ISSN 0280-5316
ISRN LUTFD2/TFRT--5678--SE

Generic Web Server in Embedded
Control Systems

Andreas Ekstrand
Jonas Ludvigsson

Department of Automatic Control
Lund Institute of Technology
November 2001

Department of Automatic Control Document name

i MASTER THESES
Lund Institute of Technology

Date of issue

Box 118 November 2001
SE-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFR--5678--SE
Author(s) Supervisor
Andreas Ekstrand Andre Ekfeldt, ABB

Jonas Ludvigsson Karl Erik Arzén, LTH

Sponsoring organization

Title and subtitle
Generic Web Server in Embedded Control Systems. (Webserver i inbyggt styrsystem).

Abstract
The goal for this master thesis was to investigate the possibility of using an existing web server
and modify it so it can be used in ABB controllers.

The work has resulted in two different versions of a web server. The basic functionality is the
same for both versions. The web servers are able to present a number of controller-related
information. For example: hardware, which control programs that are executing in the
controller, information about the firmware, and also system information like heap memory
usage. It can also be used for changing different parameters.

The two versions use different techniques for presenting the information. They are also
implemented in different ways. The first version has a more user-friendly interface but requires
more memory, 71 kb. The second version requires less memory, 48 kb, but does not have the
same user-friendly interface.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes

English 68

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.se

Generic web server
1IN embedded control
systems.

2001-11-14

Andreas Ekstrand
Jonas Ludvigsson

Table of contents

1 INrodUCiON.......ccoiii e,
1.1 Outlineof thergpOrt.......ccoo e, 5
2 SYSEM OVEIVIBW ..cce e,
2.1 Theideaof AWED SEIVENcovviiiiiiiiieeeeeeeeee e 6
2 ' 114 o) LT 6
2.3 CONtrol SYSIEM OVEIVIEWccooiiiiiiiieiie ettt e e e e e e e 8
A S © o 1< - 1] o TS 2 1= 1 [10
25 Web server in the CoNtrol SYStemM.........coooiiiiiiiiiiiie e 11
2.6 SUMIMEIY ..oeiiiiiiiiiiiiieeee ettt ettt ettt ettt ettt ettt ettt ettt ettt et et ettt et et et ettt e e et e e e e e e e e e e e e rereeees 11
3 INternet teChNOIOGIES.....cceiei ittt
0 R o I I N =] (o oo SO PPRRR 12
311 REQUESE N FESPONSE.ceiieeeiiiitiiie ettt 12
30 U 1 RSO PPRRR 13
3.3 WD SEIVES it 14
331 HOW dOES It WOIK?......eeeeeiiee e 14
3.3.2 Embedded WED SErVEruuiiiiiiiiiiiiiiiiiiii 14
G s U 101017 Y 14
4 Markup languages and SOAP.........cooiii i
T 8 I P 15
411 Advantages and lIMitalioNS............eeeiieiiiiiiiiii e 16
P 16
421 XML VS HTIML 1ottt a et n e e e e e e e 16
422 The XIML DOCUMENT.........ci it ee et e e e e e e e e e eeeeeeeeeeaeeeeanes 18
e D PP 20
431 D SO ERRR 20
4.3.2 S I O USRS PRRRRR 22
S © L P 22
44.1 [[TV (0TS L A Yo o 22
4.4.2 S O V1= o 23
443 A SOAP EXAMPIE......eeiiiiiiieee e 24
4.5 SUMMM@IY .eeeeeenenenenennneseseseses ettt s e nene 24
B OIS ettt
LT A 1] =" | o 25
51.1 WY CGI 2. e e s e e e e e s reeeaaees 25
5.1.2 [T 1o 7= T 25
513 COMIMION USE ..ttt ettt ettt e e ettt s e e e e e e e e tbb e e e e e e eeeenenaanas 26
5.1.4 (0T = 0SSP 26
V2N - V- o 1] o PSPPSR 26
5.2.1 R AT YA = V7= S o T o) 26
5.2.2 FUNCHIONAITTY .ottt 27
LR T U 01017 Y 28
B WWED SEIVEN o
6.1 Different Weh SErVErS ... 29
6.2 GOANEAI® WEDSEIVENAoocveiviiiiiieiei e 29
6.2.1 Features and [IMItalionS..........uuuuuurururiiiiiieiiiiiiiiiaieeereran e 29
6.2.2 GOFOIMIS. ... 30
6.2.3 1Y KoTo [N 107> 1T 0] 30

6.3 (€S gl (oIS o T < AYL< ST 31

6.4 Real-time properties and memory handling..........ccccccvvvvviiviiiiiiiieeeeeee, 32
6.4.1 REaI-TIME PIrOPEITIES.eeeeiieeeei ittt 32
6.4.2 Memory handling..........uuuuiuiiiiiiiiiii e 33
6.5 SUMMEIY ..ceiiiiiiiiiiiiiiiiie ettt 34

A N 1= o (0o =2 1 SRR
7.1 Overview Of the Program........ooiiiiiiiiie et 35
472 o 111 11010] 8 (= o100 1 1= 36
7.2.1 R LU= T2 o] o TR 36
7.2.2 Generating and sending Web Pages..........ccooeeeeeeeeee e, 37
7.3 SO PAOE c.eeeieeeieieieieeee ettt 42
7.3.1 2 Yoo 1 V= =T o 1 43
7.3.2 GOFOMMS VEISION ..o 45
T4 ACCESS VATADIESo a e 46
7.4.1 IMPIEMENTALION. ... e 46
8 T o 0 V= T RSO PPRRR 47
7.5.1 IMPIEMENTALION. ... e 47
7.5.2 01T = 49
753 1= T P 51
7.6 APPIICALIONS ..ccoiiiiiiit e a e 53
7.6.1 T 0] = 001= 1= (o) o S 53
7.7 MISCEIIANEOUS.ceviiiiiiiiiiiiiiee e 54
7.7.1 [T=7= ol T 01 1] 10T o] o TS 54
7.7.2 160011 o[1= g T s TP P TP OPPPPPPPPPPPN 55
A= TS ¥ 101017 Y 55

8 FUtUre develOpmMENES........ccoeiii i

9 Summary and CONCIUSIONScccoeeieiiieiecc e,

1O USEN QUIE. .. .eeiiiieiiee ettt e e
0 I I U 1o = | SRR 58

11 REFEIENCES....eiiiiiee it e e,

Definitions and abbreviations

AC

AC 800M
AC 800C
AC 250
ASP

CGl
Contro
Control Builder
ControlNet

IIT

DTD
Ethernet
FBD

GML
HTML
HTTP

|EC 61131-3
1/0

IL

LD

PDA
PROFIBUS
pSOSystem
PPP

RS232

RPC

RTOS
SattBus

SFC
SGML
SLC
SOAP
Soft Controller
ST
TCP/IP
URI
URL
XML
XSL

ABB Controller.

ABB’s most powerful controller, known as “Common controller”
ABB Controller suitable for minor applications.

Flexible and modular ABB controller.

Active Server Page. A Microsoft technique to execute scriptsin a
web page.

Common Gateway Interface.

ABB’s name for a family ABB developed controllers and equipment.

Programming tool in Control".

A high-performance network for industrial applications. Itisa
standard (developed by Allen-Bradley) that is used for fast
communication between control systems and distributed 1/0 units.
Document Type Definition. Used in XML.

Network cabling system according to |EE 802.3

Function Block Diagram. An 1131 language.

Generalized Markup Language.

Hypertext Markup Language.

Hypertext Transfer Protocol.

A family of programming languages, usually only called 1131.
I nput/Output.

Instruction List. An 1131 language.

Ladder Diagram. An 1131 language.

Personal Digital Assistant.

A fieldbus originally developed by Siemens.

Real-time operating system.

Point-to-Point Protocol, serial communication.

A serial communication protocaol.

Remote Procedure Calls.

Real-time operating system.

A control network. SattBus communication can be used in a Soft
Controller or an AC 250.

Sequential Function Chart. An 1131 language.

Standard Generalized Markup Language.

Satt Line Control

Simple Object Access Protocol.

PC based ABB controller.

Structured Text. An 1131 language.

Transmission Control Protocol/Internet Protocol.

Uniform Resource Identifier.

Uniform Resource L ocator.

eXtensible Markup Language.

eXtensible Stylesheet Language.

1 Introduction

The use of web serversin control systems opens new doors in maintenance and supervision of
industrial processes and machines. Because of the well-known interface the web server
becomes a helpful tool for operators or engineers.

The goal for this master thesis was to implement a generic web server in an embedded control
system. The work has been done in cooperation with ABB Automation Products AB Mamo
Sweden. The idea was not to implement a web server from scratch, rather to investigate the
possibility of using an existing web server and modify it. A number of different web servers
have been investigated. One of them filled the requirements for implementation in the ABB
Control Software.

Different techniques for how to create web pages and how to interact with the web server
have been investigated and a prototype program has been implemented.

1.1 Outlineof thereport

Chapter 2 describes the idea of aweb server in an embedded control system and also gives an
overview of the control system, its hardware and software. Chapter 3 gives an overview of
some common Internet techniques like the HTTP protocol, the URL and how a web server
works. In Chapter 4 three different markup languages are described, HTML, XML and XSL.
An application of XML, SOAP, is aso described. Chapter 5 gives a description about how to
interact with aweb server using CGI scripts and JavaScript.

Chapter 6 contains a more detailed description about the web server used in the
implementation and some real-time properties and memory handling. Chapter 7 describes the
implementation of the web server program. Future developments are discussed in Chapter 8.
Chapter 9 contains a summary of this thesis and some conclusions. The last chapter is a user
guide that includes a tutorial on how to access and use the web server.

2 System overview

This chapter gives the background to the idea behind the web server and where it is intended
to execute. A system overview, which gives a brief insight to ABB’s Control", is presented.
The hardware, the operating system, and tools for communication are also discussed.

2.1 Theidea of aweb server

Almost al industrial processes are controlled in some way and they are often located in noisy
environments. Common work with the machine, like supervision, controller tuning and error
correction are done via some kind of connected I/O. If these tasks could be performed in a
calmer environment, like an office, they would be handled faster and perhaps better. Intranet
existsin nearly all plants nowadays. If a web server isimplemented in the machine and the
machine is connected to the intranet any computer on the intranet could get in contact with
the machine. Of course the computer must contain aweb browser, but that is not a problem
today, they can be downloaded free from the Internet. A web browser is an easy and well-
known interface and they can even run on handheld computers, PDA’s. It would also be
possible to reach the machine trough the Internet and then, for instance, machine maintenance
could be performed remotely and it would quite simply be easier to get in contact with the
machine. The connected terminals would become unnecessary and the cost for these would

disappear.

2.2 Control'T

Control'™ is ABB’s name for afamily of ABB developed controllers, programming and
configuration tools. Here follows a brief description of some of the partsin Control' ™ [1].

Control Builder, see Figure 2.1, is a programming tool for configuration and programming of
the ABB controllers AC 800M, AC 800C, AC 250 and Soft Controller. For further
description of the controllers, see Section 2.3. With Control Builder follows a set of
predefined functions. These include data types, functions, function blocks and control
modules that can be used in the programs. The programs, called applications, can be written
in five different IEC 61131-3 (usually only called 1131) programming languages. The five
languages are FBD, ST, IL, LD and SFC. The controllers are the targets for the programs
developed with Control Builder. It isto such a unit that the program code will be downloaded
and executed.

Eal: ontral Builder Professionsd - iy Do (o
Fi= E\:i'. l.llew Tuu_h_ 'i.ln:hw_ Hslp
Dl EEe W e

+ a Librariss

=1 Bl appications
= nopheakian _1 - {Coreroller_1. Mol

& Data Trres
4 Furetion Blodk Types
12 Contral Mol Trpes
Ak Control Mocles
= 4Bk Frograns
£k Prooraml - (Confraller_1.Fast)
= -3EF Frogram? - {Corkralier _1.Mormsl)
-4 Program3 - (Coneraller 1.5k
-1 - Cenbrolers
E- [contrdler_1(172.16.85.63]
-S4 firoess Varisbles
= [Hardwars &2 &100
=& 0 M0
eI 0 Ciom
1 Com
10 on Board 1{2
11 Bt
12 Estlfo
H-= CLzrl
- - 0 Com
o1 Com
BB 2 CER
im0 Erherner
= @ Toambin
{1 Fast
i S
- E Applcstions
B appbcation_1

Figure 2.1 Example of aproject in Control Builder.

The programs created in the Control Builder can be part of more or less advanced control
systems. In the most trivial case a PC running Control Builder is connected to a controller, see
Figure 2.2.

Figure 2.2 A PC running Control Builder and a controller connected via Ethernet.

In more advanced control systems, like in Figure 2.3, Control Builder can run on many
computers. This makes it possible to share the project between developers. The project can be
distributed to a number of controllers, which results in that each controller can execute a part
of the project.

Figure 2.3 Severa PC'srunning .

2.3 Control system overview

The controllers AC 800M, AC 800C and AC 250 consist of a controller unit, a power supply
unit, and a number of connections where it is possible to add communication interfaces.

The controller unit contains for example a processor (M otorola manufactured), RAM-memory
and FLASH-memory. The Soft Controller is a PC based controller. Here follows a brief
description of the controllers, for technical data see Table 2.1.

AC 800M, see Figure 2.1, is the most modern and powerful controller. It contains much
memory and is suitable for large applications. Twelve local 1/O-modules are available and
twelve communication interfaces can be added.

Figure2.1 The AC 800M controller.

AC 800C, see Figure 2.2, is a compact controller suitable for minor applications. It contains
less memory than AC800 M. An on-board 1/0 with ten digital inputs and six digital outputsis
built in. Two communication interfaces can be added.

Figure 2.2 The AC 800C controller.

AC 250, see Figure 2.3, is an older controller. It contains various CPUs and memory. Its
strength is the modularity and flexibility. It can be suited to fit the desired system
configuration.

o LLI jW

el ALY HRIAT

: oo IRHTHIR J

Figure 2.3 The AC 250 controller.

Soft Controller is a PC based controller. High real-time performance can be achieved. How
large applications it can execute depend on the PC’s internal memory.

