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Abstract

Heavy tra�c loads on the California highways have given birth to the de-

velopment of automated highways. With vehicles traveling without human

interaction, tighter spacing between cars can be achieved without jeopardiz-

ing safety, leading to improved highway throughput. Since no human driver

is present to make judgements about velocity and spacing, knowing the road

condition is important in order to maintain safety.

This project aims to, based on experimental measurements, give infor-

mation about the road condition, and in this thesis a slip-based method is

used. Slip is de�ned as the relative di�erence in velocity between the wheels

and the vehicle.

The data acquired from a Lincoln Towncar introduced di�culties due to

very noisy measurements. A number of di�erent approaches of extracting

road surface information from the noisy slip data was examined and an

observer was developed that signi�cantly reduced unwanted e�ects caused

by tire elasticity.

The resulting road classi�er could distinguish between dry and wet as-

phalt roads with 16% error probability. The classi�er did only work for newly

wet roads, most likely since roads are known to be the most slippery right

after it has started to rain.
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Chapter 1

Introduction

1.1 Background

Due to heavy congestion problems on the California highways, there is an

ongoing development of Automated Highway Systems, AHS. The goal is

to automatically operate standard automobiles at highway speeds at close

spacings. With precise automatic control there can be much tighter spac-

ing between the vehicles than possible during manual driving. The tighter

spacing enables the highway throughput to be at least twice what it is to-

day [PAT]. Other bene�ts with vehicle platooning are that the aerodynamic

drag forces are signi�cantly reduced, resulting in less fuel consumption and

reduced exhaust emissions. In a demonstration in 1997, eight Buick LeSabres

drove on a section of a highway in San Diego without any driver interaction.

The AHS project is conducted by California PATH, Partners for Advanced

Transit and Highways, in which the University of California plays a large

role. It is essential to have information about the road condition with such

close spacings that the AHS require. If the road is slippery, wider spacing is

necessary to maintain safety, on the other hand, too wide spacing will lead

to lower capacity on the highways. Therefore it is important to have exact

information about what maximum friction force the tire�road interface can

supply.

The importance of knowing the state of the road is not just useful for the

automated case. This kind of information would also assist a human driver

making judgments about maintaining safe speed and su�cient distance to

other cars during driving.

1.2 Project formulation

The goal is to classify di�erent road surfaces, dry and wet, using available

standard sensors on an automobile to the fullest possible extent. The purpose

is to get information about how slippery the road is.
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Figure 1.1: Demonstration of vehicle platooning.

A Lincoln Towncar was available for testing, equipped with sensors for

measuring wheel speed, brake pressure and acceleration just to mention

some.

The chosen approach is to use the friction dependency of the slip, to be

able to distinguish between di�erent road conditions. The slip, �, is de�ned

as the relative di�erence between the speed of the wheel and the car velocity.

The formula looks like

� =
v � !rw

max(!rw; v)
; (1.1)

where ! is the angular velocity of the wheel and rw is the radius. When

plotting the slip versus the normalized friction force, �, the initial slip slope

is di�erent for di�erent road surfaces. The slope of the slip can be used

for categorizing di�erent road conditions. The normalized friction force, or

normalized road force, is equal to the road force acting on the tires divided

by the normal force.

We decided to try to estimate the slip slope based on deceleration only.

In order to obtain the slip, the velocity of the car has to be known, which

causes a problem when all wheels are braking. To solve this, the front wheels

were used for braking, while the rear wheels served to give reference speed

for the car, assuming no slip on the rear wheels. Naturally, this approach is

not feasible for practical use, when all four wheels are needed for braking.

The assumption is made that in the future a velocity observer for the car

will be developed that will enable the use of all four wheels for braking.
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1.2.1 The big picture

Communication between cars in the automated highways is already existing.

In a future perspective, communication between cars could mean that road

condition information about a patch of road would not just bene�t the car

that happened to gather the information, but also all other cars soon passing

over that very stretch of road. Every time a car does a braking maneuver

it would send road condition information to a road-side computer which

then would distribute this information to cars passing over that patch of

road. With thousands of vehicles per hour traveling on the same road, an

extensive map of the road conditions would be created. This would also mean

that it would not be necessary for a car to process the collected raw data

in real-time, since the information could bene�t other vehicles, soon passing

by. Naturally this kind of mapping of road conditions would be combined

with weather reports to improve the reliability of the information.

1.3 Outline of the report

The basic theory of slip and car dynamics is described in chapter 2. Chapter

3 goes through a couple of di�erent methods of measuring road conditions.

Chapters 4 � 6 discuss the experimental setup we had, what the chosen

approach was and the experimental considerations that had to be taken in

order to get good results. The seventh and eighth chapter describe how the

two slip curve axes, i.e. the slip and normalized road force, were obtained.

Di�erent ways of extracting the slip slope from the slip curves, in spite of

noisy measurements, are discussed in chapter 9. The tenth chapter goes

through the simulation model. Chapters 11 � 12 describe a more sophisti-

cated way of extracting the slip slope, as well as a method of eliminating

the e�ects of elasticity of the tire in the slip measurements. Chapter 13

combines the previously mentioned methods into a road surface classi�er.

Finally, the fourteenth chapter discusses the results obtained, things that

could have been done di�erently and makes suggestions for future work.
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Chapter 2

Slip and Car Dynamics

2.1 Slip

In the contact surface between the tire and the road, a friction force is acting.

This force will build up a slip, which is the relative di�erence between the

speed of the wheel and the speed of the vehicle.

During acceleration, the driving wheels will rotate slightly faster than the

driven wheels, which rotate in the same speed as the car. During braking, the

situation is the same, except for that the wheels now rotates slower than the

car moves. One way to explain that the wheel can have a di�erent angular

velocity than the car is looking at the compression of the tire in the tire�

road contact region. During acceleration, the compression is as shown in

�gure 2.1. Before entering the contact region, the tire tread is compressed.

v

!

Figure 2.1: Compression of the tire, generating slip.

The distance the tire rolls will become smaller than if free rolling was the

case.

11



2.1.1 De�nition of slip

As mentioned, the slip, �, is de�ned as the relative di�erence in speed be-

tween the wheel and the car velocity. In this report, positive slip occurs

during braking and negative during acceleration.

� =
v � !rw

max(!rw; v)
(2.1)

In one of the extreme cases, when the wheel has locked up and ! = 0, the

slip will be � = +1. When the wheel is spinning without the car moving,

the slip will become � = �1.

2.1.2 Slip curve characteristics

The friction force from the road is what accelerates or decelerates the car, if

drag force is neglected. The normalized friction force is de�ned as

� =
Froad

N
; (2.2)

where Froad is the road friction force and N is the normal force of one wheel.

0.6

0.2

0.8

1

0.4

0.6 0.8 10.40.2

�

Dry asphalt

Wet asphalt

Snow

Ice

�

Figure 2.2: Schematic plot of slip curves for di�erent surfaces. However not

shown here, the slip curves are mirrored into the third quadrant for negative

slip.

The slip and friction coe�cient can be plotted together as a slip curve.

These curves are di�erent for di�erent surfaces as can be seen in �gure 2.2.
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The slip curve typically reaches its maximum value below 20% slip. If this

slip value is exceeded, the force decreases. As it decreases, the slip increases

even more. This causes an instable situation, and the slip increases until

it reaches its maximum value, � = �1, which corresponds to spinning or

skidding.

Looking at the di�erent curves, one can see that they have di�erent peak

values of friction force. This means that they can support di�erent levels of

braking or acceleration.

The �nal value of the force, which occurred with maximum slip, is some-

what smaller than the peak value. This can be compared to static and

dynamic friction when pushing an object over a surface. The static friction

can reach a higher value before the object starts moving than the dynamic

friction can when the object is sliding, and that is the same phenomena as

here.

As seen in �gure 2.2, di�erent surfaces have both di�erent peak values

and di�erent slopes of the curve in the beginning.

If the maneuvers are not purely in the longitudinal direction, as acceler-

ation or deceleration, there will also be lateral forces a�ecting the tires. This

will cause a side slip similar to the longitudinal slip. When the lateral forces

increase, the maximum longitudinal force decreases, and the slip curves in

�gure 2.2 will have lower � values.

2.1.3 Magic formula

It is not easy to assign a function to a slip curve, but there exist empir-

ical approximations of the curves. One is the Pacejka-Bakker Magic For-

mula [YJ98],

F (�) = D sin (C arctan (B�� E (B�� arctan(B�)))) : (2.3)

With the right parameters this equation is a good approximation of the real

look of the slip curve.

2.1.4 Slip o�set

When looking at real data from measurements, it can be seen that the slip

curves do not start in the origin. There seems to be an o�set generating slip

even if there are no road forces.

One reason of this is the way measurements are carried out in the vehicle.

Due to the rolling resistance and drag force, there are external forces that

can be hard to get a measurement of.

Another reason is that the di�erent wheels can have di�erent radii. If

you have one wheel giving the reference speed of the vehicle and that wheel

is bigger than the wheel for which you want to calculate the slip, you will

get a slip that is similar to what you would get during a braking maneuver.

