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Chapter 1

Introduction

Genetic Programming [Koza, 1992], GP in short, is a method using Darwinian
idea of natural selection to create a computer program automatically from high-
level statements of problems' requirements. GP itself is an extension of Genetic
Algorithm (GA), �rst developed by John Holland (1975), who mimicked the
way bio-organism evolved according to the rule of `the �ttest survives'. The
way nature has it that a particular species ourishes, is by inheriting the genes
from the �tter individuals, from one generation to the next. In the case of GP,
these individuals are sets of programs that are being `cross-breed'.

Typical runs of a genetic programming system include �rst the preparatory
steps of de�ning the problem statement communicated through a `�tness func-
tion', functions that the system can use and other design parameters. During
the execution, individuals are selected to participate in various `genetic opera-
tions' and new generations of individuals are produced in this manner. When
certain terminal criteria, such as when the solution has been found, is met, the
run will stop and the results is one that the individual gives the satisfactory
output. Genetic programming is a competitive beam search among a diverse
population directed to the goal of discovering a satisfactory program that will
solve the given problem.
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Part I

Part I: Background
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Chapter 2

Genetic Algorithm

Genetic Algorithm (GA) derives its name from the pioneer John Holland [Hol-
land, 1973] who got his inspiration from the way of natural evolution. The
method starts with a population of objects, or individuals, each having a known
�tness. Using Darwinian principle of survival and reproduction of the �ttest,
genetic operations such as crossover (sexual recombination) and mutation are
performed on these individuals, and a new generation of individuals are bred
from the pervious generation. Using a suitable �tness function that gives a
probability for which individuals to choose from, Genetic Algorithm solves a
problem through driving the population's evolution in the direction we want it
to go.

In application, very much like DNA in nature, GA uses an encoding scheme
to represents a probable solution, typically a vector or simply just binary code.
In optimisation and other problems, this can also be a point in a search space.
Individuals with these `DNA' records could therefore be a used as criteria of
judging the individuals' �tness or how close they are to the solution. [Langdon,
1998]

The mechanics of a simple genetic algorithm is surprisingly simple, and an
example is shown below. As would be seen, the method involves nothing more
complex than copying strings and swapping partial strings. A suggestion on why
this simple process works is more subtle and powerful, this would be presented
in later sections. However it should be noted that the attractiveness of this
method lies in its simplicity of operation and e�ectiveness. [Goldberg,1986]

2.1 Simple Genetic Algorithm: example

As mentioned the breeding of a new generation is inspired by nature. Taking
say a set of strings of binary code, new strings are bred from the �tter ones
in the current generation. This can be done using either asexual or sexual
reproduction. In asexual reproduction, the parent string is simply copied into
the new generation. Mutation, such as a random change in the binary number,
can also occur. Arguably the role of mutation provides certain randomness that
is present in nature, and its e�ect is seen in some cases where convergence to
solutions is faster than not having it. In sexual reproduction, two of the �tter
strings are chosen and the new string is created by sequentially copying bits of
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binary code alternatively from each parent. Typically two or three parents are
used, and the point(s) of crossover on the binary string is chosen at random. see
�g 2.1 Figure shows an example of how this is done. A newborn is created by
�rstly copying 3 binary numbers (or `genes') from the 1st parent and 4 binary
numbers from the 2nd parent.

Figure 2.1: Genetic Algorithm - crossover operation

Holland [1973] shows via his schemata theorem that in certain circumstances
genetic algorithms makes good use of information from the search at that point
to guide the choice of its new points to search. Goldberg [1987] gives a more
intuitive approach to the theorem, which will be described later in section 7.1.6.
It should be able to give an insight to why genetic algorithm works and also
show the power of such search techniques. However it is not to say that this
method is universally superior. Nonetheless, �rstly we can look into the central
theme of genetic algorithm and see what it strives to be good at.

2.2 Robustness

Genetic algorithm tries to surpass its cousins of search techniques in the area of
robustness. The balance between eÆciency and eÆcacy necessary for survival
in many di�erent environments takes central stage. Implications of robustness
for arti�cial systems are of course self-apparent. Costly re-designs can be saved
or eliminated, higher level of adaptation can be achieved, and existing systems
can perform better and longer. In control theory, imagine if this method could
be applied to the area of automatic control, where genetic algorithm could pro-
vide the additional supplementary features of self-repair, self-guidance, better
robustness and reproduction which is present in biological systems. This is not
pursued in this thesis but its implication should not be ignored. In short, nature
does it better when it comes to robustness.

It would not make sense either, if we just accept the method of genetic algo-
rithm simply because it mimics the beauty of nature. As Holland and Goldberg
had shown, genetic algorithm is theoretically and empirically proven to provide
robust search of complex spaces. Also, the method is not fundamentally limited
by restrictive assumptions about the search space, such as those concerning con-
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tinuity or existence of derivatives. The real world of search is such, very often
full of discontinuities, noise and multi-modal. This of course, does not mean
that other methods are not good; it simply means that some are better in solv-
ing certain problems over the others, while they might not perform just as well
in other sets of problems. For this the next section provides a brief description
of di�erent search methods available and then the `No Free Lunch' theorem will
be mentioned. This should provide some basic idea what we should and should
not expect from genetic algorithm and genetic programming as well.

2.3 Search Techniques

This thesis is not a comparative study of search and optimisation techniques.
However it is necessary to mention them in order to appreciate that certain
methods perform well in some problems while perhaps not in other areas. Since
robustness is the main concern for genetic algorithm techniques, some focus
would be given to that. However in short it should provide some insight to both
the power and limitations to our search techniques.

Currently there establish three main categories of search methods: calculus
based, enumerative, and stochastic. Further denominations can be separated
from these basic three. The categories can be shown in the �g 2.2.

Figure 2.2: Search Techniques

Enumerative method involves searching all possible points one point at a
time within the search space. The problem in such techniques of course lies in
its lack of eÆciency, the practical search space might be too large and there
might not be any chance where the search can use some information to itself
along the way. This technique however, is easy to use.

Calculus-based techniques are well known. In general there are two main
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classes, namely, direct and indirect methods. Both techniques treat the search
space as a continuous multi-dimensional function and look for the maxima (or
minima) using its derivatives. In Indirect search, the idea is to seek the local
optima by solving usually a set of equations to �nd points where derivatives
would be zeros. The function need to be smooth and for a large area of search
space, number of samples or points where derivatives are zeros could be small.
In direct search, common techniques such as Fibonacci and Newton methods
seek local optima by hopping on the function and moving in the direction of the
local gradient. These techniques are known as hill-climbing methods because
from evaluating the current point, they tend to climb the function in the steepest
permissible direction to the subsequent point. Calculus based techniques have
improved over the years, and some complex problems can be transformed into
'better-behaved' problems where the methods can then be applied. Nonetheless
when the search space is �lled up with undesirables such as noise and disconti-
nuities, these techniques might become insuÆciently robust in the domain.

Stochastic techniques use information from the search so far to guide the
probabilistic choice of the next point(s) to try. Such search recognise the short-
comings of calculus-based and enumerative schemes, and are more general in
their scope. Simulated annealing uses random processes to search for minimum
energy states using the physical annealing process [Davis, 1987]. Evolution-
ary algorithms based their method in Darwinian theory of evolution where the
�ttest survive. In evolutionary strategies, typically the search space consists
of vectors of real values. Adding random noise to the current points on these
vectors, new points are created. The search will continue from the new points if
they are better than the old, if not the old ones are retained. Finally, in genetic
algorithm, the search space is characterised by usually a vectors of bit codes.
New vectors, which may potentially lead to the solution, are created from the
bit codes of the parent. This is analogous to the way chromosomes of DNA are
passed to new generations from the parents.

2.4 Expectation v.s. Non-Free Lunch

Goldberg [1987] suggested that genetic algorithm could surpass their traditional
cousins in the area of robustness. Calculus-based methods perform well in a
narrow problem class, as would be expected, but become ineÆcient in other
bands of problem. Enumerative techniques or simply a random walk would be
almost equally ineÆcient across the whole band. The ideal desire is for which
genetic algorithm would hopefully ful�l, is a technique that has a relatively
high performance across the whole spectrum of problems. It would then be
worthwhile to sacri�ce peak performance on particular problems for generality.

We now know that although any of the above search methods may be well-
suited to a particular problem, the No Free Lunch (NFL) theorems [ Wolpert
and Macready, 1995] showed that averaged over all possible problems the tech-
niques are all equivalent. That is if one performs highly in one particular prob-
lem, there exist other problems where it will perform badly. (Of course these
other problems might not be of any original interest). Its implication could
be then that when averaged over all possible problems, any search techniques,
including genetic algorithms (and of course genetic programming too), would
perform just as badly as random search. This is of course heartbreaking to
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know but nonetheless NFL theorems provide a formal way to argue that the
search techniques presented in this thesis should match the search problems,
perhaps sometimes perform better whereas sometimes not, compared to other
techniques, and show that there is no universally good algorithm for all possible
spectrum of problems.

Furthermore, while genetic algorithms have found their application in a wide
area of research, genetic programming (although the di�erence might be minute)
is relatively new, and as far as we know, not very common in the application
to control engineering. As such, most of the work presented in the thesis is
exploratory. Since it is so, there is no guarantee of results that may even be
close to satisfactory. In such cases, the thesis will try to provide some expla-
nation and discussion on why it did not perform as expected, or in the case of
reasonable success, why it should work.
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Chapter 3

Genetic Programming

3.1 History and Background

The idea of combining genetic algorithms and computer programs is not new,
since the early days in the development of genetic algorithms. Di�erent attempts
were made but it was John Koza [Koza, 1992] who successfully applied genetic
algorithms to program language LISP and showed that this form of methods
can be applied to a wide range of problems. From then, number of papers on
the subject has grown at exponential rates.

Applications using this method are wide. Although there may be some reser-
vation on the technique's scalability to solving more complex problems, in terms
of computational e�ort, genetic programming has been applied to a wide �eld
of areas. Koza's latest book, Genetic Programming III: Darwinian Invention
and Problem Solving [1999] for example, presented solutions to problems from
the area of system identi�cation, time-optimal control, classi�cation, synthesis
of cellular automata rules, synthesis of minimal sorting networks, multi-agent
programming, and synthesizing both the topology and sizing of analogue elec-
trical circuits. Nonetheless, having said that genetic programming showed in
favour in solving a variety of problems, it should also be mentioned that however
capable, it has not been demonstrated to be capable of solving all problems of
all types from all �elds.

A computer program can be thought as a particular set of solutions (or a par-
ticular point within) to a possible search space consisting of all such programs.
Hence computer programming can be said to be searching for such a suitable
program that might work, within this space. Human programmers when work-
ing on the task would use their skills and experience to direct their search so as
to �nd correct program. Many tools and representations are available, such as
high-level languages or code generators, for the human programmer to use to
make it easier to complete the goal.

When programming neural networks, calculus based search techniques such
as back propagation are often used. Simulated Annealing, Evolutionary Strat-
egy and Genetic Algorithms have also been used to program arti�cial neural
networks. Calculus based methods usually transform the search space so that
it is smooth and solvable. When the neural network has terminated with the
search, it is said that the network has been trained. A program in this sense
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has been automatically created.
Genetic programming on the other hand uses stochastic search technique.

Instead of transforming the search space, such form of searching involves look-
ing at the original space itself. However because of its discrete nature and a
vast number of possible programs, enumerative search is tedious and ineÆcient.
However, as genetic algorithms have demonstrated some successes as stochas-
tic search techniques in solving problems, genetic programming applies similar
strategies. Of course genetic programming, for it to justify its name further,
also combine traditional programming methods such as code reuse, iterations,
function de�nitions among many, in the quest for its search. In brief, we could
say that genetic programming have achieved its success by combining genetic
algorithms with traditional programming.

We now attempt to go into some detail proper on how programs can be
'breed', and some suggestions on how it can be applied to control engineering
will be in the next chapter.

3.2 A Brief Introduction

Genetic programming is a technique that allows computers to evolve problem-
solving capabilities without explicitly being programmed. It uses the method
of genetic algorithm to automatically search and generate the required suitable
program. Genetic algorithms have been discussed in the previous sections; in
the case of genetic programming, the individuals are now computer programs.
A run of genetic programming is a competitive beam search among a diverse
population directed to the goal of discovering a satisfactory program that will
solve the given problem. The ow sequence of genetic programming is shown in
Fig 3.1. For more details, please refer to [Koza, 1999, Langdon, 1998] and the
bibliography.

3.3 Preparatory Steps

There are �ve basic preliminary steps to solving a problem using genetic pro-
gramming. This is a reection on what typically characterise machine learning.
It could start with a human user asking something like, \How can computers
be made to do what needs to be done, without being told exactly how to do
it?" [Arthur Samueal, 1959]. A system that automatically creates computing
programs and solutions should at least be told \what is it to do". Hence these
steps provides some methods for communicating to the system before it start,
what is the requirements of its action. (As a comment, if a system knows auto-
matically what is it to do, it should denotes then, some form of consciousness.
However arti�cial consciousness (see Alexander. 1997) is not the focus of this
thesis and perhaps genetic programming in general now.

These �ve steps, directly from Koza's terminology, are:

1. set of terminals (e.g. the actual variables of the problem, zero-argument
functions, and random constants, if any) for each branch of the to-be-
evolved computer program.

2. the set of primitive functions for each to-be-evolved branch
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3. the �tness measure (or other arrangement for explicitly or implicitly mea-
suring �tness),

4. the parameters for controlling the run, and

5. the termination criterion and the method of results designation for the
run.

Originally, there is the sixth step which involves determining the programs'
architecture (6). In Koza's work this means de�ning the number of automati-
cally de�ned functions (ADFs), the number of arguments they take, which may
call which one, and which may be called from the main program. More recent
works [Koza and Andre, 1995] have shown that the architecture itself can be
evolved during a GP run. Such choices of multi-tree program architectures are
similar to that in this sixth step. As this thesis uses this step to some extent, it
should therefore be mentioned.

Terminals and Functions

The �rst two steps concern the ingredients that are to be used to create the
computer programs. We have to decide the terminals and functions that the
evolved programs will be composed of, so as to ensure that they are capable
of expressing the solution to the problem. Often these may simply be the four
arithmetic operations of addition, subtraction, multiplication and division, a
conditional branching operator, the inputs and constants. These terminal and
functions form an executable program that represents a trial solution. The
transmission functions may consist of genetic operators (crossover, mutation
etc), ADFs, �tness function and selection scheme. Through out the succession
of generations, these transmission functions should drive the population towards
an acceptable solution. Design of a successful set of these functions (let alone
optimal) is not trivial. This could be seen from the subsequent experiment
reports.

Fitness Function

The third step involves designing the �tness criterion for investigating the trial
programs. It is the high-level communication statements to the GP systems
with regard to the requirements of the problems' solution. The �rst two steps
involve de�ning the search space, while this third step a�ects the outcome of
the search.

Fitness function is what drives the population towards the solution. Its pur-
pose is not only to give high reward to trial solutions with the correct answers,
but also reward reasonably solutions which has improved performance over the
last generations. There are of course many ways which �tness functions can
be proposed. However the main characteristic of the �tness function (and of
genetic programming) is that the user speci�es \what is to be done" but not
reveal \how to do it". The �tness function does not give any hint on what to
use for example, iteration or recursion, or what kind of approach it should take
to get to the answer.

A �xed �tness function, or one which is variable as time passes, can be used
in a GP run. Usually the �tness function carries out a trial of the evolved
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program. The individual is tested and its results could be judged against what
is required. This gives a measure of how well the particular individual is.

