ISSN 0280-5316
ISRN LUTFD2/TFRT--5636--SE

Sequential Paging for
Moving Mobile Users

Jonas Levin

Department of Automatic Control
Lund Institute of Technology
February 2000

Department of Automatic Control
Lund Institute of Technology

Box 118

SE-221 00 Lund Sweden

Document name

MASTER THESIS

Date of issue

February 2000

Document Number

ISRN LUTFD2/TFRT--5636--SE

Author(s)
Jonas Levin

Supervisor

Bjorn Wittenmark
Vikram Krishnamurthy

Sponsoring organization

Title and subtitle

Sequential Paging for Moving Mobile Users.

Abstract

In this thesis, some methods for efficient paging for mobile systems have been investigated. Compared to
the conventional method, the methods proposed here increase the mobile stations discovery rate while
decreasing the signaling load between the mobile switching centers and the mobile stations. As the cell
sizes shrinks, the probability that the mobile stations moves between the cells during the paging process
gets higher. These methods takes this probability into consideration and are based on the case when the
movement between the cells are described as a Markov model.
One of the algorithms is called the pqup-algorithm. This method works well under both heavy traffic and
light traffic. The main method is the POMDP-algorithm. A POMDP is a generalisation of a Markov
decision process that allows for incomplete information regarding the state of the system. The POMDP-
algorithm does not quite work yet and the method is going to be investigated further. The results so far is
presented in this thesis. The methods are fully compatible with current cellular networks and requires
small amount of computational power in the mobile switching centers.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes

English 43

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden

Fax +46 46 222 44 22

E-mail ub2@ub?2.se

Contents
1 Introduction

2 Description of the system
2.1 Tracking amobileuser 0oL
2.2 Paging

3 Algorithms

3.1 Model definition
3.2 The POMDP-algorithm

3.2.1 Rewards

3.2.2 Solving POMDP:s
3.3 The pg-algorithm
3.4 The pqup-algorithm
3.5 Estimating the g-vector

4 Numerical results
4.1 The stationary case
4.2 The moving case
4.2.1 Small location areas
4.2.2 Larger location areas
4.3 Conclusions

5 Conclusions
5.1 Future work

A Rewards

B The POMDP-file
B.1 POMDP-file specification
B.2 A POMDP-file example

C The result-files after a POMDP simulation
C.1 The alpha-file
C.2 Thepgfile.

D Abbreviations

References

30

32
32
36

38
38
38

40

41

1 Introduction

In early mobile radio systems the design objective was to achieve a large
coverage area by using a single, high powered, transmitter with an antenna
mounted on a tall tower. Although this approach did achieve a very good
coverage it also meant that it was impossible to reuse the same frequencies
throughout the system. This was because any attempt to reuse frequencies
would result in interference. Another important issue is the unnecessary high
transmitted power. It was a waste of energy for the system and it also re-
sulted in shorter lifelength for the battery of the mobile stations (MS’s).

The cellular concept was a major breakthrough in solving the problem of
spectral congestion and user capacity. This concept is a system level idea
which calls for replacing a single, high power, transmitter (large cell) with
many, low power, transmitters (small cells). Each base station (BS) is allo-
cated only a portion of the total number of channels available to the entire
system. Neighboring BS’s are assigned different groups of channels so that
the interference between the BS’s (and between the MS’s) is minimized.

A more efficient use of limited wireless resources requires much smaller cells
(microcells and picocells, described in [1]). Tracking the MS’s will become
a challenging task as the cell sizes shrink and the number of cells increases.
With the expansion of both the number of MS’s in service and the number
of services available to these users, the radio spectrum increases. In order
to make more bandwidth available for voice and data traffic we want, of
course, to reduce the signaling load between the MS’s and the BS’s. This
thesis describes some methods to reduce the signaling load associated with
paging and location area updating by deploying cellular networks with more
intelligent mobile tracking and location management techniques.

Chapter 2 gives an introduction of how a cellular system keeps tracks of the
mobile users and how it handles pagings to the mobile stations. In chapter 3
the algorithms for more efficient paging, that are investigated in this thesis,
are described. Chapter 4 contains some simulations and results from these,
when the algorithms are used for the paging process. The conclusions of this
thesis are in chapter 5.

The algorithm called the pgqup-algorithm is an algorithm that was developed
during this thesis and it’s a development from the so called pg-algorithm
that R. Rezaiifar and A.M. Makowski presents in [6]. A description of the
pg-algorithm is also included in this thesis. The pqup-algorithm improved
the results significantly, compared to the conventional method. Another al-

gorithm is called the POM D P-algorithm. POM DP'’s has been developed
by A.R. Cassandra who has done a lot of research in this area. Running
a POMDP gives the optimal solution to the given model. So far there is
some problems when running the POM DP on the paging systems. These
are described in this thesis.

I would like to take this opportunity to say thanks to my supervisor in Mel-
bourne, Dr. Vikram Krishnamurty, for helping with the research that I've
been doing for this thesis. I would also like to say thanks to my supervisor
in Lund, professor Bjorn Wittenmark, for helping me with the contacts with
the "University of Melbourne” and for helping me writing this thesis.

2 Description of the system

2.1 Tracking a mobile user

A cellular system has to keep track of the whereabouts of the MS’s within
the cellular system, in order to be able to deliver incoming calls. In practice,
the MS may inform the system of its whereabouts frequently e.g. on power
up, just before shut down, or when it crosses special boundaries known as
location areas (LA’s). An LA is simply a group of cells. Each cell has one
base station (BS) and the size of one cell is given by the coverage area of its
BS. The size of an LA or the number of cells in it varies.

Land-line connections

I VLR territory
Location Area /i/ .

Figure 2.1. Structure of the mobility management system.

Each LA has a Mobile Switching Center (MSC) to where it belongs and each
BS periodically broadcasts a unique ID number that specifies the LA/MSC
to which it belongs. The MS stores this ID in its memory and when it moves
to a new BS it compares the ID broadcasted by the new BS and compares it
with the one stored in its memory. If they are different the MS has moved
to a new location area and it has to tell the system about its new location.
The MS handles this by sending a registration message to the new BS which
in turn forwards the message to its MSC (see fig. 2.1).

The information about the MS’s location is stored in two types of databases:
Home Location Registers (HLR’s) and Visitor Location Registers (VLR's).
A VLR database is usually smaller than an HLR and isolates the small scale
movements of the MS’s. As long as an MS travels among the LA’s covered
by the same VLR, no query is necessary from the HLR because the profile
of the MS and other related information already exist in the cache. If an MS
leaves its current LA and enters another one handled by the same VLR the
MSC will inform the VLR anyway. By doing this the VLR can - given the
ID number of an MS - specify the LA where the MS resides.

