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1 Introduction

ABS (acronym for Antilock Brake Systems) is a feedback control system for
brake systems that aims at retaining the steerability of the vehicle as well as
maximizing the braking force, thus decelerating the vehicle as much as possible
while keeping the driver in control. The first designs where made as early as in
1947, and consisted of sensors that by detection of a wheel lock opened a valve
to reduce brake pressure, a purely mechanical system.

Today the option to use electromechanical instead of hydraulic brake actuators
introduces new possibilities to control the braking process. Use of such so called
brake-by-wire systems are gaining widespread use, as they enable more accurate
control of the braking forces and have significantly less time-delay than their
hydromechanical counterparts. Also much more mathematically complicated
controllers can be implemented when sufficient computing capacity is available,
opening up possibilities of using complex estimators and control algorithms.
Thus can the nonlinearities and uncertainties of the process be estimated and
controlled with advanced systems, for instance by using nonlinear or adaptive
techniques.

When developing these new control systems good models of the vehicle and
especially the wheels are essential. Much work has already been made in this
area, and several models of varying complexity exists and are in use. Many
models used today in work with ABS-systems uses a stationary model for the
tire. This means that at every instant the friction force is determined from the
current measurements, without using knowledge about the past values. This
is based upon a tire model where the tire has been modeled as so rigid that it
doesn’t deform at all during braking, an assumption that obviously is not true.
Studies of tires have revealed that the tire does indeed deform when subjected
to forces due to friction from the road during braking, and that this deformation
has an impact on the development of forces between tire and road surface.

This work will focus on how a static tiremodel can be modified to take this
deformation into account. In literature a multitude of different approaches and
models are proposed, of whom some will be chosen to be examined. The gain in
accuracy will then be weighted against the increase in complexity to see what
extension that actually returns a better model for control purposes. Here other
studies must be taken into account, as it is important that an extension works
well together with models used in prior work. Then by using the new, dynamic
model of the tire-behaviour, a controller is designed. To see if it can do an
acceptable work in controlling the new tire model it is tested on simulated tire
models in simulink. An already existing controller that is based on a static
model is also implemented and used as a reference.

1.1 Structure of the report

The first half of the report is dedicated to the modeling of the car and the
choosing of an appropriate model for the rest of the work; in sections 2 and 3 a
mathematical model with emphasis on braking is designed, and different models
of tire/road interaction are explained. In section 4 the models are examined to



see which one that yields the most accurate estimate of the friction force when
data from a real test-vehicle is used.

In the second half different approaches to control of the new dynamic model
are examined; in section 5 mathematical design tools needed later are described
briefly. Then different control designs are made in section 6 and finally simulated
and compared to each other with simulink simulations of the vehicle in section
7. In the last section conclusions are drawn regarding the results and of what
use they are.



2 Modeling of the car

To be able to design a functional controller for the braking process a mathe-
matical model of the longitudinal car- and wheel dynamics has to be derived.
This model can also later be used to simulate and test the controller.

If every component of the car would be modeled carefully, the order of the
system and the number of parameters would be immense. Not only is such a
model complex to construct, it is also computationally very demanding, and in
a real-time system such as a car, computational capacity is limited. But it must
not be made too simple, as it then would not be able to describe the process
well enough to design an efficient controller. Thus the problem is to know what
simplifications that can be done without affecting precision too much, and to de-
sign the model so that it is otherwise robust when measurement noise is added.
It must also be robust enough to handle parameter variations, for instance tire
wear, car loading or variations in road surface.

2.1 The complete car

Since the most important aspect of the model is to estimate the friction forces
between road and tires, the interaction between the different parts of the car
body are of minor importance, and thus not modeled. This means that the car
is simplified to consist of a body, modeled as one single stiff piece, and four
wheels that are modeled more carefully. The contact between wheels and body
is considered stiff!, i.e. the suspension is neglected.

During braking the brake actuators create a brake torque on each one of the
wheels. This slows down the rotation of the wheels, which in turn creates a force
between road and tire surface. For a wheel with a deviation angle a, as seen in
figure 1, the friction force is divided into one vector along the traveling direction
of the wheel (longitudinal force v,,) and one perpendicular to it (latitudinal force

vy).

2.2 Longitudinal model

If the modeled vehicle is traveling straight ahead with no steering input, the lat-
itudinal forces and velocities are equal to zero. If care is taken when conducting
experiments, so that the steering angle of the car is zero, this can be used to
get a simpler model. A model where the car cannot turn is clearly non-realistic,
but it is good enough for estimating longitudinal friction forces. This means
that unless stated otherwise, the following is true for the rest of the report:

a = 0
Vp = U
a;, = a

With no latitudinal forces the car is 2-dimensional. The forces acting on the
car are as shown in figure 2. This model can be used to deduce two things about
the car:

Li.e. without dynamics
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Figure 1: Single wheel, viewed from above. The vehicle travels along v, the
wheel is turned an angle a.
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Figure 2: Forces acting on the longitudinal model of the car. Here F is the
sum of forces acting between tires and road.

e The rate of acceleration as

F,
Az = Ex (1)

e The variations in normal forces F., and F.; as a function of the acceler-
ation of the car.

In equation 1 the force F is the sum of accelerating force from the engine
and braking force from the from the brakes. The sign is negative if braking force
is greater than accelerating force. m is the total mass of the car.

The most simple model of the normal force is made by simply determining
how much of the vehicles weight that is resting on each wheel (giving an expres-
sion independent of a,). The normal force can be more accurately described
by making and solving the equations of force and torque in two dimensions (x
and z). The model then accounts for the change in F, due to acceleration and
braking. Note that suspension dynamics are ignored, with the motivation that
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Figure 3: Normal forces when the model described by equations 4 and 5 is used.
In this test the car begun braking at a speed of 50 kph, and was stopped at
t = 1.8s.

the time-constants of the accelerations are considerably larger than those of the
dynamics of the springs (see [8]). Equations are:

> F. = 0= F. ;+F.,-

mCUJ‘

2
> My = 0= F.p-lg—F.,p-l, -

g=0 (2)
Mear

g M
Where forces and torques are as depicted in figure 2. The system has two
equations and two unknowns (F.; (front) and F., (rear)) and can thus be
solved. Since only one side of the car is considered, the mass used is *ge=.
Solution is:

h=0 (3)

Mear . glr - azlh

F.; = 4
! 2L+ @
Mear glf + aglp
Fzr - '
2 I+ lf (5)

Figure 3 shows a plot of a typical behaviour of the normal forces F, during a
test where this model has been applied to data of acceleration by a car during
decisive braking. The change in normal forces are considerable, and should not
be ignored when designing the control. This model gives a slight exaggeration
of the change in F,, as part of the deceleration is a result of air drag and doesn’t
induce any torque.

