
ISSN 0280-5316
ISRN LUTFD2/TFRT--5671--SE

Hard Real-Time and Synchronous
Programming with SDL

Emil Naef

Department of Automatic Control
Lund Institute of Technology

April 2001

Document name
MASTER THESIS
Date of issue
April 2001

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD2/TFRT—5671--SE
Supervisor
Karl-Erik Årzén LTH
Linus Helmestam TeleLogic

Author(s)
Emil Naef

Sponsoring organization

Title and subtitle
Hard Real-Time and Synchronous Programming with SDL
(Hård realtid och synkron programmering med SDL)

Abstract

This is a report of how the two Telelogic development tools the SCADE Suite, and the
SDL Suite can be used together, combining a time-driven language and an event-driven
language. Suggestions on how the tools can be integrated are presented. The report also
suggests how Telelogic can improve the SDL Suite from a hard real-time aspect. Last
part of the report shows how the scheduling algorithm “Earliest Deadline First” can be
implemented in the SDL Cmicro kernel, and how the implementation can be improved.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
53

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.se

Contents
1 Introduction...1

1.1 Background ..1
1.2 Purpose...1
1.3 Methods..2
1.4 Structure of This Paper ..2

2 SCADE..3
2.1 Synchronous Languages...3
2.2 Data-flow Model ..4
2.3 The Lustre Language..4
2.4 SCADE Extensions to Lustre...6

3 SDL...8
3.1 Overview..8

4 The SDL Suite...11
4.1 Cadvanced..11

4.1.1 Priority and Preemption ..12
4.2 Cmicro..13

4.2.1 Priority and Preemption ..13
4.3 Timers ..13
4.4 User Interface Overview..14

5 SCADE and SDL Together Using Existing Tools..15
5.1 Connecting SCADE and SDL..15
5.2 Priority, Preemption and Timers ..17
5.3 Response Time ...18
5.4 A Time Trigged Example ..18
5.5 Scheduling..22

6 Improvement Suggestions...23
6.1 Connecting SCADE and SDL..23

6.1.1 Import SCADE into SDL..23
6.1.2 Map SCADE and SDL Signals in the SDL Tool23
6.1.3 Map SDL and SCADE Signals in the SCADE tool............................26

6.2 Timers ..26
6.3 Scheduling..27

6.3.1 Periodic Process Scheduling...27
6.3.2 Aperiodic Process Scheduling...27
6.3.3 Process Attributes for Scheduling...28

7 Implementation of a Scheduling Algorithm..30
7.1 The Scheduled SDL System...30
7.2 Original Scheduling in the Cmicro Kernel...31
7.3 Changes in the Cmicro Kernel ...32
7.4 Suggested Implementation Improvements ...33

8 Conclusion...35
9 References...36
10 Glossary ..37
Appendix A: SchedulingAlgorithm.h..38
Appendix B: SchedulingAlgorithm.c...40
Appendix C: xmk_SetCurrentSignal ...46
Appendix D: xmk_ProcessSignal ..47

1

1 Introduction

Computer systems are growing larger and more complex today. Where
yesterdays systems were small, and often consisting of only one process,
executing on one computer, today’s systems often contain many interacting
processes and can be distributed over many computers. With the growing
systems, the demand for developments tools is increasing. Telelogic has
developed a tool for development of communication system based on a language
called Specification and Description Language, or SDL. SDL is widely used in
development of telecommunication and data communication applications. When
Telelogic bought Verilog in 1999, the development tool SCADE was acquired.
SCADE is a synchronous control system development tool, and since the
demand on more complex control systems, where many processes must interact,
is increasing, Telelogic wanted to investigate how SCADE and SDL can be used
together.

This report contains a short presentation of SCADE and SDL. It presents a
solution on how SCADE and SDL can be used together, where time-driven and
event-driven program parts are interacting. The report also contains suggestions
on how the SCADE and the SDL tools can be integrated to support the user
using both tools together.

The last part of the report describes how the scheduling algorithm “Earliest
Deadline First” has been implemented in the SDL Cmicro kernel. New
scheduling algorithms is a necessary step in order to support hard real-time with
the SDL tools.

1.1 Background
Telelogic develops and sells tools for software development. Two of these tools
are the SDL Suite and the SCADE Suite. SDL is used for development of
communication systems, and is an event-driven and asynchronous language.
SCADE is used in development of control system, and is a time-driven and
asynchronous language. Combining these two tools, using the advantages of both
event-driven and time-driven techniques, can improve Telelogics position as a
real-time development tool vendor. Telelogic also wanted to investigate how the
SDL Suite can be improved in the hard real-time aspect.

1.2 Purpose
This report will discuss and hopefully answer the following questions:

• How can the SCADE-tool and the SDL-tool be used together?
• How can the SDL tool be improved in the real-time aspect?

The report also shows how a scheduling algorithm can be included in the SDL-
kernel.

2

1.3 Methods
The material in the reference list has been used as background material for the
work. For the implementation of the new scheduling algorithm in the Cmicro
kernel, a considerable time has been spent on studying the kernel C-code. Apart
from the studies, asking Telelogic employees has helped a lot in the creation of
this report.

1.4 Structure of This Paper
Chapters 2-4 are an introduction to the SCADE tool and the SDL tool. Chapter 5
shows how SDL and SCADE can be used together. Chapter 6 presents
suggestions on how to improve the SDL tool to work better with SCADE.
Chapter 7 describes how a scheduling algorithm has been introduced to the
Cmicro kernel.

3

2 SCADE

SCADE is the abbreviation for Safety Critical Applications Development
Environment. SCADE is a development tool from the French company Verilog.
The tool is used to develop hard real-time applications. Typical SCADE areas are
nuclear control systems and flight control systems.

The SCADE suite is a graphic development tool based on the language SCADE.
SCADE is an extended version of Lustre and is compiled to Lustre code and then
to C or ADA.

This chapter will start with describing attributes for the synchronous language
group, of which Lustre and SCADE are a part. The data-flow model on which
SCADE and Lustre are based will also be discussed. The last two sections in this
chapter will explain Lustre and some of the SCADE extensions to Lustre. The
information in this chapter has been retrieved from [Hal93] except for Section
2.4, where the information regarding SCADE was found in [SCADE].

2.1 Synchronous Languages
Languages like Argos, Esterel and Lustre are called synchronous languages. A
language is called synchronous if the output is synchronized with the input. In
other words, the program will react instantly on an event and the output will
come instantaneously after the input. There is no time between input and output.

Characteristic for a synchronous language is that it uses a multiform notion of
time. This means that physical time will be handled as an external event and all
events can be used as a clock trigger. The only important time aspects are that
two events can happen simultaneously and that the order among events is the
same at all time.

Synchronous programs are used in reactive systems. Reactive systems react on
input from the environment where the input speed is determined by the
environment. A reactive system can never raise an event if the environment does
not invoke it. The system is static between events.

The executable code generated by a synchronous language is always sequential,
which prevents sharing problems. Only one task is executed at a time, and that
task will be executed until it is finished.

Synchronous languages are deterministic, which means that the output is
determined only by the input and the program state. It is easier to design, analyze
and debug a language if it is deterministic.

A synchronous language is not a complete language; it needs a host language,
which the code is compiled into. The host language can provide complex data
structures, handle the interface with environment, databases etc.

4

2.2 Data-flow Model
One approach to construct synchronous programs is the dataflow model. The
program is built from interconnected operators that work in parallel to each
other. As soon as an operator receives an input, it calculates the output. The
dataflow model was and is used mainly in the control and the electronics areas.

The dataflow model is a functional model and the mathematical clarity makes the
approach efficient for the use of formal methods for analysis, design and
verification. Figure 2.1 shows a dataflow graph and the corresponding equation.

An operator can be created by a set of connected operators. It is therefore easy to
create a hierarchical structure, with the advantages of reuse.

+

A

B

2

C C=(A+2)×B ⇔ ×

Figure 2.1: A dataflow graph of the equation C=(A+2)*B.

2.3 The Lustre Language
Lustre is a formal synchronous data-flow language, which was designed 1984 by
IMAG Institute in Grenoble. Merlin-Gerin Company developed a graphical
development tool for Lustre.

Lustre is based on the notion of flows and clocks. A flow is a sequence of values
corresponding to a sequence of clock instants. The basic cycle is the fastest cycle
in the program from which other slower cycles are derived. Boolean-valued
flows are used to define clocks. Each flow, or sequence of values, is mapped to
one clock cycle.

Basic Cycle 1 2 3 4 5
Values of C True False True True False
Cycles on C 1 2 3
Values of D True False False

Table 2.1 shows a flow C on the basic cycle. A new clock cycle can be derived
from C, here shown in the row Cycles on C. The D flow is based on the clock
cycle derived from C.