A problem with such testing is that usually not all cases can be tested, simply
because of the sheer amount of work required to do so. Even if a program is able
to pass all the tests designed by the clever human programmer, there is always a
risk that the program may contain error. Another problem is that since in most,
if not all of the time, each individual undergoes the full set of tests. Since the
volume of testing is sometimes already huge, with thousands or even millions of
individuals in each generation the situation aggravates. Without doubt then, in
most cases it should be expected that determining the �tness of trial solutions
would take up the most amount of computation time in a GP run. Luckily,
in this thesis most of the solutions could be reached with reasonable size of
population and not too vigorous �tness functions.

It is possible to design sets of \fool" or inadequate �tness functions that
will drive a population away from optimal solutions, towards some local op-
tima. That is, the solutions may give relatively high �tness but do not solve
the problem. These problems have been studied in the research of linear ge-
netic algorithms [Goldberg, 1989, 1992 et al.]. Although it has been generally
rejected as problem in genetic programming, it did occur in some cases of this
thesis. However with some additional functionality and rearrangement of pro-
gram structure, these diÆculties became manageable. For now a brief summary
of what was concluded of designing of �tness functions:

1. \Fool" or inadequate �tness functions can drive GP to sub-optimal so-
lutions. The way around the problem can be to design better �tness
functions or provide better (or more eÆcient) terminals and functions for
the search space.

2. It may be easy for a trial solution to score well for some cases but not
others. To do well in speci�c problems may make the solution lose its
generality. A good �tness function should prevent suÆciently well such
cases from occurring.

Control Parameters

Many control parameters are involved in a GP run. Some are more important
over the others. Population size however, is of �rst interest. Generally we would
want a pool of possible solutions that is manageable in terms of computational
time required for accessing it but yet gives a reasonable chance for diversity and
reaching the correct answers. Other control parameters among others are the
number of generations, depth and complexity of solutions, or percentage of the
number of crossovers against reproduction.

Termination Criterion

The most common termination criterion would be to stop the GP run when
some particular individuals have reached the correct solution or pass the �tness
function test. The GP run can be stopped too, when the total number of
generations has been reached. The reason to do so is because in many problems,
GP seems to give only marginally improved solution after certain number of
generations. Koza [1992] argues that in many cases it is better to run a GP
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several times rather than increase the number of generations in one run. It was
found to be generally true in this thesis.

3.4 Execution Steps

After the preparatory steps are completed, the run of genetic programming is
ready to be launched. Execution steps are a series of actions that are performed
in a loop and will terminate when the number of generations is reached or when
the solution to the problem is reached. As like that of preparatory procedures,
the execution steps of GP contain no discretionary human intervention or in-
teractions during the run. The basic form is as follows:

1. Randomly create an initial population of individual programs

2. Iteratively perform the sub-steps below (in one generation) on the popu-
lation till the termination criterion is satis�ed.

� execute each program in the population and assign a �tness value
using the �tness measure prepared.

� Select one or two individual program(s) from the population prob-
abilistically based on �tness to participate in genetic operations de-
scribed next. Reselection is allowed.

� Create new individuals from the old using one of the genetic opera-
tions with which are also based on speci�c probability. The opera-
tions are:

Reproduction: Copy the selected individual into the population.

Crossover: Create new o�spring program by combining randomly
chosen parts from the two selected parents.

Mutation: Create new o�spring program by randomly mutating a
randomly chosen part of one selected program.

Architecture-Altering Operation: Create new o�spring program
by using on of such operation on one selected program.

3. After the termination criterion is met, the run is stopped. This may occur
when the number of generations is met, or when the solution is met with
one of the individual program. Usually the best individual (best-so-far) is
returned as the result of the run. This may or may not be the satisfactory
(or an approximate) solution to the problem.

Figure 3.1 shows the ow-chart of a GP run. It should be commented that it
is similar to that of a basic genetic algorithm procedure, except for the case of
GP, besides individuals are programs instead of vector strings, there exists the
additional step of Architecture-Altering Operations.

3.5 Initial Generation

The initial population of the computer programs can be composed of a random
pool of functions and terminals appropriated for the problem. There can exist
a single or multiple outputs from the program. Also, the size of the initial
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Figure 3.1: ow chart of genetic programming
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program can be random or pre-determined up to the programmer. There is
theoretically no adverse results in choosing the wrong program size to solve a
problem, although it would be shown later it does a�ect the speed of reaching
the correct solution.

3.6 Genetic Operations

Inspired by the working of nature, genetic operations in GP are the mechanisms
that allows population to move towards the designated goal. The three main
operations are reproduction, crossover and mutation.

3.6.1 Reproduction

The Darwinian principle of selecting the �tter of the individual is used, and a
copy of the program is inserted in the next generation of the population.

3.6.2 Crossover Operation

The crossover operation acts on two parental programs selected also based on
�tness and creates one (or two) new o�spring programs consisting of parts of
each parent. An easy way to demonstrate the basic idea of crossover in genetic
programming would be to use an example.

Simple Genetic Programming: an Example

A program, say mathematical equations, can be represented more easily with
tree diagrams such as those in Fig. 3.2. A genetic operation can be performed
for example by taking some branches from the parent programs and inserting
them into a new o�spring. A new program with a di�erent tree-like structure
is now created. This is similar to the case of crossover in genetic algorithms.

For example, say a solution can be arrived by calculating y = x2 + x
without us explicitly telling the computer that it is so. Our population of
possible programs may, among a diverse selections, consists of two programs,
y = x=(x(x � x3) + x) and y = x � x + x + x = 2x . Both are selected from
the population because they produce results that are close to y = x2 + x. (See
Fig 3.2 for the structure. Their equivalent graphical form is in Fig.3.4 ) A �tness
criterion can be for example the sum of residual error between the individual
program and the correct answer. Now a branch from each parent is selected,
say from the father program x�x could be selected and inserted to the mother
program at the point where the branch +x remains (while the rest may be dis-
carded). A new program is thus created and may now yield a higher �tness. In
this case the particular program actually solves the problem and the GP run is
terminated, producing the required output. See Fig 3.3

A sharp reader may notice, for example, that the solutions from GP may
not be optimal, that is it may contain redundancies such as (x � x) branches
that represents nothing. Also, there are certainly more than one ways where
combination to form the correct answer may be possible. A simple solution such
as the one mentioned above just need an occurrence where a branch x2 and +x
could be selected and combined. Also, most of the times, all the programs or
individuals in the search space has to be valid and executable or the evolved
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Figure 3.2: An example of tree-like structures in GP

Figure 3.3: created o�spring from the parent programs
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Figure 3.4: graphical representation of the family of programs
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program will not work. This is true especially for example in cases where there
might be divide-by-0 functions. This is of course, an inherent property that
may exist in GP evolved programs, and problems need to be addressed. More
would be discussed later with regard to closure and eÆciency of programs

3.6.3 Mutation Operation

Mutation operation acts on one parental program selected based on �tness. As
again inspired by nature, mutation means a random transformation within the
genes of an individual. This operation played a role in other applications of
evolutionary methods but not in the early works of genetic programming. Koza
[1992, 1994] wished to show that GP was not performing a simple random search
and hence mutation was omitted in GP runs. However, while mutation is not
necessary for solving a wide variety of problems, mutation operations are now
increasing being used in GP (including Koza). Many have claimed that mu-
tation can be advantages instead of just doing simple crossover/ reproduction
operations. [Chellapilla, 1997]. Mutation operations are used sparingly in this
thesis, with similar purpose of showing that GP when applied to Control En-
gineering is also not a simple random search. However, since it may provide a
further enhancement to the tools available, it is worth mentioning here. Some
mutation operators are:

1. Sub-tree mutation: replaces a randomly selected tree/branch of the pro-
gram within the individual with another.

2. Node replacement: or known as point mutation, replaces a particular node
which is randomly picked within the program with another.

3. Mutation of Constants: mutates constants by adding Gaussian distributed
noise to them.

4. Other operations such as Hoist, Shrink, Permutation.

3.7 Closure

Closure is de�ned by Koza [1992] as the property which each of the functions
are able to accept as its arguments any value or data type that is possibly re-
turned by any function including itself and given by the terminal. Closure is
necessary so that when doing crossover, any arbitrary point or sub-tress can be
combined and the resulting new o�spring would still be correct and executable.
Often closure can be achieved by requiring all terminals and functions to take
and return the same argument types, e.g. integers. Special cases need to be
considered such as divide-by-0 as mentioned before. In the cases of our experi-
ments where this occurred, a divide-by-zero would return a 1. Functions such as
these that take in illegal arguments and return valid results are called protected
functions. Closure is an important aspect in genetic programming since it af-
fects the choice of terminals and functions, hence presenting another diÆculty
in problem representation. This should be even more of a problem when more
complicated programs are to be evolved.
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3.8 Automatically De�ned Functions

In computing, programmers often organise sequences of primitive steps into
groups (subroutines, modules or procedures) for the purpose of code reuse and
also breaking a problem into smaller sets of problems. In genetic programming,
this is done using the mechanism of Automatically De�ned Functions (ADFs).

An ADF consist of a function-de�ning branch that possesses zero, one or
more variables (formal parameters from problems) and whose body is subject
to evolutionary modi�cation during the run of GP. Each of these ADFs resides in
a separate function-de�ning branch within a multipart computer program. This
means that it belongs to particular individual program within the population.

ADFs are used in some of the experiments in this thesis. However they
belong to the �rst type introduced by Koza [1994], which is non-evolvable.
However a structure for the evolvable type was laid down for easy enhancement
in the future. This would be mentioned again later.

3.9 Architecture-Altering Operations

A system for automatically creating computer programs should require as little
human user's help in pre-run decisions as possible. One of the shortcomings of
existing techniques has been the requirement that the human user predetermine
the size, shape, and character of the �nal solution to the problem. These factors
ideally should be part of the answer produced by the automated system, and
not part of the question addressed by the human user.

Architecture-Altering Operations (AAOs) provide the capability to auto-
matically create ADFs, select size and architecture of the program. These op-
erations are done concurrently in the evolutionary process of a GP run. In
his latest work [Koza, 1999] described AAOs for subroutines such as ADFs,
automatically-de�ned iterations, recursions and memory storage, together with
examples of their usage. In brief, AAOs provide an automated way (from a high
level point of view) to decompose a problem into a non-predetermined number
of sub-problems and assemble them into a solution. They can also be viewed
as a method to change the representation, generalisation or specialisation of a
problem automatically.

During a GP run, in each generation a small number of the individuals are
selected (on �tness) and have one AAO acts upon it. A crude form of AAO,
namely subroutine duplication, had been tried out in our experiment with some
slight successes.

3.10 Attributes of Genetic Programming

Given that one of the main purposes of genetic programming is to produce
a computer program automatically, it should be mentioned that if such sys-
tems exist, what kind of attributes they should posses. The following is a non-
de�nitional list from Koza [1998] for such systems. Although much discussion
had been carried out regarding these attributes, only a summary is provided
here. As would be seen, much of the properties are inherent in the methods of
GP. In the thesis it would be shown that at least around 10 of the attributes
could be shown in the experiments, although the GP community claims that at
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least 13 are apparent. This is of course dependent on how far our experiments
go towards reconciling an automatic program-creating system, but it should be
pointed out that we simply just did what is necessary to solve our problem, and
the simpler it is the better. In brief, the attributes are:

Attribute No. 1 (Starts with \What needs to be done"): It starts from a
high-level statement specifying the requirements of the problem.

Attribute No. 2 (Tells us \How to do it"): It produces a result in the form
of a sequence of steps that can be executed on a computer.

Attribute No. 3 (Produces a computer program): It produces an entity that
can run on a computer.

Attribute No. 4 (Automatic determination of program size): It has the abil-
ity to automatically determine the exact number of steps that must be
performed and thus does not require the user to prespecify the size of the
solution.

Attribute No. 5 (Code reuse): It has the ability to automatically organize
useful groups of steps so that they can be reused.

Attribute No. 6 (Parameterized reuse): It has the ability to reuse groups of
steps with di�erent instantiations of values (formal parameters or dummy
variables).

Attribute No. 7 (Internal storage): It has the ability to use internal storage
in the form of single variables, vectors, matrices, arrays, stacks, queues,
lists, relational memory, and other data structures.

Attribute No. 8 (Iterations, loops, and recursions): It has the ability to im-
plement iterations, loops, and recursions.

Attribute No. 9 (Self-organization of hierarchies): It has the ability to auto-
matically organize groups of steps into a hierarchy.

Attribute No. 10 (Automatic determination of program architecture): It has
the ability to automatically determine whether to employ subroutines, it-
erations, loops, recursions, and internal storage, and the number of argu-
ments possessed by each subroutine, iteration, loop, recursion.

Attribute No. 11 (Wide range of programming constructs): It has the abil-
ity to implement analogs of the programming constructs that human com-
puter programmers �nd useful, including macros, libraries, typing, point-
ers, conditional operations, logical functions, integer functions, oating-
point functions, complex-valued functions, multiple inputs, multiple out-
puts, and machine code instructions.

Attribute No. 12 (Well-de�ned): It operates in a well-de�ned way. It unmis-
takably distinguishes between what the user must provide and what the
system delivers.

Attribute No. 13 (Problem-independent): It is problem-independent in the
sense that the user does not have to modify the system's executable steps
for each new problem.
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Attribute No. 14 (Wide applicability): It produces a satisfactory solution to
a wide variety of problems from many di�erent �elds.

Attribute No. 15 (Scalability): It scales well to larger versions of the same
problem.

Attribute No. 16 (Competitive with human-produced results): It produces
results that are competitive with those produced by human programmers,
engineers, mathematicians, and designers.

Attribute No.16 is especially important because it reminds us that the ul-
timate goal of a system for automatically creating computer programs is to
produce useful programs - not merely programs that solve \toy" or "proof of
principle" problems.
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Chapter 4

Genetic Programming in

Control Engineering

The attractiveness in Genetic Programming lies in its possible ability to provide
an automated solution without human intervention, combined with the expected
robustness of Genetic Algorithms. Further more, it is theoretically capable of
using all the existing computing tools and methods used by a programmer to
simplify or change the representation of the problem to become solvable, thereby
provide some form of optimality and reusability. These are certainly big claims
although the community admits that the GP could not solve all the problems.

Hence it would be interesting to see, given the claims on its possibilities,
if Genetic Programming could be applied to the �eld of control engineering.
Koza [1999] had demonstrated using GP a time-optimal robot controller with
the goal being to �nd a strategy for continuously specifying the direction for
an object moving a constant speed (with a nonzero turning radius) to an arbi-
trary destination point. If the object has nonzero turning radius, this problem
cannot be solved by greedily reducing the distance between the robot and the
destination at every intermediate point along the robot's trajectory. Instead,
temporal disadvantage might be useful for long-term goal. This is also seen in
later sections also where a RST controller is evolved.

Hence what does this tell us? Many ways. GA has proved to be successful
in many numerical functions optimisations, scheduling problems [Davis, 1991,
Chu and Beasley, 1995] , evolving neural networks [Nol� and al, 1994] and other
control problems [ K. J. Hunt, A. J. Chipper�eld an al, 1992 ]. Can GP do the
same?

4.1 Optimisation

Genetic Algorithms and in fact Evolutionary Computing in general have shown
good capabilities in optimisation problems. GP as direct cousins should do the
same, if not more, since theoretically it is able to incorporate functions and
computing tools. This is going to be demonstrated in subsequent chapters,
as reected in the Lyapunov solver problem and Model Reference Adaptive
Systems.
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4.2 Robust and Adaptive Systems

Nature certainly does it better, so can we mimic such capabilities in problem
solving?

One of the sought-after goals in control engineering is to make systems adap-
tive to changes in the environment. Adaptive controllers have been successful
and are available in the market. The role of genetic programming could then
be to provide a further tool and complement the existing arsenal of algorithms.
Where systems require something rather than greedy `hill-climbing' methods,
GP may provide the `stop and reverse the damage' property.

