
ISSN 0280-5316
ISRN LUTFD2/TFRT--5678--SE

Generic Web Server in Embedded
Control Systems

Andreas Ekstrand
Jonas Ludvigsson

Department of Automatic Control
Lund Institute of Technology

November 2001

Document name
MASTER THESES
Date of issue
November 2001

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD2/TFR--5678--SE
Supervisor
André Ekfeldt, ABB
Karl Erik Årzén, LTH

Author(s)

Andreas Ekstrand
Jonas Ludvigsson

Sponsoring organization

Title and subtitle
Generic Web Server in Embedded Control Systems. (Webserver i inbyggt styrsystem).

Abstract

The goal for this master thesis was to investigate the possibility of using an existing web server
and modify it so it can be used in ABB controllers.

The work has resulted in two different versions of a web server. The basic functionality is the
same for both versions. The web servers are able to present a number of controller-related
information. For example: hardware, which control programs that are executing in the
controller, information about the firmware, and also system information like heap memory
usage. It can also be used for changing different parameters.

The two versions use different techniques for presenting the information. They are also
implemented in different ways. The first version has a more user-friendly interface but requires
more memory, 71 kb. The second version requires less memory, 48 kb, but does not have the
same user-friendly interface.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
68

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.se

Generic web server
in embedded control

systems.

2001-11-14

Andreas Ekstrand
Jonas Ludvigsson

2

Table of contents

1 Introduction..
1.1 Outline of the report ... 5

2 System overview..
2.1 The idea of a web server ... 6
2.2 ControlIT.. 6
2.3 Control system overview .. 8
2.4 Operating system ... 10
2.5 Web server in the control system... 11
2.6 Summary ... 11

3 Internet technologies ..
3.1 HTTP Protocol... 12

3.1.1 Request and response .. 12
3.2 URL.. 13
3.3 Web server .. 14

3.3.1 How does it work? .. 14
3.3.2 Embedded web server ... 14

3.4 Summary ... 14

4 Markup languages and SOAP ..
4.1 HTML... 15

4.1.1 Advantages and limitations.. 16
4.2 XML... 16

4.2.1 XML vs. HTML... 16
4.2.2 The XML Document... 18

4.3 XSL .. 20
4.3.1 XSLT .. 20
4.3.2 XSL-FO... 22

4.4 SOAP.. 22
4.4.1 How does it work? .. 22
4.4.2 SOAP Message... 23
4.4.3 A SOAP example.. 24

4.5 Summary ... 24

5 Scripts..
5.1 CGI script.. 25

5.1.1 Why CGI?.. 25
5.1.2 Functionality .. 25
5.1.3 Common use .. 26
5.1.4 Limitations ... 26

5.2 JavaScript .. 26
5.2.1 Why JavaScript?... 26
5.2.2 Functionality .. 27

5.3 Summary ... 28

6 Web server ...
6.1 Different web servers ... 29
6.2 GoAhead WebServer ... 29

6.2.1 Features and limitations... 29
6.2.2 GoForms.. 30
6.2.3 Modifications ... 30

3

6.3 Generic web server... 31
6.4 Real-time properties and memory handling.. 32

6.4.1 Real-time properties.. 32
6.4.2 Memory handling ... 33

6.5 Summary ... 34

7 The program ..
7.1 Overview of the program.. 35
7.2 Common techniques ... 36

7.2.1 Initialization... 36
7.2.2 Generating and sending web pages... 37

7.3 Start page .. 42
7.3.1 JavaScript version... 43
7.3.2 GoForms version .. 45

7.4 Access variables... 46
7.4.1 Implementation... 46

7.5 Hardware... 47
7.5.1 Implementation... 47
7.5.2 Firmware.. 49
7.5.3 Ethernet ... 51

7.6 Applications .. 53
7.6.1 Implementation... 53

7.7 Miscellaneous .. 54
7.7.1 Heap information.. 54
7.7.2 Controller log... 55

7.8 Summary ... 55

8 Future developments ..

9 Summary and conclusions ..

10 User guide..
10.1 Tutorial ... 58

11 References..

4

Definitions and abbreviations

AC ABB Controller.
AC 800M ABB’s most powerful controller, known as “Common controller”
AC 800C ABB Controller suitable for minor applications.
AC 250 Flexible and modular ABB controller.
ASP Active Server Page. A Microsoft technique to execute scripts in a

web page.
CGI Common Gateway Interface.
ControlIT ABB’s name for a family ABB developed controllers and equipment.
Control Builder Programming tool in ControlIT.
ControlNet A high-performance network for industrial applications. It is a

standard (developed by Allen-Bradley) that is used for fast
communication between control systems and distributed I/O units.

DTD Document Type Definition. Used in XML.
Ethernet Network cabling system according to IEE 802.3
FBD Function Block Diagram. An 1131 language.
GML Generalized Markup Language.
HTML Hypertext Markup Language.
HTTP Hypertext Transfer Protocol.
IEC 61131-3 A family of programming languages, usually only called 1131.
I/O Input/Output.
IL Instruction List. An 1131 language.
LD Ladder Diagram. An 1131 language.
PDA Personal Digital Assistant.
PROFIBUS A fieldbus originally developed by Siemens.
pSOSystem Real-time operating system.
PPP Point-to-Point Protocol, serial communication.
RS232 A serial communication protocol.
RPC Remote Procedure Calls.
RTOS Real-time operating system.
SattBus A control network. SattBus communication can be used in a Soft

Controller or an AC 250.
SFC Sequential Function Chart. An 1131 language.
SGML Standard Generalized Markup Language.
SLC Satt Line Control
SOAP Simple Object Access Protocol.
Soft Controller PC based ABB controller.
ST Structured Text. An 1131 language.
TCP/IP Transmission Control Protocol/Internet Protocol.
URI Uniform Resource Identifier.
URL Uniform Resource Locator.
XML eXtensible Markup Language.
XSL eXtensible Stylesheet Language.

5

1 Introduction
The use of web servers in control systems opens new doors in maintenance and supervision of
industrial processes and machines. Because of the well-known interface the web server
becomes a helpful tool for operators or engineers.

The goal for this master thesis was to implement a generic web server in an embedded control
system. The work has been done in cooperation with ABB Automation Products AB Malmö
Sweden. The idea was not to implement a web server from scratch, rather to investigate the
possibility of using an existing web server and modify it. A number of different web servers
have been investigated. One of them filled the requirements for implementation in the ABB
Control Software.
Different techniques for how to create web pages and how to interact with the web server
have been investigated and a prototype program has been implemented.

1.1 Outline of the report
Chapter 2 describes the idea of a web server in an embedded control system and also gives an
overview of the control system, its hardware and software. Chapter 3 gives an overview of
some common Internet techniques like the HTTP protocol, the URL and how a web server
works. In Chapter 4 three different markup languages are described, HTML, XML and XSL.
An application of XML, SOAP, is also described. Chapter 5 gives a description about how to
interact with a web server using CGI scripts and JavaScript.
Chapter 6 contains a more detailed description about the web server used in the
implementation and some real-time properties and memory handling. Chapter 7 describes the
implementation of the web server program. Future developments are discussed in Chapter 8.
Chapter 9 contains a summary of this thesis and some conclusions. The last chapter is a user
guide that includes a tutorial on how to access and use the web server.

6

2 System overview
This chapter gives the background to the idea behind the web server and where it is intended
to execute. A system overview, which gives a brief insight to ABB’s ControlIT, is presented.
The hardware, the operating system, and tools for communication are also discussed.

2.1 The idea of a web server
Almost all industrial processes are controlled in some way and they are often located in noisy
environments. Common work with the machine, like supervision, controller tuning and error
correction are done via some kind of connected I/O. If these tasks could be performed in a
calmer environment, like an office, they would be handled faster and perhaps better. Intranet
exists in nearly all plants nowadays. If a web server is implemented in the machine and the
machine is connected to the intranet any computer on the intranet could get in contact with
the machine. Of course the computer must contain a web browser, but that is not a problem
today, they can be downloaded free from the Internet. A web browser is an easy and well-
known interface and they can even run on handheld computers, PDA’s. It would also be
possible to reach the machine trough the Internet and then, for instance, machine maintenance
could be performed remotely and it would quite simply be easier to get in contact with the
machine. The connected terminals would become unnecessary and the cost for these would
disappear.

2.2 ControlIT

ControlIT is ABB’s name for a family of ABB developed controllers, programming and
configuration tools. Here follows a brief description of some of the parts in ControlIT [1].

Control Builder, see Figure 2.1, is a programming tool for configuration and programming of
the ABB controllers AC 800M, AC 800C, AC 250 and Soft Controller. For further
description of the controllers, see Section 2.3. With Control Builder follows a set of
predefined functions. These include data types, functions, function blocks and control
modules that can be used in the programs. The programs, called applications, can be written
in five different IEC 61131-3 (usually only called 1131) programming languages. The five
languages are FBD, ST, IL, LD and SFC. The controllers are the targets for the programs
developed with Control Builder. It is to such a unit that the program code will be downloaded
and executed.

7

Figure 2.1 Example of a project in Control Builder.

The programs created in the Control Builder can be part of more or less advanced control
systems. In the most trivial case a PC running Control Builder is connected to a controller, see
Figure 2.2.

Figure 2.2 A PC running Control Builder and a controller connected via Ethernet.

In more advanced control systems, like in Figure 2.3, Control Builder can run on many
computers. This makes it possible to share the project between developers. The project can be
distributed to a number of controllers, which results in that each controller can execute a part
of the project.

8

Figure 2.3 Several PC’s running .

2.3 Control system overview
The controllers AC 800M, AC 800C and AC 250 consist of a controller unit, a power supply
unit, and a number of connections where it is possible to add communication interfaces.
The controller unit contains for example a processor (Motorola manufactured), RAM-memory
and FLASH-memory. The Soft Controller is a PC based controller. Here follows a brief
description of the controllers, for technical data see Table 2.1.

AC 800M, see Figure 2.1, is the most modern and powerful controller. It contains much
memory and is suitable for large applications. Twelve local I/O-modules are available and
twelve communication interfaces can be added.

Figure 2.1 The AC 800M controller.

AC 800C, see Figure 2.2, is a compact controller suitable for minor applications. It contains
less memory than AC800 M. An on-board I/O with ten digital inputs and six digital outputs is
built in. Two communication interfaces can be added.

Figure 2.2 The AC 800C controller.

AC 250, see Figure 2.3, is an older controller. It contains various CPUs and memory. Its
strength is the modularity and flexibility. It can be suited to fit the desired system
configuration.

9

Figure 2.3 The AC 250 controller.

Soft Controller is a PC based controller. High real-time performance can be achieved. How
large applications it can execute depend on the PC’s internal memory.

Processor
type

Clock
frequency

Performance
indicator**

RAM
memory

FLASH
memory

AC 800M MPC860 48 MHz 0.3 ms 8 MB 2 MB
AC 800C MC68332 18.432 MHz 2.2 ms 2 MB 2 MB
AC 250* MC68020 16.7 MHz *** 2 MB -

Table 2.1 Technical data for AC 800M, AC 800C and AC 250. *Example of one configuration.
Execution time/1000 lines of program code, Boolean operations. *No data available.

The controllers need software to work. The software consists of two parts, the basic part
called firmware and the application. The firmware is downloaded to the controller via
Ethernet or serial connections, see Figure 2.4. Firmware is a program that inserted into read-
only-memory becomes a part of a computing device. The firmware consists for example of
drivers, different protocols, hardware configurations, and runtime environment for execution
of the applications. The application created in the Control Builder is also downloaded.

Figure 2.4 The firmware and the application is downloaded to the controller via Ethernet or a serial
connection.