Pr ocessor Clock Performance | RAM FLASH

type frequency indicator** memory memory
AC 800M MPC860 48 MHz 0.3ms 8 MB 2MB
AC 800C MC68332 18.432 MHz | 2.2 ms 2MB 2MB
AC 250* MC68020 16.7 MHz *Ax 2MB -

Table2.1 Technica datafor AC 800M, AC 800C and AC 250. * Example of one configuration.
** Execution time/1000 lines of program code, Boolean operations. ***No data available.

The controllers need software to work. The software consists of two parts, the basic part
called firmware and the application. The firmware is downloaded to the controller via
Ethernet or serial connections, see Figure 2.4. Firmware is a program that inserted into read-
only-memory becomes a part of a computing device. The firmware consists for example of
drivers, different protocols, hardware configurations, and runtime environment for execution
of the applications. The application created in the Control Builder is also downloaded.

m -

Firmware and
! application is
N, g downloaded

Figure 2.4 The firmware and the application is downloaded to the controller via Ethernet or aseria
connection.

The communication interfaces that can be added makes it possible for the controllers to
communicate with other units via RS232, Ethernet, SattBus, ControlNet or PROFIBUS.

In Figure 2.5 a control system is shown. There are four controllers, one AC 800M with two
communication interfaces and six local 1/0, two AC 800C with Ethernet interfaces, and one
AC 800C with Serial interface. Via PROFIBUS remote 1/O’s are connected to the AC 800M.
A PC is connected to the control system via an Ethernet connection.

Com-

g
[
i
=
| aceooc i
" i ESEl®
_— _
Bl _J];.l— | Serial
=] ac&00c
5] TS0/ 5.4
= =
2 =
o T L ey
L [
&
| acsooc
8 [i
R et
<
|
e

Figure 25 A control system with one AC 800M controller, three AC 800C controllers, remote1/O’'s
and a PC. They are connected via different communication units.

2.4 Operating system

In the controller runs the real-time operating system, pSOS. It is developed by Integrated
Systems Inc. pSOS is a modular, high-performance real-time operating system designed for
embedded systems. It is built around the pSOS+ real-time multi-tasking kernel [2].

pSOS consists of the following components (see also Figure 2.1):
pSOS+ Real-time Multitasking Kernel.

pSOS+m Multiprocessor Multitasking Kernel. Extends the pSOS+ feature set to
operate across multiple, tightly coupled or distributed processors.

pNA+ TCP/IP Network Manager. A complete TCP/IP implementation including
gateway routing, UDP (User Datagram Protocol), ARP (Address Resolution Protocol)
and ICMP (Internet Control Message Protocal).

pRPC+ Remote Procedure Call Library. Offers SUN-compatible Remote
Procedure Call (RPC) services.

pHILE+ File System Manager. Gives efficient access to mass storage devices, both
local and on a network. Includes support for CD-ROM devices, MS-DOS compatible
floppy disks and a high-speed proprietary file system.

pREPC+ ANSI C Standard Library. Provides familiar ANSI C run-time functions
suchasprintf () inthetarget environment.

10

pROBE+ Debugger. System-level debugger, and (optional) high-level debugger.
The high-level debugger executes on the host computer and works in conjunction
with the pROBE+ system-level debugger, which runs on the target system.

C, C++ interface
pSOS+ pNA+ pRPC+
pROBE+
pHILE+ pREPC+
Interrupt Drivers
Handlers

Figure 2.1 The pSOS environment

2.5 Web server in the control system

The web server code is part of the firmware and is downloaded to the controller. From aweb
browser it is possible to get information about the control system. The information can be:
configuration, connected communication interfaces, status for different communication
protocols, and downloaded firmware. It is also possible to read and change a value of an 1131
application variable. Thisis possible if the variable is declared as an access variable. Access
variables are accessible for al units on the control network. The control programs are much
more important than the web server. Therefore the web server program shall not use much
CPU resources. The web server should be small, that is, it should not require much memory,
and its priority should be low. The web server is intended to run in the controllers AC 800M
and AC 800C.

2.6 Summary

Control' ™ is ABB’s name for a family of ABB developed controllers and equipment. The

operating system pSOS runs in the controllers. A web server in Control'™ would make
supervision of controllers easier and faster. The web server code is part of the firmware. With
aweb browser information about the controller can be viewed.

11

3 Internet technologies

This chapter gives an overview over some common Internet technologies: the HTTP protocol
and URL. The HTTP protocol is the most used protocol for the World Wide Web
transactions. The URL is the way of addressing files on the Internet. A brief description of the
web server functionality is also included.

3.1 HTTP Protocol

The Hypertext Transfer Protocol (HTTP) is aset of rules for transferring files (text, images,
sound, video etc.) over a network (Internet or alocal network). The HTTP protocol uses
TCP/IP for connections between clients and servers [3].

HTTP isasimple protocol. The clients establish a TCP connection to the server, sends a
request, and reads back the server’s response. After the transfer is complete the connection
will close.

Today there are two versions of the HTTP protocol, 1.0 and 1.1. The difference between them
isthat 1.1 tries to minimize the number of TCP connections. Instead of opening and closing a
new connection for every object on aweb site (picture, sound clips) the requests are buffered
and sent together. This results in less Internet traffic and improved performance for the user.

3.1.1 Request and response

There are two types of HTTP messages: request and response. The request is sent from a
client to a server and responses are sent from server to client.
The format of aHTTP request is:

request-1line

headers (zero or nore)
<bl ank |ine>

body

The format for aHTTP responseis:

status-1ine

headers (zero or nore)
<bl ank |ine>

body

Request line
The format of the request lineis:

request request-URl HTTP-version

There are three kinds of requests. GET, HEAD, and POST. The GET request returns the
information that is identified by ther equest - URI (Uniform Resource Identifier). The
HEAD request is similar to the GET request, but only the server’s header information is
returned. Finally the POST request is used for posting email or sending in forms that can be
filled in by the user.

An example of arequest line:

GET /main.htm HITP/1.1

12

Statusline
The format of the status lineis:

HTTP-ver si on response-code response-phrase

Ther esponse- code isa3-digit numeric response code and ther esponse- phr ase isa
human-readable answer. The response codes are divided into four categories.

2xx: Success: e.g. (“HITP/1.1 200 OX")

3xx: Redirection — Further action by the user is needed

4xx: Cient Error: e.g. (“HTTP/ 1.1 404 Not found”)

5xx: Server Error: e.g. (“HTTP/1.1 503 Service tenporarily
unavai bl e”)

Headers

Both the request and the response can contain a number of header fields. The header fields
contain some additional information about the request, response and the body.

A header has the following format:

field nane: field val ue

Examples of request header fields:

From nmmail box

An Internet e-nmil address

| f-Mdified-Since: HITP-date

On the form day “,” date nonth year hh:nmmss “GJI”

Response header fields:

Date: HTTP-date
On the form day “,” date nonth year hh:nmmss “GJI”

Server: server-software
I nformati on about the server program and version

Body header fields:

Cont ent - Type: type/subtype

Specified the data type of the body, e.g text/htm, text/xnm,
i mge/gi f etc.

Content-1ength: Content-Ilength

Specifies the size in bytes of the body.

3.2 URL

The Uniform Resource Locator (URL) is the address of afile on the Internet. The address
starts with a protocol specification (e.g. http:// or ftp://), next comes the host name that
usually starts with “www” and ending with the domain (.com, .se), after that the path and
finally the file name.

http://ww. host nanme. domai n/ path/file
The host name is just a more user-friendly way of presenting the server name. Every server on

the Internet has a corresponding |P-number. In some special server called “name servers’
there are tables with the host names and the corresponding | P-number.

13

3.3 Web server

3.3.1 How doesit work?

A web server is basically a program that can respond to requests from web browsers. The
server “listens’ to a port (usualy port 80). Using HTTP aweb browser sends a request to the
server (1) see Figure 3.1. The request contains the name and location of the wanted file
(URL). The server receives the request and tries to interpret the request (2). If the web server
can find the requested file it will return it to the web browser (3) otherwise an error message
will be returned.

sl 1 [
i

| ”
_ .#OZ

S U
Figure 3.1 Request and response of aweb page.

3.3.2 Embedded web server

An embedded web server is a web server that has been designed to be included in different
kinds of small devices. In this project it is a controller, but it could also be a printer, an
industrial machine or even a dishwasher. It is an easy and well-defined way for information
access. When designing an embedded web server there are some requirements to take notice
of. First of al it has to have a small memory footprint (>100 kb is quite much). Often the
devices do not have afile system (hard drive), so it must be possible to store the web content
on ROM or to have the web pages created dynamically (created when requested).

3.4 Summary

The HTTP protocol is a simple protocol that uses TCP/IP for the connections between clients
and servers. There are two types of messages: requests and responses. A client sends a request
to a server and the server sends back aresponse. The URL is used for retrieving a specific file
over the Internet. A web server is simply a program that can respond to a request for a certain
file and send it back to the caller. A specia version of aweb server is the embedded web
server. It can be included in a device that is connected to a network. The main requirement on
an embedded web server is the memory footprint, which cannot be too large.

14

4 Markup languages and SOAP

The first modern markup language was GML, Generalized Markup Language. It was intended
to be a meta-language, a language that could be used to describe other languages, their
grammar and vocabularies. GML later became SGML, Standard Generalized Markup
Language. SGML is avery complex markup language, mostly used in large industries that
process large volumes of data.

A markup language is a set of rules that describe how atext isto be presented or worked on.
Everything in a document, except the text itself, is markup. This chapter gives a brief
overview of the most common markup languages.

41 HTML

HTML, HyperText Markup Language, is derived from SGML. HTML is one of the pillars of
the World Wide Web. It is a set of markup symbols, which inserted in a document make the
document viewable by a web browser. Unlike e.g. Word file format, HTML is not a complex
file format. Pictures and shape are for example stored in separate files. HTML stores
describing instructions about what every fragment of information is, like main heading,
tables, lists etc. It can look like this;

<ht n >
<head>
<title>Exanple</title>
</ head>
<body>
<h1>1 Header </ h1>
Here cones the body text.
<h2>1.1 A list</h2>

First elenent</|i>
<l i >Second el ement</1i>
</ ul >
</ body>
</ htni >

Some words are capsulated within “<” and “>". These are called elements or tags and are
instructions to the program, often a web browser, which is supposed to read and present the
file. A start tag is a left angle bracket “<” followed by the instruction and then a right angle
bracket “>". The end tag looks like the start tag, but the left angle bracket is preceded by a
slash “/”. The start- and end tag tell the presenting program (web browser) how to interpret
the involving characters and how to present them. HTML is not case sensitive, the body tag
can be written in many ways, <BODY >, <body> or <BoDy>. Here follows a description of
the tags used in the example.

The <ht m > tag tells the web browser that this is a HyperText-document.
The <head> tag indicates the main header.
The<ti t| e> tag writes thetitle in the title bar.

The <body> tag indicates that here starts the content of the page.

15

The <h1> ingtruction indicates that it is a header and Microsoft Internet Explorer interprets it
as Times New Roman, 24 points, bold.

The <h2> ingtruction indicates that it is a header and Microsoft Internet Explorer interprets it
as Times New Roman, 14 points, bold.

The tag means that here starts an unordered list.
For every <l i > tag anew bullet (-) is created.

The example code presented in Microsoft Internet Explorer looks like this:

1 Header

Here comes the body text

1.1 Alist

- First element
- Second element

4.1.1 Advantages and limitations

Itis easy to write HTML code and it is widely spread around the world. Other benefits are
that it exists alot of predefined tags and that all HTML documents have the same base parts.
The HTML file format is not dependent on a certain operating system or program. If using a
computer without a web browser it is still possible to read and understand a HTML document.

If the presented information is updated frequently, HTML is very limited. Instead a database
istied to a web page. The information is stored in the database and converted when a request
for the web page occurs. If aweb page includes aform, e.g. alogin form, the user-entered
data must be received and processed by the server. HTML cannot manage this, but CGI
scripts can, see Section 5.1.

42 XML

XML (eXtensible Markup Language) is subset of the SGML (Standard Generalized Markup
Language) [4]. It is designed to make it easy to send and receive structured data over the
Internet.

42.1 XML vs. HTML

In HTML both the content (the data) and the presentation of the content are described in one
document. In XML the data and the presentation have been separated into two parts. The first
part describes the data, the actual XML documents. The second part contains the presentation
of the data; the so-called “stylesheets’, see Figure 4.1

An advantage with using a separate representation is that a single XML document can be

presented in a number of ways. For example one stylesheet for printing, another for viewing
on the screen and one when using a Personal Digital Assistant, PDA (e.g. PAmPilot).

16

HTML XML with stylesheet
Data & Dat a
presentation

Pr esen-
tation

Figure4.1 XML vs. HTML

Example
This short example shows some similarities and differences between HTML and XML.
Example of HTML code for a simple table:

<TABLE BORDER=1>
<TR>
<TH>Pr oduct | D</ TH>
<TH>Descri pti on</ TH>
<TH>Pri ce</ TH>
</ TR>
<TR>
<TD>1234578- Q</ TD>
<TD>AC 800M/ TD>
<TD>$99. 99</ TD>
</ TR>
</ TABLE>

Thisis how it would look in aweb browser:

Product | D|Description|Price
1234578-Q [AC 800M $99. 99

In XML code the same thing could look like this:

<PRODUCT>
<i d>12345678- Q</ i d>
<descri pti on>AC 800M/ descri pti on>
<price>$99. 99</pri ce>

</ PRODUCT>

In aweb browser it would look like:

<PRODUCT>
<i d>12345678- Q</ i d>
<descri pti on>AC300M/ descri pti on>
<price>$99. 99</ pri ce>

</ PRODUCT>

17

As seen in the example XML has a clear advantage over HTML in describing the content of
the document, but it lacks in presentation. This is because no style sheet was used.
Style sheets will be described later in Section 4.3.

Like HTML, XML uses “tags’ for describing the content of the document. The tags are the
second major difference between HTML and XML.

As shown in the chapter about HTML, there are several different tags used when building
web sitesin HTML. But unlike HTML, where all tags are predefined, XML allows
programmers to specify their own tags. This means that XML is a meta-markup language.

4.2.2 The XML Document
The tree structure of a XML document looks like Figure 4.1 [5]:

Docunent root Prol og

Body

Epi | og

Figure4.1 XML Document

Prolog

The prolog is used to signal the beginning of XML data. It contains the XML Declaration,
Document Type Declaration, Processing Instructions (Pls) and perhaps some comments.
All parts of the prolog are optional.