Also, structure of GP could probably be used as a background to real-time
control of hybrid systems, that is, one single best adaptive controller is doing
its job on a particular plant while there may be a whole population of adaptive
algorithms that is evolving at the background. Hence at each time the best
controller would be used for controlling the plant even when there's a change in
the plant process. Adaptive GP controllers are also explored in this thesis, but
in the sense of evolution of a population of controllers trying to survive in the
changing environment.

4.3 Nonlinear Control and System Modelling

Since genetic programming has shown itself capable of evolving solutions such
as following a curve and simple regression problems. Perhaps it might be useful
to be used as a tool for inverse modeling of non-linear systems, or using internal
model methods.

26



Part II

Part II : Experiments
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Chapter 5

Problem formulation and

Structure Representation

As with any other methods, Genetic Programming requires the problem to be set
up such that the system is able to interpret and solve it. The structure of tree-
like representation of data shown in section 3.6.2 is easy to follow. However it is
not trivial to be implemented in computer-languages such as Matlab since the
language do not provide pointers, linked-lists, and abstract data types features
that are available in other languages such as C. Hence the �rst job is to provide
some properties of pointers and linked lists to our Matlab program. Secondly,
such representations must be able to give the method of GP an easy access
to alter the structure of the individual programs within the population, since
genetic operations such as crossover and mutation would be carried out.

In this thesis three forms of data representations were designed and imple-
mented. Incidentally they can be seen also as `evolution' over the course of
working on the project, as improvements were made and some initial designs
were dropped. Nonetheless, in essence, all these data architectures are still the
same representation of the tree-like functions structures but only with slight
variations. Data Structure I represent tree-like structures in its most general
form, while Data Structure II is a more specialised case which is easier to im-
plement than the former. Data Structure IIIA and IIIB resembles the vector
strings of the individuals in genetic algorithms.

5.1 Data Structure I

What kind of data structure is suitable for implementation in Matlab environ-
ment, yet able to provide the versatility for genetic operations? It is proposed
that the tree-like structure of functions be `atten' into a linear string of codes
which can then be represented in Matlab as a row of vectors. This is very much
like the binary strings used in genetic algorithms discussed in the previous sec-
tions, but instead of binary digits, we have indices to functions and matrices.
Therefore individuals in this case would be represented by a row of vectors, and
an element in the row can refer to either an index to function such as plus (+)
or (-), or the index to a particular matrix. We look at this at more details.
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5.1.1 Functions

We would like to represent the tree-like structure of a function into the form
of a `attened' linear structure. This means some form of transformation, see
Fig 5.1 top half section. A complete function in our `attened' form can be
represented by 4 elements in a row. The 1st element would be the 1st argument
it takes in, the 2nd is an index to function, 3 rd is the function's 2nd argument,
and the 4th element is the output of the function. While 2nd element points
to the index of the function that is to be performed, 1st, 3rd and 4th element
points to di�erent matrices that are stored in the matrix space. A function
such as this would then take in 2 arguments from this matrix space, perform its
operation, and store it back into the designated space.

5.1.2 Matrix Space

In order for Matlab-based GP program to be able to work on any size of matrix,
yet able to be represented by a single index properly, we represent the matrices
which the functions perform upon all in row form. That is, we transform for
example a 2x2 matrix into a row matrix of size 1x4 instead when we stored it in
our huge pool of matrix space. In this case, particular matrix in the pool could
be called upon easily by simply referring to the row index in the pool itself. See
Fig 5.1, lower half.

5.1.3 Individual

An individual would then be represented by a string of functions where each
function points to di�erent matrices in the matrix space and act upon them.
Genetic operations can now be performed on the individuals by working on
parts of these strings. See Fig 5.2

5.1.4 Evaluation of Individual

When applying the �tness criteria to judge how far the particular individual
program is from the actual solution, or if it is moving towards the right direc-
tion, usually a test is performed. Typically this will be a run-through of mock
variables and arguments. The evaluation program executing these tests is par-
ticularly important, as it implements the �tness criteria which in turn is used to
judge if the solution is reached, or if not, drives the population towards deriving
the right answer. Also, since in most cases, evaluation of individuals takes up
most of the computational time, it is essential that evaluation programs written
for GP are concise and eÆcient.

Since the data structure of each individual used in our experiments is linear.
It is possible for our evaluation program to run through one individual in a
single row, from beginning till the end sequentially and calculates the evolved
solution. What the program does is call the �rst function that appears in the
individual, returns the correct value, carries on and call the next function which
is directly laid besides the one before, and so on. Thus there is no need for the
jumping of pointers to di�erent memory locations or addresses, except when
referring to indices of the matrices or functions, thus simplifying the evaluation
process.
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Figure 5.1: transforming of a tree-like to a 'attened' linear structure
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Figure 5.2: An example of an Individual programing linear structure

5.1.5 Genetic Operations

The three main genetic operations, as mentioned, are crossover, reproduction
and mutation. We shall now see how these are performed on the designed data
structures.

Crossover: Similar to the binary code example shown in the section 2.1 of
Genetic Algorithm, the 'genetic materials' of our individuals, which are
now strings of functions instead, are being used in the operation. During a
crossover, two individuals are selected based on �tness. Two random but
valid points are the chosen on each individual, and this constitutes to one
string fragment of genetic material for each. The string fragment of the
�rst parent is inserted into 2nd parent and vice versa, with the original
fragments of the parents being replaced. The products are two o�spring
each carrying the exchanged and combined materials of their parents. See
Fig 5.3.

Reproduction: One individual is selected from the population based on �t-
ness, and inserted into the population of the new generation.

Mutation: One individual is selected from the population based on �tness
(there is of course a choice not to choose the �ttest ones). Fragments
of the string of functions of the particular individuals are deleted and
replaced by a randomly generated string instead. Fig 5.4 shows the case
where only one random matrix is inserted into the particular individual.
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Figure 5.3: crossover operation done by Data Structure I

Figure 5.4: mutation operation done by Data Structure I
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5.1.6 Architecture Altering Operations

Although such data structures simpli�ed the process of genetic operations, its
main disadvantage lies in that it would be more diÆcult to represent a more
complicated multi-tree program. What the current design can represent is only
a linear string of functions, (Fig5.2, which is di�erent from that of a branched
tree network.

While preserving the existing form of the evaluation program, a crude form
of Architecture Altering Operation, argument duplication (perhaps inappropri-
ately named) was implemented. Say we would want to represent ((X + Y ) �
(X�Y )). In our normal representation, the evaluation program would interpret
the given individual as ((X + Y ) �X)� Y ), that is, without any respect to the
brackets and order of operations. Argument duplication in our case is to dupli-
cate (X � Y ) �rst, say equivalent to (X �Y ) = Z, then performs (X +Y )�Z.
Since (X � Y ) is now replaced by Z, structure of the individual is changed.
Of course the sacri�ce is that genetic operations cannot be performed on the
branch (X � Y ), however the structure of the individual is now again linear,
and the evaluation program can be performed.

5.1.7 Disadvantages and Advantages

The main problem of such data representation is that conversion between a
normal matrix and a row vector is necessary every time when the matrix is
used or stored. However, indexing of matrices became easy. Unlike a linked list
or a record in other computer languages, a matrix can only take in numbers
as its elements. Hence our representation of a function could only contain
integers of indices, and as such, there is no clear distinction between the index
to matrix and index to function itself. The evaluation program in this case
therefore needs to distinguish the two. However the advantages outweigh most
of the disadvantages in the sense that once the functions are set up in strings
within the individual, evaluation is straightforward, and genetic operations can
be performed fairly easily. Also, using indices to matrices allows the matrices
themselves to be able to take any size and form. Hence even though most of the
time our experiments use only 2x2 matrices, larger-sized matrices are possible.

Data structure I was used in experiments in section 6.1, 6.2

5.2 Data Structure II

In our quest for improvement, it was realised that the program structure can
do better than that. The main point is that the string of functions in each
individual need not have the output values occupy one element space for each
function all the time. In other words, since calculation of the functions in the
individuals follows from one to the next, only a temporary variable that takes in
the value calculated so far (along the string) is needed. See Fig 5.5 lower part.
Hence the data structure of an individual can be now represented as seen in Fig
5.5 top part . As seen, only a string with the pattern of indices of functions and
matrices in alternate positions is needed.

In this format, evaluation can be carried out at faster speed since the length
of each individual can be reduced without compromising the data. Instead of
four elements to a function, there are now only two.
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Figure 5.5: Data structure II: reducing the matrix space using temporary vari-
able

Data Structure II was used in experiment in section 6.3

5.3 Data Structure IIIA

In genetic programming, it is desirable that the functions of the individuals
are able to evolve by themselves during the GP run. See section 3.8 on Auto-
matically De�ned Functions. These ADFs provide the features of code re-use,
and also breaking down complicated problems into individual smaller solvable
blocks. To enable such property, a more advanced data structure was needed.
The new design is as follows. In some sense, we have lifted the original data
structure II up by one level.

A pool of ADFs is now present in the program population, initialised and
able to evolve. They are similar to that of the individuals of data structure
II, only that now the original individuals become de�ned functions or macros
instead. The ADFs have a �tness function and �tness values of their own.
Genetic operations on ADFs should be of similar methods as that performed on
the original individuals. See Fig 5.6.

In the case of data structure IIIA now, the new individuals consists solely
only indices of these de�ned functions. One considerations though, is that during
the evaluation of individuals, the program must be able to track where each of
the ADFs return the output matrices to, by referring to the correct indices.

Data Structure IIIA was used in experiment in section 7.2. However, only
the pre-determined �xed type of functions are reported in this thesis.
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Figure 5.6: Data structure III: Individuals de�ned by strings of ADFs

5.4 Data Structure IIIB

Until then, all the matrices are generated within the programs themselves. They
can be either being internally generated numbers or output values of functions.
In order for a program to be any good, let alone an automatically generated
one, the program should be able to take in both variables and constants de�ned
by the users. Data structure provided this feature by letting functions takes on
global variables within the program. See Fig 5.7.

In the later part of our experiments, evolving ADFs were not needed to
produce satisfactory results. Hence functions used were non-evolvable type. In
fact, in data structure IIIB, ADF pool was not used at all. It appears that the
simpler solution to representing data is the best and we had come full circle.

By giving individual functions control of global variables, tracking of indices
of matrices is no longer that complex as before. What the program would
do instead now, is to track the declared indices of variables and constants only,
rather than the huge matrix space presented before. Individuals are represented
as like Data Structure IIIA, consisting of string of indices to functions. Functions
are no longer automatically generated, but are now provided by the user.

However, the main advantage would be that more complicated multi-tree
structure could be represented fully, unlike those of earlier versions. The user
would able to decide the number of variables each individual function would be
able to take in, and also the number of output arguments. The capability of
multi-input multi-output functions is provided.

The disadvantage now would be that the user who designs the function op-
erators would need to manually take caution on the passing of variables and
constants within each written function. Also, the user need to have some intu-
ition on the problem itself and provide what he/she thinks might be useful in
helping to evolve a useful program.
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Figure 5.7: Data structure III: Introduction of global variables for input/output

Data Structurer IIIB was used in experiment in section 7.1
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Chapter 6

Simple Experiments

6.1 Simple Demonstration of Convergence

The �rst problem is of course to make sure that if there is a solution, the program
will converge to it.

An initial population of individual programs containing of one or two func-
tions was created. During a GP run, two kinds of operations were performed
according to pre-set probabilities. Firstly is of course the required genetic op-
eration. Secondly, a particular individual can increase or decrease its string
length. This was done by having random matrices being added or subtracted to
the original individual. This operation was to allow increased varieties within
the population in the probable cases where solutions (or near solutions) could
not be found or choices were exhausted.

Unlike the usual methods of genetic algorithms, where vectors or binary
codes are exchanged between parents in genetic operations, sets of random ma-
trices, which are produced together with the functions, are once generated and
cannot be changed. That is, genetic operations are not allowed to act on the
elements of the matrices. Instead, in this GP experiment, genetic operations
are restricted to the exchange of strings of set functions. Therefore, the run
of GP is a search for sets of created functions (together with the matrices) to
reach the required goal. It would then be in this case an optimisation of both
the available matrices and the functions. It would be clearer with the following
illustrated example. The data structure for experiment 1 is of type I.

A 2x2 matrix, say [1 0; 2 -1] was selected. The goal is to have an individual
match as close as possible to the selected matrix. The �tness criteria would be
the sum of absolute error between the generated matrix and the desired matrix.

6.1.1 Parameters

Fitness Criteria: Sum of absolute error of the elements between generated ma-
trix and desired matrix

Parameters: Generations: 10
Population: 120
Functions: addition, subtraction
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6.1.2 Results and Discussion

The program was able to converge to within 15% of accuracy almost all the
time. Of course this would also be dependent on the available generated random
numbers.

Since the �tness criterion was the sum of the absolute error, it came as no
surprise that the program did not judge how close each element of the matrix
to the desired one. Hence it may generate a matrix that is very accurate in
perhaps 1 or 2 elements, but inaccurate in the others.

Finally, it is unclear if the size of population per generation a�ects the rate
of convergence. We would expect because the higher the size of population
the higher the probability that there are matrices that ful�l the �tness criteria.
However, a larger size also means a wider variety of combinations.

Generally the rate of convergence and accuracy are directly inuenced by
how tough was the �tness criteria. The tougher the �tness criteria, i.e. the best
matrices in the generation were given a much higher �tness points than others,
the faster GP convergence to the rough solution. However the best results will
not be as accurate and vice versa. Hence the rate of convergence is probably
inversely proportional to accuracy of the solution.
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6.2 Simple Lyapunov Solver

6.2.1 Background of the problem

Lyapunov theory has been widely used in control engineering for the testing
of stability of systems. We now provide a short background and built-up to
the problem that was presented for genetic programming. Details of Lyapunov
methods can be found in standard text such as Khalil, 1997, or Slotine, 1991.

Lyapunov method is the mathematical extension of a fundamental physical
observation that if the total energy of an electrical, or mechanical, systems is
continuously dissipated, then there must exist some equilibrium point where the
particular system will settle down, regardless whether the system is linear or
non-linear. Hence, we may conclude the stability of a system by examining the
variation of a single scalar function.

Readers who are familar in this area may like to jump directly to discussions
on the experiment in section 6.2.2. Otherwise, the following section gives some
background on the problem which we are going to solve. In later part, section
7.1, we would refer back to this section again.

The following we make a few de�nitions.

Non-linear Systems

Usually non-linear dynamic systems can be represented by a set of non-linear
di�erential equations in the form

_x = f(x; t)

Where f is a non-linear vector function and x is the state vector. When such
systems have f that does not depend explicitly on time, that is,

Equation 1

_x = f(x)

The systems is said to be autonomous. Otherwise, it is called non� autonomous.

Positive de�nite and semi-de�nitive functions

A scalar continuous function which is di�erentiable V : Rn ! R is called
positive� definite in a regionU 2 Rn containing the origin if

1. V (0) = 0

2. V (x) > 0; x 6= 0; where x 2 U

A function is positive� semidefinite if condition 2 is instead, V (x) >= 0.

Stability

With x denoting the state of the system, the system is said to be stable if,
for any R > 0, there exists r > 0, such that if kx(0)k < r, then kx(t)k < R
for all t >= 0. Otherwise the equilibrium point is unstable. The solution is
asymptotically stable if it is stable and r can be found such that all solutions
with kx(0)k < r have the property kx(t)k ! 0 as t!1.
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Lyapunov function and Lyapunov Stability Theorem

Now with the autonomous system in Eq. 1, the scalar function V (x) actually
represents an implicit function of time t. If such function V (x) exists such that
we can take its derivative with respect to time and applying chain rule,[4].

Equation 2

_V =
dV

dt
=

dV T

dx

dx

dt
=

dV

dx
f(x)

We can now de�ne the following: if V (x) is positive de�nite and has continuous
partial derivatives, plus if its time derivative along any state trajectory of the
system is negative semi-de�nite, i.e.

