
ISSN 0280-5316
ISRN LUTFD2/TFRT--5674--SE

An Adaptive PPI Controller

Per Johansson

Department of Automatic Control
Lund Institute of Technology

September 2001

Document name
MASTER THESIS
Date of issue
September 2001

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD2/TFRT—5674--SE
Supervisor
Tore Hägglund, LTH
Lars Pernebo, ABB

Author(s)
Per Johansson

Sponsoring organization

Title and subtitle
An Adaptive PPI Controller (En adaptiv PPI-regulator).

Abstract

Processes with long dead times are among the most difficult to control. This has urged
the development of controllers that cope with this kind of delays. A possible approach
is to use a model predictive controller, i.e. a controller with an internal model of the
process and its dead time. In ABB’s new control system, Control IT, there exists
such a controller, namely the PPI controller. PPI stands for Predictive PI, and as the
name indicates it shares some of its features with the common PI controller. The
system contains an auto-tuner that is able to detect long dead times and to design a
PPI controller. Another feature of Control IT is adaptive control. An adaptive
controller has the ability to change its parameters in order to optimize its performance.
Today, there is no adaptation mechanism for the PPI controller.
This thesis investigates the possibilities of an adaptive version of the PPI controller. A
test version has been implemented and simulation results show that there are
processes that would benefit from an adaptive PPI. The big flaw is however that
adaptation is possible only at set point changes, an event that might not be that
common in industry. This implies that industrial studies must be performed before the
solution is included in the final product. Other problems that have been encountered
are sensitivity to noise and ramped set point changes. It has also been shown that the
existing auto-tuner sometimes chooses a PPI design in cases were a PID design would
be more useful. The thesis further discusses the subject of switching controller
structure while in adaptation mode

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
43

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.se

An Adaptive PPI Controller

Per Johansson

 2

Table of contents
1 INTRODUCTION..3

1.1 PROBLEM FORMULATION...4
1.2 OUTLINE..4

2 CONTROL OF PROCESSES WITH LONG DEAD TIMES5
2.1 PID CONTROL ...5
2.2 THE SMITH PREDICTOR..5
2.3 THE PPI CONTROLLER...6

3 HOW TO MAKE THE PPI ADAPTIVE...9
3.1 ESTIMATING PARAMETERS IN CLOSED LOOP ..9

3.1.1 The method of moments..9
3.1.2 Estimating the dead time ..12

3.2 SUPERVISION...14
3.3 IS THE ADAPTATION USEFUL? ..15

3.3.1 Possible usage ..15
3.3.2 Adaptation vs. gain scheduling ..16

4 IMPLEMENTATION..17
4.1 CONTROL BUILDER PROFESSIONAL...17
4.2 THE ALGORITHM ...17
4.3 PROBLEMS...18

4.3.1 Derivatives and noise ...18
4.3.2 When to stop Tar calculations...19
4.3.3 Ramped set point changes ..20

4.4 DESIGN PARAMETERS ..20

5 SYSTEM INTEGRATION..21
5.1 ALLOWED USE OF THE PPI ADAPTATION ...21
5.2 CHANGING CONTROL STRUCTURE ...21
5.3 USER PARAMETERS ...23

6 SIMULATIONS ...24
6.1 THE PROCESSES ...24
6.2 TEST 1: VERIFYING GOOD ESTIMATES ...24
6.3 TEST 2: NOISE SENSITIVITY...25

6.3.1 White noise ...25
6.3.2 Coloured noise ...28
6.3.3 Sinusoidal disturbances..28
6.3.4 Load disturbances ..30

6.4 TEST 3: THE UTILITY OF ADAPTATION...32
6.5 TEST 4: SWITCHING TO PID CONTROL ..35

7 CONCLUSIONS AND FUTURE IMPROVEMENTS...................................41
7.1 CONCLUSIONS ...41
7.2 IMPROVEMENTS...42

ACKNOWLEDGEMENTS...43

REFERENCES...43

 3

1 Introduction
This master thesis is made at the Department of Automatic Control at Lund Institute
of Technology (LTH) and ABB Automation Products in Malmö.

Figure 1.1 The standard feedback control loop.

When controlling something it is always good to be able to observe the thing that is
controlled. In most cases it is in fact a need, try for instance to drive your car blind
folded. In control theory, this observation is called feedback. Figure 1.1 shows a
standard feedback control loop. If the dynamics of the process could be perfectly
modelled, and one knew for sure that these dynamics were constant, there would not
be necessary to use the feedback. This is of course not the case in reality, and
therefore feedback control is used in order to make the control less sensitive to
changing dynamics and poor models. The insensitivity to such changes is called the
robustness of the control loop. Even better performance can be achieved with an
adaptive controller, i.e. a controller that adapts to new dynamics. The parameters of
an adaptive controller are updated by an adaptation mechanism in order to optimize
the performance. Adaptive control is an active research area in control theory.

Many industrial processes have a delay between the control signal u and the process
value y, i.e. the process does not react instantly on the control signal, see Figure 1.21.
This delay is called the dead time of the process. A long dead time makes the control
loop less robust, and processes with long dead times are often difficult to control. A
faster control can be achieved if one somehow can predict what will happen in the
future (compare reducing speed due to fog that makes it hard to see the road).
Prediction in control is often done by tracking of the derivative of the process value.
When controlling processes with long dead times, however, this is not possible since
the derivative is delayed as well. The solution to this is to use a model of the delay
and the control signal to predict the future. These kinds of controllers are called
model-based predictive controllers. In this thesis, the feasibility of an adaptive model-
based predictive controller is studied.

1 Notice the difference in notation between Figure 1.1 and Figure 1.2. The reference value (ref in Fig.
1.1) is called Sp (Set point) in Figure 1.2. Further is the control signal (u) named Out and the measured
process value (y) named Pv. This notation will be used in graphs from Control IT throughout the thesis.

 4

Out

Pv

Dead time

Figure 1.2 Open loop step response for a process with long dead time. The process value (Pv)
does not react on the control signal (Out) until after about 25 seconds.

1.1 Problem formulation
In ABB’s new control system, Control IT, there exist ready-made PID controllers.
There is also a PPI controller, a controller that handles processes with long dead
times. For the ordinary PID there already exists an adaptation mechanism, which
adjusts the controller design if the process is changing. The PPI controller lacks such
option, and the aim of this thesis is to investigate if it is possible to introduce an
adaptive PPI controller.

1.2 Outline
This thesis is organized as follows. In chapter 2, control of processes with long dead
times is discussed. Here is the PPI controller presented. Chapter 3 treats the main idea
of how an adaptive version of the PPI can be implemented. The thesis continues with
chapter 4, in which implementation aspects are considered. This chapter also includes
a presentation of the Control Builder Professional, the programming tool in Control IT
that has been used for implementation. Chapter 5 deals with the integration with the
current system, whereas chapter 6 is dedicated to the simulations that have been
carried out in order to verify the correctness of the algorithm. In chapter 7, finally,
conclusions are drawn and future work suggested.