2.2 Paging

In current cellular networks - when paging an MS - the final step in the call
setup procedure starts with the MSC sending a page request (PR) to all of
the BS’s, in the LA where the MS resides, in order to find the MS. However,
by monitoring the traffic pattern inside each cell in an LA we can obtain
information about the system such as probability mass function and move-
ment between cells. With this information available it thus seems to be a
waste of energy to page all the cells within the LA in order to find the MS.
For instance, a sequential search plan that starts with the cells with a higher
probability of discovery should be more efficient.

The PR’s for different MS’s arrives to the MSC in order to be processed in a
first-in first-out (FIFO) matter. Let N be the number of cells, i.e. the num-
ber of BS’s, handled by the MSC and let L be the number of paging channels
to each BS. This means that at most L MS’s can be paged simultaneously in
each cell by the MSC. The time epochs at which a PR can be sent to a BS
is refered to as a Paging Cycle (PC).

In a first approximation, the paging process is assumed to be perfect in that
if a PR is sent to the BS where the MS resides, and there are available pag-
ing channels, it is always paged successfully and discovery takes place within
that same PC.

Paging with the conventional method goes as follows. First take L PR’s from
the head of the main queue (if there are L PR’s waiting) in the MSC and send
these to each the BS’s operating under the MSC. With this method exactly
L MS’s will be discovered per PC and exactly N pagings will be done per
MS before discovery. This is a reliable method but it is a waste of system
resources. Why is demonstrated in the following example.

Ezxample 2.1
Let say we have a small LA that contains 3 cells and that we have 2 paging
channels per BS, i.e. N =3 and L = 2. Say we have 4 PR’s that are waiting
at the head of the main queue and denote these A, B, C' and D, respectively,
and say that MS A and B are in cell 1, C' is in cell 2 and D is in cell 3 (see
fig 2.2).

MSC
A,B .
SD Main queue
‘ ‘ ‘ Incoming PR’s

€“----->---
// Land-line connections
D[\ -
/

Figure 2.2. Structure of an MSC with a smart distributor.

Under the conventional algorithm, in the first PC, PR A and B are being
sent to all three cells. In the second PC PR ', and D are being sent to all
the cells.

Now let’s have a look at how an “ideal” algorithm would have worked. In
such a system we would need some kind of distributor that distributes the
PR’s among the cells. This distributor will hereafter be refered to as a smart
distributor (SD). The SD buffers the PR’s from the head of the main queue
and distributes these among the BS’s. In this case it would buffer all the 4
PR’s from the main queue, in the first PC, and send PR A and B to cell 1,
PR C to cell 2 and PR D to cell 3.

Under the conventional algorithm each MS are paged 3 times (i.e. one time
in each cell) as compared to only once in the ideal one and 2 MS’s are being
found per PC as compared to 4 in the ideal one. Of course, an ideal algorithm
would have to know the exact location of each of the MS’s so the comparison
is therefore not really fair. However, the discussion already points to the
possibility of improving the conventional paging algorithm.

3 Algorithms

As the cell sizes shrinks (e.g. microcells and picocells) the probability that
the MS is moving between the cells during the paging process, gets higher. A
good paging algorithm should take these movement probabilities into consid-
eration. This chapter describes some algorithms that can be used for paging.

3.1 Model definition

An MS i placed randomly in one of N cells at time step 1 and then, at each
time step, it moves between the IV cells according to a Markov process.

Let X = {1,2,..., N} denote a finite state set and let x; be the state of
the MS at time step k, i.e. which cell it remains in at time step k. Let
A={1,2,..., N} denote a finite action set where action i corresponds to that
cell 7 is being paged. The decision maker that performs these actions will be
refered to as the agent. Further let pi(i) denote the probability of the MS
being in cell i at time step k. By p, we mean the N-vector with element ¢
equal to pi(i) for 1 <i < N. Let P denote the transition probability matrix
i.e. an Nx/N matrix with element 5 equal to

pij = Pr(zp = jlo, =1). (3.1)

Let (i) denote the probability of being blocked in cell i i.e. the probability
that all the paging channels are occupied in cell 7 when sending a PR to cell
i. By ¢ we mean the N-vector with element i equal to ¢(i) for 1 < i < N.
Finally, let © = { found, missed, blocked} denote a finite observation set and
let 6, denote the observation at time step k. The observations are recieved
according to the known probabilities

¥y = Pr(6 = Uz = j,ai = a). (3.2)

The observation found corresponds to that the agent is not blocked and the
MS is in the cell paged. The observation missed corresponds to that the agent
is not blocked but the MS is not in the cell paged. Finally the observation
blocked simply means that the agent is blocked in this PC. Consider all
vectors to be column vectors.

3.2 The POMDP-algorithm

A partially observable Markov decision process (POMDP) is a generalization
of a Markov decision process (MDP) that allows for incomplete information
regarding the state of the system. The agent must, at each time step, choose

an action (i.e. in this case which cell to page), based only on the incomplete
information at hand. In general, when using POMDP, one of the possible
actions might be to expend resources to gather additional information about
the system. Here, we have N actions were each action results in one of three
observations. Running a POMDP for a specific model gives us the optimal
solution for that model.

The process is initiated with a known probability distribution, p;, among the
cells. Let Hy = {p1,a1,61,a2,0s, ..., a1, 01} denote this initial distribution
appended with the history of actions and messages recieved up to time k. At
the beginning of time step k, Hj contains all the information that the agent
can use to assess the state of the system. If, based on this information, the
agent chooses action ay, the following sequence of events is initiated:

1. A real-valued reward g(zy,ay) is recieved for action ay if the state of
the system is x.

2. The system transits to a new state xjy;, according to the transition
probability matrix P.

3. An observation f;, is received according to the known probabilities 75", .

4. Time increments by one, Hy,1 = HpU{ay, 01}, the agent chooses action
ap+1 and the process repeats.

The system evolves, according to the sequence outlined above, through 7' <
oo time epochs, where 7' is called the horizon. If T' < oo an additional salvage
value (1) is received at the beginning of time epoch T+ 1 if xp, = i. Let
a denote the N-vector with components a(i),1 <1i < N. A search policy is
an algorithm which specifies the sequence of cells to search. The agent seeks
a policy that maximizes the expected net present value of the time stream of
rewards occured during the process:

E{/; B gk, a) + B alzr)}, (3.3)

where 0 < g < 1is a discount factor. If T' = oo we require § < 1. When (8
is large, future rewards play a larger role in the decision process. As (3 tends
to zero, the agent seeks to maximize the reward for only the next time step
with no regard for future consequences. Simulations have shown that a § of
about 0.25! is usually good for our paging models.

Let R*(¢) denote the NxN diagonal matrix with element (j, j) equal to rf,
and let e denote an N-columnvector with a 1 in each component. Define

o(f|p,a) = p'PR*(A)e (3.4)

p'PR(6)
a(0lp,a)
Then o is the probability of obtaining observation # given distribution p and
action a and T is, by Baye’s rule, the posterior probability vector py.; given
the prior probability vector pi. Given this, then for 7' < oo, the problem

of finding a policy that maximizes (3.3) can theoretically be solved (Lovejoy
[2]) via the dynamic programming recursion

TO,p,a)= (3.5)

V(pry1) = p’T+1a
V(pk) = maxeea(prg® + B Loco 0 (0lpr, a)V(T'(0, pr,a))) k=1,...T,
(3.6)
where ¢* denotes the N-vector with components g(i,a),1 < ¢ < N. Any
policy that for each time epoch k& maps py into a maximizing argument in eq.
(3.6) will be an optimal policy. V(px) has the interpretation of the optimal
value function for the analogous problem with horizon T'— k + 1.

