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Chapter 1

Introduction

The systems considered in this project are the two-degree of freedom planar
robots, the Pendubot and the Acrobot. They are underactuated, further are the
robot links considered to be rigid and exhibit no friction. The goal is to produce
walking gait patterns. No impact with the ground is considered at this point.
A complete detailed problem formulation will be presented in chapter 2. In
this chapter, some definitions of underactuated systems and zero-dynamics are
presented. The chapter is concluded with a background on walking mechanisms.

1.1 Underactuated Systems

A system is said to be underactuated when the number of actuators are less
than the number of freedom of the system. Underactuated systems present
challenging control problems and has recently gained an upswing in research
attention. They often exhibit feedforward nonlinearities, nonholonomic con-
straints and nonminimum phase characteristics, which make them difficult to
control and they arise in applications as underactuated marine vehicles, space
robots, flexible robots, walking and gymnastic robots such as the pendu- and
Acrobot.

A general underactuated n-degree of freedom system with m actuators may
be written on the form

D11(q)q̈1 +D12(q)q̈2 + F1(q, q̇)q̇ = B(q)u
D21(q)q̈1 +D22(q)q̈2 + F2(q, q̇)q̇ = 0

where q ∈ Rn are the generalized coordinates, q1 ∈ Rm, q2 ∈ Rn−m, B ∈
Rmxm invertible ∀q, Dij components of the Rnxn inertia matrix. For further
descriptive description of different properties and results please refer to [3] and
[4].

There have been some progress in controlling and analyzing underactuated
systems with passivity and energy approaches. See [8] and [6]
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1.2 Zero-dynamics

The zero-dynamics of a system is the resulting dynamics of the system when it
is moving on the manifold Z∗ = {x | y = 0} when

ẋ = f(x) + g(x)u
y = h(x) (1.1)

where f(x), g(x) and h(x) represents general nonlinear functions, x is the state
vector. In the case of a linear system the zero-dynamics is strongly associated
with the zeros of its transfer function. If there exist zeros in the right-half plane
of the minimal realization of a linear system’s transfer function, thus having
nonminimum-phase, the zero-dynamics would be unstable. Vice verse, if the
system is minimum-phase, having zeros only in the left-half plane, the zero-
dynamics are stable.
Whenever ∀x ∈ Z∗⇒ h(x) = 0 there exists an unique u∗ such that

ẋ = f∗(x) = f(x) + g(x)u∗, x ∈ Z∗ ∀t (1.2)

A nonlinear system is said to be in nonminimum-phase at xeq, if xeq is an
unstable equilibrium point of f∗(x), otherwise it is in minimum-phase at xeq

[9].

1.3 Background on walking mechanisms

The work done by McGeer in [10],[13] show how a 2D-biped robot with no ac-
tuator what so ever and hence no control can produce human like gait patters,
whose only source of energy is gravity on a downhill slope. His idea was that
of the Wright brothers when discovering how to fly. The Wright brothers, the
aviation pioneers, first developed airplanes without motors and mastered the
fundamental of aerodynamics. Then, after successfully having constructed glid-
ers they attached motors.
Studies of human gait [15] also show that the legs’ muscles are primarily active
during the support and the takeoff phase and most of the time the legs are more
or less like a free double pendulum.
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Chapter 2

Problem formulation

2.1 General equations of motions

The general equations of motion for any n-degree of freedom mechanical system
are

D(q)q̈+ C(q, q̇)q̇+G(q) = B(q)τ = B(q)


τ1
τ2
...
τn


Where τ is the input torque and q ∈ Rn are the generalized coordinates. For our

two systems under consideration n = 2, further the Pendubot has τ =
(

τ1
0

)
,

and the Acrobot, τ =
(

0
τ2

)
, we have

−0.2 0 0.2 0.4 0.6 0.8
−0.2

0

0.2

0.4

0.6

0.8

1

 q2

q1 

arm #1

arm #2

Figure 2.1:
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D =
(

d11 d12

d21 d22

)
=

(
J1 + J2 + 2J3 cos q2 J2 + J3 cos q2

d12 J2

)

C =
(

c11 c12
c21 c22

)
= −J3 sin q2

(
q̇2 q̇1 + q̇2
−q̇1 0

)

G =
(

g1

g2

)
=

(
gJ4 cos q1 + gJ5 cos(q1 + q2)

gJ5 cos(q1 + q2)

)
J1 m1l

2
c1 +m2l

2
1 + I1

J2 m2l
2
c2 + I2

J3 m2l1lc2
J4 m1lc1 +m2l1
J5 m2lc2
mi mass of link i
li length of link i
lci length from the previous joint to center of mass of link i
D Inertia matrix
C Coriolis matrix
G Gravity matrix

The variables q1 and q2 are defined according to Fig. 2.1 above. Values of above
parameters used in simulations are
m1 = 6 kg, m2 = 4 kg, l1 = 0.52 m, l2 = never used, lc1 = 0.3 m, lc2 = 0.29 m,
g = 9.81 m/s2, I1 = I2 = 0 kg ·m2. These values correspond to a lab robot at
I.N.R.I.A.1 In the above equations the robot links and joints are assumed to be
rigid and frictionless.