The communication interfaces that can be added makes it possible for the controllers to
communicate with other units via RS232, Ethernet, SattBus, ControlNet or PROFIBUS.

Firmware and
application is
downloaded

10

In Figure 2.5 a control system is shown. There are four controllers, one AC 800M with two
communication interfaces and six local I/O, two AC 800C with Ethernet interfaces, and one
AC 800C with Serial interface. Via PROFIBUS remote I/O’s are connected to the AC 800M.
A PC is connected to the control system via an Ethernet connection.

Figure 2.5 A control system with one AC 800M controller, three AC 800C controllers, remote I/O’s
and a PC. They are connected via different communication units.

2.4 Operating system
In the controller runs the real-time operating system, pSOS. It is developed by Integrated
Systems Inc. pSOS is a modular, high-performance real-time operating system designed for
embedded systems. It is built around the pSOS+ real-time multi-tasking kernel [2].

pSOS consists of the following components (see also Figure 2.1):

• pSOS+ Real-time Multitasking Kernel.

• pSOS+m Multiprocessor Multitasking Kernel. Extends the pSOS+ feature set to
operate across multiple, tightly coupled or distributed processors.

• pNA+ TCP/IP Network Manager. A complete TCP/IP implementation including
gateway routing, UDP (User Datagram Protocol), ARP (Address Resolution Protocol)
and ICMP (Internet Control Message Protocol).

• pRPC+ Remote Procedure Call Library. Offers SUN-compatible Remote
Procedure Call (RPC) services.

• pHILE+ File System Manager. Gives efficient access to mass storage devices, both
local and on a network. Includes support for CD-ROM devices, MS-DOS compatible
floppy disks and a high-speed proprietary file system.

• pREPC+ ANSI C Standard Library. Provides familiar ANSI C run-time functions
such as printf() in the target environment.

11

• pROBE+ Debugger. System-level debugger, and (optional) high-level debugger.
The high-level debugger executes on the host computer and works in conjunction
with the pROBE+ system-level debugger, which runs on the target system.

Figure 2.1 The pSOS environment

2.5 Web server in the control system
The web server code is part of the firmware and is downloaded to the controller. From a web
browser it is possible to get information about the control system. The information can be:
configuration, connected communication interfaces, status for different communication
protocols, and downloaded firmware. It is also possible to read and change a value of an 1131
application variable. This is possible if the variable is declared as an access variable. Access
variables are accessible for all units on the control network. The control programs are much
more important than the web server. Therefore the web server program shall not use much
CPU resources. The web server should be small, that is, it should not require much memory,
and its priority should be low. The web server is intended to run in the controllers AC 800M
and AC 800C.

2.6 Summary
ControlIT is ABB’s name for a family of ABB developed controllers and equipment. The
operating system pSOS runs in the controllers. A web server in ControlIT would make
supervision of controllers easier and faster. The web server code is part of the firmware. With
a web browser information about the controller can be viewed.

System
Task

User
Task

User
Task

 C, C++ interface

pROBE+

pSOS+ pNA+

pHILE+

pRPC+

pREPC+

Interrupt
Handlers

Drivers

12

3 Internet technologies
This chapter gives an overview over some common Internet technologies: the HTTP protocol
and URL. The HTTP protocol is the most used protocol for the World Wide Web
transactions. The URL is the way of addressing files on the Internet. A brief description of the
web server functionality is also included.

3.1 HTTP Protocol
The Hypertext Transfer Protocol (HTTP) is a set of rules for transferring files (text, images,
sound, video etc.) over a network (Internet or a local network). The HTTP protocol uses
TCP/IP for connections between clients and servers [3].

HTTP is a simple protocol. The clients establish a TCP connection to the server, sends a
request, and reads back the server’s response. After the transfer is complete the connection
will close.

Today there are two versions of the HTTP protocol, 1.0 and 1.1. The difference between them
is that 1.1 tries to minimize the number of TCP connections. Instead of opening and closing a
new connection for every object on a web site (picture, sound clips) the requests are buffered
and sent together. This results in less Internet traffic and improved performance for the user.

3.1.1 Request and response
There are two types of HTTP messages: request and response. The request is sent from a
client to a server and responses are sent from server to client.
The format of a HTTP request is:

request-line
headers (zero or more)
<blank line>
body

The format for a HTTP response is:

status-line
headers (zero or more)
<blank line>
body

Request line
The format of the request line is:

request request-URI HTTP-version

There are three kinds of requests: GET, HEAD, and POST. The GET request returns the
information that is identified by the request-URI (Uniform Resource Identifier). The
HEAD request is similar to the GET request, but only the server’s header information is
returned. Finally the POST request is used for posting email or sending in forms that can be
filled in by the user.
An example of a request line:

GET /main.html HTTP/1.1

13

Status line
The format of the status line is:

HTTP-version response-code response-phrase

The response-code is a 3-digit numeric response code and the response-phrase is a
human-readable answer. The response codes are divided into four categories.

2xx: Success: e.g. (“HTTP/1.1 200 OK”)
3xx: Redirection – Further action by the user is needed
4xx: Client Error: e.g. (“HTTP/1.1 404 Not found”)
5xx: Server Error: e.g. (“HTTP/1.1 503 Service temporarily

unavaible”)

Headers
Both the request and the response can contain a number of header fields. The header fields
contain some additional information about the request, response and the body.
A header has the following format:

field name: field value

Examples of request header fields:

• From: mailbox
An Internet e-mail address

• If-Modified-Since: HTTP-date
On the form: day “,” date month year hh:mm:ss “GMT”

Response header fields:

• Date: HTTP-date
On the form: day “,” date month year hh:mm:ss “GMT”

• Server: server-software
Information about the server program and version

Body header fields:

• Content-Type: type/subtype
Specified the data type of the body, e.g text/html, text/xml,
image/gif etc.

• Content-length: Content-length
Specifies the size in bytes of the body.

3.2 URL
The Uniform Resource Locator (URL) is the address of a file on the Internet. The address
starts with a protocol specification (e.g. http:// or ftp://), next comes the host name that
usually starts with “www” and ending with the domain (.com, .se), after that the path and
finally the file name.

http://www.hostname.domain/path/file

The host name is just a more user-friendly way of presenting the server name. Every server on
the Internet has a corresponding IP-number. In some special server called “name servers”
there are tables with the host names and the corresponding IP-number.

14

3.3 Web server

3.3.1 How does it work?
A web server is basically a program that can respond to requests from web browsers. The
server “listens” to a port (usually port 80). Using HTTP a web browser sends a request to the
server (1) see Figure 3.1. The request contains the name and location of the wanted file
(URL). The server receives the request and tries to interpret the request (2). If the web server
can find the requested file it will return it to the web browser (3) otherwise an error message
will be returned.

Figure 3.1 Request and response of a web page.

3.3.2 Embedded web server
An embedded web server is a web server that has been designed to be included in different
kinds of small devices. In this project it is a controller, but it could also be a printer, an
industrial machine or even a dishwasher. It is an easy and well-defined way for information
access. When designing an embedded web server there are some requirements to take notice
of. First of all it has to have a small memory footprint (>100 kb is quite much). Often the
devices do not have a file system (hard drive), so it must be possible to store the web content
on ROM or to have the web pages created dynamically (created when requested).

3.4 Summary
The HTTP protocol is a simple protocol that uses TCP/IP for the connections between clients
and servers. There are two types of messages: requests and responses. A client sends a request
to a server and the server sends back a response. The URL is used for retrieving a specific file
over the Internet. A web server is simply a program that can respond to a request for a certain
file and send it back to the caller. A special version of a web server is the embedded web
server. It can be included in a device that is connected to a network. The main requirement on
an embedded web server is the memory footprint, which cannot be too large.

2

1

3

15

4 Markup languages and SOAP
The first modern markup language was GML, Generalized Markup Language. It was intended
to be a meta-language, a language that could be used to describe other languages, their
grammar and vocabularies. GML later became SGML, Standard Generalized Markup
Language. SGML is a very complex markup language, mostly used in large industries that
process large volumes of data.

A markup language is a set of rules that describe how a text is to be presented or worked on.
Everything in a document, except the text itself, is markup. This chapter gives a brief
overview of the most common markup languages.

4.1 HTML
HTML, HyperText Markup Language, is derived from SGML. HTML is one of the pillars of
the World Wide Web. It is a set of markup symbols, which inserted in a document make the
document viewable by a web browser. Unlike e.g. Word file format, HTML is not a complex
file format. Pictures and shape are for example stored in separate files. HTML stores
describing instructions about what every fragment of information is, like main heading,
tables, lists etc. It can look like this:

Some words are capsulated within “<” and “>”. These are called elements or tags and are
instructions to the program, often a web browser, which is supposed to read and present the
file. A start tag is a left angle bracket “<” followed by the instruction and then a right angle
bracket “>”. The end tag looks like the start tag, but the left angle bracket is preceded by a
slash “/”. The start- and end tag tell the presenting program (web browser) how to interpret
the involving characters and how to present them. HTML is not case sensitive, the body tag
can be written in many ways, <BODY>, <body> or <BoDy>. Here follows a description of
the tags used in the example.

The <html> tag tells the web browser that this is a HyperText-document.

The <head> tag indicates the main header.

The <title> tag writes the title in the title bar.

The <body> tag indicates that here starts the content of the page.

<html>
<head>

<title>Example</title>
</head>
<body>

<h1>1 Header</h1>
Here comes the body text.

<h2>1.1 A list</h2>

First element
Second element

</body>

</html>

16

The <h1> instruction indicates that it is a header and Microsoft Internet Explorer interprets it
as Times New Roman, 24 points, bold.

The <h2> instruction indicates that it is a header and Microsoft Internet Explorer interprets it
as Times New Roman, 14 points, bold.

The tag means that here starts an unordered list.

For every tag a new bullet (•) is created.

The example code presented in Microsoft Internet Explorer looks like this:

Example x.

4.1.1 Advantages and limitations
It is easy to write HTML code and it is widely spread around the world. Other benefits are
that it exists a lot of predefined tags and that all HTML documents have the same base parts.
The HTML file format is not dependent on a certain operating system or program. If using a
computer without a web browser it is still possible to read and understand a HTML document.

If the presented information is updated frequently, HTML is very limited. Instead a database
is tied to a web page. The information is stored in the database and converted when a request
for the web page occurs. If a web page includes a form, e.g. a login form, the user-entered
data must be received and processed by the server. HTML cannot manage this, but CGI
scripts can, see Section 5.1.

4.2 XML
XML (eXtensible Markup Language) is subset of the SGML (Standard Generalized Markup
Language) [4]. It is designed to make it easy to send and receive structured data over the
Internet.

4.2.1 XML vs. HTML
In HTML both the content (the data) and the presentation of the content are described in one
document. In XML the data and the presentation have been separated into two parts. The first
part describes the data, the actual XML documents. The second part contains the presentation
of the data; the so-called “stylesheets”, see Figure 4.1

An advantage with using a separate representation is that a single XML document can be
presented in a number of ways. For example one stylesheet for printing, another for viewing
on the screen and one when using a Personal Digital Assistant, PDA (e.g. PalmPilot).

1 Header
Here comes the body text

1.1 A list
• First element
• Second element

17

Figure 4.1 XML vs. HTML

Example
This short example shows some similarities and differences between HTML and XML.
Example of HTML code for a simple table:

This is how it would look in a web browser:

Product ID Description Price
1234578-Q AC 800M $99.99

In XML code the same thing could look like this:

In a web browser it would look like:

<TABLE BORDER=1>
<TR>

<TH>Product ID</TH>
<TH>Description</TH>
<TH>Price</TH>

</TR>
<TR>

<TD>1234578-Q</TD>
<TD>AC 800M</TD>
<TD>$99.99</TD>

</TR>
</TABLE>

<PRODUCT>
<id>12345678-Q</id>
<description>AC 800M</description>
<price>$99.99</price>

</PRODUCT>

<PRODUCT>
<id>12345678-Q</id>
<description>AC800M</description>

 <price>$99.99</price>
</PRODUCT>

HTML

Data &
presentation

XML with stylesheet

Data

Presen-
tation

18

As seen in the example XML has a clear advantage over HTML in describing the content of
the document, but it lacks in presentation. This is because no style sheet was used.
Style sheets will be described later in Section 4.3.