 5

2 Control of processes with long dead times
Processes with long dead times are, as mentioned, among the most difficult to control.
An increase of the dead time reduces the phase margin and might lead to unstable
behaviour. This chapter presents different ways to control these processes.

2.1 PID control
Although control theory has come up with a variety of advanced controllers, the by far
most common controller in industry still is the PID controller. The reason for the
popularity of PID controllers is that this control structure is easily tuned, one does not
need any advanced knowledge in control theory in order to tune the loop. The PID
controller consists of three parts: the proportional or P-part that acts proportionally to
the control error, the integrating or I-part, that eliminates static control errors and,
finally, the derivative or D-part that acts as a predictor. In control of processes with
long dead times the D-part does, as stated in the introduction, not improve the control.
On the contrary, it rather gives a decrease in performance and therefore it is often
omitted in these cases.

When the derivative part is switched off, all prediction is switched off. This is a
drawback since in order to have a stable control it is important that the PI control
design is rather slow. One sense that better performance can be achieved if prediction
is used. This is discussed in the next section, which presents a nice solution. There
are, however, some good things with using the PI controller when controlling
processes with long dead times. The slow control makes the design quite robust.
Furthermore, the PI controller is easy to tune since it only has two parameters, which
are very well known among control engineers.

2.2 The Smith predictor
One way to achieve better control is to use a model-based predictive controller. The
idea is to use a model, including the dead time, to predict what will happen in the
future. The most common controller of this type is the Smith predictor. The structure
of this controller is shown in Figure 2.1. The control signal is passed on not only to
the process, but also to two models. These models are often first order approximations
of the process. The first model, G(s), also includes an approximated dead time L.

sLp e
sT

K
sG −

+
=

1
)((2.1)

The second model, G*(s), is then the same system without dead time.

sT
K

sG p

+
=

1
)(* (2.2)

 6

By subtracting the model output from the real process value, the controller is tricked
to act as if there were no dead time. The models are of course not often that exact, but
the first order model can capture most of the process dynamics. The main reason that
one uses a first order system as model is that it is quite easy to find the parameters that
approximate such a system, see further section 3.1. The controller is usually a PI
controller.

Figure 2.1 The Smith predictor. G(s) is a first order model of the process. G*(s) is the same

model, but without dead time. The controller is often of PI structure.

2.3 The PPI controller
In section 2.1 it was mentioned that the PI controller is easy to tune. There are some
simple rules that make it possible to tune the controller without having any knowledge
of control theory. One example of such a rule is that higher gain K will give a faster
but less damped control. The Smith predictor from section 2.2 does not share this
easy-tuning feature. If the models are of order one, there are five parameters to be
determined: K and Ti in the controller and Kp, T and L in the models. This section
presents the PPI controller, which combines the prediction of the Smith predictor and
the easy tuning of an ordinary PI controller.

PPI stands for Predictive PI and the idea is presented in [Hägglund]. The structure is
the same as in the Smith predictor with a PI controller. The novelty is the way the
parameters are chosen. The controller gain, K, is set to 1/Kp and the integral time, Ti,
to T. This leaves only three parameters, T, Kp and L to be determined. If one has an
estimate of the dead time L, the other two parameters can be tuned manually as in an
ordinary PI controller. The structure of the PI controller is:

))(1)(()(∫+= dtte
T

teKtu
i

 (2.3)

 7

Where e(t) is the control error signal,

)()()(tytrefte −= (2.4)

Using this together with the models in eq.(2.1) and eq.(2.2) and the choice of K and Ti
as above gives the following structure of the PPI controller:

))()((1)()11()(Ltutu
pT

te
pT

Ktu
ii

−−−+= (2.5)

where p is the differential operator d/dt. Some performance is of course lost when this
simple model is used, but the similarities to the PID controller and few tuning
parameters are in many cases more useful than a slightly better model. The PPI
controller is further not suited for all kind of processes. The auto-tuner in Control IT
suggests a PPI design if the estimated dead time is about twice as big as the estimated
time constant. A comparison between an ordinary PI and a PPI controller for a ‘PPI
suitable’ process (G4, see section 6.1) is made in Figure 2.2. Two controllers are auto-
tuned. One of them uses the automatically chosen PPI controller with gain of 1.0,
integral time Ti of 4.5 seconds and a dead time estimate of 10.5 seconds. The other
one is forced to use the suggested PI controller. This controller has a gain equal to 0.2
and a Ti of 6.1 seconds. A set point step is made, and after that, a load disturbance is
introduced. One can see that the PPI controller is faster both in the step response and
to reduce the disturbance. The PPI controller has been implemented and tested in
industrial applications with good result, see [Hägglund].

 8

Sp
Out

Pv

Out
Sp

Pv

Figure 2.2 A comparison between a PPI (upper) and a PI controller during a set point step
followed by a load disturbance. Notice that the controller output almost immediately reaches its
new value in the PPI controller, whereas the output from the PI controller is more slowly raised.

 9

3 How to make the PPI adaptive
The idea of adaptation is that the controller should be able to handle changes in the
process dynamics. The adaptation mechanism detects changes in the process and then
updates the controller design. A block diagram of the adaptive controller that is
presented in this work can be seen in Figure 3.1. The updating algorithm tracks the set
point, the controller output and the process value in order to detect changes in the
process. There are many ways to do this, but one common need is that there must be
an excitation of the system so that the dynamics become measurable. Note that a
robust design can handle changes in the process, but with an adaptive controller the
process can change more and a better performance can be attained. In Control IT
today, there exists an adaptive PID-controller but there is no such function for the PPI
controller and this is the motivation for this thesis.

Figure 3.1 Block diagram for adaptation.

There are, however, also some problems introduced together with the adaptation. The
idea is to make human supervision and retuning somehow unnecessary, but how can
one guarantee the stability of the system? Adaptive controllers can also show strange
behaviours like turning themselves off.

3.1 Estimating parameters in closed loop
As mentioned in section 2.3, one needs three parameters in order to tune the PPI.
These are the process dead time, time constant and static gain. To make the PPI
controller adaptive therefore requires that one can estimate these parameters in closed
loop, and this is the topic of this section.

3.1.1 The method of moments
Given a step response, it does not seem that difficult to estimate the needed
parameters. In an ideal world with no disturbances, there are several ways to estimate
e.g. the dead time. But when noise and other disturbances are introduced, all methods
depending on evaluation in a single point will give noise sensitive estimations. One
solution to this is to, if possible, use integral calculations. If the noise has zero mean,
it will not effect the estimation that much anymore. This section describes one such

 10

method, the method of moments. The presentation of the method is brief though, since
we are only interested in the result. For a more detailed description, see [Åström and
Hägglund] and [Norberg]. The briefness might make this section quite hard to
understand, but full understanding is not necessary. The introduction of the parameter
Tar is essential however, since the parameter will be used a lot throughout the thesis.

