
ISSN 0280-5316
ISRN LUTFD2/TFRT--5641-SE

Design, Implementation and
Verification using UML-RT in GSM

Radio Base Station 2000

Deb Ghatek
Johan Olofsson

Departmen of Automatic Control
Lund Institute of Technology

May 2000

Document name
MASTER THESIS
Date of issue
May 2000

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD/2TFRT—5641--SE
Supervisor
Martin Addibpour Ericsson Radio Systems
Karl-Erik Årzén LTH

Author(s)

Deb Ghatek, Johan Olofsson

Sponsoring organization

Title and subtitle
Design, Implementation and Verification using UML-RT in GSM Radio Base Station 2000

Abstract

This work deals with the issue of implementing a UML-RT standard, one of the latest
notations for object oriented specification and design, in the developing-process of new real-time
software for Radio Base Stations in the 2000 series at Ericsson. UML-RT is the real-time
extension of the Unified Modeling Language (UML).
The thesis investigates the design-, implementation- and verification-problems that exist when
combining the current RT functions, Multi Platform Support, with the UML-RT tool, ObjecTime
Developer.
We describe UML, look at the advantages and disadvantages of using UML-RT tools and
investigate current and future possibilities in ObjecTime Developer.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
48

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.se

Preface ii

Preface

This report is a Master's Thesis in automatic control performed at Ericsson Radio Systems in
Kista. We would specially like to thank Mattin Addibpour and Leif Andersson among others
for their support during this work.

Ericsson Radio Systems, Stockholm, February 2000

Deb Ghatak,
Johan Olofsson

Abbreviations iii

Abbreviations

ERA Ericsson Radio Systems
FSM Finite State Machine
GUI Graphical User Interface
GSM Global System for Mobile communication
MPS Multiple Platform Support
MSC Master Sequence Chart
OS Operating System
PLS-Sim PLatform Subsystem Simulator
RBS Radio Base Station
ROOM Real-time Object Oriented Modeling
RTS Run Time System
SK Soft Kernel
SU Software Unit
UML Unified Modeling Language
UML-RT Unified Modeling Language for Real-Time
WCDMA Wideband Code Division Multiple Access

Contents iv

Contents

1. INTRODUCTION ... 1

1.1 BACKGROUND .. 1
1.2 PROBLEM SPECIFICATION... 2
1.3 OBJECTIVES.. 2
1.4 LIMITATIONS .. 2

2. UML FOR MODELING REAL-TIME SYSTEMS ... 3

2.1 INTRODUCTION... 3
2.2 THE UNIFIED MODELING LANGUAGE... 4

2.2.1 Introduction .. 4
2.2.2 UML Diagrams... 4
2.2.3 Use-Case Diagrams.. 4
2.2.4 Class Diagrams .. 4
2.2.5 State Transition Diagrams.. 5
2.2.6 Interaction Diagrams ... 6

2.2.6.1 Sequence Diagrams ...6
2.2.6.2 Collaboration Diagrams...7
2.2.6.3 Activity Diagrams..7

2.2.7 Package Diagram... 8
2.2.8 Deployment Diagrams.. 9

2.3 HOW UML DIAGRAMS FIT TOGETHER... 9
2.4 REAL-TIME OBJECT MODELING: ROOM ... 10

2.4.1 Introduction .. 10
2.4.2 The Method... 11
2.4.3 Modeling Structure ... 11
2.4.4 Modeling Behaviour ... 12

2.5 DESIGNING UML SYSTEMS.. 13
2.5.1 Representing Physical Architecture in UML .. 14

2.5.1.1 Distribution of Control in Systems ..15
2.5.1.2 Communication Infrastructure ...16

2.5.2 Mechanistic design ... 16
2.5.3 Detailed Design .. 17

3. OBJECTIME- A BRIEF OVERVIEW (OF THE C-VERSION) ... 18

3.1 INTRODUCTION... 18
3.2 WHY USE OBJECTIME?... 18

ObjecTime term...19
Equivalent UML-RT term ...19

3.3 HOW TO USE OBJECTIME?.. 21
3.3.1 Run-Time Services (RTS).. 21

3.4 WHAT DOES OBJECTIME CONSIST OF?.. 22
3.4.1 Software Components ... 22
3.4.2 Real-world and virtual models ... 23

3.4.2.1 Actors ..23
3.4.2.2 Messages..24
3.4.2.3 Actor Classes ...25
3.4.2.4 Inheritance ...25
3.4.2.5 Actor Structure ..26
3.4.2.6 Actor Behavior ..27
3.4.2.7 Ports and Bindings...28
3.4.2.8 Data Objects ..29

4. EXTERNAL COMMUNICATION IN OBJECTIME... 30

4.1 MAKING OBJECTIME COMMUNICATE WITH EXTERNAL SYSTEMS. .. 30
4.1.1 Communication... 31

4.1.1.1 Compilation ...31
4.1.1.2 Synchronization of ObjecTime and MPS processes ..31
4.1.1.3 Addressing...32
4.1.1.4 Initiation ..32

Contents v

4.1.2 Function implementation.. 32
4.1.2.1 Proxy..32
4.1.2.2 SAP/SPP..33
4.1.2.3 Inline coding..34
4.1.2.4 Port send (unbound)...34
4.1.2.5 Function call ..34

4.2 TARGET OBSERVABILITY ... 35
4.3 RESULTS... 37

5. UML AND OBJECTIME AT ERICSSON RADIO SYSTEMS.. 39

6. SUMMARY.. 41

REFERENCES .. 43

APPENDIX A .. 44

List of Figures vi

List of Figures
FIGURE 2.1 UML DEVELOPMENT PROCESS .. 3
FIGURE 2.2 USE-CASE DIAGRAM; LIBRARY ... 4
FIGURE 2.3 CLASS DIAGRAM; LIBRARY ... 5
FIGURE 2.4 STATE TRANSITION DIAGRAM; WATCH... 5
FIGURE 2.5 SEQUENCE DIAGRAM; LIBRARY... 6
FIGURE 2.6 COLLABORATION DIAGRAM; LIBRARY .. 7
FIGURE 2.7 ACTIVITY DIAGRAM; STOCK TRADE.. 8
FIGURE 2.8 PACKAGE DIAGRAM; STOCKS DATA BASE EXAMPLE... 8
FIGURE 2.9 DEPLOYMENT DIAGRAM; INTERNET .. 9
FIGURE 2.10 ITERATIVE DEVELOPMENT WITH UML MODELING TECHNIQUES.. 10
FIGURE 2.11 SERIAL DEVELOPMENT WITH UML MODELING TECHNIQUES... 10
FIGURE 2.12 BASIC ENTITIES IN THE ROOM NOTATION... 12
FIGURE 2.13 HIERARCHICAL DESIGN WITH ACTORS AND SUBACTORS.. 12
FIGURE 2.14 FINITE STATE MACHINE... 13
FIGURE 2.15 FINITE STATE MACHINE; SET TIME.. 13
FIGURE 2.16 DESIGNING UML SYSTEMS ... 14
FIGURE 2.17 CENTRALIZED CONTROL .. 15
FIGURE 2.18 MESSAGE SEQUENCE CHART, CENTRALIZED CONTROL ... 15
FIGURE 2.19 DECENTRALIZED CONTROL .. 16
FIGURE 2.20 MESSAGE SEQUENCE CHART, DECENTRALIZED CONTROL... 16
FIGURE 2.21 CLASS EXAMPLE .. 17
FIGURE 3.1 COMPARISON OF OBJECTIME AND UML-RT NOTATION.. 19
FIGURE 3.2 OBJECTIMES GUI .. 20
FIGURE 3.3 OBJECTIMES GUI EXPLANATION... 20
FIGURE 3.4 WORKFLOW IN OBJECTIME ... 22
FIGURE 3.5 REUSABLE SOFTWARE COMPONENTS ... 22
FIGURE 3.6 ACTORS ... 23
FIGURE 3.7 MESSAGES... 24
FIGURE 3.8 ACTOR CLASSES.. 25
FIGURE 3.9 INHERITANCE... 26
FIGURE 3.10 ACTOR STRUCTURE ... 27
FIGURE 3.11 ACTOR BEHAVIOR.. 28
FIGURE 3.12 PORTS AND BINDINGS.. 28
FIGURE 3.13 DATA OBJECTS .. 29
FIGURE 4.1 SYSTEM PARTS AND RELATIONS .. 30
FIGURE 4.2 PROXY SOLUTION.. 33
FIGURE 4.3 OBJECTIME VIEWS .. 36
FIGURE A 1 TRU MODEL.. 44
FIGURE A 2 EXAMPLE OF ACTORS AND THEIR BEHAVIUOR IN THE TRU MODEL.. 44
FIGURE A 3 MSC OF SELECTED ACTORS OF THE TRU MODEL.. 45

1. Introduction 1

1. Introduction

As telecommunications evolve and spread, the business gets more and more competitive. The
real-time developing process has to be faster, more complex and cheaper in order to expand
the market share. The complexity in real-time systems arises from aspects like [1]:

• Concurrency. In a concurrent system, at any given time, multiple simultaneous activities
can take place. Therefore, a concurrent system needs to support many processes
depending on each other to be run simultaneously.

• Dynamic behavior. Real-time systems are often unpredictable. It is hard to predict when
events will occur.