Lustre has only three types of variables, booleans, integers, and reals. If other
data types are needed, they have to be imported from the host language and
handled as abstract data types. Arrays can be defined in Lustre by a tuple
constructor.

Table 2.1: Boolean flows and clocks

5

A variable is declared as a data type and defined by one, and only one, equation.
The variable can be substituted by the equation and vice versa everywhere in the
program.

Lustre has predefined operators of different types. The operators are arithmetic,
Boolean, conditional, relational, or sequential:

• Arithmetic operators are ‘+’, ‘-‘, ‘*’, ‘/’, ‘div’, and ‘mod’.
• Boolean operators are ‘and’, ‘or’, and ‘not’.
• Conditional operator is if <…> then <…> else <…>
• Relational operators are ‘=’, ‘<’, ‘<=’, ‘>’, ‘>=’, and ‘<>’
• Sequence operators, also called temporal operators, are ‘pre()’, ‘->’, ‘when’,

and ‘current()’

These operators can be used to create new and more complex operators. The first
four groups of operators operate on operands on the same clock. The sequence
operators operate on flows.

The ‘pre()’ operator remembers the value of the argument from the preceding
clock cycle. The operator will return nil at the first clock cycle. If the sequence E
(e1, e2, e3…) are used as argument to the ‘pre()’-operator, pre(E), the resulting
sequence will be (nil, e1, e2, e3…).

The operator ‘->’ is used to give flows initial values. For example, the sequences
E (e1, e2, e3…) and F (f1, f2, f3…) are used to create a new sequence G=E->F.
The resulting sequence will be (e1, f2, f3…). This operator can be used together
with the ‘pre()’-operator since the first value in the ‘pre()’-sequence is undefined
(nil). Using the sequences in the previous example the expression G=E->pre(F)
will have the following sequence of values: G=(e1, f1, f2, f3…).

The operator ‘when’ is used to change clock frequency. The ‘when’-operation is
also called filter. If we use sequences E and F from the pre-examples to generate
a new sequence G=E when F, the G sequence will have the same value as E
when, and only when, F is true. When F is false the G sequence will have no
value at all. Note that F must be a boolean flow. Table 2.2 shows an example
with the ‘when’ operator.

E E1 E2 E3 E4 E5
F False True False False True
G=E when F E2 E5
Current(G) Nil E2 E2 E2 E5

The last sequential operator is the projection operator 'current()’. It is used to get
values from a variable on a slower clock. By using 'current()' the last value of
the argument expression will be projected to the clock instant of the expression
which the 'current()' operator is currently in. Table 2.2 shows an example with
projection.

Table 2.2: Filtering and projection.

6

Assertions were initially introduced to help the compiler to optimize better. An
assertion, or 'assert()' as it is called in the language, is used to show that an
expression is always true. For example assert(X=Y) shows that X and Y are on
the same clock and that they always have the same values. ‘assert()’ is also used
in program verification.

A program in Lustre is a net of operators. It is often convenient to divide this net
into subnets, which can be presented as new operators. A subnet presented as a
new operator is called a node. The nodes can be used in any expression in the
program. Input and output parameters are defined when the node is declared. A
node can have one or more input parameters and one or more outputs. The
following example is a counter, with an initial value, an incremental value and a
reset event as input parameters and the counter value as output:

node COUNTER(init_value, incr_value: int; reset: bool)
returns(N: int);
let

N = init_value -> if reset then init_value
 Else incr_value + pre(N);

tel

The counter can be called in an expression somewhere else in the program, for
example:

Number_of_ticks = COUNTER(1, 1, false);

Lustre compilers cannot handle cyclic definitions where a variable depend on
itself, like X=3*X+1. Another constraint is false deadlocks. The Lustre compiler
will not accept following code:

X = if C then Y else Z
Y = if C then Z else X

The reason is the problem of deciding if it is a deadlock or not.

2.4 SCADE Extensions to Lustre
As mentioned before SCADE is an extension to Lustre. New data types and
structures are introduced and more predefined operators are available.

SCADE introduces the predefined types character, called ‘char’, and string,
‘string’. These types can only be used in a very limited way. The main reason for
the introduction of the types was probably to make it possible to send text
messages from SCADE, and not for text handling.

In addition to the textual types there are enumerated, structured, generic and
deferred types in SCADE. These types can be used together with some of the
predefined operators.

7

The main difference between Lustre and SCADE is that SCADE is a graphical
language while SDL is a textual language. Figure 2.2 below shows the counter in
the example in the Section 2.3.2, defined as a SCADE node.

PRE

N

reset

incr_value

init_value

Figure 2.2: SCADE defined Counter

8

3 SDL

Specification and Description Language, or SDL, is an event-driven language
mainly used in telecommunication development. SDL is a formal language,
standardized by ITU.

This chapter will explain SDL-96 used in the SDL Suite. The new version SDL-
2000 has a few differences to SDL-96, but the two versions work mainly the
same way. In the hard real-time aspect there is no difference.

3.1 Overview
In SDL a system is divided into processes, which communicates with each other
and with the system environment by signals. To make a system more structured
SDL uses blocks to divide the system into subsystems. A block consists of
blocks or processes. For an overview see Figure 3.1.

A process in SDL is an extended finite-state machine. This means that the
process state is defined by both explicit state variables and process variables. A
process is static as long as no handled signal arrives at the process. A handled
signal starts a transition, which ends in a new or the same state. The process can
send signals to other processes, set timers, calculate variable values, etc. during a
transition.

Process priority is not defined in SDL. All processes have the same priority and
if more than one process wants to execute FIFO selection are used.

 process Repeater

Wait

Hello

Hi

Wait

system Repeater
SIGNAL
 Hello,
 Hi ;

Repeater

EnvToSys

Hello

SysToEnv

Hi

block Repeater

Repeater

EnvToSys

Hello

SysToEnv
Hi

Figure 3.1: System, Block and Process in SDL

A process behavior is defined by symbols in SDL. Figure 3.2 shows the most
common symbols used in SDL.

9

Figure 3.2: SDL Process Symbols

Text symbol is used for
declarations.

Input symbol defines which
signal the process is waiting for.

Task symbol is used to assign
new values to variables.

Text Extension symbol is used
to attach more text to a symbol.

Decision symbol is used to split
a transition into branches based
on a condition.

Output symbol is used to send
a signal from the process.

Start symbol is the state from
which a process starts.

State symbol is defining a
process state.

Priority Input symbol has
higher priority than the regular
input symbol.

Signals are used in the SDL system for communication between processes and
the system environment. The signals follow predefined signal routes between
two processes or between a process and the block environment. A connection
between blocks or between blocks and system environment is called channel.
The difference between a cannel and a signal route is that signal routes do not
have any delays, while channels can be either delaying or non-delaying. Figure
3.3 shows Channels and Signal Routes in SDL.

A process may prioritize a signal by using priority input. The prioritized input
will be consumed before non-prioritized input.

10

 block Control

ProcB

ProcA

system Water_Control

Control

PID

Channels
Signal Routes

Figure 3.3: Channels and Signal Routes in SDL

Timers are used in SDL to make a transition after a certain time. The ‘Set()’
command is used to set the time when the timer shall expire. When the timer
expires the process waiting for the timer will receive a signal with the same name
as the timer. The ‘Reset’ command is used to reset the timer. Figure 3.4 is an
example of how timers can be used. Note that the Wait state in Figure 3.4 is
waiting on both T1 and Sig1. Depending on which signal arrives one of the two
transitions are executed.

 process TimerExample

TIMER

T1;

DCL

WaitTime Duration;
T1

Wait

WaitTime := 25.0,
SET (NOW + WaitTime, T1)

Wait

Action

Wait

Sig1

RESET
(T1)

Sig2

SET (NOW + WaitTime, T1)

Figure 3.4: Example of an SDL process using a timer.

11

4 The SDL Suite

The Telelogic Tau SDL suite is the tool Telelogic has developed for specifying,
implementing, validating, verifying, and testing SDL systems. The focus in this
work is implementation and code generation.

The SDL Suite has three versions of SDL to C code compilers. The compilers
are used for different purposes:

• The Cbasic version is used for simulation and validation of the SDL system.
• The Cadvanced version is used for building any type of application.
• The Cmicro version is used to create compact C code, and thereby memory-

efficient applications.

Cadvanced and Cmicro will be reviewed in the following sections. We will not
focus on Cbasic anymore, since Cbasic cannot be used in hard real-time
applications.

4.1 Cadvanced
Cadvanced SDL to C compilation is normally used when creating a SDL system.
When generating code from SDL predefined macros are introduced to handle
system calls. These macros are defined depending on operating systems and
integration model.

In Light Integration, the macros are expanded into standard kernel functions. A
Light Integration application will be one thread in the operating system. Signals
between two processes in these applications are very time efficient since only
pointers to a shared memory are passed between the processes. The Light
Integration SDL kernel can be used in environments without real-time operating
systems.