Like HTML, XML uses “tags” for describing the content of the document. The tags are the
second major difference between HTML and XML.
As shown in the chapter about HTML, there are several different tags used when building
web sites in HTML. But unlike HTML, where all tags are predefined, XML allows
programmers to specify their own tags. This means that XML is a meta-markup language.

4.2.2 The XML Document
The tree structure of a XML document looks like Figure 4.1 [5]:

Figure 4.1 XML Document

Prolog
The prolog is used to signal the beginning of XML data. It contains the XML Declaration,
Document Type Declaration, Processing Instructions (PIs) and perhaps some comments.
All parts of the prolog are optional.

XML Declaration
All XML documents should begin with an XML Declaration. In cases when the XML data
use an encoding other than UTF-8 or UTF-16, the XML Declaration must be used. UTF-8 and
UTF-16 are encoding rules that specify how characters should be coded, like ASCII or
Unicode.

In XML 1.0 the declaration consists of three parameters:
q version This is required, and its value currently must be ‘1.0’.
q encoding This is optional, and its value must be a legal character encoding

name, such as “UTF-8”, “UTF-16” or “ISO-8859-1” (Latin-1).
If this parameter is not included, UTF-8 or UTF-16 is assumed.

q standalone This is optional, its value must be “yes” or “no”. If “yes” is used it
means that the document itself contains all information needed for
processing and displaying.

A typical XML Declaration:

<?xml version=”1.0” encoding=’ISO-8859-1’ standalone=”yes”?>

Document root Prolog

Body

Epilog

19

Document Type Declaration (DOCTYPE)
The Document Type Declaration (DOCTYPE) is used to link a Document Type Definition
(DTD) to a XML document. This declaration may only appear once in an XML document,
and it must follow the XML Declaration.
A declaration example:

<!DOCTYPE doc_element SYSTEM location >

<!DOCTYPE PRODUCT SYSTEM “http://127.0.0.1/DTD/file.dtd” >

Document Type Definition (DTD)
The Document Type Definition is used to define the elements specified by the user.
Elements are defined using Element Type Declarations with the keyword ELEMENT. It
specifies the name and the type of the elements.

The DTD can both be internal or external. That means that all the definitions are done within
the XML document or having the definitions in a separate file.

In the example above, the tags <PRODUCT>, <id>, <description> and <price>
where used. Using DTD they will be defined like:

<!DOCTYPE PRODUCT [
<!ELEMENT id (#PCDATA) >
<!ELEMENT description (#PCDATA) >
<!ELEMENT price (#PCDATA) >

]>

There are five types of elements: Any, None, Text (PCDATA), Element and Mixed.

Processing Instructions (PIs)
A Processing Instruction contains information for the application using the XML document.
This means that the XML interpreter (parser) passes the instructions to the application.
The PIs follow the generic syntax of:

<?target …instruction… ?>

For example:

<?xml-stylesheet href=”mystyle.css” type=”text/css”?>

Body
The body contains the payload of the XML data. It consists of a number of components. For
example: tags, elements, and comments. The components are used to build the body tree
structure, with a single root node.

20

Figure 4.2 XML Body

Tags
A tag begins with a ‘<’ and ends with a ‘>’ and between them a tag name. There are two kind
of tags, start- and end tags. The difference between them is that the end tag has a ‘/’ sign
before the tag name.
For example:

start tag <NAME>
end tag </NAME>

Because of XML is case sensitive the tags <NAME> and <name> are not equivalent.

Elements
Elements are the basic unit of a XML document. In short it consist of a start tag, data and an
end tag. For example:

<NAME>Homer Simpson</NAME>

Comments
Comments in XML are written in the same way as in HTML.

<!-- This is a comment -->

Epilog
The epilog is optional and can contain some comments and/or processing instructions (PIs).

4.3 XSL
XSL (eXtensible Stylesheet Language) is a language for creating “style sheets” that describes
how the data of an XML document is to be presented to the user.

XSL consist of two parts:
- one method for transforming XML documents, XSLT
- one method for formatting XML documents, XSL-FO

4.3.1 XSLT
XSL-Transformation is a way of transforming XML into something else. It could be from
XML to HTML or from one XML document into another XML document. Here will only be
discussed transformation from XML into HTML.

ROOT ELEMENT

CHILD_ELEMENT_A

CHILD_ELEMENT_B

CHILD_ELEMENT_AA

CHILD_ELEMENT_AB

CHILD_ELEMENT_BA

CHILD_ELEMENT_BB

21

The example in Section 4.2.1 shows that XML without any style sheets do not look good. The
XML document looked like this:

An XSL – style sheet could be written like this:

As expected it looks like this in the web browser:

Id Description Price
12345678-Q AC 800M $99.99

In this example the advantage of having to write two separate documents to accomplish the
same thing as in HTML may not be seen. But you do benefit from it.
For example: if there are several “products” it is possible to iterate through them with the
command <xsl:for-each and they would be displayed as shown below.

Id Description Price
12345678-Q AC 800M $99.99
24682468-P AC 800C $49.95
… … …

<PRODUCT>
<id>12345678-Q</id>
<description>AC 800M</description>
<price>$99.99</price>

</PRODUCT>

<?xml version="1.0" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
<xsl:template match="/">
<html>
<body>

<table border="2" bgcolor="white">
<tr>

<th>Id</th>
<th>Description</th>
<th>Price</th>

</tr>
<xsl:for-each select="PRODUCT">
<tr>

<td><xsl:value-of select="id"/></td>
<td><xsl:value-of select="description"/></td>
<td><xsl:value-of select="price"/></td>

</tr>
</xsl:for-each>

</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

22

There are a number of XSLT elements like <xsl:for-each or <xsl:value-of to work
with when building style sheets. With XSL it is possible to remove, rearrange and sort XML
elements, and also make decisions about which elements to display.

This is the great advantage of using stylesheets, it allows a single XML document to be
displayed in many different ways.

XSLT Syntax
XSLT basically use the same structure as XML [6]. It includes the XML Declaration and a
Process Instruction to indicate that the document is an XSLT style sheet.

<?xml version="1.0" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

…
</xsl:stylesheet>

For displaying the information HTML syntax is used to create a simple table with headings in
bold text (Id, Description, Price) and the data in plain text.

4.3.2 XSL-FO
XSL Formatting Objects is another way of presenting XML. While XSLT primarily was
intended for uses on the Web, XSL-FO is more focused on paper. For example it is possible
to store information on a database as XML documents and be able to display it both on the
web using XSLT and on paper with XSL-FO [5].

4.4 SOAP
The Simple Object Access Protocol (SOAP) is a protocol for exchanging information in a
distributed environment [5], for example, between computers on a LAN (Local Area
Network) or over the Internet. The idea of SOAP is to make it possible for computers to talk
to each other, regardless of their operating system.

4.4.1 How does it work?
A SOAP message is basically a one-way message. However, often it is used for
request/response applications. A SOAP message is based on the XML technology and uses
HTTP as the transmission protocol. By using HTTP, SOAP is a firewall-friendly application.
To be able to use SOAP, all peers (computers, servers etc) in a network need a SOAP parser.
A parser is a program that can interpret and understand the message, and be able to respond to
it. A SOAP parser can be written in different languages, e.g., Visual Basic, Java, and C++.

An interesting application of SOAP is Remote Procedure Calls (RPC). RPC is a protocol that
a program can use to request a service from a program on another computer in a network, see
Figure 4.1. The RPC uses the client/server model. The requesting program is the client and
the called program is the server. A program/programmer that uses RPC does not need to
know any network details. This is taken care of in a RPC runtime program, which can send
and receive calls over the network.

23

Figure 4.1 Remote Procedure Call

4.4.2 SOAP Message
A SOAP message consists of three parts: envelope, header and body, see Figure 4.1.

Figure 4.1 SOAP Message

Envelope
The envelope defines what is in the messages, and wraps the payload (contents). You can
think of it as envelops used in the regular postal mail. The envelope is a mandatory element in
a SOAP message. The envelope element is written like this:

<SOAP-ENV: Envelope>
...

</SOAP-ENV: Envelope>

Header
The header element is an optional element. It can for example include information for
authentication or user information. The header element looks like:

<SOAP-ENV: Header>
...

</SOAP-ENV: Header>

Body
The body contains the payload of the SOAP message. It can contain RPC calls and replies,
error messages or other one-way messages. The body element uses the same syntax as the
other SOAP elements.

<SOAP-ENV: Body>
...

</SOAP-ENV: Body>

SOAP Envelope

SOAP Header

SOAP Body

Header Files

Application Application

RPC Runtime RPC Runtime

Network Transport Layer

24

4.4.3 A SOAP example
In this example two computers in a distributed system will communicate over the network
using SOAP. Computer A will ask Computer B to calculate an output with the function
CalcSum() with the parameters Input1 and Input2. Computer B will execute the
instructions and return a value Sum. The function CalcSum()can be written in different
languages, the only requirement is that both sides can interpret the call.

The SOAP message from A to B:

After processing, B will return the value:

Notice the extra Response added to the function name.

4.5 Summary
HTML and XML/XSL are two ways of storing and presenting data. When viewing the
documents in a web browser it is impossible to notice the difference because XML documents
are translated to HTML via XSLT. The difference lies in how the data is structured. HTML
documents contains all information needed for processing and displaying. XML documents
separates data from presentation, which makes it possible to display a single XML document
in many different ways. This makes XML a much more powerful tool, than HTML.

XML can also be used in other applications. SOAP uses XML documents for creating
firewall-friendly calls between computers and servers. SOAP is a protocol for exchanging
information on a network, regardless of the operating system.

<SOAP-ENV: Envelope>
<SOAP-ENV: Header>

<SOAP-ENV: Body>
<m:CalcSum>

<Input1>1.32</Input1>
<Input2>1.45</Input2>

</m:CalcSum>
</SOAP-ENV: Body>

</SOAP-ENV: Header>
</SOAP-ENV: Envelope>

<SOAP-ENV: Envelope>
<SOAP-ENV: Header>

<SOAP-ENV: Body>
<m:CalcSumResponse>

<Sum>2.77</Sum>
</m:CalcSumResponse>

</SOAP-ENV: Body>
</SOAP-ENV: Header>

</SOAP-ENV: Envelope>

25

5 Scripts
Script languages are simpler than ordinary programming languages like C and C++. Scripts
are used in all web pages where some kind of user input is required.

A script language is an interpreted and limited language. Interpreted because programs are
runnable directly when the program is written. The programs are treated and shown in a web
browser directly, they do not have to be compiled into machine code first. Limited since it is
not as powerful as ordinary programming languages.

Scripts are relatively easy to use, but there are limitations. If ordinary programming language
programs contain syntax errors, the user will be informed about these during the compilation
phase. Since a script language does not have to be compiled the user misses this information
and it is hard to see if the program is accurate.

5.1 CGI script
CGI is short for Common Gateway Interface [7].

Common – CGI programs can be written with many languages e.g. C, C++, Java, Perl or any
other language that accepts user input, processes that input and responds with output. CGI
works with many different types of systems, e.g. Mac, NT, Windows and UNIX.