2.2 Zero dynamics

In this project we study the resulting motion when h(x) ≡ e(q) = q1−aq2−b = 0
in (1.1), a, b ∈ R . Thus replacing q1, q̇1 and q̈1 with q1 = aq2 + b, q̇1 = aq̇2 and
q̈1 = aq̈2, respectively. The new set of equations become


(ad11 + d12)q̈2 + (ac11 + c12)q̇2 + g1 ≡ d̄1q̈2 + c̄1q̇

2
2 + g1 = τ1

(ad12 + d22)q̈2 + (ac21 + c22)q̇2 + g2 ≡ d̄2q̈2 + c̄2q̇
2
2 + g2 = τ2

(2.1)

Putting either one of τi = 0 and using x1 = q2 we get
ẋ1 = x2

ẋ2 = − 1
d̄i
(c̄ix

2
2 + gi)

1Institut National de Recherche en Informatique et en Automatique, Grenoble, France
http://www.inrialpes.fr
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For the case τ2 = 0 (Pendubot) the above equations are

ẋ1 = x2

ẋ2 = −a2J3x2
2 sin x1+gJ5 cos((a+1)x1+b)
(a+1)J2+aJ3 cos x1

= −a2m2l1lc2x2
2 sin x1+gm2lc2 cos((a+1)x1+b)

(a+1)m2l2c2+am2l1lc2 cos x1

u∗ = τ∗1 = ẋ2
1(c̄1 − c̄2

d̄1
d̄2
) + g1 − g2

d̄1
d̄2

(2.2)

And for the case τ1 = 0 (Acrobot) the above equations are

ẋ1 = x2

ẋ2 =
(2a+1)m2l1lc2x2

2 sin x1−g(m1lc1+m2l1) cos(ax1+b)−gm2lc2 cos((a+1)x1+b)

a(m1l2c2+m2(l21+l2c2))+m2l2c2+(2a+1)m2l1lc2 cos x1

u∗ = τ∗2 = ẋ2
1(c̄2 − c̄1

d̄2
d̄1
) + g2 − g1

d̄2
d̄1

(2.3)

It is these two above (zero-dynamical) systems of equations (2.2) and (2.3) that
are the subject of our attention for the rest of this work.
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Chapter 3

Investigation of the
zero-dynamics

3.1 Linearization

The equilibria for the Pendubot are given by
x2 = 0

cos((a+ 1)x1 + b) = 0 ⇒ x∗
1 =

π
2 (1+2k)−b

a+1

(3.1)

And for the Acrobot by
x2 = 0

(m1lc1 +m2l1) cos(ax1 + b) +m2lc2 cos((a+ 1)x1 + b) = 0
(3.2)

Linearisation around the equilibria yield the following structure

ẋ = Ax =
(

0 1
−α 0

)
x (3.3)

Thus when α < 0 the eigenvalues will be on the real axis and (unstable) saddle
points. When α > 0 eigenvalues will be on the imaginary axis and are neu-
tral stable equilibra (centers) which can be shown be considering the following
Lyapunov function valid for the linearized system.

V =
1
2
(αx2

1 + x2
2) =⇒ V̇ = αx1ẋ1 + x2ẋ2 = αx1x2 − x2αx1 = 0 (3.4)

For the Pendubot (3.1), saddles will exist at k = 0,±2,±4, . . .

3.2 Bounded orbits are periodic

If solutions to (2.2) and (2.3) are bounded then their positive limit sets1 can not
contain any equilibria. This, because a solution can never reach a center and of

1see section A.2 for definition of positive limit sets.
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course never reach a saddle. To show the former statement and assuming the
system is Lipschitz, we consider the orbits in a sufficiently small ball of radius
ε so that the linearized system (3.3) holds. Then the Lyapunov function (3.4)
holds which imply that no orbit can asymptotically reach an equilibrium. Thus
all condition for the Poincaré-Bendixson theorem (A.3) are fulfilled.

The systems (2.2) and (2.3) also have the property that they are time re-
versible2 implying that bounded orbits are symmetric with respect to the x1-axis
and that they also must cross the x1-axis only twice.

