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1. Introduction

1.1. Overview of the work

The work consists in the construction of different kinds of controllers and to find out their

potentials and limitations.

The linear regulator is the most basic in the construction and also the oldest. This controller is

therefore good as a reference. (Åström and Wittenmark, 1997) is the by far most used source

for the construction of the linear controller.

In the case of adaptive controllers the studies are oriented towards different ways of updating

the covariance matrix. A pole-placement control method gives the desired control behaviour.

These are well-established technologies on which many books have been written. In the

studies for this project are (Landau et al, 1997), (Wellstead and Zarrop, 1991) and (Åström

and Wittenmark, 1995) the most read.

The neural network is used to create a nonlinear model of the process. This model is used to

build an input-output feedback linearisation controller. This approach was first presented by

(Isidori, 1995). To see if this new technology has any great advantages in comparison to the

older adaptive approaches is the most important conclusion in this report. The material used

for this part is mainly (Braake et al, 1997), (Henriques et al, not yet published), (Mathworks,

1999) and (de Wilde, 1997).

1.1.1. Classic Control: Advantages and disadvantages

With classic control we normally mean linear control. In this project the meaning also include

the word discrete. A computer makes all the calculations and because of this we deal with

discrete time. This is the first method used for this project but creates the foundation for all

other control methods. Linear discrete control is based on the assumptions that the process

can be modelled as linear and constant polynomials. It is relatively simple to construct a linear

controller and the calculations are simple. This means that we can sample with a high speed.

The disadvantages are that in real life you cannot always say that a linear and constant model

will be good enough. The fact that the behaviour of the process is changing within time, due

to changed conditions in or in the nearby environment of the process, can make the system

run with wrong behaviour and if you are unlucky, make it unstable. In this project these
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nonlinearities and variations in parameters will be compensated with adaptive control

methods.

1.1.2. Adaptive control: Try to overcome some difficulties of the conventional

control

Adaptive control is an attempt to adjust the elements of the model polynomials at the same

time as you run the controller. By predicting the next output with regards of the model and

then evaluate the difference between the prediction and the actual output it is possible to

modify the parameters of the model to the better. There are many different ways of doing this.

Only methods including covariance management are used in this report.

1.1.3. Neural networks control: Able to deal with nonlinearities

A linear model cannot describe all processes. As always there are various approaches to

control a nonlinear process and one group of methods are the ones that use neural networks.

Neural networks can for example be used to create an arbitrary transfer function, linear or

nonlinear. The input-output feedback linearisation is one of the possible approaches in order

to design a controller. By a linearisation of the neural network model at a working point and

at each sample, it is possible to control the system as if it was a linear process.

1.2. Equipment

1.2.1. The PT326 process

The process used for this work was a single input single output process called PT326 from the

British manufacturer Feedback (see Figure 1-1).
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Figure 1-1 The PT326 process

Air is sucked in from the ambient atmosphere through an adjustable entrance (1) and driven

through an electrical heater grid (2) and then through a plastic tube out in the atmosphere

again (3). It has many similarities with a hair dryer. The control problem is to control the

temperature of the outgoing air. The input signal (socket A) is a voltage that produces a

current through the heater grid and the output is a voltage that is a measurement of the

temperature of the outgoing air.

The detecting element is a bead thermistor that is fitted at the end of a probe (4). The probe

can be placed in three different positions along the tube, which causes different time delays.

The distances are 1.1 inch (28mm), 5.5 inches (140mm) and 11 inches (279mm) from the

heater grid (Feedback, 1986).

The thermistor forms one arm of a D.C. bridge that is in balance at 40°C. The output voltage

from the bridge is amplified so a change in temperature from 30° to 60° equals a change in

output voltage from 0V to +10V. This output voltage is measured at the socket Y on the front

panel (Feedback, 1986).

To illustrate disturbances it is possible to adjust the size of the inlet. This changes the speed of

the air flow. To measure this disturbance it is possible to read how many degrees the opening

is, between 10º and 170º.
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1.2.2. Acquisition board PCL-818L

The communication between the process and the computer was handled by acquisition card

PCL-818L from Advantech Co, Ltd. PLC-818L contains a 12-bit A/D converter with

sampling rates up to 40kHz and a 12-bit D/A converter with 5 microseconds settling time.

The range of the D/A converter is ±10V (Advantech, 1994).

1.2.3. Structure of the software

The programming in this work was made in a slightly different way than usual. Many of the

functions were written in Matlab. The reason for that is that many functions are very easy to

implement and there are many very powerful commands available in Matlab. One example is

to invert a matrix, another calculations with complex numbers. These are very complex

operations in normal programming languages but are very simple to handle in Matlab. Matlab

does not support any possibilities to use the data acquisition card but provides a compiler

toolbox that makes it possible to convert the Matlab code to C-code. With the help of this

compiler toolbox as many functions as possible were written in Matlab code and then

compiled to C-code. Some additional c-functions were thereafter compiled together with the

code Matlab had created. A schematic diagram is shown in Figure 1-2. The C-code makes the

calculations faster than Matlab, even though the compiler does not make the code as fast as a

skilled programmer would make it.

Other functions e.g.
solving diophantine

equation

Other functions e.g.
save data to file, delay

Time function,
read the time from the

system clock

Functions for the data
acquisition card e.g.

initialisation of the card,
read, write Main program

Matlab code

C-functions Matlab functions

Figure 1-2 This is what language was used for the different functions
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To learn how the Matlab compiler works is very difficult but when you have understood

exactly how the structure should be it is not a problem. All Matlab files, even the main

program, should start with the word function. All functions should be compiled with the –r

and –e flags. When the main program is compiled the –m flag should be added too. For every

C-function (including the compiled Matlab functions) that is used there should be a short

Matlab function attached in the same catalogue as the main program. This function should

contain information on what kinds of variables are returned to the main program, e.g. real,

integer etc. These functions are in this report called trick functions because they trick the

compiler to separate name of functions from names of variables in the main program. See also

Figure 1-3. These trick functions should be compiled as normal Matlab functions before the

compilation of the main code.

Main code (Matlab)
Main code (C-function)
Trick functions (Matlab)

Compiled trick functions (C)
Function folder (C-functions)

Function folder (Matlab)

read.m
function y=read()

y=2.2;
% 2.2 because y should be a real number.

C-
functions

Matlab
functions

The compiled or written
c-funtions

The uncompiled Matlab
functions

Main folder

Figure 1-3 One way of arranging the files when working with the Matlab compiler

The c-code is then compiled as usual with a normal C-compiler. Here was Watcom IDE 10.5

used.
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2. Conventional control theory

2.1. The model

The model of the process is described as two polynomials A(q-1) and B(q-1) of the backward-

shift operator q-1. Sometimes this operator is called the delay operator. The z-transform of

these polynomials are: A(z-1) and B(z-1).

n
nqaqaqaqA −−−− ++++= ...)( 2

2
1

1
1 1  and ( ) m

mqbqbbqB −−− +++= ...1
10

1  so that

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )kemkumbkubkub

nkynakyakyaky

+−++−+=

=−++−+−+

...110

...2211
2-1

where e(k) is white noise.

Another way to formulate the equation is: 
( )
( ) ( )ezA

u
zA

zB
y

11

1 1
−−

−
+= . This type of model is

called the ARX-model. Another type is the ARMAX-model that includes a more detailed

description of the noise.

2.2. The controller

2.2.1. Pole placement controller

A linear pole placement control system can be illustrated as below in Figure 2-1:

Regulator
S,R,T

Process
B,A

uc

u
y

Figure 2-1 A linear control system
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The output of the process is a function of the control signal, u(k). u(k) is at the same time the

output of the controller. The inputs to the controller are the old process outputs and the

reference signal uc(k). A linear controller can then be represented as:

)()()()()()( kyqSkuqTkuqR c
111 −−− −= 2-2

where the linear polynomials can be described as: ( ) n
nzrzrzrzR −−−− ++++= �2

2
1

1
1 1 ,

( ) t
t ztztzttzT −−−− ++++= �2

2
1

10
1  and ( ) m

mzszszsszS −−−− ++++= �2
2

1
10

1 .

After a division by R(z-1) we get:
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−
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If we combine the two equations the output, y(k) will be a function of only the reference,

( ) ( )( )kufky c= .
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By dividing with [A(z-1)R(z-1)+B(z-1)S(z-1)] we get the transfer function:

cu
zSzBzRzA

zTzB
y

)()()()(

)()(
1111

11

−−−−

−−

+
= 2-3

Both B(q-1)T(q-1) and A(q-1)R(q-1)+B(q-1)S(q-1) are linear equations and we can give them new

names in analogy with the transfer function of the process:

)()()( 111 −−− = qTqBqBc  and )()()()()( 11111 −−−−− += qSqBqRqAqAc

The latter equation is called the Diophantine equation.
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2.2.2. Calculating the regulator polynomials

The control problem is to design and implement the controller polynomials so the behaviour

of the system is as good as possible. First of all you should try to place the poles of Ac where

you want them. By having a desired Ac you identify the terms of the resulting polynomials of

the Diophantine equation. That is easily done with the following equation system that is valid

in the general case (Åström and Wittenmark, 1997).
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The degrees of the polynomials A(q-1) and B(q-1) are n. If they do not have the same length it

is possible to add zeros at the beginning of B(q-1) until they have the same length. The degree

of R(q-1) and S(q-1) is n-1.

To add an integrator to the regulator you need a regulator pole in z=1. The polynomials R(q-1)

and S(q-1) has then the degree n. This means that the Diophantine equation is changed

slightly:
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With T(q-1) you can decide the steady state gain which can be calculated as:

)(/)( cc AsumBsum
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To force the steady state gain to be a certain value you need a T(q-1) that is just a constant t0.

T(q-1) is also used to place the zeros of the system where you want them. In this report these

methods are not discussed, but the T(q-1) might be of a higher order. Further on we make the

assumption that T(q-1)=t0.

2.2.3. Calculating the control signal

Now we have the regulator. The control signal is now computed as:

)()()()(

)()()()()()()(

mkurkurkurpkys

kyskyskutkuyqSuqTuqR

mp

occ

−−−−−−−−−
−−−−=⇒−= −−−







21

1

21

10
111

2-4

where p and m are the degrees of the S(q-1) and R(q-1) polynomials respectively.

That was a short version of the theory behind the linear control. There are other ways to

obtain the same results but they provide more or less the same result.