Gateway – CGI’s premier goal is not to accomplish things on its own. CGI can be seen as a
middleman or a translator whose job is to help more powerful resources like databases or
network applications to talk to each other.

Interface – CGI is not a language, nor a program. It is a standard of communication, an
interface that provides well-defined rules for creating partnership. If everyone follows the
rules of the interface, then everyone can talk to everyone.

5.1.1 Why CGI?
HTML is good at distributing pre-prepared web pages on request, but when it comes to
dynamically generated web pages HTML is very limited. A client using a web browser asks
the web server via HTTP for a specific HTML document. The web server then sends the
requested document back to the web browser, which in turn, displays the document. The
interaction between the client and the server is extremely trivial. The server can only provide
static HTML documents that have been encoded in advance. With CGI scripts web pages can
be created on the fly.

5.1.2 Functionality
When the user requests a web page, for example by clicking on a hyperlink or entering a web
site address (URL), the server sends back the requested page. However, when a user fills out a
form on a web page and sends it to the server, it usually needs to be processed by an
application program. The web server typically passes the form information to a small
application program that processes the data and may send back a confirmation message. This
method or convention for passing data back and forth between the server and the application
is called the Common Gateway Interface (CGI). It is part of the Web's Hypertext Transfer
Protocol (HTTP). In Figure 5.1 an example shows how a form is processed.

1. The user fills out a form and sends it to the server.
2. The server executes a CGI script.
3. The CGI script uses other server resources.

26

4. The CGI script creates HTML pages with dynamically obtained
information (the data filled in the form).

5. The server sends the HTML page to the browser.

Figure 5.1 Example of how a form is processed with CGI script.

5.1.3 Common use
Some of CGI’s most common use is as part of

• counters on web pages, i.e. how many hits you have on a web page.
• processing forms, e.g. when a web surfer enters data into a HTML form and sends it

to a web administrator.
• ongoing dialog between multiple clients, e.g. real time chat.
• guest books on web pages.

5.1.4 Limitations
A web server can have several clients at the same time. If every one of them does something
(e.g. fills out a form) that causes the server to run a CGI script, the load on the server becomes
very heavy. If the server has limited performance it can result in a server crash. The problem
is that every CGI request from a user starts a new process in the server. Even if the server has
sufficient performance many parallel executing processes makes the server slower. Therefore,
CGI scripts are not suitable for embedded systems that demand compact, high performance
solutions. The web server used in this thesis uses a kind of CGI script called “GoForms” that
does not create a new process for every request, see Section 6.2.2.

5.2 JavaScript
JavaScript was developed by Netscape and was intended to be a uniform replacement for all
different CGI languages. It was first called LiveScript, but when Netscape and the Java
developer Sun made a union, it became JavaScript [8].

5.2.1 Why JavaScript?
The problem with ordinary CGI scripts, as mentioned before, is that the load on the server can
become very heavy. The main problem is that all processing are done on the server side. If

Database

Web browser

5

3

2

Web server

Application
program

1

4

CGI script

27

some of it were done on the client side it would relieve the pressure on the server. This is
what JavaScript can do.

5.2.2 Functionality
When a user fills out a form on a web page some uncomplicated processing can be made on
the client side, see Figure 5.1. Things that could be done are for instance checking that all
fields in a form are filled, that the e-mail address is valid etc. This leads to less
communication between the server and the client i.e. a reduction of the network load. The
main goal though is to reduce the load on the server.

1. The user fills out a form.
2. The client side check that all fields in the form are filled

and correct.
3. The client sends it to the server.
4. The server executes a JavaScript.
5. The JavaScript uses other server resources.
6. The JavaScript creates HTML pages with dynamically obtained

information (the data filled in the form).
7. The server sends the HTML page to the browser.

Figure 5.1 Example of how a form is processed with JavaScript.

JavaScript uses an object-oriented model with predefined objects like math, date and string.
With these objects follows a set of functions, the string object has for example several
methods to work with the content in the string, but there also exists methods that return text
translated to HTML code. The date object has for instance one method to automatically
update today’s date on the web page. It is also possible to create your own objects and
functions.

The JavaScript code is a part of the HTML code, not a separate component. JavaScript is not
a strictly typed language, which means that a variable does not have to be declared as a
particular data type and that data types are automatically converted when needed.

Events are essential in JavaScript. An event occurs when the user for example clicks on a
button or moves the mouse over a hyperlink. JavaScript has certain event-handlers that handle
the occurred event, e.g. “onClick” and “onMouseOver”.

2

Database

Web browser

7

5

4

Web server

Application
program

3

6

JavaScript

Check

1

28

There is a major problem with JavaScript and that is the different web browsers. They all treat
JavaScript differently and some of them are not able to interpret JavaScript at all. JavaScript’s
can be used for checking that forms are filled out correctly. It can also be used for graphical
applications, e.g. showing fancy text in the status bar when the mouse is moved over a
hyperlink.

5.3 Summary
Script languages are easier and faster to code in than more structured and compiled languages
such as C and C++ and are ideal for programs of very limited capability. However, a script
takes longer to run than a compiled program since each instruction is being interpreted and
handled by another program first rather than by the basic instruction processor. CGI script is a
way to process data on the server side. In JavaScript on the other hand some of the processing
is done on the client side.

29

6 Web server
This chapter contains information about different web servers and a more detailed description
of the web server that is used in the implementation. A brief overview of how the ABB
Controller software is organized and where the web server is located in the source code is also
presented. The last section contains a discussion about some real-time properties and memory
handling.

6.1 Different web servers
This section contains a comparison between some of the web servers that can be found on the
Internet. The basic requirements were that it should be designed for embedded systems, have
support for CGI-script, and be compatible with the real-time operating system pSOS. Five
different servers were found:

- Wind River System: Wind Web Server 2.0
- Virata Corporation: EmWebServer.
- Quiotix: Quiotix Embedded WebServer
- GoAhead: Software Inc., GoAhead WebServer 2.0 and 2.1

Table 6.1 contains a comparison of the web servers according to the basic requirements and
also how much memory they use and if they are open source (if the code is accessible for the
user). Also if they support the use of storing web pages on ROM (if no file system exists) and
finally if they are freeware or not.

Table 6.1 Different web servers, * = not fully implemented, ** = no information.

6.2 GoAhead WebServer
The GoAhead WebServer 2.0 was developed by GoAhead Software Inc and released in
June 1999 [9]. It has been designed for embedded systems. It has a relative small memory
footprint and is compatible with pSOS. Further more it is free and the code is open source.
This means that programmers have access to the source code, and are allowed to modify it so
it meets their needs. This is why the GoAhead Webserver was chosen in this project.
The web server also has support for other operating systems. These are Windows
95/98/NT/CE, VxWorks 5.3.1, LynxOS, UNIX and Linux. The company Innocor has ported
the version used from VxWorks to pSOS.

6.2.1 Features and limitations
The GoAhead WebServer 2.0 includes the basic techniques used in the Internet world. It
has support for Active Server Page (ASP), an embedded JavaScript parser, and an in-memory
forms processing technique (CGI-script) called GoForms. Active Server Page is a technique
for processing scripts in a HTML page developed by Microsoft. Furthermore it has an

Embedded CGI
support

pSOS
compatible

ROM
storage

Memory
footprint

Open
source Free

Wind Web Server 2.0 yes yes no yes 10-60 kb no no

Virata EmWebServer yes yes yes ** 20-25 kb ** no
Quiotix Embedded
WebServer yes yes yes yes ** yes no

GoAhead
Web Server 2.0 yes yes yes yes* 50 kb yes yes

GoAhead
Web Server 2.1 yes yes no yes* 60 kb yes yes

30

extensible method for handling URLs. The GoAhead WebServer 2.0 also has support for
retrieving web pages stored in ROM. A compiler is included in the source code and makes it
possible to build web pages and then compile them into C source code, which can be
downloaded to the system. The web server also has support for login access. Further, there is
support for HTTP/1.1, memory and stack usage tracking and support for proxy capability.
The GoAhead WebServer 2.0 has some limitations. The ROM page retrieving
functionality is not fully implemented. The support for proxy usage and HTTP 1.1 are not
fully tested and may include some errors. ASP pages are processed in-memory. This means a
large ASP page can consume significant memory, which could slow down or even starve out
other processes in the controller. The login access support also has some limitations. There is
only a single global password that is set by the programmer before compiling and
downloading. Also, there is no encoding/decoding of the password.

6.2.2 GoForms
The GoAhead implementation of the standard Common Gateway Interface (CGI) is called
GoForms. Ordinary CGI processing results in the creation of a new process for every request
to a CGI, but GoForms procedures run without creating a new process for each browser
connection. GoForms is therefore a more suitable solution for embedded systems that require
high performance solutions. The GoForms implementation results in that CGI variables are
easy to access. When a form is filled out and its action function is called the URL can look
like this:

/goform/menulayout?node=hardware&item=PM210

The action function is menulayout and the CGI variables are node and item. node has
the value hardware and item PM210. With the function websGetVar() the value of
the CGI variables can be accessed. websGetVar() is used like this:

char *cgiNode, *cgiItem;
cgiNode = (char*) websGetVar(wp, "node", "error");
cgiItem = (char*) websGetVar(wp, "item", "error");

In this example cgiNode gets the value hardware and cgiItem PM210. The last
argument is a default value, which will be returned if the CGI variable is not accessible. It is
then possible to check that the CGI variable has an appropriate value with a simple if
statement.

if (cgiNode != "error"){
...

}

6.2.3 Modifications
Some modifications in the source code have been done in this thesis. The main modification
is that web pages are not stored in a file system nor using compiled pre-defined web pages
stored in ROM. Instead there are a number of template web pages. These are then
dynamically created when requested from a web browser. In Chapter 7 this will be explained
further.

Another modification that have been made was a bug fix, in the routine called
‘websResponse’ which, in short, sends the HTTP header and the web page to the
requesting web browser. The HTTP header included an error, the response code (see 3.1) was
not correct. The result was that web pages in XML format could not be understood by a web
browser and be displayed correctly. Functionality for choosing what kind of content-type

31

(section 3.1) that should be used in the HTTP header, i.e. text/html, text/xml or
image/gif was also added.

6.3 Generic web server
The software for the ABB Controller includes everything from the Control Builder program,
control application to hardware drivers. The source code is divided into two major parts; Atlas
and Omega. See Figure 6.1.

Figure 6.1 ABB Controller source code.

Atlas contains the generic parts of the source code, for example protocols for communications
(PROFIBUS, RS232). It is executed both in Control Builder and in the different controllers
(e.g. Soft Controller, AC 800M). Generic means that it is hardware independent. Atlas
communicates with the hardware through Omega. Since Atlas is generic, the interface
between Atlas and Omega is the same regardless of the underlying hardware.
Omega contains the hardware specific code, operating system and hardware drivers, e.g.,
serial communication drivers and socket routines.

The controller software, that is a part of Atlas, is the executing part in the controller. It is in
the controller software (or firmware) the web server is implemented, see Figure 6.2.

Figure 6.2 The location of the web server.

By including the web server in the controller software and using the well-defined interface
between Atlas and Omega the server becomes generic, and can be used on different
controllers without any changes.

…

ATLAS

OMEGA

Hardware

Drivers

Protocol
Handlers

ATLAS

Web server
Controller
software

32

6.4 Real-time properties and memory handling

6.4.1 Real-time properties
In the controller there are a number of parallel processes/threads. Since the controller is a
system with a single CPU unit, true parallel execution is not possible. This leads to
concurrency between the different processes. The available CPU capacity must be shared
between the processes. A control system is often a hard real-time system, which means that
all deadlines must be met otherwise the system might fail or, even worse, crash.
The web server program runs as a single separate thread with a priority that is lower than the
priority of the main control program. This is to guarantee that the main control program
always gets to run when needed. If the web server is running and the main program wants to
execute, a context switch occurs and changes the running process to the main program.