Tight Integration uses lower level macros. The Tight Integration uses RTOS
primitives to handle the processes as different threads in the RTOS kernel.
Signals between processes in Tight Integrated applications are slower than in
Light Integrated ones. The reason for this is that a signal message must be copied
to the called process memory. Figure 4.1 shows the difference between Light and
Tight Integration.

12

Design
Level

Execution
Level

Concurrent Threads One Thread

Concurrent Tasks

Figure 4.1: Left: Tight Integration, Right: Light Integration

4.1.1 Priority and Preemption
Although SDL does not have any priority, the SDL Suite allows the user to
define priority for processes and signals. Process priority is defined from zero
and upwards in continuous steps, where zero has the highest priority. All
processes with higher priority are processed before a process with a lower
priority can be processed. Priority is declared with the process declaration.
Figure 4.2 shows how process priority can be declared.

 block PrioSystem

LowPrio (1,1)
/*#PRIO 1*/

HighPrio (1,1)
/*#PRIO 0*/

ToSystem ToLowPrio

ToLowPrio

FromLowPrio

FromLowPrio
FromSystem

ToHighPrio

ToHighPrio

FromHighPrio

FromHighPrio

ToSystem

FromSystem

Figure 4.2: Processes priority declaration in SDL

Signal priority is weaker than process priority, which means that a process with
higher priority will always execute first regardless of the signal priority. Signal
priority levels do not have to be continuous. Signal priority is declared with the
signal declaration:

Signal
S1 /*#PRIO 12 */,
S2 /*#PRIO 23 */;

Preemption can only be used with Tight Integration; Light Integration is always
non-preemptive. The operating system must support preemption if an application
shall be able to use preemption.

Preemption is disabled during system start up. System start up is the part of the
execution where the static processes are created. It is possible to enable and
disable preemption during the execution by using the functions

13

xmk_DisablePreemption and xmk_EnablePreemption. Disabling the preemption
is useful when the program contains critical parts where shared data are accessed.

Only a process with higher priority than the executing can force a context switch
when preemption is used. Processes with the same priority cannot interrupt each
other.

4.2 Cmicro
Cmicro has a more optimized code than Cadvanced. As a result restrictions on
the use of SDL is introduced. Cmicro is typically used in micro controllers,
mobile telephones, and so on. Common for Cmicro systems is that they usually
work in environment with limited memory and small processor capacity.

Light and Bare Integration are the Cmicro version of Cadvanced Light
Integration. Both Light and Bare Integration will create one thread where the
SDL program executes. Tight Integration for Cmicro is not a part of the SDL
Suite. There are consultants in Telelogic that can do the integration manually.

Bare Integration is used when the target environment does not have any
operating system. There is no interface with hardware drivers, hardware
functions and interrupt service routines in the Bare Integration. The user has to
define these interfaces using macros from the Cmicro library. In Light
Integration the operating system provides an interface with hardware, interrupts
and so on.

4.2.1 Priority and Preemption
Priority in Cmicro is declared in the same way as in Cadvanced, see Section 4.1.
Process priority is only used when the scheduler is preemptive. Preemption is an
option in Cmicro, whether to use it or not is depending on the application. If no
hard real-time requirements are present the non-preemptive option is
recommended. Preemption is only useful in applications with a mix of processes
with very different reaction time requirements.

Priority and preemption must be defined with two macros in the ml_mcf.h file
called Configuration Header File in the Targeting Expert. The macros are
defined in the end of the file in the user code section with the lines:

#define XMK_USE_PREEMPTIVE
#define MAX_PRIO_LEVELS <number of priority levels>

4.3 Timers
As mentioned in Section 3.4, a timer can be set to signal a process after a certain
time. If a timer expires the SDL kernel will remove the timer from the timer list
and send a signal to the concerned process. The timer signal will be handled as
any other signal. If there is a transition when the timer expires, the system will
not notice the timer until the transition is finished.

14

4.4 User Interface Overview
The SDL Suite main window is called the Organizer. It is in the Organizer the
user can see an overview of all files in the project. By double-clicking on the
different files the corresponding window will pop up. It is also in the Organizer
that the user starts programs for different part of the development; one of these is
the Targeting Expert. The Targeting Expert is used to choose compile and
linking options. It is here the user chooses if the Cadvanced, Cbasic, or Cmicro
compiler should be used.

15

5 SCADE and SDL Together Using Existing
Tools

This chapter presents a solution that is possible to use in the SDL Suite today.
The solution is based on that SCADE is compiled to C code, and therefore this
solution is applicable to all C code.

This paper focuses on one SDL to C code compiler. The chosen compiler is the
Cmicro compiler because the Cmicro code is the best fitting code for
microprocessors, which is the typical target for a SCADE application.

5.1 Connecting SCADE and SDL
The SDL Suite does not support SCADE, but it does support C code. By using
the SDL tool CPP2SDL it is possible to translate C code into SDL. After the
conversion from C to SDL, the C functions can be called as if they where SDL
functions.

An example will be presented to show how SCADE and SDL can be connected.
This example calculates the current speed based on distance input. The system
calculates the difference between current distance input (xA) and last input, and
then divides the result with the constant (dt). The speed output is stored in VxA.
The SCADE system in this example can be seen in Figure 5.1.

dt

PRE

VxA
xA

x0

Figure 5.1: SCADE Speed node

The SCADE system is first compiled into C code. There is a lot of code
generated, but it is only a part of the Speed header file that is interesting in the
SDL integration:

typedef struct _C_Speed{
_int _I0_xA;
real _O0_VxA;
_int _L5_Speed;
bool _M_init_0_Speed;
} _C_Speed;

void Speed_init (_C_Speed *);
bool Speed (_C_Speed *_C_);

The struct contains the input (_I0_xA) and the output (_O0_VxA) for the system.
The Pre-value (_L5_Speed) is also stored in the struct. The last variable in the
struct is set to true by Speed_init to initialize the systems values in the Speed

16

function. Note that a pointer to the struct is used as parameter to the two
functions.

Speed is the function defined in the SCADE node. This function is not
automatically declared in the header file, and must therefore be defined by the
user. The Speed function can be found in the C-file though. Speed uses the input
variable in the struct to calculate the new Pre-value and the output value, which
are returned in the struct. The boolean return value is always set to true.

To be able to use the SCADE generated C code a translation to SDL must be
made. The first step is to create a PR-block in the process diagram. A PR-block
is a text reference block, which refers to a file. In this case the reference is to an
“Import Specification” file. The PR-block can be seen in Figure 5.2, containing
the text “PR” and “SCADE”. Write a name for the “Import Specification” file
used to instruct the compiler how to map the C code functions to SDL directives.
By double clicking on the PR-block the Import Specification file will pop up:

CPP2SDLOPTIONS {
-generatecpptypes -sdlsorts -c -supportfunctions -dialects ANSI -errorlimit 5 -prefix
ptr=ptr_ arr=arr_ keyword=keyword_ incomplete=incomplete_ tpl=tpl_ -suffix
uscore=uscore
}

TRANSLATE
{
_C_Speed
Speed_init
Speed
}

The CPP2SDLOPTIONS-block contains compiler flags used to translate the C
code into SDL. The CPP2SDL-Options, found in the Organizer, automatically
writes this block. The TRANSLATE part specifies which functions and structs
that are going to be mapped to SDL. The user has to define this part of the file.

When the Import Specification file is finished the SCADE system header file
must be added to the Import Specification file, in this example Speed.h. This is
done in the Organizer using “Add new C Header”.

17

Figure 5.2: SCADE generated C code in a SDL Process

process SCADE

DCL

Dummy Integer,
MyStruct _C_Speed,
MyStruct_ptr ptr__C_Speed;PR

Wait

Distance(MyStruct!_I0_xA)

Dummy := Speed(MyStruct_ptr)

NewSpeed(MyStruct!_O0_VxA)

Wait

SCADE

MyStruct_ptr := &MyStruct,
Speed_init(MyStruct_ptr)

Wait

Figure 5.2 shows how the SCADE generated C code can be used in the SDL
system. The functions from SCADE are used in the same way as SDL
procedures.

Notice that the boolean return from the Speed must be handled in SDL. This is
done with the Dummy variable in this example. The pointers used to pass the
struct to the functions are worth an extra notice. First of all the SDL Help
recommends not using pointers. The CPP2SDL mapping automatically declare a
pointer type when one is needed. In this example a pointer to the struct is needed.
The pointer type is available by putting the prefix ‘ptr_’ before the object or
struct name that the pointer is pointing at. In this case ‘ptr__C_Speed’ is a
pointer type for ‘_C_Speed’. In the SDL diagram in Figure 5.2, ‘MyStruct’ and
‘MyStruct_ptr’ are the ‘_C_Speed’ struct and a pointer to it. The pointer is
initialized to point at the struct in the initializing transition with ‘MyStruct_ptr :=
&MyStruct’.