13



2.2 Car dynamics

The movements of the car in the three dimensions are shown in �gure 2.3.

Yaw, pitch and roll are angles corresponding to rotations around each of the

axes.

Pitch

Yaw

Roll

Figure 2.3: De�nition of yaw, pitch and roll.

The dynamics of the wheel are shown in �gure 2.4. The angular velocity

of the wheel, !, is given by

J _! = � � Froadr; (2.4)

where J is the moment of inertia of the wheel and � is the sum of the brake

torque and for the driving wheels also the drive line torque.
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Figure 2.4: Dynamics of the wheel.
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Chapter 3

Measuring Road Conditions

This chapter will describe some of the di�erent methods used to categorize

di�erent road surfaces.

3.1 Visual methods

The concept of the visual methods is to expose the road surface to a light and

measure the spectrum of the re�ected light, as well as the intensity. By using

this information it is possible to draw conclusions about the coarseness and

re�ectivity of the road, which then can be used for distinguishing between

di�erent road surfaces [USY94]. One nice feature with this method is that a

slippery road patch can be detected before actually driving on it, if the light

source is mounted in the front of the vehicle. Drawbacks of this method are

the requirement of additional sensors as well as problems with keeping the

lens clean.

3.2 In Tire sensors

It is possible to vulcanize sensors in the tread elements of the tire for mea-

suring stress and strain. This is done in [BER92] using a magnetic sensor.

The method is technically very complicated and expensive.

3.3 Slip approach

The friction dependency for the slip and normalized road force has been

shown in �gure 2.2. The slip-based methods collect data during rather low

accelerations or decelerations. This can then be used to identify what maxi-

mum friction force the tire�road interface can supply, without actually taking

the wheels to the verge of skidding, alternatively spinning and thereby cause

instability.
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The e�ective radii of the tires will be variable since the normal forces

acting on the tires will depend on the acceleration of the vehicle. Unless

accounted for, this can introduce errors in the slip calculations.

With knowledge of how the slip curve looks for low road forces it is

possible to predict the rest of the curve by �tting a slip shaped function

to the data, whether it may be a polynomial or the Pacejka-Bakker Magic

Formula (equation 2.3). However, with noisy speed measurements, it may

not be suitable to use these methods. Since it seems as the initial slope of

the slip curve di�ers for di�erent surfaces, one can do a least squares �t of a

line to the data instead.

An experimentally successful approach [Gus95] is to use a Kalman �lter

to recursively estimate both the o�set and the slope of the slip curve. A

Kalman �lter was chosen due to its ability to track parameters with di�erent

speeds. Due to slow convergence when the slip slope changes abruptly, for

instance when driving into a patch of snow on the road, an abrupt change

detector is used to adjust the Kalman �lter parameters to emphasize speed

rather than accuracy. The main advantage with this approach is that the

slope and o�set are continuously fed out from the �lter, whereas when using

a least squares �t, a whole sequence of braking or acceleration has to take

place �rst, before the regression can start.

3.3.1 Acceleration

During acceleration, assuming two-wheel drive, the slip can be calculated

using the non driving wheels for obtaining the velocity of the car.

One approach [YHL99] of measuring the force generated by the road

during acceleration is to add engine and transmission output RPM sensors

in addition to a throttle position sensor. The output from these can be

fed into an observer which uses a vehicle/transmission model to output the

friction force.

3.3.2 Deceleration

An alternative approach is to calculate slip from deceleration instead. One

problem that arises is how the velocity of the vehicle can be obtained when

all wheels are signi�cantly slipping due to braking. The solution could be

to design an observer which would use additional sensors, for instance an

accelerometer, to output the velocity. A �rst step in a research project could

be to simply brake with two wheels and use the others to obtain the speed

of the vehicle.

18



Chapter 4

Experimental Setup

4.1 The car

The car that was available for experiments was a red Lincoln Towncar from

1990. This is a big car with ABS system and a V8 engine. The car has

been used in the AHS project and is therefore equipped with hardware for

longitudinal control. There is no lateral control implemented on the car.

4.1.1 Brake system

The brake system in the car is constructed as shown in �gure 4.1. The brake

pedal generates a brake pressure in the master cylinder �uid. Normally, the

outputs from the master cylinder is connected directly to the brakes. In

a car equipped with ABS system, there are two valves between the master

cylinder and the brake. Normally, the build valve is open and the dump

valve is closed. When the ABS unit detects that a wheel is close to locking

up, it closes the build valve, preventing the pressure in the brake to build up

further. The dump valve then opens slightly, which decreases the pressure

in the brake, and the wheel will then start rolling again.

The anti-lock function of the brakes is not used in the experiments. The

dump valve is always closed, but the build valve can be shut o� in order to

switch o� the brakes on selected wheels.

When driving the car with automated control, a brake actuator moves

the piston in the master cylinder, forcing a pressure to build up.

4.1.2 Sensors

Wheel speed sensors

The four wheel velocities are measured by one sensor per wheel. This is the

standard type of sensor used for the ABS system, and it is installed in the

car as standard equipment.
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to LR

to RF

Master cylinder

Build valve

Dump valve

Left front brake

Reservoir

Vacuum booster

to RR

Figure 4.1: Brake system.

The sensor consists of a metal disc with 50 teeth, which is rotating to-

gether with the wheel. When the disc rotates, the teeth will a�ect a magnetic

�eld from a magnet. Depending on if there is a tooth pointing out from the

disc, the �ux will be di�erent. The variation of �ux will induce a voltage in

a coil mounted close to the magnet, and this voltage will have a frequency

proportional to the speed of the wheel. The period time of this signal is

measured for the speed calculations.

Torque sensor

On the left front wheel a torque sensor is mounted, see �gure 4.2. The brake

rotor has strain gauges attached to it, so when there is a torque on the brake

rotor, the strain gauges will give a signal. Because of that the rear wheels

are the driving wheels, there will only be signi�cant torque during braking.

The signal from the torque sensor is proportional to the torque on the

wheel except for a voltage o�set.

The torque sensor is not a good choice for practical use, because it is too

expensive and the way it is implemented on the test car is not suitable for

standard production.
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Figure 4.2: Torque sensor.

Accelerometer

A chassis-mounted accelerometer gives a measurement of the acceleration of

the vehicle.

Brake pressure gauges

There are pressure gauges mounted to the hydraulic brake system, reading

the pressure of the brake �uid at the di�erent brakes.

Engine sensors

In addition to the previous sensors, there are also a couple of engine sensors:

the engine throttle, manifold pressure, engine speed and the gear ratio. These

are, however, not used in this report.

4.1.3 Data acquisition

The data is gathered by a computer in the trunk of the car. The computer

has a number of I/O ports and runs the QNX operating system. Data is

collected with 5 ms sample time.
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4.2 Test track

The test road at Richmond Field Station is a track used for development of

the automatic highways. The track is about 150 m long, and this length is to

be used both for acceleration and braking. The track also has a turn in the

middle, with approximately 70 m straight road after the turn. This means

that to assure only longitudinal forces on the car, all the measurements must

be carried out on the straight part of the track.
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Chapter 5

Chosen Approach

5.1 Choice of slip-based method

Choosing from the methods to determine road conditions described in chap-

ter 3, the one that best suits the experimental conditions should be used.

The slip approach is chosen, because it gives the opportunity to classify the

type of surface without adding any expensive additional sensors.

The idea is based on the assumption that when looking at the slip curve,

the slope at the beginning of the curve contains su�cient information to

give a value of the maximal friction. This method has been experimentally

veri�ed to be able to distinguish between di�erent road conditions [Gus95].

The main work in this project will therefore consist of achieving good

measurements, and processing them so that it is as easy as possible to esti-

mate the slope of the slip curve.

5.2 Choice between acceleration and deceleration

What type of tests should the work be concentrated on? The fundamental

decision that has to be made is whether to only use braking, acceleration

or both. Some force excitation in either direction is necessary to achieve

su�cient slip.

The project had to be concentrated on one of the approaches; looking at

both acceleration and braking would take too much time. The choice fell on

just examining braking. This was partly due to that it is easier to estimate

the friction force when braking, because of its correspondence to the brake

torque. The brake torque can be calculated from the brake pressure, as

described in chapter 8. A torque sensor which is installed in the car is used

to verify the force estimation.

The disadvantage with using accelerations for force estimation is that

many engine and drive train parameters has to be taken into consideration.
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Chapter 6

Experimental Considerations

Given the experimental environment described in chapter 4, how should the

experiments be performed to give the best results?

6.1 Need of reference speed

Getting good slip estimates requires good speed measurements. As seen

in the slip de�nition in equation 2.1, the actual velocity of the vehicle is

needed. If the car brakes with all four wheels, it is impossible to use one

of the speed measurements as the reference speed. All wheels will have slip

to some degree. A choice between the di�erent ways to estimate the real

vehicle speed is therefore necessary:

Use a �fth wheel. This would probably be the best solution during the

development stage. With a light extra wheel, a constant normal force can be

maintained, and radius changes due to pitching of the car can be avoided.

Since the car was not equipped with an extra wheel, this solution could not

be used.