_V <= 0

then V (x) is said to be a Lyapunov function for the system. Furthermore, we
can conclude that the solution x(t) = 0 to the system is stable. If _V is negative
de�nite,

_V < 0

The solution is also asymptotically stable. In addition, if it is asymptotically
stable, and V (x)!1 when kxk ! 1, The solution is globally asymptotically
stable.

Lyapunov Functions for Linear Time-Invariant Systems

Given a linear system of the form _x = Ax, consider a quadratic Lypunov func-
tion candidate
Equation 3

V = xTPx

Where P is a given symmetric positive de�nite matrix. Di�erentiating the
positive de�nite function V along the system trajectory yields another quadratic
form

_V = _xTPx+ xTP _x

Equation 4

_V = xTATPx+ xTPAx = �xTQx

where ATP + PA = �Q is called Lyapunov equation.
Thus if the symmetric matrix Q is positive de�nite, it means that V satis�es the
conditions de�ned as before and the system is asymptotically stable. A proof
of it would be presented in later section (7.1). However, it should be noted that
Q may not be positive de�nite even for stable systems.

A better approach would be instead, to derive a positive de�nite matrix P
from a given positive de�nite matrix Q, that is,

1. choose a positive de�nite matrix Q

2. solve for P from the Lyapunov equation (4)

3. check if P is positive de�nite.

If P is positive de�nite, then V = xTPx is the Lyapunov function for the
linear system and global asymptotical stability is guaranteed.
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6.2.2 Experiment

As can be seen, Lyapunov theory addresses an important aspect in control
engineering. Our GP problem then was to solve for P from a given a stable
A and positive de�nite Q. Our approach was similar to that of problem 1,
with data structure type I. However, the �tness criteria for this case were of
course di�erent. We would like our GP system to besides solving the Lyapunov
equation in Eq.4, it has to ensure that P is also positive de�nite. Some of the
properties of a symmetric 2x2 matrix (in the case which we were solving) which
is positive de�nite are:

P11 > 0

P22 > 0

and
P11P22 � P 2

12 > 0

This is simply to ensure that P has positive determinants. Nonetheless it
passed as suitable �tness criteria.

Other than that, the rest of the program is the same as that of previous
problem.

Parameters

Fitness Criteria: Absolute error between Q� and the pre-determined Q, where
Q� is the output value of the Lyapunov equation using the evolved solution
P , i.e. ATP + PA = �Q�. Also, a higher reward is given to the particular
individual if the generated P can satisfy conditions stated 6.2.2.

Generations: 10
Population: 80
Functions: addition, subtraction, multiplication, division

6.2.3 Results and Discussion

As like before, we saw that given the randomly generated matrices and math-
ematical operators, our GP solution was able to generate results Q� that were
fairly close to the pre-determined Q while at the same time having P satisfy the
given conditions. A run of our GP system would typically look like this:

gpmain

Avgfit =

611.7195

one generation done

Avgfit =

312.1390
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one generation done

Avgfit =

1.8629e+003

QQ =

-0.9080 -0.1580

-0.9300 -1.5120

one generation done

Avgfit =

1.4132e+003

QQ =

-1.0750 0.0596

-0.7085 -0.5143

one generation done

Avgfit =

1.4186e+003

QQ =

-1.0383 -0.3693

-0.9811 -0.2673

one generation done

GP run stopped, fitness met

Qtest =

-0.9100 0.0750

-0.9861 -1.1014

P =

1.0057 0.0201

1.0813 1.1008
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Avgfit =

4.2011e+003

QQ =

-0.9100 0.0750

-0.9861 -1.1014

one generation done

bestfit =

2.2606e+005

bestfitresult =

1.0057 0.0201 1.0813 1.1008

This particular run results in P matrix which is satisfactory and the GP
program exits since the termination criteria have been met. The solution of GP
is a combination of various mathematical operations and randomly generated
numbers, and is shown below: 1

Bestresults =

((([0.269 0.821 ; 0.751 0.914 ]*[0.0509 0.593 ; 0.732 0.332 ])-[0.25

0.799 ; 0.334 0.426 ])+[0.641 0.387 ; 0.708 0.778 ])

1
the 2-by-2 matrices have been represented in row format for easy presentation on the

computer
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6.3 Optimal Control

We now solve a simple optimal control problem using our GP system. The
normal method of solving the problem is �rst presented and then the method
using genetic programming comes next.

6.3.1 Background of the Problem

Assume an athlete is going to take part in a 100m race. However he has only a
limited amount of energy to spare, and so he need to �nd a suitable strategy to
complete the race in minimum time to maximise his chance of wining.

Mathematically, this problem can be written as

Equation 5

min

Z tf

0

1dt

with constraint on energy Z tf

0

u2 <= wo;

say with wo = 100.
Initial conditions are:

x(t) = 0

where x represents the distance covered, and

Velocity = 0

Consumed energy = 0

Final condition is
x(tf ) = 100

where tf is the �nal time
We can write the equations in state space representation

x1 = x

x2 = _x = velocity

_x2 = acceleration

Energy constraint can be written as

x3(tf ) <= wowhere

_x3 = u2

We see that the system is of the form _x = f(x; u) and the minimising equation
is in the gerneral form:

min

Z tf

0

L(x(t); u(t))dt+ �(x(tf ))
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where u(t) 2 U is the control signal in time t.

Typically to solve this problem, we use The Maximum Principle (see [[12]])
by �rstly introducing the Hamiltonian equations de�ned by

Equation 6

H(x; u; �) = L(x; u) + �T f(x; u)

Suppose there is a solution u�(t); x�(t) then the optimal solution must satisfy

minH(x(t); u; �(t)) = H(x�(t); u(t); �(t)); 0 <= t <= tf ;

where �(t), called the Lagrange multiplier, solves the adjoint equation:

_�(t) = �HT
x (x(t); u; �); �(tf ) = �T (x�(tf ))

We now rewrite the �nal state conditions at tf ,

x1(tf ) = 0

x2(tf ) = 1

x3(tf ) = wo

tf = free

The Hamiltonian equation in our case is

H = �1 _x1 + �2 _x2 + �3 _x3

= �1x2 + �2u+ �3u2

di�erentiating w.r.t u,

Hu = �2(t) + 2�3u(t) = 0

The adjoint equations will be

_�1 = �Hx1 = 0

_�2 = �Hx2 = ��2

_�3 = �Hx3 = 0

Then
�1 = �1(free)

�2 = �2(free)

�3 = �3(free)

are all free constants. Solution of u from Hu is then of the form

u = A�Bt

which is a slope with negative gradient. We will not go into further calculations
in detail other than that. However, this is enough to say that, our athlete should
apply maximum strength in the beginning for acceleration, and then trails o�
gradually till the ending point is reached.
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6.3.2 Experiment

We now use genetic programming to approach the problem.
A pool of random vectors each of size (1 x 30) representing control signal u

at each time t, is generated. This signi�es the random strategies that can be
used by the athlete across a time period that is more than the required optimal
time to complete the race. That is, if the optimal tf can be achieved is 10s, we
put the total time to apply u to say, 30s. Now our GP system is required to
use these random vectors and combine using mathematical operations to �nd a
right strategy such that call the conditions are ful�lled.

The �tness criteria used in this case is of course the returned time tf , time
to complete the run, produced by the evolved solutions, with constraint exceed-
ing the maximum energy not allowed. The experiment uses data structure II
described in section 5.2.

Parameters

Fitness Criteria: time tf to reach the end-point, total energy limited to 100
Parameters: Generations: 10
Population: 100
Functions: addition, subtraction

6.3.3 Results and Discussion

As can be seen, (Figure 6.1) the program returned a rough but correct answer.
As again, GP uses what is available in the limited number of generations to
generate the results. Also, it is observed that the total energy used in the evolved
solution is near to 100, which signi�es that the strategy tries to consume all the
available energy. The evolved answer is about 6s, which incidentally breaks the
world record.

Figure 6.1: Control signal for evolved solution
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6.4 Average �tness for Problems

An observation was made that over the generations, the average �tness of the
population increased generally over time. However, there may be some instances
when the average �tness actually decreased. This should not be surprising
since in genetic algorithms it does not necessary mean that for every genetic
operations performed on an individual, the new o�spring would be better than
its parents. It is also because of this property, GP search is not a greedy hill-
climbing one.

6.5 Conclusion

In the previous section we presented three simple problems, two of which are
related to control engineering. It could be seen that GP optimises both the
usage of its given functions and the generated matrices. There is also no explicit
mathematical calculation done by the system, only genetic operations. Whereas
if we solve the problems by hand, they will typically take some e�ort. Finally,
the percentage of cross over operations is 75%, and reproduction is 25%. This
would be used throughout all the experiments except in Section [7.2].
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Chapter 7

Advanced Experiments

7.1 Discrete Time Lyapunov Solver

Up till now problems solved by genetic programming can be considered to some
being trivial or 'toy problems'. For a system with the capability to automatically
create programs, it is necessary to show that the system is able to go beyond
that limitations and exhibit some form of intelligience. The following experiment
hopes to demostrate that GP, if given the right problem representation is indeed
powerful; if not, at least bring it a step nearer towards it. For the �rst part, we
continue to look at Lyapunov functions, but this time, with just a little more
detail. As again, readers who are already familar in these topics may like to
jump directly to the next section. For those who would like to read further,
please refer to [�Astrom, Wittenmark, 1996].

In the previous section we have shown that given a linear systems of the
form

dx

dt
= Ax

where it is a asymptotically stable , there exists a Lyapunov function, V (x) =
xTPx that satisfy the equation

Equation 7

ATP + PA = �Q

We now provide the proof for it.
Let Q be positive de�nite. De�ne

P (t) =

Z t

0

eA
T (t�s)QeA(t�s)ds

The matrix P is symmetric and positive de�nite because an integral of a positive
de�nite matrices is positive de�nite too. The matrix P also satis�es

dP

dt
= ATP + PA+Q

Since the matrix A is stable, the limit

Po = lim
t!1

P (t)
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exists, satisfying Eq. 7. It can also shown that the solution is unique.
For the case of discrete systems, we can de�ne the linear system as

xk+1 = Axk

with
Vk(x) = xTk Pkxk ;

and

Equation 8

Vk+1(x) � Vk(x) < 0

since we know that the gradient of Lyapunov functions is negative.
Now the right hand side of Eq. 7 can be written as

xTPk+1x� xTk Pkxk = xTkA
TPk+1Ak � xTk Pkxk

= xTk (A
TPk+1A� Pk)xk < 0

we can see that the equation can then be written as

Equation 9

ATPk+1A� Pk +Q < 0

which is the Lyapunov equations in discrete form
Similar to that of the continuous time case, there will exist

Po(k) = lim
k!1

P (k)

If the linear system is asymptotically stable. This would mean that at some
discrete time k, P will settle down to a unique value.

It is not diÆcult to see that inherently that this equation contains 2 main
features. They are 1) iterations involved, 2) some kind of memory is needed. A
system that can solve this equation thus requires some kind of memory allocation
and also able to do iterations of some form. This proved to be a good testing
ground then for our GP system to automatically conduct program discovery, for
one it should also possess these two properties. A further requirement is that
the evolved solution should also be able to take in any given A (stable) and Q
(positive de�nite), solve the Lyapunov equation and return the correct value P .
For this we look at two tools in genetic programming which might be useful for
our experiments.

7.1.1 Automatically De�ned Loop

Automatically De�ned Loops (ADLs), as de�ned by Koza, provides the mech-
anism by for genetic programming to implement a general form of iteration
involving an initialisation step, a termination condition, a loop body and an
update step. It consists of four distinct branches. That is,

1. a loop initialising branch
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2. a loop condition branch

3. a loop body branch

4. a loop update branch

These are all subjected to evolutionary processes during the run of GP.
During the run, if the loop is called, a �xed structure (pre-determined an not
subjected to modi�cation) causes the loop to be initiated. The condition branch
will see if the loop should be continued or terminated based on whether the
condition speci�ed is met. If not, the body of the loop is executed, and the loop
is updated. The loop will terminate as soon as the condition branch returns
a signal to do so. This sort of ADL in its terminology is similar to the FOR
loop used in many computing languages such as C. Please see [Koza, 1999] for
details.

In our case, the ADL structure was not exactly followed. Although it can be
seen that iteration should be necessary to solve the Discrete Lyapunov Equation
problem, such advanced feature like ADL was in fact not needed. In fact,
it turned out that a simpler method, perhaps more elegant, was implemented.
That is, to allow extra function spaces within individuals to be used if necessary.
During the GP run, the evolutionary process will decide whether it should be
used, and if so, whether it should be in an iterative manner. More would be
discussed in the section 7.1.3.

7.1.2 Automatically De�ned Storage

Internal storage (memory) is convenient, and often necessary in the creation
of computer programs. However, often it may not be obvious as to whether a
given problem requires memory, and if so, how much storage space is needed.
Even if the amount, type and dimensionality of internal memory are known, it
is not trivial to decide what exactly is needed to store in memory and what to
retrieve. It is therefore desirable, to have a system that can automatically make
such decisions and also specify the way in which particular types of memory to
be used.

In [Koza,1999] also, Automatically De�ned Storage (ADS) is the mechanism
for GP to implement the general form of internal storage. In brief, this is done
by adding 2 new branches to the given computer program.

1. a storage writing branch

2. a storage reading branch

The storage writing branch may be seen simply as a WRITE statement
while the storage reading branch can be seen as a READ function. The pair
of branches of an automatically de�ned storage by themselves is not used for
keeping any executable code. Rather, when internal storage is invoked (either
added or taken away from), it provides an administratively convenient way to
expand (or contract) the program's function set. Some points which we need to
consider is the type of ADS which is generated, and the dimensionality of the
ADSs, de�ned as the number of arguments that is need to address the storage
space. [Koza, 1999].
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From the Discrete Time Lyapunov equation it is shown also explicitly that
internal storage is necessary, that is, for storage of variables Pk and Pk+1. It
is not hard to see also, that the automatically created program may want to
store the results of ATPA for future use too. In order not to complicate the
problem, and also force the generated solution to make the right choice of storage
allocation all the time, only two variable memory spaces were provided. This
storage space is able to take in matrices of sizes de�ned in the beginning of the
problem. There are also two constants, namely the A and Q matrices, that are
to be de�ned by the user.

7.1.3 Experiment

The genetic programming solver for this problem is of data structure type IIIB.
Individuals consist of only strings of functions. Since this is the case, the mov-
ing of generated results to and from the functions or individuals lies in the pre-
de�ned functions themselves. That is, as di�erent from previous cases where
functions are automatically de�ned and passing of arguments lie within the indi-
viduals, each function in this GP system passes results through global variables.
In short, each function simply performs its operations in a de�ned commonly
shared space.

From Fig. 5.7 in Section. 5.4 we see that each function retrieve and acts on
the shared variables.

Design of the function operators that are suitable for solving this problem
(and of course also for each particular problem) are crucial. As [Kinnear, Jr,
1994] advises, \always pick the most powerful and useful seemingly functions
from the problem domain that you can think of". [Langdon,1999]

In our experiment, 16 pre-set functions were created for the GP run. They
are of the type:

Var1 = Var1 + Q, Var2 = Var1 + Q,

Var1 = Var1*A, Var1 = Var2*A,

etc

Where Var is the variable space which the GP system can use. The list of
functions is in Section [7.1.3]

Initial population and Generation of Individuals

We initialised each individual to a string length of 45 function spaces. This is
just a wild guess of the number of function needed to complete the solution.
Actual length of the solution should be automatically de�ned via GP run. In
order to achieve satisfactory results to solve the problem, the method of ge-
netic programming requires not only that it chooses the correct functions in the
correct manner in each sequence, but also, arrange them in iterative manner if
necessary. Hence this is what we meant by not needing an advanced feature
of Automatically De�ned Loop. If it is needed, given the empty extra function
spaces, GP will automatically duplicates the necessary functions and place them
in the right order, within the individuals.
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Fitness Criteria

5 to 7 individual tests were used to judge each particular solution. These tests
involve giving a determined A and Q to the evolved individual, judging the
outcome Pk from the solution. The generated Pk was substituted into the
Discrete Lyapunov equations and absolute residual error calculated, i.e.

