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1. Introduction

1.1. Overview of thework

The work consists in the construction of different kinds of controllers and to find out their

potentials and limitations.

The linear regulator is the most basic in the construction and aso the oldest. This controller is
therefore good as a reference. (Astrém and Wittenmark, 1997) is the by far most used source

for the construction of the linear controller.

In the case of adaptive controllers the studies are oriented towards different ways of updating
the covariance matrix. A pole-placement control method gives the desired control behaviour.
These are well-established technologies on which many books have been written. In the
studies for this project are (Landau et al, 1997), (Wellstead and Zarrop, 1991) and (Astrém
and Wittenmark, 1995) the most read.

The neura network is used to create a nonlinear model of the process. This model is used to
build an input-output feedback linearisation controller. This approach was first presented by
(Isidori, 1995). To seeif this new technology has any great advantages in comparison to the
older adaptive approaches is the most important conclusion in this report. The material used
for this part is mainly (Braake et al, 1997), (Henriques et al, not yet published), (Mathworks,
1999) and (de Wilde, 1997).

1.1.1. Classic Control: Advantages and disadvantages

With classic control we normally mean linear control. In this project the meaning also include
the word discrete. A computer makes all the calculations and because of this we dea with
discrete time. This is the first method used for this project but creates the foundation for al
other control methods. Linear discrete control is based on the assumptions that the process
can be modelled as linear and constant polynomials. It is relatively simple to construct alinear
controller and the calculations are ssimple. This means that we can sample with a high speed.
The disadvantages are that in rea life you cannot always say that alinear and constant model
will be good enough. The fact that the behaviour of the process is changing within time, due
to changed conditions in or in the nearby environment of the process, can make the system

run with wrong behaviour and if you are unlucky, make it unstable. In this project these
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nonlinearities and variations in parameters will be compensated with adaptive control
methods.

1.1.2. Adaptive control: Try to overcome some difficulties of the conventional
control

Adaptive control is an attempt to adjust the elements of the model polynomials at the same
time as you run the controller. By predicting the next output with regards of the model and
then evaluate the difference between the prediction and the actua output it is possible to
modify the parameters of the model to the better. There are many different ways of doing this.

Only methods including covariance management are used in this report.

1.1.3. Neural networkscontrol: Ableto deal with nonlinearities

A linear model cannot describe al processes. As adways there are various approaches to
control a nonlinear process and one group of methods are the ones that use neural networks.
Neura networks can for example be used to create an arbitrary transfer function, linear or
nonlinear. The input-output feedback linearisation is one of the possible approaches in order
to design a controller. By alinearisation of the neural network model at a working point and

at each sample, it is possible to control the system asif it was alinear process.

1.2. Equipment

1.2.1. The PT 326 process

The process used for thiswork was a single input single output process called PT326 from the
British manufacturer Feedback (see Figure 1-1).
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Figure 1-1 The PT326 process

Air is sucked in from the ambient atmosphere through an adjustable entrance (1) and driven
through an electrical heater grid (2) and then through a plastic tube out in the atmosphere
again (3). It has many similarities with a hair dryer. The control problem is to control the
temperature of the outgoing air. The input signal (socket A) is a voltage that produces a
current through the heater grid and the output is a voltage that is a measurement of the

temperature of the outgoing air.

The detecting element is a bead thermistor that is fitted at the end of a probe (4). The probe
can be placed in three different positions along the tube, which causes different time delays.
The distances are 1.1 inch (28mm), 5.5 inches (140mm) and 11 inches (279mm) from the
heater grid (Feedback, 1986).

The thermistor forms one arm of a D.C. bridge that isin balance at 40°C. The output voltage
from the bridge is amplified so a change in temperature from 30° to 60° equals a change in
output voltage from OV to +10V. This output voltage is measured at the socket Y on the front
panel (Feedback, 1986).

Toillustrate disturbancesit is possible to adjust the size of the inlet. This changes the speed of
the air flow. To measure this disturbance it is possible to read how many degrees the opening
is, between 10° and 170°.
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1.2.2. Acquisition board PCL-818L

The communication between the process and the computer was handled by acquisition card
PCL-818L from Advantech Co, Ltd. PLC-818L contains a 12-bit A/D converter with
sampling rates up to 40kHz and a 12-bit D/A converter with 5 microseconds settling time.
The range of the D/A converter is+10V (Advantech, 1994).

1.2.3. Structure of the software

The programming in this work was made in a dightly different way than usual. Many of the
functions were written in Matlab. The reason for that is that many functions are very easy to
implement and there are many very powerful commands available in Matlab. One example is
to invert a matrix, another calculations with complex numbers. These are very complex
operations in normal programming languages but are very ssimple to handle in Matlab. Matlab
does not support any possibilities to use the data acquisition card but provides a compiler
toolbox that makes it possible to convert the Matlab code to C-code. With the help of this
compiler toolbox as many functions as possible were written in Matlab code and then
compiled to C-code. Some additiona c-functions were thereafter compiled together with the
code Matlab had created. A schematic diagram is shown in Figure 1-2. The C-code makes the
calculations faster than Matlab, even though the compiler does not make the code as fast as a

skilled programmer would make it.

4 N\
C-functions M atlab functions
4z N
Functions for the data Time function
acquisition card e.g. : ’
initialisation of the card, . read the time from the
read, write Main program system clock
N J
- Matlab code ~N
Other functions e.g. Othgr funptions €.9.
save data to file, delay solving d|ophant|ne
equation
N J

NG J

Figure 1-2 Thisis what language was used for the different functions
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To learn how the Matlab compiler works is very difficult but when you have understood
exactly how the structure should be it is not a problem. All Matlab files, even the main
program, should start with the word function. All functions should be compiled with the —r
and —e flags. When the main program is compiled the —-m flag should be added too. For every
C-function (including the compiled Matlab functions) that is used there should be a short
Matlab function attached in the same catalogue as the main program. This function should
contain information on what kinds of variables are returned to the main program, e.g. redl,
integer etc. These functions are in this report called trick functions because they trick the
compiler to separate name of functions from names of variables in the main program. See also
Figure 1-3. These trick functions should be compiled as nhormal Matlab functions before the
compilation of the main code.

— Toll v -
function y=read() :
y=2.2;
% 2.2 because y should be a real number.
Main folder X =
Main code (Matlab) C- The compiled or written
Main code (C-function) . c-funtions
Trick functions (Matlab) - T
Compiled trick functions (C)
Function folder (C-functions) | .
Function folder (Matlab) | | Matlab The uncomplled Matlab
functions functions

Figure 1-3 One way of arranging the files when working with the Matlab compiler

The c-code is then compiled as usua with a normal C-compiler. Here was Watcom IDE 10.5
used.
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2. Conventional control theory

2.1. The model

The model of the processis described as two polynomials A(q™) and B(q™?) of the backward-
shift operator ™. Sometimes this operator is called the delay operator. The z-transform of

these polynomials are: A(zZ%) and B(z?).

A(gt)=1+aqt+a,q?+..+a,q" and B(q‘1)=b0 +b, gt +..+b,q™™ sothat

y(k) +agy(k -1) +agy(k - 2) +...+ayy(k -n)=
=bgul(k) +byu(k 1) +...+ b u(k - m) + e(k)

2-1

where e(K) is white noise.

-1
Another way to formulate the equation is. y= B(Z )u + = ve. This type of model is
A A

called the ARX-model. Another type is the ARMAX-model that includes a more detailed

description of the noise.

2.2. The controller

2.2.1. Pole placement controller

A linear pole placement control system can beillustrated as below in Figure 2-1.

oy g
u Process >

Regulator )
r B,A

S,R,T
Figure 2-1 Alinear control system
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The output of the process is a function of the control signal, u(k). u(k) is at the same time the
output of the controller. The inputs to the controller are the old process outputs and the

reference signal u,(k). A linear controller can then be represented as:

R(a™)u(k)=T(a™ u.(k)=S(a™)y(k) 2-2

where the linear polynomials can be described as: R(z_1)=1+ rlz_l + rzz_2 +...+raz ",

T(Z_1)=to +tz7 +tzz_2 +..+tz"  and S(z_l): Sp+sz t+ 522_2 +.. +spz M.