2.3. Off line identification

To be able to have a good controller you need to know the behaviour of the process. This

means in mathematical terms that you should know the parameters of A(q-1) and B(q-1).

There are two general methods to decide these polynomials. One is based on time-series that

are sent to the input of the process. Then the outputs are measured and from these data the

parameters are calculated. By measure the output you can calculate the system parameters.

The other method is based on calculation of the physical behaviour of the process, e.g. the

calculation of the behaviour of an electric net from the resistance, capacitance and impedance

of the different components. This includes often very complex calculations and is seldom

done. In this report only the first method is used.

By sending an input signal u(k), with the length n, to the input of the process you could

theoretically calculate an exact model for the specific input, if the length of the polynomials

are n. This model is very complex and is only valid for that specific data. If the output had

been measured again it would be slightly different and the model would not be correct. If the

assumption is made that B(q-1) and A(q-1) can be approximated as polynomials with a length

that is much smaller than n, the problem is to choose these parameters as good as possible.
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The approximated model follows the equation:

uqByqA )()( 11 −− ≈ 2-5

as good as possible.
  

There are many different methods to find the best approximation but the least-mean-square

method is very much used, and is the method for this report. This method is going to be

presented here.

From the linear model we get that:
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where ( )kTφ is a vector containing the n latest control signals and outputs and Θ̂ is a vector

that contains the estimated model parameters.

Let us also introduce the matrices
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where )( ΘNε is a vector containing the errors when an arbitrary estimation Θ  has been

used.

If we introduce a loss function )( ΘJ  and define it as:
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For the least-square method we get a minimal loss when

N
T
NN

T
N YΦΦΦ=Θ −1)(ˆ . 2-8

The proof is to be read in a book in identification, for example (Johansson, 1993) or (Landau,

1990).
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3. Experimental results with the fixed linear control

3.1. Modelling

There are many things to consider when you choose the sampling time. First of all you got to

know how fast the process is. The PT326 process has a rise time about two seconds. A rule of

thumb is to choose the sampling time 4-10 times faster than the rise time. For the PT326 this

means a sampling time between 200 and 500ms. A lower sampling rate will not reconstruct

the continuous signal properly and a higher sampling rate might increase the load of the

computer. Another problem is the noise. If the sampling rate is too high there is a risk that the

model you get is a description of the noise instead of the behaviour of the actual process you

want to control. With a sampling time big enough the covariance for the noise is

approximately 0, and can therefore considered be white. White noise does not affect the

identification. With a covariance of the noise separated from 0, the colour of the noise will

affect the identification in a negative way. The output from the PT326 process contains a lot

of noise and every attempt to make the identification with a sampling time faster than 150ms

ended up in very bad models. At the end 200ms seemed to be a reasonable sampling rate.

That is the sampling rate that is used for all experiments in this report.

There are different ways of choosing the input signal for the identification. If the process is

linear we do not have to use more than two different input levels. It is more useful to vary the

step length at each period and keep the step amplitude constant. This lead to the conclusion

that it might be useful to choose a rectangular signal with variable step length. This kind of

signal is usually called pseudorandom binary sequence (PRBS) (see Figure 3-1). This kind of

signal is usually a good choice because its frequency spectrum is close to the frequency

spectrum of white noise.  There are many other ways to determine the input but this is a signal

often used (Johansson, 1993).
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Figure 3-1 An example of a PRBS signal

One thing you should have in mind is to make sure that the sampling time really is accurate.

In the first experiments was a clock built by C-functions used. The operative system of the

computer was Windows98. Windows98 is a multitasking operative system and the C-

functions used were only counting the time used for the data acquisition program. In between

the computer was working with things only known by the people at Microsoft. This leads of

course to errors in the model. Therefore it was more convenient to use the clock function in

Matlab for this purpose.

Because of the noise in the signal it might be useful to filter the signal with a low-pass filter.

The order of the model is important. The complexity of the calculations is increasing very fast

with increasing order. A simulation might be made to see how well the model is

reconstructing the output with the same input. It is important to choose the model with the

lowest complexity possible. If the process is a second order system a third order model does

not provide a better description, though it is more probable that the noise will be more

noticeable in the model.

The results from the identification can be seen in Figure 3-2. The figure also contains a

simulation of the model.
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Figure 3-2 The result of the linear identification. The insignal can be viewed at the bottom and the process output

and the simulated output (smoother) can be viewed above.

The picture shows a fairly good model of the PT326. This model is used for the linear control.

The transfer function of the model is:
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The number of the delays is one sample (200ms).

The PRBS is only changing between two levels. If the process is has nonlinearities the model

might be quite bad. If the input signal is varied over a wide range within the dynamic range

the model errors due to the nonlinearities are also least mean square approximated. The result

from the identification with the other insignal can be seen in Figure 3-3 and the transfer

function became:
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Figure 3-3 The result of the linear identification. The input can be seen above and the process output and

simulated output (smoother) can be viewed below.

If the model from the PRBS was simulated with the latter insignal the result was the

following (see Figure 3-4):
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Figure 3-4 The result of the comparison between the two different models. The model from the PRBS input is the

highest one while the real output and the model based on an input with variable amplitude can be seen below.
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The difference is big. It is easy to believe that the second model is the better one but if we

make the same simulation on the PRBS input the result is the following (see Figure 3-5):

Figure 3-5 The result of the comparison between the two different models. At the top of the graph is the real

output to be seen while further down is the simulated output from the model based on the input with variable

amplitude.

This model is not as good as the first one used. This is due to the small terms of the B-

polynomial. The output is almost independent of the insignal. This illustrates how difficult it

is to get a perfect model.

3.2. Control

In real life control the noise can cause a lot of trouble. One way to solve this is to filter the

output signal before it enters the regulator. It is also possible to filter the control signal.

Because the PT326 is noisy, both those filters, that can bee seen in Figure 3-6 are used to

control the process.
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Figure 3-6 When the output and the control signal is low-pass filtered a good control is much easier to achieve.

The filters are removing some of the noise but there is still a lot left, which might cause

problems.

It might be difficult to find the optimal place to put the closed loop poles. One way is trial and

error. Experience is one of the most powerful tools when it comes to find a good location for

the poles. To put them around 0.7 on the real axis is often a good start. In the experiments

were the poles placed in 0.65 and 0.7. The Diophantine equation gives: R(q-1)=1-0.0520q-1-

0.9480q-2, S=15,3308-10.8872q-1+2.3212q-2 and T=5.3721.

The model is never a really good approximation of the process. For example the steady state

error might be rather big. To prevent this kind of errors it is a good idea to implement an

integrator in the regulator.

With all the methods mentioned above including an integrator the control was as can be seen

in Figure 3-7.
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Figure 3-7 The result with linear control and integrator. The reference (rectancular), the output and the control

signal (below the output)
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This control was made straight after the identification was made. When the same model was

used some days later, when it was colder, the result was much different (see Figure 3-8)
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Figure 3-8 Linear control at another day than in Figure 3-7

Of all different methods tried in this work the linear control was the one that took the most

time to implement. This might seem a little bit strange but the problems were not the control

problems but problems to get the different parts of the system working together, e.g. the

Matlab compiler, the C-compiler or the data acquisition board. These problems will always

appear in all kind of control. The difference was that when the adaptive control was made

these functions already existed. Identification is difficult and such a thing as a perfect model

does not exist. This leads to a steady state error but the integrator quite effectively

compensates these nonlinearities.

3.3. Conclusions

From the different identifications it is easy to see that none of the models are valid at every

time. Identification is more about getting a model as good as possible than getting the perfect

one. The automatic control field is built on the idea that making the model as irrelevant as

possible. Feedback is all about correcting the errors in a model. Even if the model is not
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exactly correct it is possible to obtain good control behaviour. The integrator is to good help

in the work of reducing the steady-state error.

Even if the control is acceptable in some cases the model parameters have to be updated if the

behaviour of the process is changed much. This was to bee seen in Figure 3-7 and Figure 3-8

when the control behaviour was completely different at two different days. The adaptive

control will provide help for this kind of problems.
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4. Adaptive control theory

4.1. Adaptive control schemes

4.1.1. Introduction to self tuning controllers

Sometimes you do not have an accurate model or the process will most likely change its

behaviour. In these cases it is recommended to use an extended system that continuously

update the polynomials A(q-1) and B(q-1). These kinds of systems are called adaptive systems.

There are many different approaches to update the model. In this report only updating with

the use of the covariance matrix is used. The idea is to make an estimation of the process

polynomials, with the help of the inputs and outputs of the process. This estimation is then

used to calculate a controller from the given specifications. This is a quite straightforward

method that is often used.

Regulator

Process

Controller
design

Controller

Estimation

Specification

Reference
Output

y

Ac

uc
u

R,S,T

Θ

Figure 4-1 A schematic picture of a adaptive control system.

The estimation part of the controller estimates the process polynomials and the controller

design uses these polynomials to put the closed loop poles according to the specifications.

The controller is the same as in the linear case except for the constant regulator polynomials

are changed to the ones calculated from the controller design.
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Sometimes the control problem is slightly different from what was mentioned above. If the

process does not change its behaviour, but the model parameters are unknown, a controller

that estimates these is needed. This is a slightly easier problem because a fully adaptive

controller is also able to adjust its parameters when the process changes its behaviour. The

solutions are similar but the distinction has to be made. This type of controllers is called self-

tuning.

4.1.2. Mathematical methods for adaptive control

The ideal way to estimate the polynomials is to adjust the model slightly at every sample.

This is also possible and these kinds of methods are called recursive methods. One of the key

elements in recursive methods is the parameter adaptation algorithm. This algorithm

calculates the new model from the last model together with the last data. The structure is

always the following (Landau, 1997):

( ) ( ) ( ) ( ) ( ) 
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(vector) estimation
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T

The measurement function is also called the observation vector.

The most usual parameter adaptation algorithm is the gradient parameter adaptation

algorithm. This algorithm minimizes the quadratic prediction error. Consider the simple

system:

)()()()( kkubkyaky TφΘ=+−=+ 111

where both a1 and b1 are unknown. This means that [ ]11 baT =Θ  is the parameter vector

and [ ])()()( kukykT −=φ  is the observation vector.