ATPkA� Pk +Q = e

where e is the absolute residual error. The sum of absolute residual error gen-
erated by all the tests, which the particular solution has undergone, was used
as the �tness measure for that solution. Each of these test has various degree
of diÆculties, that is, some may require more iterations than the rest.

Parameters

Fitness Criteria: sum of absolute residual error from all the tests
Generations: 25
Population: 70
Functions:

Var1 = Var1 + Q, Var2 = Var1 + Q, Var1 = Var2 + Q,Var2 = Var2 + Q

Var1 = A'Var1, Var2 = A'Var1, Var1 = A'Var2, Var2 = A'Var2

Var1 = Var1*A, Var1 = Var2*A, Var2 = Var1*A, Var2 = Var2*A

Var1 = Var1 - Var2, Var2 = Var2 - Var1, Var1 = Var1 - Var2,

Var2 = Var2 - Var1

where Var stands for the global variable.

7.1.4 Results

It is observed that a satisfactory solution can be found roughly after 15 genera-
tions. A closer examination of the generated program shows that GP arranged
automatically the necessary function to the correct order to generate the `�tter'
solutions. Validation tests were made by entering user-de�ned A and Q ma-
trices to derive the P matrix. Actual iteration tests to get the correct P were
conducted and compared with that from the generated program. A typical test
after the best solution from the GP run was found looks like this:

note: A stable but random A is generated from matrix T that is random
2-by-2 matrix by the equation A = T � [0:5� 0:5; 10] � T 0

Q = [2 0; 0 2];

results = testresults(bestindividual,Q)

T =

0.62397334027302 0.43782779805041

0.77084192127972 0.30845913641846

A =

0.33126780149269 0.48175328641616

0.26421467139103 0.41598525047765

results of P from evolved solutions
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GPresults =

2.78137678518103 1.18084563233129

1.18084561088413 3.78583973864274

number of iterations needed from normal solutions = 6 results of P from itera-
tions

Pk =

2.73577175618569 1.11152076181400

1.11152076181400 3.68045802326418

where both are similar.
The size of the solution was not pre-determined, but GP was able to generate

the necessary size for the optimal solution automatically.
It is indeed quite amusing that without any prior knowledge, totally no hint

at all that iteration is needed, the solution has arranged its function into the
correct manner such that right P would be generated each time. Further tests
concluded that the generated results from the program is within less than 5%
accuracy each time. The program is also good up to solutions that require 10
iterations.

7.1.5 Search Space in the Experiment

We now show the search space that the genetic programming system has to
explore to show the validity of the technique. The total probable search space
is �rst presented, and then the probable number of iterations that GP probably
took will be discussed.

The number of functions per individual program at the beginning of the GP
run was set to 45. This is only guess on the number of required functions that
is need to produce the results. There are 16 available pre-set functions in total.
The actual solution of course does not need to take all the available functions
but rather, based on selection. However if we want to test all combination in
an enumerative search the following calculation can be made:

Initial no. of functions in Individual: I = 45
Assume the size per individual do not change, which we know is not probable,
but for easy calculations we set it to be true. This is also the lower expected
limit.
No. of functions available: f = 16
We require that the sequence of functions to be in correct order. Hence the
search space would be:

f I = 1645 = 1:53� 1054

For a random search, this would be the maximum number of trials and
operations it has to go through to reach the correct solution. Consider now the
GP case.

We have a population size of 70 individuals, and run of 25 generations.
Suppose we loosen the restriction that we can �nd a solution in 50 generations.
This would make

Generations x population = 50� 70 = 1750
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That is, GP requires genetic operations to complete the task, which is signi�-
cantly less than previous calculations.

There are of course many ways where we can debate over the validity of such
analysis. For example, what is the worst case for genetic programming in times
of extreme bad luck? Perhaps as bad as random search. What we can do show
however, is that there is a higher chance that given such a set of problems, GP
might be able to perform better than other algorithms. However, success rate
is still not guaranteed to be 100%, at least we do not have to courage to claim
that. However, we now provide some intuition on why genetic programming, or
in fact genetic algorithms themselves will work in such particular problems.

7.1.6 Foundations

This thesis is not a study on the exact working of GA or GP and other search
techniques, but is rather, the application of the methods in the area of control
engineering. However, it is useful to provide some intuitive or mathematical
treatment on why these techniques work or why they will not. Three theorems
are grossly summarised below. The Schema Theorem and Price theorem provide
support to Genetic Algorithms, whereas the No Free Lunch theorem states that
no search techniques is better than the others across the whole probable problem
space. From the practical point of view we do not take any sides as long as the
method works for our problems. For details of these theorems please refer to
bibliography.

Schema Theorem

Schema (or schemata in plural) in provides some insight on what exactly is the
information, given the payo� data (�tness value) that is inherent in the popula-
tion of strings which helps guide them towards the goal. Firstly we are looking
for similarities among strings in the population, secondly, we are looking for
causal relationships between these similarities and high �tness [Goldberg, 1989].
[Holland, 1973] introduced the term schema, a similarity template describing a
subset of strings with similarities at certain string positions.

For convenience of discussion, we limit ourselves without loss of generality,
a sting of binary code containing alphabet 0 & 1. Say, we consider schemata
of length 5 where an example could be 10110. Next we introduce a * or don't
care symbol. Now if we think a schema as a pattern matching mechanism,
where a schema matches a particular string at every location. This occurs if the
schema matches 1 to a 1 in the string, 0 to 0, or a * matches either in the right
positions. Hence as example if a schema is *0000, it can matches two strings
10000 or 00000. If the schema is 0*1** it means that it can match any string
with length 5 and has 0 in the �rst position and 1 in the third. Hence where
does this lead?

We now consider the genetic operations of reproduction, crossover and mu-
tation on the growth or decay of important schemata over from one generation
to the next. The reproduction of a particular schema is easy to determine, since
the �tter strings will have a better chance of being selected and inserted into the
next generation. Consider now crossover operations, say we have two schemata,
1***0 and **11*. A crossover applies a cut on both schemata, which will disrupt
them. Now we can see that the �rst schema is more likely to be disrupted than
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the second. The second has the higher chance of not being destroyed. We infer
that as a result, schemata with short de�ning length are left alone by crossover
and reproduced at a good sampling rate by reproduction operator. Mutation
a�ects the schemata at low rate since its percentage is small.

Hence we are left with a interesting conclusion, that highly �t, short-de�ning
length schemata are propagated from generations to the next by increasing the
samples with the observed best. This goes in parallel without any particular
record or special memory.

Price Theorem on Genetic Algorithms

Price's Selection and Covariance Theorem [Price, 1970] from population genet-
ics relates the change in frequency of a gene within the population from one
generation to the next, to the covariance of the frequency of the particular gene
in the original population and number of o�spring produced by individuals.
The theorem holds for a single gene or linear combination of genes within the
whole domain, interaction between genes, most kind of species, and any kind of
mating. It is particularly applicable to genetic algorithms. [Altenberg, 1994].
We state the theorem below.[Price, 1970].

Equation 10

4Q =
Cov(z; q)

�z

Q = Frequency of given gene, or linear combination of genes, in the population
4Q = change in Q from one generation to the next.
qi = frequency of gene in the individual i.
zi = number of o�spring produced by individual i.
�z = mean number of chil dren produced
Cov = covariance.

When the population size is unchanged, as is usually in the cases of GA and
GP,

�z = pr + pm+ 2pc

where
pr = reproduction rate,
pm = mutation rate,
pc = crossover rate,
note that two parents are required for each individual created by crossover,
hence 2pc in the equation.

since pr + pm + pc = 1, the mean number of children is mean z = 1 + pc,
Eq. 10 becomes

Equation 11

Q =
Cov(z; q)

1 + pc

The implication of this theorem suggests that the covariance between parental
�tness and o�spring �tness distribution gives the fundamental power to genetic
algorithms [Altenberg, 1995]. Further more, [Altenberg 1995] was able to derive
Holland's schema theorem [1973, 1992] from Price's Theorem.
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No Free Lunch Theorem

Whereas the above two theorems suggest the inherent power of genetic algo-
rithms, Wolpert at el [1995] in their No Free Lunch Theorem (NFL) showed
that all algorithms that search for an extremum of a cost function perform ex-
actly the same, according to any performance measure, when averaged over all
possible cost functions. In particular, if algorithm A outperforms algorithm B
on some cost functions, then loosely speaking there must exist exactly as many
other functions where B outperforms A. We provide below a brief implications
of their results, without any mathematical treatment or formal proof.

One might expect that hill-climbing usually out-performs hill-descending if
one's goal is to �nd a maximum of the cost function. We might also expect that
it would outperform random search. However, as the theorem's central results
show, this is not the case. If we do not take into account any particular biases or
properties of our cost function, then the expected performance of all algorithms
on that function are exactly the same (regardless of the performance measure
used). In short there's no `free lunches' for e�ective optimisation; any algo-
rithm performs only as well as the knowledge concerning the cost function put
into the cost algorithm. That is to say, even if one's goal is to �nd a maximum
of the cost function, hill-climbing and hill-descending are equivalent, on average.

There are of course an huge amount of literature and debates over the fruit-
fulness of search algorithms in particular to what each camps claims. For our
works in control engineering, the purpose is to show that genetic algorithms
work for your problems, but it is not to say that it will work for all problems.
As NFL theorem puts it neatly, it all depends on the bias of your cost functions,
and how we trim our problems so that our algorithms would be e�ective.

7.1.7 Conclusion

In this experiment, we have shown that genetic programming is capable of organ-
ising, set the arrangement of functions, and provide correct memory allocation
without being explicitly being told to do so. The only hint given were the re-
quirements of the end solution, as communicated by the high-level statements
to the GP system that is to reduce absolute error of the Lyapunov equation. We
have hence shown the following attributes, although not exhaustive, of genetic
programming,

1. automatic determination of iteration, if necessary

2. automatic correct usage of memory

3. automatic determination of program size necessary for solution

4. able to reach solution without being told how to do it, but from what is
required.

We have also look at various theorems on why genetic algorithms and genetic
programming works and why however, we should not be complacent and assume
that this method will works for all kinds of problems.

56



7.2 Self-Evolved Model Reference Adaptive Sys-

tems

7.2.1 Model Reference Adaptive Systems

A Model Reference Adaptive Systems (MRAS) is an important class of adaptive
controllers. It is a system where the desired performance is expressed in terms
of a reference model, which gives the desired response to a command signal.
One of the valuable properties is that it presents a convenient way to give
speci�cations for a controller servo problem. For those who have encountered
MRAS for the �rst time, we provide some background information. For details
please see �Astrom and Wittenmark, 1995. Others might like to skip directly to
Section 7.2.3.

Figure 7.1: Block Diagram of a Model Reference Adaptive System, (source:
�Astrom, 1995)

A block diagram of such system is shown in Fig7.1 The system has an ordi-
nary feedback loop composed of the plant process and the controller and another
feedback loop that changes the controller parameters. The controller parame-
ters are changed on the basis of feedback from the error, de�ned as the di�erence
between the output of the system and that of the reference model. The mech-
anism for adjusting the parameters in MRAS can be obtained in two ways, 1)
application of stability theory, where the theory has been presented in previous
sections, and 2) gradient methods, which we will discuss now.

7.2.2 MIT rule

The MIT rule was the original approach to MRAS control. It tells us how error
is inuenced by the adjustable control parameters. We consider a close loop
system in which the controller has one adjustable parameter �. The desired
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closed loop response is speci�ed by a model whose output is ym. Let error

e = y � ym

A possible way to adjust the parameter can be to reduce the loss function such
as

J(�) =
1

2
e2

is minimised. To make J small, it is reasonable to require the parameters to
change in the direction of the negative gradient of J, that is,

Equation 12

d�

dt
= �

@J

@�
= �e

@e

@�

The partial derivative @e=@� is called the sensitivity derivative of the sys-
tem, and relates how the error is inuenced by the adjustable parameter. If
the parameter changes are slower than other variables in the system, then the
derivative @e

@�
can be evalutated under the assumption that � is constant.

There are of course other alternatives to the chosen loss function. For ex-
ample it can be

J(�) = jej

where its gradient method gives

Equation 13

d�

dt
= �

@e

@�
sign(e)

We now present an example for 1st order system and then extend it to 2nd
order systems for the problem we would like to solve.

MRAS for �rst-order system

Consider a system described by the model: [�Astrom and Wittenmark, 1995]

Equation 14

dy

dt
= �ay + bu

Where u is the control variable and y is the measurement output. Assume that
we want to obtain a closed-loop system described by

Equation 15

dym

dt
= �amym + bmuc

Let the controller be given by

u(t) = �1uc(t)� �2y(t)

The controller has two parameters. If they are chosen to be

�1 = �01 =
bm

b
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�2 = �02 =
am � a

b

The input-output relations of the system and the model are the same. This
called perfect model-following. To apply the MIT rule, introduce the error

e = y � ym

where y denotes the output of the closed loop system. It follows from Eq. 14
and 15 that

y =
b�1

p+ a+ b�2
uc

where p = d=dt is the di�erential operator. The sensitivity derivatives are
obtained by taking partial derivatives with respect to the controller parameters
�1 and �2:

@e

@�1
=

b

p+ a+ b�2
uc

@e

@�2
= �

b2�1

(p+ a+ b�2)2
u2

These formulas cannot be used directly because the process parameters a
and b are not known. Approximations are therefore required. One possible
approximation is based on the observation that p+ a+ b�2 = p+ am when the
parameters give perfect model-following. We will therefore use the approxima-
tion

p+ a+ b�2 � p+ am

Which will be reasonable when parameters are close to their correct values.
With this approximation, we get the following parameters

d�1

dt
= �(

am

p+ am
)e

d�2

dt
= (

am

p+ am
)y

In these equations we have combined parameters b and am with the adaptation
gain 0, since they appear as the product 0b=am. The sign of parameter b must
be known to have the correct sign of gamma. Note also that the �lter has also
been normalised so that its steady state gain is unity.

7.2.3 Self-Evolved MRAS controller

Indeed MRAS using MIT rules provide a convenient way of specifying the desired
output and making the adaptive system conformed to that when controlling the
plant process. In similar manner to genetic programming systems, we see the
analogy, that we are actually making high-level statements to the adaptive sys-
tem by stating the requirements (reduce the error with reference to the desired
model) to the system.

Our goal is to have an entity that can automatically create a satisfactory
program, given the goal and the requirements of the solution. It would not
seem unreasonable then, that genetic programming might be able to evolve a
controller (solution) to our above control problem. True to its nature, we now
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show that GP that uses evolutionary methods is capable of doing so. The
purpose for our case is then to evolve a suitable controller that is able to base
itself on the desired model to control the process, given the requirements (reduce
the error) together with a suitable set of functions.

7.2.4 Set up

Since the original idea of MRAS is to tune the controller to give a satisfactory
output of the plant given that the parameters of the plant process are unknown,
we increase the diÆculty for the GP system by loosening the requirement for
MIT rule that the sign of the parameters must be known. Hence, what is given
to the GP system is only the order of the process, without any prior knowledge
of the sign or value of the parameters.

Furthermore, no hint was given about the MIT rule (assuming that the
controller does not come from MIT). Hence there is no pre-determined strategy
to how the controller should model the desired output. However, the necessary
requirement is our high-level statements, namely to reduce the absolute error,
which is to be input into our GP system. This of course, is conveyed through
our �tness function.