2.3 Quarter-car

The next step is to model the wheels. Every wheel is modeled separately at-
tached to a mass representing the part of the car 'resting’ on that wheel. As



the quarter car moves forward the force F,? is generated between tire and road.
This force creates a torque that in turn creates an angular acceleration w. When
the brakes are used they generate a braking torque T}, causing an angular de-
celeration to stop the wheel’s rotation. With the coordinates as shown in figure
4 this results in the equations of motion for the two-dimensional quarter car as:

my = —F, (6)
Juw = rF, —T,-sign(w) (7)

where the variables are:

mass of quarter car

speed of car

force acting between road and tire
inertia of wheel

wheel angular speed

radius of wheel

braking torque

HYE wmye s

mass m

Figure 4: The quarter car

The behaviour of all the variables except the force F, is linear and easy to de-
scribe with traditional mechanics. Fj , however, is highly nonlinear and difficult
to model.

2.4 Unmodeled properties

The model has not taken every known property of a car into account. Some of
these simplifications have been made because they would increase complexity
far more than they would increase accuracy, some have been made because there
has been no time to thoroughly investigate their influence on the model. One of
those properties that are suspected to influence the process significantly is the
suspension.

2Force F is similar, but not identical to a friction force. More on this in chapter 3



2.4.1 Suspension

When considering suspension dynamics the quarter-car model is no longer so
simple. Considering vertical dynamics only the model including suspension
consists of a wheel® attached to the quarter-car with springs and dampers in
between, and a spring-and-damper equivalent between the tire and the road
surface, depicting the tire’s radial deformation (the tire’s radius varies due to
variation in F,). These will together act as a second-order dynamic system on
the vertical force F,. Suspension modeling will grow even more complicated
when longitudinal and inter-wheel suspension are considered.

3no longer without mass

10



3 Modeling tire-road interaction force

The modeling of the tire friction force F}, plays an important role in determining
the vehicle behaviour. It has shown to be notorious difficult to model, and
several models with different properties are in use. The term friction may be
misleading, as the force not only is dependent on friction alone, but also on
other physical processes such as deformation. Nonetheless, the term friction is
used, and a friction-like definition is used to name the effective force quotient

po= (8)

In all models, the normal force F. is considered known (estimated or measured,
see section 2.2), and the friction force can be calculated when p has been mod-
eled. In most models, i is a function of the following:

e Normal force F,
e Road and tire materials and their interaction
e Speed v of vehicle and rim velocity wr of the wheel

Where the normal force is of minor importance.

In the most basic models the tire is modeled as if it didn’t deform at all during
braking. In those models, called static, the effective force quotient p is causal,
i.e. dependent of present values of F,, v and w only.

When the wheel is modeled more carefully, the deformation can no longer be
neglected. As the tire is made of (soft) rubber, the force acting on the tire from
the road surface deforms the tire, which then in a sense acts a spring. Physically
this adds an extra state of tire deformation to the process, and p can no longer
be determined from present measured values only. By modeling or estimating
the state of tire deformation the actual friction force F, can be calculated from
the values of F,, v and w ([9]).

3.1 Wheel slip

The basic assumption in most friction models is that the quotient y primarily is
a function of the so-called slip A\. The slip is the normalized difference in velocity
between the vehicle and the perimeter of the tire carcass. When v > wr it is
defined as:

N, = W 9)

v
and for v < wr it is:

Vg — Wr
Ae = —— 10

wr (10)

This ensures that the value of the slip is between —1 and 1. A slip value of zero

means that the the wheel rolls freely and has full contact with the road, a value

of A = 1 means a complete lock with the wheel sliding on the road, and a value

11
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Figure 5: Plotted relationships between slip and friction quotient pu for different
values of road friction parameter pg. Functions used in this case comes from a
model using simple functions suitable for real-time control.

A = —1 means that the wheel spins though the vehicle is stopped.

By conducting empirical experiments, where v and w are constant while the
measurement is done, the relationship between p and A can be plotted. All
road surface and tire charasteristics are lumped together into a variable g,
that approximately takes the value of the maximal reachable p. For low values
of A, where the slip mainly comes from deformation of the tire, u increases ap-
proximately linearly. The rate of increase is mostly dependent of tire profile and
the properties of the tire sides. At a value around A\ = 0.1, p reaches a peak at
about pg, and after that converges towards an end value of ug. In this latter
part the slip is mainly due to sliding.

The relationship between A and p is different for every combination of tire
and road surface, an example is seen in figure 5, more can be found in [4, 7].
Note that the use of slip in any controller puts a lower bound for the velocities
it can be used for, as either v or wr are used in the denominator.

3.2 Generic static models

The most basic models based on the wheel slip use mathematical formulas to de-
scribe the relationship between p and A. These are chosen to match the results
from empirical experiments, and have properties selected to fit their intended
use. For instance must models that are to be used in real-time environments be
compact and computationally non-demanding, where models meant for use in
computer simulations should be more precise.

12
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Figure 6: Behaviour of the force dynamics

If no care is taken to dynamic effects, that is if for every measurement of p
and )\ the system is allowed to reach a static state with constant* v and w, the
friction can be modeled as a static map of u:

Fr = p(\pu, F:) (11)

The bar over F, is used to signify a static F.

3.2.1 Dynamic properties

As mentioned earlier, the static models above will lose their accuracy as the slip
starts to change with time. This is due to that the pneumatic rubber tire is
not rigid, and that the tire deformation doesn’t instantly follow the variations
in slip. When a brake-torque is applied by the brake actuators the rim of the
tire will not instantly be affected (and thus the friction force will not instantly
increase) meaning that the rim will start to deflect relative the wheel axis.
This means that the force F, will be a function of time as it is dependent of
the deflection. The distance the wheel must travel to build up the deflection
necessary to transmit two thirds of the force is called relazation length® and is a
tire charasteristic. The relaxation length in itself is not dependent on velocity,
but as the vehicle travels faster it will require less time to cover this length,
which means that the time constant in time-domain is dependent on v. A
simple model often used (see for example [5] p. 79) is the first-order differential
equation (12), with plotted behaviour in figure 6

F, = F,—F, (12)
o
= — 13
r= (13)
o = relaxationlength

These dynamics can then be added to the static tire/road interaction model to
produce a dynamic model. In a state-space system it will add an extra state

4This can of course not be done on a real vehichle, as non-zero slip means non-zero friction
and thus unavoidable deceleration.
5In German FEinlauflinge

13



for the actual force between tire and road surface, increasing the order of the
system by one.

When an even more sophisticated model is needed this approach will prove
inadequate, as it is good only for lower frequencies. At higher frequencies (and
velocities) the inertia of the tire become more important (see [6]). This will in
the interest of simplicity not be used.

3.3 Other models

The above model is a simple way to model friction that only requires some kind
of friction-slip relationship to work. It can be made very fast by the choice of
function (). However, several other ways to model F, exist.

3.3.1 Pacejka magic model

One of the most widely used models is the model due to Pacejka, sometimes
called the 'magic formula’. It’s functions describing the F, relationship for
longitudinal slip are

F, = cpsin(ea(arctan(cgA — ca(csh — arctan(cs))))) (14)

where the constants ¢; are chosen to match experimental data, and have no
special physical meaning. For real-time car-control it is somewhat too compli-
cated, as it has several parameters that must be estimated in order to calculate
road/tire interaction variation.