The priori prediction is:

)()(ˆ)(ºˆ kkky T φΘ=+1  4-1

where )(ˆ kTΘ  is the predicted model at time k and the priori prediction error is
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)(ºˆ)()(º 111 +−+=+ kykykε . 4-2

The structure of the parameter adaptation algorithm is:

[ ])(º),(),(ˆ)(ˆ)(ˆ 11 +Θ+Θ=+Θ kkkfkk εφ  4-3

where the last term is called the correction term. One way to choose the correction term to is

make it fulfil the following criterion:

[ ]211 )(º)(min
)(ˆ

+=+
Θ

kkJ
k

ε . 4-4

The fact that in a plane of the parameters a1 and b1 the minimum of the loss function is

surrounded by concentric closed curves where J=constant. To find the minimum you move in

the opposite direction of the gradient of the isocriterion curve (see Figure 4-2). This means:

( )
)(ˆ

)(
)(ˆ)(ˆ

k

kJ
kFkk

Θ∂
+∂−Θ=+Θ 1

1 4-5

where F is the adaptation gain. The most used name for F is probably the covariance matrix.

From (eq. 4-4) one obtains:
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Moreover is

)()(ˆ)()(º kkkyk T φε Θ−+=+ 11

and
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k
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k φε −=
Θ∂

+∂ 1
.

This means that

)(º)()(ˆ)(ˆ 11 ++Θ=+Θ kkFkk εφ . 4-6

There are two ways to choose the covariance matrix.

1. F=αI; α>0 and I is the identity matrix.

2. F is a positive definite matrix. (All terms in main diagonal are positive, F is symmetric and

the determinant of all the principal minors is positive)

b1

a1

Minimum

Gradient
Iso-criterion curves

Figure 4-2 The negative gradient of the iso-criterion curve is pointing in the general direction of the optimal

estimation of the model.

With a too large adaptation gain there is risk for instability. Another way to build the

adaptation gain is to use the posterior prediction. The posterior prediction is:

)()(ˆ)(ˆ kkky T φ11 +Θ=+ 4-7

and the posterior prediction error is

)(ˆ)()( 111 +−+=+ kykykε . 4-8

This leads to the loss function:
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The equations for the posterior case are then:
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The final solution is then:

)()()(ˆ)(ˆ 11 ++Θ=+Θ kkFkk εφ  4-10

The problem is that )( 1+kε  is unknown. We need a function of )(º 1+kε . Known is:
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Just because the quadratic error is minimised at every sample it does not mean that the sum of

the errors are minimised. The least square criterion is:

[ ]21∑ −Θ−=
Θ i

T

k
ikiykJ )()(ˆ)()(min

)(ˆ
φ 4-12

This criterion is fulfilled when:
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)(ˆ 1+Θ k  is expressed as a function of )(ˆ kΘ  on the form:
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This can be written as:
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Further on:

)(º)()(ˆ)()(ˆ)( 1111 11 ++Θ+=+Θ+ −− kkkkFkkF εφ

After a multiplication from the left by: F(t+1) the result is:

)(º)()()(ˆ)(ˆ 111 +++Θ=+Θ kkkFkk εφ 4-13

F(k+1) is given by the matrix inversion lemma (Landau, 1990):
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From this lemma one obtains:
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An equivalent description can be obtained as:
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which is an expression with the posterior estimation.

To sum up the most important equations:
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is normally a good choice.

These equations are decreasing the adaptation gain in time. This can be seen if the estimation

is only made on one parameter.
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This means that less and less weight is given to new prediction errors. When the systems are

varying in time the first, and inaccurate, predictions are the most important for the final

estimation. A new estimation profile is therefore needed. We introduce the inverse of the

adaptation gain with two forgetting profiles, λ1(k) and λ2(k):
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The choice of the forgetting profiles can make the system behave in slightly different ways.

To illustrate this some examples were given by (Landau, 1997):

Decreasing gain (RLS)

121 == )()( kk λλ 4-17

This is the forgetting profile without forgetting factors above, the least-mean-square. This

profile is suitable for identification of stationary systems.

Constant forgetting factor

When working with constant forgetting factors 1λ is usually the only active forgetting factor.

In this case:

1     10     22111 ==<<= λλλλλ )(;;)( kk 4-18

Typical values for 1λ  are 1λ =0.95 to 0.99. The criterion to be minimized is:
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21
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The weight of the old data is getting lower and lower as time evolves. The highest weight is

given to the most recent error. This kind of forgetting profile might be useful on slow varying

systems.
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Variable forgetting factor

There are many ways to choose variable forgetting factors. One is:

10     11     1 001012 <<−+−== λλλλλλ ;)()(;)( kkk 4-19

Typical values are: λ1(0)=0.95 to 0.99 and λ0(0)=0.95 to 0.99.

The forgetting factor is asymptotically tending toward 1. The loss function will be:
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The forgetting factor will be one for after a while. This means that only the initial estimations

are forgotten. For stationary systems this profile is to be preferred because too rapid

decreasing of the adaptation gain is avoided. This is good because a high adaptation gain

initially is good when the estimation is far from the optimum. The convergence is faster this

way.

The trace of the covariance matrix is the sum of the elements in the main diagonal of the

matrix and this can be used as a measure of the adaptation gain. In all the cases above using

the forgetting factors the elements in the covariance matrix are increasing when the error is

small. When the excitation is small, for example when the process has reached a steady state,

the trace is going to increase until the system fails. This phenomenon is called estimator

wind-up. To prevent this type of errors there are different methods that can be used.

Constant gain

The simplest way to track of the covariance matrix is to keep it constant.

)()()( 01 FkFkF ==+ 4-20

This type of covariance profile is very simple to implement but is not very flexible. The only

way to control the adaptation is to choose an initial value. In this method the covariance

matrix does not store any information of the old measurements.
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Constant trace

One way of controlling the covariance trace is to keep it constant.
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Normal values for G=0.1 to 4.

The loss function is:
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where f(k,i) represents the forgetting profile.

However the relation between F(k+1) and F(k) is calculated from:
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To calculate the forgetting factors a relation between λ1 and λ2 is needed. One approach is to

keep the quota λ1/λ2 constant and then calculate the λ1.from the eq. 4-22.

This type of forgetting profile is useful for identification of time varying parameters. As long

as the error is small the forgetting factors are small and when the model is changing the

regulator forgets the old inaccurate model by decreasing the forgetting factors.
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5. Experimental results with the adaptive control

5.1. Introduction

As always when it comes to identification it is very important that the identification that is

made is an identification of the behaviour of the process and not the noise. The PT326 process

changes its behaviour from day to day and even from hour to hour. These changes are a result

of differences in the temperature of the surrounding air. There are also differences in how

long time the process has been running. At one point the thermistor broke. After a new

thermistor had been installed the parameters were changed drastically. This example is one

reason why it is important to have a flexible controller that can deal with these kind of

changes.

5.2. Simulation results

The simulations are made with badly chosen initial values and at sample 150 the parameters

are changed. From this it is possible to see how the different covariance algorithms are

working. All simulations were made without integrator. The initial model was

( ) 211 5.05.11 −−− +−= qqqA  and ( ) 211 5.02.0 −−− += qqqB . The output was before the load

calculated with the model from the linear control: ( ) 211 3095.01628.11 −−− +−= qqqA  and

( ) 211 1264.01249.0 −−− += qqqB . After the parameters were changed they were calculated

with the polynomials: ( ) 211 7.05.11 −−− +−= qqqA  and ( ) 211 4.01.0 −−− += qqqB .

5.2.1. Decreasing gain

The forgetting factors are all the time equal to one. This means that no information is

forgotten and that all the information is weighted all the same. After the change of parameters

the old data is never discarded. The result is a bad controller that always will have a steady

state error. It could be used as a self-tuning regulator though. When the system is constant the

controller do not have to forget any data because the model is the same all the time. The old

errors are accurate all the time. When the disturbance occurs the regulator never completely

forgets the old data. That leads to a steady-state error.
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Figure 5-1 Simulation results using decreasing gain. The forgetting factors are constantly at 1. All the data is used

for the identification.

5.2.2. Constant forgetting factor

With the constant forgetting factor 9501 .=λ  the control might look good. The signals look

good and a correct model is developing quite fast. The steady state error goes towards zero.

What is not seen is that at the end is the trace of the covariance matrix about 2000. This is to

be compared with the initial 12. In a longer perspective this controller might break down.
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Figure 5-2 Simulation results using constant forgetting factor. The old data is forgotten always at the same speed.

5.2.3. Variable forgetting factor

The attempt to change the forgetting factor in the beginning is to no use if the process

parameters are changed. The forgetting factor is a function of time and will quite rapidly go

towards one. This means that when the variations occur the system do not forget anything. As

a self-tuning regulator it would be perfectly all right due to the fact that the only things this

type of regulator forgets is the initial bad values.
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Figure 5-3 Simulation results using the variable forgetting factor. Only the initial data is forgotten.

5.2.4. Constant gain

As a first attempt to avoid wind up is by using the idea of keeping the covariance matrix

constant. It is a very basic idea but in the simulations it seems to work even if the covariance

matrix does not contain any information about measurements from the past.
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Figure 5-4 Simulation results using constant gain. The covariance matrix is here a constant diagonal matrix.

5.2.5. Constant trace

Simulations were made in two different ways. One where λ2 was held constant equal to 1 and

one where the quote, α=λ1/λ2 was held constant. The result was more or less equal, why only

the simulation with constant λ2 is presented here.

Every time when an error occurs the regulator thinks that the model is not accurate, and

therefore decrease the forgetting factor to create a new better model. This is working very

well. At the end there is no steady state error and the adaptation is running fast. This is the

type of regulator that showed the best simulations of all the others.
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Figure 5-5 Simulation results using the constant trace algorithm. The data is more rapidly forgotten when an

error is detected in the model.

5.3. Experimental results

5.3.1. General explanation to the experiments

The experiments were made without integrator to get the best picture of how good the model

is. With an integrator the steady-state error is zero and compensates a bad model a lot. At the

end an experiment was made with the constant trace algorithm and an integrator to see the

difference.

At an approximate time, k=120, the entrance for the air is almost completely closed. The

different controllers react differently to this change.
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The trace has to be much lower in the practical case than in the simulations. If not the noise

will be very influential in the parameter estimation.

Before the change the output signal is below the control signal and after the change the two

switch places. The output is then situated above the control signal.