Do not brake with all four wheels. If not braking with the rear wheels,

but just letting them roll free, they will not have any slip caused by friction,

and they can be used as speed reference.

Use a velocity observer. For the �nal version of a road classi�er, the car

has to brake with all four wheels, and an extra wheel is not practical to use

either. The correct speed has to be estimated from di�erent measurements.

To do this an observer could be used that tries to estimate the correct ve-

locity. The automated highways are also equipped with magnets spread out

with a certain spacing in the road. This could also serve as a help for the

observer to estimate the correct speed.
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Which of these three points should be used in our case? The choice fell

on braking with just one pair of wheels, because the car is equipped with a

brake system that allows switching o� the braking on desired wheels. The

�fth wheel was not an alternative to use, and the observer was decided to be

taken care of in the future instead.

6.2 Choice of wheels used for braking

Which wheels should be braking in the experiments? The decision was to

brake with only the front wheels. The front wheels are more important than

the rear wheels during braking, because of the increase in normal force on

the front axis when the car pitches forward. The rear wheels are here only

used as speed reference.

After making the decision not to brake with the rear wheels, another

choice that has to be made is whether to brake with one or two front wheels.

There are advantages with either choice:

Advantages with braking with one wheel

� When the vehicle decelerates, it pitches forward. Braking with only one

front wheel would give the opportunity to use the other front wheel as

a reliable speed reference. Since any changes in the wheel radius would

a�ect both front wheels the same, the radius changes would cancel out

each other in the slip calculations.

� The pitching will be smaller for a given tire friction force, because of

the lower deceleration when braking with one wheel.

� The friction force for the braking wheel corresponds directly to the

force that is decelerating the car.

Advantages with braking with two wheels

� Since both front wheels brake equally, there will not be any yaw of the

car. Since there will not be any lateral forces, there will be no side slip

on the tires.

� It is preferred that the tests are carried out under as realistic conditions

as possible. Normally, the car brakes with all four wheels, which makes

braking with two wheels instead of one wheel the more realistic choice.

� Since the test track was rather short, braking with two wheels would

allow us to reach a higher and more realistic speed without compro-

mising security.
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The absence of lateral forces when braking with both front wheels seems

rather important, and since the tests look more like the real conditions when

braking with more wheels, there are more advantages with braking with two

wheels than when braking with only one. In most of the tests both front

wheels therefore are used for braking.

6.3 Road surfaces

The goal of the project is to distinguish between di�erent road surfaces. Since

the car is an experimental vehicle, not allowed to drive on public roads, the

measurements were restricted to the test track.

The di�erent surfaces that were considered was dry and wet asphalt.

Making tests on snow or ice is not possible in the part of California where

the test track was located. It also turned out that since it does not rain very

often, water had to be poured on the track some times to get a wet road. In

these cases, water was just poured on the part where the car was braking.

The three road surfaces used it the tests are:

� Dry asphalt

� Wet asphalt, obtained by pouring about 275 liters of water over an

area of 120 m2

� Wet asphalt, wet by rain water

6.4 Test pro�les

6.4.1 The need of road force excitation

As described before, there is a need of force excitation to get slip from the

wheels. Because the goal is to look at the slope at the beginning of the slip

curve, the points should be spread out so that �tting a line to the points can

be done with good accuracy. All points should not be placed in the same

part of the plot, because the noise will then be very large compared to the

real excitation in the force and slip axes. Assigning a straight line to points

placed mainly by noise is hard. Considering this, the solution is to have the

force values spread out over many places on the force axis.

6.4.2 Automatic driving

The test vehicle is equipped with automatic longitudinal control. With this

it is possible to tell the car to follow a desired speed pro�le, which includes

acceleration and braking. A typical look of a speed pro�le with automatic

control can be seen in �gure 6.1a. The pro�le includes a ramp acceleration,

a part with constant speed, and a braking part also following a velocity
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Figure 6.1: Example of speed pro�les: a) automatic control, b) cycling with

manual control.

ramp. Ramp braking corresponds to constant deceleration, which means a

constant force. The points in the slip curve plot will then be concentrated to

a certain force value, which will give a bad line �t. This disadvantage with

the automatic control tests made that the work is concentrated on tests with

manual driving.

Since the goal with the AHS is to have fully automatic control, there could

be a contradiction here: should not the tests be under automatic control

when the work is part of an automatic control project? In the automatic

controlled cars, ramp braking is not the most preferable type of braking,

since the comfort of the passengers should also be considered. Therefore,

this will not cause a problem in the later stages of development.

6.4.3 Manual driving

The advantage with automatic control is that the vehicle can be told to follow

the same speed pro�le for di�erent surfaces. This gives the the opportunity

to compare di�erent runs of the same test pro�le.

When driving with manual control, two totally identical tests cannot be

generated. Driving a series of di�erent tests gives good results anyway so

manual driving is used in most of the tests. Variation between the tests can

be achieved by having di�erent velocities and di�erent pressures on the brake

pedal. The type of braking pro�les can be separated in two major areas:
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Plain braking. Here the brakes are applied until the car reaches a slow

speed or stops.

Cyclic braking. The brake pedal is pushed several times, making the de-

celeration vary with time. A typical test can be seen in �gure 6.1b.

Up to 9 s the vehicle accelerates, and the brakes are applied the �rst

time after about 11.5 s.
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Chapter 7

Slip Estimation

Looking at the slip de�nition in equation 2.1, the importance of good speed

measurements can be noted. Since the di�erence is taken between two almost

identical values, all that is left could be the noise if the measurements are

processed in the wrong way.

7.1 Choice between speed measurements

7.1.1 Wheel speed signals

As described in section 4.1.2, the signal from the speed sensor is generated

by electrical induction,

" = �N
d�

dt
; (7.1)

where the �ux � has a frequency proportional to the speed of the wheel.

The formula shows that if the speed is higher, the derivative of the �ux will

be larger, since the time from a top value to a bottom value of the �ux is

shorter. The amplitude of the voltage will therefore be larger at a higher

speed.

The output from the coil is a periodically varying voltage with an ampli-

tude proportional to the speed of the wheel. The time duration for each pulse

is measured with a timing circuit. To prevent noise from the measurements

from trigging the timer more than once per pulse, the signal is connected

through a hysteresis unit. Since the amplitude for low speed signals is smaller

than the amplitude for high speed signals, two di�erent hysteresis bands are

used in parallel. The timer measures how long time a half period of the hys-

teresis output takes, and this result is read as input to the data acquisition

board in the computer.
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7.1.2 The high and divide signals

Since there are two di�erent hysteresis bands, two di�erent input variables

are used in the computer. One is called the high signal, and one the low

signal. The �rst one uses a larger hysteresis band than the latter. The low

signal does not give any results for speeds over approximately 6 m/s, so

this sensor is not useful for us at all. This signal is mainly used for having

good control over the start and stop maneuvers of the Automated Highway

System. In this work only speeds over 5 m/s are considered.

When the speed is even higher, the time for each tooth pulse gets shorter,

and the accuracy of the measurements gets worse. In the timer circuit there

also is a circuit that divides the pulse frequency with a factor of ten. Since

the time period in to the timer will consist of ten tooth pulses, the time will

be averaged and the results probably better at higher speeds. This speed

measurement is called the divide signal.

7.1.3 Improving the divide signal

The divide signal is updated every ten teeth on the wheel, which means �ve

times per wheel rotation. One problem is that all four wheels update the

data values independently. If one wheel is a little bit smaller, or if the road

turns, there will be a di�erence in time between the new values. During the

time between two sample values, the signal keeps the old value. This makes

it hard to compare the speed from two di�erent wheels, since the two speed

values are based on two di�erent time intervals.

The shape of the divide signal is stair-like, since its update frequency

is smaller than the sampling frequency. Only the �rst value in a row of

consecutive samples gives new information about the speed of the wheel. The

other following samples based on the same measurement should be discarded.

Each new value of the divide signal comes after the period it is averaged

from. To get the sample time right, this sample should be moved to an

earlier time so that it is in the middle of the corresponding time interval. It

is possible to calculate the length of this time interval in number of samples.

If the car is driving at speed v, the period time for one wheel rotation is

Tw =
1

f
=

1
!

2�

=
2�
v

r

=
2�r

v
: (7.2)

Since there are 50 teeth per wheel and the divide signal is made up of 10

teeth, the number of samples per value of the divide signal is

N = 10
Tw=50

Ts
=

Tw

5Ts
=

2�r

5Tsv
; (7.3)

where Ts is the sampling interval.

Moving the point half this number of samples earlier in time and con-

necting the points with straight lines gives an approximation that better
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Figure 7.1: Modifying the divide wheel speed signal. The unmodi�ed signals

dashed and the modi�ed signals solid. The upper two lines are the right

wheel and the lower two are the left wheel.

corresponds to the actual speed, without time delays. Look at the solid lines

in �gure 7.1.

7.1.4 Comparing the accuracy of di�erent measurements

After making these adjustments to the divide signal, which signal to use is a

question to be answered. Perhaps both of them could be used in some way.