3.3 Simulations of the systems

In this section some simulation results that could shade some light of the differ-
ent effects the parameters a, b and initial start condition x0 have on (2.2) and
(2.3) are presented. Simulations were carried out using MATLAB/SIMULINK.

3.3.1 Limitations on a and b

For the systems to have periodic solutions we demand that the denominators
in (2.2) and (2.3) are separated from zero ∀t. For the Pendubot case this is
fulfilled if −0.35 = − ε

1+ε < a < ε
1−ε = 1.26, where ε = lc2

l1
< 1. And for the

Acrobot the limits on a are −0.30 = − π3+π2
π1+2π3

< a < π3−π2
π1−2π3

= 0.37, where
π1 = m1l

2
c2 +m2(l2c2 + l21), π2 = m2l

2
c2, π3 = m1l1lc2.

It can also be shown that equilibria will be saddles and centers on every
other position for the Pendubot. The parameter b can be chosen arbitrary as
far as singularities are concerned.

2A system is said to be time reversible if orbits in forward and backward time look the same.
With other words, we can not differentiate a movie of the system when played backwards or
forwards. To prove time reversible use t := −t =⇒ x1 := x1, ẋ1 := −ẋ1, x2 := −x2, ẋ2 := ẋ2.
Putting these expressions into (2.2) and (2.3) we find the result to be identical to the original
systems, indicating that the motion looks the same in forward and backward time.
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3.3.2 Pendubot

Variation of x0
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Figure 3.1: Variation of initial condition of x0 = [q2 q̇2]′, a = b = 1. Bottom,
zoom out of the top plots. The [2.7 0] orbit seem not to be a closed curve and
is in fact unbounded with respect to x1.
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Variation of a
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Figure 3.2: Variation of a. The small dots indicate the positions of centres.

Variation of b
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Figure 3.3: Variation of b. The orbits b = 1, b = 2 reveals an important property
of the system. The effect on the system when changing b is nothing else than
shifting the equilibria, thus shifting the whole system.
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3.3.3 Acrobot

Variation of x0

−6 −5 −4 −3 −2 −1 0 1 2 3 4
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(ii) Acrobot   variation of x0

q
2
 [rad]

q 2do
t [
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d/
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Figure 3.4: Variation of x0 = [q02 q̇02]. a = b = 1.

Variation of a
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Figure 3.5: Variation of a. x0 = [q02 q̇02] = [−2 0],b = 1
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Variation of b
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(ii) Acrobot   variation of b x
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t [
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d/

s]
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 0.0

 0.5

 −0.5

 1.0

Figure 3.6: Variation of b. x0 = [q02 q̇02] = [−2 0],a = 1

3.4 An observation

By letting b = π
2 then, for the Pendubot, we can always find (shown empirically)

an orbit that, at some point, intersects the x2-axis. This means that at that
point, x1 = q2 = 0 ⇒ q1 = aq2 + b = b = π

2 . This configuration corresponds
to the upright position for the robot. Thus, succeeding in rendering the the
Pendubot into the zero-dynamics and to an orbit that intersects the x2-axis at
some point in the zero-dynamics, the Pendubot could be brought to upright
position.

This result has some drawbacks. Since there is no formal proof for stability of
the zero-dynamics and its corresponding region of stability, there could be some
unaccepted problems. Also we can not decide which orbit in the zero-dynamics
the system will go to.

3.5 Summary & Conclusions

For the Pendubot, the effect of the b-parameter is that of shifting the equilibria
and hence does not change any basic property of the system. The a-parameter
has no easily comprehensible effect. Although one can perhaps believe, by in-
specting (2.2), that by increasing a introduce more nonlinearities.

The effect of the initial start condition x0 decide the destiny of the future
orbits which can be either stable or unstable.

In the case of the Acrobot things are a harder to analyze because of the
strong nonlinearities. Hence most of the work and results are valid only for the
Pendubot.
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Chapter 4

Searching for a Lyapunov
function – Trials

In this chapter different approaches and trials to find a Lyapunov, which never
was found, are presented. By finding a Lyapunov function for the systems (2.2)
and (2.3) we can proceed to predict a region in the phase plane as a function
of a and b where solutions will be bounded. Boundedness would also imply
periodicity as showed in section (3.2).

From simulations we can draw the conclusion that if we can find a Lyapunov
function, V (x), then we must have V̇ (x) = 0.

4.1 Energy

Usually the total energy of a mechanical systems fulfills the requirement of
a Lyapunov function. However this approach does not work, since the total
mechanical energy of the zero-dynamical system is not constant.