It can be extended to model F, dynamically by modeling the deformation of
the tire, introducing a dynamic slip state. Detailed description of the model is
found in [9].

3.3.2 LuGre model

An other model describing the tire/road interaction is the LuGre-model. Com-
pared to the other models, it has a different approach as it is based on a physical
model, and not only on empirical experiments. It is based on a model where
the contact area is modeled as a large number of separate contact points, each
acting as a spring. Friction is then modeled as the average deflection force of
those elastic springs, and the contact points will start to slip when deflection is
large enough. The model is mathematically described by:

z = Upr UOg(’U ) (15)
FE, = —(0oz+ 012+ 020,)F, (16)
9©) = o+ (s — pe)e /v (17)

where some freedom exists in the choice of g(v)

Variables used are:

o Tire rubber properties
Uy relative speed, = (rw —v) = —A\v
Vs Stribeck relative velocity

e, s Normalized Coulomb and static friction values

14
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Figure 7: Curve () for the Lugre friction model. Shape of curve is very similar
to the corresponding curves for static empirical models. However, no static state
exists, making curve dependent of A

The model models friction dynamically, but due to it’s rather non-intuitive
state z that models an average of virtual spring deflection it is difficult to relate
the model to the other models. However, when plotting slip force coefficient
u versus slip A a curve very similar to those of other models are obtained (see
figure 7), indicating similar behaviour if implemented. The LuGre slip curve
is however dependent on the rate of which A increases, indicating existence of
dynamics that not present in the other models.

3.3.3 More advanced models

For cases where the frequency of the disturbance on the vehicle is high, for
instance when it rolls over short wavelength unevennesses, the models above
are not sufficient. For frequencies of up to 80 Hz the free tire belt is almost
rigid, and the above models can be used. But for higher frequencies the tire
belt starts to deform, and a flexible-ring model should be used. These models
are however computationally very demanding, and are thus not suitable for a
real-time control system.

3.4 Slip-curve uncertainty

To be able to model the friction with the models described in section 3.2 or
3.3.1 the pu(A)—function must be known. The maximum value of the curve, the
static friction constant g, can be evaluated by some kind of estimator and

15
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0 Slip A 1

Figure 8: Example of how the shape of the u(A)—function can vary depending
on the road surface.

poses no unsolvable problem. But as shown in figure 8 the entire shape of the
curve is also dependent on the road surface. The charasteristic with a distinct
maximum in friction force is much less distinct when the surface is icy or winter
tires are used, and for deformable surface materials such as gravel or snow the
maximum is reached at a slip A = 1 instead of a A around 0.1.

And even if the surface and tire properties would be known exactly, one curve
would still not do to model precisely, as there is also a dependence on velocity
(see for instance [4] p. 19-21). This does not only affect the magnitude of g,
but also the entire shape of the curve, see figure 9.

These uncertainities poses problems when it comes to designing controllers for
the system. Attempts have been made to use estimators to identify the surface
properties on-line, but the approach to be used in this report is to design the
controller with enough robustness to handle the p(\) function uncertainties.

16
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Figure 9: A certain combination of tire and road surface has not only one, but

a complete family of curves, each one for a different velocity. Example of curves
on wet concrete
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4 FEvaluation of the models

To test how well the models derived in the last sections describe reality, and
what model that is most useful for car—control purposes, tests are made with a
real test vehicle. These tests will also be used to find an approximate value for
the tire relaxation length constant o.

Instead of conducting new tests data is used from tests performed earlier. These
have been made to evaluate the performance of different brake-controllers, and
thus have all data relevant to tire- and carmodeling logged and available.

4.1 Test properties

As the tests have already taken place there is no influence over the design of
the experiments. However, there are several different tests to choose from. In
those that are chosen to be used for testing the model the vehicle only performs
braking along a straight line, with wheel angle @ = 0 and lateral acceleration at
a minimum. This is to avoid side forces and velocities, so that the longitudinal
model described in section 2 applies. Additionally, only data from the front
wheels are used. This is because the vehicle is driven on the rear wheels, and
thus the moments of inertia J of those wheels are dependent on the engine.
There is also the risk of an accelerating torque.

4.1.1 Properties of the measured data

All the logged data are sampled with a two-sample time—delay. Since this ap-
plies to all variables, it does not affect the system as there is no feed—back for
these model evaluation tests. Also, some of the variables needed cannot be mea-
sured directly as the number of sensors is limited. To amend this, a Kalman
filter that supplies estimates of the needed variables is used. It supplies those
in real-time, and works independently from other control and estimation pro-
grams. In those tests where the controller have been turned off the estimates
from the Kalman filter have not been logged, and instead the measured data is
re-run through simulink where the Kalmanfilter is implemented as a C-function.

In the tests the friction force F} is not available for direct measuring. To get a
value equation 7 is used to calculate a reference value F,qqs (‘'measured’ value)
as:
Jw+ Ty
Frews = ——— (18)
r

Where Ty and w are measured variables and r and .J are parameters of the tire
known beforehand.
The slip A is calculated by using the definition in section 3.1:

vV —wr

A =
v

This calculation is numerically sensitive as it contains a subtraction of two
numbers with similar magnitude. Since the measured signals of w is rather
noisy, it leads to a relatively high level of uncertainty.

18



4.1.2 Filtering

As mentioned earlier the calculation of the slip is very sensitive to noise. Thus
it may be tempting to use filtering to reduce the noise levels. However, the
dynamics investigated are in some cases very fast, and filtering may remove or
change those dynamics that are investigated.

For those cases where the noise level is too high a two-sided filtering is done
before the data is imported to the simulink model. Such a filtering does not
delay the signals, but care should be taken as it still might introduce foreign
dynamics to the process.

4.2 Creating the u(\)—curve

The generic static tire model described in section 3.2 says that for a specific
combination of road surface and tire there exists a function p(A) describing the
relationship between friction and slip. Measured data from tests is used to try
to construct this function. With the normal force F), calculated according to
equation (4), the tire/road force quotient p is:

Fmeas

Bo= T, (19)

It is plotted on the y—axis against A on the x—axis.

force quotient mu

. —— Modeled curve
0.3 + Measured data

Il Il Il Il Il Il J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
slip lambda

Figure 10: Plot of y versus A. Large noise levels may make filtering tempting,
but as dynamics are fast that cannot de done without introducing error.

The result as seen in figure 10 is by no way the clear curve that modeling
with a single mathematical function supposes. Measurement noise is not the

19



only reason to the uncertainties, as the dependence on velocity described in
section 3.4 makes it impossible to attain a clear curve, as the speed (naturally)
cannot be kept constant during braking. To get the perfect curves (for example
as seen in [9]), special equipment must be used where the data for the curve can
be measured with a constant velocity v.