In pSOS the priorities lies between 0-255 (255 = highest priority).
Figure 6.1 shows an overview of some of the different threads that are executing in the
controller [10].

Figure 6.1 An overview of the threads in the controller.

§ The Fast-loop thread (also named Time Critical task) –
executes Control Applications Tasks with short intervals and time critical priority.

§ The Main thread –
executes the Scheduler for Control Application Tasks and other system generated
tasks (sockets, memory handling).

§ A set of Communication Protocol threads–
executes different protocols, like TCP/IP and PPP.

§ The web server thread.
§ The idle thread –

executes when no other thread is active. Its task is only to wake the Main thread up
again.

The programs are implemented in C and C++. These are not real-time programming
languages. To achieve the real-time functionality a real-time operating system (RTOS) must
be used. As discussed in Section 2.4 the operation system used in the controller has a real-
time kernel (pSOS+), which makes this possible.

idle thread

Communication threads

Web server thread

Main thread
• Watch-dog
• 1131-Tasks
• System Tasks

Fast-loop thread

Lowest priority

Highest priority

33

6.4.2 Memory handling
In an embedded real-time environment correct memory handling is very important. Because
of the limited amount of memory even a minor memory leak will eventually lead to that a
program stops executing. To avoid this it is of outmost importance to ensure that no such
leaks exist.

The memory is divided into four parts or areas: code, data, stack and heap.
The code area consists of the compiled and linked object code. The code is never modified
during execution and is fixed in size. The data area is a static area, which holds global
variables that are stored during compilation, e.g. variables declared ‘static’ in a C
program. The stack area is used for parameters in function calls and also holds local variables
in blocks and functions. The stack size can often be estimated before execution. It is a
function of the maximum depth of procedure calls and the amount of memory needed by the
procedures. The stack is well behaved. It expands and contracts at one end with no wasted
size.
The heap is used as memory area for dynamic memory allocation. The running programs
create data structures during run-time that are then accessed by pointers. The heap storage
requirement cannot be calculated in advance since dynamic allocation is usually used for data
structures like lists whose size depends on the input to the program. The heap is not well
behaved because allocation and de-allocation of data areas of different sizes can occur at any
time and at any place within the heap.

The problem with dynamic memory allocation is that the system can run out of memory
during runtime. If this happens, the system can stop running. To minimize the risk of memory
shortage it is preferable to avoid dynamic memory allocation if possible. It is in most cases
not possible to do this. It is very important that all memory that is allocated during run-time is
de-allocated.

The basic implementation of the GoAhead WebServer 2.0, with some modifications, needs
about 18kb of RAM for the code and static variables. Table 6.1 is a list of the different
versions and their memory requirements.

Version Memory
Basic, with no additions 18kb
JavaScript version (including pictures) 71kb
CGI-script version 48kb
Pictures 17kb

Table 6.1 Different version of the web server and their memory requirements

The basic version of the web server is a version without any web pages, so it is useless. The
JavaScript version uses a JavaScript in the start page and it includes a number of pictures. The
CGI-script version is a simpler version of the start page, which does not use any pictures.
In Section 7.3 more information about the start page can be found.

The web server thread uses 10kb of stack memory. To ensure that there is enough free
memory on the heap when performing allocations, the web server program always checks if it
is possible to allocate the requested memory.

char *msg=new char[100];
if (msg != NULL){

...
delete [] msg;

}
else {

34

websHeader(wp);
websWrite(wp, "Error: memory allocation failed");
websFooter(wp);
websDone(wp, 200);

}

When trying to allocate a string of characters (char *msg = new char[100]) and
there is not enough memory on the heap, new will return NULL and an error message will be
shown in the web browser. If the allocation went well it is very important not to forget to de-
allocate the string (delete [] msg;). For more information about websHeader,
websWrite, websFooter and websDone, see Section 7.2.

6.5 Summary
There are a number of web servers that can be found on the Internet. To be able to implement
a web server in the ABB environment some important features were required: pSOS
compatibility, small memory footprint, and design for embedded systems. The GoAhead

WebServer 2.0 met these requirements.
The web server code is inserted in the generic part of the ABB software called Atlas. This is
done because the web server shall be used in different controllers.
The web server executes as a single thread with a priority lower than the main control
program. This is to ensure that the web server does not use unnecessary CPU resources.
Memory handling is also very important in an embedded system. Dynamic allocation and de-
allocation of memory must be done in a controlled way, to ensure that no memory leaks
occur.

35

7 The program
This chapter describes the implementation of the web server program. It starts with an
overview. Then follows a discussion about the initialization of the program and a description
of the common procedures and techniques. Finally the program is described in detail.

7.1 Overview of the program
After initialization where the thread is created and started, the web server waits for a
connection. The web server listens to a socket for a HTTP-request. When a request is detected
a new socket is opened and the request is received. After deciphering the request a check is
made to see if there are any matching URL’s. If so, the requested page (or picture) are created
and sent to the browser. Finally the socket is closed and the web server waits for a new
request. An overview is given in Figure 7.1.

Figure 7.1 Overview of the program.

Initialization
(thread start)

Wait for connection

Open a socket and
decipher request

PicturesWeb pages

Get data from
controller and
generate web
pages in HTML or
XML and send the
page. For
example: start
page, firmware
info and
applications.

GoForm pages

Get CGI
variables from
web server and
generate web
pages.
For example:
Access variables
and Ethernet.

Send the
requested
picture in hex-
format.

Close the
socket

36

7.2 Common techniques

7.2.1 Initialization
In the initialization phase of the program some handlers are defined. These are handlers for
different URL’s (URL handlers) and handlers for different forms (form handlers).

A handler is tied to an URL. The handler is no more than an ordinary procedure. The line of
code that defines an URL is:

websUrlHandlerDefine("/index.html", NULL, 0, Handler, 0);

Here the URL /index.html is defined. WebsUrlHandlerDefine() is part of the
GoAhead web server source code. The handler is a procedure that contains if statements
which compare the incoming URL with the defined URL’s. If the URL is found the function
that is supposed to handle that URL is called.

if (gstrcmp(url, "/index.html") == 0) {
indexPage(wp, "index.html");

}

The function that handles a call with /index.html is indexPage().
Form handlers are defined with the GoAhead function websFormDefine().

websFormDefine("accVarForm", accVarForm);

In the example above the function accVarForm is defined as a form handler. The reason
why websFormDefine() has two parameters is that both the name as a string (first
argument) and the function it self (second argument) is needed. The HTML tag <form>
creates a form.

<form action=\"/goform/accVarForm\">

The action argument declares the function that should process the form when it is filled out.
The different form handler names and form handler functions are stored in a table, see Table
7.1. This table is needed when a form is filled out and the corresponding handle function
should be found. The GoAhead web server contains a technique to treat forms. This technique
is called GoForms, see Section 6.2.2.

Table 7.1 The handlers are stored in a table

After defining the handlers the thread is created and started. This is done with calls to pSOS
functions:

Form handler
name

Form handler
function

accVarForm()accVarForm

serialForm serialForm()

37

rc = t_create("tWWW", 10, 10000, 10000, T_LOCAL | T_NOFPU,
&tid);

rc = t_start(tid, T_SUPV | T_PREEMPT | T_TSLICE | T_NOASR |
T_ISR, webserver_main, args);

The arguments in t_create() are: task name, task priority, task supervisor stack size, task
user stack size, task attributes and task identifier and in t_start(): task identifier, initial
task mode, task address and startup task arguments. The task address is here the function
webserver_main() and this is where the program waits for a connection [11].

7.2.2 Generating and sending web pages
The method used for generating web pages is based upon a string that is extended piece by
piece. The C standard function strcat() is used to append pieces to the string.

char *strcat(char *strDestination, const char *strSource);

It is used like this:

char *msg=new char[50];
strcpy(msg, "");
strcat(msg, "<HTML><HEAD><TITLE>");

Here the string msg is filled with <HTML><HEAD><TITLE>. Depending on what is to be
displayed different things are appended. If, e.g., a table should be displayed the next line
would be

strcat(msg, "<TABLE>");.

The example in Section 4.1 is created like this:

char *msg=new char[500];
strcpy(msg, "");
strcat(msg, "<HTML><HEAD><TITLE>Example</title></head>");
strcat(msg, "<body><h1>4Header</h1>Here comes the body text.");
strcat(msg, "<h2>4.1 A list</h2>First element");
strcat(msg, "Second element</body></html>");

It is hard to see if the HTML code is correct using this compact way of writing. The page
creation is not very generic either. Therefore a set of help functions is implemented. These
functions can bee viewed as a HTML generator and an XML generator. The function
structures are the same, text and tags are appended to the string and the string is returned.
Before any characters are appended to the string a memory check is performed, by calling
CheckLength(), to check that it is enough space in the string to append the characters. If
there are not enough space left, CheckLength() allocates space for 500 more characters.
Below the functions are shown. The strings that are returned are printed below each function.
Some of the functions are custom-made for one special task in the program, others are more
general. Therefore, some functions are quite large with a number of input arguments.

HTML
The NewPage() function creates a new page by appending <HTML>, <BODY> and
BGCOLOR tags to the string *pstr.

char* NewPage(char *pstr, char *Color);
//<HTML><BODY><BODY BGCOLOR="Color">

38

The NewFramePage() function creates a new frame page with three frames.
char* NewFramePage(char *pstr, char *Title, char *logo, char
*left, char *right);

//<HTML><HEAD><TITLE>Title</TITLE></HEAD>
//<FRAMESET COLS="300,*">
//<FRAMESET ROWS="90,*" BORDER="1" FRAMEBORDER="1">
//<FRAME SRC="logo" NAME="Logo">
//<FRAME SRC="left" NAME="Left">
//</FRAMESET><FRAME NAME="Right">
//</FRAMESET></HTML>

The NewRow() function creates Nbr new rows.
char* NewRow(char *pstr, int Nbr);

//

The Font() function activates the font Font with the font size Size.
char* Font(char *pstr, char *Font, char *Size);

//

The Text() function adds the text Text.
char* Text(char *pstr, char *Text);

//"Text"

The BoldText() function adds the text Text in bold.
char* BoldText(char *pstr, char *Text);

//"Text"

The Line() function creates a line with a thickness determined by Size.
char* Line(char *pstr, char* Size);

//<HR SIZE="Size">

The NewTable() function creates a table with the color Color.
char* NewTable(char *pstr, char *Color);

//<TABLE BORDER="1" CELLPADDING="1" BGCOLOR="Color">

The NewAlignedTable() function creates a table with the color Color and with the
alignment Align.

char* NewAlignedTable(char *pstr, char *Color, char *Align);
//<TABLE BORDER="1" CELLSPACING="1"
//BGCOLOR="Color" ALIGN="Align">

The NewTableCol() function creates adds a new cell in a table.
char* NewTableCol(char *pstr);

//<TD>

The NewAlignedTableCol() function adds a new cell in a table with the alignment
Align.

char* NewAlignedTableCol(char *pstr, char *Align);
//<TD ALIGN="Align">

The EndOfTableCol() function ends a table column.
char* EndOfTableCol(char *pstr);

//</TD>

The NewTableRow() function creates a new row in a table.