Consider the frequency domain description of the control loop

)()()(sUsGsY ⋅= (3.1)

With the three-parameter process model

sLp e
sT

K
sG −

+
=

1
)((3.2)

First, a new parameter is introduced

LTTar += (3.3)

This parameter is called the average residence time. The idea is now to estimate Tar
and either of T or L. Then, it is of course easy to calculate the last parameter from eq.
(3.3). Let us start with the calculation of Tar. Taking the logarithm of eq. (3.2) gives

)1(loglog)(log sTsLKsG p +−−= (3.4)

This expression is then differentiated

sT
TL

sG
sG

+
−−=

1)(
)(' (3.5)

 and Tar can now be derived from eq. (3.5) with s=0

)0(
)0('

G
GTar −= (3.6)

Differentiation of eq. (3.1) gives

)(')()()(')(' sUsGsUsGsY += (3.7)

Furthermore, from the definition of the Laplace transform, the following holds

 11

∫

∫

∫

∫

∞

∞

∞

∞

⋅−=

=

⋅−=

=

0

0

0

0

)()0('

)()0(

)()0('

)()0(

dttutU

dttuU

dttytY

dttyY

 (3.8)

The restriction to eq. (3.8) is that the integrals must converge. Given a step response,
how can one guarantee this? The solution to this (see [Norberg]) is to use the
derivatives of the signals. If the process is in rest when the step is taken, the
derivatives of y and u are zero. The same holds when the process has settled again
after the step. Using the derivatives of the signals in Eq. (3.8) gives:

1
0 0

0 0

2
00

00

))()(()(')0('

)0()()(')(')0(

))()(()(')0('

)0()()(')(')0(

AdttutudttutU

utudttudttuU

AdttytydttytY

ytydttydttyY

f

f

f

f

t

fd

f

t

d

t

fd

t

fd

−=−−=⋅−=

−===

−=−−=⋅−=

−===

∫ ∫

∫ ∫

∫∫

∫∫

∞

∞

∞

∞

 (3.9)

Where tf is the time when steady state is reached again. The two remaining integrals
can be interpreted as two areas, see Figure 3.2. Since the system is linear, eq. (3.1) can
be rewritten as

)()()(sUsGsY dd ⋅= (3.10)

and eq. (3.7) as

)(')()()(')(' sUsGsUsGsY ddd += (3.11)

 Now, by combining eq. (3.9) with eq. (3.6) and eq. (3.11), Tar can be calculated as

))0()(())0()((

))0()(())0()((12

utuyty

ytyAutuA
T

ff

f
ar

f

−⋅−

−−−
= (3.12)

The fact that the integrals in eq. (3.9) can be reduced to integrands of order one is a
nice feature for numerical calculations. Both T and L can be estimated in the same
way, but this requires second derivatives, and there is no way to reduce the integrals
in this case. This leads to bad numerical calculations, and other solutions are needed.

 12

In the auto-tuner in Control IT, the method of moments is used to calculate T. This is
done with an open loop step though (see [Norberg]), and this method is therefore not
suited for adaptation. The solution that has been chosen is to estimate Tar according to
this section, and the dead time in a manner that is presented in the next section. The
last parameter, Kp, is calculated as the ratio between the change in process value and
the change in control signal.

Figure 3.2 Areas for Tar calculations.

3.1.2 Estimating the dead time
The problem with dead time estimating in closed loop is that in order to estimate the
process dead time, the only event that excites the system enough is a change in the
reference value, see [Isaksson et al.]. This is a disappointment because in process
industry, control is often focused on suppressing disturbances to keep the process on a
certain level, and set point changes are rare events. This section presents two different
methods to estimate the dead time from a set point step response. Both methods have
their benefits and disadvantages, and in the final solution both are used.

The first approach is to simply check the process value and set the dead time equal to
the time from the step is taken until the process starts to react. This method is in the
rest of the thesis called the level method. The problem when using this technique is to
distinguish the step response from noise or other disturbances. The solution is to set
the dead time equal to the last time the process value is below some level above the
original value. The method can be further improved by taking the time in between the
first time above the level and the last time below. The level method is, as have been
shown in simulations, very noise sensitive. When ramped set point changes are used,
however, this is the best way to estimate the dead time.

The second estimating technique is the one that has been proven to be the most useful.
The idea is to take the maximum derivative during the step response and then

 13

extrapolate a straight line with this slope. The dead time is taken as the time when the
straight line intersects with the old set point level (see Figure 3.3). This method is
called the derivative method. The largest problem with this approach is numerical
problems when calculating the derivative. These problems will be carefully discussed
in section 4.3.1.

Figure 3.3 Calculation of the dead time L, using the maximum derivative of the process value

during a step response.

It has been shown, that in order to get usable estimates from the derivative method, it
is needed that the change in control signal is somewhat close to a step change. This
will give an ‘open loop-like’ behaviour of the step response. Remember that it is the
open loop time constant and dead time that is wanted. If the step response is slow, the
dead time will be estimated too long. It is still possible to use the derivative method in
the adaptation as long as the controller is of PPI structure, since the control signal in
that case almost directly is set to the assumed new level. It will be shown later that the
adaptation can be run also when a PID controller is used. In this case, and when
ramped set point changes are used, the dead time must however be estimated with the
level method.

When the method of maximum derivative is used, the dead time is estimated a little
longer than the true dead time. This is not a problem though. On the contrary,
simulations shows that higher performance is achieved if the estimated dead time is
set a little longer than the real dead time, see [Hägglund]. This is due to the loss of
dynamics when one uses a first order model to describe a system of higher order. To
compensate for this, the model has a longer dead time. Figure 3.4 shows the
difference between a fourth order system and a predicted first order model of that
system.

 14

 First order
model

Original
system

Figure 3.4 Comparison between a fourth order system and a first order model.

3.2 Supervision
One of the reasons that adaptive controllers are not that popular in industry is the fact
that one really could not guarantee a safe performance. Even if most algorithms can
handle a majority of cases, there are always unpredictable disturbances that can affect
the performance. This is also the case for the method presented in the previous
sections. One cannot be sure that the estimates are good, and therefore some kind of
supervision that detects bad estimates is needed. This is of course quite tricky and
there is no way to be totally secure.

The bad estimates that are the simplest to detect are the ones that are totally
unrealistic, e.g. negative results. The most common such error that has been
encountered is a negative estimate of the time constant T. This might depend on two
different things. The dead time might have been estimated too long, in fact longer
then Tar, and the result is a negative T. The second possibility is that the Tar estimation
is too small. Given this, there are three possible ways to handle the situation. The first,
and the safest, is to simply discard the result and use the old values. If the reason for
the bad estimates is a change in the process, this is not optimal though. The alternative
is to use either the new Tar and old L or the new L and old T. Since the L estimation is
more error prone, one might think that the first approach is the best. On the other
hand, the reason for bad Tar estimates is often changes in the process, and therefore is
the second approach used. This is by no means verified as the best solution.