However, what can be seen that p initially rises rapidly for small increases
in A, and reaches a maximum for a A between 0.1 and 0.2. This will prove to
be very useful when a controller for maximizing braking force is designed.

The plotting of the u(A)—curve is made with the static value of force F,,. The dy-
namic addition described in section 3.2.1 can not be tested because of the noise;
With the dynamic model the measured F},¢,s would be the dynamic value, and
to plot the curve the static value F, would be needed. To solve equation 12
would yield

Fz = 7--Fmeas + Fmeas (20)

where the derivation would add far too much uncertainty.

4.3 Real value and model comparison

Another way to test a model is to see how well it can predict the friction force
F, when only receiving the measured data of w and a, along with an estimated
value of speed from the Kalman filter. This is done with a simulink model,
where data from the test is imported and processed.

4.3.1 Static model

A simulink model is made where the force F, is calculated in two ways. The
first is the force calculated directly from the measurements, Fj,qqs, the second
is an estimation of the force calculated by using the static model:

Fstat = FI(A(t)auHan) (21)

where the function F, exists as a simulink ’black box’ that takes the arguments
of the function as insignals. pg is considered known beforehand (The static
model does by itself not include parameter estimation). The function used is
plotted in figure 5.

As can be seen in plots 11 and 12 the static model can give a rather good es-
timation of the friction force F,. However, on two points are the results of the
model poor:

e The estimated force Fy s respond to variations in force earlier than the
real value F},cqs

e The ratio between noise and measured slip is high. With the static model
the friction force is nearly linearly dependent on the slip for low values of
A, which means that also the force estimation will be noisy.
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Figure 11: Tire forces during hard braking, where braking is at a maximum until
the vehicle is stopped. Test performed on road with high friction, no filtering
have been applied. Fjeqs is the measured braking force, Fitq: is the braking
force as calculated by the static model, and Fgy, is the modeled force when the
dynamic model is used for the calculations.

5000

4000 -

3000

2000 -

1000

Tire/road interaction force [N]

-1000

1 1 1 1 1 1 | 1
14 1.6 18 2 2.2 2.4
t[s]

0.8

[N
I
(N)

Figure 12: Brake signal in the form of pulses show that estimation is poor when
braking force subsides.
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4.3.2 Dynamic model

To test if the dynamic model can be used to improve the results the theory from
section 3.2.1 is used. To do this the first—order dynamics is represented by a
first—order filter acting on the static estimate Fjy:o:- The timeconstant used is
2, where the value of v used comes from the Kalman filter. The acceleration of
the car is low enough for the filter to be implemented as if it were time-invariant.

As can be seen in figures 11 and 12, adding the dynamic model solves both
problems that existed with the static model. The filter delays the estimated
value enough to make a good match of the measured value, and at the same
time reduces the amount of noise in the signal, without introducing any dynam-
ics more than those relating to the tire deformation.

According to the proposed dynamic model the tire deformation is modeled by
first—order dynamics. To test whether this is true, and if not then of what order
the process really is, the results are evaluated mathematically. This is done
by applying ARX-models of different order, where Fy:,; is used as input and
Fiheqs as output. These evaluations also serve the purpose of finding a value
for the relaxation length for the tire used in the experiments. As the first—order
dynamics also dependend upon velocity, tests where braking is done at several
different velocities are used in the computation. (Those tests are plotted in
figure 13)

The results show that the dynamics are best described by a first—order system,
and the relaxation length for the tires used in the experiments were found to be
0.68(m).
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Figure 13: Test to show velocity dependence of relaxation length. The two lower
plots are blow-ups of the marked areas on the upper plot. Wished braking force
a square signal, first braking initiated at v = 90kph, last at v = 15kph. Dynamic
model based on section 3.2.1 show good correspondence both for high and low

velocities. The short-wavelength oscillations are probably due to suspension
dynamics
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4.3.3 LuGre model

Also the LuGre model is implemented and tested to see whether it can predict
the friction force accurately. The procedure is the same as for the static and
dynamic models; a LuGre model is implemented in simulink and fed with data
of w and v from the tests. The result is compared with a force Fj,..s calculated
as earlier.

As seen in figure 14 the estimation is of acceptable accuracy for an increase
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Figure 14: Lugre model applied on same data as used in figure 12. Model
estimation is acceptable for the higher values of braking force, but is unable to
estimate decrease.

in braking force, but when the braking force decreases the estimation does not
follow the real force. Noise level is kept low without the use of extra filtering.

4.4 Conclusions

Attempting to re-create the pu(A)—function from a single test-run is very hard to
do, as the curve is dependent on velocity. And as the tests are ones of braking,
the speed naturally decreases during the test. However, what can be seen is
that the friction force reaches a maximum at a slip between 0.1 and 0.2.

The attempts to model the tire/road interaction force gave better results. It can
be seen quite clearly that the correspondence from the static model is improved
when the dynamics from the tire deformation are added. Both the dynamic and
the LuGre models show poor results when the braking force is reduced, indicat-
ing some sort of dynamics that are not covered by the model. For the dynamic
model the results are however acceptable, and when all factors considered the
estimation is overall far better than that of the static version.
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Those tests have been made to investigate which model that is best suited
for modeling the friction. A static model where the friction force F} is modeled
as a function of slip is chosen together with the dynamic part, where the choice
is based on:

e Less noise than the static version
e In all better fit than the static version
e Better fit than Lugre model, especially for case of decreasing brake force

e Using a model based on the static model allows for prior research in the
area to be used
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5 Introduction to Lyapunov backstepping

To find a controller that both can provide an estimate of gy and can handle
the nonlinearities from the tire models, methods based on Lyapunov theory
will be implemented. These methods will be described together with a short
description of the mathematical theory that they are based upon to ease the
understanding of the methods. For complete Lyapunov theory together with
proofs and theorems see [1, 2].

5.1 Lyapunov stability

What Lyapunov theory can do is essentially to prove stability and/or conver-
gence for a solution in an area D to the dynamic system:

i = f(z) (22)
f(0) =0

This is accomplished by finding a Lyapunov function V (z) which is a function
with the following properties:

e V(z) >0forz C D, V(0)=0
e V(z)<OforzCD

The theory then says that x = 0 is a stable solution. More so, it says that
if V(z) < 0in D then for all starting values of z C D the solution will in
time approach 0. The idea is very simple, and by determining the magnitude
of V(x) the convergence rate can be estimated. A problem is that there is no
systematic way to find the Lyapunov function, although there are several widely
used methods for specific cases. Usually choosing quadratic terms are a good
start, as it automatically means that V(z) > 0.

Example To make an example a relatively simple system is chosen:
i = 2® -3z

By plotting it can easily be shown that the system is stable for starting values
|z|] < 1. To prove it with Lyapunov theory a candidate function has to be
chosen. Quadratic terms are usually a good start, the choice and the following
calculations can for instance look like:

1
§$2>0
Vie) = z-i=

zt — 327 = 2%(2% - 3)

=
&
[

2%(2% — 3) < 0 when |z| < v/3, thus stability and convergence to 0 is proven in
this area.