39

char* NewTableRow(char *pstr);
//<TR>

The EndOfTableRow() function ends a table row.
char* EndOfTableRow(char *pstr);

//</TR>

The NewTableHeading() function adds a header cell to a table.
char* NewTableHeading(char *pstr);

//<TH>

The EndOfTableHeading() function ends a table header cell.
char* EndOfTableHeading(char *pstr);

//</TH>

The EndOfTable() function ends a table.
char* EndOfTable(char *pstr);

//</TABLE>

The NewList() function adds a list.
char* NewList(char *pstr);

// <DL COMPACT>

The GroupTitle() function adds a group title to a list.
char* GroupTitle(char *pstr);

// <DT>

The GroupItem() function adds a new row in a list.
char* GroupItem(char *pstr);

// <DD>

The EndOfList() function ends a list.
char* EndOfList(char *pstr);

// </DL>

The Center() function centers the whole page or a part of the page.
char* Center(char *pstr);

//<CENTER>

The EndOfCenter() function ends the center alignment.
char* EndOfCenter(char *pstr);

//</CENTER>

The HyperLink() function adds a link to LinkFilename with the link text LinkText.
char* HyperLink(char *pstr, char *LinkFilename,char* LinkText);

//
//LinkText

The MenuHyperLink() function adds a menu link to cgiItem under the cgiNode
category in the menu. It has the link text LinkText.

char* MenuHyperLink(char *pstr, char *cgiNode, char *cgiItem,
char *LinkText);

//
//LinkText

The AdvancedHyperLink() function adds a link to LinkFilename with the link text
LinkText. The page is displayed in the Target frame.

char* AdvancedHyperLink(char *pstr, char *LinkFilename,char

40

*Target, char *LinkText);
//<A HREF="LinkFilename"
//TARGET="Target">"LinkText"

The EndOfPage() function ends the page.
char* EndOfPage(char *pstr);

//</BODY></HTML>

XML
The xmlDeclatation() function generates the XML declaration.

char* xmlDeclaration(char *str);
//<?xml version='1.0' ?>

The StylesheetToUse() function adds the xsl stylesheet located in file file.
char* StylesheetToUse(char *str, char *file);

//<?xml-stylesheet type="text/xsl" href="file" ?>

The StartTag() function adds the start tag tag.
char* StartTag(char *str, char *tag);

// Start tag: "<tag>"

The EndTag() function adds the end tag tag.
char* EndTag(char *str, char *tag);

// End tag: "</tag>"

The EmptyTag() function adds an empty tag tag.
char* EmptyTag(char *str, char *tag);

// Empty tag; "<tag />"

The NewElement() function adds the element cont between the start and end tag tag.
char* NewElement(char *str, char *tag, char *cont);

// Element: "<tag>cont</tag>"

The Attribute() function adds a tag tag with the element name. The value of the
element is value.

char* Attribute(char *str, char *tag, char *name, char *value);
// Attribute: "<tag name='value'/>"

The Comment() function adds the comment text.
char* Comment(char *str, char *text);

// Comment: "<!-- text -->"

The DOCTYPE() function defines the document type with element, param and
location. If using external DTD files, param must be 'SYSTEM' or 'PUBLIC'.

char* DOCTYPE(char *str, char *element, char *param, char
*location);

//<!DOCTYPE element param location >

The DTD_start() function indicates the start of the internal DOCTYPE definition.
char* DTD_start(char *str, char *element);

 //<!DOCTYPE element [

The DTD_end() function ends the internal DOCTYPE definition.
char* DTD_end(char *str);

 //]>

The PI() function indicates a processing instruction.
char* PI(char *str, char *target, char *instr);

//<?target instr ?>

41

XSL
The NewStylesheet() function declares the start of a xsl document.

char* NewStylesheet(char *str);
//<xsl:stylesheet xmlns:xsl=
//"http://www.w3.org/TR/WD-xsl">"

The EndOfStylesheet() function ends an xsl document.
char* EndOfStylesheet(char *str);

//</xsl:stylesheet>

The NewTemplate() function adds a new template with the text text.
char* NewTemplate(char *str, char *text);

//<xsl:template text>

The EndOfTemplate() function ends a template.
char* EndOfTemplate(char *str);

//</xsl:template>

The ValueOf() function adds the value of the attribute attr.
char* ValueOf(char *str, char *attr);

//<xsl:value-of select="attr"/>

The NewForEach() function iterates through every element of type element.
char* NewForEach(char *str, char *element);

//<xsl:for-each select="element"/>

The EndOfForEach() function ends the iteration.
char* EndOfForEach(char *str);

//<xsl:for-each>

When the string is filled it is sent to the browser. This is done with the GoAhead function
websWrite(). Some pages are quite large and websWrite() cannot write too many
characters at one time. Therefore, when the string is filled with around 300 characters the
string is sent. Then the string is reset. This is simply done by copying an empty string to the
message string.

websWrite(wp, msg);
strcpy(msg, "");

Then the string can be filled again. Before the page can be sent some initial protocol specific
instructions must be sent. This is done with the GoAhead function websHeader(). In
Section 3.1 these instructions are described. When the entire page is sent websDone() must
be called. websDone() finishes the communication and closes the socket.

In Figure 7.1 the page creation and sending are shown. First comes the initialization part
where the message string (msg) is declared and memory is allocated. The setup function,
websHeader(), is also called. Then comes the part where the actual page is sent. First the
string is reset then the string is filled and at last sent. This is repeated until the whole page is
sent. Finally comes the part where websDone() is called and the allocated memory for the
string (msg) is deallocated.

42

Figure 7.1 Page creating and sending.

7.3 Start page
The start page is intended to have the same tree structure as in the Control Builder (Figure
2.1). By using a well-known interface the web server becomes a user-friendly tool.
In the tree structure there are four main categories:

§ Access Variables
§ Hardware
§ Applications
§ Miscellaneous

The Access Variables category contains the names of the different access variables in the
controller and a hyperlink to a web page with more details about the variables, see Section
7.4.
The Hardware category contains the different hardware units that are present in the controller.
Their position and information about their firmware are also presented, see Section 7.5.
The Applications category contains the names of the 1131 applications that have been
downloaded to the controller and a hyperlink to a web page with more details about the
applications, see Section 7.6.
The Miscellaneous category contains information about heap memory usage and a log file
containing various information, see Section 7.7.
The start page also includes an ABB-logo and information about the type of controller, the
version and the manufacturers name. In Figure 7.1 the layout of the start page is shown. It
consists of three frames, the logoFrame in which an ABB-logo is placed, the treeFrame in
which the tree structure is located, and the rightFrame where various information about the
controller is shown.

msg

msg

msg

msg

websHeader

msg

T

websDone

< M LH > < B

43

Figure 7.1 The frames in the start page.

There are two versions of the start page. They are based on two different techniques,
JavaScript and GoForms. The reason for having two versions is to show different ways of
displaying the information. The JavaScript version is used to get a tree-structure that is very
similar to the project tree in Control Builder. The GoForms version is used for retrieving
information with a small memory usage.

The advantage of using a JavaScript is that once the script and the pictures has been sent to
the browser no communication with the server is needed, i.e., no unnecessary load on the
controller. Another advantage is the similarity with Control Builder. The disadvantage is that
it requires more memory than the GoForms version because it includes a number of small
pictures that has to be stored in the controller and the amount of information can be large in a
complex control system.
The advantage of using GoForms is that it requires less memory and it only sends the
requested information. The drawbacks of using GoForms are that every time the tree is
explored a request is sent to the web server and that the interface is not so user-friendly.

Advantages Disadvantages

JavaScript

Only generated and sent once, no
unnecessary load on the web server
and controller. A nice user interface,
very similar to Control Builder.

Memory requirements for code and
pictures.

GoForms Small memory requirements.
Generates and sends every time the
tree is explored. Does not have the
same user-friendly interface.

Table 7.1 JavaScript vs. GoForms start page.

7.3.1 JavaScript version
This web page is based on a JavaScript called “OmenTree” [12]. It is free and can be
downloaded from the Internet. OmenTree is flexible, easy to use and well suited for
dynamically generated web pages. The JavaScript is stored and created in C-source code in
the web server program. This JavaScript does only execute in the browser and not as a script
described in Section 5.2.

treeFrame

logoFrame

rightFrame

44

The script contains a number of functions, the main functions are: drawTree(),
drawBranch()and loadData(). The JavaScript creates the three frames on the web
page (Figure 7.1), and when this is done the function start()is called. This function calls
loadData() and drawTree().

The function loadData() is divided into three sections.

§ The tree structure.
§ User defined variables.
§ Additional HTML code.

The tree structure is where the content of the tree is defined. It is dynamically created when a
request to the server is done. By calling four different functions the information in the folders
(Access Variables, Hardware, Applications, and Miscellaneous) are added to the tree. These
C-functions are getAccVar(), getHWUnits(), getApplication(), and
getMiscNodes() and they are responsible for checking the controller for access variables,
hardware modules, applications and miscellaneous information. These functions are only
called once, when the JavaScript is generated in the controller. The user-defined variables are
some default parameters, like defaultLinkIcon and defaultTargetFrame. Finally
there is some additional HTML code, which include information about the product, version,
and information about the vendor.

The JavaScript function drawTree() initiates the web page (sets background colour, font
etc.) and after that calls the function drawBranch(). The function drawBranch() is the
main function of the script. This recursive function draws the tree with its folders and
branches.

Figure 7.1 An example of the JavaScript version.

The pictures used in the tree are of gif format and 19x16 pixels in size. They each use about
900 bytes of memory. Because the system (controller and operating system) does not have a
file system (hard drive) the pictures cannot be downloaded as they are. Instead they must be
converted into C source code that can be compiled and downloaded to the controller. The
pictures are converted into hex-code and stored in a character array in a header file. For
example the picture “cpu.gif” takes 906 bytes in size:

45

char cpu[906]={0x47, 0x49, 0x46, 0x38, 0x37, 0x61, 0x13, 0x00,
0x10, 0x00, 0xF7, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
0x00, 0x00, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, ...

Because the coded pictures might include the ‘null-character’ sign the function
websWrite() cannot be used. This is due to that websWrite() uses string-related C-
functions and this will lead to that the picture will not be sent correctly. Instead the system
function send() is used. The ABB logo is also coded in the same way and the amount of
memory required is about 1300 bytes.

The JavaScript is only generated once, which means that all information in the tree (all sub
trees) is sent. If the controller includes a large number of access variables and applications the
amount of code can become very large.

7.3.2 GoForms version
The second version of the start page is based on GoForms (Section 6.2.2). Even if the user
does not fill out a form, this technique is suitable for interaction with the web server. The
different categories in the tree structure (Access Variables, Hardware, Applications, and
Miscellaneous) are in fact hyperlinks with two CGI-variables. By using this technique it is
possible to create a tree that can be expanded. The two CGI-variables are node and item.
The variable node is used to determine which category that has been selected (Access
Variables, Hardware, Application or Miscellaneous) and item to determine which
subcategory to expand (e.g. hardware units). When a link in the tree is clicked the page is
rebuilt in the web server and updated in the browser.

When the start page is requested the corresponding C-function, menyLayout(), retrieves
the two CGI-variables and then proceeds to generate the page. If the CGI-variable node
corresponds to “accvar” the Access Variables branch is requested. The function
NamesOfAccVar() is called to get the access variables. If node corresponds to
“hardware” the different hardware units are retrieved with the function getHWModules().
If node corresponds to “applications” the application names are retrieved with
NamesOfApplication(). Finally if node corresponds to “misc” the function
getMiscNodes() is called.

Figure 7.1 An example of the GoForms version.

46

7.4 Access variables
This section describes the methods for retrieving information about the access variables in the
controller. If the plus sign next to “Access Variables” is clicked the tree expands, see Figure
7.1. The present access variables in this example are “selected”, “online”, “frequency” and
“initValue”. If more information is desired the hyperlink “More information” can be clicked.

Figure 7.1 Access variables sub tree.