Given the structure of RST controller is known, the end result of our solution
should be one that gives the correct controller parameters s0; s1; t0; t1; r0. In
some sense, we can also view genetic programming in this case to automatically
`tune' the controller to the desired results. The block diagram of our experiment
is set up as follows. (Figure 7.2)

Figure 7.2: Block diagram of GP system design for MRAS controller

7.2.5 Functions Design and Individuals

We learnt from previous experiments that design of function sets for GP is
crucial, since it would lend capabilities directly to the automatic creation of
programs. The following we see how the functions can be designed.

A controller can be viewed to be made up of a summation of many small
contribution of control signals, whether they are taken from feedback or feed
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forward loops. In this sense we can view our controller parameters or coeÆcients
to consist of many small `units' of coeÆcients also. For example, say the correct
s0 parameter for a controller is 2:5. We can interpret this as 2:5s0 = (+1 +
1 + 0:5)s0. Or it can also be (+1 + 0:5 + 0:5 + 0:5)s0 and the possibilities goes
on. These +1s0 and 0:5s0 can be interpreted as the functions for our individual
program. A controller program in GP can hence to be seen in the form, for
example,

+0:1s0 + 0:1r1 + 0:5s0 + 0:5t1 + 0:1r1 + 0:5s1

+0:1t0 + 0:2t0 + 0:1r1 + 0:5t1 + 0:1t0 + 0:1t1

and the controller will be

(s� 0:3r1)u = (0:4t0 + 1:1t1)uc + (0:6s0 + 0:5s1)y

Now the controller program can be easily subjected to genetic evolution using
the genetic operations, since it is in a form similar to strings of code.

The function sets that are available for our GP systems are therefore of the
form

s0 = s0 + 0:1

s1 = s1 + 0:1

and so on. (see Section. 7.2.6)
The end result of our evolved program should be a controller that is able to

give us the right coeÆcient to produce the desired model following.
Things would be easier if we know what are the signs of our controller pa-

rameters. However we assume no prior knowledge to that also. Therefore our
functions sets have to be designed such that they include both the opposite
parts of each other. It can be seen also, that the function set provided were
very general and perhaps generous such that our GP system would have a free
hand to select the required functions what it needed. Looking at the function
sets alone there is no hint whatsoever anything that will help in our search.
A random combination of these functions would most likely end up as a null
controller anyway, giving zero coeÆcients.

7.2.6 Experiment

Initialisation of Individuals

Here we make a wild guess again, that the number of functions needed for a
suitable solution to be 100 and we initialise a population of randomly generated
individual programs each with a randomly selected string of functions containing
within.

Fitness Criteria and Evaluation of Individuals

Evaluation on an evolved program was done by carrying that particular program
through a simulation of test. The test is simply to see if the evolved controller is
able to give an output from the process follow the desired output of two square
waves. The evolved controller output y is compared with the desired output
ym and absolute error was used as criteria for �tness. However we note that
reducing only the absolute error, is not enough, since the output can contain
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undesirable high peaks but with small error. Hence in our cost function we add
an extra weight to de=dt, that is, minimise the di�erence of the error between
2 sample periods. That is to say, we award a controller which gives a stable
output but higher absolute error than one that gives big overshoots but with
lower absolute error.

Parameters

Fitness criteria: Reducing the absolute error between output and desired output
from model. Also reduce undesirable output peaks.

Generations:100
Population: 80
Functions

s0 = s0 � 0:1; s1 = s1 � 0:1; s0 = s0 � 1; s1 = s1 � 1

t0 = t0 � 0:1; t1 = t1 � 0:1; t0 = t0 � 1; t1 = t1 � 1

r1 = r1 � 0:1; r1 = r1 � 0:01; and a function that returns null

Notice some functions are �0:1 and some are �1, these are to provide cases
where the coeÆcients need to be large, yet may sometimes need some acurracy.
This is the case for r1 where we want the feedback control signal to be small
yet exact. A null function was also provided for the case where no increase or
decrease in the coeÆcents is needed.

7.2.7 Results

The following gives an account of the results of one particular experiment. How-
ever it should be said that although GP would be able to give similar results to
a single problem most of the time, it is rare however, that the path taken by it
is the same for all generations. That is, it is diÆcult to predict the route which
evolution chooses to take. Some runs would be better than the rest while some
may not. However, these results do speak of in general how a typical run of GP
on the self-evolved MRAS controller looks like.

The process which we would like to control is

k

s2 + a

where k and a are unknown process parameters.
It is needed to convert this to discrete time, they are calcalated as of the

form:

y(t) = 1:96y(t� 1)� y(t� 2) + 0:002791u(t� 1) + 0:002791u(t� 2)

and the process model is

ym(t) = 0:0182uc(t� 1) + 0:01657uc(t� 2) + 1:721ym(t� 1)� 0:7558ym(t� 2)

Naturally it should not be expected that GP can give correct answer imme-
diately just after the �rst few generations. Although it is expected that when
averaged out, the population of programs would produce a null controller that
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would give no output, there exists nonetheless, some individuals that performs
better than the rest. Sometimes in this initial stage, the best controller from
its generation could be one which is selected as long as there was some output
control signal. Sometimes it could even be an unstable controller that blew up
the process. This should not come as a surprise since human beings started as
ape-like creatures too, for people who believe in evolution anyway. Figure 7.3
and Figure 7.4 shows the output of the process and control signal of the best of
1st generation.

For the experiments, unknown process parameters are taken as k = 0:14 and
a = 1

k = 0:14; a = 1
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Figure 7.3: output signal of best solution against model reference: generation 1
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Figure 7.4: control signal of best solution: generation 1

Without losing generality and variation, typically by 10 generations a popu-
lation of around 80-100 was able to produce the best individual of �tness around
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0.15 (with peaks and bad response taken into account), that is, its absolute er-
ror compared to the model is around 6.7. (Figure 7.5) Also, by looking at the
coeÆcients of the evolved best-of-generation individual controllers, it can be
seen that the system does not go after a greedy `hill-climbing' approach. This is
apparent since the coeÆcients might change their own sign, or vary in opposite
directions in terms of magnitude.
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Figure 7.5: output signal of best solution against model reference: generation
11

By around 45 generations and above, some rough prelimary results was pro-
duced. The controller output is shown in Figure 7.6.
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Figure 7.6: output signal of best solution: generation 45

During implementation of the experiment, GP was required to follow the two
square waves produced by the model reference output. However, during the later
part, only one square wave was used to save computational time of the �tness
trials. Such variations in the test trials in experiments should not, and did not
a�ect the outcome of the solution. This is because since GP depends on �tness
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functions to drive a population towards the required goal, and �tness function
is a comparative contest between individuals, the results remain una�ected. In
our case the �tness function is to reduce the absolute errors and also the output
peaks, although the values of the �tness points might not be the same as previous
experiments using two square waves, the best individual program is still chosen.

It could be seen that by generations around 70 and above, an almost perfect
model following was achieved. The coeÆcients of the controller given by the
GP systems are

t0 = 1:8000

t1 = 6:2000

s0 = �45:8000

s1 = 45:3999

r1 = �0:0400

and hence the controller is of the form

(s� 0:04)U(s) = (1:8s+ 6:2)Uc(s)� (�45:8s+ 45:4)Y (s)

The output of the process and control signal of two of the best individual pro-
grams from the GP run are shown in Figure 7.7 and 7.8 respectively.
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Figure 7.7: output signal of best solution: generation 72

Of course, there are also ocassions where even better results were produced.
For example see Figure 7.11, where the size of population is 100 instead.

The program of the controller that generated the coeÆcients for the con-
troller typically look like this,

Columns 1 through 12
15 15 11 15 13 15 15 7 15 13 7 15
Columns 13 through 24
15 11 15 15 15 15 13 15 15 15 13 14
where each number represents the index of the functions used.
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Figure 7.8: control signal of best solution: generation 72
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Figure 7.9: output signal of best solution: generation 78, result of the GP run
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Figure 7.10: control signal of best solution: generation 78, result of the GP run
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Figure 7.11: output signal of best solution: generation 90
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Change in Process Parameters

Adaptivity to changes in the process environment is a sought after property of
MRAS controllers. A change in the process parameters was introduced to see
the e�ect of the generation of solutions, after model following had been achieved.
In our case, the parameters k and a were increased to three times its orginal
value, after initial perfect model following has been produced.

As again, we would not expect GP to change rapidly towards the right
solution, since no prior iniformation about the change was given, or estimation
of time-varying parameters carried out. Perhaps even if these were given, we
would still expect GP to automatically create a solution without being given
explicitly the mechanisms for such changes, i.e. if we know that the process
changes in certain direction, we could probably inject a biased probability of
some functions to appear against the rest of the functions. This is not done,
however since we let GP self-discover the changes and tune towards the correct
solution automatically without help instead. It was seen that within a span of
50 generations, the correct controller solution could be produced to give perfect
model following. Figure 7.12 to Figure 7.14 traces the best-of-generations when
the process parameters k from 0.14 to 0.42,a = 1 to a = 3.
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Figure 7.12: output signal after process parameters were changed: generation 1

It can be seen from Figure 7.12 that within the population of programs there
may exist some individuals which may be able to give some initial rough results.
By around 5 generations and above better results were produced (Figure 7.13)
and by generation 20 and above perfect modelling could be produced. (Figure
7.14)

The resulting controller coeÆcients are:

t0 = 2:5000

t1 = 0:5000

s0 = �12:000

s1 = 17:000
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Figure 7.13: output signal after process parameters were changed: generation 5
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Figure 7.14: output signal after process parameters were changed: generation
22
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r1 = �0:1200

Here we turned ambitious and go to further extremity, the process was then
changed sign and observed after the original perfect model following of the old
process was achieved. As expected the controller �rst swung to instability, but
after a span of more than 100 generations, the best indivdual was able to give
response in the correct direction as the model, although the results was rough
and it never fully recovered. (Figure 7.15)
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Figure 7.15: output signal after process parameter was changed to �k: genera-
tion 22

Signs of Process Unknown

The sign of the process was assumed to be unknown, hence in this case we could
put it to negative of the original, while maintaining the same model reference.
As like in section [7.2.7] in earlier part, the correct controller could be found.
Of course in this case the control signal is of the opposite sign.

Process with negative k was tried out in this case with other parameters
remaining the same. Output gives similar results but with the control signal
being negative. See Fig 7.16 and Fig 7.17.

Mutation Operations

Mutation operation was used in this experiment because it is believed that it
should be able to help the GP run since it gives the population a more varied
and diverse selection. Also, some functions/genes which died away but might
be useful in small number might be introduced back into the population. This
may be somewhat contrary to the Price's Theorem stating that healthy genes
propagate in the evolution. However in our case the process environment is
not static, and a goal of adaptivity may justify the use of the operation, since
probably the mutated individual is the lucky one that may bring the evolved
solution closer to the required one. Mutation operations stand at around 10%
among all the genetic operations in this experiment.
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Figure 7.16: output signal with process �k: generation 61
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Figure 7.17: control signal with process �k: generation 61
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7.2.8 Search Space of the Self-Evolved MRAS Controller

Using similar arguments as that of section 7.1.5, the search space in this case
can be roughly calculated as follows. As again, we make an initial guess of the
required functions for an individual, usually with lower limit, say 100. Number
of functions in the experiment is 23, and there is no need for correct sequence
and arrangements for the functions in each program, however we do not know
the exact combination of the correct coeÆcient. Hence we get

Initial no. of functions in Individual: I = 100
No. of functions available: f = 23
total search space is: f I = 23100 = some big number

7.2.9 Some Properties of the Self-Evolved MRAS Con-

troller

As can compared with section [7.2.2] where calculation using the MIT rule was
used, we see that our genetic programming system does nor know any of that
rule or method. Further, whereas the sign of the process is assumed to be known
in MIT rule method, GP in is case to not assume this prior knowledge. In fact,
GP does not explicitly do calculations for the required controller. The only clue
that it received from the human designer is the required high-level statements
conveyed through the designed �tness function. Also, no explicit estimation of
process parameters were carried out for system identi�cation.

The only main tools which guided GP in the search were the �tness functions
and the mechanisms of genetic operations. Trial and selections which individuals
within the population would survive played the role of designing. Since there was
no assumption on the sign of the process parameters, GP showed a little more
robustness than the MIT-rule designed MRAS. Also, it showed some amount of
adaptivity to process variations if the change is within suitable limits. However,
the main drawbaack of GP is the computational time required for the reaching
the solution. Doing genetic operations on individuals are relatively fast, but
not the trials and tests which is used to measure the �tness of each individual
programs.

Rate of Convergence and Global Optima

It should be expected that the �tness functions, number of generation and size
of population would a�ect the rate of convergence and optimality of solutions.
Furthermore, probably the choices of the probability of various genetic opera-
tions may have some e�ect too. Unfortunately, these are not known for sure to
have any inuence, or if so, to what extent. As far as the experiment went, the
choice of population size between 50 to 200 did not produce signi�cant changes
in rate of convergence, or a�ect the quality of the solutions. Perhaps there might
be some relationships, but further works need to be done to justify either of the
claim.

Rather, it does appear that the selection process of individuals from the
population may a�ect the rate of convergence and also optimality, particularly
when the tournament selection technique was employed. (see Appendix on
Matlab Code). There is general belief that the larger the number of individuals
selected to participate in the tournament, the faster is the rate of convergence.
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However global optimal might not be reached as GP converges to local optima,
since variations within the genepool might be lost. As again, more works need
to be done in this area.

Scalability of the Problem

This is left to be explored too, regarding the scalability of GP to tackle problems
of higher order. There are on going hot debates within the GP community in
this area. For now, it is suggested that as a continuation to this thesis, the self-
evolved MRAS could be extended to problems of higher order to see if GP is still
possible to automatically generate solutions to them. This could be automatic
choice of the order of controller, including if necessary, any observer involved.

7.3 Conclusion

In the last two experiments, we have shown that genetic programming was able
to solve automatically some non-trival control problems. The results obtained
from these self-evolved programs were satisfactory, and in some cases of GP run,
equally good compared to solutions produced by the human designer. Most of
the time, rough results could be guaranteed.

In the case of discrete time Lyapunov solver, it has been shown that GP
is cabable of solving problems requiring some form of iterations or recursion,
memory and correct sequences of selected functions. For the self-evolved MRAS
controller, we see that GP is able to without any prior knowledge of process
parameters, generate a controller based on model following. It showed some
form of adaptivity in response to changes in process parameters. Besides that,
its non-greedy approach, instead of solely hill-climbing to the problem, was also
demonstrated.
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Chapter 8

Conclusion

This thesis has demonstrated some applications of genetic programming in solv-
ing control problems. The mechanisms used in this thesis if the reader has not
already noticed, is remarkedly easy. Furthermore, it does not based itself on
strict mathematical analysis, but rather, the qualitative nature of each solu-
tion. It solves all the problems using the basic mechanisms of �tness functions
and genetic operations. Hence the choice of �tness functions and the designed
functions for GP run is particularly important.

In most cases GP was able to produce at least some rough solutions as long
as its �tness criteria is reasonably suitable. Hence it seems powerful in the sense
that so long that problem representation is done correctly, the method of genetic
programming is able to solve a wide variety of problems, with only these few
simple genetic tools. One might then be tempted to assume that it is generally
a good method to solve all problems. However, as NFL theorem states, there is
no single best universal method to problems, therefore it is highly recommended
that GP is used with some caution.