5.3.2. Decreasing gain

The result of the result can bee seen in Figure 5-6. In the beginning the controller tries to

compensate its bad parameters. It is not very successful. When the changes in the process

parameters occur, at the time k=120, the model is almost fixed to its values. The lack of

change can be seen at the trace of the covariance matrix that is almost 0.
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Figure 5-6 The decreasing gain controller. In the top graph the output is the line that at the beginning is beneath

the control signal. The decreasing gain controller does not forget any old measurements. When changes occur in

the process the controller tends to keep the old model.
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5.3.3. Constant forgetting factor

In Figure 5-7 the result from the experiment with the controller using constant forgetting

factors can be seen. At the beginning this controller behaves more or less as the decreasing

gain controller. When the hatch is closed for the air, at time k=110, the trace has become low.

Therefore the parameters are changed only slightly, even if the error is big. They are changing

enough to decrease the error, which is making the trace increase. At the end the output is

following the reference quite well. A new change in the process would be rapidly corrected,

as long the as noise would make the elements in the covariance matrix too small, as when the

inlet was decreased in this experiment. The modification of the parameters is very slow and

the noise is affecting the result in a non-neglect able way.
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Figure 5-7 The controller with constant forgetting factors. At the beginning the output of the process is the closest

to the reference. At the end the output is almost following the reference.
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5.3.4. Variable forgetting factor

With the controller using variable forgetting factors the result was as to be seen in Figure 5-8.

The forgetting factors are rapidly changing towards 1. Automatically the trace is getting close

to 0. This means that when the variations in process parameters occur, at k=120, the model is

not changing. This leads to a bad controller.

��� ����� ����� ����� ����� ����� ����� �����
�
�
�

� ����
�����
�� �
��

��� ����� ����� ����� ����� ����� ����� ������ �� B��
�� �� B�
��� B�

¡ ¢£¢
¤�� �£
¥

��� ����� ����� ����� ����� ����� ����� �����

�� s¦�¦
�

§ �£
¨��
�© �
¨� ¢
ª� �£
¥

��� ����� ����� ����� ����� ����� ����� �����
�
�
�

� £¢
ª�«
§¬

��� ����� ����� ����� ����� ����� ����� ������ �� B�
�

�� B�
 ££
�£

®�¯�°T±V²B³Y´

Figure 5-8 The controller using variable forgetting factor. When the changes occur, the controller does not

change the model any more.

5.3.5. Constant gain

Surprisingly this type of controller showed the best results of all, as to be seen in Figure 5-9.

The errors are rapidly decreased, after the closing of the hatch, to small values and the output

is following the reference very well. The reason why the constant gain regulator was the best

one is very difficult to explain. One suggestion is that the adaptation gain is constant. If it is

well chosen the convergence is quick without getting unstable. All the other methods are

limited because of the risk that the gain is being to big. If this gain is limited in some way the

adaptation might be more efficient. More studies are needed before a conclusion is made. The
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limitation might be that none of the elements in the covariance matrix are allowed to exceed a

certain value.
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Figure 5-9 The constant gain controller. This was the best controller of all the adaptive ones.

5.3.6. Constant trace

The result of the experiments with the constant trace regulator can be seen in Figure 5-10.

When the changes in process parameters occur, at time k=120, the controller changes the

parameters rapidly. The problem is that if the changes have to be fast there is a risk that the

model will be badly chosen, due to the low forgetting factors. As a matter of fact the noise is

here enough to keep the forgetting factors at a low level, so the parameters are calculated

from only few measurements. In an environment this would have been working better. Even

so, here is the output almost following the reference without steady state errors.
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Figure 5-10 The constant trace controller. With low forgetting factors when the error is big, the parameters are

rapidly modified.

To see how this kind of controller is working together with a integrator one more experiment

was made. The result can be seen in Figure 5-11. This is how a constant trace regulator would

look like if it were to be implemented in a more industrial environment. The result is more or

less as good as it gets with a noisy process. Maybe one idea would be to decrease the trace a

little bit so the forgetting factors did not go as low as they do. The adaptation would then be

slightly slower.
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Figure 5-11 The constant trace controller with an integrator.
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6. Neural networks

6.1. Structure of the text

The neural network technologies are a very wide area in engineering. There are several

different types of nets and just a few will be covered here.

To illustrate the functions of a neural network the first type of nets are the Hopfield neural

networks that slowly will be transformed into feed forward networks and then to recurrent

neural networks.

6.2. Some basic neural network thinking by explaining

Hopfield networks

6.2.1. Neuron and states

To explain the functions of a neural network the Hopfield networks will be explained.

The neural networks can be seen as multiple processors working in parallel. These processors

are called neurons. None of the neurons contain more information than the others. Further on

there is no central neuron that controls the others. The knowledge is distributed over all the

neurons.

Today the biggest neural nets include a few hundred neurons.

A step-to-step approach will be used here to show the principals of a neural net.

x5=-1
x4=+1

x3=+1

x1=+1
x2=-1

Figure 6-1 Some neurons with their states
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In Figure 6-1 the neurons are represented by dots. To each neuron there is a number attached.

This number can be either –1 or 1. Some people prefer 0 and 1, but in reality it makes no

difference.  This number is called the state of the neuron. For example: The state of neuron 4

is denoted x4 and x4 = 1. The states of all neurons can be collected in the state vector x = (x1,

x2, x3, x4, x5)
T.

The neural networks are dynamical. This means that the states change in time. To illustrate

the state vector the following notation is used at the time k: x(k). x(0) indicates the initial

value.

Because the state vector has as many components as there are neurons, n, it is possible to

define the state space as the n-dimensional space that is created from the possible values of

the state vector. The neurons can as known be –1 or +1, in Hopfield neural networks. This

means that the state space is the corners of an n-dimensional hypercube. This is where the

similarities with control problems begin. When dealing with neural net we are using a state

space model as a base. More of this is to be read further down.

6.2.2. Updating the neurons

The neurons influence each other according to an update rule. In the example the upgrade rule

for x4 is:

))()()(sgn()( kxwkxwkxwkx 3432421414 1 ++=+

w is a weight on how important a certain neuron is for updating of another. The weights can

be any real value. Sometimes the weights are called synapses. A more general way to describe

the upgrade rule is:
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1 )(sgn)( 6-1

where n is the number of the neurons.

W is a matrix with the following form:
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x2=-1

x5=-1
x4=+1

x3=+1

x1=+1

Figure 6-2 Connections between the neurons in Figure 6-1.

x1 x2 x3 x4 x5

Figure 6-3 The same connections as in Figure 6-2, but with a different notation.

The weight matrix for a Hopfield network is symmetric and has zero diagonal. This means

that the neuron x1 influence x2 in the same way as x2 influence x1 and no neuron influence
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itself. The reason for this will be mentioned in 6.2.3. This assumption will be changed for the

other networks.

If all the neurons are updated at the same time the update is called synchronous and if the

neurons are updated one at the time it is called asynchronous.

6.2.3. Associative memories

One way to describe the Hopfield networks nets are as associative memories. This means that

if you for example store a number of photos in a memory you can show a picture of a person

to the net and the net identifies the person and gives back some data about him. If the weights

are well chosen, the initial picture might be filtered too. How this works will be explained in

further down.

Assume the following evolution in time:

( ) ( )

( ) ( )

( ) ( )

( ) ( )
↓

+++=
↓
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++++=
↓

+++=

T
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T

T

1- 1- 1 1 1

1- 1- 1 1 1

1- 1 1 1 1

1- 1 1 1- 1

3

2

1

0

x

x

x

x

After k=2 is the state vector constant. The network has converged. All networks do not

converge. Another example:
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In this example the state vector is oscillating between two states. To avoid this the weight

matrix W in the Hopfield networks have zero diagonal and is symmetric.

The sequence of states as time evolves is called trajectory.

The endpoint of a trajectory is called fundamental memories or attractors. All states that are

leading to the same fundamental memory are said to be in the same attraction basin. See

Figure 6-4.

A way to decide the capacity of a neural network is by the number of fundamental memories

is possible to store in it. This capacity is more or less linear to the number of neurons in the

net. For a digital decoder this number is exponential with the number of bits, which of course

is much better. The neural network has the advantages to function as an associative memory.

Figure 6-4 Illustration how different states from the same attraction basin lead to the same fundamental memories

Until now we have discussed how a network from an initial state associate with a fundamental

memory. This is called auto-associativity. To illustrate the real associative memory we have

to change the interpretation of the neurons. The goal is to present data to the network, which

gives back some other data. More scientifically we can say that the network is associating an

output with an input. Sometimes this is called hetero-associativity.

Now we divide the neurons into output neurons and input neurons. Let the neurons x1 and x2

represent the output and the neurons x3 to x5 represent the input. From the beginning the

output is unknown. Therefore the initial values are set randomly. It is important that you must
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allow the input to change within time. If the weights are well chosen not only the output will

appear at the neurons x3 to x5, but also the input will be filtered from noise. So if the input is a

black and white picture and the value of every pixel is the input on the input neurons, the

output neurons could contain information about this person e.g. address and telephone

number. After the convergence the input neurons would show a filtration of the original

picture.

x1 x2 x3 x4 x5

Figure 6-5 The neurons x1 and x2, from figure 6-2 now illustrate the output.

To go another step further we introduce neurons that neither are input or output. We call them

hidden neurons. If we organise all the input neurons in one layer and one or more layers of

hidden neurons and finally a layer of output neurons we can illustrate it in Figure 6-6. The

result is then a recurrent neural network.
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input vector

output vector

input layer

hidden layer

output layer

interconnection vectors

Figure 6-6 Connections between the different layers in a multi-layer recurrent neural network. Note that the input

and output are 1x3 vectors. The other arrows are 3x3 matrices containing the signals between the layers. The

black dots are representing the neurons.

6.3. Feedforward neural networks

So far there are no limitations or actual differences from the first general description in

chapter 6.2. We can create a network in which the only connections allowed are from the

input neurons to the first hidden layer, from one hidden layer to the next and from the last

hidden layer to the output layer. If we decide that the weights are only working in the

direction input towards output we have a multi-layer feedforward network. In Figure 6-7 is a

scheme made to illustrate an example of a multi-layer feedforward network. Multi-layer

feedforward networks always converge due to the fact that the states of the layers are

calculated one by one.

u(k)

y(k)

matrices
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Input

Hidden

Output 1 2

3
4 5

6 7 8

Figure 6-7 An example of a multi-layer feedforward neural network, with the neurons 3 and 6 clamped.