7.4.1 Implementation
In the file “accVar.c” there are three functions, NamesOfAccVar(), getAccVar() and
AccVarForm().

The function NamesOfAccVar() is used in the Goforms-version of the start page. It takes
the string that is to be filled with the HTML-code as an in-parameter. The function goes
through the list of access variables and adds HTML tags and the names of the access variables
to the string. It goes through the list with a system object called pVarAccessItem. It is
through this object the names are accessible. In the end the string is returned.

The function getAccVar() is called from the JavaScript version of the start page. This
function also goes through the list of access variables, but does not add pieces to a string.
Instead it uses websWrite() directly and sends the names to the calling browser.

These two functions only bring out the names of the access variables, no more detailed
information. If the user clicks the hyperlink “More information” this is done and
AccVarForm() is used. If the hyperlink is clicked a new page will appear in the right frame
in the browser see Figure 7.1.

Figure 7.1 The access variables web page.

47

For every access variable their type, value and if the value can be changed (writeable) is
shown. If the value can be changed the most right column is also filled. Depending on the
variables type that column looks differently. If it e.g., is a variable of boolean type a
radiobutton is shown and if it is of integer type a textfield is shown. If the user changes a
value and presses the submit button the AccVarForm() function will be called again. The
AccVarForm() function has the following structure:

1. Get the first access variable and create a string.
2. Check if the variable has been changed.

3. If it is changed, update.
4. Retrieve the name, type, value and if it is writeable.
5. Append this information to the string.

6. If there exists more access variables, get next. Go to 2.
7. Send the string to the browser and call websDone().

Since it is possible to change the values of the access variables AccVarForm() must be
able to obtain the new values. GoForms is used to do this. The CGI variables have the same
name as the access variables in order to be able to check weather they have been changed or
not. If a value of an access variable is changed the new value is written to the controller.

7.5 Hardware
This section describes the methods to retrieve information about the different hardware units
or modules that are present in the controller and how it is used by the program. By clicking on
the “Hardware” folder the tree will expand and the result may look like Figure 7.1. Each
hardware unit is a subfolder that can be expanded further for more information. In front of the
hardware unit name there is a number (0-2 for AC 800C), which corresponds to the position
of the module on the controller board.

Figure 7.1 Hardware sub tree.

7.5.1 Implementation
In the C-file “Hardware.c” there are two functions: getHWModules()and
getHWUnits(). These functions are used to retrieve information and create code for the
start pages.

The function getHWModules() is used in the GoForms-version of start page. Figure 7.1
shows the calling sequence. First (1) the function menyLayout()is called, this is done
when a request for the start pages occurs. If hardware is requested the function
getHWModules()(2) is called, it takes a character string as an in-parameter. It will in turn
call getModuleTypes()(3) that retrieves the modules and store them in a local array,

48

ModuleTypes[] (4). After that the HTML-code is generated in getHWModules() (5)
and then returned to menyLayout()(6) and finally the function WebsWrite()(7) is
called.

Figure 7.1 The getHWModules() function.

The function getHWUnits() used in the JavaScript version of the start page works in a
similar way. The calling sequence for the JavaScript is shown in Figure 7.2. When a request
for the start page occurs the function JavaPage()(1) is called. It calls the function
getHWUnits() (2) which calls getModuleTypes() (3) (the same function as in the
GoForms version). The JavaScript code is generated in getHWUnits()and sent with the
function websWrite()(4).

Figure 7.2 The getHWUnits() function

The information that can be retrieved from getModuleTypes()is only a module id
number and its position. With a function called ModuleTypeToStrig()it is possible to
convert the id number to a readable string (e.g. PM210, CI272). This is the amount of
information that is possible to get from the system. But in the functions getHWUnits()and
getHWModules() there are methods to generate more information. Because the modules
physical layout never changes, it is possible to append more information to the module name.

JavaPage () getHWUnits() getModuleTypes()

ModuleTypes[]

WebsWrite()

1

2

3

4

menyLayout() getHWModules() getModuleTypes()

ModuleTypes[]

WebsWrite()

1

2 3

4

7

5
6

49

For example a CI271-module (serial communication) always have two com-ports, and a
CI272-module (Ethernet) always have one com-port. To every module extra information is
appended containing an explaining text and which hardware it has. In some cases where more
information can be obtained a hyperlink to another page is also appended, for example
Ethernet status see Figure 7.1. Under the “Hardware” folder in the tree there is also a
hyperlink called “Firmware”. If this link is pressed a new page will appear in the right frame,
with information about the modules and the downloaded firmware.

7.5.2 Firmware
By clicking on the “Firmware” hyperlink in the “Hardware” folder (Figure 7.1) a new page
will appear in the right frame in the browser see Figure 7.1.

Module Firmware Date Version Major Minor Subversion Working Version Upgradeable

PM210 FW210 2001-09-20 0.43.13.6 - - - - Yes

PM210 OMEGA 2001-09-17 1.1.13.10 - - - - No

PM210 HW Config 1999-09-06 1.4 1 4 - - No

CI271 CI271 1999-12-17 1.0.4.0 1 0 4 - Yes

CI272 FWCPUCIE 2000-01-20 1.1.0.0 - - - - Yes

Figure 7.1 The firmware web page.

In the C-file “Firmware.c” there are two functions firmwareXML() and
firmwareXSL(). When a request for the firmware page occurs the function
firmwareXML() is called. This function in turn calls getModuleTypes() (Figure 7.1)
and the system function GetAllFirmwareinfos() which returns the firmware for all
modules on the controller. Further it will create and send a XML page. The XML document
can look like this:

<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="firmware.xsl"?>
<FirmwareInfo>

<Firmware>
<Module>PM210</Module>
<Firmware>FW210</Firmware>
<Date>2001-09-20</Date>
<Version>0.43.13.6</Version>
<Major>-</Major>
<Minor>-</Minor>
<Subversion>-</Subversion>
<WorkingVersion>-</WorkingVersion>
<Upgrade>Yes</Upgrade>

</Firmware>
<Firmware>

<Module>PM210</Module>
<Firmware>OMEGA</Firmware>
<Date>2001-09-17</Date>
<Version>1.1.13.10</Version>
<Major>-</Major>
<Minor>-</Minor>
<Subversion>-</Subversion>
<WorkingVersion>-</WorkingVersion>
<Upgrade>No</Upgrade>

</Firmware>
...

<Firmware>
<Module>CI272</Module>
<Firmware>FWCPUCIE</Firmware>

50

<Date>2000-01-20</Date>
<Version>1.1.0.0</Version>
<Major>-</Major>
<Minor>-</Minor>
<Subversion>-</Subversion>
<WorkingVersion>-</WorkingVersion>
<Upgrade>Yes</Upgrade>

</Firmware>
</FirmwareInfo>

The XML documents root element is called “FirmwareInfo” and it includes a number of
“Firmware” elements, which in turn includes nine information elements (Module, Firmware,
Date etc.). As seen in Figure 7.1 each row in the table corresponds to a “Firmware” element.

In the xml-stylesheet definition (second row) the xsl-stylesheet “firmware.xsl” is defined. The
browser will automatically request this page from the server. When this page is requested the
server will call the function firmwareXSL(). This function creates a XSLT document for
transforming the XML-page into a viewable web page (Figure 7.1).

The XSLT document looks like this:

<?xml version="1.0" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
<xsl:template match="/">
<HTML>
<HEAD>

<STYLE TYPE="text/css">
TABLE {font-family: MS Sans Serif }
TH,TD {font-size: 8pt}

</STYLE>
</HEAD>
<BODY BGCOLOR="white">
<h3>Firmware Information</h3>
<TABLE BORDER="1" CELLSPACING="1" BGCOLOR="#99CCFF">

<TR>
<TH>Module</TH>
<TH>Firmware</TH>
<TH>Date</TH>
<TH>Version</TH>
<TH>Major</TH>
<TH>Minor</TH>
<TH>Subversion</TH>
<TH>Working Version</TH>
<TH>Upgradeable</TH>

</TR>
<xsl:for-each select="FirmwareInfo/Firmware">
<TR>

<TD><xsl:value-of select="Module"/></TD>
<TD><xsl:value-of select="Firmware"/></TD>
<TD><xsl:value-of select="Date"/></TD>
<TD><xsl:value-of select="Version"/></TD>
<TD><xsl:value-of select="Major"/></TD>
<TD><xsl:value-of select="Minor"/></TD>
<TD><xsl:value-of select="Subversion"/></TD>
<TD><xsl:value-of select="WorkingVersion"/></TD>
<TD><xsl:value-of select="Upgrade"/></TD>

</TR>
</xsl:for-each>

</TABLE>
</BODY>

51

</HTML>
</xsl:template>
</xsl:stylesheet>

This document converts the root element “FirmwareInfo” to a table (Figure 7.1). The first row
in the table is constructed with header cells (<TH>) and then the other rows are generated.
This is done with the tag <xsl:for-each select="FirmwareInfo/Firmware">,
which iterates through the root element and for each “Firmware” element it creates a new
table row (<TR>). To extract the data from the different elements (Module, Firmware etc.) the
tag <xsl:value-of select=””/> is used. The tag <TD> creates a new table cell.

When creating these pages the functions in the HTML- and XML generators are used. The
XSLT page is a static page, while the XML page is dynamic. This means that it is a template
page and filled according to the firmware that has been downloaded to the controller.

7.5.3 Ethernet
In Figure 7.1 the module “CI272” has been expanded and an information text shows that it is
an “Ethernet module”, how many com-ports it has and also a “Status” hyperlink. When
clicking on the hyperlink a new page will appear in the right frame, Figure 7.1. The
information that is available is status for the Ethernet channel, for example number of
transmitted packets and missed packets.

Figure 7.1 The Ethernet status page

This page uses the GoForms functionality to be able to tell the function ethernetXML()
which position on the controller the module has (for AC 800C these are 1 or 2). The page
uses XML and XSL documents. The function ethernetXML() is responsible for retrieving
the different status information from the system and creating the XML page. Before creating
the XML document an error code from the system is checked, if an error occurred a web page
with the message: "Error when trying to obtain Ethernet status" will be sent to the browser. If
there did not occur any errors an XML page will be generated.

Example of the Ethernet XML code:

<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="../ethernet.xsl"?>
<EthernetInfo>

<Info>

52

<Text>Status</Text>
<Value>Active</Value>

</Info>
<Info>

<Text>Transmitted packet</Text>
<Value>182</Value>

</Info>
<Info>

<Text>TX packet status</Text>
<Value>1</Value>

</Info>
<Info>

<Text>Free Receive Buffers</Text>
<Value>18</Value>

</Info>
.
.
.

</Info>
<Info>

<Text>Receive Buffers Exhausted</Text>
<Value>0</Value>

</Info>
</EthernetInfo>

The XSL document used is called ‘ethernet.xsl’ and corresponds with the function
ethernetXSL(). This function creates a style sheet that look like this:

<?xml version="1.0" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
<xsl:template match="/">
<HTML>

<HEAD>
<STYLE TYPE="text/css">

TABLE,INPUT {font-family: MS Sans Serif}
TH,TD,INPUT {font-size: 8pt}

</STYLE>
</HEAD>
<BODY BGCOLOR="white">
<h3>Ethernet Status</h3>
<TABLE BORDER="1" CELLSPACING="1" BGCOLOR="#99CCFF">
<xsl:for-each select=" EthernetInfo/Info">
<TR>

<TD>
<xsl:value-of select="Text" />

</TD>
<TD ALIGN="RIGHT">

<xsl:value-of select="Value" />
</TD>

</TR>
</xsl:for-each>
</TABLE>
</BODY>

</HTML>
</xsl:template>
</xsl:stylesheet>

53

The transformation of the Ethernet XML document works in a similar way as the
transformation of the firmware XML document (section 7.5.2). A table with header cells are
first created and then each row with an explaining text and the corresponding data.