• Variable loading. The external environment using the real-time system uses the system
quite variable. Sometimes the system has little to and sometimes not.

• Memory and Processing Limitations on target platforms. The hardware on the target
platform is often limited in terms of processor- and memory-capacity.

This work will, with the use of the UML, act as a guideline for how to implement the UML-
tool, ObjecTime Developer, in the development-process of new radio bases. As Object
Oriented software development tends to be more popular the need for a single, common and
widely usable modeling language is arising. In this report we will handle the complexity with
the use of models, modeling language and the object paradigm.

• Model. A model is an abstraction that shows the important parts of a complex
problem. Complex system demands different models to show different aspects of the
sample problem.

• Modeling language. A modeling language consists of a notation (symbols that is used
in the model) and a number of rules that defines how the model is used.

• Object paradigm. The object paradigm explains what is meant by an object. It is a
combination of different techniques, like encapsulation, inheritance, polymorphism
explained later.

Objects, according to definition are "entities that model some physical or conceptual entity"
[2]. An object has some unique identities, a public interface (attributes and operation) and a
hidden implementation.

1.1 Background

This work has been carried out at the Control and Transmission department, a department of
Ericsson Radio Systems working with the development of transmission software in GSM
Radio Base Stations (RBS). The complexity described earlier implies that the Control and
Transmission department continuously has to evaluate different design alternatives in their
effort to stay at the cutting edge of software development. To fulfill this goal the Control and
Transmission department hopes that using a software development toolset, built specifically
for the real-time domain, will secure future success.

1. Introduction 2

Due to the rapid development of hardware platforms Ericsson Radio continuously investigate
how to use these for their new Radio Bases. In the RBS system software design changes are
needed because of these new hardware platforms, which implies new product configurations
and limitations in the current software design. In the RBS system there are a lot of software
that is hardware dependent and the software development has grown bigger and more
complex. The goals are long term cost efficient solutions, possibilities to reuse software and
supporting many products.

1.2 Problem Specification

The core problem in this thesis was to implement a UML tool, ObjecTime Developer, in the
design and implementation phases

1.3 Objectives

The main objective of this thesis, is to enable external execution of existing real-time
functions within ObjecTime, so that future development can be done in Objectime. One part
objective was to create a communication link from ObjecTime to a simulator, PlsSim
(HOST). The second part-objective was to implement the solution on an AMD target
processesor. Future developments of radio bases at Ericsson will be made on PowerPC’s, so
after developing this Ericsson wanted to implement the same solutions on a PowerPC.

1.4 Limitations

This thesis will not try to explain the ObjecTime Developer environment, as this is better
done working through a tutorial.

Neither will it describe the TRU model, described in Appendix A, since it is of specific
interest only to those who works at Ericsson Radio, and of little interest to others.

The development environment on Power PC?s hasn?t been finalisedyet, sowe nevewr
implemented the solution on a Power PC, however itwould havebeen done in the same
manner as the AMD.

2. UML for Modeling Real-Time Systems 3

2. UML for Modeling Real-Time Systems

2.1 Introduction

“Developing a model for an industrial strength software system prior to its construction or
renovation is as essential as having a blueprint for a large building” [4]. In large and complex
real-time software systems it’s crucial to design the software with a sound architecture.

A good architecture simplifies the construction of the system and accommodates changes
during the development process. A good modeling language includes fundamental modeling
concepts/semantics and visual rendering of model elements. In figure 2.1 is UML used to
form the requirements model and the design model. To translate the design model into
ObjecTime code the ROOM notation is used. ObjecTime deploys an executable model that
can be run in the Real-Time Services packages included in ObjecTime.

“.. UML is hot. People new to object and component development want an overview and
that’s exactly what UML provides. It provides diagrams that describe the basic perspectives
that OO and component designers routinely create to capture the important elements of the
application they create”[3]. The Unified Modeling Language (UML) is a language for
specifying, constructing, visualizing and documenting the artifacts of a software-intensive
system. UML is appropriate for object-oriented software development because it provides
support for modeling classes, objects and the many relationships among them, including
association, aggregation, inheritance, dependency and instantiation.

Modeler

Figure 2.1 UML Development process

Node

Compilation

Requirement
Model

Design
Model

Design
Interface

UML Virtual
Machine

Run Time
Interface

Executable Model

2. UML for Modeling Real-Time Systems 4

2.2 The Unified Modeling Language

2.2.1 Introduction

The UML is recognized as a modeling language and not a methodology or method. The
difference is that a methodology contains recommendations on object-oriented notation and
design, while a modeling language is a vocabulary or notation on how to express the design.

2.2.2 UML Diagrams

When designing and developing software systems in UML nine different diagrams can be
used. Different projects needs different diagrams. The diagrams form a skeleton of the
complete design. They describe different aspects of the system as well as different steps in the
development process. To get the full picture one must know what the diagrams shows and
how to combine them. In Chapter 2.2.3 to 2.2.8 the different types of diagrams will be
explained.

2.2.3 Use-Case Diagrams

A use case diagram provide a way of describing an external view of a system and its
interaction with the outside world, it documents the behaviour of a system from the user’s
point of view. Figure 2.2 describes the outside world as actors, an user/actor can be a person
or an another information system or a hardware device. A user/actor can have more than one
role, and there may be many roles playing in it. The use-case diagram describes the
interaction between the actor and the described system.

Figure 2.2 Use-Case Diagram; Library

Scenarios are instances of a use case, just as objects are instances of classes, In this way, use
case diagrams are like class-diagrams they show the logical static structure of scenarios .

2.2.4 Class Diagrams

The class diagram is a central modeling technique that is used in most object-oriented
methods. A class diagram shows the classes (sometimes objects) and relationships between
classes and between objects. It is easy to follow the relationship between a book at a library
and a staff member in the class diagram illustrated in Figure 2.3.

Cash withdrawal

Transfer Funds

Deposit

System Starts

Customer

ATM Operator

Bank System
(non-human

actor)

2. UML for Modeling Real-Time Systems 5

The class diagram is directly related to the source code, since all methods and attributes are
listed, this makes it easy for the developer to transform the information into source code, and
the developer can concentrate on implementing the methods.

Figure 2.3 Class Diagram; Library

2.2.5 State Transition Diagrams

The basic idea is to define a machine that has a number of states, the state machine receives
events and the events cause a transition from one state to another. In Figure 2.4 we describe
how to set present time in a watch with two buttons, mode and inc(-rease), and three states.

Figure 2.4 State Transition Diagram; Watch

The machine begins in a state when it displays the current time. If the user pushes the mode
button, the machine jumps to the state where it displays the hour. Here the user can set the

Book

Journal

Copy

Member of
Staff

Library
Member

is a copy of

borrows/returns

borrows/returns

borrows/returns

Mode

Inc

Present
Time

Set
Minute

Set
Hour

2. UML for Modeling Real-Time Systems 6

hour by pushing the inc button. Another push on the mode button makes it possible to set the
minutes. A final push on the mode button and the machine jumps back to the initial state.

The big disadvantage with State Transition Diagrams, is that one has to define all the possible
states of a system. In small systems this is not a problem, but in larger systems the State
Transition Diagrams become far too complex. Many object-oriented methods (e.g.
ObjecTime) define separate state transitions for each class. State models are excellent for
describing the behaviour of a single object, but not to describe whole systems.

2.2.6 Interaction Diagrams

Interaction Diagrams can be divided into three different forms of diagrams: sequence
diagrams, collaboration diagrams, and activity diagrams.

A typical interaction diagram describes how a group of objects collaborate in some behavior.
The diagram shows objects and the messages that are passed between them. Interaction
diagrams are best used when you want to look at the behaviour in a single use case, but not so
good in precise definition of the behaviour.

2.2.6.1 Sequence Diagrams

In this diagram the objects are shown as vertical lines (Figure 2.5) with the messages as
horizontal lines between them. The messages can be an operation, a signal, a procedure call,
or anything that starts an activity at the reception.

Figure 2.5 Sequence Diagram; Library

Borrow Copy

Book borrower

Library
Member

The Copy The Book

Borrow OK

Borrow

Borrowed

2. UML for Modeling Real-Time Systems 7

The sequence diagram is a description for a single use case scenario. This is helpful when we
want to understand the logic of the operations during the design phase. As in the library
example, the last transition registers that a copy of a certain book is borrowed.

2.2.6.2 Collaboration Diagrams

Figure 2.6 Collaboration Diagram; Library

The collaboration diagram shows the message flow between the classes and it numbers the
messages in sequence.

A collaboration diagram, Figure 2.6, is often used as a complement to the class diagram, since
they don’t show the message flow between the classes. The rectangles represent the various
objects in your application, and the arrow represents the flow of the message. The numbering
of the messages makes it easy for the viewer/developer to see the many different usecase
scenarios of the system.

2.2.6.3 Activity Diagrams

The Activity Diagram focuses on activities and the coordination of those activities, it is quite
similar to the state chart diagram. It is a form of flowchart, but the difference is that the
activity diagram supports parallel activities and their synchronization.

In the figure a stock-ordering procedure is illustrated. Parallelism is illustrated as a payment
process paralell to the stock assignment process. Both processes have to be completed in order
to settle an affair.