After adivision by R(Z") we get:

_T@Eh, _szh
TR T REY

If we combine the two equations the output, y(k) will be a function of only the reference,

y{k)= 1 (uc(k)).

Rz HAEz™

———y=T(z . - Sz )y 0 REHAEZ )Y =BT(z . - Sz HB(z )y D
B(z™Y)

Bz H)T(z My =|AzHRE™) + Bz Y)sz Dy

By dividing with [A(Z)R(ZY)+B(z1)S(z")] we get the transfer function:

_ Bz HT(z )

- AZYHRE Y +BzYsEY) -

Both B(q™")T(q™) and A(H)R(GY)+B(qY)S(q?) are linear equations and we can give them new

names in analogy with the transfer function of the process:

B.(q™)=B(g™)T(q™") and A (q)=A(q™)R(q™)+B(q™)S(q™)

The latter equation is called the Diophantine equation.
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2.2.2. Calculating the regulator polynomials

The control problem is to design and implement the controller polynomials so the behaviour
of the system is as good as possible. First of all you should try to place the poles of A; where
you want them. By having a desired A. you identify the terms of the resulting polynomials of
the Diophantine equation. That is easily done with the following equation system that is valid
in the general case (Astrém and Wittenmark, 1997).

m o 0 by, O 00

%51 1 : b by P dn E Eacl_alg
|:| 1 : bO n-1 D_ |jécn_anlz|
Y =0 O
Dn a:l. bn bl SO o g a‘cn+1 O
0 a, 0 b, ryp:g o o0
0. - . . 0o O
0 IR e n-10 a1 O
= 0 a, 0 - 0 b,

The degrees of the polynomials A(q?) and B(q™) are n. If they do not have the same length it
is possible to add zeros at the beginning of B(q™) until they have the same length. The degree
of R(gq™") and (%) isn-1.

To add an integrator to the regulator you need aregulator pole in z=1. The polynomials R(q™)
and (") has then the degree n. This means that the Diophantine equation is changed
dlightly:

01 0 b, O 00 A —a 0
%1 1 b, b, : Oogo. 'O
: : . oo * 0
E. a 0 : b 0 0 G —a0
N .1 b, ¢ b, S_ch "0
~ [ %1 [
BO a, a 0 Db b, 2% T 0
o .o R E g 0
a
D - 0 a b0 E o E
A - - 1 0 - - O0fF

With T(g™) you can decide the steady state gain which can be calculated as:

sunfB, )/ sunfA,)
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To force the steady state gain to be a certain value you need a T(q") that is just a constant t,.
T(g") is aso used to place the zeros of the system where you want them. In this report these
methods are not discussed, but the T(q*) might be of a higher order. Further on we make the
assumption that T(qY)=t,.

2.2.3. Calculating the control signal

Now we have the regulator. The control signal is now computed as:

R )U=T(q ™ )u, = S(a™)y D u(k)=tou (k)= s,y(k) = s y(k-1)-...
o= SpY(k=p)-ru(k-1)-ru(k-2)-...—ryu(k - m)

24

where p and m are the degrees of the S(g™) and R(q™") polynomials respectively.

That was a short version of the theory behind the linear control. There are other ways to

obtain the same results but they provide more or less the same result.

2.3. Off lineidentification

To be able to have a good controller you need to know the behaviour of the process. This

means in mathematical terms that you should know the parameters of A(q™) and B(g™Y).

There are two general methods to decide these polynomials. One is based on time-series that
are sent to the input of the process. Then the outputs are measured and from these data the
parameters are calculated. By measure the output you can calculate the system parameters.
The other method is based on calculation of the physical behaviour of the process, e.g. the
calculation of the behaviour of an electric net from the resistance, capacitance and impedance
of the different components. This includes often very complex calculations and is seldom

done. In thisreport only the first method is used.

By sending an input signal u(k), with the length n, to the input of the process you could
theoretically calculate an exact model for the specific input, if the length of the polynomials
are n. This model is very complex and is only valid for that specific data. If the output had
been measured again it would be dightly different and the model would not be correct. If the
assumption is made that B(q™) and A(q™") can be approximated as polynomials with a length

that is much smaller than n, the problem is to choose these parameters as good as possible.
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The approximated model follows the equation:

A@™)y=B(u 25
as good as possible.

There are many different methods to find the best approximation but the least-mean-square

method is very much used, and is the method for this report. This method is going to be
presented here.

From the linear model we get that:

y(k)ZBOu(k)+Blu(k—l)+...+6nu(k—n)—ély(k—1)—é2y(k—2)—...—ény(k—n)=
(u ) u(k—l) u(k—n+1) —y(k—l) —y(k—2) —y(k—n))*

d

k
t31 tA)z tA)n a, a, - an)T:¢T(k)O

where @' (k) is a vector containing the n latest control signals and outputs and Ois a vector

that contains the estimated model parameters.

Let us also introduce the matrices

Wy g fac
0 . oe _
¢N=E¢fDYN:By:ZBandgN(G)):D?D:YN ~0,© 26
0‘ 0 o 0' 0
A H N HnH

where £, (©)is a vector containing the errors when an arbitrary estimation © has been
used.

If we introduce aloss function J(©) and defineit as:

N L L =\ =
I(©)=3|y(i)-¢' (i) —Egek—gm —0,0) (Y, -, 0). 27
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For the least-square method we get a minimal loss when

é:(quan )_1¢T\|YN~ 28

The proof isto be read in abook in identification, for example (Johansson, 1993) or (Landau,
1990).
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3. Experimental resultswith the fixed linear control

3.1. Modelling

There are many things to consider when you choose the sampling time. First of al you got to
know how fast the processis. The PT326 process has a rise time about two seconds. A rule of
thumb is to choose the sampling time 4-10 times faster than the rise time. For the PT326 this
means a sampling time between 200 and 500ms. A lower sampling rate will not reconstruct
the continuous signal properly and a higher sampling rate might increase the load of the
computer. Another problem is the noise. If the sampling rate istoo high thereis arisk that the
model you get is a description of the noise instead of the behaviour of the actua process you
want to control. With a sampling time big enough the covariance for the noise is
approximately 0, and can therefore considered be white. White noise does not affect the
identification. With a covariance of the noise separated from 0, the colour of the noise will
affect the identification in a negative way. The output from the PT326 process contains a lot
of noise and every attempt to make the identification with a sampling time faster than 150ms
ended up in very bad models. At the end 200ms seemed to be a reasonable sampling rate.
That isthe sampling rate that is used for all experimentsin this report.

There are different ways of choosing the input signal for the identification. If the process is
linear we do not have to use more than two different input levels. It is more useful to vary the
step length at each period and keep the step amplitude constant. This lead to the conclusion
that it might be useful to choose a rectangular signal with variable step length. This kind of
signal is usually called pseudorandom binary sequence (PRBS) (see Figure 3-1). This kind of
signal is usualy a good choice because its frequency spectrum is close to the frequency
spectrum of white noise. There are many other ways to determine the input but thisisasignal
often used (Johansson, 1993).
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0.6 - .

Level

0.2+ :

0 100 200 300 400 500 600
Samples

Figure 3-1 An example of a PRBS signal

One thing you should have in mind is to make sure that the sampling time really is accurate.
In the first experiments was a clock built by C-functions used. The operative system of the
computer was Windows98. Windows98 is a multitasking operative system and the C-
functions used were only counting the time used for the data acquisition program. In between
the computer was working with things only known by the people at Microsoft. This leads of
course to errors in the model. Therefore it was more convenient to use the clock function in

Matlab for this purpose.
Because of the noisein the signal it might be useful to filter the signal with alow-pass filter.

The order of the model isimportant. The complexity of the calculations is increasing very fast
with increasing order. A simulation might be made to see how well the mode is
reconstructing the output with the same input. It is important to choose the model with the
lowest complexity possible. If the process is a second order system a third order model does
not provide a better description, though it is more probable that the noise will be more
noticeable in the model.