By going further on the path of energy and modifying the total energy func-
tion by adding a term that correspond to the energy input, we can find a function
which time derivative would equal to zero:

Consider first the Lyapunov function candidate (the total energy)

V̄ =
1
2
q̇TDq̇ + P =⇒ ˙̄V = q̇iu

∗
i �= 0

P is the potential energy. Consider now the following Lyapunov function can-
didate

V =
1
2
q̇TDq̇ + P −

∫ t

0

q̇iu
∗
i dt �= 0 =⇒ V̇ ≡ 0 (4.1)

The problem is of course to evaluate the time integral. A good try is using the
relation ∫ t

0

q̇iu
∗
i dt =

∫ qi(t)

qi(0)

u∗
i (qi, q̇i)dqi (4.2)

but useless because of the existence of q̇i terms/factors in u∗
i (qi, q̇i). Even if

we somehow could integrate the above expression we would run into an other
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problem. . . we conclude by studying (4.1) that V will take the constant value
corresponding to the initial energy, i.e. V (t) = V (0) = Etot(0), ∀t. Now, if
we start on the x1-axis (initial velocity equals zero) the initial and all future
values of V would depend only on the initial potential energy. Numerical inte-
gration of the expression in (4.2) shows indeed that for a given start value V
will remain constant and take the value equal to the initial energy. So far so
good but, starting on different points on an orbits we would expect to get the
same constant V , however this is not the case. Below a figure of two different
simulations starting on different points on the same orbit. The explanation for
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phase plot for the Pendubot   a=b=1 
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Figure 4.1: Pendubot case. The values of V (t) starting at P1 and P2.

this is of course that the potential energy at P1 and P2 are different.

In connection with this there was an idea to change either a or b in a Poincaré
type of section on the x1-axis in order to make sudden (discontinuous) jumps
to a desired orbit. But this could not work when examining following figure.
Changing a or b abruptly at a point, say xs(t), is equivalent to stopping a sim-
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Figure 4.2: Pendubot. Changing a and b such that equilibria are the same,
always starting in x0 = [0 0]′.
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ulation at xs, changing parameters and then continuing the simulation with xs

as initial condition. The result will be that orbits at xs will be tangential to
each other and thus the idea that we could make a jump will not work (compare
the double integration of a spike).

4.2 Lagrangian form

In many cases, the Lagrangian of a system will fulfill the requirements of a
Lyapunov function. The Lagrangian is defined by the function L = K − P ,
(K-kinetic energy, P -potential energy), that fulfills the relation

d

dt
{∂L
∂q̇

} − ∂L

∂q
= 0 (4.3)

The kinetic energy is calculated from the expression K = 1
2 q̇

TMq̇. For our
zero-dynamical systems M corresponds to d̄i in (2.1) and P to gi. Using these
identities we find that they do not fulfill the relation (4.3), and the zero-dynamics
could thus not be written on Lagrangian form.

4.3 Transformation to a circle

According to a result in [12], there exists for every closed orbit a transformation
of coordinates to a circle, i.e.{

ẋ1 = x2

ẋ2 = f(x)
y=T (x)→

{
ẏ1 = αy2

ẏ2 = −αy1

A Lyapunov function can then trivially be found for the ’circle’-system, then by
transforming back to the old coordinates we would have our Lyapunov function.
However, to find such a transformation, T (x), is a problem in itself. We need to
solve the following system of partial differential equations, f(x) is the expression
for ẋ2 in (2.2) or (2.3){

y1 = T1(x)
y2 = T2(x)

⇔
{(

ẏ1

ẏ2

)
=

[
∂T

∂x

]
ẋ =

[
∂T1
∂x1

∂T1
∂x2

∂T2
∂x1

∂T2
∂x2

] (
x2

f(x)

)
⇔

⇔
{

∂T1
∂x1

x2 + ∂T1
∂x2

f(x) = αT2
∂T2
∂x1

x2 + ∂T2
∂x2

f(x) = −αT1

...which we could not solve. This of course raise the question if there exist an
analytic solution to the above system of PDE, and if on the whole there exist
an analytic Lyapunov function?
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Chapter 5

Changing b to steer the
zero-dynamics

By inspecting (2.2) and (2.3), presented again below, one could by choosing a
appropriately (small) linearize the equations through b.

ẋ1 = x2

ẋ2 = −a2J3x2
2 sin x1+gJ5 cos((a+1)x1+b)
(a+1)J2+aJ3 cos x1

For the Pendubot the expression for b, by mere inspection becomes

b = arccos[
((a+ 1)J2 + aJ3 cosx1)(k1(x1 − xd

1) + k2x2)− a2J3x
2
2 sinx1

gJ5
]−(a+1)x1

(5.1)
which always will be well defined assuming a, k1, k2, J2, J5 can be chosen appro-
priately. The resulting (linearized) system then becomes

ẋ1 = x2

ẋ2 = −k1(x1 − xd
1)− k2x2

(5.2)

which is globally exponentially stable.