XML Declaration

All XML documents should begin with an XML Declaration. In cases when the XML data
use an encoding other than UTF-8 or UTF-16, the XML Declaration must be used. UTF-8 and
UTF-16 are encoding rules that specify how characters should be coded, like ASCII or
Unicode.

In XML 1.0 the declaration consists of three parameters:

Q version Thisisrequired, and its value currently must be ‘1.0".

Q encodi ng Thisis optional, and its value must be alegal character encoding
name, such as“UTF-8", “UTF-16" or “1SO-8859-1" (Latin-1).
If this parameter is not included, UTF-8 or UTF-16 is assumed.

0 standal one Thisisoptiona, itsvaue must be “yes’ or “no”. If “yes’ isused it
means that the document itself contains all information needed for
processing and displaying.

A typical XML Declaration:

<?xm version="1.0" encodi ng="|1S0O 8859-1" standal one="yes"”?>

18

Document Type Declaration (DOCTY PE)

The Document Type Declaration (DOCTY PE) is used to link a Document Type Definition
(DTD) to a XML document. This declaration may only appear once in an XML document,
and it must follow the XML Declaration.

A declaration example:

<! DOCTYPE doc_el ement SYSTEM | ocati on >

<! DOCTYPE PRODUCT SYSTEM “http://127.0.0.1/ DTD/file.dtd” >

Document Type Definition (DTD)

The Document Type Definition is used to define the elements specified by the user.
Elements are defined using Element Type Declarations with the keyword ELEMENT. It
specifies the name and the type of the elements.

The DTD can both be internal or external. That means that all the definitions are done within
the XML document or having the definitions in a separate file.

In the example above, the tags <PRODUCT>, <i d>, <descri ption>and<price>
where used. Using DTD they will be defined like:

<! DOCTYPE PRODUCT [
<! ELEMENT id (#PCDATA) >
<! ELEMENT descri ption (#PCDATA) >
<! ELEMENT price (#PCDATA) >

1>

There are five types of elements. Any, None, Text (PCDATA), Element and Mixed.

Processing I nstructions (P1s)

A Processing Instruction contains information for the application using the XML document.
This means that the XML interpreter (parser) passes the instructions to the application.

The Pls follow the generic syntax of:

<?target .instruction...?>

For example:

<?xm - styl esheet href="nystyl e.css” type="text/css”?>

Body

The body contains the payload of the XML data. It consists of a number of components. For
example: tags, elements, and comments. The components are used to build the body tree
structure, with a single root node.

19

ROOT ELEMENT

CH LD_ELEMENT_A

CHI LD_ELEMENT_AA

CH LD_ELEMENT_AB

CHI LD_ELEMENT_B

CHI LD_ELEMENT_BA

CHI LD_ELEMENT_BB

Figure4.2 XML Body

Tags

A tag begins with a‘<’ and ends with a‘>" and between them a tag name. There are two kind
of tags, start- and end tags. The difference between them is that the end tag hasa‘/’ sign
before the tag name.

For example:
start tag <NAMVE>
end tag </ NAME>

Because of XML is case sensitive the tags <NAME> and <name> are not equivalent.

Elements
Elements are the basic unit of a XML document. In short it consist of a start tag, data and an
end tag. For example:

<NAVE>Homer Si npson</ NAMVE>

Comments
Comments in XML are written in the same way asin HTML.

<l-- This is a comment -->

Epilog

The epilog is optional and can contain some comments and/or processing instructions (PIs).
4.3 XSL
XSL (eXtensible Stylesheet Language) is alanguage for creating “ style sheets’ that describes

how the data of an XML document is to be presented to the user.

XSL consist of two parts:
- one method for transforming XML documents, XSLT
- one method for formatting XML documents, XSL-FO

431 XSLT

XSL-Transformation is away of transforming XML into something else. It could be from
XML to HTML or from one XML document into another XML document. Here will only be
discussed transformation from XML into HTML.

20

The example in Section 4.2.1 shows that XML without any style sheets do not look good. The
XML document looked like this:

<PRCDUCT>
<i d>12345678- Q</ i d>
<descri pti on>AC 800M</ descri pti on>
<price>$99. 99</ pri ce>

</ PRCDUCT>

An XSL — style sheet could be written like this:

<?xm version="1.0" ?>
<xsl : styl esheet xm ns: xsl="http://ww. w3. org/ TR W\WD- xsl " >
<xsl:tenplate match="/">
<htnm >
<body>
<tabl e border="2" bgcol or="white">
<tr>
<th>ld</th>
<t h>Descri pti on</th>
<th>Price</th>
</tr>
<xsl : for-each sel ect =" PRODUCT" >
<tr>
<t d><xsl : val ue-of select="id"/></td>
<t d><xsl : val ue-of sel ect ="description"/></td>
<t d><xsl : val ue-of select="price"/></td>
</[tr>
</ xsl : for - each>
</ tabl e>
</ body>
</ htnm >
</ xsl : tenpl at e>
</ xsl : styl esheet >

As expected it looks like this in the web browser:

Id Description| Price
12345678-Q |AC 800M ||$99.99

In this example the advantage of having to write two separate documents to accomplish the
same thing asin HTML may not be seen. But you do benefit from it.

For example: if there are several “products’ it is possible to iterate through them with the
command <xsl : f or - each and they would be displayed as shown below.

Id Description| Price
12345678-Q |AC 800M |$99.99
24682468-P |AC 800C |$49.95

21

There are a number of XSLT elements like <xsl : f or - each or <xsl : val ue- of to work

with when building style sheets. With XSL it is possible to remove, rearrange and sort XML
elements, and also make decisions about which elements to display.

Thisis the great advantage of using stylesheets, it allows a single XML document to be
displayed in many different ways.

XSLT Syntax
XSLT basicaly use the same structure as XML [6]. It includes the XML Declaration and a
Process Instruction to indicate that the document isan XSLT style sheet.

<?xm version="1.0" ?>
<xsl :styl esheet xm ns: xsl="http://ww. w3. org/ TR WD xsl ">

</ xsl : styl esheet >

For displaying the information HTML syntax is used to create a simple table with headings in
bold text (1d, Description, Price) and the data in plain text.

4.3.2 XSL-FO

XSL Formatting Objects is another way of presenting XML. While XSLT primarily was
intended for uses on the Web, XSL-FO is more focused on paper. For example it is possible
to store information on a database as XML documents and be able to display it both on the
web using XSLT and on paper with XSL-FO [5].

4.4 SOAP

The Simple Object Access Protocol (SOAP) is a protocol for exchanging information in a
distributed environment [5], for example, between computerson a LAN (Loca Area
Network) or over the Internet. The idea of SOAP isto make it possible for computers to talk
to each other, regardless of their operating system.

441 How doesit work?

A SOAP message is basically a one-way message. However, often it is used for
request/response applications. A SOAP message is based on the XML technology and uses
HTTP as the transmission protocol. By using HTTP, SOAP is afirewall-friendly application.
To be able to use SOAP, all peers (computers, servers etc) in a network need a SOAP parser.
A parser is a program that can interpret and understand the message, and be able to respond to
it. A SOAP parser can be written in different languages, e.g., Visua Basic, Java, and C++.

An interesting application of SOAP is Remote Procedure Calls (RPC). RPC is a protocol that
a program can use to request a service from a program on another computer in a network, see
Figure 4.1. The RPC uses the client/server model. The requesting program is the client and
the called program is the server. A program/programmer that uses RPC does not need to
know any network details. Thisis taken care of in a RPC runtime program, which can send
and receive calls over the network.

22

Header Fil es

‘ T

Appl i cation Application

A

v
RPC Runti ne RPC Runti nme

: T

Net wor k Transport Layer

Figure 4.1 Remote Procedure Call

4.4.2 SOAP Message
A SOAP message consists of three parts: envelope, header and body, see Figure 4.1.

SOAP Envel ope
SQAP Header

SOAP Body

Figure 4.1 SOAP Message

Envelope

The envelope defines what is in the messages, and wraps the payload (contents). Y ou can
think of it as envelops used in the regular postal mail. The envelope is a mandatory element in
a SOAP message. The envelope element is written like this:

<SQOAP- ENV: Envel ope>

</ SOO\PL EN\/ Envel ope>

Header
The header element is an optional element. It can for example include information for
authentication or user information. The header e ement looks like:

<SOAP- ENV: Header >

</ SOO\PL EN\/ Header >

Body
The body contains the payload of the SOAP message. It can contain RPC calls and replies,
error messages or other one-way messages. The body element uses the same syntax as the

other SOAP elements.
<SOAP- ENV: Body>

</ SOAP-ENV: Body>

23

4.4.3 A SOAP example

In this example two computers in a distributed system will communicate over the network
using SOAP. Computer A will ask Computer B to calculate an output with the function
Cal cSum() with the parameters | nput 1 and | nput 2. Computer B will execute the
instructions and return a value Sum The function Cal ¢ Sun) can be written in different
languages, the only requirement is that both sides can interpret the call.

The SOAP message from A to B:

<SQOAP- ENV: Envel ope>
<SQAP- ENV: Header >
<SQOAP- ENV: Body>
<m Cal cSune
<l nput 1>1. 32</ | nput 1>
<| nput 2>1. 45</ | nput 2>
</ m Cal cSune
</ SOAP- ENV: Body>
</ SCAP- ENV: Header >
</ SCAP- ENV: Envel ope>

After processing, B will return the value:

<SQAP- ENV: Envel ope>
<SQOAP- ENV: Header >
<SQAP- ENV: Body>
<m Cal cSunResponse>
<Sunwk2. 77</ Sunv
</ m Cal cSunResponse>
</ SOAP- ENV: Body>
</ SOAP- ENV: Header >
</ SOAP- ENV: Envel ope>

Notice the extra Response added to the function name.

4.5 Summary

HTML and XML/XSL are two ways of storing and presenting data. When viewing the
documents in aweb browser it is impossible to notice the difference because XML documents
are translated to HTML via XSLT. The difference liesin how the data is structured. HTML
documents contains all information needed for processing and displaying. XML documents
separates data from presentation, which makes it possible to display a single XML document
in many different ways. This makes XML a much more powerful tool, than HTML.

XML can also be used in other applications. SOAP uses XML documents for creating

firewall-friendly calls between computers and servers. SOAP is a protocol for exchanging
information on a network, regardless of the operating system.

24

5 Scripts

Script languages are simpler than ordinary programming languages like C and C++. Scripts
are used in al web pages where some kind of user input is required.

A script language is an interpreted and limited language. Interpreted because programs are
runnable directly when the program is written. The programs are treated and shown in a web
browser directly, they do not have to be compiled into machine code first. Limited sinceit is
not as powerful as ordinary programming languages.

Scripts are relatively easy to use, but there are limitations. If ordinary programming language
programs contain syntax errors, the user will be informed about these during the compilation
phase. Since a script language does not have to be compiled the user misses this information

and it is hard to see if the program is accurate.

5.1 CGI script
CGil is short for Common Gateway Interface [7].

Common — CGlI programs can be written with many languages e.g. C, C++, Java, Perl or any
other language that accepts user input, processes that input and responds with output. CGlI
works with many different types of systems, e.g. Mac, NT, Windows and UNIX.

Gateway — CGI’s premier goal is not to accomplish things on its own. CGI can be seen as a
middleman or atranslator whose job is to help more powerful resources like databases or
network applications to talk to each other.

Interface — CGl is not alanguage, nor a program. It is a standard of communication, an
interface that provides well-defined rules for creating partnership. If everyone follows the
rules of the interface, then everyone can talk to everyone.

5.1.1 Why CGI?

HTML is good at distributing pre-prepared web pages on request, but when it comes to
dynamically generated web pages HTML is very limited. A client using a web browser asks
the web server viaHTTP for a specific HTML document. The web server then sends the
requested document back to the web browser, which in turn, displays the document. The
interaction between the client and the server is extremely trivial. The server can only provide
static HTML documents that have been encoded in advance. With CGI scripts web pages can
be created on the fly.

5.1.2 Functionality

When the user requests a web page, for example by clicking on a hyperlink or entering a web
site address (URL), the server sends back the requested page. However, when a user fills out a
form on a web page and sends it to the server, it usually needs to be processed by an
application program. The web server typically passes the form information to a small
application program that processes the data and may send back a confirmation message. This
method or convention for passing data back and forth between the server and the application
is called the Common Gateway Interface (CGI). It is part of the Web's Hypertext Transfer
Protocol (HTTP). In Figure 5.1 an example shows how a form is processed.

1. The user fills out a formand sends it to the server.

2. The server executes a Cd script.
3. The CA script uses other server resources.

25

4, The CA script creates HIM. pages with dynam cally obtai ned
information (the data filled in the forn).
5. The server sends the HTM. page to the browser.

- Web browser

4 Q=
— T Qs

—2> O CGlI script
4
/2

—_—

|

Web server

it (x=0)

Database

Application |t
program

Figure 5.1 Example of how aform is processed with CGI script.

5.1.3 Common use
Some of CGI’s most common use is as part of

counters on web pages, i.e. how many hits you have on a web page.

processing forms, e.g. when a web surfer enters datainto a HTML form and sends it
to aweb administrator.

ongoing dialog between multiple clients, e.g. real time chat.

guest books on web pages.

5.1.4 Limitations

A web server can have several clients at the same time. If every one of them does something
(e.g. fillsout aform) that causes the server to run a CGl script, the load on the server becomes
very heavy. If the server has limited performance it can result in a server crash. The problem
isthat every CGI request from a user starts a new process in the server. Even if the server has
sufficient performance many parallel executing processes makes the server slower. Therefore,
CGil scripts are not suitable for embedded systems that demand compact, high performance
solutions. The web server used in this thesis uses a kind of CGI script called “GoForms’ that
does not create a new process for every request, see Section 6.2.2.

5.2 JavaScript

JavaScript was developed by Netscape and was intended to be a uniform replacement for all
different CGI languages. It was first called LiveScript, but when Netscape and the Java
developer Sun made a union, it became JavaScript [8].

5.2.1 Why JavaScript?

The problem with ordinary CGI scripts, as mentioned before, is that the load on the server can
become very heavy. The main problem is that al processing are done on the server side. If

26

some of it were done on the client side it would relieve the pressure on the server. Thisis
what JavaScript can do.