The results from the identification can be seen in Figure 3-2. The figure aso contains a

simulation of the model.
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Figure 3-2 The result of the linear identification. The insignal can be viewed at the bottom and the process output

and the simulated output (smoother) can be viewed above.

The picture shows afairly good model of the PT326. This model is used for the linear control.

The transfer function of the moddl is:

_B(z'Y) _ 0124971 +0.1264272

H(2) -1 -1 -2
Azl 1-1.1628&71 +0.309%

31

The number of the delays is one sample (200ms).

The PRBS is only changing between two levels. If the process is has nonlinearities the model
might be quite bad. If the input signal is varied over a wide range within the dynamic range
the model errors due to the nonlinearities are a so least mean square approximated. The result
from the identification with the other insignal can be seen in Figure 3-3 and the transfer

function became:

H (z‘l): B%z_l) _ -0.001& ! +0.03622 2 .

Az 1) 1-1699071 +0.7257,2
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abeljon

600

Samples

Figure 3-3 The result of the linear identification. The input can be seen above and the process output and

simulated output (smoother) can be viewed below.

If the model from the PRBS was simulated with the latter insignal the result was the

following (see Figure 3-4):

abeljon

600

Samples

Figure 3-4 The result of the comparison between the two different models. The model from the PRBS input is the

highest one while the real output and the model based on an input with variable amplitude can be seen below.

82
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The difference is big. It is easy to believe that the second model is the better one but if we

make the same simulation on the PRBS input the result is the following (see Figure 3-5):

2.5

il

i
-0.5 | | | |
0 50 100 150 200 250 300

Samples

Voltage
|_\

—

Figure 3-5 The result of the comparison between the two different models. At the top of the graph is the real
output to be seen while further down is the simulated output from the model based on the input with variable

amplitude.

This model is not as good as the first one used. This is due to the small terms of the B-
polynomial. The output is amost independent of the insignal. This illustrates how difficult it
isto get a perfect model.

3.2. Control

In real life control the noise can cause alot of trouble. One way to solve thisis to filter the
output signal before it enters the regulator. It is also possible to filter the control signal.
Because the PT326 is noisy, both those filters, that can bee seen in Figure 3-6 are used to

control the process.
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Controller Process y
SRT B,A

LP |«

Figure 3-6 When the output and the control signal islow-pass filtered a good control is much easier to achieve.

The filters are removing some of the noise but there is still a lot left, which might cause

problems.

It might be difficult to find the optimal place to put the closed loop poles. One way istrial and
error. Experience is one of the most powerful tools when it comes to find a good location for
the poles. To put them around 0.7 on the real axis is often a good start. In the experiments
were the poles placed in 0.65 and 0.7. The Diophantine equation gives: R(q*)=1-0.0520q"-
0.9480q%, S=15,3308-10.8872q*+2.3212G? and T=5.3721.

The model is never areally good approximation of the process. For example the steady state
error might be rather big. To prevent this kind of errors it is a good idea to implement an

integrator in the regulator.

With all the methods mentioned above including an integrator the control was as can be seen

in Figure 3-7.

| =

0 50 100 150 200 250 300

Figure 3-7 The result with linear control and integrator. The reference (rectancular), the output and the control

signal (below the output)
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This control was made straight after the identification was made. When the same model was

used some days later, when it was colder, the result was much different (see Figure 3-8)

R eference/Conirol /Outout

Figure 3-8 Linear control at another day than in Figure 3-7

Of all different methods tried in this work the linear control was the one that took the most
time to implement. This might seem a little bit strange but the problems were not the control
problems but problems to get the different parts of the system working together, e.g. the
Matlab compiler, the C-compiler or the data acquisition board. These problems will always
appear in al kind of control. The difference was that when the adaptive control was made
these functions already existed. Identification is difficult and such a thing as a perfect model
does not exist. This leads to a Steady state error but the integrator quite effectively
compensates these nonlinearities.

3.3. Conclusions

From the different identifications it is easy to see that none of the models are valid a every
time. Identification is more about getting a model as good as possible than getting the perfect
one. The automatic control field is built on the idea that making the model as irrelevant as

possible. Feedback is al about correcting the errors in a model. Even if the model is not
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exactly correct it is possible to obtain good control behaviour. The integrator is to good help
in the work of reducing the steady-state error.

Even if the control is acceptable in some cases the model parameters have to be updated if the
behaviour of the process is changed much. This was to bee seen in Figure 3-7 and Figure 3-8
when the control behaviour was completely different at two different days. The adaptive

control will provide help for this kind of problems.
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4. Adaptive control theory

4.1. Adaptive control schemes

4.1.1. Introduction to self tuning controllers

Sometimes you do not have an accurate model or the process will most likely change its
behaviour. In these cases it is recommended to use an extended system that continuously

update the polynomials A(q™) and B(q"). These kinds of systems are called adaptive systems.

There are many different approaches to update the model. In this report only updating with
the use of the covariance matrix is used. The idea is to make an estimation of the process
polynomials, with the help of the inputs and outputs of the process. This estimation is then
used to caculate a controller from the given specifications. This is a quite straightforward
method that is often used.

—p»|{ Estimation |«

v O

1

1

1

1

1

:

1

Controller |
design i
i

1

1

1

1

1

1

1

1

Specification

A

C

y R,S,T
Reference A
TR u

U

Output
>
y

Controller

p  Process

___________________________

Figure 4-1 A schematic picture of a adaptive control system.

The estimation part of the controller estimates the process polynomials and the controller
design uses these polynomias to put the closed loop poles according to the specifications.
The controller is the same as in the linear case except for the constant regulator polynomials

are changed to the ones calculated from the controller design.
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Sometimes the control problem is dightly different from what was mentioned above. If the
process does not change its behaviour, but the model parameters are unknown, a controller
that estimates these is needed. This is a dlightly easier problem because a fully adaptive
controller is also able to adjust its parameters when the process changes its behaviour. The
solutions are similar but the distinction has to be made. This type of controllersis called self-

tuning.

4.1.2. Mathematical methods for adaptive control

The ideal way to estimate the polynomias is to adjust the model dightly at every sample.
Thisis aso possible and these kinds of methods are called recursive methods. One of the key
elements in recursive methods is the parameter adaptation agorithm. This algorithm
calculates the new model from the last model together with the last data. The structure is
aways the following (Landau, 1997):

Newparameters 0 [Previougparameter§]l [Adaptationgain 0 Measuremen [0 [Predictionerror
%stimatior(vectorgz %stimatior(vector) El*' %matrix) EJ* %UHCtiOH(VeCtOYH %unctionSscalarg
B ekl Bo ek)y 88 Fk B8 ¢k 85O & B

The measurement function is also called the observation vector.

The most usua parameter adaptation algorithm is the gradient parameter adaptation
algorithm. This agorithm minimizes the quadratic prediction error. Consider the simple

system:
y(k+1)=-a,y(k)+bu(k)=0"g(k)

where both a; and b, are unknown. This means that ©' = [al bl] is the parameter vector

and @' (k)=[-y(k) u(k)] isthe observation vector.

Thepriori prediction is:
¥ (k+1)=0" (k)p(k) 41

where O7 (k) isthe predicted model at time k and the priori prediction error is
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O (k+1)=y(k+1)-3(k+1). 42
The structure of the parameter adaptation algorithmiis:
Bk +1)= (k) + f|O(K),@(k), (k +1)| 43

where the last term is called the correction term. One way to choose the correction term to is

make it fulfil the following criterion:
minJ(k +1) =[e*(k+1). d
o(k)

The fact that in a plane of the parameters & and b; the minimum of the loss function is
surrounded by concentric closed curves where J=constant. To find the minimum you move in

the opposite direction of the gradient of the isocriterion curve (see Figure 4-2). This means.

33(k +1)

O(k +1)=0(k) - F(k) 250

4-5

where F isthe adaptation gain. The most used name for F is probably the covariance matrix.