 15

Above, only treatment of estimates when T is negative was handled. There is another
check that could be performed in order to verify good estimates. A change in dead
time will, if there is no change in other dynamics, result in an equally large change in
Tar. If the dead time estimate is changed considerably, one can check if Tar has
changed equally and if so is not the case the dead time estimate is considered bad.
This test has not been implemented since there are many design parameters to decide
upon, e.g. what size of dead time change is considered large? Further is it a weak
assumption that only one of L and T changes between every step.

If gain scheduling (see further section 3.3.2) is used in combination with the adaptive
PPI, only set point steps within a gain scheduling range are accepted as valid. This
supervision is made outside the PPI adaptation function block. The adaptive PPI is
notified from the gain-scheduling algorithm when a change in range is made. The PPI
adaptation is reset upon such change.

3.3 Is the adaptation useful?
Before rushing into the implementation, one should maybe pose the question: “Is
there really a need for an adaptive PPI controller?” In order to answer this question
properly, a good thing would be to ask control engineers who work with processes
with long dead times the following questions:

• Is it common with changing processes that necessitate the use of adaptation?
• How often are there changes in the set point?
• Are the PPI controller used at all?

Unfortunately, such an investigation has not been performed. In this section, the
issues mentioned above are discussed though.

3.3.1 Possible usage
It is a well-known fact that with a PPI controller one gains faster control but loses
robustness. This means that the use of PPI controllers is restricted to fairly constant
processes. There might be processes that could benefit the faster control of the PPI if
there were a good adaptation. One should remember though, that since the estimation
of the dead time is possible only at set point changes, which might not occur that
often, it is important that the adaptive PPI controller only is used in cases when there
are small and slow changes in the process parameters. These aspects have been
considered when the simulation examples have been chosen. If set point changes are
very rare, maybe only at production changes, the usefulness of the adaptation is very
limited.

The conclusion is that in cases where PPI controllers have been used with good result,
an adaptive version might improve the performance if only set point changes are made
reasonable frequent. This means that there are good reasons for implementing the
adaptive algorithm for the PPI, at least in order to perform simulations.

 16

3.3.2 Adaptation vs. gain scheduling
If the changes in the process parameters are measurable, one can tune the controller
parameters for several ranges of process dynamics and then choose the proper
controller when working in a certain range. This is called gain scheduling, and is often
a good way to handle non-linear processes with partly linear behaviour.

Many times, the reason for the dead time is a transportation of material. If the delay is
proportional to some measurable state, e.g. the speed of a conveyer or the flow of a
liquid, it is possible to use gain scheduling to handle the changes in dead time. The
advice is to use gain scheduling when possible. One could of course also combine the
two methods in order to improve the control in each range.

 17

4 Implementation
This chapter treats implementation aspects. First, Control Builder Professional is
introduced. Then is the algorithm presented and problems discussed.

4.1 Control Builder Professional
Control Builder Professional (CBP) is an engineering tool that supports the IEC
61131-3 standard. IEC 61131-3 (or 1131) is a standard that specifies methods and
languages to program/configure process control. The standard contains five
programming languages that are all included in CBP. The five standard programming
languages are: Structured Text (ST), Instruction List (IL), Function Block Diagram
(FBD), Ladder Diagram (LD) and Sequential Function Chart (SFC). With these
languages it is possible to develop programs that then can be downloaded and
executed in a controller. The controller can be an independent hardware unit or a so-
called soft controller, which runs on an ordinary PC.

An application in 1131 is built up by Program Organization Units (POU) that makes it
easer to structure the work and re-use code. A POU can contain other POU:s, i.e. the
idea is similar to object oriented programming. The POU:s that are specified in 1131
are: programs, function blocks and functions. Even though programs cannot be
included in other POU:s, it is defined as a POU. Since 1131 do not fully support
object oriented programming, there are an additional POU added in CBP, namely the
control module type. The control module type also contains a graphical editor, which
makes it easy to design GUI:s for soft controllers. All implementation in this thesis
has been carried out in CBP using ST. The adaptation algorithm is implemented as a
single function block that then has been added to the already existing PID control
module.

4.2 The algorithm
This section contains a brief description of the PPI adaptation algorithms that have
been implemented. The structure can be viewed in Figure 4.1, which presents the
solution as a state chart.

The algorithm starts in ‘wait for steady’ when adaptation is turned on. When the
process is steady near the set point, the steady mode is entered. While in this mode,
the algorithm estimates noise and waits for a set point step to occur. If the process is
disturbed from its steady state, the algorithm re-enters the wait for steady mode. If a
set point change is made while in steady state, the estimation of the three parameters
is started. The algorithm is now in the ramp mode and stays there as long as the set
point is changed every sample. The ramp is aborted if a set point change is made in
opposite direction than the first change, and in that case, the algorithm is put in wait
for steady mode again. When the ramped set point change is over, the step state is
started and steady state is awaited. The step is aborted if the step amplitude is found to
be too small in comparison with the noise level or if there is a new set point change
before steady state is reached. When the step is ready and steady state is achieved,
new parameters are calculated and if they are good the controller is redesigned. The
algorithm is once again in steady state mode and a new step can be performed.

 18

Figure 4.1 State chart for the PPI adaptation algorithm

4.3 Problems
Not surprisingly did some problems occur during implementation and simulations.
This section discusses these and gives the solutions that are used.

4.3.1 Derivatives and noise
As mentioned before, the derivative sensitivity to noise is a most severe problem.
Filtering with a low pass filter can reduce this sensitivity, but if the filtering is too
‘hard’, the signal will be so distorted that there is no use of the derivative. There is
thus a trade off between good derivatives and noise insensitivity. One way to handle
this trade off situation is to use some kind of adaptive filter. If the noise level is high
there is need for harder filtering and the filter constants can be changed. Similarly,
with less noise, the filter can be adapted to the noise level. This approach has been
tested with fairly good result, but there are some questions to answer. How often
should one update the filter? How should the maximum/minimum filtering be chosen?

Another approach is to sample the derivative with a longer sampling time. This can be
seen as filtering, but with only one parameter to be chosen, namely the derivative

 19

sampling time. This method has been tested, and the result is hopeful. The strategy for
when and how to update this sampling time is the following. The most important
thing is that the sampling must be sufficiently fast in relation to the process dynamics.
The parameter T is a measure of how long time the step response takes if the dead
time is neglected. It is therefore logical to use this parameter when to chose the
derivative sampling time. It has proven that it is sufficient to use a derivative sampling
time of 0.5*T seconds. The time constant is updated after every step so it is natural to
also update the derivative sampling time at these occasions.