The Book

Library
Member

The Copy

Book borrower

Borrow Copy

1: Borow OK

2: Borrow

2.1: Borrowed

2. UML for Modeling Real-Time Systems 8

Figure 2.7 Activity Diagram; Stock Trade

2.2.7 Package Diagram

The package diagram has to do with the implementation of the system. In this technique we
put each class in a single package. If a class uses another class in a different package, we have
to draw a dependency line to that package. As seen in Figure 2.8 the ’Stock Pricer UI’ depend
both on the ’GUI Library’ and the ’Stock Pricer’.

Figure 2.8 Package Diagram; Stocks Data Base example

Stocks Pricer
UI

GUI
Library

Portfolio UI

Portfolio
Application

Scenario
Manager

Positions

Stocks Pricer

Stocks
DataBase

Dependencies

Packages

Receive
Order

Assign Stocks
to Portfolio

Cancel OrderAuthorize
Payment

Reorder
Stocks

Dispatch Order

[failed]

[succeded]

[Need To Reorder]

[Pick Order]

[Stocks assigned and payment authorized]

2. UML for Modeling Real-Time Systems 9

UML does not treat package diagrams as a separate technique, it rather treats them as icons in
a class diagram.

2.2.8 Deployment Diagrams

Figure 2.9 Deployment Diagram; Internet

Deployment diagrams have to do with the implementation of the system and it only shows the
configuration of the run-time units. Components that doesn’t exist in run-time are not shown
in this diagram. The deployment model shows physical communication links between
hardware items. Figure 2.9 shows all physical components needed for internet traffic with
three servers. For each component in the deployment diagram, you have to document issues
like transaction volume, network traffic, and the required response time. The components in
the deployment diagram will then be described by other appropriate models.

2.3 How UML Diagrams Fit Together

The boxes in Figure 2.10 show the diagram that we have described below and the relationship
between them. The arrows indicate an ‘input into’ relationship.

Figure 2.11 shows how the UML diagrams are used at different times of the design and
development process. The arrows between the boxes represents that the previous diagram is
documented by the following, e.g., a State Transition Diagram is documented by a Class
Diagram.

Modem Bank

<Processor>
Primary Server

<Processor>
Primary Server

<Processor>
Primary Server

Internet

<Processor>
Cashing Server

<Processor>
Cashing Server

<Network>
Local Network

2. UML for Modeling Real-Time Systems 10

Figure 2.10 Iterative Development with UML modeling techniques

Figure 2.11 Serial Development with UML modeling techniques

2.4 Real-Time Object Modeling: ROOM

2.4.1 Introduction

In ROOM, there is a mix of advanced object oriented concepts and well-tested methods for
real-time development. In ROOM you work with models (UML diagrams described earlier)
that are executable and used to transform the requirements to an implementation. Models are
translated to programs that can be executed in simulators on workstations or on target

Package
Diagram

Use Case
Diagram

State Transition
Diagram

Use Cases

Class
Diagram

Deployment
Diagram

Collaboration
Diagram

Sequence
Diagram

Use Case
Diagram

Deployment
Diagram

Collaboration
Diagram

Source CodeSequence
Diagram

Use Cases

State Transition
Diagram

Class
Diagram

Package
Diagram

User Requirements Analysis Design Code

2. UML for Modeling Real-Time Systems 11

machines with a real-time operating systems. ROOM is the base in UML-RT, the real-time
extension of UML. The development process is often done in an iterative manner. You work
with component-based models that are successively refined through a couple of iterations. In
each step integration and verification of the models are done to ensure stability with the
specification validated in an earlier stage. In this manner the system is tested thoroughly in
each step of the development process

2.4.2 The Method

In ROOM you build a model with development tools like ObjecTime. ROOM has like
traditional programming languages a syntax to express domain specific knowledge and design
ideas. ROOM is object oriented with concepts chosen for event driven real time applications.
As mentioned in 2.4.1 one can throughout the development process generate executable
models.

The fundamental concepts of ROOM are objects, called actors that communicate with each
other sending messages solely through interface ports defined by some protocol. To manage
complexity, a structure can be hierarchically created, i.e. actors may contain other actors.
Actors can also be created dynamically, i.e. actors are created and destroyed at run-time. This
implies a system structure in constant change. In addition to structure an actor has a state-
machine expressing its behaviour, i.e. its reactions to events. In addition to this, ROOM uses
inheritance to describe variations of objects. Variations can be changes on structure,
behaviour, as well as different protocols and data. To these, all graphical, concepts, ROOM
uses traditional programming languages to explain detailed structure and behaviour. For
example, high-level languages such as C or C++ are used to describe actions taken on events
in a state-machine. This is powerful due to the use of a combination of graphical concepts and
traditional high-level languages. Developers can use the same concepts for all activities, from
analysis to implementation. The semantic gap common in traditional analysis implementation
methods is reduced. From analysis and design to implementation there are only iterative
refinements in contrast to the mappings between different representations used in traditional
analysis-design-implementation methods.

2.4.3 Modeling Structure

A ROOM structure describes communication relationships between actors in a system. An
actor is the primary concept in a structure. Actors are parallel objects that can exist and
execute independently of other actors in the same environment. Actor implementations are
encapsulated. Actors can be of two types: static or dynamic. In a static actor there is a one-to-
one relationship between objects in the design and objects that actually execute at run-time.
Dynamic actors are objects created and destroyed dynamically at run-time. Actors
communicate with messages sent solely through ports. A port can be described as an opening
in the encapsulation allowing the actor to communicate with other actors. A message contains
a signal and a message body, i.e. an instance of a data class. A port is a specialized interface
for an actor using a protocol. A protocol is a set of messages allowed to be sent through the
port. Ports are instances of a protocol class allowing the reuse of interfaces or refinement
through the inheritance mechanism.

2. UML for Modeling Real-Time Systems 12

Figure 2.12 Basic entities in the ROOM notation

To mediate communication among actors ports are connected to each other with a
construction called binding. A binding is like a communication channel that mediates the
message sent by actors through its ports. A binding shows explicit communication paths
between actors. Note that two actors can only communicate with each other if there exists a
binding between them. The fact that actors communicate solely through ports instead of
directly to eachother, makes it possible to view the actor as a black box independent of it’s
outside environment. This leads to actors that are inherently distributable and highly reusable
in different design situations. Actors also take part in the concept of aggregation. Aggregation
makes it possible to create arbitrary complex objects. In Figure 2.13, actor 4 and actor5 are
leave actors, i.e. they do not contain any other actor. On the other hand instances of actor4 and
actor5 are contained in the higher level actor3. This is displayed with a little symbol in the
lower left of actor3. Actor3 and actor2 are contained in the even higher level actor actor1.
ROOM allows the creation of arbitrary number of levels in the structure hierarchy. This is
quite powerful when complex systems are to be modeled: it is easy to give an overall view of
the system on a top-level structure, hiding the details in lower level hierarchies.

Figure 2.13 Hierarchical Design with actors and subactors

2.4.4 Modeling Behaviour

Behaviour expresses what actions an actor should take when messages arrive on its ports.
ROOM uses extended hierarchical state machines, modified to manage object orientation and
effective real-time implementations. In Figure 2.14 the principle of a state machine is
explained. The state machine has three transitions: initialize, request and timeout, and two
states. Idle and Handle. The initialize transition is fired when the actor starts up and are used
to bring the actor to its operational state. The Watch example in Figure 2.4 would have been
implemented in ROOM as seen in Figure 2.15.

Actors

Ports

Binding

Actor 2 Actor 5Actor 4Actor 3

Actor 1 Actor 3

2. UML for Modeling Real-Time Systems 13

Figure 2.14 Finite State Machine

In this manner arbitrary complex behaviors can easily be hierarchically decomposed making it
easy to express complexity and making state-machines easy to read and maintain.

Figure 2.15 Finite State Machine; Set Time

As mentioned earlier the detailed behavior are the actions to be taken in the transitions
between states. This is not expressed graphically.

Tools supporting the ROOM method, such as the ObjecTime toolset does combine the
graphical representation with the text-based code in a graphical environment. The developer
just click on a transition to bring up a text-editor where code easily can be written.

2.5 Designing UML Systems

“Designing a notation for use in object-oriented analysis and designs is not unlike designing a
programming language”[8]. When designing with UML we divide the process into three
different categories: architectural, mechanistic, and detailed design (Figure 2.16). The
architectural design, designs software structures such as subsystems, packages and tasks,
while the mechanistic design includes the design of mechanisms composed of classes working
together to achieve common goals. Detailed design specifies the internal primitive data
structures and algorithms within individual classes.

initialize

Idle Handle

request

timeout

mode

mode

Present Time Set Hour

mode

Set Minute

Inc Inc

2. UML for Modeling Real-Time Systems 14

Figure 2.16 Designing UML Systems

2.5.1 Representing Physical Architecture in UML

In UML we represent physical architectures with deployment diagrams. The most important
object in deployment diagrams is the node. A node can represent processors, sensor, and
displays as seen in the ObjecTime implementation in Figure 4.7. Interconnections in the
diagram represent physical interconnections were information (signals) is sent. Processor
nodes may contain classes and objects, but can also be broken down into to subpackages and
tasks. These subpackages ultimately contain objects and classes.