5.2 Priority, Preemption and Timers
In hard real-time applications priority and preemption are very important
attributes to ensure that time constraints are kept.

A process with hard time constraints must have high priority while processes
with soft time constraints shall have a low priority. How to define and use
priorities is described in Section 4.2.1.

The SDL timer is sufficient if the system only contains processes with equally
prioritized transitions, or if the system has soft time constraints. If the system has
processes with time-consuming transitions, the time between the defined and the
actual timer duration can be considerable, since the expiring timer only can be
handled between transitions.

To improve the timer events, an external timer must be used. When the Cmicro
kernel is using preemption, external signals will be put into the SDL system with

18

Interrupt Service Routines. This has the effect that a timer event will be put into
the SDL system immediately, and then the concerned process will start a
transition if it has the right priority. The use of external timers is of course
dependent on if the RTOS (or the hardware) supports timers.

5.3 Response Time
Response time is the time it takes the system to produce an output when a certain
input is presented, see Figure 5.3. It is very important to be able to calculate a
response time and thereby see if the system meets its time requirements.

System

[ti] [to]

Figure 5.3: Response Time = to - ti

The response time for the SDL system can be calculated as:

• The execution time for the called transition if the system is idle (no
process running).

• The time for a context switch plus the execution time for the called
transition if the system has a process, with lower priority than the called
process, running.

• The execution time for all the called processes with higher or equal
priority in the system, plus the time for scheduling between the
transitions. It is possible to define signal priority and thereby make it
possible for a certain transition to be prioritized in a process priority
level, see Section 4.1.1.

The SCADE generated code is deterministic, which means that the execution
time for a SCADE defined function is constant. It is therefore fairly easy to
calculate the execution time for the code. This makes it possible to calculate the
response time for a signal to a process with a SCADE defined behavior. The
following section will present an explaining example.

5.4 A Time Trigged Example
This section will present an example with a time-trigged system, and show how
the response time can be calculated. The system contains one process calling a
SCADE node, shown in Figure 5.4, and one process for user communication.
The SCADE node is a PI-regulator, used to control a heater.

19

Diff0

P

I Heat

PRE

Wanted_Temp

Actual_Temp

Figure 5.4: SCADE HeatControl node

The SCADE node is compiled and included in the SDL system the same way as
the Speed node in the previous example in Section 5.1.

 block HeatControl

Controller(1,1)
/*#Prio 1*/

Regul(1,1)
/*#Prio 0*/

RegulToEnv

SetTimer

HeatToEnv
EnvToHeat

EnvToControl

NewTemp

ControlToRegul

NewTemp EnvToRegul

TimerEvent

EnvToHeat

Figure 5.5: The SDL system at block level

Figure 5.5 shows the system at block level. The Controller process receives
signals, with the desired temperature, from the environment. Controller then
checks if the desired temperature is inside the heaters working area, and then
pass the signals to Regul. The NewTemp signal is an aperiodic event with soft
time constraints. As a result of the soft time constraint, Controller has lower
priority than Regul.

Figure 5.6 shows how NewTemp is checked and passed on by Controller.

20

 process Controller

DCL
 Temp Real; Wait

NewTemp(Temp)

Temp < 15

Temp > 25

Temp := 15 Temp := 25

NewTemp(Temp) TO Regul

Wait

False

True

True

False

Figure 5.6: Process Controller

Regul is the actual heat controller containing the SCADE node. This process
executes periodically by the use of an external timer. The signals SetTimer and
TimerEvent are used to set and receive the external timer.

 process Regul

DCL
 MyStruct_ptr ptr__C_HeatControl,
 MyStruct _C_HeatControl,
 PeriodTime Duration,
 WakeupTime Time,
 Dummy Integer;

PR
HeatControl

/*init stuct*/
MyStruct_ptr := &MyStruct,
MyStruct!_I0_Wanted_Temp := 20.0,
HeatControl_init(MyStruct_ptr)

/*init timer*/ PeriodTime := 1.0,
WakeupTime := NOW + PeriodTime

SetTimer(WakeupTime)

Wait

process Regul

Wait

NewTemp(
 MyStruct!_I0_Wanted_Temp)

Wait

Figure 5.7: Left: Initialization of Regul. Right: New wanted temperature.

Figure 5.7 shows how HeatControl and the timer are initialized. It also shows
how the aperiodic NewTemp signal is received and handled. It is important to
make the aperiodic transitions inside the periodic process as short as possible,
and, as in this example, try to make the event-related operations outside the
process. The reason for this is that a transition cannot be preempted by another
transition in the same process, and therefore the periodic transition must wait for
the aperiodic to finish before it can execute.

21

 process Regul

Wait

TimerEvent

/*SCADE*/ MyStruct!_I1_Actual_Temp
 := AirTemp,
Dummy := HeatControl(MyStruct_ptr),
HeatOutput(
 MyStruct!_O0_Heat)

/*time r*/ WakeupTime := WakeupTime
 + PeriodTime

SetTimer(WakeupTime)

Wait

Figure 5.8: Periodic transition in Regul

The periodic transition in process Regul is triggered by the signal TimerEvent
from the external timer. The TimerEvent signal is prioritized since that transition
is more time-critical than the NewTemp transition.

The SCADE block is executed in three steps. The first step is to collect the air
temperature with the external function AirTemp. The second step is to calculate
the output to the heater with the SCADE defined function HeatControl. The third
step is to set the new value for the heater with the external function HeatOutput.

After the SCADE-related part of the transition is executed, the timer must be set
to a new time. In this example the timer value is increased with the period time
and then sent to the external timer with the signal SetTimer.

The response time for the TimeEvent signal can be calculated from either one of
the following three scenarios:

• The SDL system is idle:
Response time = <time for the operating system to make a context
switch> + <time for the SDL system to start the TimerEvent transition> +
<time for AirTemp, HeatControl, and HeatOutput>

• The SDL system is executing the Controller process:
Response time = <Response time for SDL system when it is idle> +
<time for the SDL system to preempt Controller and make a context
switch>

22

• The SDL system is executing the Regul process (NewTemp transition):
Response time = <Response time for SDL system when it is idle> +
<Time to finish the NewTemp transition>

There will be no signals sent to the system before the system has finished the
initialization in this example, and therefore no response time for that scenario is
calculated. If it is possible to send signals to the system during startup, the
initialisation time must be added to the response time.

5.5 Scheduling
Scheduling the processes in the system is interesting when the system contains
more than one process. SDL only supports FIFO scheduling. FIFO scheduling
means that the kernel always chooses the process that has waited the longest to
execute.

It is possible to use Rate-Monotonic scheduling in the SDL Suite. This
scheduling is implemented with process priority. Rate-Monotonic scheduling is
based on period time, where the process with the shortest period time has the
highest priority. This scheduling requires that the user knows the period times
and sets the priorities accordingly.

23

6 Improvement Suggestions

This chapter will present suggestions on how to improve the hard real-time
aspects of the SDL tool. Ideas of how integration between SCADE and SDL can
be supported will also be provided.

6.1 Connecting SCADE and SDL
This section will discuss how integration between SDL and SCADE could be
supported. Three different approaches to make the integration will be presented.

6.1.1 Import SCADE into SDL
This is the first of the three suggested approaches to integrate SCADE and SDL.
The approach is based on the working solution described in Section 5.1. This
means that the SCADE function is imported and used in a SDL process. The
import of the SCADE functions in SDL must be made much easier. Instead of
compiling the SCADE node into a C function and then import the function with
CPP2SDL and a PR-file, a reference to the SCADE node should be enough. By
double-clicking on a SCADE-reference symbol in the SDL Process View, the
SCADE node should pop up.

The SDL tool should show function and variable names in the structure
containing the SCADE data. The names from SCADE could be presented in a
menu in the Process View. The tool should also warn the user if the SCADE
node is changed, and the SDL part of the program has to be updated.

The integration between SDL and SCADE in this approach has the advantage
that the SCADE tool does not have to be changed at all from the users point of
view, the integration is entirely made in the SDL suite. The changes should be
fairly local in the SDL Suite since all integration is made in the Process View.

6.1.2 Map SCADE and SDL Signals in the SDL Tool
This approach is based on that it should be possible to describe a process
behavior in ether SDL symbols or SCADE symbols. This means that when the
developer creates a new process, he, or she, can choose to create either a SDL
process or a SCADE process. This integration depends on the possibility to map
the SCADE input and output, and SDL signals.

The example in Section 5.4 shows that there can be two kinds of signals to the
SCADE defined process. Some of the signals only update the SCADE inputs
while other signals results in both input update and execution of the SCADE
node. The example also showed that sometimes it might be desirable to be able
to connect a SCADE input directly to an external function.