When plotting the both signals together, the high signal seems to have a

higher value. This can be explained by that the timer can only count whole

time intervals. Since many small intervals can add up into one whole clock

tick, the divide signal will in average measure a longer time, which will give

a lower, but more correct, speed. See �gure 7.2 where the shaded areas are

not included in the timer measurements. Since the timer only measures

the time of the high part of the pulses, the speed measurements will be

depending on the duty cycle of the pulse signal. The divide measurement is

averaged from both high and low values of the pulses, and this explains also

why there is a di�erence between the measurements. The conclusion is that

it is necessary to use the same type of measurement the whole time, since

switching between the two types could introduce problems caused by o�sets.
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Figure 7.2: Estimating the frequency by measuring the half-period time.

Note the shaded areas which are missed due to the frequency of the timer

tick.

7.1.5 Choice of which measurements to use

The advantage with using the divide signal is that it has a smaller level of

noise. It is also built up by several consecutive teeth, a method which gives a

rather good averaged value. The disadvantage is that the signals for di�erent

wheels are asynchronous to another, and have a certain time lag. This could

be corrected, as shown above.

The reason to use the high signal is that it is updated every sample

interval. All teeth are however not measured, since the tooth frequency is

higher than the sampling frequency. This makes it impossible to �nd ten

consecutive teeth to average over.

Example 7.1.1 Assume that the vehicle speed is v = 15m=s. The angular

velocity of a wheel will then be ! = v

rw
, which corresponds to a pulse frequency

of f = 50 !

2�rw
= 50�15

2��0:33
Hz = 362Hz, which is faster than the sampling

frequency of 200Hz. Therefore it is impossible to get the time period of each

tooth to make an averaging over consecutive samples. 2

The choice fell on using the divide signal as the source of our speed values.

It is more important to have a low noise value than to have a lot of di�erent

samples. The classi�er is not dependent of a high sampling frequency as a

control algorithm is. The best way to use the existing car sensors would

probably have been to modify the averaging algorithm in the hardware and

timer board, so that all wheel signals always were averaged over the same

time interval.

7.2 Noise characteristics

How could the noise in the speed signals be reduced? Especially in the high

signal, there is signi�cantly high noise. Using some kind of frequency �ltering
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is a natural approach to start with.

Looking at the frequency for the di�erent wheels, it can be noted that

the noise spectrum does not have the same look for all tests. The di�erent

wheels also show di�erences in noise characteristics. The two front wheels

typically have noise that has its highest values in the region below 40 Hz,

whereas the rear wheels do not show this low frequency concentration. In-

stead, sometimes there exists a higher noise frequency for the rear wheels.

One possible explanation of the noise could be that it is caused by ir-

regularities in the wheel radii. This type of noise would have a frequency at

the same frequency as the wheel angular velocity, or overtones of that. Such

kind of frequencies could not be concluded to be especially visible, so other

types of noise are also present.

There are probably other vibrations and oscillations in the car, causing

noise in the wheel speed sensors. The low frequency components for the

front wheels, up to 40Hz = 2400 rpm, can for example be caused by engine

vibrations.

Is it then possible to �lter the speed signals to get rid of the noise? Using

a low pass �lter gave the results that all high frequency components were

removed, but low frequency oscillations were still visible, both in the �ltered

wheel speed signals and in the slip values. Using a low pass �lter would also

require a quite high order �lter, and the long impulse response of such a

�lter gives a very smoothed out look of the slip data.

The conclusion is that a high order low pass �lter is not useful for �ltering.

Since �tting a line through data points can be done even if the points are

somewhat spread out, but not as easy if the points follow some low frequency

oscillation, low pass �ltering could only be used to take away some of the

highest noise frequencies.
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Chapter 8

Road Force Estimation

The slip curves consist of both a slip axis as well as a normalized friction

force axis. It is therefore essential to have reliable information about the

friction force that is acting on the road during a braking sequence.

8.1 Using acceleration

Assuming no aerodynamic drag or rolling resistance, the resulting force on

the car during deceleration will only consist of the force acting on the braking

wheels, according to X
braking
wheels

F = ma: (8.1)

The acceleration can be acquired by di�erentiating the wheel speed mea-

surements, however this method does not work particularly well when the

speed measurements are quite noisy in the �rst place. Another way to get

the acceleration would be to use an accelerometer, which has the drawback

that it requires an extra sensor.

8.2 Using brake pressure

Any car equipped with hardware for automated control would need brake

pressure sensors, so using the brake pressure sensors for obtaining the road

force would not introduce any additional costs. The brake pressure, pb, is

related to the brake torque, �b, according to

�b = �Kbpb sign(!): (8.2)

However, this simple model is not always valid. The brake pads are held

back from the brake disc with a spring. Thus, it takes a certain force to

move the brake pads the distance to the disc surface. This means that there

is an o�set in the term above.
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The parameter Kb, which describes the scaling between the pressure

and the torque, is varying. This is caused by for example di�erences in

temperature and how worn out the brake pads are. To get a good estimate of

the brake torque, Kb has to be adapted. An algorithm is being developed by

members of the research group at PATH to adaptively estimate Kb without

the need of any extra sensors. With this in mind, we used the measurements

of the torque sensor to get a value of Kb by dividing the brake torque with

the brake pressure. One of the goals of this project was to minimize the use

of non-standard sensors, such as for instance the torque sensor. Although,

bearing in mind that the adaptive algorithm was being developed, the torque

sensor would only be used during the development stage of the project and

could be replaced by the adaptive algorithm further on.

The brake torque is related to the road force by

J _! = �b � Froadr; (8.3)

were r is the radius of the wheel. Once the road force, Froad, is calculated, it

needs to be normalized by the normal force, N , acting on the actual wheel.

The normalized road force, �, will then become

� =
Froad

N
: (8.4)

Since the normal force is not equal on all wheels during deceleration, the

force acting on the front wheels will be larger than the force acting on the

rear wheels. The normal force on the front wheel axle is given by [Gil92]

NFront =

mg

2
LR �

ah

g

L
(8.5)

where m is the mass of the car, g the gravity constant, a the acceleration,

h the distance from center of gravity to the ground, L the distance between

the two wheel axles and LR is the distance between center of gravity and the

rear wheel axle.
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Chapter 9

Classi�cation Part I

This chapter consists of the di�erent methods used for classifying the �rst

set of test runs. As our methods became more sophisticated, new tests were

also acquired, described in Chapter 13.

9.1 Initial tests
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Figure 9.1: Slip curve for a typical test run

The tests mainly consisted of manual driving of the car and plain braking.

Due to the limitations in weather in California our tests at this stage consist

only of driving on dry and wet pavement, where the wet pavement was
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acquired by pouring large amounts of water on the track.

Since the wheel-speed measurements have a lot of uncertainly for speeds

below 5 m/s, those parts were cut o� from the raw data. Anything else

besides strictly braking was also removed from the data.

A typical test run with the car would generate raw slip-curve data ac-

cording to �gure 9.1. The o�set in the slip axis is due to radii di�erences

between the front and rear wheels. Even if it is not very obvious in the

mentioned �gure, it can be noted that the slip slope seemed to be �atter for

low � values, and steeper for high � values.

9.2 Linear curve �tting

9.2.1 Least squares �tting of a line

The simplest way to classify the di�erent surfaces would be to do a least

squares �t to the data. Such a classi�cation is shown in �gure 9.2. It does

not seem possible to draw any conclusions about the road surface by looking
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Figure 9.2: Least squares �t for slip curves for wet (solid) and dry pavement

(dotted).

at the slope of the least squares �ts. The line �ts to the data can have the

completely wrong slope, making this �rst approach not a very suitable one.

When braking with a rather constant brake torque, as done in these tests,

the slip data will correspond to a certain value of normalized friction force.

In theory there would be just a point in the slip curve, but since the speed
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measurements are rather noisy, the slip data are spread out. Since the noisy

slip data is not equally spread out along the � axis, there will be an uneven

weighting of the data. In an arbitrary test run, a majority of the slip data

will correspond to an interval covering only a small percentage of the � axis.

Since the least squares method minimizes the squared distance from the line

�t to the data, this will cause the �t to be poor.

9.2.2 Averaging over the slip axis

The friction force data is much less noisy than the slip data, i.e. for a small

interval of the friction force there is a large spread of slip values.

The � axis is divided into several bins, where the slip values are averaged

for all points in each bin. This leads to that for a certain test run, there

will only be one value of slip for each bin in the force axis. By doing a

least squares �t to this data, all points along the force axis will be equally

weighted, as opposed to in the previous methods. Several wet and dry tests

averaged according to the procedure described are shown in �gure 9.3. Even

if the slopes of the slip curves sometimes obviously are wrong, it seems to
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Figure 9.3: a) Data from several test runs using the averaging method for

wet (circles) and dry pavement (dots). b) Least squares �ts to the data in

a). Wet corresponds to solid lines, dry to dotted lines.

be possible to di�erentiate between the dry and wet pavement based on the

slope of the least squares �t.
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9.2.3 Calculating the o�set before the slope

A method that supposedly would solve the problem of getting strange slopes

for the �ts was also investigated. The averaging method described in the

previous section is still used. The idea is to �rst calculate the o�set in the

slip during coasting, and then during braking, subtract the o�set from the

slip. The least squares �t would be forced to go through the origin, hence

only estimate the slope. As seen in �gure 9.4 the result is still not very
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Figure 9.4: Least squares �t for wet (solid) and dry pavement (dotted),

where the slip o�set �rst was calculated and then taken into account.

satisfying. The reason for this is mainly because of the loss of information

during the two steps. A better approach would be to calculate the slip and

o�set at the same time, as done in Chapter 11. It seemed as if the o�set

calculations introduced some uncertainty, especially for the tests that did

not have su�cient time of coasting before braking.