5.2.2 Functionality

When a user fills out a form on aweb page some uncomplicated processing can be made on
the client side, see Figure 5.1. Things that could be done are for instance checking that all
fieldsin aform arefilled, that the e-mail address isvalid etc. This leads to less
communication between the server and the client i.e. a reduction of the network load. The
main goal though is to reduce the load on the server.

1. The user fills out a form

2. The client side check that all fields in the formare filled
and correct.

3. The client sends it to the server.

4. The server executes a JavaScri pt.

5. The JavaScri pt uses other server resources.

6. The JavaScript creates HTM. pages with dynam cal |l y obtai ned
information (the data filled in the forn).

7. The server sends the HTM. page to the browser.

1
Web browser -

2
— Q Check

Application
program

Figure 5.1 Example of how aform is processed with JavaScript.

JavaScript uses an object-oriented model with predefined objects like math, date and string.
With these objects follows a set of functions, the string object has for example several
methods to work with the content in the string, but there also exists methods that return text
trandated to HTML code. The date object has for instance one method to automatically
update today’ s date on the web page. It is also possible to create your own objects and
functions.

The JavaScript code is a part of the HTML code, not a separate component. JavaScript is not
a strictly typed language, which means that a variable does not have to be declared as a
particular data type and that data types are automatically converted when needed.

Events are essential in JavaScript. An event occurs when the user for example clicks on a

button or moves the mouse over a hyperlink. JavaScript has certain event-handlers that handle
the occurred event, e.g. “onClick” and “onMouseOver”.

27

There isamajor problem with JavaScript and that is the different web browsers. They all treat
JavaScript differently and some of them are not able to interpret JavaScript at all. JavaScript's
can be used for checking that forms are filled out correctly. It can also be used for graphical
applications, e.g. showing fancy text in the status bar when the mouse is moved over a
hyperlink.

5.3 Summary

Script languages are easier and faster to code in than more structured and compiled languages
such as C and C++ and are ideal for programs of very limited capability. However, a script
takes longer to run than a compiled program since each instruction is being interpreted and
handled by another program first rather than by the basic instruction processor. CGI script is a
way to process data on the server side. In JavaScript on the other hand some of the processing
is done on the client side.

28

6 Web server

This chapter contains information about different web servers and a more detailed description
of the web server that is used in the implementation. A brief overview of how the ABB
Controller software is organized and where the web server is located in the source code is also
presented. The last section contains a discussion about some real-time properties and memory
handling.

6.1 Different web servers

This section contains a comparison between some of the web servers that can be found on the
Internet. The basic requirements were that it should be designed for embedded systems, have
support for CGl-script, and be compatible with the real-time operating system pSOS. Five
different servers were found:

Wind River System: Wind Web Server 2.0

Virata Corporation: EmWebServer.

Quiotix: Quiotix Embedded WebServer

- GoAhead: Software Inc., GoAhead® WebServera 2.0 and 2.1

Table 6.1 contains a comparison of the web servers according to the basic requirements and
also how much memory they use and if they are open source (if the code is accessible for the
user). Also if they support the use of storing web pages on ROM (if no file system exists) and
finally if they are freeware or not.

Embedded CGl pSO_S ROM | M emory Open Free
support | compatible | storage | footprint | source

Wind Web Server 2.0 yes yes no yes 10-60 kb no no
Virata EmWebServer yes yes yes ** 20-25 kb ** no
\C/)vtgggexr\lferrnbedded yes yes yes yes *x yes no
GoAhead "
Web Server 2.0 yes yes yes yes 50 kb yes yes
\(lgvoeﬁrg;r.a?/er 21 yes yes no yes* 60 kb yes yes

Table6.1 Different web servers, * = not fully implemented, ** = no information.

6.2 GoAhead® WebServera

The GoAhead® WebServera 2.0 was developed by GoAhead Software Inc and released in
June 1999 [9]. It has been designed for embedded systems. It has a relative small memory
footprint and is compatible with pSOS. Further more it is free and the code is open source.
This means that programmers have access to the source code, and are allowed to modify it so
it meets their needs. This is why the GoAhead Webserver was chosen in this project.

The web server also has support for other operating systems. These are Windows
95/98/NT/CE, VxWorks 5.3.1, LynxOS, UNIX and Linux. The company Innocor has ported
the version used from VxWorks to pSOS.

6.2.1 Featuresand limitations

The GoAhead® WebServera 2.0 includes the basic techniques used in the Internet world. It
has support for Active Server Page (ASP), an embedded JavaScript parser, and an in-memory
forms processing technique (CGl-script) called GoFormsa . Active Server Page is a technique
for processing scriptsin aHTML page developed by Microsoft. Furthermore it has an

29

extensible method for handling URLs. The GoAhead® WebServera 2.0 also has support for
retrieving web pages stored in ROM. A compiler isincluded in the source code and makes it
possible to build web pages and then compile them into C source code, which can be
downloaded to the system. The web server also has support for login access. Further, there is
support for HTTP/1.1, memory and stack usage tracking and support for proxy capability.
The GoAhead® WebServera 2.0 has some limitations. The ROM page retrieving
functionality is not fully implemented. The support for proxy usage and HTTP 1.1 are not
fully tested and may include some errors. ASP pages are processed in-memory. This means a
large ASP page can consume significant memory, which could slow down or even starve out
other processes in the controller. The login access support also has some limitations. There is
only asingle global password that is set by the programmer before compiling and
downloading. Also, there is no encoding/decoding of the password.

6.2.2 GoForms

The GoAhead implementation of the standard Common Gateway Interface (CGlI) is caled
GoForms. Ordinary CGI processing results in the creation of a new process for every request
to a CGl, but GoForms procedures run without creating a new process for each browser
connection. GoForms is therefore a more suitable solution for embedded systems that require
high performance solutions. The GoForms implementation results in that CGI variables are
easy to access. When aform isfilled out and its action function is called the URL can look
like this:

/ gof or i menul ayout ?node=har dwar e& t en=PM210

The action function is nenul ayout and the CGI variablesarenode andi t em node has
the value har dwar e andi t em PM210. With the function websGet Var () the value of
the CGI variables can be accessed. websGet Var () isused like this:

char *cgi Node, *cgiltem
cgi Node = (char*) websGetVar (wp, "node", "error");
cgiltem= (char*) websGetVar(wp, "itenm, "error");

In this example cgi Node getsthe value har dwar e and cgi | t em PM210. Thelast
argument is a default value, which will be returned if the CGI variable is not accessible. It is
then possible to check that the CGI variable has an appropriate value with asimple if
Statement.

if (cgiNode !'= "error"){
} ce
6.2.3 Modifications

Some modifications in the source code have been done in this thesis. The main modification
is that web pages are not stored in afile system nor using compiled pre-defined web pages
stored in ROM. Instead there are a number of template web pages. These are then
dynamically created when requested from a web browser. In Chapter 7 this will be explained
further.

Anacther modification that have been made was a bug fix, in the routine called
‘websResponse’ which, in short, sends the HTTP header and the web page to the
requesting web browser. The HTTP header included an error, the response code (see 3.1) was
not correct. The result was that web pagesin XML format could not be understood by a web
browser and be displayed correctly. Functionality for choosing what kind of content-type

30

(section 3.1) that should be used in the HTTP header, i.e.t ext/ ht m, text/xm or
i mage/ gi f was also added.

6.3 Generic web server

The software for the ABB Controller includes everything from the Control Builder program,
control application to hardware drivers. The source code is divided into two major parts; Atlas
and Omega. See Figure 6.1.

ATLAS
Handlers
. OMEGA
Drivers
Hardware

Figure 6.1 ABB Controller source code.

Atlas contains the generic parts of the source code, for example protocols for communications
(PROFIBUS, RS232). It is executed both in Control Builder and in the different controllers
(e.g. Soft Controller, AC 800M). Generic means that it is hardware independent. Atlas
communicates with the hardware through Omega. Since Atlas is generic, the interface
between Atlas and Omega is the same regardless of the underlying hardware.

Omega contains the hardware specific code, operating system and hardware drivers, e.g.,
serial communication drivers and socket routines.

The controller software, that is a part of Atlas, is the executing part in the controller. It isin
the controller software (or firmware) the web server isimplemented, see Figure 6.2.

ATLAS

Controller
Web server —_ | software

Figure 6.2 The location of the web server.

By including the web server in the controller software and using the well-defined interface
between Atlas and Omega the server becomes generic, and can be used on different
controllers without any changes.

31

6.4 Real-time propertiesand memory handling

6.4.1 Real-time properties

In the controller there are a number of parallel processes/threads. Since the controller isa
system with a single CPU unit, true parallel execution is not possible. This leads to
concurrency between the different processes. The available CPU capacity must be shared
between the processes. A control system is often a hard real-time system, which means that
all deadlines must be met otherwise the system might fail or, even worse, crash.

The web server program runs as a single separate thread with a priority that is lower than the
priority of the main control program. Thisis to guarantee that the main control program
always gets to run when needed. If the web server is running and the main program wants to
execute, a context switch occurs and changes the running process to the main program.

In pSOS the priorities lies between 0-255 (255 = highest priority).
Figure 6.1 shows an overview of some of the different threads that are executing in the
controller [10].

Highest priority

/\

Fast-loop thread

Main thread
Watch-dog
1131-Tasks
System Tasks

[
Communication threads JJ

Web server thread

idle thread
Lowest_pr iority

Figure 6.1 An overview of the threadsin the controller.

» The Fast-loop thread (also named Time Critical task) —
executes Control Applications Tasks with short intervals and time critical priority.
= TheMain thread —
executes the Scheduler for Control Application Tasks and other system generated
tasks (sockets, memory handling).
= A set of Communication Protocol threads—
executes different protocols, like TCP/IP and PPP.
= The web server thread.
» Theidlethread —
executes when no other thread is active. Its task is only to wake the Main thread up

again.

The programs are implemented in C and C++. These are not real-time programming
languages. To achieve the real-time functionality a real-time operating system (RTOS) must
be used. As discussed in Section 2.4 the operation system used in the controller has a real-
time kernel (pSOS+), which makes this possible.

32

6.4.2 Memory handling

In an embedded real -time environment correct memory handling is very important. Because
of the limited amount of memory even a minor memory leak will eventually lead to that a
program stops executing. To avoid thisit is of outmost importance to ensure that no such
leaks exigt.

The memory is divided into four parts or areas. code, data, stack and heap.

The code area consists of the compiled and linked object code. The code is never modified
during execution and is fixed in size. The data area is a static area, which holds global
variables that are stored during compilation, e.g. variables declared ‘st atic’ inaC
program. The stack areais used for parameters in function calls and also holds local variables
in blocks and functions. The stack size can often be estimated before execution. It isa
function of the maximum depth of procedure calls and the amount of memory needed by the
procedures. The stack is well behaved. It expands and contracts at one end with no wasted
size.

The heap is used as memory area for dynamic memory allocation. The running programs
create data structures during run-time that are then accessed by pointers. The heap storage
reguirement cannot be calculated in advance since dynamic alocation is usually used for data
structures like lists whose size depends on the input to the program. The heap is not well
behaved because allocation and de-allocation of data areas of different sizes can occur at any
time and at any place within the heap.

The problem with dynamic memory allocation is that the system can run out of memory
during runtime. If this happens, the system can stop running. To minimize the risk of memory
shortage it is preferable to avoid dynamic memory alocation if possible. It isin most cases
not possible to do this. It is very important that all memory that is allocated during run-timeis
de-allocated.

The basic implementation of the GoAhead® WebServera 2.0, with some modifications, needs
about 18kb of RAM for the code and static variables. Table 6.1 isa list of the different
versions and their memory requirements.

Version Memory
Basic, with no additions 18kb
JavaScript version (including pictures) 71kb
CGl-script version 48kb
Pictures 17kb

Table6.1 Different version of the web server and their memory requirements

The basic version of the web server is aversion without any web pages, so it is useless. The
JavaScript version uses a JavaScript in the start page and it includes a number of pictures. The
CGl-script version is a simpler version of the start page, which does not use any pictures.

In Section 7.3 more information about the start page can be found.

The web server thread uses 10kb of stack memory. To ensure that there is enough free
memory on the heap when performing allocations, the web server program always checksif it
is possible to allocate the requested memory.

char *nsg=new char[100];
if (msg !'= NULL){

deI ete [] nsg;

el se {

33

websHeader (wp) ;

websWite(wp, "Error: menory allocation failed");
websFoot er (wp) ;

websDone(wp, 200);

}

When trying to alocate a string of characters (char *nsg = new char[100]) and
there is not enough memory on the heap, new will return NULL and an error message will be
shown in the web browser. If the alocation went well it is very important not to forget to de-
alocate the string (del et e [] nsg;). For more information about websHeader ,
websW it e, websFoot er and websDone, see Section 7.2.

6.5 Summary

There are a number of web servers that can be found on the Internet. To be able to implement
aweb server in the ABB environment some important features were required: pSOS
compatibility, small memory footprint, and design for embedded systems. The GoAhead®
WebServera 2.0 met these requirements.

The web server code isinserted in the generic part of the ABB software caled Atlas. Thisis
done because the web server shall be used in different controllers.

The web server executes as a single thread with a priority lower than the main control
program. Thisis to ensure that the web server does not use unnecessary CPU resources.
Memory handling is also very important in an embedded system. Dynamic allocation and de-
allocation of memory must be done in a controlled way, to ensure that no memory leaks
occur.

7 Theprogram

This chapter describes the implementation of the web server program. It starts with an
overview. Then follows a discussion about the initialization of the program and a description
of the common procedures and techniques. Finally the program is described in detail.

7.1 Overview of the program

After initialization where the thread is created and started, the web server waits for a
connection. The web server listens to a socket for a HTTP-request. When a request is detected
anew socket is opened and the request is received. After deciphering the request a check is
made to seeif there are any matching URL’s. If so, the requested page (or picture) are created
and sent to the browser. Finally the socket is closed and the web server waits for a new
request. An overview is given in Figure 7.1.

Initialization
(thread start)

\ 4
VWait for connection

v

Open a socket and
deci pher request

v v v

Wb pages CGoFor m pages Pi ctures

v v v

CGet data fron CGet Cd Send t he
control l er and vari abl es from r equest ed
generate web web server and picture in hex-
pages in HTM. or generate web format.

XML and send the pages.

page. For For exanpl e:

exanpl e: start Access vari abl es

page, firmare and Et hernet.

info and

appl i cati ons.

v
C ose the
socket

Figure 7.1 Overview of the program.