Multi-layer feedforward networks learn by examples. If the network is exposed to inputs

when the wanted corresponding output is known the weights can be calculated. This method

is called supervised learning. The weights are successively made better from random initial

values.

Even more general upgrade rules than eq. 6-1 can be used.

n,1,2,i , )()1( å=
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j

jiji kxwfkx 6-2

where f is any arbitrary function. Normally it is required that they are limited within [–1 1] are

monotonic and that have a real derivative. The most used function is probably the hyperbolic

tangent function or tan-sigmoid as it is also called. To make things easier it is often written

tansig. When the dynamic range 0 to 1 is chosen the logarithmic-sigmoid function, logsig, is

often used. Even a linear transfer function can be useful.
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Figure 6-8 The tansig function
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Figure 6-9 The logsig function

The state of some neurons can be held constant. We say that the states are clamped. The effect

is that the transfer function is moved either to the left or to the right in a graph. Sometimes a

threshold effect is wanted.

-4 -3 -2 -1 0 1 2 3 4

-1

-0.5

0

0.5

1

Figure 6-10 The tansig function. This time is it connected to a clamped neuron, why it is moved one unit to the

negative side. A threshold effect has been added to the function as well.

Recurrent feedforward neural networks are a category of neural networks that are based on

the feedforward neural networks discussed above. The difference is that feedback is allowed

between the layers. In this report a recurrent neural networks is used.
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6.4. Backpropagation

Now it is time to go a little bit deeper into how to choose the weights of the multi-layer

feedforward or recurrent neural networks. The network will learn to associate a given output

with a given input by adapting its weights. For this purpose the steepest descent algorithm for

minimising a nonlinear function is used. For neural networks this is called backpropagation.

6.4.1. Error definitions

To describe the learning we need to define the error for a network layer (including the output

layer) with n neurons.
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If x is the correct output vector and the actual output is x~ the output error e is a function of

the input data and the weight matrix:
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This is a nonlinear function in W, due to the nonlinear transfer function. The learning is

basically a problem of minimising this nonlinear function that also is called the loss function.

The error for the hidden neurons is defined as:

( )∑
=

=
n

j
jijji wohee

1

2sec 6-5

The function sech2 (x) is the hyperbolic secant that is the derivative of the tansig function. ei is

the error for neuron i and o is the state of neuron i before the application of the tansig

function,
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6.4.2. Updating the parameters by using backpropagation

To illustrate the training of a network using backpropagation an example is used. See Figure

6-11.

1 2

3
4 5

6 7 8

Figure 6-11 In the example of the training this structure of net is used.

Assume that the states xk of the neurons can be any number [-1 1] and that the neurons 3 and 6

are clamped to 1. Also assume that the weights are collected in the matrix W and the

upgrading rule is:

( ) ( )∑
=

−=
8

1

1tanh
j

jiji kxwkx

The initial states and weights are randomly guessed. It is important this initial guess is not 0.

If so there is a risk that the neuron will be stuck at this state.

Then an input is applied to the net and the states are changing according to the upgrade rule.

The error is then calculated for the output layer and the weights are modified to minimise the

error according to the following equation:

( ) ( ) jiiij xohekw 2secη=∆
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The derivate should not be too small due to the small changes in the weights. If the derivative

is too small it is possible to add a small number to it. One suggestion is 0.05. The gain η is

called the learning rate. A small value (0.001) might cause a too slow change to the weights

and a big value (10) might change the value too much.

-3 -2 -1 0 1 2 3
0
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0.4

0.6

0.8

1

Figure 6-12 The derivative of the tansig function. To avoid too small changes in the weights a lower limit has been

introduced.

With these new weights it is possible to calculate the errors for the hidden neurons according

to equation 6-5, and the weights between the input layer and the hidden layer is updated. If

there had been several hidden layers the updating would have been done one layer at the time

starting with the one closest to the output.

Then another input-output pair is applied to the net and the procedure is repeated once more.

This description to adapt the weights once according to a series of input-output pairs is called

an epoch. The training is repeated through several epochs to make the weights better and

better. It is not known how many input-output pairs it is possible to show to a neural network

but if it seems impossible to train a net to sufficient small errors, it might be because of a too

small number of neurons. Also it is not known how many input-output pairs it is needed to

train a neural network sufficiently.

6.4.3. The backpropagation algorithm

One way to sum up the backpropagation algorithm is:
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nj
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∂
∂−=∆ η

where ∆wk is the change of the weight, 
njw

E

∂
∂

 is the current gradient vector of the update

functions and η is the learning rate.

6.5. Methods for adjusting the adaptation gain

6.5.1. Quasi-Newton algorithms

Even though the error function is decreasing fast in the direction of the negative of the

gradient it is not sure that it will lead to the fastest convergence. The conjugate gradient

algorithms also calculate the learning rate for the different iterations, so that the loss function

is minimised along the negative gradient. The performance index is the size of the error along

the negative gradient. There are many different methods to choose η. One group of methods

is the Quasi-Newton algorithms. The basic upgrade rule is:

( ) ( ) ( ) ( )kkkk EHww ∇−=+ −11 6-6

where H(k) is the second derivatives of the performance index. The name of this matrix is the

Hessian matrix. It is important that H(k) has an inverse.

6.5.2. The Levenberg-Marquardt algorithm

The Quasi-Newton methods usually converge faster than ordinary conjugate gradient rules,

but are complex and expensive to compute. To avoid the computation of the second derivative

the Levenberg-Marquardt algorithm approximates the Hessian matrix by:

JJH T= 6-7

and the gradient can be computed as:

eJE T=∇ 6-8
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where J is the Jacobian matrix which contains of the derivatives of the network errors with

respect to the weights. The Jacobian matrix is much less complex to compute than the

Hessian matrix. The update is then as follows:

( ) ( ) [ ] eJIJJww TTkk
1

1
−

+−=+ µ 6-9

where µ is a parameter that is decreased at every successful iteration. It is only increased

when the calculated change would increase the loss function. Another important aspect of µ is

that it makes sure that the matrix has an inverse.

The problem with the Levenberg-Marquardt algorithm is that it contains storage of matrices

that can be quite large. The size of the Jabobian matrix is Q ×  n, where Q is the number of

training sets and n is the number of weights and biases in the network.

6.6. Simulations

To check the validity of the model created it is of course possible to make simulations. There

are two different types of possible simulations. The operation modes are called parallel and

serial mode simulations. In the parallel simulation the available outputs from the past come

from the output of the neural model and in the serial those old outputs come from the real

process.

Neural
Model

Process

Neural
Model

Process

q-1

q-1

q-1

q-1

( )1+ky( )1+ky

( )1+kŷ ( )1+kŷ

( )ku ( )ku

( )1−ky

( )1−kŷ ( )ky

( )kŷ

Figure 6-13 Simulations in two different ways. To the left: Parallel simulation that uses the output from the neural

network for its prediction. To the right: Serial simulation that uses the output of the real process to predict the next

output.
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6.7. Architecture for the neural network

Now is the time to use the network for control applications. Once again there are numerous

approaches for this task. For example there are networks that are containing both the

controller and the identification part of the control system. In this work the neural network is

only a model of the process. The regulator is here not a neural network. There are many

different writers that have suggested their solutions. It is important at this point to remember

that the different notations used in the previous sections, inside the neural nets might change

its meaning. Here is a system containing the normal linear regulator with a neural nonlinear

process model. (Henriques et al, not yet published) suggested the network architecture, with

two input neurons, three neurons in the hidden layers and one output neuron.

q-1

q-1

B

F

A

D

H

C

input output

1st hidden 2nd hidden

ϕ Σ Σ

1

1

u(k)

y(k)

x(k)

x(k+1)

y(k+1)

Figure 6-14 Neural network architecture that is used in this work. ϕ is here the tansig function.

The equations can be described as follows:

( ) { }
î



=
+++=+

)()(

)()()()(

kCxky

kFykHxkBukAxDkx ϕ1
6-10
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The vector nkx ℜ∈)(  is the output from the output of the second hidden layer, ( ) mku ℜ∈  is

the input and ( ) pky ℜ∈  is the output. The matrixes A, B, C, D, F and H are interconnection

matrixes, containing the weights. A, D and H have size 3x3, B and F have size 3x1 and C has

size 1x3. D is clamped to be the identity matrix. In all this means 27 parameters to choose in

comparison to 4 in the linear model. It is obvious that it is a much more complex task to

choose that many parameters.

The final result is then:

( ) { } { }
î



=
+++=+

)()(

)()()(

kCxky

kxFCHkBukAxDkx ϕ1
6-11

It is theoretically difficult to explain why the vector F is necessary. H is enough to accomplish

full freedom for the expression H+FC.

6.8. Input-output feedback linearisation control

A nonlinear function ψ is put before the nonlinear process, according to the figure below, so

that the transfer function v→y is linear.

Ψ process
u

xd

v

x

y

Figure 6-15 The general idea of input-output feedback linearisation is to use a nonlinear function Ψ put before the

process making the function y=f(v) linear.

( )vxxu d ,,Ψ=

where x and xd represents the state vector information from the process and from the desired

resulting system, respectively.

Assume that the process is modelled with a state-space description:
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( ) ( ) ( )( )
( ) ( )( )î




=
=+

kxky

kukxkx

h

,f1
6-12

where x is the state vector and y is the output from the system. f and h are both smooth

functions.

Further on we define the discrete decoupling matrix as:

( ) ( )( ) ( ) ( ){ }rk
k

kk +
∂

∂= y
u

uxE , 6-13

where px ℜ∈ and py ℜ∈ .

The desired system is described as state space model:

( ) ( ) ( )
( ) ( )î





=
+=+
kCxky

kBvkAxkx
dd

dd 1
6-14

Ψ is obtained by solving the following equation in respect to u(k):

( ) ( )( ) ( ) ( ) ( ) ( )1121 −++++++= −− rkCBvkBvCAkBvCAkxCAkukx rrdr è,E 6-15

The output will then be:

( ) ( ) ( ) ( ) ( )1121 −++++++=+ −− rkCBvkBvCAkBvCAkxCArky rrdr é 6-16

6.8.1. Exact calculation of the feedforward linearisation

To solve the equations 6-16 and 6-17 there are two main methods, one exact method and one

approximate method. The exact method can only be used in rare special cases. If the output

signal can be described as:
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( ) ( )( ) ( )( ) ( )kukxGkxfky +=+1 6-17

the system is called affine and is possible to solve exactly if the matrix G(x(k)) is invertible.