3.2.1 Rewards

As mentioned above, the agent seeks a policy that maximizes the stream of
rewards. There are several ways of choosing the reward but not many will
give the optimal policy. We can give the agent a reward every time it finds
the MS, or every time it gets close to the MS. We might also introduce penal-
ties by simply put a minus sign in front of the rewards, e.g. give the agent a
penalty every time it gets observation missed.

In [3], Eagle gives an account of optimal search in a 2 observation case. The
two observations in Eagles paper is found and not found. If the object is in
the searched box ¢ the agent miss it with probability ¢(i) and gets observation
not found. Eagles reward function is

V(pr, 1) = max(px(a)*(1-q(a))+ (1~ (1=q(a))xp(a))*V (Tu(pr), a)), (3.7)

where T, is p updated for an unsuccesful search (i.e. observation not found)
in cell a, according to Bayes’s rule (3.5) and A; C A. Comparing the first
part of eq.(3.7) with the first part of eq. (3.6) gives that the rewards g“
should be chosen to

9" =(0,0,...,0,1 — ¢(a),0,...,0,0) (3.8)

i.e. 1—¢(a) in the a : th position and 0 elsewhere. If we look at the definition
of g* (eq. (3.6)) this has the interpretation that each time we search the cell
where the MS resides the agent gets a reward. This reward is equal to the
probability of detecting the MS, given that the MS is in the searched cell.
That makes sense because cells with lower ¢(a), i.e. blocking probability,
should be searched more often. This is for the 2 observation case (found and
not found), but g is independent of the observations. It only depends on
the current state and the current action. This means we should be able to
use the same ¢ in the 3 observation case.

Choosing the reward as above is actually the same as giving the agent a re-
ward of 1 each time it finds the MS. The proof of this is available in appendix
A.

3.2.2 Solving POMDP’s

When trying to solve eq. (3.6), the fundamental problem is that at each iter-
ation of the dynamic programming recursion, V;, must be evaluated for each
possible pi-vector. This is an infinite set. All feasible numerical methods
involve reducing the number of distributions p; considered, for each k, to a
finite number.

Tony Cassandra has done a lot of research in POMDP’s and in [4] he de-
scribes the POMDP approach to find optimal or near optimal control strate-
gies for partially observable stochastic environments, given a complete model
of the environment. On his webpage there are POMPD code available to
solve POMDP’s. These programs are all written in C and the webpage is:
http:/ /www.cs.brown. edu/research/ai/pomdp /index.html. Methods that are
available with these programs includes, among others, the “linear support
algorithm” (described by Lovejoy in [2]), the “witness algorithm” and “incre-
mental pruning” (described in [5]).

How to specify the POMDP-files is described in Appendix B.

3.3 The pg-algorithm

In [6] Rezaiifar and Makowski suggests an algorithm that they call the pg-
algorithm. They show that this algorithm is optimal in the 2 observation case
(i.e. found and not found) and when the MS doesn’t move between the cells
during the paging process, and they use this algorithm for the 3 observation

10

case when the MS doesn’t move. The case when the MS doesn’t move will
be refered to as the stationary case.

The pg-algorithm is defined according to a slightly different model. The al-
gorithm is then modified to fit to our model.

The MS is placed randomly in one of N cells at time step 1 where it remains
throghout the paging process. The distribution among the cells is p; (i) for
i = 1,...,N and the observations are found and not found. Let q(i) for
t=1,..., N be the probability that we get observation not found on a single
PR to cell i, given that the MS is in cell 7. This g-vector defined here is
identical to the g-vector defined in chapter 3.1, because the probability that
we miss the MS, given that we page the cell where the MS resides, is simply
the probability that there are no available paging channels.

The probability of failing to detect the object on the first j — 1 looks in box
1 and of succeeding on the j:th, given that the object is in cell 7, is

(1—q(@)*¢ (), i=1,...N, j=1,2 .. (3.9)

Let r(i, k) denote the number of PR’s out of the & first PR’s that are sent to
cell . Then the pg-algorithm is: choose the (k + 1) : st PR according to

a1 = argmax(pi(a) * (1 = g(a) x (a)" ™M), k=0,1,2,3,... (3.10)

This is for the 2 observation case. When applying this to the 3 observation
case, Rezaiifaar and Makowski suggest the following in [6]:

e [f the agent recieves observation found, then simply stop searching.

o [f the agent recieves observation blocked in cell ¢ in the k : th PC, then
increment (i, k) by one.

o [f the agent recieves observation missed in cell ¢ in the k : th PC, then
set 7(i, k) to infinity.

The last point might need some explanation. Setting r(i, k) to infinity has
the interpretation that the cell has been paged infinite times. Thus it is very
unlikely for the MS to be in that cell. This is for the non-moving case.

Seperate observation not found to the observations blocked and missed ac-

tually invalids eq. (3.9) because the probability of being blocked in cell i on
one paging attemp now, given that we have been blocked there an arbitrary

11

number of times before is still ¢(¢). This is because we now can observe if
we get blocked or not in each cell, compared to before when we only knew
the probability that we were blocked. The pg-algorithm still works well, be-
cause of the way it spreads out the PR’s among the cells (which leads to
more paging channels available among the cells) and still keeps the number
of PR’s per MS low. However, it’s not optimal anymore when we seperate
the observations.

3.4 The pqup-algorithm

This is an algorithm that was developed during my research and it’s based
on the pg-algorithm. In order to be able to apply the pg-algorithm to the
moving case, we have to somehow keep track of the mobile user. One way of
doing this is to update the p-vector after each time step. We can do this by
using Baye’s rule (eq. (3.5)). However, this equation calculates the p-vector
in the filter case. Filter means that the order of events in one time step is
as follows: action—move—observation. For example, if we get observation
missed in cell i, then p(i) = 0 according to eq. (3.5). We can’t use this
p in the pg-algorithm, because the MS moves before next action is taken.
The order we really want for this algorithm, in one time step, would be:
action—observation—move. This is called the predictor case. This can be
obtained by Baye’s rule by simply change the order between P and R*(0).
Thus,

o,(0|p,a) = p'R*(0) Pe (3.11)
g = PRI
Tp(evp7) 0_(9|p’ CL) ’ (312)

will give us the p-vector that we want.

Now, we can’t set r(i, k) to infinity, when we get observation missed as in
the non-moving case, because then we will never page that cell again. We
must go back to the original definition of r, i.e. r(i, k) denotes the number
of PR’s out of the k first PR’s that are sent to cell 7. The updated p-vector
will take care of the different observations.