9.3 Curve �tting to functions capturing the slip

curve essentials

Instead of �tting a line to the ��� data, a function that captures the shape

of a slip curve could be used instead. The parameters of the function would

then be �tted to the data using the least squares method. The idea would

be to use the parameters of the function to distinguish between di�erent
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road surfaces. Naturally this implies that there is a similarity between the

parameters for a certain road surface.

9.3.1 Using the Pacejka�Bakker tire model

The Pacejka�Bakker Magic Formula, (equation 2.3), is an empirical tire

model that can be used for generating slip curves. Since the Magic For-

mula is nonlinear, an approximation,

�1 � e
��2�

� �(�3�+�4); (9.1)

was used instead. After taking the logarithm of equation 9.1 we end up with

a function that is linear,

ln �1 � �2�+ (�3�+ �4) ln�: (9.2)

When this method was evaluated, the curve �ts followed the data quite well

in the beginning, but beyond the area from which we had samples, the curve

�ts went either to in�nity or zero. However, it seemed to be no similarity for

the parameters for the same surface. Hence, this method was not successful

in classifying di�erent road surfaces.

9.3.2 Using a polynomial

Since the previous method might have gone wrong because of the complexity

of the Magic Formula, a simpler approach was investigated. A polynomial,

y = k
s

ax2 + bx+ 1
; (9.3)

which captures the behavior of the slip curves with appropriate values of the

parameters, k, a and b, was used.

The result from this was similar to the results when using the Magic

Formula. It was not possible to use the parameters to distinguish between

road surfaces.
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Chapter 10

Simulation Model

The experiments in chapter 9 showed that there was a chance to distinguish

between di�erent road surfaces by looking at the slope at the beginning of the

slip curves. To further improve the estimation and classi�cation methods,

it would be nice to have a simulation model that could generate data for

the algorithms. The goal is to make the simulation model produce the same

type of output as the measurements from the car.
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Figure 10.1: Top diagram of the simulation model.

A simulation model was built in Simulink for use in the further work. The

model simulates a car driving on a long straight road, since the experimental
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work only included braking on the straight part of the track. The model

does not include any lateral forces at all, and can be considered as a half-car

model.

10.1 Top level model

Normally, a half-car simulation model has two wheels, but this model works

with two front wheels and one rear wheel. This is because it should be

able to simulate braking maneuvers with just one of the front wheels. The

lateral forces generated in these operations are not modeled at all, but the

idea was to still keep the opportunity to see how the free-rolling front wheel

is a�ected when the other wheel is braking. There are changes in normal

force during deceleration, which could a�ect the radii of the front wheels. A

block diagram of the model is shown in �gure 10.1. There are three identical

objects, two representing the front wheels and one representing the rear

axle. The suspension block models the pitching of the car and distribution

of normal forces which is described later. The F signals coming out from the

three wheel blocks are the road forces, which are added together to give the

acceleration of the vehicle. There is also an opportunity to include rolling

resistance and drag force as a function of velocity in the Road loads block,

see section 10.4.

10.2 Wheel modeling

The three identical wheel objects consist of the dynamics for the wheel ac-

cording to �gure 2.4. The Simulink block for the wheel is built up as shown

in �gure 10.2. The block with the slip formula calculates the slip value,

F

Slip curve
r

-

1

J

1

S

!

� = v�!r

v

�

N

v

Figure 10.2: Simulation block of one wheel.
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based on the angular velocity of the wheel and the velocity of the vehicle, a

signal coming from the top level of the model.

The block marked �Slip curve� is a prede�ned slip curve used in the

simulation. The slip curve is selected depending on the type of surface the

test should simulate.

10.3 Suspension modeling

To include the pitching behavior of the car, a model of the car suspension was

made, see �gure 10.3. The approximations sin � � � and cos � � 1 has been

made both in the picture and in the following equations. This model has

two degrees of freedom. One is � for the pitch of the car, positive when the

front is higher. The other is z, which together with the constant h describes

the distance from the center of gravity, CG, to the ground.

�

LR

FF FR

h
+
z
+
L
F

�

h
+
z
�

L
R

�

LF

NF NR

Mg

CG

Figure 10.3: Suspension model.

According to �gure 10.3, the equations of motion can be written as

�� =
1

Jc
(FF (h+ z + LF �) + FR(h+ z � LR�) +NFLF �NRLR) (10.1)

�z =
1

M
(NF +NR)� g; (10.2)

whereM is the mass of the car, JC is the pitch moment of inertia, and g the

gravity constant.

47



10.4 Decelerating forces

Road force generated by the brake torques is not the only force decelerating

the car. Also other forces can be modeled.

10.4.1 Rolling resistance

According to Gillespie [Gil92], the total rolling resistance Rx for the tires

can be modeled as

Rx = (0:0041+ 0:000041vmph)ChW = (0:0041+ 9:225 � 10�5vm=s)ChW;

(10.3)

where W is the weight of the vehicle and Ch is the road surface coe�cient,

Ch =1�1.5 depending on road surface.

10.4.2 Drag force

The drag force can be calculated [Gil92] as

DA =
1

2
�v2CDA; (10.4)

where CD=0.3�0.6 is the aerodynamic drag coe�cient, � � 1:225 kg
m3 the

density of the air and A the frontal area of the car.

10.4.3 Implementing a simulation model

These two forces are modeled in the Road loads block in �gure 10.1, together

with some extra force corresponding to engine and drive train braking force.

The value of this force is determined by looking at measurements from the

vehicle and estimating the braking force.

10.5 Running the simulations

The purpose with the simulations is not to give exactly the same outputs as

the experimental measurements. This is too hard to achieve, because then

all physical constants in the model has to be known exactly. The goal is to

make the simulation model generate data having the same over-all properties

as the experiments.

At startup the simulation model is given some initial values, such as a

speci�ed constant velocity. Equilibrium values of � and z are also calculated,

making sure there are no initial oscillations before any forces are applied.
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10.5.1 Braking input

What will a�ect the result of the simulation is what brake torque the driver

block in �gure 10.1 gives. To give as realistic look as possible of the speed

pro�le, a real measured sequence of brake pressure samples from an experi-

mental run is used to generate the brake torque. This makes the output of

the simulation look very much like the output from the test vehicle. The

other alternative would have been to tell the simulation to follow a prede-

�ned speed pro�le, but since manual control is used in the real test runs, the

same input was wanted for the simulation.

10.5.2 Simulation of di�erent surfaces

As mentioned in the description of the wheel model, di�erent surfaces are

simulated using di�erent ��� characteristics in the wheel block.

If the simulation will include hard braking, a more complete slip curve

with a peak has to be used. Since the slip and friction forces should be

kept at low values in the tests and the braking is not close to skidding, it

is possible to use a linear slip curve without a peak value. This is done

by multiplying the normalized friction force with a slope constant. When

simulating di�erent road surfaces, di�erent constants are used.

The experiments also showed an o�set in the slip curves. In the simu-

lation model, this is generated by varying the ratio between the front and

rear wheel radii. If the front wheels are made slightly larger than the rear

wheels, they will rotate slower and give the impression of that there is slip

even during normal driving.
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Chapter 11

Recursive Slip Slope

Estimation

The way the slip slope has been estimated previously in this report required

that the brakes were applied �rst and then the slip slope could be calculated

afterwards using the collected slip data. It would be more realistic if the

slip slope could be continuously fed out from a �lter during braking. The

method, originally proposed by Gustafsson [Gus95], used in this chapter

can recursively calculate the o�set and the slip slope simultaneously using

a Kalman �lter. The approach is experimentally veri�ed by Gustafsson to

distinguish between dry, icy and snowy roads.

11.1 Model

As mentioned in section 2.1.4 the slip is not zero when the friction force

is zero. This o�set is slowly time varying compared to the slip slope and

not correlated with the friction for the tire�road interface. The relationship

between the normalized friction force and the slip is denoted by

� = k(�� Æ) (11.1)

where k is the slip slope and Æ the o�set. The goal is to produce estimates

of both k and Æ simultaneously. Rewriting equation 11.1 as

� = �
1

k
+ Æ; (11.2)

results in getting an expression which gives us an easier �ltering problem.

This is since kÆ varies much faster than Æ. Naturally it is easier to track

parameters which are slowly changing than the other way around.

The state space model used for the linear regression is an extension of

equation 11.2 according to

x(t + 1) = x(t) + v(t)
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y(t) = C(t)x(t) + e(t) (11.3)

where the state vector is de�ned as

x =

 
1

k(t)

Æ(t)

!
: (11.4)

The measurement is the slip and therefore, according to equation 11.2, C

becomes

C(t) =
�
�(t) 1

�
: (11.5)

Note how the model assumes that the slip slope and o�set do not change

over time except for the addition of the process noise v, i.e. the model varies

like a random walk. Both v and e are considered to be independent random

white noise stochastic processes.