An easier way of explaining the idea of Lyapunov stability can be made with
an example from physics: Any system whose total energy never increases can
never be unstable. If it’s energy dissipates with time it will finally reach a stable
state of zero energy, and thus be asymptotically stable.
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5.2 Lyapunov-based controller

For systems containing unknown parameters the Lyapunov theory can be ap-
plied to construct rather elegant controllers that can estimate the unknown
variables. Such controllers can also be used to regulate a certain class of non-
linear systems as long as the nonlinearity is known.

Basically the idea is to find a Lyapunov function for the system. This will prove
the system to be stable, and if it’s derivative is negative definite it will also
prove asymptotic stability. By choosing the function so that it contains squares
of the errors of the system, the errors will be proven stable. Then 1% governs
the rate with which the errors converge to zero.

Example A controller with an estimator for a first-order system with an un-
known parameter # and a nonlinearity ¢(z) will be made. Parameter 6 is con-
sidered to be constant.

T = u+0p(z)

In this example the state z is driven to zero by the controller, with a variable
change e = ¢ — x,.¢ the calculations can as well be used for control to any z,.y.
Constant 6 gives:

T

ST

where 6 is estimate and 6 is error. Direct approach by choosing Lyapunov
function candidate as squares of variable and estimation error results in following
calculations:

1 1

R S
V = 57 + 270
: . 1o 1.
V = z-&+4 -00 =z(u+0p(x)) ——60
Y Y
by choosing control law for u as u = —cz — fp(z), V will be:
. 9 ~ 1=
V = —cz® +0(zp(x) — ;0)

The second term is eliminated by choosing 6 = ~yxp(z) , which is the update
law for estimate . This makes V' negative semidefinite, which proves that the
state z and the estimation error # are bounded. By choosing values for ¢ and ~
properties of the controller can be chosen.

5.3 Backstepping

Finding Lyapunov functions may be easy for simple systems of low order, but
complexity increases rapidly with the order of the dynamic system. For systems
where not all states can be measured, and where perhaps more than one nonlin-
earity is present, finding Lyapunov functions without guidelines can be almost
impossible. One such systematic strategy called backstepping is thoroughly de-
scribed in [3].

27



Backstepping is a recursive design method that designs a controller in several
basic steps. Compared to the more standard concept of ’feedback linearization’
it has the advantage that it can avoid cancelling of nonlinearities that are helpful
for stabilization. It can also be used when there are unknown constants by using
parameter estimation, introducing a dynamic part to the controller resulting in
a nonlinear adaptive controller.

The key idea and also the starting point is to make a controller (by a Lyapunov
function) for the first state by introducing a new state for the ’desired value’
of higher states, in a way making a controller for a first-order system. This
new state is called ’virtual control’ and it’s desired value «(z1) a stabilizing
function. a(z) is chosen so that the first state is virtually stable, but the only
real effect from the first step is to deduce a a(z;) that can be used in the next
step. The difference between the higher states and a(z;) is the corresponding
error variable z;. This step is then repeated until the last state, and the error
variables z; from the different steps are used to construct a Lyapunov function
for the system.

Example
i‘l = X2 + (p(l‘l)
iiZQ = u
u is insignal to process and ¢ is a known and differentiable function. In the first

step the most basic clf is tried, and state xo is replaced by it’s virtual estimate
and error:

1
i = 51'%
Vi = 2d1=21(22 + p(71)) = 21 (a(m1) + 2 + @(21))

Stabilizing function « is chosen to be as close to desired state as possible. Only
error z left.

a(r1) = —caz— () =
V1 = —clw%+w1z

A new function is tried. The old one is taken and augmented with a quadratic
term for error z:

1 1
VQ = 556% + 52’2
. . . . Op(x)
Vo = Vitzi=—c12}+z2(v1 +u+tcidr + gi l)wl)
1

By choosing an appropriate control signal u the second term can be made neg-
ative definite, making V5 a Lyapunov function.

dp(1)
63:1

u = —T1 —C1T1 — T1 — Coz = (23)

Vo = —clm%—02z2

For example on an adaptive backstepping design see for instance [1] p.250 or [3]
p.92.
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6 Control design for the dynamic system

Prior controllers for the ABS-system have been based on the static, less com-
plicated model of the tire. One that has been implemented and that has shown
good results is a controller based upon Lyapunov theory decribed in section 5.2.
This controller will be explained so that it later can be used as a comparison to
other designs. Then, by using the more complex and accurate dynamic model a
new controller will be designed. Due to the systems complexity, the Lyapunov
backstepping techniques from section 5.3 will have to be used.

6.1 Slip control

An effective approach to design brake—control systems is to control the slip A to
a certain value A\ = )\g. This is based on the assumption that the function for
the brake force coefficient u (equation 11), and thereby F}, reaches a maximum
for a certain value of longitudinal slip. It is also so that in this range of slip
the lateral force is high enough to retain the steerability of the car. For most
combinations of road and tire this maximum is somewhere in the range between
0.1 and 0.2. Examples of this can be seen in figure 5 and 10, even though the
latter is noisy.

6.2 System dynamics

To get the system equations relating to the slip dynamics equation 9 is derivated.
Then by using the equations of motion (equations 6 and 7) to get rid of w, the
system is written as:

. 1[/1=X r? r- Ty
A= —||[—+—=)F, 24
v[( m +J> + J ] (24)
F,
.o _ 1t 9
b= (25)

Only the speed of A-dynamics are dependent of the v—state, the qualitative
properties are not affected. With the presumption that the speed dynamics are
relatively slow, v can be omitted from the control, with only it’s magnitude
being used in the system as if it were static.

The system can be reduced further as for normal vehicles

1-X r?
- — 2
m << J (26)

This only leads to a more compact model. Dynamics are basically the same.

6.2.1 Tire deformation dynamics

The dynamic model described in section 3.2.1 adds an extra state for friction
force F, to the system. With this extra state and the proposed simplification
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T, +© 2

w =

Figure 15: Block diagram describing state-relations. Constants have been omit-
ted. ¢ signifies the nonlinearity.

26 the system to control is:

2

. —r r
AN = —-F, +— T, 27
J v +J-v b ( )
F, = Z.FE,(\um F.)—~-F, (28)
ag ag
F,
y = T 29
0 = (29)

With a block diagram depicting the relationship between states, inputs and
output in figure 15.

The system that results from adding the state for tire longitudinal force is diffi-
cult to control. For time-invariant, linear systems there exists several methods,
but this system has several properties that makes special methods necessary:

e Nonlinear function F,, = pu(\, ug, F.) makes system nonlinear

e Road surface parameter pg is not only unknown, it can also change during
braking

e Dynamics that have been removed to make system easier to model still
exists. These will still act on the process, increasing need for robustness.
Some examples are:

— Suspension

Normal force F, is dependent on v,
— Brake actuator cannot transmit braking force instantly

— Measurement noise
e Input data is limited, as F} cannot be measured.