Architectural Design: Processes (Nodes), Packages, Tasks

Node Package Task

Mechanistic Design: Groups of collaborating classes

class
class

class
class

Detailed Design: Class

Class Name

Attributes

Operations

2. UML for Modeling Real-Time Systems 15

2.5.1.1 Distribution of Control in Systems

The complexity of a multinode system is the co-ordination of the separate subsystems. The
two possible strategies are centralized and decentralized control. In the centralized control one
node passes on signals (orders) to the other nodes, this is commonly known as the master-
slave architecture.

Figure 2.17 Centralized control

Figure 2.18 Message Sequence Chart, Centralized control

Centralized control assures simple modification and maintenance, up to a point. In a complex
system it is sometimes wise to distribute the processing more evenly between the nodes. It is
often easier to build a complex of less smarter systems combined with each other, instead of
figuring out the complexity within one node. When the complexity gets to high, the workload
may sometimes become to high for the single master node, and then there is no other option,
than decentralizing the control.

Node Node

Master
Node

NodeNodeMaster Node

2. UML for Modeling Real-Time Systems 16

Figure 2.19 Decentralized control

 Node Node Node

Figure 2.20 Message Sequence Chart, Decentralized control

2.5.1.2 Communication Infrastructure

When we use a multiprocessor (multinode) system, we require a communication path linking
the processors to each other. Two separate but related issues are the bus topology and the
protocol operating over the bus. The protocol defines what rules, formats (of signals) and
procedures that the communicating objects have agreed on. There are different types of
protocols, Data driven protocols are highly specialized and concentrate on the communicated
information, this makes it simple and efficient; Grammar driven protocols concentrate more
on what is said than the specific things themselves, the generality of the latter protocol makes
then flexible but not as efficient as the previous.

2.5.2 Mechanistic design

Mechanistic design deals with how small sets of classes and objects collaborate to achieve
common goals. A real-time system has multiple mechanisms operating concurrently. When
the models and classes of the system have been defined, we use mechanistic design to add
objects to facilitate their collaboration. An autopilot may use many sensors and actuators, if
we have a common one-to-one association, the common solution is to have a pointer or
reference in the client that sends a message to the server.

Node Node

Node

2. UML for Modeling Real-Time Systems 17

class Actuator { class Autopilot {
 int value; Actuator *s;
public: public:
 int gimme(void) {return value; }; void AutoPilot(Server *YourActuator) : s (YourActuator)
 void set(int v) { value = v; }; }; {};

 // send message to Server object s
 void setIt(int a) { s->set(a); }

 void IncIt(void) {
 int a = s->gimme();

 s->set(++a);
 };
};

Figure 2.21 Class example

The class Autopilot uses pointers to locate its Actuator object and it sends the object messages
like s-> set(a) and s->gimme() as above. Here we use a simple pointer since this is a one-to-
one association, but the situation changes when the association is one to several. It is fully
possible to collect the Actuator objects directly in the Autopilot class, with linked-lists or
binary trees. But the drawbacks of such a solution are that the Autopilot class has to handle a
task that is totally unrelated to the Autopilot task. If the handling of the collection is complex
we will make the Autopilot class complex as well. [10] If the system has several classes with
multivalued roles, we have to rewrite the behavior for each class. However during
mechanistic design we can add a new class, a collection class. This solution enables us to
change the type of collection easily. Remember that the analysis model identified the
association and it’s multiplicity, but the use of a separate collection class is a design decision.

2.5.3 Detailed Design

The fundamental unit of decomposition in object-oriented systems is the object. Some objects
are fairly simple, while other objects needs detailed design to be implemented correctly or
optimize the performance. The decisions in detailed design will concern, data structures,
implementation of associations, algorithms, etc. This is nothing that is specific to an UML
Real-Time system, but appears in all sorts of software development, so we won’t go further
into this subject.

3. ObjecTime- A brief overview (of the C-version) 18

3. ObjecTime- A brief overview (of the C-version)

3.1 Introduction

ObjecTime, which is developed by Rational, and is a software development tool based on
UML design and the ROOM notation. It is well suited for designing and implementing real-
time systems. A defining property of real-time systems is that they require responding to
certain inputs within a predefined time interval. In a real-time system, one has to monitor and
control the time resources very closely. Given the criticality of time in such systems, it is
unfortunate that there are very few facilities available to improve the predictability of time
utilization during software design and development. This situation is particularly problematic
for concurrent systems in witch it is very difficult to rely on intuition about temporal
properties.

There are two basic sets of techniques that address this issue:

• Analytical techniques are based on the construction of a formal mathematical model of the
system and the use of mathematical algorithms to determine a system's performance
characteristics.

• Simulation techniques are based on the construction of a computer-executable model of a
system from which the performance characteristics are extracted by measurement.

Analytical techniques tend to be more rigorous but are usually quite complex and require
mathematical expertise beyond the training of most software designers. Also, most of these
techniques do not scale up to large systems so that they can only be applied either at a very
high level of abstraction or they are applied at subsets of the system.

At present, the use of ObjecTime for performance modeling is based purely on simulation
techniques. Several specialized features have been provided in ObjecTime especially for this
purpose.

It is important to notice that ObjecTime is not intended to be used as a primary performance-
modeling tool. Its current capabilities in that regard is generally not as extensive as found in
most professional tools created expressly for that purpose. Instead, they provide a low-
overhead facility for quick (but not necessarily extensive) insight into the performance
properties of the system under construction. The overhead is low because, instead of building
a separate model of the system, the ObjecTime design itself can be used for this purpose with
little or no extra work required. This enables performance analysis to be tightly integrated
with the analysis and design activities.

3.2 Why use ObjecTime?

ObjecTime itself is a powerful graphical modeling environment for the object-oriented design
and simulation of real-time systems. It is easy to get to know and has a smooth user-interface
that makes it ideal for rapid prototyping of distributed, event-driven systems using
synchronous or asynchronous communication, and the development of efficient
implementations for execution on the real-time platform. The Graphical User Interface, GUI,
enables developers to work fast and with a good overhead of the system. "Good programmers

4. External communication in ObjecTime 19

that understand ObjecTime are able to work three or four times faster than they could in any
similar environment,.." [6]. The implementation is generated directly from the toolset, so that
the implementation always stays in sync with the model.

ObjecTime Developer's graphical models provide a high-level, easy- to-understand
environment for communicating requirements and design among developers, managers and
customers. New team members can become familiar with designs faster by examining them at
the higher levels then by dealing with details. [7]

Since ObjecTime is based on the UML/ROOM notation and thereby supports object oriented
implementation, designing, both structure and behavior, is done graphically in a fashion that
closely corresponds to the implementation in ObjecTime. (The GUI, graphical user interface,
can be seen in Figure 3.2). “.. a well-designed architecture is not only one that simplifies
construction of the initial system, but more importantly, one that easily accommodates
changes forced by new system requirements”[9]. A comparison of ObjecTime and UML-RT
notation is included in the table below. (Since there are no major differences between the
UML and ROOM notations, and UML is the method that are to be used in forthcoming
versions of ObjecTime/RationalRose the table shows the UML notations.)

ObjecTime term Equivalent UML-RT term
Actor
Actor
Optional Actor
Imported Actor
Actor Structure
Actor Behavior
Replication Factor
Port
Port Type
Unconjugated Protocol
Conjugated Protocol
Binding
Choice Point
Join Point
Initial Point
Data Class
External Class
MSC

Capsule
Reference SubCapsule
Optional SubCapsule
Plug-in SubCapsule
Capsule Structure
Capsule Behavior
Multiplicity
Port Role
Protocol Role
Protocol Base Role
Protocol Conjugated Role
Connector
Branch Point
Chain State
Initial State
Class
Class
Sequence Diagram

Figure 3.1 Comparison of ObjecTime and UML-RT notation

The structure and behavior of a model in ObjecTime are described as a Finite State Machine
(FSM) that shows in which order events are handled and what to do when different events
occur. The structure and behavior editors are illustrated in Figure 3.2 and 3.3. Unfortunately,
since the function call implementation only needed one actor in the structure editor and one
FSM box in the behavior editor, there are no internal bindings between different actors or
states. A larger example is illustrated in Appendix A.

The behavior of the states in the FSM is coded in detail in for example C. Most often this
behavior is reactions to events that occur in the real-time environment, such as time-outs, in
signals or the completion of other events. Those are fired in the transition between two states
in the FSM. The three transition editors in Figure 3.2 shows some examples. To simplify
coding ObjecTime has included a macro template from which macros can be dragged and

4. External communication in ObjecTime 20

dropped into the developers code. The same goes for the ports and binding that are to be
defined for each actor and transition.

The use of FSMs is especially well suited when dealing with real-time systems. ObjecTime
takes care of the real-time entities such as semaphores and the real-time kernel automatically.
The issue of setting priorities of events is preferably taken care of when designing the system
since the FSM executes in a predefined order. Still, prioritized events can be modeled as
special events in the actual states of the FSM.

Figure 3.2 ObjecTimes GUI

Figure 3.3 ObjecTimes GUI explanation

Model manager
for

OTCTv5
including

Actor Classes
Protocol Classes

Configuration

Transition-code
initialize

(messages)

Transition-code
tmoLoop

(messages)
with

actor-defined
Ports/Signals

Transition code
recieceAffermative

(messages)
with

actor-defined
Ports/Signals

transition-
macroBehaviour editor

OT-Process

Structure editor
System

Structure editor
OTProcess

4. External communication in ObjecTime 21

ObjecTime is a set of tools that spans critical sections of the software development procedure.
Currently, ObjecTime provides tools for capturing requirements as well as designing,
executing, debugging, and documenting designs. The tools are all integrated within the
development environment. The debugging tool is especially user-friendly. The possibility to
create Message Sequence Charts (MSCs) in the Simulation Services Library makes debugging
easy and convenient. (The debug environment is illustrated in Figure 4.3).