The following example will show one possible way of making the integration of
SCADE and SDL easier. This is an example with a heat controller where the user

24

can set the desired temperature as well as the two controller parameters P and I.
Actual_Temp is read from a thermometer with the external function AirTemp.
Heat will be calculated periodically defined by a period time or when
Wanted_Temp is signaled. The Heat output will send a signal to the environment
and call the external function HeatOutput.

 block HeatController

SIGNAL
 SetP(Real),
 SetI(Real),
 SetPI(Real, Real),
 Wanted_Temp(Real),
 Heat(Real);

HeatController

EnvToHeat EnvToHeat

SetP, SetI, SetPI,
Wanted_Temp

HeatToEnv HeatToEnv

Heat

Figure 6.1: Block view of Heat Controller Example

Figure 6.1 shows the Block View of the HeatController, and the definition of the
signals. When the Block View has been defined and the user opens the process
HeatController a regular process view will come up.

 process HeatController

SDLTOSCADESIGNALS
 SetP : UPDATE,
 SetI : UPDATE,
 SetPI : UPDATE
 Wanted_Temp : EXECUTE;

SIGNALMAPPING
 {SDL}.SetP -> {SCADE}.SetP,
 {SDL}.SetI -> {SCADE}.SetI,
 {SDL}.SetPI -> ({SCADE}.SetP,
 {SCADE}.SetI),
 {SDL}.Wanted_Temp -> {SCADE}.Wanted_Temp,
 {SCADE}.Heat -> {SDL}.Heat

EXTERNALCALLS
 {EXTERNAL}.AirTemp -> {SCADE}.Actual_Temp
 {SCADE}.Heat - > {EXTERNAL}.HeatOutput

PERIODTIME 2.0
RELEASETIME 0
DEADLINE 2.0
WCET 0.5

PR
HeatControl

SCADE

HeatController

Figure 6.2: SDL to SCADE mapping in the process view.

The Process View in Figure 6.2 shows a PR reference to HeatControl, which is a
file defining the external functions AirTemp and HeatOutput. The declaration
block with PERIODTIME etc., defines the process behavior from a scheduling
perspective. This block will be discussed in the Section 6.3.

25

The SCADE block is a new symbol indicating that the process behavior will be
defined in SCADE. The user can open SCADE by double-clicking on this
symbol. The large declaration block with SDLTOSCADESIGNALS defines how
the SCADE defined parts shall be connected to SDL and the external functions.
There are three different blocks in the definition:

• SDLTOSCADESIGNALS: Defines how the process reacts to a SDL
signal. If the signal is defined as UPDATE, the signal will result in an
update of one or more process variables. EXECUTE will first update
process variables and then call the SCADE node for calculation. Note
that an EXECUTE signal does not necessarily have to update any
variables.

• SIGNALMAPPING: Defines which SDL signals that update the
corresponding SCADE input variables, and which SCADE outputs that
updates the corresponding SDL signals. Note that a signal with many
values can update more than one SCADE input. This is done with signal
SetPI, which will update both P and I input in SCADE. When Heat
output is calculated in SCADE, the result will be sent with the SDL
signal Heat.

• EXTERNALCALLS: Defines how SCADE input and output should be
connected to external functions. In this example AirTemp should be read
to the SCADE input Actual_Temp before the SCADE node is run. When
SCADE output Heat is calculated the external function HeatOutput
should be called with the result as parameter.

After defining the interface between SCADE and SDL, SCADE is opened and
the SCADE node is defined which can be seen in Figure 6.3.

Diff0

Heat

PRE

Wanted_Temp

Actual_Temp

I

P

Figure 6.3: SCADE Process View

The main advantage of this approach is that the user only has to define the
process behavior in SDL symbols or in SCADE symbols. The user does not have
to work with pointers either, which the help in SDL warns for. The disadvantage
is that the mapping code can become quite complex, and a user has to learn how
to use this code. The lack of flexibility and the unfamiliar way of using SDL
makes this approach less interesting than the previous approach.

26

6.1.3 Map SDL and SCADE Signals in the SCADE tool
An alternative solution is to define the input in SCADE where the input type can
be selected in a property page. The input can be Updating, Executing or External
Source. The Updating and the Executing Input behaves the same way as the
UPDATE and EXECUTE inputs in the previous example. The External Source
will call an external function for input. This function will be included in the
property page for the input.

 SCADE Input

External Source Asynchronous
Input

Updating
Input

Executing
Input

Actual_Temp

Wanted_Temp P
I

Figure 6.4: Different kinds of SCADE Input

Figure 6.4 shows the different inputs, and how the inputs in Figure 6.3 fit into the
input tree.

This solution means that the Process View can be skipped and the SCADE tool
can be started directly when accessing the process. This solution will be very
hard to implement in the tools since both the SCADE Suite and the SDL Suite
have to be changed. It is recommendable to minimize the effect on the existing
tools, for a faster, more reliable and cheaper development of the tools.

6.2 Timers
Timers have been discussed in previous chapters, and the arguments for an
external timer have been presented. The use of an external timer should be
included as a macro in the Configuration Header File, ml_mcf.h.

#define XMK_USE_EXTERNAL_TIMER

When the macro is defined in the Configuration Header File all the timers in the
system shall set an external timer. This can be done in two ways, one external
timer for all internal timers, or one external timer for each internal timer. If only
one external timer is used for the system, the scheduler must keep track of all the
internal timers and put all the timer events in a list, from which the earliest timer
event sets the external timer.

27

6.3 Scheduling
When a system contains more than one process, scheduling must be done. This
section will provide scheduling algorithms that the SDL system should support.
It will also discuss what is needed to be able to use these algorithms. Most
information in the Scheduling chapter has been taken from [TSC00]

6.3.1 Periodic Process Scheduling
This section will discuss scheduling policies for periodic processes. There are
many more policies than mentioned in this section, but these have been chosen
because they are the most common scheduling policies.

• Fixed Priority Preemptive Scheduling: A process with higher priority
preempts a process with lower priority. This scheduling policy can
already be used in the SDL Suite.

• Rate-Monotonic Scheduling: The shorter the period time, the higher the
priority. This is an optimal fixed priority policy, based on that the
deadline and period time for a periodic task is the same. This policy can
be implemented in the present SDL Suite using priority, but it would be a
nicer solution if the user only had to define period time.

• Deadline-Monotonic Scheduling: Assumes that the deadline is a fixed
point in time relative to the period start. The shorter the deadline, the
higher the priority. This can be implemented in the present SDL Suite,
but it would be nicer to define a deadline instead of priority.

• Earliest Deadline First Scheduling: This is a dynamic priority
preemptive policy. The scheduler runs the process with the earliest
deadline. A process with an earlier deadline preempts a process with a
later deadline. This policy assumes that the deadlines for all the processes
are known. The policy minimizes the maximum lateness of the tasks. In
order to use this scheduling algorithm, deadline must be defined.

• Least Slack Scheduling: This scheduling policy uses dynamic-priority.
The slack is calculated as the deadline minus the remaining worst-case
execution time for the process to complete its execution. The process
with the shortest slack will run first.

6.3.2 Aperiodic Process Scheduling
Since a real-time system often contains both periodic and aperiodic processes,
the scheduling policy must be able to schedule both types of processes. One way
of solving the scheduling problem is the Aperiodic Server Approach. The idea
with this approach is to create a periodic task called Aperiodic Server and then
let the aperiodic processes execute during the Aperiodic Servers scheduled time.
The Aperiodic Server can be implemented in different ways.

28

• Deferrable Server: The Deferrable Server will have a period time Tserver
and an execution time Cserver. This scheduling policy will reserve
execution time every period, regardless if the reserved time is used or not.

• Sporadic Server: The Sporadic Server has a period time and an
execution time like the deferrable server. The reserved execution time
will not get replenished until Tserver time after usage of reserved time.
While the Deferrable server is easy to implement the Sporadic Server has
higher schedulable utilization and is easier to analyze.

+1
+2

5 10 0

Cserver

Cserver

Aperiodic
Request

Sporadic
Server

Deferred
Server

Figure 6.5: Sporadic and Deferrable Servers with Tserver = 5 and Cserver = 3

In Figure 6.5, an example with a Sporadic and a Deferrable Server is presented.
The Figure shows how the Deferrable Server renews its execution time Cserver in
the beginning of a new period, while the Sporadic Server renews Cserver one
period time after the Server starts using execution time.

6.3.3 Process Attributes for Scheduling
The previous two sections showed that a number of process attributes are needed
for the different scheduling policies. The interesting attributes are Worst Case
Execution Time, or WCET, Period Time and Deadline. In some applications the
Release Time is interesting for the scheduler to be able to make correct
calculations of remaining execution time. [LHe99] suggests that the process
attributes are declared as global variables for the process. Figure 6.6 shows how
this can be done.