By using eq. (3.11) and eq. (3.12), we can calculate pyq, given pg, ax and
0r. Since we stop searching when we get observation found, we only have
to calculate pgy1 for the observations missed and blocked. The observation
matrix R*() (defined on page 7) for observation missed and action i is

12

0 1—q(i) 0 0 0
R*="(missed) = 0 e 0 0 0 Ce 0
0 0 0 1—q(i) - 0
0 0 0 0 o 1 —q(4)
(3.13)

i.e. 0 on the i:th position and 1 — (i) elsewhere on the diagonal. Inserting
this in eq. (3.11) yields

1
o, (missed|pg, ay = i) = p R~ (missed)P | :
1
1
1 1
= p'R% " (missed) | : | =p | 0 | (1—q())
1 1
|
) ol — D) 04yl 1)+t (N — ()
— (1 peli))(1 — q) (3.1

Using this o, in eq. (3.12) gives us the posterior p-vector for observation
maissed.

P, R*= (missed) P
(1), peli = 1,0, (i + 1) .- p(N))(1 = (i) P
(= p()(1 - (1)

(pe(1), .., pe(i—1),0,pp(i + 1), ..., px(N))P

- 1 — pi(2) 1)

For observation blocked the observation matrix is

Dis1 = Tp(missed, py, ar = 1) =

13

0 gl -~ 0 0
R*="(@, = blocked) = | Lo : (3.16)
0 0 g(i) 0
0 0 0 qi)
Inserting this in eq. (3.11) gives us
1 1
o, (blocked|py, aj, = i) = p R*='(blocked) | : | =p"| : | @ =a, (3.17)
1 1

and finally inserting this in eq. (3.12) gives us the posterior p-vector for
observation blocked

| R*='(blocked) P L qi P
p;chl = Tp(bZOCkedapka ap = 2) = Pe (ocke) = Pr4k = p;cP

Op qk
(3.18)

3.5 Estimating the ¢-vector

As mentioned before the probability of being blocked in cell ¢ is the same
as the probability that all the paging channels to cell ¢ are occupied when
sending a PR to the cell. The SD-buffer has a size of K and under one PC
the SD distributes the PR’s (maximum K) among the N cells, according to
some algorithm. If more than L PR’s are being sent to a specific cell, in
one PC, then some PR’s will be blocked. This means that the true blocking
probabilities, lets call these probabilities g, Will depend on the algorithm
used, i.e. how it distributes the PR’s among the cells. In turn the algorithms
used here have the g-vector as an in-parameter. The distribution among the
cells depends on the choice of this ¢g-vector. This means that the gy...-vector
will depend on the choice of g-vector. Of course, we want g to be the same
as Qe The question is, how do we choose ¢ to obtain this?

What we can get is an estimate of the q...-vector. Let’s call this estimated
vector §iqe and this has the form

dtrue = Qtrue T €, (319)

where € is a random vector representing the estimation error. The Gyye-
vector is computed as follows. Fix the p-vector and the g-vector and let the

14

algorithm run for a paging window which consists of W PC’s. Pick W large
enough so that the system reaches steady state. Then, for i = 1,..., N, let
Girue (1) be the fraction of times that a PR has been denied access to a paging
channel in cell ¢ within the paging window. It can be shown that this is the
maximum likelihood estimation of the ¢y,.,.-vector.

The problem is to pick a vector ¢ such that

(i) = Gurue() =0, i=1,..,N. (3.20)

The mapping ¢ — §irue is virtually impossible to find. There are two many
parameters that affects the mapping, e.g. the number of paging channels,
the number of cells, the movement of the MS’s, the size of the SD-buffer,
the algorithm used, etc. So when solving eq. (3.20), it calls for some kind of
numerical approximations.

What we have at our disposal is the input ¢ and the output ¢ — G¢irue. We
don’t have the derivative of the function. This limits the numerical methods
we can use. The method used here is the Robbins-Monro algorithm [7] which,
when trying to solve eq. (3.20), yields

dn+1 = 4n — bn * (Qn - (jtrue,n)y n =]-7 2a (321)

and {b,,n = 1,2, ...} is a sequence of positive numbers. As part of conditions
for convergence it is required that the gain sequence b, satisfies .72 ; b, = o0
and 32, b2 < co. The usual candidate is b, = n~!. When eq. (3.21) is
defined like this it is required that ¢(i) — Gy (7) has a positive derivative. This
is actually the case, because a higher ¢(7) means a higher blocking probability
in cell ¢ and the algorithm used want’s to page cell ¢ less. This leads to that
more channels will be available in cell 7 and ¢, Will be smaller. Hence,

q(7) — G(7)4rue will be higher and the derivative is positive.

15

4 Numerical results

To be able to compare the different algorithms we introduce two performance
measures which captures the effiency of the paging. These are

1. F' = the expected number of MS’s found per PC.

2. S = the expected number of times that an MS is paged before it is
found.

An efficient algorithm is one that has a higher F' and a lower S than the
conventional method.

In the simulations the PR’s are generated according to a Poisson process
with rate A (PR’s/PC). For the conventional method F and S are quite
straightforward to obtain. Each MS is paged exactly N times, since we send
one PR to each of the BS’s for every MS. Therefore

Scom) = N.

Fiony 1s a bit more difficult to compute. Exactly L MS’s can be paged simul-
taneosly with the conventional method. If we assume heavy traffic so that
there is more than L MS’s to page, then we will discover exactly L MS’s
in that PC. Assume that \ is constant long enough for the system to reach
steady state. Then if A is bigger than L (heavy traffic) the expected number
of MS’s found per PC will be equal to L. However, if A\ is smaller than L
then the expected number of MS’s found per PC will simply be equal to A,
since we can’t discover more MS’s than is coming in. Hence,

Fcom):Aa)\SL
Fconv:L7)\ZL

The performances of the different algorithms will be compared with the con-

ventional method as the increase in percent in F' and the decrease in percent
in S.

In all the simulations, the size of the SD buffer (i.e. the maximum number
of PR’s that can be processed per PC) is set to the fixed value K=200. This
value could have been tuned adaptively in response to how many cells being
used, the number of channels per cells, variations in the the input rate A, etc.
This possibility will not be considered further here.

When the agent get the observation blocked, that doesn’t count as a paging
because we don’t actually page the MS. With the observation blocked we

16

don’t get any information about the MS location and the PR will remain in
the SD. The higher traffic it is, the higher will the blocking probabilities be.

4.1 The stationary case

Intuitively, in the stationary case (i.e. when the MS doesn’t move), a good
way of paging should be to simply page the cells in decreasing order of the
probabilities p(i),7 = 1,..., N. This is true as long as the traffic isn’t too
high. The method only minimizes S. With this method, as the traffic gets
higher and the main queue starts to grow, the channels to the more attrac-
tive cells will be occupied too much and a method that has a higher F' is
more attractive. A higher F' is exactly what the pg-algorithm gives us. The
method that pages the cells in decreasing order of p(i) will be referred to as
the p-algorithm.