If the control law is chosen as:

( ) ( ) ( )( ) ( )( ) ( )kvkxQkxkxpku d += , 6-18

and

( ) ( )( ) ( )( ) ( )( ) ( ){ }
( )( ) ( )( )CBkxGkxQ

kCAxkxfkxGkxkxp dd

1

1

−

−

=

+−=,
6-19

the result is the MIMO (p x p) linear system described by:

( ) ( ) ( )kCBvkCAxky d +=+1 6-20

6.8.2. Approximate solution of the feedback linearisation

One possible method to solve eq. 6-16 and 6-17 is based on a linearisation at a working point.

In this method the description of the output is:

( ) ( ) ( )( )kukxfky ,=+1 6-21

The linear approximation, with the help of a Taylor’s series the following is obtained:

( ) ( ) ( )kuEkxFfky ∆∇+∆∇+=+ 0001 6-22

f0 is the calculated operating point and ∇ F0 is containing the partial derivatives of f with

respect to x(k) and ∇ E0 is containing the partial derivatives with respect to u(k).
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The control law is the same as with the exact calculations. See eq 6-18.

From this it is possible to calculate the feedback linearisation control law as:

( ) ( )( ) ( ) ( ) ( ){ }
( )( ) CBEkxQ

kCAxkxFfEkukxkxp dd

1
0

00
1

01
−

−

∇=

+∆∇−−∇+−=,
6-23

This results in a system output described as:

( ) ( ) ( )kCBvkCAxky d +≈+1 6-24

This is if the higher order terms of the Taylor´s series can be neglected and ∇ E0 is non-

singular.

In the experiments used for this work we have the following model (eq. 6-11):

( ) ( ) ( )( ) ( ) ( )
( ) ( )î
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+++=+

kCxky

kxFCHkBukAxDkx tanh1

From this follows that:

( ) ( ) ( )( ) ( ) ( )kxFCHCkBukAxCDky +++=+ tanh1
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The control signal is calculated as:
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6.8.3. Linear predictive control

Assume that the whole system can be described as in Figure 6-16. (Braake, 1997 & 1999),

suggested this model. This kind of control is called linear predictive control and is here used

together with the input-output linearisation.

linear
MBPC

linear
model

filter

Ψ process

I-O feedback linearisation

ref

xd

y
v

x

u

yd -

-

+

+

r

Figure 6-16 Block diagram showing the entire input-output feedback linearisation.

The model-based predictive control, MBPC, is used to optimise the control. The loss function

to minimise is:

( ) ( ) ( ) vWvryryvJ v
TT ~~~~~~~ ∆∆+−−=

where vW  is a square positive definite diagonal weighting matrix of the controller outputs.

y~  can then be modelled as:

vRxRy u
d
kx

~~ +=

where xR  and uR  are matrices.
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This is optimised when xR =CA and uR =CB. (See (Braake, 1997 & 1999)). The result is that

the reference of the system can be described as:

( ) ( ) ( )kCBvkCAxkr d +=

Due to the fact that we are dealing with a SISO system, the following control law is:

( ) ( ) ( ) ( )
0

01
E

krxFky
kuku

∇
+∆∇−−

+−=

To get better control behaviour a pole, a, is introduced.

( ) ( ) ( ) ( ) ( ) ( )
0

011
1

E

xFkrakya
kuku

∇
∆∇−−+−

+−= 6-26
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7. Experimental results with the neuro control

7.1. Identification

The neural network suggested by Henriques (Henriques et al, not yet published) was trained

with the Levenberg-Marquardt algorithm in Matlab. See appendix 8.2 and 8.3. The same open

loop data that was the base for the linear identification was used. The input was a signal with

250 samples, and the training was made over five epochs. This means that the network was

exposed to 1250 input-output pairs. Figure 7-1 shows the parallel and serial simulations of the

neural network model. The upper signal is the output from the real process and the signal

furthest down is the parallel simulation and the signal in the middle is the serial simulation.

See Figure 6-13 for definitions of the different simulations.
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Figure 7-1 The simulation result with the neural network model of the process. At the top the real system. In the

middle the serial simulation and at the bottom the parallel simulation.

In the linear case the simulations are made with the knowledge of the real output. The

simulation method best suited for comparison is therefore the serial simulation. With this in

mind it possible to see that the result is quite satisfying. The model is corresponding to the

real process quite well. It is not very fair to compare a linear and a nonlinear model when the

process is almost perfectly linear. To get a better model with the neural network than with a

linear model, the process has to be quite strongly nonlinear. For the PT326 process this is not

the case.
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7.2. Control

7.2.1. Simulations

The result of the control simulations can be seen in Figure 7-2. The reference is the square

signal and the output is slightly above the neural network estimation. There is no steady state

error nor over-shoots and still the control is fast. There is noise added to the simulation to

create a small error for the neural network.
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Figure 7-2 Simulation of the control using the input-output feedback linearisation. The neural network prediction

and the output are both very close to the reference. The control signal is a little bit further down.  To the output

there is added noise.

7.2.2. Real process

With the first attempt with the feedforward linearisation the control was unstable. The

regulator compensates the error like a dead-beat regulator. To avoid big variations of the

control signal the control law was changed a bit:

( ) ( ) ( ) ( ) ( ) ( )
0

011
1

E

xFkrakya
kuku

∇
∆∇−−+−

+−= α 7-1
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where α  has a small value e.g. 0.05.

With α =0.05 and the pole a=0.6 the result was the following (Figure 7-3):
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Figure 7-3 The result of the control using input-output feedback linearisation. The reference signal is a couple of

steps; the upper curve is the control signal. The output is following the reference well and the predicted output

from the neural net is situated between the output and the control signal.

The reference is rectangular, the output is following well. Slightly above is the estimation is

slightly to big and the control signal is situated on top.

If the inlet of air was decreased by closing the opening to a minimum the result was not so

good (See Figure 7-4).
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Figure 7-4 The control using input-output feedback linearisation with a load on the process.

It did not help if a slower pole was chosen. An adaptive identification of the process could

have been to a great help. The general idea for the identification would be by identifying the

matrices in eq. 6-12: A, B, C and H+FC, with the normal adaptive methods. This means a lot

of parameters and is most likely very difficult but should be possible. Some other approaches

would be keeping some parameters constant e.g. the parameters A and B.

7.3. Conclusions

The result was quite good with the input-output feedforward linearisation control. To

generalize a little bit, to see what neural networks have to give to the automatic control field

the most important is to evaluate the neural network part of the control. The feedforward

linearisation techniques can be used with any non-linear model, not only neural networks.

It is difficult to make a good identification with the neural networks. They might look very

nice in the theory but to create a good model can more easily be made in other ways. The

PT326 process is almost linear. That makes is slightly unfair to compare the identification

made with the neural net and the linear model. If the process had been nonlinear it might be

possible to see advantages with the neural network. It is possible to see that the recurrent

network makes the linear identification well, just as well as the identification made in chapter

3. The conclusions are that if the process is nonlinear the neural network approach might be
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better than the linear approximation the linear control provides. This has to be verified by

further studies before it is considered as a fact. It is important to notice that there are other

ways to build nonlinear regulators than with neural networks.

The fact that changes of the parameters change the behaviour quite much is worrying. It

seems possible but difficult to create an adaptive on line identification of the process

parameters.
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8. Appendix

8.1. Matlab code for the adaptive control

f unct i on mai n

%- - - - - - - - - - - - - - - - - - - - - - - - -  I ni t i al i zat i on

i ni t dac; %t he dat a aqusi t i on boar d i s  i ni t i al i zed

Amod=[  1  - 1. 5 0. 5 ] ; %The i ni t i al  par amet er s of  t he syst em model
Bmod=[  0  0. 2  0. 5 ] ;

or d=2; %t he or der  of  t he syst em i s i ni t i al i zed

Acl =zer os( 1, or d+1) ; %The cl osed l oop shol d have t hi s s i ze
Acl ( 1: or d+1) =pol y( [  0. 85 0. 8 ] ) ; %The cl osed l oop pol es ar e. . .
Ts=200; %Sampl i ng t i me

F = 3* eye( 4) ; %The covar i ance mat r i x  i s  i ni t i al i zed
Th= [ Amod( 2)  Amod( 3)  Bmod( 2)  Bmod( 3) ] ’ ; %The par amet er  vect or  i s  

%i ni t i al i zed
l amb0=0. 97;  l amb1=0. 95;  l amb2=1; %For get t i ng f act or s ar e

%i ni t i al i zed
al pha=l amd1/ l amb2;

uk=3* sum( Amod) / sum( Bmod) ; %The i ni t i al  val ue ar e chosen so t he 
%out put  i s  at
%st eady st at e wi t h t he val ue 3

uk1=uk;  uk2=uk;  uk3=uk;  uk4=uk;  uk5=uk; %and t he ’ f or mer ’  val ues 
%ar e i ni t i al i zed accor di ng 
%t o t hi s

yk=3;  yk1=yk;  yk2=yk;
ykf =yk;  ykf 1=yk;  ykf 2=yk;  ykf 3=yk;

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  Def i ne i nput

I  = ( [ 3* ones( 1, 60)  5* ones( 1, 48)  2* ones( 1, 72)  4* ones( 1, 41)
1. 5* ones( 1, 60)  5* ones( 1, 90)  2* ones( 1, 60) ] ) ;

%a i nput  vect or  i s  cr eat ed
N=si ze( I ) ; %N = t he i nput  l engt h
N=N( 1, 2) ;

AB=zer os( N, 4) ; %AB i s a mat r i x  cont ai ni ng al l  t he 
%model  par amet er s t hr oughout  t i me

l amb=zer os( N, 2) ; %l amb i s a mat r i x  cont ai ni ng t he 
%f or get t i ng f act or s t hr oughout  t i me

Up=zer os( N, 1) ; %cont r ol  s i gnal  vect or  i s  i ni t i al i zed
Yp=zer os( N, 1) ; %out put  vect or  i s  i ni t i al i zed

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - -  Di ophant i ne equat i on