29

 process Periodic

PERIODTIME <number>
WCET <number>
RELEASETIME <number>
DEADLINE <number>

State_1

State_1

Signal1

Signal2

State_1

Figure 6.6: Periodic Process Attributes Definition

Both Period Time and Deadline are values that the user decides. WCET is the
longest time a transition in the process can execute. It is very hard to calculate
WCET, since a process can have many transitions and every transition can have
more then one execution path. The easiest way to obtain WCET is to test the
system and time all processes. Release Time should be the same for all
processes, and should be very easy to obtain. The Release Time should be timed
during tests.

30

7 Implementation of a Scheduling Algorithm

The last part of this Masters Thesis has been about developing a scheduling
algorithm for the Cmicro kernel. This chapter will discuss how the algorithm was
implemented, and also what should be done to make the scheduling more
efficient and useful.

The chosen algorithm was Earliest Deadline First algorithm. The reason for this
is that the Earliest Deadline First is a dynamic-priority algorithm and cannot be
implemented with today’s SDL tool, while Deadline-Monotonic and Rate-
Monotonic scheduling can be done if the user defines priority correctly, see
Section 6.3.1. Although this chapter only will discuss the Earliest Deadline First
algorithm, other algorithms can be implemented in the same way.

To simplify the implementation of the scheduling algorithm, assumptions on that
all processes have a defined a period time and a deadline have been made. This
assumption is of course not applicable in many cases, but the scheduler is an
example of how a scheduling algorithm can be introduced in the existing kernel.

The scheduling algorithm was built on the assumption that all processes have
declared the variables PERIODTIME, DEADLINE, NEXTPERIOD, and
NEXTDEADLINE, in the beginning of the variable declaration, and that the
variables are declared in exactly that order, see Figure 7.1 in Section 7.1.

7.1 The Scheduled SDL System
A simple SDL system has been created, which was made to fit the scheduling
algorithm. The system has two processes, each with a timer used to make a
transition with a defined period time and deadline. The only differences between
the two processes are the actual period time and deadline. Figure 7.1 shows how
one of the processes is defined. The process will increase NEXTPERIOD with
PERIODTIME every transition, and set the timer with NEXTPERIOD.
DEADLINE and NEXTDEADLINE are used in the kernel to make the scheduling
decision.

The compiler directive /*#Name is used to make it possible to access the
variables from the kernel. Without the /*#Name-directive, the compiler will give
the variables prefixes which are impossible to predict in the kernel.

31

B_WAIT

B_Timer

Hello

NEXTPERIOD := NEXTPERIOD
 + PERIODTIME,
NEXTDEADLINE := NEXTPERIOD
 + DEADLINE

SET (NEXTPERIOD, B_Timer)

B_Wait

DCL
 PERIODTIME/*#NAME 'PERIODTIME' */ DURATION,
 DEADLINE/*#NAME 'DEADLINE' */ DURATION,
 NEXTPERIOD/*#NAME 'NEXTPERIOD' */ TIME,
 NEXTDEADLINE/*#NAME 'NEXTDEADLINE' */ TIME;

TIMER
 B_Timer;

PERIODTIME := 5.0,
DEADLINE := 2.0,
NEXTPERIOD := NOW + PERIODTIME,
NEXTDEADLINE := NEXTPERIOD + DEADLINE

SET (NEXTPERIOD, B_Timer)

B_Wait

Figure 7.1: Periodic Process in SDL

7.2 Original Scheduling in the Cmicro Kernel
This section is an overview of how the Cmicro kernel works. The kernel runs in
a loop, in which zero or one transition is executed each time. The kernel first
checks if there are any signals from the environment, and puts the signals in the
signal queue. The signal queue is global for all processes that the kernel handles.
The second step in the loop is to check if any timer in the timer list has expired.
The kernel puts the expired timers in the signal queue. The last step in the loop is
to choose a signal to process. This is done in the function ProcessSignal.

ProcessSignal runs in a loop until one transition is made, or the signal queue is
empty. This is done in three steps. The first step is to get the first signal in the
signal queue. The second step is to check if the called process handles the signal,
if not remove the signal and start the loop again. If the process handles the
signal, the third step is to make the transition. The execution leaves the
ProcessSignal loop when the transition is made.

32

 Environment

Timer queue

Signal queue

Process

Cmicro kernel

Process

Figure 7.2: Timer queue and Signal queue in Cmicro

xInEnv()

xOutEnv()

Figure 7.2 shows how signals are passed inside the Cmicro kernel and also
between the environment and the kernel. The kernel calls xInEnv to recieve
signals from the environment, and calls xOutEnv to send signals to the
environment. Note that the kernel has one global signal queue and one global
timer queue, which are used for all processes.

7.3 Changes in the Cmicro Kernel
The implementation of the new algorithm was made to make as few changes in
the existing kernel as possible. This has resulted in changes in the function
ProcessSignal in the sche.c-file, the new files SchedulingAlgorithm.c and
SchedulingAlgorithm.h, see Appendix B and Appendix A, and a new function,
xmk_SetCurrentSignal, in the queue-handling file queu.c, see Appendix C.

The decision of which signal that is going to be scheduled, in ProcessSignal, has
been replaced with a call to the new scheduling function
xmk_GetNextScheduledProcess, see Appendix D.

xmk_GetNextScheduledProcess can be found in the SchedulingAlgorithm-files.
This function calls the defined scheduling algorithm function. The original SDL
scheduling algorithm, ClassicSDL, will be called if no compiler flag is defined.
The function EarliestDeadlineFirst will be called if the
XMK_EARLIEST_DEADLINE_FIRST compiler flag is defined in the
Configuration Header File.

33

Signal Signal Signal Signal

Process A
NEXTDEADLINE=132

Signal
List

Process B
NEXTDEADLINE=54

Process C
NEXTDEADLINE=92

Figure 7.3: Signal queue with signals to processes A, B and C.

ClassicSDL will get the first signal in the signal queue. The selection part of the
original ProcessSignal function has been moved to this function without
changes. Figure 7.3 shows a signal queue with four signals to the processes A, B
and C. The execution order will be A, B, C, and C with ClassicSDL.

EarliestDeadlineFirst goes through the signal queue and checks which of the
signaled processes that has the earliest deadline. The structure InstanceHeader
was defined to make it possible to access the instance variable
NEXTDEADLINE. It is because of this mapping the instance variables must be in
the correct order in the beginning of the variable declaration. With the queue in
Figure 7.3, the execution order will be B, C, C, and A if EarliestDeadlineFirst is
used.

Since the queue has a pointer to the selected message, the queue pointer has to be
updated in EarliestDeadlineFirst-function. The reason for this is that the
algorithm goes through the list and ends when the pointer has reached the end of
the queue. xmk_SetCurrentSignal is called to set the pointer to the selected signal
in the end of the EarliestDeadlineFirst-function.

7.4 Suggested Implementation Improvements
This section will present suggestions of how to improve the implementation of
the scheduling algorithm.

The variables used by the kernel to schedule the periodic processes, in the
implementation: PERIODTIME, DEADLINE, NEXTPERIOD, and
NEXTDEADLINE, should be reserved words in the SDL Tool. These variables
have to be reachable both from the kernel and the process. In this solution a
boolean variable making it possible to check if the scheduling variables are
defined is needed.

The schedulers preemption will not work properly together with the Earliest
Deadline First-algorithm. It is therefore recommendable that the preemption part
of the kernel is changed to work with the new algorithm as well. The problem
with the preemption is that the kernel preempts based on priority. Earliest
Deadline First is supposed to preempt if a process with earlier deadline wants to
execute, priority is not used in this scheduling algorithm.

34

In order to schedule both periodic and aperiodic processes, it would be a good
idea to have a special queue for the signals resulting in periodic transitions. The
scheduler will then schedule the periodic transitions first and then the aperiodic.
It is impossible to make an efficient decision whether a signal will result in a
periodic transition or not, since there are no periodic timers and it is not defined
whether a transition is periodic or not. One way of dealing with this problem is to
look at all timers as periodic. This means that the kernel will put the resulting
signal in the periodic queue when a timer expires. Periodic timers would be the
best solution, making it possible to decide if a signal is periodic or not.

In order to make the selection of the executing process more efficient, it might be
a good idea to sort the signal queue after deadlines when a new signal arrive. The
advantage of sorting the signal queue is that the kernel does not have to go
through the queue every time a scheduling decision is made.

35

8 Conclusion

This report has shown that the SDL and the SCADE tools work well together.
Using SDL as a host language for SCADE is a good way of creating control
systems with many processes. The connection between SCADE and SDL works,
but could be better supported. A direct link between the tools is suggested.