From (eg. 4-4) one obtains:

10J(k+1) _9e°(k+1)
2 90(k) d0(K)

£k +1).

Moreover is

e (k+1)=y(k+1)-0(k) @k)

and
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0°(k+1) _ _

A k).
d0(k) #k)

This means that

O(k+1)=0(k)+ Fe(k)e® (k +1). 46

There are two ways to choose the covariance matrix.

1. F=al; a>0and | istheidentity matrix.
2. F isapoditive definite matrix. (All termsin main diagonal are positive, F is symmetric and

the determinant of al the principal minorsis positive)

Iso-criterion curves

iy

Gradient

a‘

Figure 4-2 The negative gradient of the iso-criterion curve is pointing in the general direction of the optimal

estimation of the model.

With a too large adaptation gain there is risk for ingtability. Another way to build the
adaptation gain is to use the posterior prediction. The posterior prediction is:

Y(k+1)=0(k +1)" ¢(K) 47

and the posterior prediction error is

g(k+1)=y(k+1)-y(k+1). 4-8

Thisleads to the loss function:
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min J(k+1)=[g(k +1)]*. 40
O(k+1)

The equations for the posterior case are then:

103(k+1) _9e°(k +1)

- a e(k +1)
200(k+1) 00(k +1)

g(k+1)=y(k+1)-O(k +1)" ¢ k)

oe(k+1) __
00O(K +1) k)

Thefinal solution isthen:
O(k+1)=0(k)+ Fe(k)e(k +1) 410
Theproblemisthat £(k +1) isunknown. We need afunction of £°(k +1). Knownis:

e(k+1)= y(k+1) - O(k)" g(k) Bk +1) - O(k)| o(k) =
£ (k+1)

=e(k+1)-¢(k) F¢(k)5(k+1)=1+¢(k)T FaK)

Fa(k)ee (k +1)
1+@(k) Fe(k)

4-11

Finaly: O(k +1)=0(k)+

Just because the quadratic error is minimised at every sample it does not mean that the sum of

the errors are minimised. The least square criterion is:

O(k)

min 3(k)= 3 [y(i) - &(k)" i - o2

This criterion is fulfilled when:
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k
Ak _ NIPUTCSEN
B 2Z[y(|) AK) T @i -1 eti -1 =0

From:
|67 (k)i 1)l ~1) = (i ~ )i ~1)T (k)

one obtains:
k D k

é(o(i -D(i -1)" (k)= Z y(i)e(i -1)
T O &

and by left multiplying with:
k D_l
é(o(i—l)co(i—lfm
= O
one obtains:
~ K 0t « k
O(k)=§Z<ﬂ(i—1)¢(i—l)TD Zy(i)cﬂ(i—l)=F(k)Zy(i)(0(i—l)
= a = &=
in which:
k
F(k)‘1=Z<0(i—1)<ﬂ(i—1)T

é( k +1) isneeded to get an recursive algorithm:

k+1

O(k+1)= F(k+1)Z y(i )i —1)

k+1

F(k+1)™"= Z(ﬂ(i —D@i -1)"T =F(k) "+ @k)e(k)'
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@)( k +1) isexpressed as afunction of @)( k) onthe form:

O(k+1)=0O(k)+AO(K +1)

k+1 k

Z y(He(i-1)= Z y(H)ei —1)+ y(k+1)@(k)

This can be written as:

kﬁy(i)qo(i ~1)=F(k+1)"0(k +1)=
=F(k)™O(k)+@(k)@a k)T O(k) + @ k)|y(k +1) - O(k)" ¢(k)
Further on:

F(k+1)O(k+1)=F(k+1)"0O(k)+ ¢(k)e® (k +1)

After amultiplication from the left by: F(t+1) theresult is:
O(k+1)=0(k)+ F(k +1)@( k)& (k +1)

F(k+1) is given by the matrix inversion lemma (Landau, 1990):

o 4_ - Fod F
Frod)'=r 1+ (k)" F(K)o(K)

From thislemma one obtains:

E (ks 1) = F( k) - FOAa) (k)
L+ (k)" F(K)@(K)

An equivalent description can be obtained as:

4-13

4-14
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e (k+1)
1+ (k)T F(k)@ak)

O(k +1)-O(K)|=F(k +1)@(k)e® (k +1) = F(K)@( k)

However:

g(t+1)=y(t+1)-O(t+1)T@t) = y(t +1) - O(t)g(t) -

! oy _ ) . £ (k+1) — -
Slt+L) ot ett) =& (k1) =tk FlOak) T F (w) -
_ £ (k+1)

1+@(k) F(k)@(k)

which is an expression with the posterior estimation.

To sum up the most important equations.

O(k +1)=0(k)+ F(K)@(Kk)e(k +1)

E (ks 1) = F( k) - FAa) F(K)
L+ (k)" F(K)@(K)

ek +1) = YK =00 (k)
1+(k)" F(k)gAk)

Asainitial value of the covariance matrix,
1
F(0)=E| , 0<o<<l

isnormally agood choice.

These equations are decreasing the adaptation gain in time. This can be seen if the estimation

is only made on one parameter.

F(k) <F(K)

F(k+1):1+¢(k)2F(k)_
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This means that less and less weight is given to new prediction errors. When the systems are
varying in time the first, and inaccurate, predictions are the most important for the final
estimation. A new estimation profile is therefore needed. We introduce the inverse of the

adaptation gain with two forgetting profiles, A;(k) and Ax(K):

0 0
0 0

F(k+1)=— L Gr(k) - FUMAKAKYF(K) 416
A (k) O Al(k)+<0(k)TF(k)¢(k)D
3 A J

The choice of the forgetting profiles can make the system behave in dightly different ways.

To illustrate this some examples were given by (Landau, 1997):

Decreasing gain (RLS)

A(K)=A,(k)=1 4-17

This is the forgetting profile without forgetting factors above, the least-mean-square. This
profileis suitable for identification of stationary systems.

Constant forgetting factor

When working with constant forgetting factors A, is usualy the only active forgetting factor.

In this case:
A(k)=4,; 0<A, <1, A,(k)=4,=1 4-18

Typical valuesfor A, are A,=0.95to 0.99. The criterion to be minimized is:

J(k)= i%“’[y(i )-O(Kk)" (i —1)|°

The weight of the old data is getting lower and lower as time evolves. The highest weight is
given to the most recent error. This kind of forgetting profile might be useful on slow varying

systems.
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V ariable forgetting factor

There are many ways to choose variable forgetting factors. Oneis:
A, (K)=1,  A(k)=AA(k-1)+1-A,; 0<A,<1 4-19

Typica values are: A;(0)=0.95 to 0.99 and A(0)=0.95 to 0.99.

The forgetting factor is asymptotically tending toward 1. The loss function will be:
k _ . )

J(k)= Z/h(i )“‘"’[y(i )-O(k) @i -1)
1=

The forgetting factor will be one for after awhile. This means that only the initial estimations
are forgotten. For stationary systems this profile is to be preferred because too rapid
decreasing of the adaptation gain is avoided. This is good because a high adaptation gain

initially is good when the estimation is far from the optimum. The convergence is faster this

way.

The trace of the covariance matrix is the sum of the elements in the main diagonal of the
matrix and this can be used as a measure of the adaptation gain. In all the cases above using
the forgetting factors the elements in the covariance matrix are increasing when the error is
small. When the excitation is small, for example when the process has reached a steady state,
the trace is going to increase until the system fails. This phenomenon is caled estimator

wind-up. To prevent this type of errors there are different methods that can be used.

Constant gain
The simplest way to track of the covariance matrix isto keep it constant.

F(k+1)=F(k)=F(0) 4-20

This type of covariance profile is very simple to implement but is not very flexible. The only
way to control the adaptation is to choose an initial value. In this method the covariance

matrix does not store any information of the old measurements.
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Constant trace

One way of controlling the covariance trace isto keep it constant.