Control can be designed either on this system, trying to recognize all character-
istics, or on a simpler system.
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6.3 Reference controller

The controller that will be used as a reference is based on equations 24 and 25
only, i.e. a model using the static tire model. It is an adaptive controller that
is based upon the Lyapunov function:

Vo= 3o Oe- N 5ot gy (30)

where 7 estimates @ (indirectly this estimates the unknown friction parameter

wg) with the adaptation gain ~.
Function V' can be made a Lyapunov function with the update law:

. r
N = —71;300(/\—)\0) (31)

for the estimate n and the control law:
w = oo-[n=Fk(A=2o)] (32)

for control signal u, o( is a constant dependent on the set point value Ag. The
parameters v and k, are functions dependent on speed and normal force.

The controller is thoroughly explained and analyzed in [7].

6.4 Lyapunov observer backstepping controller

A controller structure that can control the non-simplified system must be able
to cope with:

e Nonlinearity
e Unknown constant requiring adaptation
e Non-measurable state Fj,

Even if the brake actuators are fast, they still influence the process. Thus the
controller should also be designed to handle

e Brake actuator dynamics

Especially the nonlinearity makes this difficult. The method chosen is a variant
to the Lyapunov backstepping controller described in section 5, and as the sys-
tem contains a non-measurable state the method called observer backstepping
is used.

In this method is first an exponential observer constructed that supplies es-
timates of all the states. Then backstepping is used to deduce a controller for a
new system, where the unmeasured states have been replaced by their estimates
from the observer. All the time the observer-errors are treated as noise and is
taken care of by nonlinear damping.

To use the method the control signal must be present in the same equation as
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Figure 16: Block diagram describing state-relations after the variable change.
The new system is suitable to control with backstepping techniques, as both the
nonlinearity and the control affects the same state.

the nonlinearity, and the nonlinearity must be dependent of measurable states
only. Therefore a variable change is made with:

2

-r r
= —-F —-T
¢ J-v x+J-v b= (33)
Tb J-v
- Tb J-U .

This system is depicted in figure 16. It must be further modified to handle the
brake actuator dynamics. These are:

Ch
T, = . 36
b s+ “ (36)

where v is the control signal, and T} is the applied braking force. Ty is also has
upper and lower boundaries, but these will not be accounted for in the design.
Solving for T}, yields

Tb = Cp- (u - Tb) (37)

As the brake force can be measured it can be used in the control, and is con-
sidered a known quantity in the design, allowing equation 35 to be substituted
for:

cp(u—"Ty) J v

F, = T (38)

resulting in the new system, where the dynamics of v have been ignored: (i.e.
the acceleration have been considered to be zero)

A = a (39)

s _ " F _v. oary o
@ = —g BQoum ) = —at Ti(oo - 70+ 75 d
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4 is the control signal that is sent to the brake actuators. In the controller, an
internal variable is used for the design:

r CpT CpT
Jo Jv) + Ju “
The system thus yields a control signal u, which is then passed through a func-

tion of T,. The out-signal is called @ and is:

Jv v
0 o= 2L T (— -1 42
u CpT v b(ch ) ( )

u = Ty (41)

The last modification that has to be made is to move the unknown parameter
g out of the nonlinearity to stand as a constant before the function. This is
a further modification to the system, but it doesn’t affect the dynamics signifi-
cantly as pug already behaves approximately as a constant, as seen in figure 5.
Additionally, parameters with the nonlinearity are included in it:

oM = ST R(MLE)= (43)

—r2

J-o

B\ pm, F) = o p(N) (44)

6.4.1 Design of the controller

Now the system is finally on a form suitable for backstepping. First an estimator
for the system is designed. Two filters are used to reconstruct all states, one
part for the ppg-dependent part and one for the other.

5.01 = k(A —=%&o) + o2
. v
o2 = k2()\ - 501) - ;fo2 +u
(45)
511 = —ki&ui + &2
. v
&2 = —koén — ;fm + @A)
The states can then be reconstructed as:
A = & +prént+e (46)
a = oo+ paéi2+e (47)

To ensure that the errors go to zero asymptotically the constants k; and ke must
be chosen so that the eigenvalues of matrix Ay are less than zero (according to
theory for Kalman filters) Ay is:

4y = [:Z; _12] (48)

First error variable is the difference between input and real value for slip:

zZ1 = A— )\0 (49)
21 = ).\—).\OZ(I—AO (50)
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With 'normal’ backstepping, a would now be used for the virtual control. As it
is not measured it is substituted with it’s estimate and inserted in equation 50:

5 = b+ pabiatea—No (51)

One of the variables must be used to construct the virtual control. Since &p2
contains the control signal w it is used:

22 = o2 —oq — 5\0 (52)
ar = —c1z1 —diz — 01512 (53)

Where 6, is an estimate of the unknown parameter JLH -
With these definitions 27 is:

B = —c1z 4 20 — diz + (uE — 01)Es + €2 (54)

First Lyapunov function candidate is chosen as a quadratic function of errors.
If this would prove to be a Lyapunov function, it would mean that the error z;
would go to zero and that the estimate for ug converges to it’s real value.

_ 1, 1 52, LT
Vi = 541 + s (g —61)° + 8 e’ Pe (55)
Vi = 23 ——1( —é)ﬂ +—1 —d( TPye) (56)
1 121 " HH 1)V1 d, dt 0€

Here the constant 7, is the adaptation gain for the first estimate of pg. Matrix
Py has the properties
Ph=P] > 0 (57)
PoAg+ AP, = -1

Note that Py doesn’t have to be known, it must only exist. Further calculations
(Described in [3]) lead to

. 15 3
‘/1 = < Z122 — 012’1 + (,UH 91)(2}1512 — —01) — —STE (58)
Y1 4d1

With the update law él = v121&12 the term with the uncertainty of g is elim-
inated.

Function V; can not be proven to be a Lyapunov function since z5 is not known.
To continue design, z» is derivated:

2y = fup—du— Ao
0
= u+k(A—&n)— 2502 - ﬂ(502 + 0&12 + €2)
Oay Oay
k — =&+ (A —
5612( 2611 512 o(\) — %, 11221
80&1
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To deal with the unknown p g a new estimate 6, has to be employed, and to deal
with the estimation error 2 nonlinear damping is used. Otherwise the control
signal u is chosen to cancel those parts of 25 that doesn’t increase stability:

0
U = —CaZp — 2 — d2(ﬂ)222 — k(A —&o1) + 2502 +
oA o
0 A 0
+%(§02 + 02&12) + %(—/@&1 - 5512 +¢(N)
80&1 80&1 : K
aél -’)/15122’1 + 6—/\0>\0 + Ao (60)
Insert control law for w in equation for 2,
. 0 0 0 R
29 = —Cozy— 2 — d2(%)22’2 - %62 - %&2(#}1 —6)  (61)

The equation for z» can now be used to make a new Lyapunov function candi-
date. Augment V; with quadratic terms of errors z; and (ug — 62):

_ 1o, Lo gy Lor
Vo = Wi+ 5% T 7 (pE —02)" + d26 Poe (62)
. . . 1 - 1
Vi = Vi+zmis— %92(,UH —6,) — d—26T6
3 3 - O 1
< —erzi - ez — (E + 4—d2)5T5 = (kb — 92)(8—;51222 + ;92)(63)

Ounly one non-quadratic term, and that can be eliminated with an update law

for f5. This makes Vs a Lyapunov function, thus tracking error z; goes to zero.
So in addition to the update laws for estimator £ there are the following:

0 = mé&iean (64)
52 = (e +di)éiaze (65)
U = —Cyzp — 21 —da(er +dr)’z0 — ka(A = o1) + 5502
—(c1 + di)(€oz + B2€12) — O1 (—hobrr — 3512 + ()
—y1€d21 + (e1 +di)do + Xo (66)

These are the control laws for the system with the state a. To make these
control laws applicable for the real system equation 42 is used to get the real
outsignal u.