Besides what has been mentioned above Rational, the company that provides ObjecTime, also
supplies aid for documenting the work done in a stylish way. Documenting changes and
development is necessary when working in projects, if software units are to be reused or
changed by other team members. Rational also offers a version control tool, ClearCase. This
tool is used to label different progress steps, record and report actions, history and milestones
and assure integrity of software elements.

3.3 How to use ObjecTime?

When the design is done in UML, it is fairly simple to translate the design into an ObjecTime
model. This is done via a ROOM translation as mentioned before. “Many, if not most, of the
design errors in projects occur because the design was ambiguous or not properly translated
into the software architecture and eventual code. ObjecTime eliminates these translation steps
by creating a methodology and a tool that let a team seamlessly move from high-level design
all the way down to code, with no translation steps." [7] Until now ObjecTime has been based
mostly upon the ROOM notation, though in the coming version of ObjecTime (v 6.1) a
change towards direct implementation of an UML (v 1.4) design will be carried out. This will
not result in any major changes in notation since the ROOM notation well corresponds to the
different components in an UML design.

To learn ObjecTime, working through a tutorial is recommended. This gives you a rapid, still
thorough, insight in the basic ObjecTime concepts.

A software unit in ObjecTime is composed of two main parts: [7]

• The generated files and directories that represent the ROOM/UML model. This
includes the structural components (actors, and so forth), as well as the behavioral
detail of the model (the C code for transition actions, choice points,...)

• The ObjecTime Run-Time Service (RTS), which provides an abstract interface to the
underlying OS services. The RTS provides the support for basic ROOM/UML
concepts such as the message-based communication service. The generated code
structure of the user model includes the hooks into the underlying ROOM/UML RTS.

3.3.1 Run-Time Services (RTS)

The RTS is simply the simulation tool in ObjecTime Developer. It is possible to run
ObjecTime in two different versions of the RTS. The Simulation Services Library (Simulation
RTS) and the C Target Services Library (C Target RTS) respectively. The Simulation RTS
can be run on a variety of workstation-platforms while the C Target RTS runs on many
operating systems and on workstations. It is also designed to be easily user-ported to
additional target environments. The Simulation RTS is inherently C++ based and uses a C++
compiler to generate an executable, while the Target RTS is strictly C-based (in the C version

4. External communication in ObjecTime 22

of ObjecTime). C++ is used because of the close connection between the Service RTS and the
ObjecTime graphical toolset, which is C++, based.

The workflow that is recommended in taking a model from early prototyping to final
production is shown below. The first step enables a full use of the simulation tools and
debugging capabilities. The second step, which is reached after some necessary adjustments,
is used to check the compilation. Here one can use C-source debuggers and C analysis tools to
secure that the model runs as wanted. The ObjecTime feature Target Observability is a well-
suited tool for verification of the behavior of the model.

Figure 3.4 Workflow in ObjecTime

The final step is to compile the model for your platform and download and run the model on
the target. Of course there are no systems that can be verified without feedback, and this
process has to be run numerous of times with incremental improvements.

3.4 What does ObjecTime consist of?

3.4.1 Software Components

The software components in ObjecTime act as black boxes, similar to a Finite State Machine
(FSM), against each other and have a protocol for interacting with other software components.
This means that components can be reused in different models as long as the same interface is
used.

Model X Model Y

Component A

Figure 3.5 Reusable software components

Changes in one component of a design can be localized, taken care of and fitted into the
environment among other components as long as the same interface is preserved. Using
encapsulated components helps manage the complexity of a design, and increases the overall
reliability of the software.

1.
Start with C and

Simulation Services
Library

2.
Target Services

Library on
Workstation

3.
Move to Target

Services Library on
RTOS

A

A

AB

C D

M
N

4. External communication in ObjecTime 23

3.4.2 Real-world and virtual models

When designing it is often convenient to model real-world entities as software components.
They model concrete entities that exist in the application domain. ObjecTime allows designers
to create components that correspond directly to things in the real-world application domain
as well as virtual or abstract entities. Virtual or abstract entities might be such as an algorithm
or data structure (for example a queue), or a piece of software that performs a special function
that doesn't exist in real life. An example of a real-world entity is a telephone while a phone-
call can be modeled as a virtual entity.

To simplify reuse and protection of software components are stored in libraries. This reduces
the overall effort required to develop new and maintain old software, and makes it easy to
work in parallel in teams.

ObjecTime is made up of some corner stones. They define what can be done and how it is
implemented. Since the core in ObjecTime is UML/ROOM, which originally was developed
as aids for object-oriented software development, the components are much similar to the
different parts of any object-oriented development language. (All entities named below,
except data classes, are shown in Figure 3.2 as they appear in ObjecTime Developer.)

3.4.2.1 Actors

The basic structural components in ObjecTime are called actors and are the main units of
design. In UML/ROOM there are standards specified for how the definitions of actors are
made. This simplifies the reading of the generated code that ObjecTime evolves. A telephone
example will be used to illustrate the different entities in ObjecTime. To start with an example
of how actors form a model is shown.

Figure 3.6 Actors

Actors have some parts that are specific, and five points can be listed namely: [5]

• Actors are potentially concurrent.
• Actors communicate by sending messages.
• Actors are encapsulated.

4. External communication in ObjecTime 24

• Actors have a structure.
• Actors can have a behavior.

In the telephone example the points above can be:

• When a phone is in use, one can not use it for other calls.
• A handset actor communicates with the base unit actor.
• The base unit does not see what states the handset actor contains and vice versa.
• A telephone contains a handset, tone generator, keypad, hook-switch and base unit.
• The actions that have to take place to process an outgoing call.

If ObjecTime is going to be used in an appropriate way, designing multi-layered systems is
mandatory. With layers containing more than six states, where a state is an instance of an
actor, it is fairly hard to get a clear overview of the system. The example in Appendix A
contains six actors in the first layer, with five of them containing subactors. This is indicated
by the small rectangles in the lower left corner of these actors.

3.4.2.2 Messages

The actors communicate and interact with each other by sending messages from ports via
bindings to other ports on other actors or to subactors within it. Those bindings are edited in
the model manager and make the system easy to understand. For each actor you have to
designate a set of messages to which it will respond. A complete design represents an overall
system, and each actor is a part of the system. The overall behavior of the system is the sum
of the behavior of all its interacting components.

It is not possible for an actor in the system to look inside other actors. By encapsulation,
actors are not directly aware of other actors in the design: they see only their own interface
through which they may communicate. Other actors send messages to request that an actor
perform the functions for which it is responsible.

Message processing can be illustrated as the signaling between a keypad actor and a tone
generator in the telephone example.

Figure 3.7 Messages

4. External communication in ObjecTime 25

3.4.2.3 Actor Classes

Actor classes are the most basic component in an ObjecTime design. These specify the
fundamentals for actors of a special type. All actors have a class specification witch serves as
a skeleton for actors of the same type.

Two or more actors belonging to the same type used in a design are said to be references of
the same actor class. Each actor class specifies the actor's structure and behavior, as well as
the messages it can send and receive. Classes can also be stored in a library where they can be
reused in other designs.

To communicate in a telephone network one has to have at least two telephone references to
the telephone actor class.

Figure 3.8 Actor Classes

3.4.2.4 Inheritance

Inheritance is the core of object oriented programming and is the biggest difference to
procedure oriented programming, such as C or Pascal. C-code can be used to specify the
behavior that the actors inherit.

Classes are organized in an inheritance hierarchy. Subclasses, not to be mixed up with
substates, inherit various attributes from superclasses such as structure, behavior, and design
documentation among others. Inheritance is an abstraction and reuse mechanism for system
components. Different software designs often have parts in common. The telephone example
is continued below with a picture of an inheritance situation.

4. External communication in ObjecTime 26

Figure 3.9 Inheritance

Inheritance allows you to factor the common areas of a component into a superclass, and then
simply add specific behavior to subclasses that are specialized for the different designs.
This has two benefits:

• A common design is reused, instead of being copied and modified, or even re-
invented.

• When bugs are discovered in the design, a single change fixes all affected designs.
This makes software more reliable in the long run.

3.4.2.5 Actor Structure

To keep the complexity of software at an as low level as possible it is strongly recommended
that you try to simplify your design. Actor structure is preferably organized in a manner
where actor classes contain references to other actor classes.

This is a way of simplifying designs by allowing complex actors to be decomposed into
simpler actors. Decomposition is an important principle in ObjecTime. It is a very useful way
of dealing with software complexity. The decomposition is described by an actor’s structure.
Structure is defined in the actor's class specification. The structure captures the
communication and containment relationship among system components.

The actor structure is illustrated and further explained in Figure 3.9.

4. External communication in ObjecTime 27

Figure 3.10 Actor Structure

3.4.2.6 Actor Behavior

In an FSM, components must have a way of reacting to system events. They must also have a
way of communicating with other components in or outside the system.