G O o0
A 5

trF (k+1)=trF (k) =tF (0)=nGl  whereF(0)=1" .~ .’ (‘)B 42
D . o oo

Normal valuesfor G=0.1to 4.

Theloss function is:
k ~
I(K)= Z F(K,i )[y(i )-O(K) @i - 1)

where f(k,i) represents the forgetting profile.

However the relation between F(k+1) and F(K) is calculated from:

0 O
0 O

trF(k+1)=Azk)trg(k)—A(kF)(k)‘”(kfF(k) B 40
mﬂﬂ(k) F(k)co(k)H

To calculate the forgetting factors a relation between A; and A, is needed. One approach is to
keep the quota A,/A, constant and then calculate the A;.from the eq. 4-22.

This type of forgetting profile is useful for identification of time varying parameters. Aslong
as the error is small the forgetting factors are small and when the model is changing the

regulator forgets the old inaccurate model by decreasing the forgetting factors.
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5. Experimental resultswith the adaptive control

5.1. Introduction

As aways when it comes to identification it is very important that the identification that is
made is an identification of the behaviour of the process and not the noise. The PT326 process
changes its behaviour from day to day and even from hour to hour. These changes are a result
of differences in the temperature of the surrounding air. There are also differences in how
long time the process has been running. At one point the thermistor broke. After a new
thermistor had been installed the parameters were changed dragtically. This example is one
reason why it is important to have a flexible controller that can deal with these kind of

changes.

5.2. Simulation results

The simulations are made with badly chosen initial values and at sample 150 the parameters
are changed. From this it is possible to see how the different covariance algorithms are

working. All simulations were made without integrator. The initid model was
A(q_1)=1—1.5q_1 + O.5q_2 and B(q_l)z O.2q_1 + O.Sq_2 . The output was before the load
calculated with the model from the linear control: A(q_1)=1—1.1628q_1 + 0.309&'2 and
B(q_l)z 0.1249q_1 + 0.1264q_2. After the parameters were changed they were calculated

with the polynomials: A(q_1)=1—1.5q_l + O.7q_2 and B(q_l)z 0.1q_1 + 0.4q_2 :

5.2.1. Decreasing gain

The forgetting factors are al the time equal to one. This means that no information is
forgotten and that all the information is weighted all the same. After the change of parameters
the old data is never discarded. The result is a bad controller that always will have a steady
state error. It could be used as a self-tuning regulator though. When the system is constant the
controller do not have to forget any data because the model is the same all the time. The old
errors are accurate all the time. When the disturbance occurs the regulator never completely
forgetsthe old data. That leads to a steady-state error.
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Figure 5-1 Smulation results using decreasing gain. The forgetting factors are constantly at 1. All the data is used

for the identification.

5.2.2. Constant for getting factor

With the constant forgetting factor A, =0.95 the control might look good. The signals ook

good and a correct model is developing quite fast. The steady state error goes towards zero.
What is not seen isthat at the end is the trace of the covariance matrix about 2000. Thisis to

be compared with the initial 12. In alonger perspective this controller might break down.
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Figure 5-2 Smulation results using constant forgetting factor. The old data is forgotten always at the same speed.

5.2.3. Variableforgetting factor

The attempt to change the forgetting factor in the beginning is to no use if the process
parameters are changed. The forgetting factor is a function of time and will quite rapidly go
towards one. This means that when the variations occur the system do not forget anything. As
a self-tuning regulator it would be perfectly al right due to the fact that the only things this
type of regulator forgetsistheinitial bad values.
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Figure 5-3 Smulation results using the variabl e forgetting factor. Only the initial data is forgotten.

5.2.4. Constant gain
As afirst attempt to avoid wind up is by using the idea of keeping the covariance matrix
constant. It is a very basic idea but in the smulations it seems to work even if the covariance

matrix does not contain any information about measurements from the past.
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Figure 5-4 Smulation results using constant gain. The covariance matrix is here a constant diagonal matrix.

5.2.5. Constant trace

Simulations were made in two different ways. One where A, was held constant equal to 1 and
one where the quote, a=A1/A, was held constant. The result was more or less equal, why only

the simulation with constant A, is presented here.

Every time when an error occurs the regulator thinks that the model is not accurate, and
therefore decrease the forgetting factor to create a new better model. This is working very
well. At the end there is no steady state error and the adaptation is running fast. This is the
type of regulator that showed the best simulations of all the others.
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Figure 5-5 Smulation results using the constant trace algorithm. The data is more rapidly forgotten when an

error is detected in the model.

5.3. Experimental results

5.3.1. General explanation to the experiments

The experiments were made without integrator to get the best picture of how good the model
is. With an integrator the steady-state error is zero and compensates a bad model alot. At the
end an experiment was made with the constant trace algorithm and an integrator to see the

difference.

At an approximate time, k=120, the entrance for the air is aimost completely closed. The

different controllers react differently to this change.

Linear and Neuro Control Strategies: Some Experimental Results 82



The trace has to be much lower in the practical case than in the simulations. If not the noise

will be very influential in the parameter estimation.

Before the change the output signal is below the control signal and after the change the two

switch places. The output is then situated above the control signal.

5.3.2. Decreasing gain

The result of the result can bee seen in Figure 5-6. In the beginning the controller tries to

compensate its bad parameters. It is not very successful. When the changes in the process

parameters occur, at the time k=120, the model is almost fixed to its values. The lack of

change can be seen at the trace of the covariance matrix that is amost O.
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Figure 5-6 The decreasing gain controller. In the top graph the output is the line that at the beginning is beneath

the control signal. The decreasing gain controller does not forget any old measurements. When changes occur in

the process the controller tends to keep the old model.
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5.3.3. Constant for getting factor

In Figure 5-7 the result from the experiment with the controller using constant forgetting

factors can be seen. At the beginning this controller behaves more or less as the decreasing
gain controller. When the hatch is closed for the air, at time k=110, the trace has become low.
Therefore the parameters are changed only slightly, even if the error isbig. They are changing
enough to decrease the error, which is making the trace increase. At the end the output is

following the reference quite well. A new change in the process would be rapidly corrected,
as long the as noise would make the elements in the covariance matrix too small, as when the

inlet was decreased in this experiment. The modification of the parameters is very slow and

the noise is affecting the result in a non-neglect able way.
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Figure 5-7 The controller with constant forgetting factors. At the beginning the output of the process is the closest

to the reference. At the end the output is almost following the reference.
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5.3.4. Variableforgetting factor

With the controller using variable forgetting factors the result was as to be seen in Figure 5-8.
The forgetting factors are rapidly changing towards 1. Automatically the trace is getting close
to 0. This means that when the variations in process parameters occur, at k=120, the model is

not changing. This leads to a bad controller.
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Figure 5-8 The controller using variable forgetting factor. When the changes occur, the controller does not

change the model any more.

5.3.5. Constant gain

Surprisingly this type of controller showed the best results of al, as to be seen in Figure 5-9.
The errors are rapidly decreased, after the closing of the hatch, to small values and the output
is following the reference very well. The reason why the constant gain regulator was the best
one is very difficult to explain. One suggestion is that the adaptation gain is constant. If it is
well chosen the convergence is quick without getting unstable. All the other methods are
limited because of the risk that the gain is being to big. If this gain is limited in some way the
adaptation might be more efficient. More studies are needed before a conclusion is made. The
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limitation might be that none of the elements in the covariance matrix are allowed to exceed a

certain value.
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Figure 5-9 The constant gain controller. This was the best controller of all the adaptive ones.

5.3.6. Constant trace

350

The result of the experiments with the constant trace regulator can be seen in Figure 5-10.

When the changes in process parameters occur, at time k=120, the controller changes the

parameters rapidly. The problem is that if the changes have to be fast there is arisk that the

model will be badly chosen, due to the low forgetting factors. As a matter of fact the noiseis

here enough to keep the forgetting factors at a low level, so the parameters are calculated

from only few measurements. In an environment this would have been working better. Even

so, hereisthe output almost following the reference without steady state errors.
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Figure 5-10 The constant trace controller. With low forgetting factors when the error isbig, the parameters are

rapidly modified.