Even better results are achieved when a combination of the two methods are used.
First a low pass filter is used and then the sparse derivative method improves the
result. The filter must not filter too hard, and its design is fixed. The adaptive PPI can
cope with fairly large noise levels when using this solution. One restriction still holds
though: the amplitude of the step must of course be larger than the noise. In order to
update the controller at as small set point steps as possible, the noise level is detected
continuously.

4.3.2 When to stop Tar calculations
There are as mentioned three parameters to be estimated. Problems with the
estimation of L were discussed in the previous section. The Kp parameter is the most
simple to estimate, and noise does not disturb the estimation if only averaging is used.
The remaining parameter, T, is not estimated directly but calculated from the
estimates of Tar and L (see section 3.1). This section treats problems with the Tar
estimation.

Since Tar is estimated by calculating areas, the method is not that sensitive to noise.
There are another problem though. How does one know when to stop the calculations
of the areas? According to the equations (3.9) the calculations should stop when the
process is at rest after the step. Since a controller with integral action is used, one can
be sure that the control error will be zero. One way to check that the process is at rest
is then to stop when the derivative is approximately zero and the new set point is
reached. This will introduce the problem with derivatives and noise again, and
therefore this criterion is skipped. Instead just the process mean value is measured and
the calculations stops when it is sufficiently close to the set point. This does of course
give rise to the question: “When is the mean process value close enough?” One could
of course set a fixed percentage of the process value range as a limit, but simulations
shows that smaller steps will then give poorer results. This is because the rise time in
a linear system is independent of the size of the step, and accordingly it takes longer
time for the process value to reach the limit if the step is of smaller amplitude.
Therefore, the limit is decided as a percentage of the step size. Furthermore, it is
necessary for the averaging to be done over some time to handle overshoots and large
noise levels and therefore another criterion is added. The averaging is done for at least
the length of three estimated time constants after the process has reached the new
level.

 20

4.3.3 Ramped set point changes
It is not necessary that the change in the set point is a distinct step in order to get a
correct Tar estimate. Theoretically, any change that is finite in time will give a useful
result. In reality, there must be some restrictions to the shape of the set point change
in order to implement the integral calculations. The final version of the adaptive
algorithm handles two kinds of set point changes: a pure step and a ramped step.
Ramped set point changes are popular in industry, since they give a safer behaviour of
the step response. The problem that arose when implementing the ramped step was
the definition of a ramp. The solution requires a change in set point in same direction
every sample of the step. When the set point is constant for two consecutive samples,
the step amplitude is fixed, and if the set point now changes before steady state
around the new level is reached, the step are considered aborted and no new estimates
are calculated.

4.4 Design parameters
During implementation, several decisions were made concerning numerical levels and
constants. It is not sure that these decisions are the best. On the contrary, it is likely
that they need to be adjusted if the algorithm is tested in an industrial environment.
The parameters and the chosen values are listed in the table below. The names refer to
the actual variables in the function block.

Name Description Chosen value
DerLimit Sampling time for derivative. MAX(0.5*T ,

2*system sampling
time)

Tf Time constant for low-pass
filter.

Tc/30 (Tc from
relay tuning).

NoisePeriod Period for updating noise
level.

30 seconds.

SteadyLimit Limit for mean value to be
considered at steady state.

MAX(0.005*step
amplitude , noise

level)
----------- Time that mean-values must

be steady before a step is
considered ready.

3*T

NoiseLim Fraction above old set point
that indicates step for level

estimates.

MAX(NoiseLevel/2
, 0.5% of operating

range)

Table 4.1 Design parameters.

 21

5 System integration
This chapter handles the issues of how the new adaptive PPI should be integrated in
the existing PID Control Module. Things that are discussed are when the adaptive PPI
should be used, how it should interact with the existing adaptation and what data
should be given to / required from the user.

5.1 Allowed use of the PPI adaptation
In theory, there are no restrictions when the adaptive version of the PPI can be used.
In reality it has been shown though that it is practical to have some conditions that
have to be fulfilled before the adaptation can be switched on. Although it is not
necessary for the controller to be of PPI structure, there must be integral action in the
controller in order to eliminate the control error (see section 4.3.2). This means that
the adaptive algorithm can be used with a PI or PID controller and if the ratio between
the dead time and the time constant is increased, a PPI structure can be selected. How
this switching is done is discussed in the next section.

There is no use to have a PPI controller when controlling an integrating process, i.e.
an open loop unstable process. If the process is integrating, then the output after the
step will be the same as before the step. This makes it quite easy to detect if the
process is integrating. This test is made in the step auto-tuning, but since this can be
detected during the first step in adaptation mode, there is no requirement for the full
auto-tuning procedure before PPI adaptation is enabled. The relay auto-tuning must
have been performed though. This is to be able to choose a suitable time constant for
the derivative filter.

5.2 Changing control structure
The PPI adaptation algorithm uses the same design function as the existing auto-tuner
and adaptation. A PPI structure is chosen if the dead time is longer than two estimated
time constants, but what should be done if the design function suggests a PID
controller? In section 5.1 it was stated that the PPI adaptation algorithm could be used
even if the actual controller is not of PPI structure. The question is then if this should
be allowed, and if the PPI adaptation should be run in parallel with the already
existing adaptation for PI and PID controllers. This section presents and motivates a
solution that, however, has not been implemented.

A PPI controller is a quite extreme, not very robust controller. If safe step responses
with no overshoots are more important then a fast response, then one should use an
ordinary slow PI controller instead. It is therefore not a good idea to have an
adaptation that automatically switches from a PID to a PPI design if e.g. the dead time
is increased. The question is if the user should be able to enable the adaptation to
switch from PID to PPI design, or if PPI adaptation only should be used when the
adaptation is started using a PPI design. The solution that has been chosen is the
following. PPI adaptation is only possible if the adaptation is started when a PPI
controller is in use. The user then have the option to choose which switching
technique that should be used if the adaptation suggests a PID design. In every case, a
PID design is chosen, but the user can choose to stick to a PID design even if the
process enters the PPI region again, i.e. the PPI adaptation is turned off as soon as the

 22

controller enters the PID region. The second alternative is to use a PPI design again if
the adaptation finds it suitable. The third, and maybe the most secure alternative, is to
turn off all adaptation when a switch in design. Which one of these techniques that are
best have not been verified during simulations, see further chapter 6. The switching
requires that the existing adaptation algorithm for PID control is being run in parallel
with the PPI adaptation algorithm.

There is another decision to take when the structure is changed from PPI to PID. In
the system today there exists two different design methods. The first is the original
design that only requires a relay auto-tuning. This method is therefore called relay
design in the future. The other design method is the method that is presented in
[Norberg]. This method requires a step tuning, and is accordingly called step design.
The existing adaptation uses relay design since the parameters needed for step design
are not updated. The use of PPI adaptation makes it possible to use the step design as
the structure is switched. This is used when PPI-PID switching is allowed, not
otherwise since PPI adaptation is switched off then.