35

7.2 Common techniques

7.2.1 Initialization

In the initialization phase of the program some handlers are defined. These are handlers for
different URL’s (URL handlers) and handlers for different forms (form handlers).

A handler istied to an URL. The handler is no more than an ordinary procedure. The line of
code that defines an URL is:

websUr | Handl er Defi ne("/index. htm ", NULL, O, Handler, 0);

Herethe URL /i ndex. ht m isdefined. WebsUr | Handl er Def i ne() is part of the
GoAhead web server source code. The handler is a procedure that contains if statements
which compare the incoming URL with the defined URL’s. If the URL is found the function
that is supposed to handle that URL is called.

if (gstrcnp(url, "/index.htm") == 0) {
i ndexPage(wp, "index.htm");
}

The function that handles a call with /i ndex. ht ml isi ndexPage() .
Form handlers are defined with the GoAhead function websFor nDef i ne() .

websFor mDef i ne("accVar Forni', accVar Forn;

In the example above the function accVar For mis defined as a form handler. The reason
why websFor mDef i ne() hastwo parametersis that both the name as a string (first
argument) and the function it self (second argument) is needed. The HTML tag <form>
creates aform.

<form acti on=\"/gof orm accVvVar Forml ">

The action argument declares the function that should process the form when it is filled out.
The different form handler names and form handler functions are stored in atable, see Table
7.1. Thistable is needed when aform is filled out and the corresponding handle function
should be found. The GoAhead web server contains a technique to treat forms. This technique
is called GoForms, see Section 6.2.2.

Form handler | Form handler

name function
accVarForm accVarForm()
serialForm serialForm()

Table7.1 The handlers are stored in atable

After defining the handlers the thread is created and started. This is done with calls to pSOS
functions:

36

rc =t _create("tWW, 10, 10000, 10000, T LOCAL | T_NOFPU,
&id);

rc =t _start(tid, T_SUPV | T_PREEMPT | T_TSLICE | T_NOASR |
T ISR, webserver _main, args);

Theargumentsint _creat e() are: task name, task priority, task supervisor stack size, task
user stack size, task attributes and task identifier andint _start () : task identifier, initial

task mode, task address and startup task arguments. The task address is here the function
webserver nai n() and thisiswhere the program waits for a connection [11].

7.2.2 Generating and sending web pages

The method used for generating web pages is based upon a string that is extended piece by
piece. The C standard function st r cat () is used to append pieces to the string.

char *strcat(char *strDestination, const char *strSource);

It isused like this:

char *nsg=new char[50] ;

strcpy(msg, "");
strcat (nsg, "<HTM.><HEAD><TI TLE>");

Here the string ns g is filled with <HTML><HEAD><TI TLE>. Depending on what is to be
displayed different things are appended. If, e.g., atable should be displayed the next line
would be

strcat (nsg, "<TABLE>");.

The example in Section 4.1 is created like this;

char *nsg=new char[500];

strcpy(msg, "");

strcat (msg, "<HTM.><HEAD><TI TLE>Exanpl e</titl e></head>");
strcat (nsg, "<body><hl>4Header</hl>Here cones the body text.");
strcat(msg, "<h2>4.1 A list</h2>First elenent</1i>");
strcat (nmsg, "Second el enent</|i></body></htm >");

Itishard to seeif the HTML code is correct using this compact way of writing. The page
creation is not very generic either. Therefore a set of help functions is implemented. These
functions can bee viewed as a HTML generator and an XML generator. The function
structures are the same, text and tags are appended to the string and the string is returned.
Before any characters are appended to the string a memory check is performed, by calling
CheckLengt h() , to check that it is enough space in the string to append the characters. If
there are not enough space left, CheckLengt h() allocates space for 500 more characters.
Below the functions are shown. The strings that are returned are printed below each function.
Some of the functions are custom-made for one special task in the program, others are more
general. Therefore, some functions are quite large with a number of input arguments.

HTML
The NewPage() function creates a new page by appending <HTML>, <BODY> and
BGCOLORtagsto the string * pst r.
char* NewPage(char *pstr, char *Col or);
/ | <HTML><BODY><BCDY BGCOLOR="Col or ">

37

The NewFr amePage() function creates a new frame page with three frames.
char* NewFranePage(char *pstr, char *Title, char *logo, char
*| eft, char *right);
[| <HTML><HEAD><TI TLE>Ti t | e</ Tl TLE></ HEAD>
/ / <FRAMESET COLS="300, *">
/ | <FRAMESET ROWS="90, *" BORDER="1" FRAMEBORDER="1">
/ / <FRAME SRC="| ogo" NAME="Logo">
[/ <FRAME SRC="|eft" NAME="Left">
/| </ FRAMESET><FRAME NAME="Ri ght ">
/| </ FRAMESET></ HTM_>

The NewRow() function creates Nbr new rows.
char* NewRow(char *pstr, int Nor);
/ |

The Font () function activates the font Font with the font size Si ze.
char* Font(char *pstr, char *Font, char *Size);
/1

The Text () function adds the text Text .
char* Text(char *pstr, char *Text);
/1" Text"

The Bol dText () function addsthetext Text in bold.
char* Bol dText (char *pstr, char *Text);
/1 "Text "</ B>

The Li ne() function creates aline with a thickness determined by Si ze.
char* Line(char *pstr, char* Size);
/1 <HR S| ZE="Si ze" >

The NewTabl e() function creates a table with the color Col or .
char* NewTabl e(char *pstr, char *Col or);
/| <TABLE BORDER="1" CELLPADDI NG="1" BGCOLOR="Col or">

The NewAl i gnedTabl e() function creates a table with the color Col or and with the
alignment Al i gn.
char* NewAl i gnedTabl e(char *pstr, char *Col or, char *Align);
/| <TABLE BORDER="1" CELLSPACI NG="1"
// BGCOLOR="Col or" ALI G\="Ali gn">

The NewTabl eCol () function creates adds a new cell in atable.
char* NewTabl eCol (char *pstr);
/] <TD>

The NewAl i gnedTabl eCol () function adds a new cell in atable with the alignment
Align.
char* NewAl i gnedTabl eCol (char *pstr, char *Align);
/1 <TD ALI G\="Al i gn" >

The EndOr Tabl eCol () function ends atable column.
char* EndCOf Tabl eCol (char *pstr);
/1<l TD>

The NewTabl eRow() function creates a new row in atable.

38

char* NewTabl eRow(char *pstr);
/] <TR>

The EndOF Tabl eRow() function ends a table row.
char* EndOf Tabl eRow(char *pstr);
/1<l TR>

The NewTabl eHeadi ng() function adds a header cell to atable.
char* NewTabl eHeadi ng(char *pstr);
[l <TH>

The EndOrF Tabl eHeadi ng() function ends a table header cell.
char* EndCf Tabl eHeadi ng(char *pstr);
/1<l TH>

The EndOF Tabl e() function ends atable.
char* EndOf Tabl e(char *pstr);
/I </ TABLE>

The NewLi st () function adds alist.
char* Newli st(char *pstr);
/1 <DL COVPACT>

The GroupTi tl e() function adds a group titleto alist.
char* GoupTitle(char *pstr);
/1 <DT>

The Groupl t em() function adds a new row in alist.
char* Gouplten(char *pstr);
/1 <DD>

The EndCOf Li st () function ends alist.
char* EndOf Li st (char *pstr);
/1 </ DL>

The Cent er () function centers the whole page or a part of the page.
char* Center(char *pstr);
/ | <CENTER>

The EndOrF Cent er () function ends the center alignment.
char* EndOf Center(char *pstr);
/| </ CENTER>

The Hyper Li nk() function addsalink to Li nkFi | enane with the link text Li nkText .
char* HyperLink(char *pstr, char *LinkFil ename, char* LinkText);
/I
/1 Li nkText </ A>

The MenuHyper Li nk() function addsamenu link tocgi | t em under thecgi Node
category in the menu. It hasthe link text Li nkText .
char* MenuHyperLi nk(char *pstr, char *cgi Node, char *cgiltem
char *LinkText);
/I
/1 Li nkText </ A>

The AdvancedHyper Li nk() function addsalink to Li nkFi | ename with the link text

Li nkText . The page is displayed in the Tar get frame.
char* AdvancedHyperLi nk(char *pstr, char *LinkFil enane, char

39

*Target, char *LinkText);
/I <A HREF="Li nkFi | enane"
/| TARGET="Tar get " >"Li nkText " </ A>
The EndOrF Page() function ends the page.
char* EndOf Page(char *pstr);
/I </ BODY></ HTM_>

XML
The xm Decl at at i on() function generates the XML declaration.
char* xm Decl aration(char *str);
[/ <?xm version='1.0" ?>

The St yl esheet ToUse() function adds the xd stylesheet located in filefi | e.
char* Styl esheet ToUse(char *str, char *file);
[/ <?xm -styl esheet type="text/xsl" href="file" ?>

The St art Tag() function addsthe start tag t ag.
char* StartTag(char *str, char *tag);
/] Start tag: "<tag>"

The EndTag() function addstheendtagt ag.
char* EndTag(char *str, char *tag);
/1 End tag: "</tag>"

The Enpt yTag() function adds an empty tag t ag.
char* EnptyTag(char *str, char *tag);
/1 Enpty tag; "<tag />"

The NewEl enment () function adds the element cont between the start and endtag t ag.
char* NewEl enent (char *str, char *tag, char *cont);
/1 Element: "<tag>cont</tag>"

TheAttri bute() function addsatagt ag with the element nane. The value of the

dement isval ue.
char* Attribute(char *str, char *tag, char *nane, char *val ue);
/1 Attribute: "<tag name='val ue'/>"

The Comrment () function adds the comment t ext .
char* Comment (char *str, char *text);
/1 Comrent: "<l-- text -->"

The DOCTYPE() function definesthe document type with el enent , par amand

| ocat i on. If using external DTD files, par ammust be'SYSTEM' or 'PUBLIC'.
char* DOCTYPE(char *str, char *el enent, char *param char
*| ocation);
/1 <! DOCTYPE el enent param | ocation >

The DTD_st art () function indicates the start of the internal DOCTY PE definition.
char* DID start(char *str, char *el ement);
/1 <! DOCTYPE el ement [

The DTD_end() function ends the internal DOCTY PE definition.
char* DID end(char *str);
/11]>

The PI () function indicates a processing instruction.
char* Pl (char *str, char *target, char *instr);
/] <?target instr ?>

40

XSL

The NewsSt yl esheet () function declares the start of a xsl document.
char* NewStyl esheet (char *str);
/] <xsl:styl esheet xmns:xsl=
/1" http://ww. w3. org/ TR VD xsl| " >"

The EndOF St yl esheet () function ends an xsl document.
char* EndOf Styl esheet (char *str);
/1<l xsl:styl esheet >

The NewTenpl at e() function adds a new template with the text t ext .
char* NewTenpl ate(char *str, char *text);
[1<xsl:tenplate text>

The EndOf Tenpl at e() function ends a template.
char* EndCf Tenpl at e(char *str);
/1<l xsl:tenpl at e>

The Val uef () function adds the value of the attribute at t r .
char* ValueO(char *str, char *attr);
/] <xsl:val ue-of select="attr"/>

The NewFor Each() function iterates through every element of type el enent .
char* NewFor Each(char *str, char *el enent);
//<xsl:for-each select="el enent"/>

The EndOf For Each() function ends the iteration.
char* EndOf For Each(char *str);
/] <xsl: for-each>

When the string isfilled it is sent to the browser. This is done with the GoAhead function
websW it e() . Some pages are quite large and websW i t e() cannot write too many
characters at one time. Therefore, when the string is filled with around 300 characters the
string is sent. Then the string is reset. Thisis simply done by copying an empty string to the
message string.

websWite(wp, nsg);
strcpy(nsg, "");

Then the string can be filled again. Before the page can be sent some initial protocol specific
instructions must be sent. This is done with the GoAhead function websHeader () . In
Section 3.1 these instructions are described. When the entire page is sent websDone() must
be called. websDone() finishesthe communication and closes the socket.

In Figure 7.1 the page creation and sending are shown. First comes the initialization part
where the message string (msg) is declared and memory is allocated. The setup function,
websHeader () , isaso called. Then comes the part where the actual page is sent. First the
string is reset then the string isfilled and at last sent. This is repeated until the whole page is
sent. Finally comes the part where websDone() is called and the allocated memory for the
string (s Q) is deallocated.

41

nmsg

Erop——

g {8
R

Figure 7.1 Page creating and sending.

7.3 Start page

The start page is intended to have the same tree structure as in the Control Builder (Figure
2.1). By using a well-known interface the web server becomes a user-friendly tool.
In the tree structure there are four main categories.

= Access Variables
= Hardware

= Applications

= Miscellaneous

The Access Variables category contains the names of the different access variables in the
controller and a hyperlink to a web page with more details about the variables, see Section
7.4.

The Hardware category contains the different hardware units that are present in the controller.
Their position and information about their firmware are also presented, see Section 7.5.
The Applications category contains the names of the 1131 applications that have been
downloaded to the controller and a hyperlink to aweb page with more details about the
applications, see Section 7.6.

The Miscellaneous category contains information about heap memory usage and a log file
containing various information, see Section 7.7.

The start page aso includes an ABB-logo and information about the type of controller, the
version and the manufacturers name. In Figure 7.1 the layout of the start page is shown. It
consists of three frames, the logoFrame in which an ABB-logo is placed, the treeFrame in
which the tree structure is located, and the rightFrame where various information about the
controller is shown.

42

=101 x|

Fim Fdé ‘%es Faeadss Toole Heip

- _ ﬂ I B _ﬂ'\-ul-d‘h .Flix\.ﬂm excay _\:l- "’ E.-- i

tickdemor [] HiGa Lhaad Welnier s tiraarerpt krad born, hind =]
| ogoFr ane
treeFrane ri ght Franme
] oews B Lol e,

Figure 7.1 The framesin the start page.

There are two versions of the start page. They are based on two different techniques,
JavaScript and GoForms. The reason for having two versions is to show different ways of
displaying the information. The JavaScript version is used to get a tree-structure that is very
similar to the project tree in Control Builder. The GoForms version is used for retrieving
information with a small memory usage.

The advantage of using a JavaScript is that once the script and the pictures has been sent to
the browser no communication with the server is needed, i.e., no unnecessary load on the
controller. Another advantage is the similarity with Control Builder. The disadvantage is that
it requires more memory than the GoForms version because it includes a number of small
pictures that has to be stored in the controller and the amount of information can be largein a
complex control system.