To see how this kind of controller is working together with a integrator one more experiment
was made. The result can be seen in Figure 5-11. Thisis how a constant trace regulator would
look like if it were to be implemented in a more industrial environment. The result is more or
less as good as it gets with a noisy process. Maybe one idea would be to decrease the trace a
little bit so the forgetting factors did not go as low as they do. The adaptation would then be
dlightly slower.
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Figure 5-11 The constant trace controller with an integrator.
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6. Neur al networks

6.1. Structure of the text

The neural network technologies are a very wide area in engineering. There are severa

different types of netsand just afew will be covered here.

To illugtrate the functions of a neural network the first type of nets are the Hopfield neural
networks that slowly will be transformed into feed forward networks and then to recurrent

neura networks.

6.2. Some basic neural network thinking by explaining
Hopfield networks

6.2.1. Neuron and states

To explain the functions of a neura network the Hopfield networks will be explained.

The neural networks can be seen as multiple processors working in parallel. These processors
are called neurons. None of the neurons contain more information than the others. Further on
there is no central neuron that controls the others. The knowledge is distributed over al the
neurons.

Today the biggest neural nets include afew hundred neurons.

A step-to-step approach will be used here to show the principals of a neural net.

X,=-1
X,=+1 2.
)
o X,;=+1
°
X.=-1 [
> X,=+1

Figure 6-1 Some neurons with their states
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In Figure 6-1 the neurons are represented by dots. To each neuron there is a number attached.
This number can be either —1 or 1. Some people prefer 0 and 1, but in reality it makes no
difference. This number is called the state of the neuron. For example: The state of neuron 4
is denoted X4 and X, = 1. The states of all neurons can be collected in the state vector x = (xq,

X2| X3| X4| X5)T'

The neural networks are dynamical. This means that the states change in time. To illustrate
the state vector the following notation is used at the time k: x(k). x(0) indicates the initial

value.

Because the state vector has as many components as there are neurons, n, it is possible to
define the state space as the n-dimensional space that is created from the possible values of
the state vector. The neurons can as known be —1 or +1, in Hopfield neural networks. This
means that the state space is the corners of an n-dimensional hypercube. This is where the
similarities with control problems begin. When dealing with neural net we are using a state

space model as abase. More of thisisto be read further down.

6.2.2. Updating the neurons

The neurons influence each other according to an update rule. In the example the upgrade rule

for x4 is:
X4 (K+1) = sgn(wy;X; (K)+w,,X; (K)+WgXs(K))

w is aweight on how important a certain neuron is for updating of another. The weights can
be any rea value. Sometimes the weights are caled synapses. A more general way to describe
the upgraderuleis:

X (k+1)=sg N Wijxj(k)E 6-1

)=

where n isthe number of the neurons.

Wisamatrix with the following form:
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Figure 6-2 Connections between the neuronsin Figure 6-1.

Figure 6-3 The same connections asin Figure 6-2, but with a different notation.

The weight matrix for a Hopfield network is symmetric and has zero diagona. This means

that the neuron x; influence x, in the same way as X, influence x; and no neuron influence
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itself. The reason for this will be mentioned in 6.2.3. This assumption will be changed for the

other networks.

If all the neurons are updated at the same time the update is called synchronous and if the

neurons are updated one at the timeiit is called asynchronous.

6.2.3. Associative memories

One way to describe the Hopfield networks nets are as associative memories. This means that
if you for example store a number of photosin a memory you can show a picture of a person
to the net and the net identifies the person and gives back some data about him. If the weights
are well chosen, the initial picture might be filtered too. How this works will be explained in

further down.

Assume the following evolution in time:

x(0)=(+1-1+1+1-2)7

x(1) = (+ 1+l1+1+1-1)T

x(2)=(+1+l1+1-1-1)T

x(3):(+1+l1+1-1-1)T
!

After k=2 is the state vector constant. The network has converged. All networks do not

converge. Another example:

x(0)=(+1+1+1-1-1)"
X(1)=(—1—l1—1—1+1)T
X(2)=(+1:1+1-1-1)T
x(3) (—1—l1—1-1+1)T
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In this example the state vector is oscillating between two states. To avoid this the weight

matrix Win the Hopfield networks have zero diagonal and is symmetric.

The sequence of states astime evolvesis called trajectory.

The endpoint of atrgectory is called fundamental memories or attractors. All states that are
leading to the same fundamental memory are said to be in the same attraction basin. See
Figure 6-4.

A way to decide the capacity of a neura network is by the number of fundamental memories
is possible to store in it. This capacity is more or less linear to the number of neurons in the
net. For adigital decoder this number is exponential with the number of bits, which of course

is much better. The neural network has the advantages to function as an associative memory.

Figure 6-4 Illustration how different states from the same attraction basin lead to the same fundamental memories

Until now we have discussed how a network from an initial state associate with a fundamental
memory. This is called auto-associativity. To illustrate the real associative memory we have
to change the interpretation of the neurons. The goal is to present data to the network, which
gives back some other data. More scientifically we can say that the network is associating an

output with an input. Sometimes thisis called hetero-associativity.

Now we divide the neurons into output neurons and input neurons. Let the neurons x; and X,
represent the output and the neurons X; to xs represent the input. From the beginning the

output is unknown. Therefore theinitial values are set randomly. It isimportant that you must
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allow the input to change within time. If the weights are well chosen not only the output will
appear at the neurons x; to Xs, but also the input will be filtered from noise. So if theinput isa
black and white picture and the value of every pixel is the input on the input neurons, the
output neurons could contain information about this person e.g. address and telephone
number. After the convergence the input neurons would show a filtration of the original

picture.

Figure 6-5 The neurons x; and x,, from figure 6-2 now illustrate the outpuit.

To go another step further we introduce neurons that neither are input or output. We call them
hidden neurons. If we organise al the input neurons in one layer and one or more layers of
hidden neurons and finally a layer of output neurons we can illustrate it in Figure 6-6. The

result isthen arecurrent neural network.
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Figure 6-6 Connections between the different layersin a multi-layer recurrent neural network. Note that the input
and output are 1x3 vectors. The other arrows are 3x3 matrices containing the signals between the layers. The
black dots are representing the neurons.

6.3. Feedforward neural networks

So far there are no limitations or actual differences from the first general description in
chapter 6.2. We can create a network in which the only connections allowed are from the
input neurons to the first hidden layer, from one hidden layer to the next and from the last
hidden layer to the output layer. If we decide that the weights are only working in the
direction input towards output we have a multi-layer feedforward network. In Figure 6-7 is a
scheme made to illustrate an example of a multi-layer feedforward network. Multi-layer
feedforward networks always converge due to the fact that the states of the layers are
calculated one by one.
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Figure 6-7 An example of a multi-layer feedforward neural network, with the neurons 3 and 6 clamped.

Multi-layer feedforward networks learn by examples. If the network is exposed to inputs
when the wanted corresponding output is known the weights can be calculated. This method
is called supervised learning. The weights are successively made better from random initial

values.

Even more general upgrade rules than eg. 6-1 can be used.

H

X (k+1)=fDZWij Xj()0i=12,..,n 62
0 0
0 0

wheref isany arbitrary function. Normally it is required that they are limited within [-1 1] are
monotonic and that have areal derivative. The most used function is probably the hyperbolic
tangent function or tan-sigmoid as it is also called. To make things easier it is often written
tansig. When the dynamic range O to 1 is chosen the logarithmic-sigmoid function, logsig, is

often used. Even alinear transfer function can be useful.
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Figure 6-8 The tansig function Figure 6-9 Thelogsig function

The state of some neurons can be held constant. We say that the states are clamped. The effect
is that the transfer function is moved either to the left or to the right in a graph. Sometimes a
threshold effect is wanted.

0.5F- b

B o <

Figure 6-10 The tansig function. This time is it connected to a clamped neuron, why it is moved one unit to the
negative side. A threshold effect has been added to the function as well.