As mentioned above, this solution is not implemented in the test version. Instead, a
graphical interface is constructed, which makes testing easy. The interface is shown in
Figure 5.1.

Figure 5.1 The adaptation interface.

 23

5.3 User parameters
In this section, the issue of what parameters of the adaptation algorithm that should be
available to the user is discussed. The goal is to leave the user with as few options as
possible. The only choice the user has to make is which of the switching techniques
above that should be used. To make the choice easer, the alternatives may be named
safe (no switch), cautious (no PID to PPI) and normal (PID to PPI).

The user should also be warned if the adaptation works poorly, e.g. many estimates
are rejected or ramped set point changes are performed in a bad manner. A warning
must also be given if the adaptation is switched off.

 24

6 Simulations
The best way of confirming that the adaptive PPI controller really works is of course
to test it in several industrial environments. This would be very time consuming, and
it might be hard to test all situations that can occur. It is therefore needed to test the
controller in a simulated environment. This chapter gives a review over the
simulations that have been carried out.

6.1 The processes
If finding processes with desired behaviour is a problem when testing in an industrial
environment, one has the reverse problem when simulating. Since one is given the
power to fully decide the dynamics, one might, with or without intention, use process
models that give good results, but that does not capture the behaviour of ‘real’
processes. Further, the number of possible processes is infinitely, so how does one
know which to use?

The PPI controller is, as mentioned in section 2.3, most beneficial for processes with
short time constants in relation to the dead time. These processes can be found in the
process industry. The continuous transfer functions of the processes that has been
used in simulations are the following:

s

ss

ss

e
s

G

e
ss

sGe
s

sG

e
s

sGe
s

sG

25
25

10
4

10
43

10
22

10
1

)51(
1

)41)(1(
1)(

)21(
1)(

)1(
2)(

1
1)(

−

−−

−−

+
=

++
=

+
=

+
=

+
=

These models cover most of the process dynamics encountered in the process
industry. The tests that have been carried out are presented bellow.

6.2 Test 1: Verifying good estimates
The first test is to check if the estimates are good enough to enable adaptation. The
test was performed on the five test processes above with constant dynamics and no
disturbances. For each process, several set point changes were performed and the
estimates were studied. The estimates of the process gain, Kp, were in all cases good
and the estimates of this parameter are therefore omitted in the results below. Set
point changes of 5, 20 and 50% of the operating range were used in order to check the
dependence of the step amplitude. Further, half of the steps were made using a
ramped set point change. The test was performed with two parallel controllers, one
with derivative dead time estimation and one with the level-method. The results are
presented in Table 6.1 and Table 6.2 below.

 25

Derivative:
Process Calculated L Estimated L Calculated Tar Estimated Tar ∆L when ramp

1 10.00 10.00 11.00 11.29 10.13%
2 10.60 10.53 12.00 11.92 12.50%
3 14.00 14.29 18.00 18.11 7.76%
4 10.88 11.62 15.00 15.11 11.55%
5 27.90 28.76 35.00 35.14 0.40%

Table 6.1 Results from Test 1 using derivative dead time estimation.

Level:
Process Calculated L Estimated L Calculated Tar Estimated Tar ∆L when ramp

1 10.00 10.14 11.00 11.37 0.89%
2 10.60 10.28 12.00 11.92 2.34%
3 14.00 12.69 18.00 18.03 0.01%
4 10.88 10.88 15.00 15.09 0.95%
5 27.90 26.70 35.00 35.38 -0.50%

Table 6.2 Results from Test 1 using level dead time estimation.

Notice that the calculated values are not similar to the real dead times, but the values
that are given by a first order approximation. The values for the estimated dead time L
and average residence time Tar in the table above are mean values for the values from
the non-ramp steps. The deviation from the mean values for the dead time was quite
small, at most 1.7%. The adaptation did never result in unstable control even though
the performance was worse for some cases. For processes G3 and G4, the level
estimation did show a switching behaviour between PPI and PID design. The
algorithm did practically change control structure every step, which of course is an
undesired behaviour. The last column shows the mean change in dead time estimates
if ramped set point changes were used. One can notice that the level dead time
estimation is almost unaffected while the derivative dead time estimate increases
drastically for all processes except process G5. This process is over all the most
robust, and control was good for both level and derivative estimation. Furthermore,
the step amplitude did not affect the derivative estimates but the level estimates
became shorter when larger step amplitudes were used. The reason for this is that the
limit for step response detection is independent of the step size, and so is the rise time
of a linear system (compare section 4.3.2).

6.3 Test 2: Noise sensitivity
As will be shown in this section, noise sensitivity is a large weakness of the
adaptation algorithm. The effects of a variety of disturbances are investigated below.

6.3.1 White noise
First, uncorrelated white noise was studied. Processes G2 and G3 were disturbed with
white noise with a variance of 0.8% of the operating range. Several set point steps
were made, and the estimates of L and Tar were studied. The algorithm sometimes
discarded 5% steps, and therefore amplitudes of 10, 20 and 50 % were used. The
graphs in Figure 6.1 and Figure 6.2 show comparisons between the dead time
estimates with and without noise. The variations of the estimates are considerably
increased. One can also notice that the derivative estimates seem to have the same
mean value as without noise, while the level estimates seem to become a little longer.

 26

This is caused by the new level detection limit when noise is present. The Tar
estimates are changed in a similar way.

Dead time for process G2

10,00

10,40

10,80

11,20

11,60

12,00

0% 10% 20% 30% 40% 50%
Step amplitude

D
ea

d
tim

e

Derivative no noise
Derivative noise
Level no noise
Level noise
True value

Figure 6.1 Comparison between dead time estimates with and without noise for process G2.

Dead time for process G3

11,50

12,50

13,50

14,50

15,50

16,50

17,50

0% 10% 20% 30% 40% 50%
Step amplitude

D
ea

d
tim

e

Derivative no
noise.
Derivative noise

Level no noise

Level noise

True value

Figure 6.2 Comparison between dead time estimates with and without noise for process G3.

Even though the quality of the estimates was decreased, the control was still stable.
Figure 6.3 and Figure 6.4 show typical step responses for process G3.

 27

Figure 6.3 Step responses for G3 with derivative dead time estimates.

Figure 6.4 Step responses for process G3 with level dead time estimates.

The performance was worse when ramped set point was used, especially for process
G2. The system became unstable several times, see Figure 6.5.

 28

Figure 6.5 Unstable ramp response for process G2 disturbed with white noise.

6.3.2 Coloured noise
The coloured noise used in this section was created by filtering white noise with a
low-pass filter. The filter was designed to reduce frequencies above the sampling
frequency. The white noise had a variance of 5% of the operating range. Process G2
was used and the result was quite similar to the one in the previous section. The level
estimates became much worse though. The dead time was estimated much too short in
some cases resulting in a PID design. This was caused by a ramp-like disturbance that
the algorithm interpreted as the step response.