[ S, R, T] =col pol os( Bmod, Amod, Acl , or d, 1) ; %t he Di ophant i ng 
%equat i on i  sol ved.
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%Nor mal l y i t  i s  not  needed 
%at  t hi s poi nt
%but  her e i t  i s  needed t o
%avoi d er r or s

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  cont r ol  l oop - - - - - - - - - - - - - - - - - - - - - - -

f or  k=1: N

   st =mycl ock; %t he c l ock i s  ’ s t ar t ed’
   r k=I ( k) ; %t he r ef er ence i s I ( k)

%- - - - - - - - - - - - - - - - - - - - - - - -  out put
   yk = r ead; %a new out put  i s  r ead f r om t he pr ocess
   ykf =0. 6* yk+0. 4* ykf 1; %t he f eedbacked out put  i s  f i l t er ed

   %yk = B( 1: 3) * [ uk uk1 uk2] '  - A( 2: 3) * [ yk1 yk2] ' ; %t he s i mul at ed 
%out put  i s  cal cul at ed

   %i f  want ed
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - -  updat e adapt i ve par amet er s

   o  = [ - ykf 1 - ykf 2 uk1 uk2] ' ; %t he ol d- val ues- vect or  i s  updat ed
   ek = ( ykf  -  Th'  *  o) / ( 1 + o'  *  F *  o) ; %t he er r or  i s  cal cul at ed
   Th = Th + F *  o *  ek; %The new par amet er s ar e cal cul at ed

   %l amb1=l amb0* l amb1+1- l amb0; %t he f or get t i ng f act or s ar e
   %l amb2=1; %udat ed accor di ng t o some r ul e

   l amb1=t r ace( F- ( ( F* o* o' * F) / ( al pha+o' * F* o) ) ) / t r ace( F) ;
   l amb2=l amb1/ al pha;

   F  = ( 1/ l amb1) * ( F -  ( F* o* o' * F) / ( ( l amb1/ l amb2)  + o'  *  F *  o) ) ;
%t he covar i ance mat r i x  ar e updat ed

   Amod=[ 1 Th( 1: 2) ' ] ; %t he new model  i s  ext r act ed
   Bmod=[ 0 Th( 3: 4) ' ] ;

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - -  Di ophant i ne equat i on

   [ S, R, T] =col pol os( Bmod, Amod, Acl , or d, 1) ; %t he Di ophant i ne i s  sol ved

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  Some dat a i s  saved

   AB( k, : ) =[ Amod( 2: 3)  Bmod( 2: 3) ] ;
   l amb( k, : ) =[ l amb1 l amb2] ;
   er r ( k) =ek;

%- - - - - - - - - - - - - - - - - - - - - - - -  cont r ol

   uk = T* r k -  R( 2: or d+1) * [ uk1 uk2] '  -  S* [ ykf  ykf 1 ykf 2] ' ;
%t he cont r ol  i s  cal cul at ed

   uk=0. 6* uk+0. 4* uk1;
%. . .  and f i l t er ed

   i f  uk>10,  uk=10. 0;  end; %The cont r ol  i s  l i mi t ed
     i f  uk< 0,  uk= 0. 0;  end;
   wr i t e( uk) ; %t he cont r ol  i s  put  at  t he i nput  of  t he pr ocess
   di sp( [  r k yk uk ] ) %The si gnal s ar e wr i t t en on scr een
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%- - - - - - - - - - - - - - - - - - - - - - - -  updat e st at es
   Yp( k) =yk;
   Up( k) =uk;

   yk2=yk1;  yk1=yk;
   uk5=uk4;  uk4=uk3;  uk3=uk2;  uk2=uk1;  uk1=uk;
   ykf 3=ykf 2;  ykf 2=ykf 1;  ykf 1=ykf ;

   et =mycl ock; %t he c l ock i s  ’ s t opped’

   i f  ( et - st ) <Ts & ( et - st ) >=0 %t he syst em i s del ayed so t he 
del ay( Ts- et +st ) ; %sampl i ng t i me i s cor r ect

   el se
      di sp( ’  - - - - - -  shor t  sampl i ng t i me - - - - - ’ )
   end ;

%- - - - - - - - - - - - - - - - - - - - - - - - - - - -  cont r ol  l oop end - - - - - - - - - - - - - - - - - -

end

savedat ( ’ ab. dat ’ , AB) %t he dat a i s  saved t o f i l es
savedat ( ’ l amb. dat ’ , l amb)
dat =[ I ’  Yp Up] ;
savedat ( ’ dat a. dat ’ , dat )
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8.2. Matlab code for identification of the neural network

%� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �   DATA � � � �
%                                                ============

l oad ur . dat
l oad yr . dat
f i l t ;

i np= ur ' ;
out = yr ' ;

i ni c i o= 1;
f i m = l engt h( out ) - 1;
TAM = f i m- i ni c i o+1

UR=  i np( : , i ni c i o: f i m) ;
YR=  out ( : , i ni c i o: f i m) ;
YR=YR- YR( 1) ;
YR1=  YR;
f or  i =1: TAM- 1   %YR1 i s YR shi f t ed one st ep t o

YR1( : , i +1) =YR( : , i )  ;    %t he r i ght  ( same l engt h)
end
UR1=  UR;

f or  i =1: TAM- 1   UR1( : , i +1) =UR( : , i )  ;
end

pl ot ( [ YR'  UR'  YR1' ] )

%� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �   I NI TI AL � � � �
%                                                ============
nu = 1; % # i nput s =nu
ny = 1; % # out put s =ny
nx = 3; % # neur ones i n l ayer  x=nx
nz = 3; % # neur ones i n l ayer  z=nz
EPOCAS =  4 % # epochs =epocas
EXTERN =  0 %

TREI NA =  i nput ( ' TREI NA =  ' ) % hel p var i abl e TREI NA i s chosen.  1 
%means t r ai n,  0 means not  t r ai n

t o=cl ock; %st ar t  t i me
ss_mod %r un t he f unct i on ss_mod
t empo=et i me( cl ock, t o) / 60 %t he r un t i me i s cal cul at ed
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8.3. Matlab code for initialisation, training and simulating

the neural net

i f  TREI NA
   %� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �   NETWORK DEFI NI TON � � �
   %                                     =================
numI nput s = 2; %# i nput s t o t he net  ar e 2.  ( i nput  and f eedback)
numLayer s = 3; %# l ayer s ar e 3;

t net  = net wor k( numI nput s, numLayer s) ; %t he net  i s  cr eat ed wi t h 
%t he r i ght  amount s of  
%i nput s and out put s

t net . bi asConnect    = [ 0 0 0 ] ' ; %bi as = zer o;
t net . i nput Connect   = [ 1 0 ;  0 1 ; 0 0 ] ; %def i ne connect i ons f or  t he

%wei ght s bet ween t he l ayer s
t net . l ayer Connect   = [ 0 1 0 ;  1 1 0;  0 1 0] ;
t net . out put Connect  = [ 0 0 1 ] ;
t net . t ar get Connect  = [ 0 0 1 ] ;

t net . i nput s{ 1} . s i ze = nu; %#i nput s t o t he f i r s t  i nput   
%node ar e nu f r om I NI TI AL

t net . i nput s{ 2} . s i ze = ny;
%#i nput s t o t he second i nput  node
%( f eedback)  ar e ny f r om I NI TI AL

t net . i nput s{ 1} . r ange = [  - 1* ones( nu, 1)  1* ones( nu, 1) ] ;
%t he i nput  r ange ar e def i ned

t net . i nput s{ 2} . r ange = [  - 1* ones( ny, 1)  1* ones( ny, 1) ] ;
t net . l ayer s{ 1} . s i ze = nz; %#nodes i n l ayer  1 i s . . .
t net . l ayer s{ 1} . t r ansf er Fcn = ' t ansi g' ; %#out put  f unct i on f r om 

%l ayer  1 i s . . .
t net . l ayer s{ 2} . s i ze = nx; %#nodes i n l ayer  2 i s . . .
t net . l ayer s{ 2} . t r ansf er Fcn = ' pur el i n' ;
t net . l ayer s{ 3} . s i ze = ny; %#nodes i n l ayer  3 i s . . .
t net . l ayer s{ 3} . t r ansf er Fcn = ' pur el i n' ;
t net . l ayer Wei ght s{ 2, 2} . del ays = 1; %del ay i n l ayer ( . ) , node( . )  i s  . . .
t net . l ayer Wei ght s{ 1, 2} . del ays = 1;

WA = 0. 1* r and( nz, nx) ; %Par amet er s ar e r amdoml y chosen exept  f or  WD
WB = 0. 1* r and( nz, nu) ;
WC = 0. 1* r and( ny, nx) ;
WD = eye( nx, nz) ;
WF = 0. 1* r and( nx, ny) ;
WH = 0. 1* r and( nx, nx) ;

t net . I W{ 1, 1}  = WB; %t he par amet er s ar e put  i nt o t he net
t net . LW{ 2, 2}  = WH; %t net . LW{ 1, 2}  means t o l ayer  1 f r om l ayer  2
t net . LW{ 1, 2}  = WA;
t net . LW{ 2, 1}  = WD;
t net . LW{ 3, 2}  = WC;
t net . I W{ 2, 2}  = WF;

di sp( '  - - - - - - - -  NETWORK i ni t i al i zat i on - - - - - - - - -  ' )

%� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �   NETWORK TRAI NI NG � � � �
%                                               ================
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t net . per f or mFcn = ’ mse’ ; %t he par amet er s ar e changed 
%accor di ng t o t he f unct i on. . .