The advantage of using GoForms is that it requires less memory and it only sends the
requested information. The drawbacks of using GoForms are that every time the tree is
explored arequest is sent to the web server and that the interface is not so user-friendly.

Advantages Disadvantages
Only generated and sent once, no
unnecessary load on the web server Memory requirements for code and

eSS and controller. A nice user interface, | pictures.

very similar to Control Builder.

Generates and sends every time the
GoForms | Small memory requirements. tree is explored. Does not have the
same user-friendly interface.

Table7.1 JavaScript vs. GoForms start page.

7.3.1 JavaScript version

This web page is based on a JavaScript called “OmenTree” [12]. It is free and can be
downloaded from the Internet. OmenTree is flexible, easy to use and well suited for
dynamically generated web pages. The JavaScript is stored and created in C-source code in
the web server program. This JavaScript does only execute in the browser and not as a script
described in Section 5.2.

43

The script contains a number of functions, the main functions are: dr awTr ee(),

dr awBr anch() and | oadDat a() . The JavaScript creates the three frames on the web
page (Figure 7.1), and when this is done the function st ar t () is called. This function calls
| oadDat a() and dr awTr ee().

The function | oadDat a() isdivided into three sections.

= The tree structure.
= User defined variables.
= Additional HTML code.

The tree structure is where the content of the tree is defined. It is dynamically created when a
request to the server is done. By calling four different functions the information in the folders
(Access Variables, Hardware, Applications, and Miscellaneous) are added to the tree. These
C-functions are get AccVar (), get HWUni t s() , get Appl i cati on(), and

get M scNodes() and they are responsible for checking the controller for access variables,
hardware modules, applications and miscellaneous information. These functions are only
called once, when the JavaScript is generated in the controller. The user-defined variables are
some default parameters, like def aul t Li nkl con and def aul t Tar get Fr ane. Finaly
there is some additional HTML code, which include information about the product, version,
and information about the vendor.

The JavaScript function dr awTr ee() initiates the web page (sets background colour, font
etc.) and after that calls the function dr awBr anch() . The function dr awBr anch() isthe
main function of the script. This recursive function draws the tree with its folders and
branches.

| Address @ http:ff172.16.85.63/java

AL HDED
FRIPID

Product - AC 800C
Yersion : 2.2/0b2-6
ABB Autornation Products AR

[B Cantraller

H-5 Access Wariables
Hardware
Applications
Mizcelaneous

Figure 7.1 An example of the JavaScript version.

The pictures used in the tree are of gif format and 19x16 pixelsin size. They each use about
900 bytes of memory. Because the system (controller and operating system) does not have a
file system (hard drive) the pictures cannot be downloaded as they are. Instead they must be
converted into C source code that can be compiled and downloaded to the controller. The
pictures are converted into hex-code and stored in a character array in a header file. For
example the picture “cpu.gif” takes 906 bytesin size:

char cpu[906] ={0x47, 0x49, 0x46, 0x38, 0x37, 0x61, 0x13, 0x00,
0x10, 0x00, OxF7, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
0x00, 0x00, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80,

Because the coded pictures might include the ‘null-character’ sign the function
websW it e() cannot beused. Thisis dueto that websW i t e() usesstring-related C-

functions and this will lead to that the picture will not be sent correctly. Instead the system
function send() isused. The ABB logo is also coded in the same way and the amount of

memory required is about 1300 bytes.

The JavaScript is only generated once, which means that all information in the tree (all sub

trees) is sent. If the controller includes a large number of access variables and applications the
amount of code can become very large.

7.3.2 GoFormsversion

The second version of the start page is based on GoForms (Section 6.2.2). Even if the user
does not fill out aform, this technique is suitable for interaction with the web server. The
different categories in the tree structure (Access Variables, Hardware, Applications, and
Miscellaneous) are in fact hyperlinks with two CGl-variables. By using this technique it is
possible to create a tree that can be expanded. The two CGl-variablesarenode andi t em
The variable node is used to determine which category that has been selected (Access
Variables, Hardware, Application or Miscellaneous) and i t emto determine which
subcategory to expand (e.g. hardware units). When alink in the tree is clicked the page is
rebuilt in the web server and updated in the browser.

When the start page is requested the corresponding C-function, nrenyLayout () , retrieves
the two CGl-variables and then proceeds to generate the page. If the CGl-variable node
corresponds to “accvar” the Access Variables branch is requested. The function

NanmesOf AccVar () iscaledto get the access variables. If node corresponds to
“hardware’ the different hardware units are retrieved with the function get HWvbdul es() .
If node corresponds to “applications’ the application names are retrieved with

NanmesOf Appl i cati on() . Finaly if node correspondsto “misc” the function

get M scNodes() iscaled.

| Address @ http:ff172.16.55.63/cqi

AL HIDED
FRIPID

Product : AC 300C
Yersion : 2. 2/062-6
ABB Autormation Products AB

Access Warables
Hardware

Applications

kizcelaneous

Figure 7.1 An example of the GoForms version.

45

7.4 Accessvariables

This section describes the methods for retrieving information about the access variables in the
controller. If the plus sign next to “Access Variables’ is clicked the tree expands, see Figure
7.1. The present access variables in this example are “ selected”, “onling”, “frequency” and
“initValue’. If more information is desired the hyperlink “More information” can be clicked.

[By Contraller

E-5§ Acoess Warables
b zelected

----- aline

----- frequency

= inifly alLie

‘[More information
- [] Hardware

- & Applications

EEI--- Mizcelaneous

=1

Figure 7.1 Accessvariables sub tree.

7.4.1 Implementation

In the file “accVar.c” there are three functions, NanesOf AccVvar (), get AccVar () and
AccVar Form() .

The function Names Of AccVar () isused in the Goforms-version of the start page. It takes
the string that is to be filled with the HTML-code as an in-parameter. The function goes
through the list of access variables and adds HTML tags and the names of the access variables
to the string. It goes through the list with a system object called pVar Accessltem Itis
through this object the names are accessible. In the end the string is returned.

The function get AccVar () iscalled from the JavaScript version of the start page. This
function also goes through the list of access variables, but does not add pieces to a string.
Instead it uses websW i t e() directly and sends the names to the calling browser.

These two functions only bring out the names of the access variables, no more detailed
information. If the user clicks the hyperlink “More information” thisis done and

AccVar For m() isused. If the hyperlink is clicked a new page will appear in the right frame
in the browser see Figure 7.1.

| Mame |Typei\.falue!\|l|friteahle! MewYalue
|selected iEh:u:uI lEI iYes on 0K
||:|nline iEh:u:uI |1 !Yes Inn i ogp i
| g e -
frequenc_l,llDInt !EEIEIEI iYes
inityalue |Bool |1 Ma
Subirmit!
Feset

Figure 7.1 The access variables web page.

46

For every access variable their type, value and if the value can be changed (writeable) is
shown. If the value can be changed the most right column is aso filled. Depending on the
variables type that column looks differently. If it e.g., is a variable of boolean type a
radiobutton is shown and if it is of integer type atextfield is shown. If the user changes a
value and presses the submit button the AccVar For () function will be called again. The

AccVar For m() function has the following structure:

1. Get the first access variable and create a string.
2. Check if the variable has been changed.
3. If it is changed, update.
4. Retrieve the nane, type, value and if it is witeable.
5. Append this information to the string.
6. If there exists nore access variables, get next. Go to 2.
7. Send the string to the browser and call websDone().

Since it is possible to change the values of the access variables AccVar For m() must be
able to obtain the new values. GoForms is used to do this. The CGlI variables have the same
name as the access variables in order to be able to check weather they have been changed or
not. If avalue of an access variable is changed the new value is written to the controller.

7.5 Hardware

This section describes the methods to retrieve information about the different hardware units
or modules that are present in the controller and how it is used by the program. By clicking on
the “Hardware” folder the tree will expand and the result may look like Figure 7.1. Each
hardware unit is a subfolder that can be expanded further for more information. In front of the
hardware unit name there is a number (0-2 for AC 800C), which corresponds to the position
of the module on the controller board.

[y Cartraller

H-S§ Access Wariables
=8 [T Hardware
-5 0 PM210
&-E3 101271
o-E 200272
e Communication Interface Ethernet

b B Firnware
- E] Applications
& E)] Miscellaneous

Figure 7.1 Hardware sub tree.

7.5.1 Implementation

In the C-file “Hardware.c” there are two functions. get HAWWbdul es () and
get HAUNi t s() . These functions are used to retrieve information and create code for the
start pages.

The function get HWMbdul es() isused in the GoForms-version of start page. Figure 7.1
shows the calling sequence. First (1) the function nenyLayout () iscaled, thisis done

when arequest for the start pages occurs. If hardware is requested the function
get HWVbdul es() (2) is called, it takes a character string as an in-parameter. It will in turn
cal get Modul eTypes() (3) that retrieves the modules and store them in alocal array,

47

Modul eTypes[] (4). After that the HTML-code is generated in get HWWbdul es() (5)
and then returned to nenyLayout () (6) and finally the function WebsW i t e() (7) is
caled.

1
A4 2 3
nmenyLayout ’ et HWWbdul es —» get Modul eTypes
yLayout () g () g . ypes()
6 A !
5 i P4
; | v
Modul eTypes[]
v
WebsWite()

Figure 7.1 The getHWModules() function.

The function get HAUNi t s() used in the JavaScript version of the start page worksin a
similar way. The calling sequence for the JavaScript is shown in Figure 7.2. When a request
for the start page occurs the function JavaPage() (1) iscaled. It calls the function

get HAWUNi t s() (2) which cals get Modul eTypes() (3) (the same function asin the
GoForms version). The JavaScript code is generated in get HAUNi t s() and sent with the
functionwebsW i t e() (4).

get HAUNi t s() —» get Modul eTypes()

JavaPage ()

v

Modul eTypes[]

WebsWite()

Figure 7.2 The getHWUnits() function

The information that can be retrieved from get Modul eTypes() isonly amodule id
number and its position. With a function called Modul eTypeToSt ri g() itispossible to

convert the id number to areadable string (e.g. PM210, CI272). This is the amount of
information that is possible to get from the system. But in the functions get HAUni t s() and

get HWWbdul es() there are methods to generate more information. Because the modules
physical layout never changes, it is possible to append more information to the module name.

48

For example a Cl271-module (serial communication) always have two com-ports, and a
Cl272-module (Ethernet) always have one com-port. To every module extrainformation is
appended containing an explaining text and which hardware it has. In some cases where more
information can be obtained a hyperlink to another page is also appended, for example
Ethernet status see Figure 7.1. Under the “Hardware” folder in the tree thereis aso a
hyperlink called “Firmware”. If thislink is pressed a new page will appear in the right frame,
with information about the modules and the downloaded firmware.

7.5.2 Firmware

By clicking on the “Firmware” hyperlink in the “Hardware” folder (Figure 7.1) a new page
will appear in the right frame in the browser see Figure 7.1.

IModule | Firmware Date || Version |Major |Minor||Subversion |Working Version |Upgradeable
|lPmM210 |Fw210 2001-09-20(0.43.13.6| - : : - Yes
IPm210 JOMEGA 2001-09-17]1.1.13.10/ - - - - No
|PM210 |HW Config [1999-09-06 (1.4 1 4 . - No
lci271 |ci271 1999-12-17/1.0.4.0 1 0 4 - Yes
lci272 |FwepPucIE [2000-01-2011.1.0.0 : : : : Yes

Figure 7.1 Thefirmware web page.

In the C-file “Firmware.c” there are two functions f i r mvar eXM_() and

firmnavar eXSL() . When areguest for the firmware page occurs the function

firmnvar eXM.() iscalled. Thisfunctioninturn calls get Modul eTypes() (Figure7.1)
and the system function Get Al | Fi r mwar ei nf os() which returns the firmware for all

modules on the controller. Further it will create and send a XML page. The XML document
can look like this:

<?xm version="1.0" ?>
<?xm -styl esheet type="text/xsl" href="firnmnare. xsl"?>
<Fi r mnar el nf o>
<Fi r mnar e>
<Mbdul e>PM210</ Modul e>
<Fi r mnar e>FW210</ Fi r mnar e>
<Dat €>2001- 09- 20</ Dat e>
<Ver si on>0. 43. 13. 6</ Ver si on>
<Maj or >- </ Maj or >
<M nor >- </ M nor >
<Subver si on>- </ Subver si on>
<Wor ki ngVer si on>- </ Wor ki ngVer si on>
<Upgr ade>Yes</ Upgr ade>
</ Fi r mnar e>
<Fi r nwar e>
<Mbdul e>PM210</ Modul e>
<Fi r mnar e>OVEGA</ Fi r mnar e>
<Dat €>2001- 09- 17</ Dat e>
<Versi on>1. 1. 13. 10</ Ver si on>
<Maj or >- </ Mpj or >
<M nor >- </ M nor >
<Subver si on>- </ Subver si on>
<Wor ki ngVer si on>- </ Wor ki ngVer si on>
<Upgr ade>No</ Upgr ade>
</ Fi r mnar e>
<Fi r nwar e>
<Mbdul e>Cl 272</ Modul e>
<Fi r mnwar e>FWCPUCI E</ Fi r nwar e>

49

<Dat €>2000- 01- 20</ Dat e>

<Ver si on>1. 1. 0. O</ Ver si on>

<Maj or >- </ Maj or >

<M nor >- </ M nor >

<Subver si on>- </ Subver si on>

<Wor ki ngVer si on>- </ Wr ki ngVer si on>
<Upgr ade>Yes</ Upgr ade>

</ Fi r mnar e>
</ Fi r mnar el nf o>

The XML documents root element is called “Firmwarelnfo” and it includes a number of
“Firmware” elements, which in turn includes nine information elements (Module, Firmware,
Date etc.). As seen in Figure 7.1 each row in the table corresponds to a “ Firmware” element.

In the xml-stylesheet definition (second row) the xdl-stylesheet “firmware.xd” is defined. The
browser will automatically request this page from the server. When this page is requested the
server will call the function f i r mwvar e XSL() . This function creates a XSLT document for

transforming the XML-page into a viewable web page (Figure 7.1).