In the stationary case the performance of the p-algorithm and the pg-algorithm
will be compared.

Stmulation I. The stationary case
This simulation compares the performances as a function of the incoming
paging rate A\. The number of channels L per cell is equal to 9 and the num-
ber of cells N is equal to 10. The p;-vector is given in table 4.1.

cell 1 2 3 4 d 6 7 8 9 10
p1() | 0.023 | 0.12 | 0.05 | 0.083 | 0.21 | 0.14 | 0.038 | 0.095 | 0.18 | 0.061

Table 4.1. Listing of the location probabilities among the cells.
In figure 4.1 the increase in discovery rate ((Fseq — Fronv)/Feonw) and the

decrease in signaling load ((Scony — Sseq)/Seonv) are plotted as a function of
the incoming paging rate.

17

80

Increase in discovery rate vs. input rate (\)
T T

60 -

pq
40+ B

Increase (%)

20 -

I I I I I I I I I
2 4 6 8 10 12 14 16 18 20
PR:s/PC (A)

Decrease in signaling load vs. input rate \)

Decrease (%)

45

I I I I I I I I I
2 4 6 8 10 12 14 16 18 20
PR:s/PC (A)

Figure 4.1. Performance as a function of the incoming paging rate.

The performance of the p-algorithm is independent of the incoming paging
rate. This is because the incoming paging rate change the blocking probabil-
ities ¢ and the p-algorithm is independent of these. The p-algorithm always
has the minimum possible S. However, when the traffic gets higher and the
MQ starts to grow a higher F' should be prioritised. When using the p-
algorithm the MQ starts to grow when A > 9. When A <9 both algorithms
are able to take care of all the incoming PR’s. For the pq, the MQ starts to
grow when A > 15.5.

A good way to page would be to use the p-algorithm when the traffic isn’t
heavy, i.e. when the MQ doesn’t grow, because it minimizes S and it takes
care of all the incoming PR’s. When the traffic gets higher we should switch
to the pg-algorithm, because it’s able to take care of more PR’s per PC.

4.2 The moving case

Running a POMDP for a given model gives us the optimal search policy for
that model. When there is a probability for the MS to move, during the pag-
ing process, the best way of paging is not necessarily to page the cell with
the highest py (i) for k = 1,2, ..., when the traffic is low as in the stationary
case. This is illustrated in the following example. The example is from [8].

18

Example 4.1
Suppose that we have two cells and that ¢; = ¢2 = 0, i.e. we will never be
blocked. Also suppose that the transition probability matrix is

0 1
P:<0.5 0.5)

Now, if p; = (0.55,0.45), then an immediate search in cell 1 will lead to dis-
covery with probability 0.55 and a search in cell 2 will lead to discovery with
probability 0.45. However, an unsuccessful search in cell 2 will lead to certain
discovery in the next time step, because it will always move from cell 1 to cell
2, whereas an unsuccesful search in cell 1 leads to complete uncertainty as
to where it will be in the next time step. Starting to search in cell 2 results
in an expected cost of 1%0.45+2%*0.55=1.55, whereas to start search in cell 1
will at best result in an expected cost of 1*0.55+(2*0.5+3%0.5)*0.45=1.675.
Hence, starting to search cell 2 is better than to start with cell 1. This is
because searching cell 2 gives more information about the location.

POMDP solves problems like the one in the example above. There are how-
ever, two problems when using POMDP with the paging system. First of
all, the computations becomes very complex and takes a very long time to
make. However, once the computations are made the search policy is given
as a policy graph (described in appendix C) and can easily be applied to the
system. The second problem - and this is the main problem - is that eq.
(3.20) doesn’t seem to have any zeros for the POMDP. The function is both
negative and positive but it contains discontinuities and it doesn’t seem like
there is any value of ¢ that solves eq. (3.20) for all . The individual gy (7)’s
actually depends on the whole g-vector, so the only case we can plot eq (3.20)
is when N = 2. This is done for the pqup in figure 4.2 and for the POMDP
in figure 4.3.

19

a()

a(1)
Figure 4.2. In the left plot, ¢(1) — Girue(1) is plotted and in the
right plot, q(2) — Girue(2) is plotted, for the pqup-algorithm.

4

Q

‘
S

500

o

&
5
e

999990
X

X000

(UAXKXK
(UKEXKIXHAR

N
5
m?:"’

P
P
o
%

d
3
RS

(XNRKIKXK

;
SRR
XXX

(Ol

¢
!
0
o
0

0
R
5

8

e

%

"
XX

a@

a@)
o o

Figure 4.3. In the left plot, ¢(1) — Girue(1) is plotted and in the
right plot, ¢(2) — Girue(2) is plotted, for the POMDP.

graphs intersect the zeroplane.

In figure 4.2 we can find a point where both graphs intersect the zero-plane.
see that both graphs contains discontinuities. There is no point where both

The graphs are smooth and the zeros are easy to find. In figure 4.3 we can
4.2.1 Small location areas

In the next two simulations the POMDP is included to check the performance,

even though we can’t solve eq. (3.20). For the POMDP the Robbins-Monroe

has been running for a longer time (more iterations) and the policy graph
that produced the best performance was saved.

20

Unfortunately, when we’re using POMDP we have to keep the number of cells
small otherwise the simulations takes to long time to run. In this chapter the
number of cells in the LA is 4 and the cells are arranged according to figure
4.4.

Figure 4.4. Structure of the cells in the LA.

The simulations in this chapter compares pqup and POMDP with the conven-
tional method and they all have the following transition probability matrix
and initial distribution among the cells

0.9 0.05 0.05 0
0.0176 0.9284 0.0206 0.0334
0.0286 0.0333 0.9047 0.0334

0 0.0344 0.0213 0.9443

p1=(0.12 034 021 0.33).

pP—

The MS’s moves roughly one time out of ten between the cells per PC. The
transition probability matrix is chosen so that py converge to p; when we get
observation blocked. To get a P-matrix that makes p, converge like this, the
Hastings-Metropolis algorithm has been used. This is described in [9].

Stmulation I1. Light load
Assume a case where L > A. This means that the conventional method is
capable of discovering all the incoming PR’s. Let the system parameters be

A =6 PR's/PC
L=9

Here, the number of channels per BS is equal to 9 and the conventional
method is capable of discovering 9 PR’s per PC. The result is given in table
4.2.

21

Frone 6.0
Seonv 4.0

| | pqup | POMDP |
Fiyeq 6.0 6.0
Soeq 2.26 218
Increase in the discovery rate 0 0
Decrease in the signaling load | 43.6 % | 45.5 %

Table 4.2. Results from simulation II.

Even though, ¢ # ¢, for the POMDP, it still has a lower S than the pqup
in this case. This is not true for all models, because we can’t solve eq. (3.20)
and there doesn’t always exist a good q.

Stmulation I11. Heavy load
In this simulation the performances are compared when L < A. This means
that the incoming PR’s cannot be taken care of with the conventional method.