Recurrent feedforward neural networks are a category of neural networks that are based on
the feedforward neural networks discussed above. The difference is that feedback is allowed

between the layers. In thisreport arecurrent neural networksis used.
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6.4. Backpropagation

Now it is time to go a little bit deeper into how to choose the weights of the multi-layer
feedforward or recurrent neural networks. The network will learn to associate a given output
with agiven input by adapting its weights. For this purpose the steepest descent algorithm for

minimising a nonlinear function is used. For neural networks thisis called backpropagation.

6.4.1. Error definitions

To describe the learning we need to define the error for a network layer (including the output

layer) with n neurons.

Cd
H><
H><z
N—

N

i
e

2

L

N

I )

E= 6-3

|:|:n:||r|1||:||:|:|
(oL
x
N
|
X

><l

If x is the correct output vector and the actual output isX the output error e is a function of

the input data and the weight matrix:
E=Dq -] +[xo - % +... + [ - %2 6-4

This is a nonlinear function in W, due to the nonlinear transfer function. The learning is

basically a problem of minimising this nonlinear function that also is called the loss function.

The error for the hidden neuronsis defined as;

n

e = Zej (sechzoj )wji 6-5

=

The function sech?(X) is the hyperbolic secant that is the derivative of the tansig function. g is
the error for neuron i and o is the state of neuron i before the application of the tansig

function,
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n
0 = ZW” Xj (k)
j=1

6.4.2. Updating the parameter s by using backpropagation

To illustrate the training of a network using backpropagation an example is used. See Figure
6-11.

6 7 8
3 v
4 5

4

| 2

Figure 6-11 In the example of the training this structure of net is used.

Assume that the states x, of the neurons can be any number [-1 1] and that the neurons 3 and 6
are clamped to 1. Also assume that the weights are collected in the matrix W and the

upgrading ruleis:

8
% (k)= tanh'y w; x; (k-1)
et

Theinitial states and weights are randomly guessed. It is important this initial guessis not 0.
If so thereisarisk that the neuron will be stuck at this state.

Then an input is applied to the net and the states are changing according to the upgrade rule.

The error isthen calculated for the output layer and the weights are modified to minimise the

error according to the following equation:

Awi (k) =re (sechzoi )x J-
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The derivate should not be too small due to the small changes in the weights. If the derivative
istoo small it is possible to add a small number to it. One suggestion is 0.05. The gain 77is
called the learning rate. A small value (0.001) might cause atoo slow change to the weights

and a big value (10) might change the value too much.

Figure 6-12 The derivative of the tansig function. To avoid too small changesin the weights a lower limit has been
introduced.

With these new weights it is possible to calculate the errors for the hidden neurons according
to equation 6-5, and the weights between the input layer and the hidden layer is updated. If
there had been several hidden layers the updating would have been done one layer at the time

starting with the one closest to the output.

Then another input-output pair is applied to the net and the procedure is repeated once more.

This description to adapt the weights once according to a series of input-output pairsis caled
an epoch. The training is repeated through several epochs to make the weights better and
better. It is not known how many input-output pairsit is possible to show to a neural network
but if it seems impossible to train a net to sufficient small errors, it might be because of a too
small number of neurons. Also it is not known how many input-output pairs it is needed to

train aneural network sufficiently.

6.4.3. The backpropagation algorithm

One way to sum up the backpropagation algorithmiis:
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oE

oW,

Aan =1k

where Aw is the change of the weight, is the current gradient vector of the update

functions and 7 isthe learning rate.

6.5. Methods for adjusting the adaptation gain

6.5.1. Quasi-Newton algorithms

Even though the error function is decreasing fast in the direction of the negative of the
gradient it is not sure that it will lead to the fastest convergence. The conjugate gradient
algorithms also calculate the learning rate for the different iterations, so that the loss function
is minimised along the negative gradient. The performance index is the size of the error along
the negative gradient. There are many different methods to choose 7. One group of methods

is the Quasi-Newton algorithms. The basic upgraderuleis:

w(k +1)=w(k)-H*(k)oE(K) 66

where H(K) is the second derivatives of the performance index. The name of this matrix isthe

Hessian matrix. It isimportant that H(k) has an inverse.

6.5.2. The Levenberg-Marquardt algorithm

The Quasi-Newton methods usualy converge faster than ordinary conjugate gradient rules,
but are complex and expensive to compute. To avoid the computation of the second derivative

the Levenberg-Marquardt algorithm approximates the Hessian matrix by:

H=J"J 6-7

and the gradient can be computed as:

OE=J"e 6-8
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where J is the Jacobian matrix which contains of the derivatives of the network errors with
respect to the weights. The Jacobian matrix is much less complex to compute than the

Hessian matrix. The update is then as follows:

wik+1)=w(k)-[373+ | a7e 69

where u is a parameter that is decreased at every successful iteration. It is only increased

when the calculated change would increase the loss function. Another important aspect of uis

that it makes sure that the matrix has an inverse.

The problem with the Levenberg-Marquardt algorithm is that it contains storage of matrices
that can be quite large. The size of the Jabobian matrix is Q x n, where Q is the number of

training sets and n is the number of weights and biases in the network.

6.6. Simulations

To check the validity of the model created it is of course possible to make simulations. There
are two different types of possible simulations. The operation modes are called parallel and
serial mode simulations. In the paralel simulation the available outputs from the past come

from the output of the neura model and in the seria those old outputs come from the red

process.
Process M Process y(k +1l
A
-1 -1
-y LS i) L
(k) . yk-1) .
L : L :
A
Neural g Neural
Model Uk + Model Uk +
Wk+] k
u(k u(k

Figure 6-13 Smulations in two different ways. To the left: Parallel simulation that uses the output from the neural
network for its prediction. To theright: Serial simulation that uses the output of the real process to predict the next
output.
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6.7. Architecture for the neural network

Now is the time to use the network for control applications. Once again there are numerous
approaches for this task. For example there are networks that are containing both the
controller and the identification part of the control system. In this work the neural network is
only a model of the process. The regulator is here not a neural network. There are many
different writers that have suggested their solutions. It is important at this point to remember
that the different notations used in the previous sections, inside the neural nets might change
its meaning. Here is a system containing the normal linear regulator with a neural nonlinear
process model. (Henriques et a, not yet published) suggested the network architecture, with

two input neurons, three neurons in the hidden layers and one output neuron.

F
input — output
7\ 7\ 7\ 7\
= o} (o)
=
y(k+1)
o ooz e pz
y&) 1 (- x(k+1)
N N N N
- EAJ 1st hidden 63 2nd hidden
y y y
x(K) .
q l—

Figure 6-14 Neural network architecture that isused in thiswork. ¢ is here the tansig function.

The equations can be described asfollows:

(x(k +1) = D@{ Ax(k ) + Bu(k )} + Hx(k ) + Fy(k)
y(k)=Cx(k)

6-10

]
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The vector x(k)OO" isthe output from the output of the second hidden layer, u(k)D o™ is

the input and y(k)D 0P isthe output. The matrixes A, B, C, D, F and H are interconnection

matrixes, containing the weights. A, D and H have size 3x3, B and F have size 3x1 and C has
size 1x3. D is clamped to be the identity matrix. In all this means 27 parameters to choose in
comparison to 4 in the linear model. It is obvious that it is a much more complex task to

choose that many parameters.

Thefina result isthen:

x(k +1) = DF{ Ax(k ) + Bu(k )} +{H + FC}x(k)
y(k)=Cx(k)

6-11

OO

It istheoretically difficult to explain why the vector F is necessary. H is enough to accomplish

full freedom for the expression H+FC.

6.8. I nput-output feedback linearisation control

A nonlinear function  is put before the nonlinear process, according to the figure below, so

that the transfer function vy islinear.

ix"
y “» process [ >

T g

Figure 6-15 The general idea of input-output feedback linearisation isto use a nonlinear function % put before the

4

process making the function y=f(v) linear.

u= LP(x,xd ,v)

where x and x? represents the state vector information from the process and from the desired

resulting system, respectively.