The XSLT document looks like this:

<?xm version="1.0" ?>
<xsl :styl esheet xm ns: xsl="http://ww. w3. org/ TR WD xsl ">
<xsl:tenplate match="/">

<HTM_>
<HEAD>

<STYLE TYPE="text/css">

TABLE {font-famly: M5 Sans Serif }
TH, TD {font-si ze: 8pt}

</ STYLE>

</ HEAD>

<BODY BGCOLOR="whi te">
<h3>Fi rmwar e | nf or mati on</ h3>
<TABLE BORDER="1" CELLSPACI NG="1" BGCOLOR="#99CCFF" >

<TR>

</ TR>

<TH>Modul e</ TH>

<TH>Fi r mnar e</ TH>
<TH>Dat e</ TH>

<TH>Ver si on</ TH>

<TH>Maj or </ TH>

<TH>M nor </ TH>
<TH>Subver si on</ TH>
<TH>Wor ki ng Ver si on</ TH>
<TH>Upgr adeabl e</ TH>

<xsl :for-each sel ect="Fi rmnar el nf o/ Fi r mnar e" >

<TR>

</ TR>

</ xsl:

</ TABLE>
</ BODY>

<TD><xsl : val ue- of sel ect =" Modul e"/ ></ TD>
<TD><xsl : val ue- of sel ect="Fi r mnar e"/ ></ TD>
<TD><xsl : val ue-of sel ect="Date"/></ TD>

<TD><xsl : val ue- of sel ect ="Version"/></TD>
<TD><xsl : val ue- of sel ect ="Mj or"/></TD>

<TD><xsl : val ue- of sel ect="M nor"/ ></ TD>

<TD><xsl : val ue- of sel ect =" Subversi on"/></ TD>
<TD><xsl : val ue- of sel ect =" Wr ki ngVer si on"/ ></ TD>
<TD><xsl : val ue- of sel ect =" Upgr ade"/ ></ TD>

f or - each>

50

</ HTM.>
</ xsl:tenpl at e>
</ xsl : styl esheet >

This document converts the root element “Firmwarelnfo” to atable (Figure 7.1). The first row
in the table is constructed with header cells (<TH>) and then the other rows are generated.
Thisisdone with thetag <xsl : for - each sel ect =" Fi r mnar el nf o/ Fi r mnvar e" >,
which iterates through the root element and for each “Firmware” element it creates a new
table row (<TR>). To extract the data from the different elements (Module, Firmware etc.) the
tag <xsl : val ue- of sel ect=""/ > isused. Thetag <TD> creates a hew table cell.

When creating these pages the functions in the HTML- and XML generators are used. The
XSLT page is a static page, while the XML page is dynamic. This means that it is atemplate
page and filled according to the firmware that has been downloaded to the controller.

7.5.3 Ethernet

In Figure 7.1 the module “ Cl272" has been expanded and an information text shows that it is
an “Ethernet module”, how many com-ports it has and also a* Status” hyperlink. When
clicking on the hyperlink a new page will appear in the right frame, Figure 7.1. The
information that is available is status for the Ethernet channel, for example number of
transmitted packets and missed packets.

|Status [Active
|Transmitted packet | 182
|T>< packet status | 1
|Free Receive Buffers L
|Free Tranzmit Buffers | G
\Received broadcasts [TCPAP) 111100
|Heiected broadzasts due to not wanted IF'-t_I,Ipe| 247
|Heceived packetz [TCFAR] | 19
|F|eieu:te-:| packets due to not wanted [P-type]
iHeceived packetz [05]]]
|Heiected due to 051-channel not open 912

|Heiected due to ieeeB02.3 length emraor

iMissed packet
lror o

Figure 7.1 The Ethernet status page

|

|

|
|Rejected due to LSAP mismatch | 1]

|

[

it = =

This page uses the GoForms functionality to be able to tell the function et her net XM_()
which position on the controller the module has (for AC 800C these are 1 or 2). The page
uses XML and XSL documents. The function et her net XM_() isresponsible for retrieving
the different status information from the system and creating the XML page. Before creating
the XML document an error code from the system is checked, if an error occurred a web page
with the message: "Error when trying to obtain Ethernet status" will be sent to the browser. If
there did not occur any errors an XML page will be generated.

Example of the Ethernet XML code:

<?xm version="1.0" ?>
<?xm - styl esheet type="text/xsl" href="../ethernet.xsl"?>
<Et her net | nf o>

<I nf 0>

51

<Text >St at us</ Text >
<Val ue>Act i ve</ Val ue>

</ | nf o>

<| nf o>
<Text >Transni tted packet </ Text >
<Val ue>182</ Val ue>

</ | nf o>

<| nf 0>
<Text >TX packet status</ Text >
<Val ue>1</ Val ue>

</ | nf o>

<| nf 0>
<Text >Fr ee Recei ve Buffers</ Text>
<Val ue>18</ Val ue>

</ | nf o>

</ | nf o>
<| nf o>
<Text >Recei ve Buffers Exhaust ed</ Text >
<Val ue>0</ Val ue>
</ | nf o>
</ Et her net | nf o>

The XSL document used is called *ethernet.xsl’ and corresponds with the function
et her net XSL() . This function creates a style sheet that look like this:

<?xm version="1. 0" ?>
<xsl : styl esheet xm ns: xsl ="http://ww. w3. org/ TR WD xsl ">
<xsl:tenplate match="/">

<HTM.>
<HEAD>
<STYLE TYPE="text/css">
TABLE, | NPUT {font-famly: M Sans Serif}
TH, TD, | NPUT {font-size: 8pt}
</ STYLE>
</ HEAD>

<BODY BGCOLOR="white">

<h3>Et her net St at us</ h3>

<TABLE BORDER="1" CELLSPACI NG="1" BGCOLOR="#99CCFF" >
<xsl :for-each select=" Ethernetlnfo/lnfo">

<TR>
<TD>
<xsl :val ue-of select="Text" />
</ TD>
<TD ALI G\" Rl GHT" >
<xsl : val ue- of sel ect="Val ue" />
</ TD>
</ TR>
</ xsl : for-each>
</ TABLE>
</ BODY>
</ HTM.>

</ xsl: tenpl at e>
</ xsl : styl esheet >

52

The transformation of the Ethernet XML document works in a similar way as the
transformation of the firmware XML document (section 7.5.2). A table with header cells are
first created and then each row with an explaining text and the corresponding data.

7.6 Applications

This section describes the methods for retrieving information about the executing applications
in the controller. If the plus sign next to “Applications’ is clicked the tree expands see Figure
7.1. In this example the applications are called “ Application_1" and “Tank_Process ". If
more information is desired the hyperlink “More information” can be clicked.

Cantraller
F- 5§ Access Yarables
|I| Hardware
E- B Applications
S Application_1

; Tank_Process
ﬂ Muare information
Mizcellaneous

Figure 7.1 Application sub tree.

7.6.1 Implementation

In the file “Application.c” there are three functions, NamesOf Appl i cati on(),
CGet Application(),andappl Tabl e().

NanmesOf Appl i cati on() isusedinthe Goforms version of the start page. It takes a

string as an in-parameter. The application names are stored as strings in the controller and
these can be obtained through system calls. When the names are obtained these and HTML
tags are appended to the string. In the end the string is returned.

Get Appl i cation() isusedinthe JavaScript version of the start page. This function also
obtains the application names through system calls, but does not append these to a string.
Instead websW i t e() isused and the names are directly send to the browser.

These two functions only retrieve the names of the applications. If the user clicks the
hyperlink “More information” the function appl Tabl e() iscalled. Then anew page

appears in the right frame in the browser, see Figure 7.1.

|Applicatiun Name|Task NamEiPrimit}l|E5.n::IETime|Ey-::Iic I
|&pplication 1 [Marmal |2 |250 [t'es
\Tark_Process_ [Fast 1 50 [es

Figure 7.1 The application web page.

For every application its task connection, priority, cycle time, and cyclic are presented. Cyclic
is a boolean variable that indicates if the application executes cyclic. appl Tabl e() goes
through alist of program instances that is part of the ABB source code. For every program
instance the information (application name, task connection, priority, etc.) is sent to the
browser.

53

7.7 Miscellaneous

This section describes two methods to retrieve heap usage information and the controller log.
If the plus sign next to “Miscellaneous” is clicked the tree expands, see Figure 7.1.

B Cartraller
H-5 Access Variables
|I| Hardware
- [E] Applications
E| Mizcelaneous
i Heap information
- Contraller log

Figure 7.1 Miscellaneous sub tree.

7.7.1 Heap information

This page shows heap information, such as total heap size, used heap, and the amount of free
heap memory. It also shows the maximum heap usage since the start and since the reset. The
functions used for retrieving the heap information are Get HeapUsage() ,

Cet FreeHeapSi ze(), Reset PeakSi zeVal ue(), and Get PeakSi zeVal ues() .
These functions are a part of the ABB implemented heap functionality. Figure 7.1 shows how
the information is presented. By clicking on the button “Reset ! ” the function

Reset PeakSi zeVal ue() iscalled.

| Information: [Mbr of bits:
Total heap size: | 1932904
|Used heap size: | 498763
|Free heap size; | 1434136
|Ma:-: mernory allocated [from start]): | 433300
|h-1a:-: memory allocated [from reset]; | 438760
Options:
Presz the button to rezet the heap peak counter Rezet |
Fresz the button to zet a setpoint Setl
Fresz the button to caleulate heap uzage Calculate |
Statistics:
Current heap size: 498763
Setpoint walue [hbitz]: 498760

I1zed heap memaorny since setpaint ;

Figure 7.1 Heap information

On this page there are also atool for checking the controller program for memory leaks. If the
button “Set " is pressed, the current heap usage will be stored. After performing the
operations that should be checked for memory leaks the button “Cal cul at e” should be
pressed. The program will again check the heap usage and compare it with the stored value.
The difference between the current value and the stored value is calculated and presented.

7.7.2 Controller log

The controller log is alog file that is stored in the controller. Since the controller does not
contain any file system the log file is not afile, but an array. The array can store 16348
characters and new characters are pushed in, i.e., the oldest characters are lost when new ones
are inserted. The controller log contains all product printouts to inform about warnings or
errors. For example, if atask is aborted or if an overload in the controller occurs, then thisis
written to the controller log. If the controller crashes the controller log is a useful tool to
investigate why the crash occurred. The controller log is available after a controller crash, i.e.,
the controller log memory is not destroyed in a crash. The controller log is sent to the browser
as plain text, not as text within HTML tags. In order to make the browser understand the
received information the HTTP-header instruction Cont ent - Type issent as:

Cont ent - Type: text/plain

7.8 Summary

The method used for generating web pages is based upon a string that is extended piece by
piece. With the HTML generator and the XML generator this can be done in a more
structured way. GoForms are used to interact with the web server. Two different start pages
exist, one based on GoForms and one based on JavaScript. Four main categories are available
in the project tree: access variables, hardware, applications, and miscellaneous information.

55

8 Futuredevelopments

There are a number of possibilities to develop the web server further. More information like
CPU load or other real-time information could be displayed in the browser. The cycle time
and priority of an application could be changed via the browser.

Security isamajor part that could be investigated and developed. Perhaps a simple login form
with password would be enough, but it can also be possible to have a more advanced security
structure. If different user levels were used, the lowest levels were only alowed to read
information. The higher levels would be authorized to change the values of, e.g., access
variables. The GoAhead® Webservera 2.1 contains a structure with different user levels. If
the web server can be called through the Internet a more robust security is needed, but more
likely the web server can only be called within an intranet and then a more simple security
structure will be enough.

If different XSL style sheets could be downloaded to the controller (via Control Builder)
some interesting features occurs. With these style sheets the information could be displayed in
different ways depending on the calling system. For example one style sheet could be used in
a PDA and another in an ordinary PC. Then it is possible to present certain information in a
number of ways. The user can choose to present the information in away he wants.

Anather interesting application is the use of SOAP. For example, instead of calling each
controller separately a“gateway” controller could be used. This controller could in turn call
the other controllers on the network and retrieve the web related information using SOAP

messages.

56

9 Summary and conclusions

This project has resulted in aweb server that is intended to run in the ABB controllers AC
800M and AC 800C. It is a part of the ABB concept Control". The web server runs under the
operating system pSOS. The controllers only contain RAM and FLASH memory and lacks
file system. Therefore no web pages can be statically stored, instead the web pages must be
dynamically generated. As aresult of that a set of functions that generate HTML and XML
code have been devel oped.

A comparison between different web servers resulted in that the GoAhead web server was
used as the base web server. It is from this the further developments and adaptations to the
ABB system have been done.

When a user calls the web server a simple and easy overviewed structure of the controller
configuration is displayed in the browser. Through hyperlinks more detailed information can
be obtained.

In the report different Internet technologies like HTTP, HTML, XML, SOAP, CGlI script, and
JavaScript have been described.

57

10 User guide

This chapter contains an overview of how to use the web page. A tutorial goes trough how
information about a controller is obtained using the JavaScript version. It is an example with
one specific controller configuration, of course a controller can have many different
configurations.

10.1 Tutorial

First aweb browser must be started. In this example Microsoft Internet Explorer 5.5 have
been used. When the controller’s IP number is entered in the address bar the start page is
presented, see Figure 10.1.

2 AEB: We b server. - Microsolt Tntemet Erplocer provided by ARB =01
B e e [|
defack ~ & - @) B @ Qoeach [ifovobes FHetor Ehye o F - 5] 2
pebbizs [&] hp)172.15.55 B3ua =]

AL I 1R
i

Puooadct - L 3000
YWersion @ 220026
HHE Audomation Proclcts 58

B Cantinlier

H "-.r Arcassaiables
-] Herdware
E-B Applealior:

- E] Mizcdlarsous

#] D [B cdinran B

Figure10.1 Start page.

Information about which controller and its version is presented. In this example the controller
is“AC 800C” and the version “2.2/0b2-6". Underneath, a tree structure is shown. In the tree
there are four main parts: Access Variables, Hardware, Applications, and Miscellaneous. To
the left of these four keywords plus signs (+) are placed. If aplus sign is clicked the tree
expands and more information about the clicked category is presented. In Figure 10.2 the plus
sign next to “Access Variables’ has been clicked. Four access variables exist in the controller,
“selected”, “online”, “frequency” and “initValue’. It is only the names of the access variables
that are presented in the tree.