5.1 The Swing up of the Pendubot in the zero-
dynamics by changing b

For the Pendubot robot arms to swing up in upright position, q1 and q2 must
tend to q1 = π

2 and q2 = 0, respectively. Thus xd
1 = 0 in (5.1) and (5.2).

Observing that when

x1 → 0 ⇒ x2 → 0 ⇒ b → ±π
2 ⇒ q1 → ±π

2

since q1 = aq2 + b. Below a simulation when changing b according to (5.1).
We can note that the system has low damping and low bandwidth. This, of

course because k2 (= 2ω0ξ) and k1 (= ω2
0) in (5.1) must be small to keep the

magnitude of the argument of arccos less than one.

18
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Figure 5.1: Variation of b to get the Pendubot in upright position. The values
of q1 are calculated through q1(t) = aq2(t) + b(t)

In general, for any xd
1 it can easily be shown that q1+q2 = ±π

2 when t → ∞.
This means that the suggested control strategy can put the Pendubot into ”any”
configuration provided q1 + q2 = ±π

2 .

5.2 Producing periodic motions by changing b

One of the goals of this project is to prove and produce periodic motion. By
the technique in the previous section this can easily be done. For example, the
system in (5.1) can be linearized so the equations become those of a harmonic
oscillator. {

ẋ1 = x2

ẋ2 = −kx1

However, by doing this the main idea by letting q1 = aq2 + b is somehow lost.
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Chapter 6

Forcing the system into the
zero-dynamics

Everything that have been said and done previously is nothing else than science-
fiction until we try to force the (full) system into the zero-dynamics, i.e. qd

1 =
aq2 + b.

The equations for the Pendubot of full system are once again
d11q̈1 + d12q̈2 + h1 = τ1

d21q̈1 + d22q̈2 + h2 = 0
(6.1)

were coriolis and gravity forces have been written on the more compact form hi.
We want q1 to follow a given trajectory, namely that of q1 = aq2+ b. This could
be done by using partial feedback linearization. From the second expression in
(6.1) we get

q̈2 =
1
d22

(−d12q̈1 − h2) (6.2)

substituting this expression in the first equation of (6.1), we get

(d11 − d2
12

d22
)q̈1 + (h1 − d12

d22
h2) = d̄q̈1 + h̄ = τ1 (6.3)

From properties of the inertia matrix it follows that d̄ > 0. Thus a partial
feedback linearization can be done according to

τ1 = d̄ν + h̄ ⇒ q̈1 = ν

Using the control law

ν = q̈1 = q̈d
1 + kv(q̇d

1 − q̇1) + kp(qd
1 − q1) (6.4)

will render the system exponentially fast to the zero-dynamics.
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6.1 Forcing the system into the zero-dynamics
when a & b are fixed

When a and b are fixed we have
qd
1 = aq2 + b
q̇d
1 = aq̇2
q̈d
1 = aq̈2

(6.5)

Substituting these expression in (6.4) and using (6.2) we get

q̈1 = aq̈2 + kv(aq̇2 − q̇1) + kp(aq2 + b− q1) =
= a

d22
(−d12q̈1 − h2) + kv(aq̇2 − q̇1) + kp(aq2 + b− q1)

⇔

(ad12
d22

+ 1)q̈1 = kv(aq̇2 − q̇1) + kp(aq2 + b− q1)− ah2
d22

⇔

ν = q̈1 = d22(kv(aq̇2−q̇1)+kp(aq2+b−q1))−ah2
ad12+d22

which will be well defined when ad12 + d22 > 0, which is the same expression
appearing in the denominatior of (2.2)

To show that this control law works, a simulation in the zero-dynamical
system is compared with a simulation of the full system when forcing it into the
same zero-dynamics.
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Figure 6.1: Forcing the system into the zero-dynamics. Solid line is the full
system. a = b = 1, x0 = [0 0]′, w0 = 5 and ξ = 1 in (6.4). The explanation for
the difference between the two cases is, starting a bit off the zero-dynamics will
imply a different x0. However, starting exactly in the zero-dynamics, the two
cases will be identical.
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Figure 6.2: Swing up of the Pendubot. a = 1, b = π
2 , ω0 = 5 and ξ = 1.