A =16 PR’s/PC
L=09

Since the system is heavily loaded a higher F' should be prioritised before a
lower S. The result is given in table 4.3.

Frone 9.0
Seonv 4.0

‘ H pPquUp ‘ POMDP ‘
Fyeq 13.3 11.3
Sseq 2.71 2.53
Increase in the discovery rate | 47.7 % | 25.6 %
Decrease in the signaling load | 32.3 % | 36.8 %

Table 4.3. Results from simulation III.

POMDP has a lower F' and a lower S than the pgup. When solving POMDP
we only try to minimize S. However, since the MS’s moves among the cells, a
good policy graph should spread out the pagings among the cells. This leads
to more available paging channels and a higher F'. The F' would probably be

higher if ¢ = @44, for the POMDP.

22

4.2.2 Larger location areas

When the LA’s gets bigger we can’t use POMDP because we would have to
run the POMDP for weeks for each model. We would also have to run it for
more iterations with the Robbins-Monroe because the more cells we have the
harder it is to find a good ¢. In this chapter the performance of the pqup is
compared with the conventional method in some different situations.

The size of the LA in this chapter is 10 and the cells are arranged as in figure

4.5.

147
o7

Figure 4.5. Structure of the cells in the LA.

The model used in the simulations in this chapter is

0.900
0.003
0.000
0.002
0.003
0.000
0.000
0.000
0.000
0.000

0.033
0.949
0.033
0.000
0.017
0.000
0.000
0.000
0.000
0.000

0.000
0.019
0.900
0.000
0.011
0.017
0.000
0.000
0.000
0.000

0.033
0.000
0.000
0.946
0.017
0.000
0.033
0.017
0.000
0.000

0.034
0.029
0.033
0.023
0.925
0.025
0.000
0.017
0.000
0.000

0.000
0.000
0.034
0.000
0.017
0.919
0.000
0.017
0.033
0.000

0.000
0.000
0.000
0.011
0.000
0.000
0.928
0.011
0.000
0.033

pr=(0.011 0.12 0.07 0.15 0.21 0.14 0.051 0.15

0.000 0.000
0.000 0.000
0.000 0.000
0.017 0.000
0.012 0.000
0.018 0.021
0.034 0.000
0.920 0.016
0.028 0.936
0.033 0.034

0.09 0.008).

0.000
0.000
0.000
0.000
0.000
0.000
0.005
0.002
0.003
0.900

Once again, the MS’s moves roughly one time out of ten between the cells
per PC and the transition probability matrix is chosen so that p; converge
to p; when we get observation blocked.

23

Stmulation IV. Dependence of the incoming paging rate
We start with the case when L > A. The system parameters are

A =6 PR’s/PC
L=9

The result is given in table 4.4

Feony 6.0
Fleq 6.0
Increase in the discovery rate 0
Seonv 10
Sseq 4.47
Decrease in the signaling load || 55.3 %

Table 4.4. Results from simulation IV, light load.

We can see that there is a significant decrease in the signaling load compared
to the conventional method. Let see what happens when the traffic gets
higher. The system parameters are given below and the result is given in
table 4.5.

{ A =16 PR’s/PC

L=9
Feony 9.0
Fleq 13.8
Increase in the discovery rate || 52.9 %
Seonv 10
Sseq 5.40
Decrease in the signaling load || 46.0 %

Table 4.5. Results from simulation IV, heavy load.

As expected, the two performance measures F' and S effects each other. In
figure 4.6 the increase in discovery rate and the decrease in signaling load are
plotted as a function of the incoming paging rate, in the case when the MS
is moving.

24

Increase (%)

a
a1

Decrease (%)
a
o

IN
a

Increase in discovery rate vs. input rate A)
T T

I I
8 10

I
12

PR:s/PC (A)

I
14

Decrease in signaling load vs. input rate (\)

I
16

I
18 20

I
2

.
4

I I
8 10

I
12

PR:s/PC (A)

I
14

I
16

I
18 20

Figure 4.6. Performance as a function of the incoming paging rate

Once again, an increase in F' leads to an increase in S and vice versa (com-

pare to figure 4.1).

Simulation V. Estimation error in the p-vector

A natural question is how the algorithm works when there is an estimation
error in the model, for example in the p-vector. For a start, let the system

parameters be

{ A =6 PR’s/PC

L=9

Call the estimated p; for p;. In table 4.6, p; is listed. The real probability

distribution, py, is repeted for convenience.

bl 0.05

0.16

0.1

0.28

0.15

0.02

0.08

0.12

0.03

0.01

py | 0.011

0.12

0.07

0.15

0.21

0.14

0.051

0.15

0.09

0.008

Table 4.6. The estimated and the the real probability
distribution vectors used in simulation V.

The result from the simulation is given in table 4.7.

25

Frone 6.0
Fleq 6.0
Increase in the discovery rate 0%
Seonv 10
Sseq 4.80
Decrease in the signaling load || 52.0 %

Table 4.7. Results from simulation V,
light load and estimated p;.

The fact that the p;-vector may not be estimated precisely didn’t affect the
performance drastically in this case. Let’s see what happens when the traffic
gets higher.

{ A =16 PR’s/PC

L=9
Feonw 9.0
Fleq 13.6
Increase in the discovery rate || 51.2 %
Seonv 10
Sseq 5.59
Decrease in the signaling load || 44.1 %

Table 4.8. Results from simulation V,
heavy load and estimated p;.

Even in this case, the pqup is superior to the conventional method. The
algorithm may thus be started with a rough estimate of p;.

Stmulation VI. Reduced number of paging channels
An interesting thing to investigate is the performance when fewer channels are
allocated for the purpose of paging. Fewer paging channels leaves more radio
spectrum available for other transmissions (e.g. voice and data). Therefore,
fewer paging channels contributes to the overall improvement of the cellular
system.

In this simulation the number of paging channels per BS are reduced to 4.
We start with an incoming paging rate of 6.

26

A =6 PR’s/PC
L=4

The result is given in the table below.

Feony 4.0
Fleq 5.96
Increase in the discovery rate || 49.1 %
Seonv 10.0
Sseq 5.41
Decrease in the signaling load || 45.9%

Table 4.9. Results from simulation VI, light
load and reduced number of paging channels.

There is an increase in .S, compared with the case when we had 9 paging chan-
nels per BS. The increase is from 4.47 pagings/MS to 5.41 pagings/MS. It’s
still much better than the conventional method, who pages each MS 10 times.

Let us investigate what happens when the traffic gets even higher.

{ A =16 PR’s/PC

L=4
Frone 4.0
Fleq 6.08
Increase in the discovery rate || 51.9 %
Seonv 10.0
Sseq 5.69
Decrease in the signaling load || 43.1 %

Table 4.10. Results from simulation VI, heavy
load and reduced number of paging channels.

The maximum number of MS per PC that we can discover with pqup is 6.08.
With only 4 paging channels per BS, the conventional method can only dis-
cover 4 MS’s per PC. This is an increase with 51.9 percent.