Suggestions on how to improve the SDL tool from a real-time aspect have been
presented. The SDL tool needs to improve the time management. Timers in the
existing tools are not accurate enough. This paper suggests that external timers
should be optional, creating better accuracy in time. Another suggestion to
improve the SDL tool is to have scheduling as an option. Different periodic and
aperiodic algorithms would strengthen the tool in a hard real-time aspect.

This report has shown that it is possible to introduce a new scheduling algorithm
to the SDL Cmicro kernel. It is important though to remember that the algorithm
has only been tested with a few simple test systems. There are probably a lot of
problems with the new kernel, but this is only an example of how an algorithm
can be introduced.

36

9 References

[CaSe] J.-L.Camus, T.L.Sergent. Combining Telecom Techniques with
Control Engineering Techniques for Distributed Control Systems

[EHS97] J.Ellsberger, D.Hogrefe, A.Sarma. SDL Formal Object-oriented
Language for Communicating Systems. Great Britain, 1997.
ISBN: 0-13-632886-5.

[Hal93] N.Halbwachs. Synchronous Programming of Reactive Systems.
Netherlands 1993. ISBN: 0-7923-9311-2

[LHe99] L.Helmestam, Tools for real-time systems. Master thesis,
Department of Computer Engineering Mälardalen University,
1999.

[SCADE] Help in Telelogic Tau SCADE, Telelogic.

[SDL41] Help in Telelogic Tau SDL Suite 4.1, Telelogic.

[TSC00] The Concise Handbook Of Real-Time Systems, Version 1.1.
TimeSys Corporation, 1999.

37

10 Glossary

Bare Integration – Cmicro
Integration with environment
without operating system

Block – Part of SDL language, see
Section 3.1

Block View – Window in the SDL
tool for editing blocks

Earliest Deadline First – periodic
scheduling policy, see Section
6.3.1

Deadline – Point in time when a
task must have finished its
execution

Deadline-Monotonic – periodic
scheduling policy, see Section
6.3.1

Deferrable Server – aperiodic
scheduling policy, see Section
6.3.2

FIFO – First In First Out is a
scheduling policy

ITU – International
Telecommunication Union

Least Slack Scheduling – periodic
scheduling policy, see Section
6.3.1

Light Integration (Cadvanced) –
Integration with environment using
SDL kernel

Light Integration (Cmicro) –
Integration with environment using
SDL kernel

Period Time – Time interval
between two executions of a
periodic task

Preemption – The scheduler end a
process execution before it is
finished

Process - Part of SDL language,
see Section 3.1

Process View - Window in the
SDL tool for editing processes

Rate-Monotonic – periodic
scheduling policy, see Section
6.3.1

Response Time – The time it takes
the system to create an output
when an input is presented.

RTOS – Real-Time Operating
System

SCADE – Safety Critical
Applications Development
Environment

SDL – Specification Description
Language

Sporadic Server – aperiodic
scheduling policy, see Section
6.3.2

System – Part of SDL language,
see Section 3.1

System View – Window in the
SDL tool for editing systems

Tight Integration – Cadvanced
Integration with environment using
Operating System primitives

38

Appendix A: SchedulingAlgorithm.h
/*+MHDR*/
/*-MHDR*/
/*
+--+
| |
| Copyright by Telelogic AB 1993 - 2000 |
| |
| This Program is owned by Telelogic and is protected by national |
| copyright laws and international copyright treaties. Telelogic |
| grants you the right to use this Program on one computer or in |
| one local computer network at any one time. |
| Under this License you may only modify the source code for the purpose |
| of adapting it to your environment. You must reproduce and include |
| any copyright and trademark notices on all copies of the source code. |
| You may not use, copy, merge, modify or transfer the Program except as |
| provided in this License. |
| Telelogic does not warrant that the Program will meet your |
| requirements or that the operation of the Program will be |
| uninterrupted and error free. You are solely responsible that the |
| selection of the Program and the modification of the source code |
| will achieve your intended results and that the results are actually |
| obtained. |
| |
+--+
*/
/*
+--+
| Functionname : GetNextScheduledProcess |
+--+
| |
| Description : Return true if any process has been scheduled. |
| This function search through the signal list and check which |
| receiving process shall be scheduled next. Returns pointer |
| to xPID and pointer to a pointer to message of type |
| xmk_T_MESSAGE |
| |
| Parameter : xPID * , xmk_T_MESSAGE ** |
| |
| Return : unsigned char |
| |
+--+
*/

#ifndef __SCHEDULINGALGORITHM_H_
#define __SCHEDULINGALGORITHM_H_

#include ml_typ.h

unsigned char xmk_GetNextScheduledProcess(xPID * p_ScheduledPID, \
xmk_T_MESSAGE ** p_ScheduledMessage);

#ifdef XMK_EARLIEST_DEADLINE_FIRST

39

/*
+--+
| Functionname : EarliestDeadlineFirst |
+--+
| |
| Description : Return true if any process has been scheduled. |
| This function search through the signal list and check which |
| receiving process shall be scheduled next. Returns pointer |
| to xPID and pointer to a pointer to message of type |
| xmk_T_MESSAGE |
| |
| Parameter : xPID * , xmk_T_MESSAGE ** |
| |
| Return : unsigned char |
| |
+--+
*/

 unsigned char EarliestDeadlineFirst(xPID * p_ScheduledPID, \
xmk_T_MESSAGE ** p_ScheduledMessage);

#else /* Old scheduling, FIFO or priority preemptive

/*
+--+
| Functionname : ClassicSDL |
+--+
| |
| Description : Return true if any process has been scheduled. |
| This function search through the signal list and check which |
| receiving process shall be scheduled next. Returns pointer |
| to xPID and pointer to a pointer to message of type |
| xmk_T_MESSAGE |
| |
| Parameter : xPID * , xmk_T_MESSAGE ** |
| |
| Return : unsigned char |
| |
+--+
*/

 unsigned char ClassicSDL(xPID * p_ScheduledPID, \
xmk_T_MESSAGE ** p_ScheduledMessage);

#endif
#endif

40

Appendix B: SchedulingAlgorithm.c
/*+MHDR*/
/*-MHDR*/
/*
+--+
| |
| Copyright by Telelogic AB 1993 - 2000 |
| |
| This Program is owned by Telelogic and is protected by national |
| copyright laws and international copyright treaties. Telelogic |
| grants you the right to use this Program on one computer or in |
| one local computer network at any one time. |
| Under this License you may only modify the source code for the purpose |
| of adapting it to your environment. You must reproduce and include |
| any copyright and trademark notices on all copies of the source code. |
| You may not use, copy, merge, modify or transfer the Program except as |
| provided in this License. |
| Telelogic does not warrant that the Program will meet your |
| requirements or that the operation of the Program will be |
| uninterrupted and error free. You are solely responsible that the |
| selection of the Program and the modification of the source code |
| will achieve your intended results and that the results are actually |
| obtained. |
| |
+--+
*/

#ifndef __SCHEDULINGALGORITHM_C_
#define __SCHEDULINGALGORITHM_C_

/*+IMPORT*/
/*==================== I M P O R T =================================*/
#include ml_typ.h
#include ml_err.h

/*-------------------- Variables ---*/
extern XCONST XPDTBL xmk_ROM_ptr xPDTBL[] ; /* <root-process-table> */

/*==*/
/*-IMPORT*/

/*-------------------- Constants, Macros ----------------------------------*/

/*
** Internal Value(running proc-type)
*/
#undef RUN_PROC
#define RUN_PROC EPIDTYPE(xRunPID)

/*
** Internal Value(running proc-inst)
*/
#undef RUN_INST
#define RUN_INST EPIDINST(xRunPID)

41

/*-------------------- Typedefinitions ----------------------------------*/
/**
*Struct used to map the first variables in the instance struct
*defined in components.c
***/

#ifdef XMK_EARLIEST_DEADLINE_FIRST
 typedef struct {
 PROCESS_VARS
 SDL_Duration PERIODTIME;
 SDL_Duration DEADLINE;
 SDL_Time NEXTPERIOD;
 SDL_Time NEXTDEADLINE;
 } InstanceHeader;
#endif

/*-------------------- Functions ---*/

/*-------------------- Variables --*/

/*
+--+
| Functionname : GetNextScheduledProcess |
+--+
| |
| Description : Return true if any process has been scheduled. |
| This function search through the signal list and check which |
| receiving process shall be scheduled next. Returns pointer |
| to xPID and pointer to a pointer to message of type |
| xmk_T_MESSAGE |
| |
| Parameter : xPID * , xmk_T_MESSAGE ** |
| |
| Return : unsigned char |
| |
+--+
*/

unsigned char xmk_GetNextScheduledProcess(xPID * p_ScheduledPID, \
xmk_T_MESSAGE ** p_ScheduledMessage)

{
 #ifdef XMK_EARLIEST_DEADLINE_FIRST
 return EarliestDeadlineFirst (p_ScheduledPID, p_ScheduledMessage);
 #else
 return ClassicSDL (p_ScheduledPID, p_ScheduledMessage);
 #endif
}