Most actors have a behavior, which defines how the actor responds to different events. The
behavior is specified via the FSM. When an actor receives a message, a transition may occur
causing the FSM to perform a specific action and, possibly, move to a new state.

To make ObjecTime easy to read the number of states in each layer should be kept at a fairly
low order. Up to six states gives developers, and other users, a fair chance to catch the full
picture of the FSM. We, for example, tried to limit ourselves to a maximum of four states in
each layer and there was never a problem to group states into one superstate with two or more
sublayers when requested.

The actor’s behavior specifies actions to be performed when an action occurs. Actions can
include sending message, performing computations, changing the value of a local variable,
and accessing lower-layer services. The behavior in the different states is coded in C or C++.
These behaviors should be fairly short, at maximum thirty rows since we still want the system
to fully use the benefits of ObjecTime.

4. External communication in ObjecTime 28

As described below an outgoing call demands, at a high level, at least a pickup of the handset,
dialing a number, placing the call and a hang-up.

Figure 3.11 Actor behavior

3.4.2.7 Ports and Bindings

The interaction between actors is managed through ports and bindings. A port is a reference to
a protocol class which defines the set of messages that a port is permitted to send and receive.
The binding is a connection between the ports that channels the communication or interaction.
Ports are attached externally to the interface of an actor or internally for communication
within the actor. A binding has to be placed between the keypad actor and the tone generator.
The ports, in this example, are only permitted to send respectively receive digits.

Figure 3.12 Ports and Bindings

4. External communication in ObjecTime 29

3.4.2.8 Data Objects

Data objects are used in the actor's behavior. A data object is in some way similar to an actor.
Considered to have a single, implicit port on its interface, it is passive and always executes
within the thread of control of an actor.

A data class defines a data type and the valid operations on it. A variety of different base data
types are supported which are based on language independent types. Data objects can also be
sent and received by actors using messages. The data in a message is processed by the
behavior of the receiving actor. Like actors and protocols, data objects are specified by
classes.

Figure 3.13 Data Objects

Note: Data classes are not supported with the C Target Service Library but are included to get
the full picture of the possibilities in ObjecTime.

4. External communication in ObjecTime 30

4. External communication in ObjecTime

4.1 Making ObjecTime communicate with external systems.

To meet the main objective of these thesis which, i.e. to enable external execution of existing
real-time functions (a package called MPS at Ericsson Radio Systems, developed in the
RTOS OSE-delta at ENEA) from within ObjecTime, part objectives were established. Those
were first to manage the communication with test programs running on a simulator, PLS-Sim
(HOST-testing), and then implement our solution, with code-generation, on a target processor
AMD (TARGET-testing), as Figure 4.1 illustrates. As the next generation of radio-bases will
be developed on PowerPCs, there was a possibility to implement our solution on a new
PowerPC as well. This would have been very similar to the AMD-case, but as we reached this
point the department's progress in developing an environment for the PowerPC wasn't
completely finalized.

C was the main developing language at our department. This because C is a fairly low-level
language, close to assembler-code. The C version of ObjecTime doesn’t include all the
functionality that the C++ version does. One drawback of using the C version is that at
simulation C-models are actually transformed into C++ executables running on top of a
Simulation Services library. This is though, for most parts, invisible to users running models
in the Simulation Services Library, but could be seen as a simulation of C++ code and not C
as intended. The different MPS-functions are written in C on an OSE-delta platform.

OSE-delta is a real-time operating platform developed at ENEA. Our aim was to develop an
interface in ObjecTime that managed the communication with HOST/TARGET so that the
MPS-functions could be viewed as being actors within the ObjecTime model. ObjecTime was
chosen because the UML-core and the possibility to evaluate the system through Target
Observability. To accomplish our task a number of obstacles had to be solved.

Figure 4.1 System parts and relations

Function calls
ObjecTime
(C-version)

based on the UML-
design.

MPS
function-library.

based on the
OSE-delta RT OS

Simulation RTS
(Workstation)

ObjecTime testing.

Target RTS
(AMD/PPC)

Target RTS
(Workstation)

Pls-Sim testing.

321

4. External communication in ObjecTime 31

4.1.1 Communication

To choose, and choose wisely, how to manage the communication to and from ObjecTime we
looked at some different aspects beside the sole RT-aspect. Four major areas were discussed.

1. Compilation
2. Synchronization of processes (hunting)
3. Addressing (linking) and
4. Initiation.

4.1.1.1 Compilation

To be able to use the MPS functions, they had to be included in ObjecTime. Our aim was to
unify the compilation and MPS function inclusion process. This was at first done in
ObjecTime through writing the full function path in the configuration manager (can be seen in
Figures 3.2 and 3.3) as inclusions for each ObjecTime-system. Since there often are up to
twenty different functions that needs to be included and those search paths contain many
layers we grouped all the functions needed in an archive including the MPS functions. This
archive was stored in the ClearCase environment and included into ObjecTime as one link
only. Still we had to make an extra compilation of the archive.

The link-solution was improved as the thesis progressed and now we have entirely skipped
the archive for the MPS functions. Even the external compilation can now be skipped. This
was one objective for choosing the way of "function implementation" that we did. The
different "function implementation" alternatives will be evaluated below.

We would also like to do just one compilation of the entire system (ObjecTime, the
HOST/TARGET program(s) and the external functions). Since it takes some time to compile
ObjecTime as well as the external units we would like to see that parts of the compilation is
optional, so that time is not wasted on compilation of already compiled processes. The
compilation can be implemented in the ObjecTime make file, by making a load pearl script,
ld.pl, file that "overrides" the old linking.

4.1.1.2 Synchronization of ObjecTime and MPS processes

Problems can occur with the priority of the processes as well as the with the port addresses,
i.e. ObjecTime doesn't know what address to send and receive signals on. This can be a
dilemma when we want the processes to automatically initiate the communication between
each other. We had to solve this problem, with the processes starting in a proper order. As a
first naive solution we wrote a macro in an init transition in ObjecTime that used a "while-
loop" to wait for the external initialization-process to start. When started this process sent a
message with it's priority and address to ObjecTime indicating that it now was all right for
ObjecTime to start running. This solution was time-consuming and looked bad for a real-time
solution. Finally, with some assistance from Tom Moore at Rational, a compilation pearl
script was created that initiated the synchronization and set ObjecTime in it's first ready state,
waiting for the external process or an event (internal or external) to occur firing a transition.
Priority and address were stored in a linked list as mentioned below.

4. External communication in ObjecTime 32

4.1.1.3 Addressing

Since we were using processes running at different platforms, it happened to be that the
addresses for ObjecTime and MPS had different sizes. Incoming messages from MPS to were
not recognized in ObjecTime and vice versa. This problem was solved with two new queues
that was created in ObjecTime, one for incoming messages and one for outgoing messages.
The queues, two linked lists, inserted the function-calls in priority-order and modified the
adresses to fit the recievers standard. Linked lists are by far the least time-consuming and
flexible way of keeping track of those lists.

4.1.1.4 Initiation

OSE-delta's and ObjecTime's default installations, had to be examined. As we have seen
above, problems can occur if they have different default port-addresses, address-size etc. The
solution was to write a batch-file for ObjecTime that initiated the receive-/send-queues,
managed the compilation, and set the standards for those ports and address sizes. The file
starts the HOST/TEST compilation, executes it, when done starts ObjecTime, makes a
compilation of ObjecTime from within and finally closes it down.

4.1.2 Function implementation

Run-Time service systems can be equated to the so-called "system" services of traditional
operating systems. For example, inter-process communication, file system access, or runtime
exception handling are standard services provided by most operating systems. In ObjecTime
such facilities are folded into the more general concepts of layering and services.

Layering handles the communication with other processes as well as internal communication
while services takes care of function calls and the different operations executed during run-
time (internally) [5]. In the "function implementation" phase the major issue was to ensure a
sound real-time solution. The telecommunication area is an area that mostly runs under hard
real-time constraints. Therefore we chose to implement every function as if it had to meet the
hardest time constraints. This made this to be the largest problem to be solved. We had to
investigate, test, implement and verify the different ways of solving the communication and
function implementation of MPS functions into ObjecTime. Several alternatives were found
possible. Some of them were fairly rapidly rejected while others were found to be almost as
appropriate as our final solution. The different alternatives were as follow.

4.1.2.1 Proxy

This is a simple communication method to implement. It is also a reasonably effective
solution when there are no hard real-time restrictions to meet. Experts at Rational told us that
this method was the most widely used way of dealing with the external communication. The
time-aspect is difficult to fulfil because of the proxy, which acts as a bounce-point, that
receives the signal, manages it and finally forwards it.

4. External communication in ObjecTime 33

Figure 4.2 Proxy Solution

Since telecommunication features extremely hard real-time objectives this solution couldn't be
used but are recommended for applications with soft time-constraints.

To implement the proxy-solution one has to create a signal-processing actor class, proxy, and
then specify an instance of this class for each function call inside ObjecTime. In Figure 4.2
the EventHandler uses six instances of function calls that can be sent and handeled via six
different proxies. The proxy communicates, with its MPS function, in the OSE-delta
environment. The signals are sent to and from ObjecTime/OSE-delta via the proxy where they
are modified to fit the receivers signal structure. This solution can be seen as two black boxes
communicating with each other, with no possibility for Target Observability, that is, it is not
possible for ObjecTime to see what signals that are sent in the OSE-delta environment and
vice versa. Target Observability will be described in detail below. The debugging ca not be
done in ObjecTime in any other way than with "printf". The Target Observability problem
will be solved in the new version of ObjecTime (6.1).