27

4.3 Conclusions

The simulations showed that both algorithms was superior to the conven-
tional method. The pgup proved to be a reliable method and requires little
computational power in the MSC’s. The method is robust and works well
both under low and high traffic, when the number of paging channels is re-
duced and when there is an estimation error in the occupancy probability
vector. Since we couldn’t solve eq. (3.20) for the POM D P, this method is
unreliable and doesn’t behave as well as expected. If we somehow could solve
eq. (3.20) for the POM DP then this would give us the optimal solution to
the given problem.

28

5 Conclusions

It has been shown that there are several ways of improving the conventional
scheme. The pqup improved the performance significantly. The simulations
showed that the method

e reduces the signaling load between the MS’s and the MSC’s during the
paging process

e is able to found more MS per PC
e work well both under light and heavy load
e work well with reduced number of paging channels

e is insensitive to the choice of occupancy vector.

The last point has, of course, practical significance since obtaining an occu-
pancy probability vector that captures the occupancy probabilities of all the
MS’s is a practical impossibility.

The POMDP-algorithm didn’t work as well as expected. Even though it
worked better than the pqup in some cases, we can’t use the POMDP as a
paging scheme, as long as we can’t solve eq. (3.20). If we could, then this
algorithm would have been optimal for the given model.

5.1 Future work

The research about using POMDP as a paging scheme is going to be contin-
ued. The main research is going to be about how we can specify the model
in a way that we can solve eq. (3.20). Maybe we can use different rewards
or different observations?

29

A Rewards

Here it will be shown that giving the agent a reward that equals the prob-
ability of detection, given that the MS resides in the searched cell a, (i.e.
1 — g(a)), is equal to give the agent a reward of 1, each time he finds the
object.

To begin with, we write the reward function ¢ as a function of action, state
and observation, i.e. g(ag,xy,0;). This is the reward the agent recieves
when he searches cell ay, the object is in cell x; and the agent recieves the
observation 0y at time step k. We start with the 2 observation case so the
observations are either found or not found. If the agent recieves reward R;
each time he finds the object in cell ¢ and the penalty for paging cell 7 is Cj,
then the reward functions will be

g(xp =1i,ar = 1,0, = notfound) = —C;

g(xg =i,ar = 1,0 = found) = R; — C; (A1)
g(zx =i, ar = j, 0k = notfound) = —C; 1#] ’
g(zx =1,ar = j,0p = found) = R; — C;, 1.

Of course, the last reward will never be obtained, because if the agent page
the wrong cell it will never find the object, but it’s written here anyway for
the sake of concretness. Now we can write the reward function as a function
of action and state (i.e. as defined on page 7)

g(xgp =i,ap =1)

= g(xx = 1, a1, = 1,0 = not found) x Pr(0) = not found|x), = i,a, = 1)
+g(xp =i, a, = 1,0 = found) x Pr(0y = found|zy =i,a, = 1)

=—Cixq+ (R —C)*(1—gq)=Ri*x(1-¢q)—C

and
gz =t,a = j)
= g(x = i,a, = j, 0k = not found) x Pr(6y = not found|xy = i,a, = j)

+g(zr =i, ar = j,0k = found) * Pr(0y = found|x; =i,a, = j)

This gives us g* as defined in eq. (3.6).

§*=(—Co,—Cly ... —Coy Ry % (1 — q,) — Cy, —Cl, ..., Co, Cp)'. (A.2)

30

Putting this in eq. (3.6) yields,

Vipe) = max(prg”+ 8> o(blpr, a)V(T(0,p, a)))
[USC)

= max(pk x (—Clqy ooy —=Coy Ry * (1 — q(a)) — Cy, ..., Cy)’
_'_6 Z e‘pka (eapkaa)))

= maj((pk(a) *« Ry * (1 —q(a)) —C,

+6> 0(Olpe, a)V(T(0, pr, a)))

0€O

Comparing this result with Eagle’s (eq. (3.7)) gives that the reward R; should
be chosen to 1 for i = 1, ..., N and the penalty C; should be choosen to 0 for
it =1,..., N. However, since C} is just a constant and it is in a maximisation
expression, we can choose C; to any constant we want (as long as it the same
for all 7). Eagle just chosed it to be 0. As a matter of fact, we can actually
choose the reward to be any constant > 0 as long as it’s the same for all cells.
This is a bit harder to see and it won’t be discussed further here.

31

B The POMDP-file

B.1 POMDP-file specification
POMDP solve version 4.0 written by A. R. Cassandra.

This describes the POMDP file format.

There are some semantics to the format and these are discussed here. All
floating point number must be specified with at least one digit before and
one digit after the decimal point.

Comments: Everything from a '#’ symbol to the end-of-line is treated as a
comment. They can appear anywhere in the file.

The following 5 lines must appear at the beginning of the file. They may
appear in any order as long as they preceed all specifications of transition
probabilities, observation probabilities and rewards.

discount: %f

values: [reward, cost |

states: [%d, <list of states> |

actions: [%d, <list of actions>]
observations: | %d, <list of observations> |

The definition of states, actions and/or observations can be either a number
indicating how many there are or it can be a list of strings, one for each entry.
These mnemonics cannot begin with a digit. For instance, both:

actions: 4
actions: north south east west

will result in 4 actions being defined. The only difference is that, in the latter,
the actions can then be referenced in this file by the mnemonic name. Even
when mnemonic names are used, later references can use a number as well,
though it must correspond to the positional numbering starting with 0. The
numbers are assigned consecutively from left to right in the listing starting
with zero. The mnemonics are discarded once the whole file has been read in.

When listing states, actions or observations one or more whitespace char-

acters are the delimiters (space, tab or newline). When a number is given
instead of an enumeration, the individual elements will be referred to by con-

32

secutive integers starting at 0.

After the preamble, there is the optional specification of the starting state.
For the current POMDP-solve code, this is completely ignored. It allows it
to parse it to be compatible with newer versions of the specification. There
are a number of different formats for the starting state, but these won'’t be
discussed here. You won’t need them for this program, and if you are running
them on a file that has them, then you’ll know what they look like.

After the initial five lines and optional starting state, the specifications of
transition probabilities, observation probabilities and rewards appear. These
specifications may appear in any order. Any probabilities or rewards not
specified in the file are assumed to be zero.

You may also specify a particular probability or reward more than once. The
definition that appears last in the file is the one that will take affect. This is
convenient for specifying exceptions to a more general specification.

To specify an individual transition probability:
T: <action> : <start-state> : <end-state> %f

Anywhere an action, state or observation can appear, you can also put the
wildcard character '« which means that this is true for all possible entries
that could appear here. For example:

T:5:%:01.0

is interpreted as action 5 always moving the system state to state 0, no mat-
ter what the starting state was (i.e., for all possible starting states.)