58

3 ABE Web server. - Microsoft Intesnat Exgplorer preovided by SEE —fO] »f
| Fle EdE ew Fovortes Took Help -
| dmak = = - 3 0 (F Diech [hraveres Frimoy Ghe ob] - 5] =

'Md'unsrﬂ:'lnm:.r.urzlaaaam_wa PO T e it e~ AL R (R T L TR = el ;I

AL 1R 1R
FREFlp

Produgh - &0 2000
Warsion @ 22TELE
ABE Autemshion Products &8

[Cantiller
B -9 Aooess vanables
Snabacted
oriins
hequency
Fifvehe
Lo Muoe inlomzion

[Harcuars
- “oplications

EEE

1 -] Misoellsrenus

) - [[EFiccdtinnenes 7
Figure 10.2 The plus sign next to Access Variables has been clicked.

If more information about the access variables is desired the link “More information” must be
clicked. In Figure 10.3 this has been done. A table containing information about the access
variables occurs in the right frame. Every access variables name, type, value and if it is
writeable are presented. If it is writeable a column there the new value can be written is
placed as the rightmost column in the table. In this example two different data types are used,
boolean (Bool) and double integer (DInt).

IR ABR Web server. - Microeoft Tntemet Esplorer provided by SR [l 1
| Fie Edb Wew Fovokes Took Help -
| dsmack - = - G} A @ hsewch SFevokes (AHeow | Bhe OF B - (2] QD
|Podvees @] bt TE GBS Y00 o =
AL IR BB Aceess Variables
raarme
Prodwct - A7 AN | Nome [Typa Value Wiitesbie | NewValue
Worson - 22 Th6 salecied |(Bool |0 BT On ot
SEE fuicration Prodoct: 58 e e
orilee Hoaol |1 A1 oot
[y Contolier ¥ e ___|r 55 (e I o
B2 g Accoseaiablas quuurlwﬁlrt !—SII:I Ter I
[wenleched wilaue [Beed 1 o
oriins §
equenzy Iz
ruffaha Reset
'~ A Muoeinlomalon M'"'""
- Hedws=
7B Anphcshiore:
- 2] Miscelsrsous
] Dme [EE Lecdintranst i

Figure 10.3 More information under Access Variables has been clicked.

59

If the variable is of type boolean aradio button is placed in the column “New Value’ and if it
isadouble integer atext field is placed there. If the user wishes to change the value, the value
must be entered and then the “ Submit” button must be pressed.

The next category is “Hardware”. When the plus sign next to that is clicked the present
hardware modules occurs under “Hardware”. A “Firmware” link is also presented. When that
link also been clicked the browser looks like Figure 10.4. The firmware information consists
of the corresponding modules firmware name, date, version and if it is upgradeable. More
advanced information like “Mgjor”, “Minor”, “Subversion” and “Working Version” are aso
presented.

/M MBI Wieh server, - Microsoft Intesmet Explocer provided by ARE

Fie Edt %ew Facorkes Tock Help

debock = = - @ 3] 3} DSeach [EiFovoker (fHetoe Ehe Sf iF] - 5] 2
fddass |-ﬁ_"| hitp:f)172.16.85. 63 aua

[X1 IE

ﬁl‘==== Firrnware Information

Prodct - A0 S0 [Moubs | Famwars | Date Vession (Majgor Minos Subyersion [oiking Verson LUpgraaanls
Wersion . 220606 o 1,5 11273 1 | [e ; . T
AHE AL oot Prockies K [FMz10 [DMEGS, 200100 11.1312] - | o
[Caniradier [PHZ10 [He Corfip 12860806114 | (| [z T N
B - Access Vaiabiss [mF joE Eeiairfiadd | 0 | ; e
P pnbeabed |[B272 |PWCAUCE (200001201100 | ; [et
criea
hequency
pitizhe
- B Mwe intomaton
=[] Hadwars
F- . DFM210
£ 10
¥ @ 20122
LA Finvsana
-E Appicetiors
53] Miscelarenus

1
1

¥
T B wcinanst ,9

Figure 10.4 The plus sign next to Hardware and the Firmware link has been clicked.

The hardware modules present in this example are “PM 210", “CI271" and “CI272". PM210
is the controller AC 800C’s CPU unit, CI271 is a serial module and CI272 is an Ethernet
module. The numbersin front of the modules (0, 1 and 2) are the modul€’ s place on the
controller. There are plus signs to the left of the modules, which indicate that there is more
information about the modules to display in the tree. In Figure 10.5 the plus signs next to
ClI271 and CI272 have been pressed. When the tree expands a more detailed explanation to
Cl271 and CI272 is shown directly below these abbreviations. ClI271 means “Communication
interface RS232" (serial) and Cl272 means “Communication interface Ethernet”. Below
“Communication interface RS232”, is written “0 Com” and “1 Com”. This means that on the
module CI271 it exists two com-ports, 0 and 1. Below “Communication interface Ethernet” is
written “0 Ethernet” which means that on the Ethernet module it exists one Ethernet
connection. Below “0 Ethernet” there is a status link. If the link is clicked information about
the Ethernet connection is displayed in the right frame, see Figure 10.5. The information
consists of Transmitted packets, Missed packets and Received broadcasts, etc.

60

:
b

F AE Wb server. - Micrsoft Inbemet Frplorer provided by smn

| Fin Bt Yer Fookes Toos Hao |
| 4mack = = - 23] o iDSewcn [GFaverss o fHoory Dhe of 7] - (5] <2

e

f
.IE
i
q
2
L«

‘hl‘l: Ethemmet Stams

|¥

Product - 40 310 ictzas [manel Wctres
Wergion - 2 2HEA Traramited packet 1323
4HE Sudomation Praducis 48 T pECLAL SEN0E 1
By Contiolier [Free Fiocemivs Bulies 18
-5 drcess Yaiabies Fiag Transmd Bullas 7
i ralactad Heaetend broadoses [TCFAR] : EE'[
+ arfire rFIqul:ud hluadumdnmnulwumule-UpuﬁﬂH
f !lmum Recakad padat: [TOFAP] 3410
H Fifahas Hejeched dus ba 051 chwvnel bok open it
e I Wi nldmalkin Flmjactur] pachslz dom In nokvadbed IPhgpm |0
E-[[Hydwse z . T
- 0FMzTD RAejeched dies o LSAP npmatch i}
-j: = 100 Fejected dus boiss=002 3 Bngh snor i}
i Cammrication Inieiace A3 212 Mizad pack ol LE
a= QCom AL =mm i}
i == 1Com Frana 2ignnant smoy n
& @ 2002 Cedksnn H
t Commurizslion Inksisss Eihemst WD Hriama m
E ':';':""""“ E i s claral o
i n Fin : :“ Defuuurl Transmizsion :1
B - Aopicaliors Ho Camer m__ | |
M-] Misoelsneous Coasrier Lot in
|Ewpmscivm Calfunn 1]
Duik ol whirdo s Colkson n
Mkt ol Packet Monioied Bad' a
LTS Sy ¥ He——r n ..'.]
] [BFiccdinans: 5

Figure 10.5 The plus signs next to Cl271 and CI272 and the status link under CI272 have been
pressed.

The next category is“Applications’. If the plus sign next to that is pressed the names of the
executing applications is presented below. The applications in this example are called
“Application_1" and “Tank_Process_". If the link “More information” is clicked, a table
appears in the right frame, see Figure 10.6. Every applications task connection, priority, cycle
time, and if it executes cyclic are presented.

BB Wab server. - Micrecoft It et Explorer providoed by &EE

B
I

!Flu Edk Wew Faeorkbes Took Help

| 4=Back - = -5 & @ GhSeach [EjFeverke (PHewee | e S] - (5] S
| fekdmes €] nicp: i} 72,1658 S3iava

1 | S1

AL ERED
Fairp Applications

o BT |Appiication Wame Task Hame | Pricntp CpcloTime Cpclio
Varsion - 2 3TEE loprdcasan_1 [Momal z L] [res
4RE Audoation Fradcls 58 [Pt [t i 50 =
B Cantioller
B Acceas Vanables
I Sl
cilire
—
ik
EY Mo iniomation

Carramarication lrdeiface Elheret
= OEih&ret

Ta_Fropsss_
i n Mo inlomaton
[Misoelarenus

=
=] [PRoctinmane

Figure 10.6 The plus sign next to Applications and “More information” have been pressed.

61

The last category is “Miscellaneous’. It has two sub categories, “Heap information” and
“Controller log”. In Figure 10.7 the “Heap information” link has been clicked and a table
containing heap data are presented in the right frame. It is possible to reset the heap peak
counter by pressing the “Reset!” button, i.e., “Max memory allocated (from reset)” is
recalculated. On this page there are also a tool for checking the controller program for
memory leaks. If the button “Set” is pressed, the current heap usage will be stored. After
performing the operations that should be checked for memory leaks the button “Cal cul ate”
should be pressed. The program will again check the heap usage and compare it with the
stored value. The difference between the current value and the stored value is calculated and

presented.
3 ABE Web server. - Microsoft Internet Explorer provided by A58 = D:lﬂl
| FAle Edt ‘Yew Faeorkes Tock Help -
+aark » = - B} {] & Dseach [EFarks FHeoy By S - S D
Sddress (8] hitp:d)172.16.55. 63w a |
nn =l
,‘.!'“", Heap Information
Prodact - A 5000 | Indmation: [Nbr af Bits-
Yarsion - 2 A6 [Tkl heege vz [197
A HE Adtomation Products &8 |L|8:Bd Feap s= | (]
[Conhioler [Fiex heop size; (=
B-"§ AccessVaiables |Miar memon llocabed hom chard]. | SRS
o e (e memory e om teesl| | TE0GES|
ariire
ey owone
i H Moeintomation Prreces the button 1o wset b heap peak counten FReaetl
LRl Had P i bullon 10 261 3 38 posnt 5al|
- 1FMZID
o s O L | Pracs thes dlon (o calculsls hesp ursos Calculals
?'EI 2C|I:2?2 R e, Ghakisbios:
= IZII:EIhemat nieloce Elheres Cunent heap zize LT |
-~ Status Salpoinl walus (bis| A3
" P Firnsars Used heap nemany since s=lpoint ©]
=-E Appicatiors
| Appdication_1
v Tak Pioeme
- Moeinlomelon
=] iscelarenus
- B Heep rlomalon
t- A Covrolerlog
=
& e [B Lo intrane A

Figure 10.7 The plus sign next to Miscellaneous and the Heap information link have been clicked.

In Figure 10.8 the “Controller log” link has been clicked and the controller log is presented in
the right frame. The controller log contains all product printouts to inform about warnings or
errors. For example, if atask is aborted or if an overload in the controller occurs, then thisis
written to the controller log. If the controller crashes the controller log is a useful tool to
investigate why the crash occurred. The controller log is available after a controller crash, i.e.,
the controller log memory is not destroyed in a crash.

62

}.’ltlu Web s=rrer. - Microsoft Intemet Explorer provided by SEB

_|FI! Edt Wew Fawwkes Tock Help

| deBack = = - G} 3] G} Dhsewch SFsurks HHeoey Bhe SO - 5] S0

l’:{‘lﬂﬁ itk g7, 16,28, Eiava

Prodact - AC 3000
Wargion - 2 20RLE

o
EAR test: Te=t RPAM DOQO0S00 - QOLFFEEC

FAM test: OO1FFARDD byces of Ral cested OF!

et P Inicialized mta L4i0004d5 Z00L-LO-15 |Local time)

[y Conliolier Sy=stap tipe guelity: 0D

{574 Arcess Wariables Cureent cime zone: ¥, Europe Darlighc Tioe
L TCPIP CONFIG
- orline
' :::,'::" Berworh Toneeface 173, 16.85.63 |255.Z8E.0.0 | ¢ O0-00-23-0a-20-1d
H 3) Toolpert IF mdrass 192, 16B.255.254 |255.265.255.0 |
'~ Moeinlomalion

= Eﬂ Hardwars
(- @ UPMZ1D
-3 1002 Feaduct @ AC BOOC PHZL1O0
[ER = Rn o Versien : £, 2/0b2-6 (Build 0.43.15.6)
' Commuricslion Inlsileszs Ethers: Created 3 2001-10-01
! == DElheret AEE Auccwartlon Prodoccs AR
i = Shalue
' - A Fimisaar= Conkbroller Re=etb

B-E Applcatiors:
V- applicalion_1 Fositiom Module Firwware Neme Tace FETI1aMn
Lo Twb Proeass o PEZ10 ruzlo 2001-10-0L 0.43.13.6
i ¥ c OME 8, 2001-10=-04 L.1.19.1%2

Mia inlomainn

B Es:dkrlcuu: BV Comtig 1209-09-06 L.4
e 1 cra7l CIzil 1299-12-L7 L.0.4.0
oA E“‘" °'| il z crefe FUCEOLIE 2000-01-20 L.1.0.0 _J
=~ Controleilog 3 No Hodule

Artual hean=iTer 1RAT FAvFE~as ——— :.I_
_;E Do | | E Local intranst e

Figure 10.8 The plus sign next to Miscellaneous and the Controller log link have been clicked.

63

11 References

[1]
[2]
3]
[4]

(5]

[6]

[7]
(8]
[9]
[10]

[11]

[12]

ABB Automation Products AB, Control Builder Beginner's handbook, October 2001.
Wind River Systems, www.windriver.com.
W. Richard Stevens, " TCP/IP lllustrated, Volume 3", Addison Wesley, July 1996.

World Wide Web Consortium, “Extensible Markup Language (XML) 1.0 (Second
Edition)”, W3C Recommendation 6 October 2000, www.w3c.org

Birbeck Mark, Jon Duckett, Oli Gauti Gudmundsson, Pete Kobak, Evan Lenz, Steve
Livingstone, Daniel Marcus, Stephen Mohr, Jonathan Pinnock, Keith Visco, Andrew
Watt, Kevin Williams, Zoran Zaev, Nikola Ozu, " Professional XML 2nd Edition”,
Wrox Press Ltd, May 2001.

World Wide Web Consortium, “XSL Transformation (XSLT) Version 1.1”, W3C
Working Draft 24 August 2001, www.w3c.org

CGlI Programming 101, www.cgi101.com
Netscape, www.netscape.com
GoAhead Software Inc, www.goahead.com.

ABB Automation Products AB, Functional Specification: Atlas Execution Model,
LACB-9912-05 (05), September 2001.

Integrated Systems Inc., pSOSystem System Calls, February 1996.

OmenSoft, omensoft.home.ml.org.