   %Her e ’ mse’ =mean squar e er r or
t net . t r ai nFcn = ’ t r ai nl m’ ; %t he l ear ni ng t r ai ni ng met hod 

%i s. . .  Her e Levenber g- Mar quar dt

t net . t r ai nPar am. goal   = 1e- 15; %t he goal  of  t he t r ai ni ng i s  t o 
%have an er r or  l ess t han. . .

t net . t r ai nPar am. epochs= EPOCAS; %# epochs i s. . .  I f  t he # of  
%i t er at i ons i s  exeeded t he 
%t r ai ni ng wi l l  s t op

t net . t r ai nPar am. show  = 1; %t he t r ai ni ng st at us wi l l  be 
%shown ever y. . .  i t er at r i ons of  
%t he al gor i t hm

t net . t r ai nPar am. mu_max  = 1e50; %mu i s t he i ni t i al  val ue f or  my.

t net . l ayer Wei ght s{ 2, 1} . l ear n=0. 0; %t he l ear ni ng r at e f or  node ( . , . )

US = con2seq( UR1) ; %makes a sequence of  t he shi f t ed i nput  s i gnal
YS = con2seq( YR1) ; %makes a sequence of  t he shi f t ed out put
TS = con2seq( YR) ; %makes a sequence of  t he unshi f t ed out put
XS = [  US ;   YS ] ;

t net = t r ai n( t net , XS, TS) ; %t r ai ni ng begi ns

WF = t net . I W{ 2, 2} ;  %The wei ght s of  . . .  ar e. . .
WB = t net . I W{ 1, 1} ;
WH = t net . LW{ 2, 2} ;
WA = t net . LW{ 1, 2} ;
WD = t net . LW{ 2, 1} ;
WC = t net . LW{ 3, 2} ;

ys  = s i m( t net , XS) ; %si mul at i on st ar t s
ys  = seq2con( ys) ;  %. . .  and i s made i nt o a sequence
YS  = ys{ 1, 1} ; %makes YS t o t he out put  vect or  of

%t he s i mul at ed net

di sp( ’  - - - - - - - -  NETWORK l ear ni ng - - - - - - - - -  ’ )

dat a3=[  UR1’  YR1’  YR’  YS’  ] ;

UR=UR* 10;
YR1=YR1* 10;
YR=YR* 10;
YS=YS* 10;

save dat a3. dat  dat a3 / asci i %saves dat a t o f i l e
save WA. dat  WA / asci i
save WC. dat  WC / asci i
save WD. dat  WD / asci i
save WB. dat  WB / asci i
save WF. dat  WF / asci i
save WH. dat  WH / asci i
pl ot ( [ YR’  YS’ ] ) %pl ot s t he r eal  syst em wi t h t he s i mul at i on

el se
%� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �   NETWORK VALI DATI ON
%                                       ==================

l oad WA. dat %l oads exi st i ng dat a
l oad WB. dat
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l oad WC. dat
l oad WD. dat
l oad WF. dat
l oad WH. dat
l oad dat a3. dat
UR1= dat a3( : , 1: nu) ’ ; %r ef er ence i nput  del ayed one sampl e
YR1= dat a3( : , nu+1: nu+ny) ’ ; %r ef er ence out put  del ayed one sampl e
YR = dat a3( : , nu+ny+1: nu+ny+ny) ’ ; %r ef er ence out put
YS = dat a3( : , nu+ny+ny+1: nu+ny+ny+ny) ’ ; %out put  f r om t he s i mul i nk 

%si mul at i on made dur i ng t he
%l ear ni ng

[ nz, nx] =si ze( WA) ;
[ nx, nu] =si ze( WB) ;
[ ny, nx] =si ze( WC) ;
TAM=l engt h( YR) ;

YN= zer os( ny, TAM) ;
xn= zer os( nx, 1) ;  xn1=xn;
yn= YR1( : , 1) ;  yn1=yn;

f or  t =1: TAM %si mul at i on
uk1= UR1( : , t ) ;

      yk1= YR1( : , t ) ;
      xn = t ansi g(  WA* xn + WB* uk1)  + WF* WC* xn + WH* xn;
      yn = WC* xn ;
      YN( : , t ) =yn;  %out put  f r om t he neur al  net  and 

%t he s i mul at i on made above
      yn1=yn;
end

YN=YN* 10;
YR=YR* 10;

pl ot ( [ YR’  YN’ ] )  %pl ot s t he s i mul at i on
ERRO3 = sum( abs( YR’ - YN’ ) ) %The er r or  i s . . .

end
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8.4. Matlab code for control with feedforward linearisation

cl ear
pack

%� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �   DEFI NI TONS � � � �
%                                       ================

l oad WA. dat %Par amet er s ar e l oaded
l oad WB. dat
l oad WC. dat
l oad WD. dat
l oad WF. dat
l oad WH. dat

[ nz, nx] =si ze( WA) ; %Si ze of  t he l ayer s ar e r ead
[ nx, nu] =si ze( WB) ;
[ ny, nx] =si ze( WC) ;
xo = zer os( nx, 1) ;

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  Pol e pl acement  cont r ol l er

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  Ref er ence

T  = 1;
t f  = 360;
t   = 0: T: t f - T;
TAM= l engt h( t ) ;
RR = r ef er enc( [   0. 2  0. 9  0. 1  1. 2  ] ' , TAM/ 4  ) ' ;

%cr eat e r ef er ence val ues

%- - - - - - - - - - - - - - - - - - - - -  r eal  syst em i ni t i al i zat i on
xn=0. 01* r and( nx, 1) ;  xn1=xn;
wk = 0;    wk2=wk;   wk1=wk;
uk = 0;    uk2=uk;   uk1=uk;
yk = 0;    yk2=yk;   yk1=yk;
yn = 0;    yn2=yn;   yn1=yn;
ek = 0;    ek2=ek;   ek1=ek;
vk = 0;    vk2=vk;   vk1=vk;
i ek= 0;
en = 0; %er r or  wi t h neur al  net
er  = 0; %er r or  wi t h ' r eal '  syst em
%- - - - - - - - - - - - - - - - - - - - -  neur al  model  i ni t i al i zat i on
xn= zer os( nx, 1) ;
zn= zer os( nz, 1) ;
zo= zer os( nz, 1) ;
yn= zer os( ny, 1) ;
%- - - - - - - - - - - - - - - - - - - - -  r eal  syst em + neur al  model
dx= zer os( nx, 1) ;
du= zer os( nu, 1) ;
YN= zer os( ny, TAM) ;
YR= zer os( ny, TAM) ;
UR= zer os( ny, TAM) ;
EN= zer os( ny, TAM) ;
ER= zer os( ny, TAM) ;
WR= zer os( ny, TAM) ;
YN( : , 1)  = yn;
YR( : , 1)  = yk;



Linear and Neuro Control Strategies: Some Experimental Results 82

UR( : , 1)  = uk;
ER( : , 1)  = er ;
ER( : , 1)  = en;

%� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �   CONTROL LOOP � � � �
%                                       ==================

f or  t i me=2: TAM

r k = RR( t i me)  ;

   %- - - - - - - - - - - - - - - - - - - - - - - -  r eal  syst em out put
   yk=pt 326( uk1, uk2, yk1, yk2) ; % pr oduces t he out put ,  y ,  

%f r om t he pr ocess
   %- - - - - - - - - - - - - - - - - - - - - - - -  neur al  model  out put
   xn1=xn;
   xn = t anh( WA* xn + WB* uk )  + WF* yk1 +WH* xn ;

%cal cul at es t he st at e,  x,  of  t he neur al  net
   yn = WC* xn ; %cal cul at es t he out put  y l

   %- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  l i near i zat i on
   dx = xn- xn1; %cal cul at es dx
   J   = di ag(  sech( WA* xn + WB* uk)  ) ; %cal c.  t he der i v.  of  y l
   
   FL = WC* ( J* WA+WH+WF* WC) ; %cal cul at es t he l i near i sat i on of  

%t he neur al  net wor k
   GL = WC* J* WB; %cal cul at es G
   i g = i nv( GL) ; %cal cul at es t he i nver se of  G

   %- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  cont r ol  l aw
   a  = 0. 4 ;   %pol e
   uk = uk1 + 0. 1* i g* (  ( a- 1) * yk + ( 1- a) * r k - FL* dx  ) ;

   i f  uk>10, %Upper  l i mi t  f or  cont r ol
uk=10;

end;
   i f  uk<0, %Lower  l i mi t  f or  cont r ol

uk=0;
end;

   %* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
   YR( : , t i me) =yk;
   UR( : , t i me) =uk;
   XN( : , t i me) =xn;
   ZN( : , t i me) =zn;
   YN( : , t i me) =yn;

   uk2=uk1;  uk1=uk;
   yk2=yk1;  yk1=yk;
   ek2=ek1;  ek1=ek;
   vk2=vk1;  vk1=vk;
   xn2=xn1;  xn1=xn;
   yn2=yn1;  yn1=yn;

end

pl ot ( [  YR'  YN'  RR'  UR'  ] )
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8.5. Matlab code for solving the Diophantine equation

f unct i on [ S, R, T] =col pol os( B, A, Am, or d, t i po)

f or  i =l engt h( Am) +1: l engt h( A) %makes Am t o t he r i ght  s i ze
    Am=[ Am 0] ;
end

i f  t i po==1 %cr eat es t he Di of ant i ne Equat i on
M=zer os( 2* or d+1) ;

   f or  i =1: or d
       M( i : i +or d,  i ) =A’ ;
   end
   f or  i =1: or d+1
       M( i : i +or d- 1,  i +or d) =B( 2: or d+1) ’ ;
   end
   M( 2* or d+1, 1: or d) =ones( 1, or d) ; %t he sum of  t he r egul at or  

%par amet er s ar e . . . .
   BB=[  Am( 2: or d+1) ’ - A( 2: or d+1) ’ %t he r i ght  hand s i de vect or

     zer os( or d, 1) %i s cr eat ed
         - 1 ] ;
    FG=i nv( M) * BB; %t he equat i on i s  sol ved
    R=[ 1 FG( 1: or d) ’ ] ; %and t he par amet er s ar e ext r act ed
    S=FG( or d+1: 2* or d+1) ’ ;
    i f  abs( sum( B) ) <0. 001 %i nsur ance t hat  T i s  not  get t i ng t oo bi g
       T=10;
    el se
       T=sum( Am) / sum( B) ;
    End

el se %same t hi ng wi t hout  i nt egr al  act i on
   M=zer os( 2* or d- 1) ;
   f or  i =1: or d- 1
       M( i : i +or d,  i ) =A’ ;
   end
   f or  i =1: or d
       M( i : i +or d- 1,  i +or d- 1) =B( 2: or d+1) ’ ;
   end

   BB=[  Am( 2: or d+1) ’ - A( 2: or d+1) ’
           zer os( or d- 1, 1)  ] ;

    FG=i nv( M) * BB;

    R=[  1 FG( 1: or d- 1) ’    0 ] ; % zer o at  end t o have t he 
%same si ze as i nt egr al

    S=[  FG( or d: 2* or d- 1) ’  0 ] ;
    i f  abs( sum( B) ) <0. 001
       T=10;
    el se
       T=sum( Am) / sum( B) ;
    end
end
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