

The PID algorithm that was implemented has been proven to fulfil all the requirements TAC
has put on it. This conclusion can be drawn from the simulations and tests performed in the
thesis. In comparison with the previously used algorithm for PID control, the algorithm derived
above has eliminated the problems experienced earlier at TAC. The new implementation has
been met with approval from several employees at TAC who are working daily with control
issues.

It could always be discussed if a more advanced structure should be used, for instance on the
tracking time and the bumpless transfer. However, a more advanced structure would mean that
more calculations would have to be made and more memory would have to be used, which in
turn finally will mean that more money will have to be spent. It could also mean that more
responsibility would be put on the application programmer, which should be avoided according
to TAC’s philosophy.

During the work with the new concepts that could be used in a future application
programming tool at TAC several practical issues have been discussed with employees at TAC,
the outcome of these discussions have been that several questions have been raised at TAC.
These questions will have to be solved within the company and this thesis has been an injection
into an ongoing debate and an upcoming prestudy at the company.

41

__

7 Bibliography
Karl Johan Åström and Tore Hägglund: PID Controllers: Theory, Design, and Tuning.

Instrument Society of America, Research Triangle Park, NC, 2nd edition, 1995.

Karl Johan Åström and Björn Wittenmark: Computer Controlled System-Theory and

Design. Prentice-Hall, Englewood Cliffs, New Jersey, 2nd edition, 1990.

Gustaf Olsson and Gianguido Piani: Computer Systems for Automation and Control.

Prentice Hall International, London, U.K., 2nd edition, 1998

IEC: IEC 61131 programmable controllers - part 3: Programming Languages, Technical

Report, International Electrotechnical Commission, 1993

R. W. Lewis: Programming industrial control systems using IEC 1131-3, The Institution of

Electrical Engineers, London, 1995

42

__

8 Appendix

8.1 Appendix A, The Model ZR
The main system of the model ZR.

The subsystem Cooling/Heating Case.

The subsystem FreezeGuard.

43

__

The subsystem Heat /Cool Control.

The subsystem Inc/Dec Out

44

__

8.2 Appendix B, The Model CHHE
The main system of the model CHHE.

The subsystem Cool, HEX, Heat.

45

__

The subsystem Supply Control.

46

__

8.3 Appendix C, The Model DHW
The main system of model DHW.

8.4 Appendix D, The Model of a Heating Coil
The model of a Heating Coil

47

__

8.5 Appendix E, The Model of a Cooling Coil
The model of a Cooling Coil.

8.6 Appendix F, The Model of a Heat Exchanger
The model of a Heat Exchanger.

8.7 Appendix G, The Model of a Room
The model of a Room