4.1.2.2 SAP/SPP

Service Access Point/ Service Provision Point can be seen as ports that send messages
through different layers instead of ordinary ports that send within specific layers. The
SAP's/SPP's are not graphically represented in the model as ordinary ports are. This solution
might look as the natural communication alternative at a glance. ObjecTime appears as one
layer and the external layer as an other. It is also the method recommended in the ObjecTime
manual, but when evaluated it appears to be both complicated to implement, and fairly time-
consuming to run. ObjecTime functions are used, but it is the adress string for these functions
that has to be sent to OSE. In every call from ObjecTime through SAP/SPA, ObjecTime has
to search for an address string in a fairly huge address register. If we have many calls/sec
seeking for addresses, the solution becomes even more time consuming than the "proxy"
solution.

4. External communication in ObjecTime 34

4.1.2.3 Inline coding

This is the straightforward "low-level" programming solution. One simply recodes all MPS-
functions into replicas in ObjecTime. This is of course a very time-consuming method and
demands a great deal of work. Every function has to be exactly imitated and with a fairly
small insight in the different functions besides the amount of functions to be rewritten this is
an alternative that is hard to implement.

4.1.2.4 Port send (unbound)

This alternative looked almost similar to the SAP/SPP solution, with the drawback of finding
the function adresses The difference is that the developer defines what the signal should
contain, and that this solution is unbound. Unbound indicates that there are no threads drawn
between ObjecTime and the external system. Instead port send uses a signal register when
sending and receiving signals. Still ports are modeled in ObjecTime but there are no bindings
connected to them. For example it might look as follows in a port that sends and recieves
messages (from an ObjecTime point of view):

Incoming Register (Signal, Port, OTSignal, Actor)
Outgoing Register (OTSignal, Actor, SignalNo, Size, Address)

The hardest thing to manage is what size and address the outgoing register is supposed to use.
The size of the signal might have different physical size in OSE-delta and ObjecTime and it
appeared that OSE-delta and ObjecTime did not use the same format for similar definitions.
(32 respectively 16 bytes for unsigned char). As this problem was harder to solve than first
expected we did not continue on this track although it looked quite promising.

4.1.2.5 Function call

The most flexible solution, which this chapter will focus on is the function call solution. All
communication to OSE-delta is wrapped up as function calls. In these project the function
names in MPS was used, since the developers at Ericsson are familiar with those. To ensure
that trere are no possibilities for mix up RSL was added before the MPS call, i.e.
“req_single_tmo” in MPS is referenced to as “RSL_req_single_tmo” The signals are sent out
and received on an unbound port in ObjecTime. In the “RSL_...” definitions the MPS
functions has to be called and the recieving, or sending, actors as well as ports and signals in
ObjecTime has to be determined. At compilation ObjecTime will give an error message
because it can not find a recipient. As a first solution we simply specified the external target
(HOST or TARGET) the first thing at run time and wrote a macro to initialize the
communication in the initialization file in ObjecTime. The final solution was to modify the
make-files in ObjecTime. Now the error messages are not showed anymore and the
communication initialization is performed automatically at compilation. An other problem
with this solution is that one must know what actor and which port on that actual actor you
want to send your signals to. The only ways to manage this is either to always know what
actor and port adress you are sending to, which is most often solved with having one specific
communication port, or to look for the address number in an Object database. Finally the
addressing problem is solved in an elegant way where one specifies the port with name and
actor and then ObjecTime finds the address number in the Object database automatically. If
the signal is to be sent to the same port as it was sent from an &-pointer can be used for
convenience.

4. External communication in ObjecTime 35

This solution is more complicated to implement than the Proxy solution. Since the functions
are called from ObjecTime in the same manner as it would have been in any other process the
functions do not need to be included in any archive. Function calling is far more effective than
most of the other alternatives when the call is time dependent, as for timer-functions calls. An
other necessity is that ObjecTime uses the same timer as OSE-delta does, and this was
achieved in this solution as well.

4.2 Target Observability

One of the major reasons for using ObjecTime as UML tool is that it features a Simulation
tool that enables Target Observability. This tools enables debugging functions such as state-
machine animation and break points, message tracing, message inclusions, single stepping
and MSC plotting. [12] As to date PLS-Sim has been used for simulating the SW models.

During the progress of this thesis ENEA developed a new version if OSE-delta. This version
better supported Target Observability. The problem had been that a function had been used
with the same name in OSE-delta as in ObjecTime. With this feature one are able to see what
signals are sent, when they are sent and from and to what ports the signaling occurs.
This is seen in the RTS control panel as in Figure 4.3.

As to date developers are able to plot Master Sequence Charts (MSC, exemplified in Figure
4.3 below), when running the model on a HOST target, to get a clear view of the Finite State
Machine (FSM) signaling inside ObjecTime, but not for actors or procedures acting from
outside ObjecTime. MSC’s are great to use when pinpointing race conditions that have
occurred because of flaws in the design process or alternative execution scenarios.

4. External communication in ObjecTime 36

Figure 4.3 ObjecTime Views

In forthcoming versions of ObjecTime you should be able to automatically create FSMs from
your MSC.

Problems can occur when porting ObjecTime to the target since one has to specify the
physical port number (master port) for the communication. To date you are only able to use
the Target Observability feature for simulated processes. Your system can be tested and
verified, but still you can not use this nice feature on your target platform if you run the C
version of ObjecTime. In the C++ version this is solved and in version 6.1 of ObjecTime this
will be implemented in the C version as well.

4. External communication in ObjecTime 37

4.3 Results

This thesis resulted in a model, illustrated in Figure 3.2 and 3.3, which can be run on an AMD
Target. The model runs, is developed and can be evaluated in an ObjecTime environment.
After the necessary start-up procedure a ”Request Single Time Out” is requested in the
initialize-transition from the MPS function library. MPS returns a call when the time-out has
run out. This triggers the recieceAffermative transition and the ”Request Single Time Out” is
followed by a ”Request Cyclic Time Out”. One time-out is executed and afterwards the
ObjecTime model triggers the tmoLoop. Here it signals ”Cancel Time Out” with simple call
that includes the time out identity. In this transition the multiple time out is restarted as well.
The function calls are described in detail below. This banal model runs on the Target
processor and dumps a “printf” each time a signal is received from the OSE-delta
environment.

In ObjecTime we had to implement a function call interface to the MPS functions that was to
be used. This interface can be used as a template for further function implementations.

As the ObjecTime model runs smoothly on Target as well as in Simulation the probability for
a full implementation of UML-design using ObjecTime (v 6.1, Rational Rose-RT) has
hopefully increased.

As mentioned above four MPS time-out functions were implemented in ObjecTime, namely:
RSL_req_single_tmo, RSL_req_cyclic_tmo, RSL_cancel_tmo and RSL_restart_tmo.

The function-calls looks like:

• RSL_req_single_tmo (int timeOutValue, RSLActorIndex _actor, RSLSignalIndex _signal
RSLPortIndex _port, void* _data);

• RSL_req_cyclic_tmo (int timeOutvalue, RSLActorIndex _actor, RSLSignalIndex _signal,
RSLPortIndex _port, void* _data);

• RSL_req_cyclic_tmo (mpsk_tmo_id *timeOutId);

• RSL_restart_tmo (mpsk_tmo_id *timeOutId);

Here ”timeOutValue” is the length of the time-out in milliseconds, ”_actor”, ”_signal” and
”_port” are the adress, signal and port to witch the time_out call shall send it’s respond,
”_data” is an extra void-pointer for future undefined purposes and ”*timeOutId” is a pointer
to the actual timeout.

A header-file containing the definitions of the MPS-inclusions is stored in the ObjecTime-
file: …/objectime/TargetRTS/include/ crsl_if.h. This header-file is target-independent, that is
it goes for every instance of OSE-platform (HOST, AMD and PPC).

The function-calls are specified in a *.c file in ObjecTime. Here it is necessary to rewrite and
store the *.c files locally for every OSE-target. The name of this file is RTThrSig.c and it is
stored in …/objectime/TargetRTS/src/target/OSEXX/CRSL/. XX is the OSE-target and
equals: 32SK for HOST, 26 for AMD respectively 32 for PPC. (SK stands for Soft Kernal).

4. External communication in ObjecTime 38

Problems can occur when compiling ObjecTime if the pathes to the external root-libraries not
are specified. It is recommended that at least the OSE, PLS and MPS root-pathes are defined
in the …/objectime/TargetRTS/target/OSEXX/target.mk file specific for every OSE-target.

To verify the functionallity of the time-out function calls a small ObjecTime program was
developed. It contained three transitions, as seen in Figure 3.2.

The first transition, initialize, calls a ”RSL_req_single_tmo” in 50 milliseconds. The pointer,
”this->idOne”, stores the timeout id. Figure 3.2 shows that the ”RSL_req_single_tmo”
responds to the same actor as from it was sent. It sends a ”InOutSignal” on port
”OSESignalPort”. In the bottom of the transition code editor of the ”recieceAffermative” (!) it
is indicated that this transition is triggered by a ”InOutSignal” on port ”OSESignalPort”. As
this is received the ”recieveAffermative” transiton is fired. Now a ”RSL_req_cyclic_tmo” call
is done in the same manner as described in the ”RSL_req_single_tmo” case. The respond
from this call triggers the third transition, ”tmoLoop”. In this transition ”RSL_cancel_tmo”
cancels the ”RSL_req_cyclic_tmo” and the ”RSL_restart_tmo” call restarts it again.