6.3.3 Sinusoidal disturbances
For sinusoidal disturbances with low frequency in comparison with the sampling
frequency, the behaviour was similar to the case with coloured noise, i.e. too short
level dead time estimates. For medium high frequencies, the result was somewhat
different. Figure 6.6 and Figure 6.7 show typical behaviour of process G2 when
disturbed by a sinusoidal signal with amplitude of 2% and a frequency of 10 rad/s or
1.6 Hz. Too long dead time estimate made the level method oscillatory. The
derivative alternative was good as long as ramped steps were not used. If they were,
the result became worse, which can be seen in Figure 6.8. Higher frequencies than the
Nyquist frequency will lead to frequency folding and similar result as for low
frequencies.

 29

Figure 6.6 Stable step response with a sinusoidal disturbance and derivative dead time
estimation.

Figure 6.7 Unstable step response with sinusoidal disturbance. Level dead time estimation is
used.

 30

Figure 6.8 Unstable ramp response when process G2 is disturbed by a sinusoidal signal.
Derivative dead time estimation is used.

6.3.4 Load disturbances
In order to check the dependence of load disturbances during the step response, this
test was performed on process G2. Before a set point step, a load disturbance of 5%
amplitude was introduced in the control signal. First, the load was made in the same
direction as the step response. The results can be seen in Figure 6.9 and Figure 6.10.
After the step was finished, a new load disturbance was introduced in order to check
the performance of the controllers. The level method gave a too short dead time,
which led to a switch to PID design. The derivative method was not that disturbed.

Load

 Figure 6.9 Step response inferred with a load disturbance.

 31

Load

Figure 6.10 Result with load in same direction as the step response.

Then, the same procedure was repeated, but with the load acting in the opposite
direction. The result can be seen in Figure 6.11 and Figure 6.12. The load
disturbances are clearly shown as a dip just before the step response. Now, the
derivative estimate was too long, and the result was an oscillatory control. The level
estimate was still to short, and a PID design was chosen.

Figure 6.11 Step response disturbed by a load in the opposite direction.

 32

Figure 6.12 Result with load in opposite direction of the step response.

6.4 Test 3: The utility of adaptation
In the two previous tests, only processes with constant dynamics are considered. This
might seem a little strange since the meaning of adaptation is to track changes in the
process. It is very important though that the behaviour when the dynamics are fixed is
good. If the adaptation makes the control worse when there are no changes in
dynamics, the whole idea is of no use. This is the reason why constant dynamics has
been used so far. Now, when the stability of the estimations is proved, the focus can
be turned towards the ability to track changing dynamics.

In this section, only changes in the dead time are considered. This is because the PPI
is most sensitive to this kind of changes and a change in the dead time effects both the
L- and Tar-estimate. Simulations with changes in other dynamics have also been
performed, but not as extensive as in the case with changing dead time. The results
from these simulations are omitted here since they do not differ in quality from the
one that are presented.

First, a change in the dead time for the process G4 was considered. The measured
signal was distorted with white noise. The estimate sequence for L and Tar are shown
in Figure 6.13. After the 9th estimate, the dead time was changed from 10 to 15
seconds. The performance of the 10th step response was of course not that good, but
the important thing is that the estimates quickly assumed their new values. Since the
first step after the change is bad, it sometimes happens that the Tar-estimate is poor.
One can see that the L-estimate converged immediately, whereas it took three steps
before the Tar estimate had found its correct value. This is of course an undesirable
feature since set point changes are not supposed to occur that often.

 33

L sequence

10
11
12
13
14
15
16
17
18

0 5 10 15 20

Tar sequence

14

15

16

17

18

19

20

21

0 5 10 15 20

Figure 6.13 L and Tar estimates. Before the 10:th estimate the dead time is changed from 10s to

15s.

In the previous example, the change was sudden and quite large. This might of course
happen, but a more realistic scenario is a slowly drifting dead time. If there is set point
changes reasonably frequent compared to the drifting rate, then the adaptive PPI
should be able to handle this and increase the performance. To verify this, a parallel
test was performed. The process used was G4 but with static gain of 2. Two
controllers, one with and one without adaptation were tuned identically. Then, the
process dead time was increased in small steps. The changes were made
simultaneously for the two controllers. A set point step was made after each change in
dead time so that the adaptation could track the new dynamics. Figure 6.14 and Figure
6.15 show the results of a set point step when the dead time has changed from 10 to
12 seconds. The first graph shows the adaptive controller while the second is from the
controller without adaptation. It is clear that the adaptation improves the performance,
even though the difference is not that big.

 34

Figure 6.14 Step response with adaptation when dead time is 12 seconds.

Figure 6.15 Step response without adaptation when dead time is 12 seconds.

Then, the dead time was increased further. In Figure 6.16 and Figure 6.17, the result
when the dead time was 14 seconds is presented. After the step, a load disturbance
was introduced to the system. The difference in performance between the adaptation
and the static controller are much more noticeable here.

 35

Figure 6.16 Step response with adaptation for dead time equal to 14 seconds.

Figure 6.17 Step response without adaptation and with dead time of 14 seconds.

The conclusions that can be drawn from these simulations are that the algorithm is
able to handle changing processes. If the changes are too big between two set point
steps, however, lack of robustness in the PPI controller can make the system unstable,
and adaptation will fail.

6.5 Test 4: Switching to PID control
Three different techniques for switching between PID and PPI design during
adaptation are presented in section 5.2. The test in this section was performed in order
to check the performance of these. The test was done using process G4 on two parallel
controllers. The controllers were first auto-tuned. One controller used the ‘relay when

 36

switch’ option, the other used step-design all the way. Both used derivative dead time
estimation in PPI mode and level estimation in PID mode. A third controller was also
used without adaptation, as a reference.

Figure 6.18 Step response for the controller that always uses the step adaptation. The step is the
last one before the system switched to PID design.

Figure 6.19 Last step response before switch for the controller that uses relay adaptation in PID
mode.

 37

Figure 6.20 Last step response before switch to PID design for reference controller.

First, the dead time was decreased in small steps from 10s to 6.5s. After every change
in dead time, a set point step was made in order to activate the adaptation. The results
from the steps taken when the dead time was 6.5 seconds are shown in Figure 6.18,
Figure 6.19 and Figure 6.20. After this step response, both the adaptive controllers
(named Step and Relay) switched to PID structure. In Figure 6.21 and Figure 6.22, the
first step responses after the switch for the two adaptive controllers are shown. The
step design gives a slightly faster response.

Figure 6.21 First step after switch for the step adaptive controller.

 38

Figure 6.22 First step response after switch for the relay adaptive controller.

 The PPI adaptation was then switched off for the relay controller according to section
5.2. The dead time was decreased further, and as shown in Figure 6.23 and Figure
6.24, the relay design was now a little better. This is probably caused by the fact that
the relay adaptation updates more frequently. The dead time was 5 seconds in this
step.