11.2 The Kalman �lter

11.2.1 The general case

Given the discrete time system

x(t+ 1) = �x(t) + �u(t) + v(t)

y(t) = Cx(t) + e(t); (11.6)

the Kalman �lter produces the optimal, in the minimum variance sense, esti-

mates to the state vector. The Kalman �lter uses measurements up to time t

to estimate the states at time t. Assuming that the cross correlation between

the process noise and measurement noise is zero, which is a good assumption

in most applications, the �lter is given by the following equations [ÅW97]:

x̂(t j t) = x̂(t j t � 1) +Kf(t)(y(t)� Cx̂(t j t� 1)) (11.7)

x̂(t+ 1 j t) = �x̂(t j t) + �u(t)

= �x̂(t j t � 1) + �u(t)

+K(t)(y(t)� Cx̂(t j t� 1)) (11.8)

where the Kalman gain and the Riccati equation are given by

Kf(t) = P (t j t� 1)CT(CP (t j t � 1)CT + R2)
�1 (11.9)

K(t) = �Kf(t) (11.10)

P (t+ 1 j t) = �P (t j t � 1)�T +R1

�K(t)(CP (t j t� 1)CT + R2)K(t)T (11.11)

P (0 j �1) = R0 (11.12)
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where R1 and R2 are de�ned as the covariance matrices for the process noise,

v, and the measurement noise, e, respectively. R0 is denoted the variance

of the initial value of the states, i.e. R0 = Var fx(0)g. Note that the matrix

R2 + CP (t j t � 1)CT must be positive de�nite for the Kalman �lter to

provide the correct estimates.

11.2.2 The recursive slip slope estimator

The equations for the Kalman �lter can be simpli�ed when they are being

used for estimating the state vector of the recursive slip slope estimator.

The cross correlation between the process noise and the measurement noise

is assumed to be zero. � is equal to the identity matrix and there is no input,

u, in our system. This results in that K = Kf and x̂(t + 1 j t) = x̂(t j t).

The simpli�ed equations for the Kalman �lter turns out to be:

x̂(t j t) = x̂(t� 1 j t � 1)

+K(t)(y(t)� C(t)x̂(t� 1 j t � 1)) (11.13)

K(t) = P (t j t � 1)C(t)T

�(C(t)P (t j t� 1)C(t)T + R2)
�1 (11.14)

P (t+ 1 j t) = P (t j t � 1) +R1

�K(t)(C(t)P (t j t � 1)C(t)T +R2)K(t)T (11.15)

P (0 j �1) = R0 (11.16)

There was a trade o� between fast convergence of the Kalman �lter and

good accuracy. A small value for the diagonal elements of R1 corresponds to

accurate values of the slip slope and o�set, but also slow tracking capabilities,

and vice versa. Since the slip slope was more rapidly changing than the o�set,

it was important that the �lter would be able to track the fast changes in

the slip slope, whereas it would weight accuracy more heavily compared

to speed for the o�set. This was achieved by choosing the element in R1

corresponding to the slip slope to be large compared to the one referring to

the o�set, which would be relatively small. The covariance matrices were

manually tuned in this fashion to get the best possible performance of the

�lter.

When selecting the di�erent parameters, the simulation model was used

to evaluate the �lter. The simulation model generated certain slip data with

known slip slope, and the Kalman �lter's estimation of the slip slope was

compared to the known one. Slip curves that suddenly changed slope were

also generated by the simulation, in order to see how the tuning of the �lter

would a�ect its tracking capabilities.
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11.3 Decision variable

As mentioned before, the Kalman �lter outputs a continuous �ow of slip

slopes in real time. In order to classify our di�erent test runs, each of those

needs to be assigned a decision variable. Since the �lter generates many

values of slip slope during the course of a test run, one approach would be

to pick one of these slopes. The decision variable is chosen to be the value

of the slip slope slightly below the maximum friction force.

Once the friction force has reached its peak, the slip corresponding to that

value tends to be quite noisy. This would make the slip slope for maximum

normalized road force a bad choice of decision variable. Accordingly, choosing

the slope slightly below the maximum friction force seems to be a good choice

since we then capture the information generated by the Kalman �lter, and

the force has not yet saturated.

Another approach could be to divide the � axis into several bins, and

then average the slip slopes corresponding to the actual � values and put

the result into the bins. This is the same principle as used to average the slip

for the slip curves, but the di�erence is that the slip slopes now are estimated

by the Kalman �lter. The slip slopes corresponding to the di�erent bins can

then be averaged, resulting in a single decision variable for each test run.

This method was examined, but was not found to produce equally good

results as the previous method mentioned.

11.4 Di�erences to previous work

When driving on a dry road into a patch of ice, the slip slope will go from

a high to a low value almost instantly. The Kalman �lter will be too slow

to track the sudden change of slip slope. In order to be able to detect

the sudden changes in road conditions, Gustafsson used an abrupt change

detector which would change the covariance matrices for the Kalman �lter to

weight speed higher than accuracy when the slip slope changed drastically.

We did not implement the abrupt change detector due to di�culties setting

up two di�erent road surfaces on the rather short track available for tests.

Instead of using the continuous stream of slip slopes that the �lter out-

puts, we used one value as decision variable. Once again, since the track

was quite short, it was not possible to take tests that lasted for very long.

This made it possible to assume that the slip slope was constant during the

deceleration, resulting in one decision variable.

Gustafsson used acceleration to examine slip, when deceleration was used

in our case. The test surfaces consisted of snow and ice in addition to wet

and dry asphalt. He could not distinguish between wet and dry asphalt,

except for one extremely wet road.
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Chapter 12

Elastic Wheel Observer

In the slip plots in chapter 9, it was noted that the slope of the slip curve

was smaller in the beginning, with smaller � values, than in the end. When

the brakes are released, the slip values decrease much in the beginning, and

have a smaller slope in the top of the slip curve. When looking at a cycling

test, where the brakes are applied and released several times, the plot has a

circular look, that can be seen in �gure 12.1.
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Figure 12.1: Example of a test generating a cycling look of the slip curve.

Since the goal is to estimate the slope of the slip curves, a straight line

should be �tted through the slip curve plot. If the �gure just contains circles

rather than points ordered as a straight line, assigning a correct line will be

very di�cult to do.
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12.1 Modeling the behavior

The circular look of the plot must be removed somehow. To do this, a model

that includes the look should be developed.

12.1.1 Function of the vehicle speed

The idea that the speed of the vehicle explains the di�erences in slope can be

discarded since the cycling tests, where the brake torque is applied several

times and at di�erent velocities have the same circular look for each brake

period.

12.1.2 Change in tire radius

A possible reason is that the radius of the wheel changes during braking.

When the brakes are applied, slip will build up due to the road force. When

the car then pitches forward, the tires will be compressed to a smaller radius.

This makes them roll faster and the increase of slip will not be as high as it

was just after the brakes were applied. When the brakes then are released,

the wheel will start to roll faster again, but will slow down a bit when the

car pitches back, making the wheel radius increase again.

This model has not been examined further, since the following described

model seemed to work well.

12.1.3 Elasticity of the wheel

An idea is that the wheel elasticity gives the look of the curve. Assume that

the tire and the rim are connected together by some elastic binding. When

the brakes �rst are applied, the rim which is connected to the brake disc

will start to slow down �rst, before the tire reacts. This is illustrated in

�gure 12.2a-c. Wheel a in the �gure is a wheel during free rolling. In �gure

a b c d e

braking braking

Figure 12.2: A braking maneuver with an elastic wheel.

b the brake is applied. This makes the inner rim slow down but the tire

does not react immediately. There will be an increasing angular di�erence

between the tire and the rim. This di�erence will reach a steady value which
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is shown in �gure c, where the tire and rim once again rotate with the same

speed.

When the brake is released, the rim will notice this change in torque

before the tire. Therefore, the rim will rotate faster compared to the tire,

�gure d, making the angular di�erence decrease. Finally, the case in �gure

e is achieved, which is the same as in �gure a, with no di�erence in angle or

speed between the tire and rim.

A model of the wheel can now be designed. Assuming that the tire and

the rim are two solid parts, connected together with a spring and a damper,

the model in �gure 12.3 can be drawn. The force between the two parts is

Froad

't

'r

!r

r
t

r
r

!t

Ftr

�

Figure 12.3: Model of the elastic wheel.

assumed to have one part proportional to the di�erence in angles between the

tire and rim, and one part proportional to the derivative of this di�erence,

Ftr = K0

tr('r � 't) + C0

tr(!r � !t): (12.1)

This force generates together with the brake torque and road force torques

on the two wheel parts,

Jr _!r = � � Ftrrr (12.2)

and

Jt _!t = Ftrrr � Froadrt: (12.3)

To simplify the expression, the rim radius rr can be included in the damper

and spring constants, as

Ktr = K0

trrr ; Ctr = C0

trrr: (12.4)

Introducing a state vector containing the angle and angular velocity for
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the tire and rim gives the state space model0
BBB@

_'t
_!t
_'r
_!r

1
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�
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't
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'r
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As seen in the model, the only output from the system is the !r state,

because the rim speed is the only value that could be measured.