Nonetheless, although there is no best way to things, there are still methods
that are diÆcult or easy to implement. Perhaps genetic programming represents
the latter, hopefully shown throughout the thesis. Most importantly, genetic
programming showed the feature of using what is prior-known and what is
unknown to its advantage. However, intuition of the human designer to the
approach of each problem is still indispensable, perhaps even more important,
for genetic programming to work. Therefore it is probably to a large extent, the
combination of the intuition of the human mind with the computational power of
the computer using evolutionary approach that would make GP able to create
programs and solutions automatically. In this thesis it is shown that genetic
programming can be, and have been applied to the �eld of control engineering
in a variety and manner of problems.
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Appendix A

Matlab Code for Discrete

Lyapunov solver

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Function GPmain is the main program that calls all other programs

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [best] = gpmain()

%function returns the best individual program from the GP run,

%and also display some results

global Functions Geneoperations MaxDepth %genepoolfitness genepoolresults

global Stopflag matrow matcol population ADFrecord ADFDepth

global VarConst numvariables numconstants Stopflag

global Individual IndividualDepth IndividualFitness best

matrow = 2;

matcol = 2;

population = 70; %define population size

maxstring = 150; %define the maximum length of the string to

%describe the operations of the genome

maxdepth = 50; %define the maximum depth of the genome

numgenerations = 2; %define the number of generations for the run

matrixspace = 500; %define the amount of matrix space to allocate

%will be used as memory for variables

Stopflag = 0; %Stopflag, global flag for termination criteria

bestfit = 0; %define initial best fitness

numvariables = 2; %define number of variables the run going to use

numconstants = 2 %define number of constants here

numADFs = 100; %define number of initial ADFs here

ADFDepth = 20; %define the depth of each function

IndividualDepth = 300; %definfe the depth and complexity of each individual

noplayers = 10; %define number of players in tournament game

results = []; varindex = []; espression = []; tmpfit = zeros(population,1);
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format long;

%Define functions and genetic operations

%enter function names here, but name must be 5 letters

%Functions = ['addit';'subtr';'atpaf'];

Functions = ['addi1';'addi2';'addi3';'addi4';'subt1';'subt2';'subt3';'subt4'; ...

'atv11';'atv12';'atv21';'atv22';'pav11';'pav12';'pav21';'pav22'];

%enter gene operations here, but name must be 5 letters

Geneoperations = ['cross'; 'mutat'; 'repro']; %name must be 5 letters

%initialise initial population

initvariables(numvariables, numconstants);

initIndividual(population)

%evaluate initial fitness of the defined functions

VarConst

%evaluate initial fitness of individuals

for pop = 1:population

if Stopflag == 0

initvariables(numvariables, numconstants);

tmpfit(pop) = evalfitind(Individual(pop,:));

end

end

%Individual

tmpfit

tmpmax = 0;

for gen = 1:25

if Stopflag == 0

tmpNewGen=zeros(population,IndividualDepth);

tmpfit = zeros(population,1);

NewPop = 1;

while NewPop <= population

chooseop = ceil(4*rand(1));

if chooseop ==1 %25% reproduction

NewInd = repro(noplayers);

tmpNewGen(NewPop,:)=NewInd;

tmpfit(NewPop) = evalfitind(NewInd);

NewPop = NewPop+1;

else %75% crossover

[NewInd1, NewInd2] = cross(noplayers);

tmpNewGen(NewPop,:)=NewInd1;

tmpfit(NewPop) = evalfitind(NewInd1);

NewPop = NewPop+1;

if NewPop <= population
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tmpNewGen(NewPop,:)=NewInd2;

tmpfit(NewPop) = evalfitind(NewInd2);

else

end

end

end

%tmpNewGen

IndividualFitness = tmpfit;

Individual = tmpNewGen;

[mm,imax]=max(IndividualFitness);

if mm > tmpmax %compare the best of generations with record

bestind = Individual(imax,1:IndividualDepth);

initvariables(numvariables, numconstants);

%[finalVAR,iniVAR, espression]=evalindividual(bestind);

[finalVAR,espression]=evalindividual(bestind);

finalVAR

%showfit = evalfitind(bestind)

tmpmax = mm

genrec = gen

else

end

disp('one generation');

% tmpfit

% meanfit = mean(tmpfit);

% [finalVAR,iniVAR, espression]=evalindividual(Individual(1,:))

end

end

%Individual

%display some evaluation of results

disp('1 0; 0 2');

initvariables(numvariables, numconstants);

[finalVAR,espression]=evalindividual(bestind)

disp('2 0 ; 0 2');

initvariables2(numvariables, numconstants);

[finalVAR,espression]=evalindividual(bestind)

disp('1.4 0.5 ; 0.5 1.65');

initvariables3(numvariables, numconstants);

[finalVAR,espression]=evalindividual(bestind)

disp('')

initvariables3(numvariables, numconstants);

[finalVAR,espression]=evalindividual(bestind)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Genetic Operations: Reproduction and Crossover

%Mutation operation is not done.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function NewInd = repro(noplayers)

%reproduces the same genome for the next generation

global Individual

index = selectindividual(noplayers);

NewInd = Individual(index,:);

function [NewInd1, NewInd2] = cross(noplayers)

%choose a parent according to the probability of the fitness of the genepool

%do cross over and return the New Individual

global Individual

sizeind = size(Individual,2);

NewInd1 = zeros(1,sizeind);

NewInd2 = zeros(1,sizeind);

index1 = 1; index2 = 1;

while index1==index2

index1 = selectindividual(noplayers);

index2 = selectindividual(noplayers);

end

parent1 = Individual(index1,:);

parent2 = Individual(index2,:);

[tmpfragment1, A1,A2] = getfrag(parent1);

[tmpfragment2, B1,B2] = getfrag(parent2);

[Row,P1end] = find(parent1 == 9999); %get the last node

NewInd1frag = [parent1(1,(1:A1-1)), tmpfragment2, parent1(1, A2+1:P1end)];

[Row,P2end] = find(parent2 == 9999); %get the last node

NewInd2frag = [parent2(1,(1:B1-1)), tmpfragment1, parent2(1, B2+1:P2end)];

NewInd1(1:size(NewInd1frag,2))= NewInd1frag;

NewInd2(1:size(NewInd2frag,2))= NewInd2frag;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Evaluation of Individuals

%Calcalate results and fitness of individuals.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [finalVAR,expression]=evalindividual(individual)

%evaluate the fitness of one individual

%model tests with various order are used for judgement

global VarConst Functions numvariables

results =[]; iniresult=[];

[rr,endnode] = find(individual==9999);

expression = [''];
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for eachfun = 1:endnode-1

functn = individual(1,eachfun) ;

expression = feval(Functions(functn,:),expression) ;

end

finalVAR = VarConst(1:numvariables,:);

%espressionA = espression;

function fitness = evalfitind(individual)

%return the fitness of one individual

global Stopflag VarConst matrow matcol numvariables numconstants best

espressions = [];

initvariables(numvariables, numconstants); %3 iterations

[finalVAR,espressions]=evalindividual(individual);

Pk = store2mat(VarConst(1,:), matrow, matcol);

Pk_1 = store2mat(VarConst(2,:), matrow, matcol);

A = store2mat(VarConst(3,:), matrow, matcol);

Q = store2mat(VarConst(4,:), matrow, matcol);

fitmat1 = A'*Pk*A - Pk + Q;

fit1 = sum(sum(abs(fitmat1)));

initvariables2(numvariables, numconstants); %2 iterations

[finalVAR,espressions]=evalindividual(individual);

Pk = store2mat(VarConst(1,:), matrow, matcol);

Pk_1 = store2mat(VarConst(2,:), matrow, matcol);

A = store2mat(VarConst(3,:), matrow, matcol);

Q = store2mat(VarConst(4,:), matrow, matcol);

fitmat2 = A'*Pk*A - Pk + Q;

fit2 = sum(sum(abs(fitmat2)));

initvariables3(numvariables, numconstants); %5 iterations

[finalVAR,espressions]=evalindividual(individual);

Pk = store2mat(VarConst(1,:), matrow, matcol);

Pk_1 = store2mat(VarConst(2,:), matrow, matcol);

A = store2mat(VarConst(3,:), matrow, matcol);

Q = store2mat(VarConst(4,:), matrow, matcol);

fitmat3 = A'*Pk*A - Pk + Q;

fit3 = sum(sum(abs(fitmat3)));

initvariables4(numvariables, numconstants); %4 iterations

[finalVAR,espressions]=evalindividual(individual);

Pk = store2mat(VarConst(1,:), matrow, matcol);

Pk_1 = store2mat(VarConst(2,:), matrow, matcol);

A = store2mat(VarConst(3,:), matrow, matcol);

Q = store2mat(VarConst(4,:), matrow, matcol);
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fitmat4 = A'*Pk*A - Pk + Q;

fit4 = sum(sum(abs(fitmat4)));

initvariables5(numvariables, numconstants); %6 iterations

[finalVAR,espressions]=evalindividual(individual);

Pk = store2mat(VarConst(1,:), matrow, matcol);

Pk_1 = store2mat(VarConst(2,:), matrow, matcol);

A = store2mat(VarConst(3,:), matrow, matcol);

Q = store2mat(VarConst(4,:), matrow, matcol);

fitmat5 = A'*Pk*A - Pk + Q;

fit5 = sum(sum(abs(fitmat4)));

initvariables6(numvariables, numconstants); %8iterations

[finalVAR,espressions]=evalindividual(individual);

Pk = store2mat(VarConst(1,:), matrow, matcol);

Pk_1 = store2mat(VarConst(2,:), matrow, matcol);

A = store2mat(VarConst(3,:), matrow, matcol);

Q = store2mat(VarConst(4,:), matrow, matcol);

fitmat6 = A'*Pk*A - Pk + Q;

fit6 = sum(sum(abs(fitmat4)));

initvariables7(numvariables, numconstants); %10 iterations

[finalVAR,espressions]=evalindividual(individual);

Pk = store2mat(VarConst(1,:), matrow, matcol);

Pk_1 = store2mat(VarConst(2,:), matrow, matcol);

A = store2mat(VarConst(3,:), matrow, matcol);

Q = store2mat(VarConst(4,:), matrow, matcol);

fitmat7 = A'*Pk*A - Pk + Q;

fit7 = sum(sum(abs(fitmat2)));

%fit = fit1 + fit2 + fit3 + fit4 + fit5 + fit6;

fit = fit1 + fit2 + + fit3 + fit4 + fit5 + fit6 +fit7;

if fit <= 0.05

disp('fitness met for individuals')

Stopflag = 1;

[finalVAR, espression]=evalindividual(individual)

fitness = fit;

best = individual

else

fitness = 1/fit;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Minor Functions for Storage, Retrieval, and Indexing

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Tmpgenestring, nA, nB]= getfrag(genomeA)
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%for crossover, the function return a fragment of the genome

%to be used for the crossover

%operation.

nodeA1 = 1;

nodeA2 = 1;

nodeA1 = pickanode(genomeA);

nodeA2 = pickanode(genomeA);

if nodeA1 == nodeA2

nA = nodeA1;

nB = nodeA2;

Tmpgenestring = genomeA(nodeA1);

else

nodeA = [nodeA1, nodeA2];

nodeA = sort(nodeA); %do a sort so that node A1 < node A2

nA = nodeA(1,1);

nB = nodeA(1,2);

Tmpgenestring = genomeA(:,nA:nB); %the fragment is [func,B,C,...,C]

end

function genomerow = convert4store(genemat)

%convert a (r x c) matrix to a row vector (of size [1,r x c])to be used for

%storage of genepool. see also 'store2mat'.

genomerow = [];

[row,col]=size(genemat) ;

for r = 1:row

for c = 1:col

genomerow = [genomerow genemat(r,c)];

end

end

function genemat = store2mat(genomerow,row,col)

%convert a row vector (of size [1,r x c]) genomerow to a (r x c) matrix

%genemat to be used for evaluation. see also 'convert4store'.

s = 1;

genecolsize = size(genomerow,2);

givensize = row*col;

if givensize == genecolsize

for r = 1:row

for c = 1:col

genemat(r,c) = genomerow(s);

s = s + 1;

end

end

else

disp('row and col size does not match dimension of input');

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Selection of individaul programs for genetic operations
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%via Tournament method

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function index = selectindividual(noplayers)

%select individuals from genepool via tournament methods

%returns the index of the individual from Individualfitness

global IndividualFitness population

indfit = zeros(noplayers,1); bestfit = 0;

tournamentpool = ceil(population*rand(noplayers,1)); %index of the players

for player = 1:noplayers

indfit(player)= IndividualFitness(tournamentpool(player,1));

if bestfit <= indfit(player)

bestfit = indfit(player);

index = tournamentpool(player,1);

else

index = tournamentpool(1,1);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Initialisation of Individuals and Variables

%only one example of initialisation of variables shown

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function initIndividual(pop)

%function initialise a number of individuals

global Individual IndividualDepth IndividualFitness Functions best

sizeofFunction = size(Functions,1);

%sizeofADFrec = size(ADFrecord,1);

Individual = zeros(pop,IndividualDepth);

for i=1:45

%Individual(1:pop,i) = ceil(rand(pop,1)*(sizeofADFrec));

Individual(1:pop,i) = ceil(rand(pop,1)*(sizeofFunction));

end

Individual(1:pop,i+1) = 9999;

%Individual

IndividualFitness = zeros(pop,1);

best = zeros(1,IndividualDepth);

function initvariables(novariables, noconstants)

%initialise number of variables and constants here

global matcol matrow VarConst

Variables = ones(novariables,matrow*matcol);
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Constants = ones(noconstants,matrow*matcol);

VarConst = [Variables;Constants];

%T = 0.9*rand(2,2);

%T =[ 0.43365 0.44736; 0.27610 0.07882;];

%T = [0.21448 0.87222; 0.73935 0.76453];

A =[ 0.06858167 0.0062523721; 0.28649129 0.28058822]; %3 iterations

Q = [1 0; 0 1];

VarConst(3,:) = convert4store(A);

VarConst(4,:) = convert4store(Q);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Functions which can be used by the Genetic Programming System

%to Evolve its solution.