7.6 Applications
This section describes the methods for retrieving information about the executing applications
in the controller. If the plus sign next to “Applications” is clicked the tree expands see Figure
7.1. In this example the applications are called “Application_1” and “Tank_Process_”. If
more information is desired the hyperlink “More information” can be clicked.

Figure 7.1 Application sub tree.

7.6.1 Implementation
In the file “Application.c” there are three functions, NamesOfApplication(),
GetApplication(), and applTable().

NamesOfApplication() is used in the Goforms version of the start page. It takes a
string as an in-parameter. The application names are stored as strings in the controller and
these can be obtained through system calls. When the names are obtained these and HTML
tags are appended to the string. In the end the string is returned.

GetApplication() is used in the JavaScript version of the start page. This function also
obtains the application names through system calls, but does not append these to a string.
Instead websWrite() is used and the names are directly send to the browser.

These two functions only retrieve the names of the applications. If the user clicks the
hyperlink “More information” the function applTable() is called. Then a new page
appears in the right frame in the browser, see Figure 7.1.

Figure 7.1 The application web page.

For every application its task connection, priority, cycle time, and cyclic are presented. Cyclic
is a boolean variable that indicates if the application executes cyclic. applTable() goes
through a list of program instances that is part of the ABB source code. For every program
instance the information (application name, task connection, priority, etc.) is sent to the
browser.

54

7.7 Miscellaneous
This section describes two methods to retrieve heap usage information and the controller log.
If the plus sign next to “Miscellaneous” is clicked the tree expands, see Figure 7.1.

Figure 7.1 Miscellaneous sub tree.

7.7.1 Heap information
This page shows heap information, such as total heap size, used heap, and the amount of free
heap memory. It also shows the maximum heap usage since the start and since the reset. The
functions used for retrieving the heap information are GetHeapUsage(),
GetFreeHeapSize(), ResetPeakSizeValue(), and GetPeakSizeValues().
These functions are a part of the ABB implemented heap functionality. Figure 7.1 shows how
the information is presented. By clicking on the button “Reset!” the function
ResetPeakSizeValue() is called.

Figure 7.1 Heap information

On this page there are also a tool for checking the controller program for memory leaks. If the
button “Set” is pressed, the current heap usage will be stored. After performing the
operations that should be checked for memory leaks the button “Calculate” should be
pressed. The program will again check the heap usage and compare it with the stored value.
The difference between the current value and the stored value is calculated and presented.

55

7.7.2 Controller log
The controller log is a log file that is stored in the controller. Since the controller does not
contain any file system the log file is not a file, but an array. The array can store 16348
characters and new characters are pushed in, i.e., the oldest characters are lost when new ones
are inserted. The controller log contains all product printouts to inform about warnings or
errors. For example, if a task is aborted or if an overload in the controller occurs, then this is
written to the controller log. If the controller crashes the controller log is a useful tool to
investigate why the crash occurred. The controller log is available after a controller crash, i.e.,
the controller log memory is not destroyed in a crash. The controller log is sent to the browser
as plain text, not as text within HTML tags. In order to make the browser understand the
received information the HTTP-header instruction Content-Type is sent as:

Content-Type: text/plain

7.8 Summary
The method used for generating web pages is based upon a string that is extended piece by
piece. With the HTML generator and the XML generator this can be done in a more
structured way. GoForms are used to interact with the web server. Two different start pages
exist, one based on GoForms and one based on JavaScript. Four main categories are available
in the project tree: access variables, hardware, applications, and miscellaneous information.

56

8 Future developments
There are a number of possibilities to develop the web server further. More information like
CPU load or other real-time information could be displayed in the browser. The cycle time
and priority of an application could be changed via the browser.
Security is a major part that could be investigated and developed. Perhaps a simple login form
with password would be enough, but it can also be possible to have a more advanced security
structure. If different user levels were used, the lowest levels were only allowed to read
information. The higher levels would be authorized to change the values of, e.g., access
variables. The GoAhead Webserver 2.1 contains a structure with different user levels. If
the web server can be called through the Internet a more robust security is needed, but more
likely the web server can only be called within an intranet and then a more simple security
structure will be enough.
If different XSL style sheets could be downloaded to the controller (via Control Builder)
some interesting features occurs. With these style sheets the information could be displayed in
different ways depending on the calling system. For example one style sheet could be used in
a PDA and another in an ordinary PC. Then it is possible to present certain information in a
number of ways. The user can choose to present the information in a way he wants.
Another interesting application is the use of SOAP. For example, instead of calling each
controller separately a “gateway” controller could be used. This controller could in turn call
the other controllers on the network and retrieve the web related information using SOAP
messages.

57

9 Summary and conclusions
This project has resulted in a web server that is intended to run in the ABB controllers AC
800M and AC 800C. It is a part of the ABB concept ControlIT. The web server runs under the
operating system pSOS. The controllers only contain RAM and FLASH memory and lacks
file system. Therefore no web pages can be statically stored, instead the web pages must be
dynamically generated. As a result of that a set of functions that generate HTML and XML
code have been developed.
A comparison between different web servers resulted in that the GoAhead web server was
used as the base web server. It is from this the further developments and adaptations to the
ABB system have been done.
When a user calls the web server a simple and easy overviewed structure of the controller
configuration is displayed in the browser. Through hyperlinks more detailed information can
be obtained.
In the report different Internet technologies like HTTP, HTML, XML, SOAP, CGI script, and
JavaScript have been described.

58

10 User guide
This chapter contains an overview of how to use the web page. A tutorial goes trough how
information about a controller is obtained using the JavaScript version. It is an example with
one specific controller configuration, of course a controller can have many different
configurations.

10.1 Tutorial
First a web browser must be started. In this example Microsoft Internet Explorer 5.5 have
been used. When the controller’s IP number is entered in the address bar the start page is
presented, see Figure 10.1.

Figure 10.1 Start page.

Information about which controller and its version is presented. In this example the controller
is “AC 800C” and the version “2.2/0b2-6”. Underneath, a tree structure is shown. In the tree
there are four main parts: Access Variables, Hardware, Applications, and Miscellaneous. To
the left of these four keywords plus signs (+) are placed. If a plus sign is clicked the tree
expands and more information about the clicked category is presented. In Figure 10.2 the plus
sign next to “Access Variables” has been clicked. Four access variables exist in the controller,
“selected”, “online”, “frequency” and “initValue”. It is only the names of the access variables
that are presented in the tree.

59

Figure 10.2 The plus sign next to Access Variables has been clicked.

If more information about the access variables is desired the link “More information” must be
clicked. In Figure 10.3 this has been done. A table containing information about the access
variables occurs in the right frame. Every access variables name, type, value and if it is
writeable are presented. If it is writeable a column there the new value can be written is
placed as the rightmost column in the table. In this example two different data types are used,
boolean (Bool) and double integer (DInt).

Figure 10.3 More information under Access Variables has been clicked.

60

If the variable is of type boolean a radio button is placed in the column “New Value” and if it
is a double integer a text field is placed there. If the user wishes to change the value, the value
must be entered and then the “Submit” button must be pressed.
The next category is “Hardware”. When the plus sign next to that is clicked the present
hardware modules occurs under “Hardware”. A “Firmware” link is also presented. When that
link also been clicked the browser looks like Figure 10.4. The firmware information consists
of the corresponding modules firmware name, date, version and if it is upgradeable. More
advanced information like “Major”, “Minor”, “Subversion” and “Working Version” are also
presented.

Figure 10.4 The plus sign next to Hardware and the Firmware link has been clicked.

The hardware modules present in this example are “PM210”, “CI271” and “CI272”. PM210
is the controller AC 800C’s CPU unit, CI271 is a serial module and CI272 is an Ethernet
module. The numbers in front of the modules (0, 1 and 2) are the module’s place on the
controller. There are plus signs to the left of the modules, which indicate that there is more
information about the modules to display in the tree. In Figure 10.5 the plus signs next to
CI271 and CI272 have been pressed. When the tree expands a more detailed explanation to
CI271 and CI272 is shown directly below these abbreviations. CI271 means “Communication
interface RS232” (serial) and CI272 means “Communication interface Ethernet”. Below
“Communication interface RS232”, is written “0 Com” and “1 Com”. This means that on the
module CI271 it exists two com-ports, 0 and 1. Below “Communication interface Ethernet” is
written “0 Ethernet” which means that on the Ethernet module it exists one Ethernet
connection. Below “0 Ethernet” there is a status link. If the link is clicked information about
the Ethernet connection is displayed in the right frame, see Figure 10.5. The information
consists of Transmitted packets, Missed packets and Received broadcasts, etc.

61

Figure 10.5 The plus signs next to CI271 and CI272 and the status link under CI272 have been
pressed.

The next category is “Applications”. If the plus sign next to that is pressed the names of the
executing applications is presented below. The applications in this example are called
“Application_1” and “Tank_Process_”. If the link “More information” is clicked, a table
appears in the right frame, see Figure 10.6. Every applications task connection, priority, cycle
time, and if it executes cyclic are presented.

Figure 10.6 The plus sign next to Applications and “More information” have been pressed.

62

The last category is “Miscellaneous”. It has two sub categories, “Heap information” and
“Controller log”. In Figure 10.7 the “Heap information” link has been clicked and a table
containing heap data are presented in the right frame. It is possible to reset the heap peak
counter by pressing the “Reset!” button, i.e., “Max memory allocated (from reset)” is
recalculated. On this page there are also a tool for checking the controller program for
memory leaks. If the button “Set” is pressed, the current heap usage will be stored. After
performing the operations that should be checked for memory leaks the button “Calculate”
should be pressed. The program will again check the heap usage and compare it with the
stored value. The difference between the current value and the stored value is calculated and
presented.

Figure 10.7 The plus sign next to Miscellaneous and the Heap information link have been clicked.

In Figure 10.8 the “Controller log” link has been clicked and the controller log is presented in
the right frame. The controller log contains all product printouts to inform about warnings or
errors. For example, if a task is aborted or if an overload in the controller occurs, then this is
written to the controller log. If the controller crashes the controller log is a useful tool to
investigate why the crash occurred. The controller log is available after a controller crash, i.e.,
the controller log memory is not destroyed in a crash.

63

Figure 10.8 The plus sign next to Miscellaneous and the Controller log link have been clicked.

64

11 References
[1] ABB Automation Products AB, Control Builder Beginner’s handbook, October 2001.

[2] Wind River Systems, www.windriver.com.

[3] W. Richard Stevens, ”TCP/IP Illustrated, Volume 3”, Addison Wesley, July 1996.

[4] World Wide Web Consortium, “Extensible Markup Language (XML) 1.0 (Second
Edition)”, W3C Recommendation 6 October 2000, www.w3c.org.

[5] Birbeck Mark, Jon Duckett, Oli Gauti Gudmundsson, Pete Kobak, Evan Lenz, Steve
Livingstone, Daniel Marcus, Stephen Mohr, Jonathan Pinnock, Keith Visco, Andrew
Watt, Kevin Williams, Zoran Zaev, Nikola Ozu, ”Professional XML 2nd Edition”,
Wrox Press Ltd, May 2001.

[6] World Wide Web Consortium, “XSL Transformation (XSLT) Version 1.1”, W3C
Working Draft 24 August 2001, www.w3c.org.

[7] CGI Programming 101, www.cgi101.com

[8] Netscape, www.netscape.com

[9] GoAhead Software Inc, www.goahead.com.

[10] ABB Automation Products AB, Functional Specification: Atlas Execution Model,
LACB-9912-05 (05), September 2001.

[11] Integrated Systems Inc., pSOSystem System Calls, February 1996.

[12] OmenSoft, omensoft.home.ml.org.