(The TRACEH calls are OSE calls aswell, and are used for debugging purposes.)

To think of, when developing in the ObjecTime/OSE environment, is that compiling has to be
done in two, or optionally three, steps. First the ObjecTime TargetRTS environment has to be
compiled. This is done in …/objectime/TargetRTS/src> with:

clearmake CONFIG=OSE32SKT.sparc-gnu-2.8.1 (HOST)
clearmake CONFIG=OSE26T.amd29k-gcc-2.5.2-921031 (AMD)
clearmake CONFIG=OSE32T.ppc403-Diab-4.0b.3 (PPC)

Here gnu, gcc and Diab are the compilers used for each TargetRTS.

If a SU is developed and stored in ClearCase this can be compiled seperately or togheter with
the ObjecTime SU. If choosen to be compiled togheter one has to choose which SU to be
compiled first. The easiest way is to make a patch in the mk.rules files for the ClearCase SU
that starts the ObjecTime compilation. To do the other way around one has to make the patch
in the ObjecTime-generated ld.pl file (pearl-script).

Two library inclusions have to be made in ObjecTime Developer configuration is now the
following directories: …/pls2/pls_sw/ MPS/MPSK/EXPORT

and EXPORT

Besides the functions stdio.h, stdlib.h, string.h, mpsk_timeout.h, mpsk_traceh.h inclusions
that includes MPS functionallity.

5. UML and ObjecTime at Ericsson Radio Systems 39

5. UML and ObjecTime at Ericsson Radio Systems

The work done in this report served as a test for ERA to see what possibilities UML design
and ObjecTime implementation and verification could have in developing new software for
radio bases in the new 2000 family and forthcoming generations.

At present the UML/ROOM notation and ObjecTime are being introduced at the department
where this thesis was carried out (Control and Transmission, SW). Some pilot studies are
done and developers are offered courses both internally at Ericsson (small tutorials) and
externally at Rational. The courses focus on the developing process in ObjecTime and
surprisingly not on the far more general methods of UML/ROOM design. Still, when using
ObjecTime, it is inevitably to use the UML/ROOM notation. The pilots studies are done in
case of time and serves as an introduction and evaluation on personal basis over what can be
done in ObjecTime, and for what use it can be integrated in the personal development process
of new software. As to date all pilot studies are restricted not to use the code generated in
ObjecTime.

The single pilot study done completely in ObjecTime Developer, for the department, is a
transmission model that simulates the signal flow in a TRU unit. The TRU is a unit that
handles the interface between the Radio Base and the antenna. This model can be seen in
Appendix A. The TRU model is far too complex to be described in this thesis and the
Appendix is to be seen as an example of how a larger SU, Software Unit, might look. The
example includes a screen dump A.1 of the TRU model and the system manager that shows
all actor classes and data packages. Two of the actors are shown in detail in Figure A.2. The
upper actor, the Lapd actor, has three ports on its fringe. All of them are end-ports since there
are no subactors inside the Lapd actor. The behavior of the Lapd actor is shown in the upper
right of Figure A.2. It contains two states, five bindings and a choice point, where the choice
point simply acts as an if-statement. The boxes on the bottom of Figure A.2 show the
DataLink actor. This actor contains two subactors, one of that contains subactors (illustrated
by the small rectangles in the lower left corner of the data_link actor). The ports on the fringe
of the DataLink actor are all relay ports, since they only distribute the signals down to the
receiving subactor. There are no behavior needed for this actor and the behavior is as seen
empty. The MSC of six selected actors are included as well.

The TRU model was not intended to be run on a target processor. The reason for the model
was to look at what, where and when signals were sent. This was plotted in the MSC, Figure
A.3.

(As a remark can be mentioned that the developer by his own words meant that he was at the
beginning on of the most skeptic developers at the department but now one of the most
enthusiastic.)

Other departments at ERA, e.g. WCDMA (Wideband Code Division Multiple Access), have
ObjecTime running at full scale.

ObjecTime developing will probably be integrated in a broader scale when the new version of
ObjecTime (v 6.1) becomes available. This version is a mixture of the existing versions of
ObjecTime (v 5.2) and Rational Rose (v 98) and is also named Rational Rose-RT. It contains
a more convenient window handling system, ability to extract your system from MSC’s,

5. UML and ObjecTime at Ericsson Radio Systems 40

better documentation tools etc. Ericsson holds a license of Rational new products and free
support can be used and received continuously.

6. Summary 41

6. Summary

The object of this thesis is to describe UML-RT and evaluate to what degree UML-RT based
design, verification and implementation (with ObjecTime) can be implemented into the
existing development process at Ericsson Radio System. ObjecTime was chosen because of
recommendations from a previous thesis. Ericsson Radio has previously used non-graphical
methods during the testing, implementing and verification of Radio Base Stations. The new
graphical programming languages has integrated the design and development process, making
it possible to develop the system more accurate from the initial design, Ericsson Radio is
interested in applying ObjecTime to the software development of Radio Bases. This thesis
will describe both UML-RT and how ObjecTime could be integrated with the development of
Radio Base systems.

We found that when integrating two different systems with each other, problems in the fringes
between, in this example, ObjecTime and MPS were common, i.e. during compilation or in
special cases when a certain kind of information is sent from one system to the other. In this
particular case problems during compilation appeared due to overlapping names on different
process calls, and information was interpreted wrong because the two systems used different
standards on dataclasses. This was solved with changes in a pearl script and with changes
with help from ENEA, the developer of OSE delta real-time OS. What may be annoying for
the developer is that one still has to include, by hand, several functions from the old
development tool, MPS, this means that when files are moved or renamed in MPS, changes
also has to be done in ObjecTime. A future goal of the implementation will be to make MPS
and ObjecTime independent from each other, with out destroying the compatibility of the two
programs. The advantage of the current implementation, is that other systems may easily be
connected with each other by using the same solution that we have developed. Even the
common compilation that we implemented can be extended to include other systems that need
to be compiled.

There are some minor disadvantages with the C-version of ObjecTime. One is that dynamic
structures are not supported. This is an obstacle when adding new hardware components that
must be represented as new actors in the software. Another problem is that inexperienced
users easily tend to spread out small chunks of C-code on different places, such as in
transitions, enter- and exit-code for states. This makes the generated code somewhat messy.

We conclude that UML-RT has strengths for developing real-time systems. Mostly because of
the use of a uniform notation throughout the entire development process, from a design
process that easily is translated into an executable model in ObjecTime where the code
generation is done. The use of a standard, visual design process that is transformed directly
into code means that the source code easily can be read, understood, reused and changed.

Since the UML-RT notation is based on independent components it is fairly easy to create
different instances of the same component and then try the different alternatives to find an
optimal solution.

The possible extensions that can be performed in the coming version of ObjecTime 6.1 are:

Include Target Visibility on the Target Platform, which as to date only can be done when
simulating the system on your workstation.

6. Summary 42

The possibility to look into external systems to see what and when signals are sent. This
makes it possible to draw Message Sequence Charts for the entire system and not only for the
part implemented in ObjecTime.

Implementing our solution on the PPC target. This requires little work as we already has done
a solution that can be run on an AMD target.

Other extensions are:

Making compilation optional. As it is now, the entire system is recompiled when changes are
made. As to date one is able to compile separately but the different compilations have to be
done in different libraries, which are nestled down deep in the library system.

References 43

References

[1] Overcoming the crisis in real-time software development. Technical report,
ObjecTime Limited, 1997. www.rational.com.

[2] UML notation guide. Technical report, Rational software Corporation, 1997.

[3] Paul Harmon. UML, object modeling, and requirements specification. Cutter
Consortium, 1999. www.cutter.com.

[4] UML summary, Technical report, ObjecTime Limited, 1997. www.rational.com

[5] ObjecTime Developer User Guide 5.2. ObjecTime Limited, 1998.
www.objectime.com.

[6] Mike Bienvenu. Systems Design in ObjecTime. Technical report, Sparta Inc.,
1995.

[7] ObjecTime Developer C Language Guide 5.2. ObjecTime Limited, 1998.
www.objectime.com.

[8] Christian Demmer. Unified Modeling Language vs. MWOOD-I. Technical
report, 1997.

[9] Bran Selic ObjecTime Limited, Jim Rumbaugh Rational Software Corporation.
Using UML for Modeling Complex Real-Time Systems. Technical report, 1998.

[10] Bruce, Powel, Douglas. Real Time UML, Addison-Wesley, 1998.

[11] Garth Gullekson, Bran Selic, Paul T Ward. Real-Time Object Oriented
Modeling, John Wiley and Sons. 1994.

[12] Andrew Lyons, Developing and debugging Real-Time Software with ObjecTime
Developer. Real-Time Magazine 99-1.

Appendix A 44

Appendix A

figure A 1 TRU model

figure A 2 Example of Actors and their Behaviuor in the TRU model

Appendix A 45

figure A 3 MSC of selected actors of the TRU model