12.2 Simulation of the model

To test the validity of this model, the dynamics was added to the simulation

model described in chapter 10. The simulation block in �gure 10.2 was

changed according to equation 12.5 to include the dynamics described above.

The model introduced new constants, such as Ktr and Ctr. These values

were manually tuned to make the simulation model produce results similar

to the measured data from the vehicle.

The slip plots produced from the output data of the simulation showed

a look similar to the real measured data. Since the results look so much the

same, the model was considered fairly correct.

12.3 Observer

The wheel speed sensors measure the speed of the rim, but to calculate the

slip of the wheel it is more important to know the speed of the tire, since the

contact area between the tire and road is the place where the friction force

acts.

It would be useful to get an estimate of the angular velocity of the tire

based on measurements from the rim. To do this, an observer is used, that

tries to estimate the state variables in equation 12.5. The observed value of

!t is then used in the slip calculations.

Assuming the system

_x = Ax+Bu

y = Cx; (12.6)
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an observer based on the error of the output can be designed as

_̂x = Ax̂+ Bu+K(y � ŷ): (12.7)

The error of the observed states is de�ned as

~x = x� x̂: (12.8)

Rewriting x̂ as x̂ = x � ~x and using equation 12.7, gives

_x� _~x = Ax�A~x+ Bu+KC~x; (12.9)

which can be simpli�ed to

_~x = (A�KC)~x: (12.10)

It can be noted that the eigenvalues of the matrix A � KC describe the

convergence of the observations.

12.3.1 Observability and convergence

A check if the system is observable shows that the observability matrix

Wo =

0
BBB@

C

CA

CA2

CA3

1
CCCA (12.11)

does not have full rank and the system is therefore not observable. If the

system is detectable, the unobservable states decay to the origin, and their

corresponding eigenvalues are less than zero.

The unobservable states are speci�ed by the null space of the observabil-

ity matrix Wo,

null(Wo) =

0
BBB@

1

0

1

0

1
CCCA : (12.12)

This shows that the �rst and third states, corresponding to the tire and rim

angles, are unobservable.

Using Maple to determine the eigenvectors for the A�KC matrix gives

the results in table 12.1. Some of the expressions for the eigenvalues and

eigenvectors are too complicated to write, and are replaced with �i and vij .

One of the eigenvalues is always locked to zero, which means that there

will be no convergence in the direction of the corresponding eigenvector.

Since this direction is built up by the two unobservable states, these states

do not decay to the origin and the requirements for detectability are not

met.
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Eigenvalue Eigenvector

0 (1; 0; 1; 0)

�2 (v21; v22; 1; v24)

�3 (v31; v32; 1; v34)

�4 (v41; v42; 1; v44)

Table 12.1: Corresponding eigenvalues and eigenvectors for the observer ma-

trix A�KC.

What can be noted when looking at the eigenvector corresponding to

the eigenvalue zero, is that this eigenvector is linearly independent of the

second and fourth states, which are the states corresponding to the angular

velocities. The only interesting output from the observer is the tire speed !t,

and the error in this estimate will converge independently of this eigenvalue.

The eigenvector (1; 0; 1; 0) has also equal values in the �rst and third

state, which means that the steady state error will have the same value for

both the tire angle and the rim angle. Taking the di�erence between these

two values will remove the error, so the di�erence can always be estimated

correctly.

12.3.2 Modi�cation of the observer

Since it is possible to estimate the di�erence between the two angles, and

the absolute values of the two angles are not interesting, it is not necessary

to have to two separate states for the two values. Here a modi�cation of the

observer is made, that uses a state for the di�erence between the two angles.

Let ' describe the di�erence,

' = 'r � 't; (12.13)

and the state space model will become0
B@ _'

_!t
_!r

1
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0
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0 �1 1
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Jt
�
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Jt

Ctr
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�
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+
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0 0
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1
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0 1
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�

!

y =
�
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�0B@ '

!t
!r

1
CA : (12.14)

The observability matrixWo for this system has full rank, and the system

is therefore observable. Also, none of the eigenvalues for the matrix A�KC

is locked to zero.
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Since this simpli�cation results in better properties for the observer, it is

the better alternative to use.

12.3.3 Discretizing the model

Continuous time has been used when determining which model was the better

to use. Since discrete time must be used when implementing the observer,

the system in equation 12.6 was discretized using zero order hold in Matlab.

The discrete time system is then described by

x(t+ 1) = �x(t) + �u(t)

y(t) = Cx(t): (12.15)

12.3.4 Kalman gain for the observer

The continuous time observer in equation 12.7 has a discrete time equiva-

lence in equation 11.8. In order to use Kalman gain for the observer, the

discrete time model has to be expanded with process and measurement noise,

according to equation 11.6. The noise processes were assumed to be inde-

pendent of each other, resulting in that the correlation matrix between the

process and measurement noise is equal to zero. The Kalman gain is com-

puted according to the equations in section 11.2.1, and then used in the

discrete time observer. The covariance matrices were manually tuned to get

rid of the circular look of the slip curves.

12.3.5 Verifying the observer

Running the observer requires input vector

u =

 
Froadr

�

!
: (12.16)

The brake pressure multiplied with the estimated value of Kb is used as the

torque � . The road force Froad is calculated based on equation 2.4.

Running the observer with output from the simulation model produced

slip curves again looking as straight lines. This was expected, since the

observer was based on the same model as the simulation.

When the observer was used with experimental data, the circular look

that existed in the beginning was signi�cantly decreased. Figure 12.4 shows

the same test as in �gure 12.1 after the data has been �ltered through the

observer. As can be noted when comparing the �gures, the circles of the

slip curve are much smaller and it is easier to �t a line through the points

to estimate the slope of the curve.
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Figure 12.4: Slip curve calculated using observer output.
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Chapter 13

Classi�cation Part II

Chapter 9 describes the slope estimation of tests taken on dry roads and

some taken when water was poured on the pavement. This chapter also

looks at some new tests that were carried out, some taken after it had been

raining on the road. There are also some new tests with water poured on

the road, that did not exist in chapter 9.

The improved algorithms, such as the recursive slope estimation and the

elastic tire observer, are in this chapter combined and used for estimating

the slope of the surfaces and making a classi�cation between them.

13.1 Putting it together

Recursive

estimation
slip slopeKb

slip

CalculateElastic wheelModify divide
speed signal observer

road force
Calculate

v pb

�

road force
Normalize

�

Decision

1

k

Classi�er

Figure 13.1: Block diagram for the data path from measurements to classi-

�cation.

When all parts of the data processing are put together, the block diagram

in �gure 13.1 can be drawn. The �gure shows the data path from the car
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measurements to the value of the slope at the beginning of the slip curve.

A classi�er then takes this value and compares it to a threshold in order to

make the decision of what kind of surface the road has.

13.2 Results

In the tests, the road surfaces are divided into four di�erent categories, see

table 13.1. The reason the Poured1 and Poured2 categories exist is that

Poured1 The tests with poured water used in chapter 9

Poured2 New tests with poured water on the road

Rain Tests after a night's rain, taken when it still was raining

Dry Dry asphalt

Table 13.1: Categories of road surfaces.

they were carried out with a large time interval, and possible di�erences

between them could be studied. Taking these test runs as input to the

data processing algorithms gives a series of slope values, where each value

corresponds to one test. In �gure 13.2 the results are shown for di�erent

surfaces. Since the recursive slope estimator works with the inverted slopes,
1
k
, these value are shown in the plot. This makes a line with a low slope,

that is leaning to the right in the slip plot, have a position to the right in the

�gure. Looking at the �gure, it can be noticed that the spread between the

−0.01 0 0.01 0.02 0.03 0.04 0.05

Dry

Rain

Poured2
Poured1

1/k

Figure 13.2: Inverted slope for di�erent surfaces.

rain tests is quite small, as well as between the Poured2 tests. The spread

between the dry tests is larger, partly because they were taken at a number
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of occasions. When looking at the mean value of the di�erent tests, the

dry and rain tests seem to have approximately the same slope, making the

surfaces impossible to distinguish between. The big di�erence is achieved

when comparing the tests with poured water to the other surfaces, since the

Poured1 and Poured2 tests seem to have a smaller slope.

It can look strange that there is a big di�erence between the road with

rain and the road with poured water. The tests marked Rain were taken

after a whole night of raining. The tests with poured water were taken just

after water was poured on a previously dry road. It is conceivable that the

di�erence in the slopes can be explained by that when it �rst starts to rain

on a dry road, the rain will make the dirt and grease on the surface wet,

resulting in a slippery surface. After it has been raining a while, the dirt

will be washed o� the road, making the road cleaner than before. This will

reduce the slipperiness of the pavement. Probably the surface will once again

have properties similar to the dry road. This could explain why there were

not any di�erences between the dry road and the road wet by rain, since the

tests were not performed soon after the rain started. When the water was

poured on the road, the road had been dry for quite a while before, which

means that there was dirt on the surface.