%Boring but necessary

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function expr = addi1(expr)

%Var1 = Var1 + Q

global VarConst

P1 = VarConst(1,:);

Q = VarConst(4,:);

VarConst(1,:) = P1 + Q;

expr = [expr,'v1=v1+Q;'];

function expr = addi2(expr)

%Var2 = Var1 + Q

global VarConst

P1 = VarConst(1,:);

Q = VarConst(4,:);

VarConst(2,:) = P1 + Q;

expr = [expr,'v2=v1+Q;'];

function expr = addi3(expr)

%Var1 = Var2 + Q

global VarConst

P1 = VarConst(2,:);

Q = VarConst(4,:);

VarConst(1,:) = P1 + Q;

expr = [expr,'v1=v2+Q;'];

function expr = addi4(expr)

%Var2 = Var2 + Q
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global VarConst

P1 = VarConst(2,:);

Q = VarConst(4,:);

VarConst(2,:) = P1 + Q;

expr = [expr,'v2=v2+Q;'];

function expr = atv11(expr)

%Var1 = A'Var1

global VarConst

A1 = VarConst(3,:);

A = store2mat(A1,2,2);

P1 = VarConst(1,:);

P = store2mat(P1,2,2);

VarConst(1,:) = convert4store(A'*P);

expr = [expr,'v1=At*v1;'];

function expr = atv12(expr)

%Var2 = A'Var1

global VarConst

A1 = VarConst(3,:);

A = store2mat(A1,2,2);

P1 = VarConst(1,:);

P = store2mat(P1,2,2);

VarConst(2,:) = convert4store(A'*P);

expr = [expr,'v2=At*v1;'];

function expr = atv21(expr)

%Var1 = A'Var2

global VarConst

A1 = VarConst(3,:);

A = store2mat(A1,2,2);

P1 = VarConst(2,:);

P = store2mat(P1,2,2);

VarConst(1,:) = convert4store(A'*P);

expr = [expr,'v1=At*v2;'];

function expr = atv22(expr)

%Var2 = A'Var2
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global VarConst

A1 = VarConst(3,:);

A = store2mat(A1,2,2);

P1 = VarConst(2,:);

P = store2mat(P1,2,2);

VarConst(2,:) = convert4store(A'*P);

expr = [expr,'v2=At*v2;'];

function expr = pav11(expr)

%Var1 = Var1*A

global VarConst

A1 = VarConst(3,:);

A = store2mat(A1,2,2);

P1 = VarConst(1,:);

P = store2mat(P1,2,2);

VarConst(1,:) = convert4store(P*A);

expr = [expr,'v1=v1*A;'];

function expr = pav12(expr)

%Var1 = Var2*A

global VarConst

A1 = VarConst(3,:);

A = store2mat(A1,2,2);

P1 = VarConst(2,:);

P = store2mat(P1,2,2);

VarConst(1,:) = convert4store(P*A);

expr = [expr,'v1=v2*A;'];

function expr = pav21(expr)

%Var2 = Var1*A

global VarConst

A1 = VarConst(3,:);

A = store2mat(A1,2,2);

P1 = VarConst(1,:);

P = store2mat(P1,2,2);

VarConst(2,:) = convert4store(P*A);

expr = [expr,'v2=v1*A;'];

function expr = pav22(expr)
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%Var2 = Var2*A

global VarConst

A1 = VarConst(3,:);

A = store2mat(A1,2,2);

P1 = VarConst(2,:);

P = store2mat(P1,2,2);

VarConst(2,:) = convert4store(P*A);

expr = [expr,'v2=v2*A;'];

function expr = subt1(expr)

%Var1 = Var1 - Var2

global VarConst

P1 = VarConst(1,:);

P2 = VarConst(2,:);

VarConst(1,:) = P1 - P2;

expr = [expr,'v1=v1-v2;'];

function expr = subt2(expr)

%Var2 = Var2 - Var1

global VarConst

P1 = VarConst(1,:);

P2 = VarConst(2,:);

VarConst(1,:) = P1 - P2;

expr = [expr,'v2=v2-v1;'];

function expr = subt3(expr)

%Var1 = Var1 - Var2

global VarConst

P1 = VarConst(1,:);

P2 = VarConst(2,:);

VarConst(2,:) = P1 - P2;

expr = [expr,'v2=v1-v2;'];

function expr = subt4(expr)

%Var2 = Var2 - Var1

global VarConst

P1 = VarConst(1,:);

P2 = VarConst(2,:);
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VarConst(1,:) = P1 - P2;

expr = [expr,'v1=v2-v1;'];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Validation Test for the evolved program

%Compare with results generated by normal methods

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function results = testresults(individual,Q)

global VarConst

Functions = ['addi1';'addi2';'addi3';'addi4';'subt1';'subt2';'subt3';'subt4'; ...

'atv11';'atv12';'atv21';'atv22';'pav11';'pav12';'pav21';'pav22'];

numvariables = 2; %define number of variables the run going to use

numconstants = 2; %define number of constants here

T = 0.9*rand(2,2)

A = T*[0.5 -0.5; 1 0]*T'

Variables = ones(2,4);

Constants = ones(2,4);

VarConst = [Variables;Constants];

VarConst(3,:) = convert4store(A);

VarConst(4,:) = convert4store(Q);

results =[];

[rr,endnode] = find(individual==9999);

expression = [''];

[results,espression]=evalindividual(individual);

disp('results of P from GP');

results

Pk = [1 1; 1 1];

for i = 1:30

Pk_1 = (A')*Pk*A + Q;

if abs(Pk_1-Pk)<0.05

i

break;

end

Pk = Pk_1;

end

disp('results from iteration')

Pk
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Appendix B

Matlab Code for

Self-Evolved MRAS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Function GPmain is the main program that calls all other programs

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Individual, bestind]=gpmain()

global Functions Geneoperations MaxDepth %genepoolfitness genepoolresults

global Stopflag matrow matcol population ADFrecord ADFDepth

global VarConst numvariables numconstants Stopflag

global Individual IndividualDepth IndividualFitness

global uc ym y u tuc tuc1 tuc2 sy sy1 sy2 ru1

population = 50; %define population size

maxstring = 150; %define the maximum length of the string to

%describe the operations of the genome

maxdepth = 50; %define the maximum depth of the genome

numgenerations = 2; %define the number of generations for the run

matrixspace = 500; %define the amount of matrix space to allocate

%will be used as memory for variables

Stopflag = 0; %Stopflag, global flag for termination criteria

bestfit = 0; %define initial best fitness

IndividualDepth = 3500; %definfe the depth and complexity of each individual

noplayers =10; %define number of players in tournament game

results = []; varindex = []; espression = []; tmpfit = zeros(population,1);

format long;

%Define functions and genetic operations

%enter function names here, but name must be 5 letters

Functions = ['uca00';'uc1s0';'ys000';'y1a00';'u1a00';'ucs00'; ...
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'uc1a0';'ya000';'y1s00';'u1s00';'uca0b';'uc1sb';'ys00b';'y1a0b';...

'u1s0b';'u1a0b';'ucs0b';'uc1ab';'ya00b';'y1s0b';'nothi'];

%enter gene operations here, but name must be 5 letters

Geneoperations = ['cross'; 'mutat'; 'repro']; %name must be 5 letters

%initialise initial population

initvariables;

initIndividual(population);

%Individual

%evaluate initial fitness of individuals

for pop = 1:population

if Stopflag == 0

initvariables;

tmpfit(pop) = evalfitind(Individual(pop,:));

end

end

%Individual

tmpfit

tmpmax = 0;

for gen = 1:80

if Stopflag == 0

tmpNewGen=zeros(population,IndividualDepth);

tmpfit = zeros(population,1);

NewPop = 1;

while NewPop <= population

chooseop = ceil(10*rand(1));

if ((chooseop>1)&(chooseop<=3))

NewInd = repro(noplayers);

tmpNewGen(NewPop,:)=NewInd;

tmpfit(NewPop) = evalfitind(NewInd);

%NewPop = NewPop+1;

elseif chooseop == 1

NewInd = mutat(noplayers); %new mutant

tmpNewGen(NewPop,:)=NewInd;

tmpfit(NewPop) = evalfitind(NewInd);

else

[NewInd1, NewInd2] = cross(noplayers);

tmpNewGen(NewPop,:)=NewInd1;

tmpfit(NewPop) = evalfitind(NewInd1);

NewPop = NewPop+1;

if NewPop <= population

tmpNewGen(NewPop,:)=NewInd2;

tmpfit(NewPop) = evalfitind(NewInd2);

else

end

end
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end

IndividualFitness = tmpfit;

Individual = tmpNewGen;

[mm,imax]=max(IndividualFitness);

if mm > tmpmax

bestind = Individual(imax,1:IndividualDepth);

initvariables;

fitness = evalfitindresults(bestind);

tmpmax = mm

genrec = gen

else

end

disp('one generation');

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Genetic Operations: Reproduction and Crossover

%Mutation operation included.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function NewInd = repro(noplayers)

%reproduces the same genome for the next generation

global Individual

index = selectindividual(noplayers);

NewInd = Individual(index,:);

function [NewInd1, NewInd2] = cross(noplayers)

%choose a parent according to the probability of the fitness of the genepool

%do cross over and return the New Individual

global Individual

sizeind = size(Individual,2);

NewInd1 = zeros(1,sizeind);

NewInd2 = zeros(1,sizeind);

index1 = 1; index2 = 1;

while index1==index2

index1 = selectindividual(noplayers);

index2 = selectindividual(noplayers);

end

parent1 = Individual(index1,:);

parent2 = Individual(index2,:);

[tmpfragment1, A1,A2] = getfrag(parent1);

[tmpfragment2, B1,B2] = getfrag(parent2);
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[Row,P1end] = find(parent1 == 9999); %get the last node

NewInd1frag = [parent1(1,(1:A1-1)), tmpfragment2, parent1(1, A2+1:P1end)];

[Row,P2end] = find(parent2 == 9999); %get the last node

NewInd2frag = [parent2(1,(1:B1-1)), tmpfragment1, parent2(1, B2+1:P2end)];

NewInd1(1:size(NewInd1frag,2))= NewInd1frag;

NewInd2(1:size(NewInd2frag,2))= NewInd2frag;

function NewInd1 = mutat(noplayers)

global Individual IndividualDepth Functions

index = ceil(rand(1,1)*size(Individual,1));

sizeofFunction = size(Functions,1);

parent1 = Individual(index,:);

sizeind = size(Individual,2);

NewInd1 = zeros(1,sizeind);

[tmpfragment1, A1,A2] = getfrag(parent1);

tmpfragment2 = zeros(1,(A2-A1+1));

for i = 1:(A2-A1+1)

tmpfragment2(1,i) = ceil(rand(1,1)*(sizeofFunction));

end

[Row,P1end] = find(parent1 == 9999); %get the last node

NewInd1frag = [parent1(1,(1:A1-1)), tmpfragment2, parent1(1, A2+1:P1end)];

NewInd1(1:size(NewInd1frag,2))= NewInd1frag;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Evaluation of Individuals

%Calcalate results and fitness of individuals.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function fitness = evalfitind(individual)

%return the fitness of one individual

global Stopflag matrow matcol uc ym y u uc

%tmpu = zeros(2000,1);

error = zeros(2000,1);

inverr = zeros(2000,1);

errdt = zeros(2000,1);

espressions = [];

initvariables;

coef =evalindividual(individual);

for t = 3:300
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ym(t,1) = 0.0182*uc(t-1,1)+0.01657*uc(t-2,1)+1.721*ym(t-1,1)-0.7558*ym(t-2,1);

y(t,1) =1.96*y(t-1,1)-y(t-2,1)+0.002791*u(t-1,1)+0.002791*u(t-2,1);

u(t,1) = coef(1,1)*uc(t,1)+coef(2,1)*uc(t-1,1)+coef(4,1)*y(t,1)+ ...

coef(5,1)*y(t-1,1)+coef(7,1)*u(t-1,1);

error(t,1) = abs(y(t,1) - ym(t,1));

errdt(t,1) = abs(error(t,1)-error(t-1,1));

end

%figure;hold on;

%plot(u);

%plot(ym);

%hold off;

fitness = 1/(1+(4*sum(errdt))+sum(error)); %4 is an arbitrary weight

%but not really necessary.

%fitness = 1/(1+sum(errdt));

%fitness = 1/(1+sum(error));

function [Tmpgenestring, nA, nB]= getfrag(genomeA)

%for crossover, the function return a fragment

% of the genome to be used for the crossover

%operation.

nodeA1 = 1;

nodeA2 = 1;

nodeA1 = pickanode(genomeA);

nodeA2 = pickanode(genomeA);

if nodeA1 == nodeA2

nA = nodeA1;

nB = nodeA2;

Tmpgenestring = genomeA(nodeA1);

else

nodeA = [nodeA1, nodeA2];

nodeA = sort(nodeA); %do a sort so that node A1 < node A2

nA = nodeA(1,1);

nB = nodeA(1,2);

Tmpgenestring = genomeA(:,nA:nB); %the fragment is [func,B,C,...,C]

end

function genomerow = convert4store(genemat)

%convert a (r x c) matrix to a row vector (of size [1,r x c])to

% be used for

%storage of genepool. see also 'store2mat'.

genomerow = [];

[row,col]=size(genemat) ;

for r = 1:row

for c = 1:col
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genomerow = [genomerow genemat(r,c)];

end

end

function genemat = store2mat(genomerow,row,col)

%convert a row vector (of size [1,r x c]) genomerow to a (r x c) matrix

%genemat to be used for evaluation. see also 'convert4store'.

s = 1;

genecolsize = size(genomerow,2);

givensize = row*col;

if givensize == genecolsize

for r = 1:row

for c = 1:col

genemat(r,c) = genomerow(s);

s = s + 1;

end

end

else

disp('row and col size does not match dimension of input');

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Selection of individaul programs for genetic operations

%via Tournament method

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function index = selectindividual(noplayers)

%select individuals from genepool via tournament methods

%returns the index of the individual from Individualfitness

global IndividualFitness population

indfit = zeros(noplayers,1); bestfit = 0;

tournamentpool = ceil(population*rand(noplayers,1)); %index of the players

%noplayers

%tournamentpool

for player = 1:noplayers

indfit(player)= IndividualFitness(tournamentpool(player,1));

if bestfit <= indfit(player)

bestfit = indfit(player);

index = tournamentpool(player,1);

else

index = tournamentpool(1,1);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Initialisation of Individuals and Variables

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function initvariables()

%initialise number of variables and constants here

global uc ym y u tuc tuc1 tuc2 sy sy1 sy2 ru1

tuc = 0; tuc1 = 0; tuc2 = 0; sy = 0; sy1 = 0; sy2 = 0; ru1 = 0;

uc = zeros(2000,1);ym = zeros(2000,1);y = zeros(2000,1);u = zeros(2000,1);

uc(50:200,1) = 1;

function initIndividual(pop)

%function initialise a number of individuals

global Individual IndividualDepth IndividualFitness Functions

sizeofFunction = size(Functions,1);

%sizeofADFrec = size(ADFrecord,1);

Individual = zeros(pop,IndividualDepth);

for i=1:100

Individual(1:pop,i) = ceil(rand(pop,1)*(sizeofFunction));

end

Individual(1:pop,i+1) = 9999;

IndividualFitness = zeros(pop,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Functions which can be used by the Genetic Programming System

%to Evolve its solution.

%Boring but necessary

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function cof = u1a00(cof)

cof(7,1) = cof(7,1) + 1;

function cof = u1a0b(cof)

cof(7,1) = cof(7,1) + 0.1;

function cof = u1s00(cof)

cof(7,1) = cof(7,1) - 1;

function cof = u1s0b(cof)

cof(7,1) = cof(7,1) - 0.1;

function cof = uc1a0(cof)

cof(2,1) = cof(2,1) + 0.1;
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function cof = uc1ab(cof)

cof(2,1) = cof(2,1) + 1;

function cof = uc1s0(cof)

cof(2,1) = cof(2,1) - 0.1;

function cof = uc1sb(cof)

cof(2,1) = cof(2,1) - 1;

function cof = uca00(cof)

cof(1,1) = cof(1,1) + 0.1;

function cof = uca0b(cof)

cof(1,1) = cof(1,1) + 1;

function cof = y1a00(cof)

cof(5,1) = cof(5,1) + 0.1;

function cof = y1a0b(cof)

cof(5,1) = cof(5,1) + 1;

function cof = y1s00(cof)

cof(5,1) = cof(5,1) - 0.1;

function cof = y1s0b(cof)

cof(5,1) = cof(5,1) - 1;

function cof = ya000(cof)

cof(4,1) = cof(4,1) + 0.1;

function cof = ya00b(cof)

cof(4,1) = cof(4,1) + 1;

function cof = ys000(cof)

cof(4,1) = cof(4,1) - 0.1;

function cof = ys00b(cof)

cof(4,1) = cof(4,1) - 1;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Display of Evolved Solution

%Control signal, Ym and Y output of process

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function fitness = evalfitindresults(individual)

%return the fitness of one individual

global Stopflag matrow matcol uc ym y u uc

%tmpu = zeros(2000,1);

error = zeros(2000,1);

errdt = zeros(2000,1);

espressions = [];

initvariables;

coef =evalindividual(individual)

for t = 3:600

ym(t,1) = 0.0182*uc(t-1,1)+0.01657*uc(t-2,1)+1.721*ym(t-1,1)-0.7558*ym(t-2,1);

y(t,1) =1.96*y(t-1,1)-y(t-2,1)+0.002791*u(t-1,1)+0.002791*u(t-2,1);

u(t,1) = coef(1,1)*uc(t,1)+coef(2,1)*uc(t-1,1)+coef(4,1)*y(t,1)+ ...

coef(5,1)*y(t-1,1)+coef(7,1)*u(t-1,1);

error(t,1) = abs(y(t,1) - ym(t,1));

errdt(t,1) = abs(error(t,1)-error(t-1,1));

end

figure;

plot(u);

figure;hold on;

plot(ym);

plot(y,'r');

hold off;

totalerror = sum(error)

fitness = 1/(1+sum(error))
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