In Sec. 3.4 an idea to swing up the Pendubot was presented. Above, a
simulation with the full system when a = 1, b = π

2 . The system reaches upright
position, but to keep it there, it is necessary to switch to an other controller that
would keep it there. Such a controller is discussed in [11] where the controller
design is performed with LQR which provides local exponential stability. The
disadvantage of our control strategy is the need of high-torque actors and the
uncertainty of the behavior of future orbits.

In the above simulation we have gone from downright position to upright. A
variety of start configurations have been simulated that would take the robot to
upright position. For the robot to go to upright position the limit cycles have to
be outside the curve presented in Fig. 6.3. Starting exactly in the zero-dynamics
for an orbit that goes outside the curve in Fig. 6.3 would solve the latter problem
presented above. The necessity for a high-torque actor is the requirement to be
able to reproduce the signal u∗ in (2.2), which for some zero-dynamical orbits
produce high torques.
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Figure 6.3: If limit cycles are outside the curve, then the robot arm will tend to
upright position (limit cycle must intersect the x2-axis). The curves have been
created by first starting a little to the left, and then a little to the right of the
saddle point at (0, 0).
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6.2 Forcing the system into the zero-dynamics
when b is changing

In (5.1), a must be small to cope with the x2
2 term. To simplify the following

discussion we could let a = 0. The simplified expression for b now looks

b = arccos(
J2

gJ5
(k1(x1 − xd

1) + k2x2))− x2

Using qd
1 = b, (6.4) becomes

ν = q̈1 = b̈+ kv(ḃ− q̇1) + kp(b− q1)

This give raise to two fundamental questions. How to calculate ḃ and b̈? and
if we derived the equations for the zero-dynamics under the assumption that b
was a constant, then could we expect to be able to force the system into the
zero-dynamics when changing b continuously according to (5.1)? The answer
must be no.
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Chapter 7

Experimental results

Experiments were carried out in Lund on a Pendubot developed by [11].

7.1 Experimental setup

The Pendubot used in the experiments has the following design.

Figure 7.1:

Identification of the parameters Ji carried out in [11] resulted in the estimation

J1 0.09 kg ·m2

J2 0.025 kg ·m2

J3 0.0214 kg ·m2

J4 0.44 kg ·m
J5 0.11 kg ·m

Further we neglect friction, non-rigid effects and possible motor dynamics. Since
the angular velocities are not available for measurement we are forced to use
an observer. The installation with the observer and controller is presented in
Fig. 7.1 below.
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7.2 Preliminary Simulations

The parameters a and b are chosen as a = 1, b = π
2 and, like before, our goal

is to go from downright to upright position following the control strategy in
Section 6.1. Preliminary simulations reveal that a too high torque by the actor
is required to go directly from downright to upright position. To solve this
problem we produce a similar curve as the one in Fig. 6.3 and start somewhere
outside this curve. A square wave with appropriate amplitude (1 Nm) and
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Figure 7.3:

frequency (1 Hz)1 is set to drive the system until it, (hopefully) at some point
in time force the system to a point outside this curve. At that point we switch
to our zero-dynamical controller discussed in Section 6.1, which will force the
system into the zero-dynamics and hopefully to an orbit outside the curve. The
control block in Fig. 7.2 thus has the following structure

1Results in [16] reveals a resonant frequency close to 1 Hz for link 2.
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7.3 Experiments

7.3.1 A more robust controller

Executing the control schedule discussed in previous section and estimating the
velocities by taking the derivative of the angle measurements with post filtering2

the common scenario which is presented in Fig. 7.6 appeared. This failure is
presumably due to model uncertainty, friction and observer errors. To be able
to cope with friction and model uncertainty we need to construct a more robust
controller. The friction at each joint is modelled as

d11q̈1 + d12q̈2 + h1 = τ1 + Γ1

d21q̈1 + d22q̈2 + h2 = Γ2

Γi = ΓCisgn(q̇i) + ΓV iq̇i

(7.1)

With ΓCi and ΓV i representing coulomb and viscous friction coefficients, respec-
tively. Solving for q̈1 and using d̄ and h̄ from (6.3) we have

d̄q̈1 + h̄+
d12

d22
Γ2 − Γ1 = d̄q̈1 + h̄+ Γ̄ = τ1 (7.2)

Introducing e1 = qd
1 − q1, e2 = ė1, and ∆1, ∆2 as general non-linear functions

and using the following control law based on estimations of d̄, and h̄ (denoted̂̄d and ̂̄h), and which is an extension of (6.4)

τ1 = ̂̄dν + ̂̄h+∆2 = ̂̄d(q̈d
1 + k1e1 + k2e2 +∆1) + ̂̄h+∆2 (7.3)

so that q̈1 becomes

q̈1 = 1
d̄
(̂̄dν + (̂̄h− h̄)− Γ̄ + ∆2) =

= 1
d̄
(̂̄d(q̈d

1 + k1e1 + k2e2 +∆1) + (̂̄h− h̄)− Γ̄ + ∆2)
(7.4)

2q̇ = ( 1−z−1

h
)( 1+z−1+z−2

3
)q
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Figure 7.5: Simulation of Pendu lab-robot. Note that error starts to decrease
exponentially at t ≈ 1.7, the same moment as the zero-dynamical controller is
switched on which in this case was chosen when |q2| > 2.1 in accordance to the
curve in Fig. 7.3. ω = 5, ξ = 1.