42

#ifdef XMK_EARLIEST_DEADLINE_FIRST

/*
+--+
| Functionname : EarliestDeadlineFirst |
+--+
| |
| Description : Return true if any process has been scheduled. |
| This function search through the signal list and check which |
| receiving process shall be scheduled next. Returns pointer |
| to xPID and pointer to a pointer to message of type |
| xmk_T_MESSAGE |
| |
| Parameter : xPID * , xmk_T_MESSAGE ** |
| |
| Return : unsigned char |
| |
+--+
*/

EarliestDeadlineFirst (xPID * p_ScheduledPID, \
xmk_T_MESSAGE ** p_ScheduledMessage)

{
 XPDTBL xmk_ROM_ptr p_ReceiverProcess ;
 xINSTD xmk_RAM_ptr pRunData; /* Pointer to currently running */
 /* processinstance - data */
 xmk_T_MESSAGE xmk_RAM_ptr p_Message; // Pointer to current messages in

// message list
 InstanceHeader * p_CurrentHeader;
 xPID xRunPID; // Current process PID
 SDL_Time CurrentDeadline; // Current process Deadline
 SDL_Time EarliestDeadline; // Earliest Deadline for the called processes

/** INIT SIGNAL POINTER */

 /*
 ** load pointer to signal with first signal in the queue
 */
 p_Message = xmk_FirstSignal ();

 EarliestDeadline = -1.0;

/** PROCESS FIRST PROCESSABLE SIGNAL */

 while(p_Message != (xmk_T_MESSAGE xmk_RAM_ptr) NULL)
 {
/** GET SIGNALED PROCESS ID */
 #ifndef XMK_USE_RECEIVER_PID_IN_SIGNAL
 /*
 ** Set new active process-PID
 */

 XMK_BEGIN_CRITICAL_PATH;
 xRunPID = xRouteSignal (p_Message->signal);
 XMK_END_CRITICAL_PATH;

/*** CHECK IF PID IS VALID */

43

 #ifdef XMK_USE_MAX_ERR_CHECK
 if (xRunPID == xNULLPID)
 {

 #if defined (XFREESIGNALFUNCS) && defined \
 (XMK_USED_SIGNAL_WITH_DYN_PARAMS)
 xmk_ReleaseSignalParameter(p_Message);
 #endif
 xmk_RemoveCurrentSignal ();
 /*
 ** Check next signal in queue
 */
 p_Message = xmk_NextSignal ();
 continue;
 }
 #endif
 #else
/*** GET SIGNALED PROCESS ID */

 /*
 ** Set new active process-PID
 */
 XMK_BEGIN_CRITICAL_PATH;
 xRunPID = p_Message->rec;
 XMK_END_CRITICAL_PATH;
 #endif /* ... ifndef XMK_USE_RECEIVER_PID_IN_SIGNAL */

/***************** CHECK IF DEADLINE IS SHORTER THAN PREVIOUS PROCESSES */

 /*
 ** Get current process type
 */

 p_ReceiverProcess = xPDTBL [RUN_PROC];

 /*
 ** Get current instance structure
 */

 #ifndef XMK_USED_ONLY_X_1
 pRunData = (xINSTD xmk_RAM_ptr)(p_ReceiverProcess->pInstanceData \
 + (p_ReceiverProcess->DataLength * (RUN_INST)));
 #else
 pRunData = (xINSTD xmk_RAM_ptr)(p_ReceiverProcess->pInstanceData);
 #endif

 p_CurrentHeader = (InstanceHeader *) pRunData;
 CurrentDeadline = (SDL_Time) p_CurrentHeader->NEXTDEADLINE;

 /*
 ** Check if current process has the earliest deadline
 */

 if (EarliestDeadline >= 0)
 {
 if (CurrentDeadline < EarliestDeadline)
 {
 EarliestDeadline = CurrentDeadline;
 *p_ScheduledPID = xRunPID;
 *p_ScheduledMessage = p_Message;

44

 }
 }
 else
 {
 EarliestDeadline = CurrentDeadline;
 *p_ScheduledPID = xRunPID;
 *p_ScheduledMessage = p_Message;
 }

 p_Message = xmk_NextSignal();
 } /* END WHILE */

/**Update queue pointer and reset temporary poiners */

 /* Set pointer in queue to the scheduled signal */
 xmk_SetCurrentSignal(*p_ScheduledMessage);

 /* Set pointers to null */
 p_Message = (xmk_T_MESSAGE xmk_RAM_ptr) NULL;
 p_ReceiverProcess = NULL;
 pRunData = NULL;
 p_CurrentHeader = NULL;

 if (EarliestDeadline >= 0)
 {
 return 1;
 }
 else
 {
 return 0;
 }
} /* END OF FUNCTION */

#else /* Old scheduling, FIFO or priority preemptive

/*
+--+
| Functionname : ClassicSDL |
+--+
| |
| Description : Return true if any process has been scheduled. |
| This function search through the signal list and check which |
| receiving process shall be scheduled next. Returns pointer |
| to xPID and pointer to a pointer to message of type |
| xmk_T_MESSAGE |
| |
| Parameter : xPID * , xmk_T_MESSAGE ** |
| |
| Return : unsigned char |
| |
+--+
*/

ClassicSDL (xPID * p_ScheduledPID, xmk_T_MESSAGE ** p_ScheduledMessage)
{
 unsigned char Result;
 xPID xRunPID;

 Result = 1;
 /*

45

 ** Use a Routing function, if the signal in the queue contains
 ** no receiver-PID. The user has to implement the function
 ** anywhere; a template is given in mk_user - module.
 */
 #ifndef XMK_USE_RECEIVER_PID_IN_SIGNAL
 /*
 ** Set new active process-PID
 */

/*** GET SIGNALED PROCESS ID */
 XMK_BEGIN_CRITICAL_PATH;
 xRunPID = xRouteSignal ((*p_ScheduledMessage)->signal);
 XMK_END_CRITICAL_PATH;

/** CHECK IF PID IS VALID */

 #ifdef XMK_USE_MAX_ERR_CHECK
 if (xRunPID == xNULLPID)
 {
 //ErrorHandler (ERR_N_xRouteSignal);

 #if defined (XFREESIGNALFUNCS) && defined \
(XMK_USED_SIGNAL_WITH_DYN_PARAMS)

 xmk_ReleaseSignalParameter(*p_ScheduledMessage);
 #endif
 xmk_RemoveCurrentSignal ();
 /*
 ** Leave signal-handling (leave while-loop)
 */
 *p_ScheduledMessage = NULL;
 Result = 0;
 }
 #endif
 #else

/** GET SIGNALED PROCESS ID */

 /*
 ** Set new active process-PID
 */
 XMK_BEGIN_CRITICAL_PATH;
 xRunPID = (*p_ScheduledMessage)->rec;
 XMK_END_CRITICAL_PATH;
 #endif /* ... ifndef XMK_USE_RECEIVER_PID_IN_SIGNAL */

 *p_ScheduledPID = xRunPID;
 return Result;
}
#endif
#endif

46

Appendix C: xmk_SetCurrentSignal
/*+FHDR E*/
/*
+--+
| Functionname : xmk_SetCurrentSignal |
+--+
| |
| Description : |
| Set the queue pointer to point at p_Message |
| |
| Parameter : - xmk_T_MESSAGE * |
| |
| Return : - |
| |
+--+
*/
/*-FHDR E*/

#ifndef XNOPROTO
 void xmk_SetCurrentSignal(xmk_T_MESSAGE * p_Message)
#else
 void xmk_SetCurrentSignal (p_Message)
 xmk_T_MESSAGE xmk_RAM_ptr p_Message ;
#endif

{
 XMK_BEGIN_CRITICAL_PATH;
 XMK_CURRENTSIGNAL = XMK_QUEUE;
 XMK_END_CRITICAL_PATH;

 while ((XMK_CURRENTSIGNAL != (T_E_SIGNAL xmk_RAM_ptr) NULL) \
&& ((xmk_T_MESSAGE xmk_RAM_ptr) XMK_CURRENTSIGNAL != \
p_Message))

 {
 XMK_BEGIN_CRITICAL_PATH;
 XMK_CURRENTSIGNAL = (XMK_CURRENTSIGNAL)->next;
 XMK_END_CRITICAL_PATH;
 }
}

47

Appendix D: xmk_ProcessSignal

The following code is the part of ProcessSignal where GetNextScheduledProcess
is called:

…
p_tempMessage = &p_Message;
p_xRunPID = &xRunPID;
while(p_Message != (xmk_T_MESSAGE xmk_RAM_ptr) NULL)
{
 if (!xmk_GetNextScheduledProcess (p_xRunPID, p_tempMessage))
 {
 p_Message = NULL;
 continue;
 }
…