6.4.2 Other design issues

Too keep the design relatively simple, several properties of the model have not
been considered in the design. They do however still affect the process, and
therefore some additions have been made after the mathematical design of the
Lyapunov controller. These modifications are not proven to maintain stability,
and must thus later be tested so that they do not render the feedback system
unstable. As the reason to why they are added is to increase stability and reduce
nonlinearities, they should reduce rather than increase the instabilities.

35



e As the brake-actuators cannot transmit forces above a certain limit, and
no negative forces, there are risks of integrator windup. This is avoided
by an anti-windup function that stops the updating of the pp-estimates
as soon as the output from the controller is out of bounds.

e The normal-force dynamics are slow enough for F, to be considered static
in the design, but in the implementation the measured value for a, is used
with equation 4 is used to calculate the value to be used.

e v is used in the design as known static parameter, but in fact a measured
value is used. As v is used in the nonlinear estimator, it leads to troubles
regarding proving the convergence for the estimator.

e Even though the brake-force T}, can be measured by a sensor, the value is
estimated in the controller. This is to avoid the sampling time-delay, and
thus be able to increase the performance of the control.

6.4.3 Analysis of the controller

The backstepping controller derived in last section is theoretically well suited
to control the dynamic system described by equations 27 to 29. But when the
controller is implemented for real, noise and unmodeled dynamics will add to
the process and change the specifications.

For a condensed view of the error variables they are written as a matrix equa-
tion:

2] - [0 e 2] e ][0

2';2 ] -1 —Co — dg(%)2 Z2 0 —%flg 02
£ = A()E

o I o | b B A R ey

0 | 0 -2, zo |7 [ 6] | pm— 02

This way it is shown in what way the design parameters affect the system.

The design requires that the estimation errors €; and €, goes to zero asymp-
totically. To ensure this k1 and k; must be chosen so that the eigenvalues for
matrix Ag are negative. This poses a problem as Ag, and thus its eigenvalues
s, are a function of the non-constant velocity:

det(s] — Ag) = 0= (68)
ktg (k1 — 5)?

< +
2 4

— k> (69)

Study of the function reveals that the eigenvalues cannot be non-negative as
long as k1 and ks, are higher than zero. Care has to be taken when choosing k;
and ko to avoid a too poorly damped system.
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7 Evaluation of controller performance

To test if the designed controller is able to perform satisfactory brakecontrol
simulations are carried out in simulink. By using the mathematical models de-
rived in section 2 and 3 several plants representing the car are implemented.
These plants are of different complexity, where gradually more and more of the
vehicle dynamics are taken into account, and by the last model all the properties
that are mentioned in the modeling sections are taken into account. The models
represent only a single wheel by the use of the equations of the quarter-car, and
where the normal force is used it is calculated as a function of acceleration as
described by the longitudinal model.

Thus is can first be controlled that the controller functions well for the re-
duced model of the car that it is designed for. Then the model is made more
and more similar to the real test-vehicle to test how robust the controller is.
This is also useful as a preparation to implementation,where the parameters
must be known. By using simulations the amount of testing can be reduced.

7.1 Design of the tests

The simulations are carried out with both controllers from section 6. They are
connected to the plants as in figure 17, where the controller blocks contain all
functionality of the controllers, including estimators and filters.

The aim of control is to regulate the slip so that the lateral force can be kept
high while the braking force is at a maximum. For some guidelines to what is
considered to be good control a set, of specifications from [7] is used. The ABS
controller should be able to comply with:

e no wheel lock is allowed for v > 4%

e wheel lock for less than 0.2 seconds is allowed for
0.8% <wv <47

e no demands for v < 0.8%

Of course should also the time for stopping the vehicle be at a minimum.
Unless stated otherwise, the tests are performed with the following parameters
(when applicable)

e Initial speed v = 10"

e Initial value for pg estimators (él and
0,)is 0.7
o Real value for pg is 0.9

e Reference signal :

Ao =0 0<t<05
Ao=9-(t—05) 05<t<0.516
Ao = 0.14 0.516 < t
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Figure 17: The schematics used when testing the controllers. The time delay
and measurement noise are equal to zero unless stated otherwise.

e The physical parameters of the modelled car are:

Wheel moment of inertia J 1 kgm?
Wheel radius r 031 m
Tire relaxation length o 0.68 m
Mass of quarter car m 450 kg

These values are approximately equal to those of a real vehicle. The value
for the tire relaxation length is the one found in section 4.

e The controller parameter values varies between the experiments.

e The simulations simulate a front tire. This is only relevant for the calcu-
lation of F, and for the value of .J.

7.2 Basic dynamic system

In the first test the plant is based on exactly the equations used when designing
the Lyapunov observer backstepping controller, i.e. on equations 36, 27 and
28, where the nonlinearity is simplified as in equation 43. This means that the
model uses static values of v and F,. This test is made to verify that the con-
trollers are able to control the system at all.

The control is quick for both controllers, even though both display slight
oscillations. The unnatural conditions (neither noise nor sampling delays) make
it possible to use high gain and thus get quick response times. Plots of the
results are found in figure 18.

7.3 Dynamic speed and normal force, brake-force limita-
tions

Next test is made on a more realistic plant where the model is implemented
fully, though without the uncertainties introduced by measurement, i.e sam-
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Figure 18: Simulation for both controllers using the most basic system. Neither
noise nor timedelay, no dynamic v or F,.

pling time-delay and measurement noise. This means that F, and v are not
stationary anymore, and that a state for v is added (as in equation 29). The
brake actuators are also implemented fully, meaning that the effective brake-
force is limited to the interval 0 < T, < 3500 [Nm], and that the signal to the
actuator cannot be negative. The anti-windup function from section ?? is added
to prevent integrator windup.

Adding the dynamics for v and F, does little impact on the results. How-
ever, the actuator limitations does change the results for the Lyapunov observer
backstepping controller slightly, and the performance is compared versus the
results from last test in figure 19.