A more robust controller can be designed by choosing the functions ∆1

and ∆2 appropriately as shown by studying the following Lyapunov function
candidate based on the error. c1 and c2 are constants.

V = 1
2 (c1e

2
1 + c2e

2
2)

V̇ = c1e1ė1 + c2e2ė2 = c1e1e2 + c2e2(q̈d
1 − q̈1) =

= c1e1e2 + c2e2(q̈d
1 − ̂̄d

d̄
(q̈d

1 + k1e1 + k2e2 +∆1)− (̂̄h−h̄)

d̄
+ Γ̄−∆2

d̄
) =

= (c1 − k1
̂̄d
d̄
)e1e2 + c2e2((1− ̂̄d

d̄
)q̈d

1 − (̂̄h−h̄)

d̄
)− c2k2

̂̄d
d̄
e2
2 − c2

̂̄d
d̄
∆1e2 + Γ̄−∆2

d̄
c2e2

If we had a perfect model ̂̄d/d̄ = 1 and ̂̄h− h̄ = 0 and all the troublesome terms
vanish. Assuming ̂̄d and d̄ are of the same sign, a more robust controller can be
implemented by on the one hand increasing k2 by e.g. gain scheduling and on
the other by using a sliding mode controller as

∆1 = µsgn(e2), µ > 0 (7.5)

We also see that the controller would become even better if we had some model
of the friction and by choosing ∆2 = Γ̄.
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Figure 7.6: From the error plot it is clear that the used controller is not able to
keep the system in the zero-dynamics.

7.3.2 Friction estimation

To estimate the friction the following system of linear equations are built up
q̈ = D−1(q)((τ + Γ)− C(q, q̇)q̇ −G(q))

q̈1 = f(q, q̇, τ) = Γ1f1(q, q̇) + Γ2f2(q, q̇) + f3(q, q̇, τ)
q̈2 = g(q, q̇, τ) = Γ1g1(q, q̇) + Γ2g2(q, q̇) + g3(q, q̇, τ)

⇔{
q̈1 = ΓC1sgn(q̇1)f1 + ΓV 1q̇1f1 + ΓC2sgn(q̇2)f2 + ΓV 2q̇2f2 + f3

q̈2 = ΓC1sgn(q̇1)g1 + ΓV 1q̇1g1 + ΓC2sgn(q̇2)g2 + ΓV 2q̇2g2 + g3

⇔{ ∫
q̈1dt = ΓC1

∫
sgn(q̇1)f1dt+ ΓV 1

∫
q̇1f1dt+ ΓC2

∫
sgn(q̇2)f2dt+ ΓV 2

∫
q̇2f2dt+

∫
f3dt∫

q̈2dt = ΓC1

∫
sgn(q̇1)g1dt+ ΓV 1

∫
q̇1g1dt+ ΓC2

∫
sgn(q̇2)g2dt+ ΓV 2

∫
q̇2g2dt+

∫
g3dt

Making a number of experiments with different input sequences, the problem
of finding the friction parameters are reduced to solve the following over deter-
mined least-square problem. Integral expressions are left out for simplicity.

∫
(. . .)dt∫
(. . .)dt
...∫

(. . .)dt

 =


∫
(. . .)dt

∫
(. . .)dt

∫
(. . .)dt

∫
(. . .)dt∫

(. . .)dt
∫
(. . .)dt

∫
(. . .)dt

∫
(. . .)dt

...
...

. . .
...∫

(. . .)dt
∫
(. . .)dt . . .

∫
(. . .)dt




ΓC1

ΓV 1

ΓC2

ΓV 2


This identification approach was executed by doing identification closely around
the downright equilibrium position, disturbing the equilibrium with a PRBS sig-
nal. The velocities were estimated using an observer, designed by linearizing
around the equilibrium and using pole-placement techniques. It turned out that
no consistent values could be estimated for the friction parameters at joint two.
Most presumably the friction coefficients are close to zero. The friction coeffi-
cients belonging to joint one were found to be approximately ΓC1 = −0.25 Nm
and ΓV 1 = −0.01 Nms respectively.
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7.3.3 A swing up

Implementing the more robust controller discussed in Sec. 7.3.1 resulted in a
similar case as the one presented in Fig. 7.6 but with slightly less error ampli-
tude, thus improving performance insignificantly or none at all.