Figure 6.23 Step response for step adaptation when dead time is 5 seconds.

 39

Figure 6.24 Step response for relay adaptation when dead time is 5 seconds.

Now, the dead time was increased again and at 9 seconds did the step adaptation
switch back to PPI. In Figure 6.25 and Figure 6.26 a step response when the dead time
is 11 seconds is shown. Notice the very slow result for the relay adaptation.

Figure 6.25 Step response when dead time is 11s. PPI design is used again.

 40

Figure 6.26 Step response when dead time is 11s. PID design is still used.

One remark is suited here. The step adaptation works fine above, but one should
remember that the algorithm is very depending on frequent set point changes.
Furthermore, only variations in dead time are considered.

 41

7 Conclusions and future improvements
In this chapter, the results from the simulations are discussed and conclusions about
the adaptation are made. In section 7.2 improvements are suggested.

7.1 Conclusions
One can see from the simulations without noise (section 6.2) that the choice to use the
level estimating technique when ramped set point changes are used is well motivated.
The problem is that the level method seems very sensitive to noise. Further tests are
needed in order to see if this is a possible solution. If this isn’t so, and if the level
estimates cannot be done more noise insensitive, the only solution is to disable the
adaptation during ramped set point changes. This would be a big drawback.

There are some processes that are more sensitive to noise than others, especially G2
shows bad noise behaviour. The reason for this is that the time constant is so fast that
even small deviations in the dead time estimate will lead to a very small (<0.05 s) T
estimate, which in turn lead to an unstable controller. This is of course not good and
maybe should the supervision from section 3.2 be modified to discard such small time
constant estimates. Another remark is that there obviously is no good to use a PPI
controller if the system is that fast. This indicates that the condition for when a PPI
design should be chosen is insufficient. This will be further discussed in the next
section.

The problem of load disturbances during adaptation is a known problem. The existing
PID adaptation is turned off if a load disturbance is noticed. The problem is that it is
not a trivial thing to detect a load disturbance.

The test of the switching techniques is not really giving any clear answer on which
method that should be used. There are already problems in the existing adaptation
when switching between PID and PI control. This indicates that switches might not
be allowed at all. This may be a good solution since the whole idea of adaptation is
that the changes in the process must be small. There might be problem when the
process is close to a switching point though. In these cases, some kind of hysteresis in
the switching would be good to avoid repeated adaptation shut downs.

In total, one must say that the results are good though. Test 3 shows that a higher
performance is given when the adaptation is used. The breaking point for the PPI
adaptation is, however, the fact that the controller can be updated only once per set
point step. If set point steps are that rare that is feared, there is no meaning in putting
any effort into including the adaptive PPI in a product. To verify if this is the case,
industrial studies must be performed.

 42

7.2 Improvements
One thing that has been discovered is that some processes that are suggested a PPI
controller by the auto-tuner, in reality is more suited for PI or PID control. They seem
to be very sensitive to changes in the process dead time. This indicates that the
criterion for when PPI design should be used is somewhat insufficient, or a more
robust tuning technique is needed. There is some work done on this subject (see
[Ingimundarson]) in which the delay margin, i.e. the amount the dead time can vary
from the used L before the system becomes unstable, is used. If one could somehow
estimate this parameter, it could be used in tuning and design.

As mentioned above it seems like the criterion for when to use a PPI controller is not
hard enough. Today the rule is to use the PPI controller when the estimated dead time

is about twice the estimated time constant, i.e. 2>
T
L . Some additional simulations

have proven that there is a need to limit the use of the PPI when the dead time is too
long in comparison with the time constant. The suggested new rule is therefore to use

the PPI controller when 52 <<
T
L holds. This would then give that processes G1 and

G2 from the simulations should be controlled with PID controllers instead. It has also
shown that first order processes are less suited for PPI control. The lack of dynamics
in the system makes it very hard to tune the controller and the control loop becomes
sensitive to changes in the process dynamics. More research can be done on this topic.

On the matter of improving the PPI adaptation algorithm, the most important subject
is the noise sensitivity. There is also some work to do on the supervision. One idea
that has not been tested is to somehow use the old estimates, i.e. not to use the new
estimates straight off but a mean value of the most recent estimates. This would lead
to a more slowly adapting controller that will need set point steps more often. On the
other hand, the adaptation might be more robust if this averaging is done.

 43

Acknowledgements
First of all I would like to thank my advisors, Lars Pernebo at ABB Automation
Products and Prof. Tore Hägglund at the Department of Automatic Control at Lund
Institute of Technology. Their inspiration and support have made it a pleasure to
complete this thesis. I would also like to express my gratitude to all the people at ABB
that have helped me, especially Bengt Hansson and Mikael Petersson.

References
K. J. Åström and T.Hägglund (1995): PID Controllers: Theory, Design and Tuning.
Instrument Society of America, second edition.

K. J. Åström and B.Wittenmark (1997): Computer-Controlled Systems. Prentice Hall,
third edition.

T. Hägglund and K.J. Åström (1991): Industrial Adaptive Controllers Based on
Frequency Response Techniques. Automatica, Vol.27, No.4, pp. 599-609.

T. Hägglund (1996): An industrial dead-time compensating PI controller. Control
Engineering Practice, Vol. 4, No.6, pp. 749-756.

A. Ingimundarson (2000): Robust tuning procedures of dead-time compensating
controllers. Master thesis, Department of Automatic Control, Lund Institute of
Technology.

A. Isaksson, A.Horch and G. Dumont (2000): Event-triggered deadtime estimation –
comparison of methods, Control Systems 2000, pp 209-215, British Columbia.

A. Norberg (1999): Kappa Tuning – Improved relay auto tuning for PID controllers.
Master thesis, Department of Automatic Control, Lund Institute of Technology.

ControlIT, AC800M/C Control Functions: Alarms, Analog Control and Controllers.
Version 2, User’s Guide. ABB Automation Products.

Hands on Control Builder Professional. Manual, ABB Automation University.

	Abstract
	Table of contents
	Introduction
	Problem formulation
	Outline

	Control of processes with long dead times
	PID control
	The Smith predictor
	The PPI controller

	How to make the PPI adaptive
	Estimating parameters in closed loop
	The method of moments
	Estimating the dead time

	Supervision
	Is the adaptation useful?
	Possible usage
	Adaptation vs. gain scheduling

	Implementation
	Control Builder Professional
	The algorithm
	Problems
	Derivatives and noise
	When to stop Tar calculations
	Ramped set point changes

	Design parameters

	System integration
	Allowed use of the PPI adaptation
	Changing control structure
	User parameters

	Simulations
	The processes
	Test 1: Verifying good estimates
	Test 2: Noise sensitivity
	White noise
	Coloured noise
	Sinusoidal disturbances
	Load disturbances

	Test 3: The utility of adaptation
	Test 4: Switching to PID control

	Conclusions and future improvements
	Conclusions
	Improvements

	Acknowledgements
	References