The effects of the rewriting of the nonlinearity in equation 43 can be seen in the
convergence values for the upg estimators; for the simple plant the convergence
is exact, and it should be as the simple plant uses exactly the same equations
as the design is based upon. The dynamic plant uses an approximation of the
nonlinearity, and this obviously leads to a small static error as mentioned in the
design section.

7.4 Rapid changes in 6 and )\,

With the rest of the dynamics added to the model in the last section the con-
trollers showed that they were robust enough to handle a more realistic process.
Using the same model, the following two simulations are made:

e Step changes of the friction parameter pug to simulate rapidly changing
road conditions. This also tests the convergence rates of the friction esti-
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Figure 19: Comparison of the Lyapunov observer backstepping controller for
simulations using both the simple (described in section 3.2) and the dynamic
plant (described in section 3.2.1). The control itself is good, but there is a static
error for the estimation of g on the dynamic plant. Reason is that the u(X)
function used by the dynamic model sightly differs from the one used by the
controller.

mators 6;.

e Rapid changes in reference signal A\g. To retain flexibility, the controller
should be able to control the slip to different values of )\g, where the
changes can be made during the control.

Both simulations are made with both controllers so that a comparison can
be made. The control itself is as earlier quick, though slightly oscillatory. When
the friction parameter decreases rapidly the slip makes a jump upwards, and
thereafter settles. This settling time is the time it takes for the estimators
to find their correct values. The adaptation speed is decided by the design
parameter 7;, though there is an upper limit as a too high value renders the
system unstable.
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Figure 20: Response to steps in the friction parameter pg used by the plant.
The plot of estimated parameter values is for the Lyapunov observer backstep-
ping controller.
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Figure 21: Response to steps in Ag. That the controller could handle steps was
proven earlier (by the step 0 — 0.14) and this test shows that it can also control
the slip at other values for \g.
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7.5 Time-delays and measurement noise

The last simulations are performed with a system as closely representing the
real (quarter)car as possible. It is the same system as were used in the last two
sections, but first with the sampling time-delay of 14 milliseconds, then with
both time-delay and measurement noise added to the A-signal.

The results of the two tests can be seen in figures 22 and 23. The Lyapunov
observer backstepping controller suffers from a relatively long rise time after
the initial step increase in A\g. This is because of the estimators for pg , which
due to the timedelay must be set to a rather slow adaptation rate. Once the
estimators have found their correct values, the control is fast. The noise adds
even more uncertainty, but the only really adverse effects it does bring is the
poor control for low values of v, where the dynamic effects from the relaxation
length are most influential (Due to the time constant for the tire dynamics being
proportional to 1).

= Reference signal
0.8| — Lyapunov Observer Backstepping -
— Reference controller

0.6 /\ /f\ N -
o 04 A [ [\ /\ & ,f\ /\ // i
n \ \ \
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Figure 22: Simulations with time-delay of 14 ms added. This greatly reduces
performance of both controllers, and forces adaptation rate to be set lower, thus
the increased convergence time for 6;.

For the reference controller the system becomes too complex with the time-
delay. It does succeed in stopping the car without locking the wheels, but the
slip is far too high and oscillatory for the control to be considered successful.
The oscillations are the result of trying to regulate the plant around an unstable
point (the value of A chosen is on the unstable part of the u(\)-curve) together
with a time—delay.
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Figure 23: Same test-setup as in figure 22, but with noise added to the A
measurement.

7.6 Test evaluation
Some of the results are worth extra commenting:

e The minor discrepancies seen when comparing the model used for design
and the model with brake actuators and dynamic v and F, shows that the
simpler model is enough to base designs on. This is due to the dynamics
of v and F, being so much slower than other variables that they can be
considered static for the design.

e The poor performance of the reference controller implicates that some-
thing is wrong with the model. Since it doesn’t oscillate when implemented
for real, it seems that the real system is more damped than the model,
either is the wheel dynamics not so influential or is the brake actuator
dynamics of less importance.

e Another problem is the uncertainties associated with using the p(\) func-
tion in the design. That the function varies greatly is shown in section
3.4, and as the function is used in the controller this introduces an un-
certainty that must be handled through robustness. That the controller
works even though it uses an different function shows that the adaptation
of 6; is enough to compensate for this uncertainty.

It should also be mentioned that these tests favor the Lyapunov observer back-
stepping controller, since the equations used for the tests are the same that were
used for the design. The controller should be evaluated in a real vehicle to get
a non-biased evaluation of it’s performance.
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8 Conclusions

The static model that had priorly been used was obviously unable to provide a
good estimation of the actual friction force. That didn’t mean that it cannot
be used for control design, but it meant that it missed out on some property of
the process.

A search for suitable models to describe the tire longitudinal dynamics revealed
that most models are based on the same approach. By modeling the deforma-
tion of the tire as a first-order dynamic system, they get an extra state that
describes the present state of the dynamics. This approach functions well as it
is relatively simple, it automatically reduces measurement noise, it represents a
physical phenomenon and it is easy to add to already existing static models. By
using this extended model on data from simulations it was shown that it could
model the friction force quite precisely. Though when the extended system was
used to make a model in simulink, the controller that had earlier proven its use
in real tests failed to control the model. This indicates that something is wrong
with the model.

An other approach is the LuGre model, but this was discarded as it neither
could model the friction on the test-vehicle nor is it possible to add easily into
the already existing models.

The main reason to find a model that could better model the friction was to use
it for design. Thus a controller is designed which takes the extra dynamic state
as well as brake actuator dynamics into account. In tests this controller shows
results that are better than those for the existing controller. The time it uses
to converge is mainly due to the estimation for pg being relatively slow.

Even though the controller performed well in simulations it is still not really
proven until it has been implemented and tested in a real vehicle. Not only
might there exist dynamics that are not covered by the model, it might also
prove that the controller requires too much computational capacity due to its
complexity.

8.1 Suggestions on further work

The most obvious continuation of the work is to implement the controller and
test it on a real vehicle. This work must begin with the transformation of the
controller to use a discrete representation of time. Since Lyapunov theory can
only be used to prove stability for continous systems, the transformation must
be done with care so that the stability of the design is not destroyed.

After that the controller can be implemented, which should be quite straight-
forward once the discretization is done, though through the sheer size of the
controller it might prove difficult to make the implementation quick enough for
the car’s computer system too handle.

The relatively poor convergence rate for the pg—estimators and thus the con-
trol could be amended by using a Multi-Model Observer, an observer that in
parallel evaluates the correspondence for several values of the parameter to be
estimated, and in case of an abrupt change is able to switch to the estimate
most close to the new real value, thus improving convergence rate significantly.
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The extended model could be used to base other control design on. A con-
troller based on Sontag’s formula should be quite straightforward to implement
by using the Lyapunov functions used by the observer backstepping controller.
Other designs could be made by for instance linearising the nonlinearity.

As for modeling a few properties were mentioned that were known to influence
the process but weren’t included for various reasons. These could be investi-
gated, and if shown that they make the model more accurate they should be
included in the model. Examples of such properties include suspension and
higher-frequency dynamics for the tire model.
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