However at some instances it happens that the error is close enough to zero
at the same instance q1 is close enough to q1 = π

2 and thus in the region of
attraction for the balancing controller. Below such a case is presented
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Figure 7.7: An example of a successful swing up for the lab-Pendubot.
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Chapter 8

Conclusions

We were not able to prove stability for the zero-dynamical systems, but we
can conclude that by stability, periodicity would follow. Several trials to prove
stability were presented, involved with finding a Lyapunov function.

A method to force the full system into the zero-dynamics was presented, and
we showed how to use this to get the Pendubot to its inverted position. The
disadvantage is that there is no way to decide which zero-dynamical orbit the
system will take. Also we need a high bandwidth which requires high torques.

Most of the results obtained are only valid for the Pendubot, this because
of the strong non-linearities of the Acrobot. Hence this work turned out to be,
more or less, a study of the Pendubot zero-dynamics.
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Chapter 9

Discussion

What should or shouldn’t have been done? There should have been attempts
to, in some way, validate the attained friction coefficients. Also a full system
identification could have been done to some how eliminate some possible incon-
sistencies between the friction estimation and the system parameters estimation
(J1, J2 , ..., J5), which was not done in this project.

It should also be mentioned that swinging up the lab Pendubot is highly non-
repetitive. The fact that it turned out to be very difficult to keep the system
in the zero-dynamics is presumably due to model and observer errors. Roughly
estimating the bounds of ̂̄d and the ”worst case” sign of (̂̄d/d̄) in Sec. 7.3.1
reveals that in some cases sign of ̂̄d/d̄ < 0 and thus the ”robust controller” is
no longer robust.

It should also be made clear that for all results obtained no analytic proofs
have been discovered and none of the set up goals have been accomplished.
The idea was to first prove stability and periodicity of the zero-dynamics and
secondly (continuously) changing the parameters a and b in a desired way so to
produce walking like gait patterns. A second thought reveals that changing a
and b would impose a far more complicated and different sets of zero-dynamical
equations than were used.

A perhaps dangerous issue to mention, as it might not be the case, that not
taking impact into consideration somehow make the possible use of this study
void if the aim is to use it in connection with producing gait patterns, which
was the idea.
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Appendix A

Useful theorems

A.1 Lyapunov’s stability theorem

Let x = 0 be an equilibrium point for ẋ = f(x). Let V : D → R be a
continuously differentiable function on a neighborhood D of x = 0, such that

V (0) = 0 and V (x) > 0 in D − {0}
and

V̇ (x) ≤ 0 in D

Then x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0}

then x = 0 is asymptotically stable.
Proof contained in [1] p 100ff.

A.2 LaSalle’s theorem

Lemma If a solution x(t) of ẋ = f(x) is bounded for t ≥ 0, then its positive
limit set L+ is a nonempty, compact, invariant set. Moreover, x(t) → L+ as
t → ∞.

Let Ω be a compact (closed and bounded) set with the property that every
solution of ẋ = f(x) which starts in Ω remains for all future time in Ω. Let
V : Ω → R be a continuously differentiable function such that V̇ (x) ≤ 0 in
Ω. Let E be the set of all points in Ω where V̇ (x) = 0. Let M be the largest
invariant set in E. Then every solution starting in Ω approaches M as t → ∞.
Proof, see [1] p 115.

A.3 Poincaré-Bendixson theorem

Let γ+(y) = {φ(t, y) | 0 ≤ t ≤ ∞} where φ(t, y) denotes the solution of ẋ = f(x),
also let γ+ be bounded and L+ be its positive limit set. If L+ contains no
equilibrium points, then it is a periodic orbit. Proof, see [1] p 290.
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A.4 Criteria for a periodic orbit

From [1] p 299.

(i) The index of a node, focus or a center is +1.
(ii) The index of a (hyperbolic) saddle is −1.
(iii) The index of a closed orbit is +1.
(iv) The index of a closed curve not encircling and equilibrium points is 0.
(v) The index of a closed curve is equal to the sum of the indices of the equilibrium

points within it.

Inside any periodic orbit γ there must be at least one equilibrium point. Sup-
pose the equilibrium points inside γ are hyperbolic, then if N is the number of
nodes and foci and S is the number of saddles, it must be that N − S = 1.
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