To specify a single row of a particular actions transition matrix:

T: <action> : <start-state>
%t %f ... %f

Where there is an entry for each possible next state. This allows defining the
specific transition probabilities for a particular starting state only. Instead of
a list of probabilities the mnemonic word "uniform’ may appear. In this case,
each transition for each next state will be assigned the probability 1/#states.
Again, an asterick in either the action or start-state position will indicate all
possible entries that could appear in that position.

33

To specify an entire transition matrix for a particular action:

T: <action>
%t %f ... %f
%t %f ... %f
%t %f ... %f

Where each row corresponds to one of the start states and each column spec-
ifies one of the ending states. Each entry must be separated from the next
with one or more white-space characters. The state numbers goes from left
to right for the ending states and top to bottom for the starting states. The
new-lines are just for formatting convenience and do not affect final matrix
results. The only restriction is there must be Nx/N values specified where N
is the number of states.

In addition, there are a few mnemonic conventions that can be used in place
of the explicit matrix:

identity
uniform
Note that uniform means that each row of the transition matrix will be set
to a uniform distribution. The identity mnemonic will result in a transition
matrix that leaves the underlying state unchanged for all possible starting

states (i.e., the identity matrix).

The observational probabilities are specified in a manner similiar to the tran-
sition probabilities. To specify individual observation probabilities:

O : <action> : <end-state> : <observation> %f

The asterick wildcard is allowed in any of the positions.

34

To specify a row of a particular actions observation probability matrix:

O : <action> : <end-state>
%t %f ... %f

This specifies a probability of observing each possible observation for a par-
ticular action and ending state. The mnemonic short-cut "uniform’ may also

appear in this place.

To specify an entire observation probability matrix for an action:

O: <action>
%t %f ... %f
%t %f ... %f
%t %f ... %f

The format is similiar to the transition matrices except the number of entries
must be NxO where N is the number of states and O is the number of ob-
servations. Again, the 'uniform’” mnemonic can be substituted for an entire
matrix. In this case it will assign each entry of each row the probability
1/#observations.

To specify individual rewards:

R: <action> : <start-state> : <end-state> : <observation> %f

For any of the entries, an asterick for either <state>, <action>, <observation>
indicates a wildcard that will be expanded to all existing entities.

There are two other forms to specify rewards:

R: <action> : <start-state> : <end-state>
%t %f ... %f

This specifies a particular row of a reward matrix for a particular action and
start state. The last reward specification form is

35

R: <action> : <start-state>

%f %f .. %t
%f %t . %t
%f %t .. %

which lets you specify an entire reward matrix for a particular action and
start-state combination.

B.2 A POMDP-file example

Here is a POMDP-file example running on the paging system. There are 3
observations and the reward 1 is obtained when the agent receives observa-
tion found. The number of states is 3, the transition probability matrix is

0.9 0.05 0.05
P=1 005 09 0.05
0.05 0.05 0.9

and the blocking probabilities are
g=(0.25 04 0.1).
One way to specify the POMDP-file for this model is:

discount: 0.25

values: reward

states: 3

actions: 3

observations: found missed blocked

T: *

0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

0:0

0.75 0 0.25
00.75 0.25
00.75 0.25

36

O:1

00.604
0.6 004
00604

0:2

00.90.1
00.90.1
0.900.1

R'*'*I

100

*

37

C The result-files after a POMDP simulation

After running a POMDP simulation, the POMDP program will give you the
solution in two files. How to use these files are described here.

C.1 The alpha-file

This file lists the alpha vectors after a POMDP simulation. The vectors fully
specifies the solution after running a simulation. Each vector has an action
associated with it and, at time step k, we should pick the vector according
to eq. (C.1), (compare to eq. (3.6)).

arg max(pyoy), j=1,...,J, (C.1)
j

where J is the number of vectors. After picking an alpha vector we choose
the action associated with it. This is the action for time step k. The format
of the alpha-file is simply:

<action> <list of vector components>
<action> <list of vector components>
ete...

The number of alpha vectors is equal to the number of states in the POMDP.

C.2 The pg-file

Another (and more convenient) way to specify the solution after a POMDP
simulation is to use a policy graph. With a policy graph we don’t have to
calculate p, at each time step. We only have to know the initial location
distribution probability vector, p;. Each line in the pg-file represents one
node of the policy graph and its contents are:

NAZLZ27Z3 ..

Here "N’ is a node ID giving the node a unique name. A’ is an integer and
specifies the action associated with this node. These are followed by a list of
node ID’s, one for each observation. Thus the list will have a length equal to
the number of observations in the POMDP. This list specifies the transitions
in the policy graph. If the observation recieved is n, then the n : th element

38

in the list will specify the next node in the policy graph. The start node in
the policy graph is specified (from the alpha-file) by eq. (C.2).

argmax(pia;), j=1,...,J. (C.2)
j

39

D Abbreviations

This abbreviations are all defined earlier in the paper. They are written here
for convinience.

BS: Base Station, each cell has one base station.

HLR: Home Location Register, contains information about the whereabouts
of the mobile stations but is usually bigger than a visitor location reg-
ister and it caches portions of information to these.

LA: Location Area, a geographic area covered by a group of cells.
MS: Mobile Station, a mobile communication device, e.g. a mobile phone.

MSC: Mobile Switching Center, manages the base stations within a location
area.

PC: Paging Cycle, the time epoch at which a page request can be sent to a
base station.

PR: Page Request, a request to page a mobile station in a specific cell.
SD: Smart Distributor, distributes the page requests among the cells.

VLR: Visitor Location Register, contains information about the where-
abouts of the mobile stations. It isolates the small-scale movements.

40

References

1]
2]

[9]

T.S. Rappaport, Wireless Communications. Prentice Hall, 1996.

W.S. Lovejoy, “A survey of alghorithmic methods for partially observed
Markov decision processes”. Annals of Operations Research 28, pp. 47-
65, 1991.

J.N. Eagle, “The optimal search for a moving target when the search
path is constrained”. Operations Research, vol. 32, pp. 1107-1115, 1984.

A.R. Cassandra, L.P. Kaelbling, M.L. Littman, “Act-
ing optimally in partially observable stochastic domains”.

hitp://www.cs.duke.edu/ mlittman/topics/pomdp-page.html, link:
“POMDP’s as a model of planning”.

A.R. Cassandra, M.L. Littman, N.L. Zang, “Incremental Prun-
ing, a simple, fast, exact method for partially observable Markov
decision processes”. hitp://www.cs.duke.edu/ mlittman /topics/pomdp-
page.html, link: “POMDP algorithms”.

R. Rezaiifar, A.M. Makowski, “From optimal search theory to sequen-
tial paging in cellullar networks”. IEEE Journal on Selected Areas in
Communications, vol. 15, no. 17, pp. 1253-1264, september 1997.

M.T. Wasan, Stochastic Approximation. New York: Cambridge Uni-
versity, 1969.

S.M. Ross, Introduction to Stochastic Dynamic Programming. Aca-
demic press, 1983.

S.M. Ross, Simulation. San Diego: Academic Press, 1997, 2:nd ed.

41