It would have been useful to have some tests on a road just after beginning

of the rain, but there were no opportunities to perform these experiments.

13.2.1 Check maximum friction

After examining the slopes for the di�erent surfaces, giving similar values

for the rainy road and dry road, it can be questioned what kind of di�erence

there really is between the roads. The goal with the road classi�cation is

not just to tell the driver or controller what kind of pavement the road has,

but tell what value of friction force can be expected from the contact area

between the tire and road.

It can therefore be useful to look at the maximum friction force possible

for each of the surfaces. How high deceleration is possible to get before the

wheels start to lock up?

The di�erent measurements available to compare for di�erent tests are:

Accelerometer. This gives the deceleration of the chassis of the vehicle.

Torque sensor. This sensor gives the brake torque of the left front wheel,

also useful for looking at the maximum friction force.

Brake pressure gauges. These sensors are possible to use, but they can

be saturated. They also just measure the brake pressure as it enters

the brakes, which is connected to the brake torque with the varying

parameter Kb.
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It turns out that looking at the torque sensor and accelerometer gives the

best values for classifying the peak performance of the road.

Looking at the measurements, it is not possible to determine exactly what

the maximum friction is. When the wheels lock up, it happens very fast so

that process cannot be observed. Since some of the tests were taken with so

high brake pressures that the wheel locked up, their values of deceleration

and torque can be used as an upper limit, and the tests without the wheel

locking up can be used as a lower limit. These limits make up di�erent

intervals, which are shown in �gure 13.3. According to the �gure, as well

0 0.5 1 1.5 2 2.5 3 3.5 4

Dry

Rain

Poured

Deceleration (m/s2)

0 500 1000 1500 2000 2500 3000

Dry

Rain

Poured

Torque (Nm)

Figure 13.3: Intervals for maximum deceleration and torque, respectively.

the maximum torque as the maximum deceleration for the dry road have

higher values than for the two wet categories. It is thus rather clear that the

dry road has the highest maximum friction.

The relationship between the two wet types is harder to tell. Looking at

the torque plot, the maximum friction for the rainy road seems to be higher

than for the road with poured water. Studying the deceleration plot instead,

they have overlapping intervals, which means that it is impossible to tell

anything from that plot. If the relationship between the rain and poured

surfaces in the deceleration plot is true, this would mean that the di�erence

in slopes also had a correspondence in maximum friction force. The intervals

in �gure 13.3 are based on very few tests, since only the skidding tests and

tests with hard braking can be considered. This makes it hard to draw any

conclusions about the di�erence between the two wet types of roads.
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13.3 Classi�cation

Using the estimated value of the slip slope for a test run, a classi�er should

give the output of what kind of surface the road has.

The intuitive way to design a classi�er to select between two decisions is

to compare the value to a threshold and make a selection depending on the

outcome of this comparison. Looking at the data values from di�erent tests,

a threshold can be selected giving as small error probability as possible.

13.3.1 Selecting a threshold between the surfaces

Here, a decision region between the dry road and the road with poured

water will be designed. In �gure 13.2 these two categories seem to have

di�erent slope values and a classi�er based on the slope value therefore can

be designed.

The spread of the points round the average value is for simplicity modeled

as taken from a normal distribution. The variance of the noise is calculated

from the data points. Let the type of road be denoted by x = w or x = d

for wet and dry roads, respectively. The output from the classi�er is called

x̂.

The existence of a wet road is considered as the 1 bit symbol that should

be detected. The bit error probability is then

Pb = PmP (x = w) + PfP (x = d) (13.1)

where

Pm = P (x̂ = d j x = w) (13.2)

is the miss probability and

Pf = P (x̂ = w j x = d) (13.3)

is the probability for false alarm.

Since the probability of a wet road is not known, they are assumed to 1
2

each, and equation 13.1 is reduced to

Pb =
1

2
(Pm + Pf ) : (13.4)

The threshold should be selected as the one minimizing the value of this

equation.

The variance and mean of the noise can be estimated from the values

of the di�erent tests. Since it is necessary to have some tests for veri�ca-

tion of the classi�er, all tests cannot be used for making the classi�er. In

the construction of the classi�er, half of the tests are randomly chosen for

estimation of the statistic properties, and the rest is used for veri�cation.
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13.3.2 Error probabilities

Both the Poured1 and Poured2 categories are used, and combined into one

category of wet tests. Depending on which of the tests are used for determin-

ing the decision regions, the results of the veri�cation will become di�erent.

Running the procedure several times will create an averaged value that is

better to use. The results after running 25000 classi�cations were

Pm = 0:175

Pf = 0:145

Pb =
1

2
(Pm + Pf ) = 0:160:

This means that based on these 22 dry and 19 wet tests, there is a probability

of 16% of making the wrong decision. With this few tests, values from single

tests have big in�uence. Looking at �gure 13.2, the Poured1 category is very

spread out. If for example the value at 0.048 furthest to the right is used

when making the decision region, the mean value of the wet surface slopes

will get a value to the right and there is an increased miss probability.

If the dry surface is compared only to the Poured2 category, which is

more concentrated round one value, the classi�er will work more e�ciently.

The result after running 25000 classi�cations was an error probability of only

Pb = 0:123. This is signi�cantly better than when all wet tests were used,

so it can be noted that spread values give a bigger error probability.

The ability to compare tests made at di�erent times is important, since

the classi�er has to be set up with reference values for di�erent road surfaces

and then used for classifying them at a di�erent occasion. Therefore, the �rst

comparison between the dry and all the wet tests is the most important.
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Chapter 14

Conclusions

14.1 Results

Our project had �xed experimental limits, such as the car with its set of

sensors and the short test track. This made much of the work consist of

dealing with experimental results � not just simulations and theoretical

work. The subject was to examine a slip-based method of estimating tire�

road friction, using vehicle sensors.

One part of the work consisted of designing a simulation model, helpful

for developing the algorithms.

A recursive slip slope estimator based on a method proposed by Gustafs-

son [Gus95] was implemented for use with our measurements. This estimator

made it possible to get real-time updates of the estimated slope values.

An observer that signi�cantly improved the usefulness of the slip data

was designed and implemented, based on a model describing the elasticity

of the wheel.

A large set of vehicle test data was collected for this project, and these

data �les can also be useful for future research. The test runs were made

on an asphalt road, with either a dry or wet surface. The wet surface could

either be accomplished by pouring water on the road or by waiting for rain

to fall.

To make decisions between di�erent surfaces a classi�er was constructed.

This included all the data processing parts described in the work, as well

as a decision maker that compared the slip slope to a given threshold. The

results were that it was impossible to distinguish between the dry road and

the rainy road. A road with rain seemed to have the same slip slope as a dry

road, at least when examining the slip curve with these measurements and

processing algorithms. However, the duration of the rain seemed important

for the slipperiness of the road. When water was poured on a previously dry

road, the slope turned out to be di�erent from the dry or rainy road. The

di�erence between the road with poured water and the road with rain could
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be explained by that when the water is poured on a dry road, the dirt on

the surface will make the road slippery.

An estimation of the error probabilities of a classi�er was carried out,

using the tests with poured water. Based on a limited number of tests, the

error probability of the classi�er choosing the wrong surface turned out to

be 16%.

An error probability of 16% may seem high, but considering the noisy

measurements and the similarity between dry and wet asphalt roads, we are

fairly pleased with the result.

14.2 Problems � What could have been done dif-

ferent?

A big problem in the work was the noisy measurements from the car. The

speed sensors mounted to each wheel was designed for use in the ABS system

and automated control. These areas require fast updating, since the control

algorithms work with a high sampling frequency. When calculating the dif-

ference between two speed values, which is done in the slip calculations, very

accurate values of the di�erent wheel speeds are needed. A high sampling

frequency is on the other hand not important. If the car was equipped with

an other type of sensors, or at least if the data acquisition and �ltering in

hardware were improved, the results would have been better.

The parameter Kb, which describes the scaling between the brake pres-

sure and the torque, varies between the tests and also sometimes within a

test. In our algorithms, only one value is used for the whole test. This is a

source of errors, so a more trustworthy estimation of Kb would be preferable.

Comparing the properties of two such similar surfaces as dry and wet

asphalt was perhaps not a good way to start. If the initial test runs could

have been run on surfaces known to be more slippery, we would have been

certain that there was a di�erence between the surfaces, which would have

made the development of data processing algorithms easier.

All rain tests were carried out the same day. Taking more tests would

have been better, especially if those tests were taken soon after it had started

to rain.

14.3 Future work

To make the road condition estimation more complete, some of the parallel

parts of the project going on right now should also be included:

� The Kb value can be estimated with an adaptive method that do not

require the presence of a torque sensor for calibration.
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� Instead of using the brake pressure for generating the road force, an

observer can be used.

It would also be desirable to be able to brake with all four wheels, and

to do this a velocity observer could be developed.

In a future perspective, the communication capabilities of the AHS will

be implemented. Then the surface information concerning a certain stretch

of the road can be shared between many vehicles.
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