Assume that the processis modelled with a state-space description:
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0 y)=h(xK)

where X is the state vector and vy is the output from the system. f and h are both smooth
functions.

Further on we define the discrete decoupling matrix as:

E(x(k).u(k))= u"’(k){y(kw)}

where xOOPand yOOoOP.

The desired system is described as state space model:

T 0 o -
Wis obtained by solving the following equation in respect to u(k):

E(x(k),u(k))=CA x? (k) + CABVK) + CA 2Bk +1) +... + CB(k +r —1) 6-15
The output will then be:

y(k +1)=CA x¢ (k) + CA*BWk) + CA2BV(k +1)+...+ CBk + 1 - 1) 6-16

6.8.1. Exact calculation of the feedforward linearisation

To solve the equations 6-16 and 6-17 there are two main methods, one exact method and one
approximate method. The exact method can only be used in rare specia cases. If the output
signal can be described as:
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y(k +1)= £ (x(k))+ G(x(k))u(k) 6-17

the system is called affine and is possible to solve exactly if the matrix G(x(K)) isinvertible.

If the control law is chosen as:

k)= Pl )+ QxiMK)

and

6-19
Q(x(k)=G*(x(k))cB
the result isthe MIMO (p x p) linear system described by:
y(k +1)=CAx (k) + CBVK) 6-20

6.8.2. Approximate solution of the feedback linearisation

One possible method to solve eq. 6-16 and 6-17 is based on a linearisation at a working point.

In this method the description of the output is:

y(k +1)= f (x(k),u(k)) 6-21

Thelinear approximation, with the help of a Taylor’ s series the following is obtained:

y(k +1)= f, + OF,Ax(k) + OE,Au(k) 6-22

fo is the calculated operating point and /[, is containing the partial derivatives of f with
respect to x(k) and //E, is containing the partial derivatives with respect to u(k).
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The control law is the same as with the exact calculations. See eq 6-18.

Fromthisit is possible to calculate the feedback linearisation control law as:

p(x(k), x? (k)= u(k - 1)+ DE; Y- f, - OFAx(k) + CAX (K)}

6-23
Q(x(k))=DCEg'cB
Thisresultsin a system output described as:
y(k +1)= cAx¢ (k)+CByk) 6-24

This is if the higher order terms of the Taylor's series can be neglected and /&, is non-

singular.
In the experiments used for this work we have the following model (eg. 6-11):

x(k +1)= D tanh(Ax(k) + Bu(k)) + (H + FC)x(k)
k)=cxk)

From this follows that:

y(k +1) = cDtanh(Ax(k) + Bu(k)) + C(H + FC)x(k)

tan h(x(k))

0OF, =CD
1) 4

§A+CH +CFCE

and

[E, =CD tanh(x(k))HSE
0

ou

The control signal is calculated as:

Linear and Neuro Control Strategies: Some Experimental Results 82



u(k)= plx(k). x* (k) + QM) =
:u&—Q+DE§{ o DFAA@+CA%G&+[E§CB¢Q: 6-25
:u&—Q+DE§{ DFAA@+CA%00+CB%Q}

6.8.3. Linear predictive control

Assume that the whole system can be described as in Figure 6-16. (Braake, 1997 & 1999),
suggested this model. This kind of control is called linear predictive control and is here used
together with the input-output linearisation.

I-O feedback linearisation

_______________________________

Vv |
ref + 1| jinear i u
*Q " MBPC ! v "
l X
1
1
xd
linear
»| model
filter |«

Figure 6-16 Block diagram showing the entire input-output feedback linearisation.

The model-based predictive control, MBPC, is used to optimise the control. The loss function

tominimiseis:

IV)=(F-F)" (§-F)+Aav "w,av

where W,, isasquare positive definite diagonal weighting matrix of the controller outputs.
y can then be modelled as:

Y =Ry +R,V

where Ry and R, are matrices.
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Thisis optimised when Ry, =CA and R, =CB. (See (Braake, 1997 & 1999)). The result is that

the reference of the system can be described as:
r(k)=CAxd (k) + CBVK)
Due to the fact that we are dealing with a SISO system, the following control law is:

y(k) - OFgAx +r (k)

u(k)=u(k—1)+ — 0,

To get better control behaviour apole, a, isintroduced.

u(k)=u(k -1)+ (a-1y(k)+ (- a)r(k)- OFAX

6-26
0OE,
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7. Experimental resultswith the neuro control

7.1. Identification

The neura network suggested by Henriques (Henriques et al, not yet published) was trained
with the Levenberg-Marquardt algorithm in Matlab. See appendix 8.2 and 8.3. The same open
loop data that was the base for the linear identification was used. The input was a signa with
250 samples, and the training was made over five epochs. This means that the network was
exposed to 1250 input-output pairs. Figure 7-1 shows the parallel and serial simulations of the
neural network model. The upper signa is the output from the real process and the signal
furthest down is the parallel ssimulation and the signal in the middle is the serial simulation.

See Figure 6-13 for definitions of the different simulations.

Voltage

| | |

| | |

| | |

: : :

| | |
0 50 100 150 200 250
Samples

Figure 7-1 The simulation result with the neural network model of the process. At the top the real system. In the

middle the serial simulation and at the bottom the parallel simulation.

In the linear case the simulations are made with the knowledge of the real output. The
simulation method best suited for comparison is therefore the serial simulation. With thisin
mind it possible to see that the result is quite satisfying. The model is corresponding to the
real process quite well. It is not very fair to compare a linear and a nonlinear model when the
process is almost perfectly linear. To get a better model with the neura network than with a
linear model, the process has to be quite strongly nonlinear. For the PT326 process thisis not

the case.
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7.2. Control

7.2.1. Simulations

The result of the control simulations can be seen in Figure 7-2. The reference is the square
signal and the output is dightly above the neural network estimation. There is no steady state
error nor over-shoots and still the control is fast. There is noise added to the simulation to

create asmall error for the neural network.

1.4

I e

0.6 bl

Voltage

040 o]

0.2 W
ol i o YAV

-0.2

Figure 7-2 Smulation of the control using the input-output feedback linearisation. The neural network prediction
and the output are both very close to the reference. The control signal is a little bit further down. To the output

there is added noise.

7.2.2. Real process

With the first attempt with the feedforward linearisation the control was unstable. The
regulator compensates the error like a dead-beat regulator. To avoid big variations of the

control signal the control law was changed a bit:

(a-12)y(k)+ (1 -a)r(k)- OF,Ax
OE,

u(k)=u(k—l)+a 7-1
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where a hasasmall value e.g. 0.05.

With a =0.05 and the pole a=0.6 the result was the following (Figure 7-3):

Voltage

Figure 7-3 The result of the control using input-output feedback linearisation. The reference signal is a couple of
steps; the upper curve is the control signal. The output is following the reference well and the predicted output
fromthe neural net is situated between the output and the control signal.

The reference is rectangular, the output is following well. Sightly above is the estimation is

slightly to big and the control signal is situated on top.

If the inlet of air was decreased by closing the opening to a minimum the result was not so

good (See Figure 7-4).
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Figure 7-4 The control using input-output feedback linearisation with a load on the process.

It did not help if a dower pole was chosen. An adaptive identification of the process could
have been to a great help. The general idea for the identification would be by identifying the
matricesin eq. 6-12: A, B, C and H+FC, with the normal adaptive methods. This means a lot
of parameters and is most likely very difficult but should be possible. Some other approaches

would be keeping some parameters constant e.g. the parameters A and B.

7.3. Conclusions

The result was quite good with the input-output feedforward linearisation control. To
generaize alittle bit, to see what neural networks have to give to the automatic control field
the most important is to evaluate the neura network part of the control. The feedforward

linearisation techniques can be used with any non-linear model, not only neural networks.

It is difficult to make a good identification with the neural networks. They might look very
nice in the theory but to create a good model can more easily be made in other ways. The
PT326 process is amost linear. That makes is dightly unfair to compare the identification
made with the neural net and the linear model. If the process had been nonlinear it might be
possible to see advantages with the neural network. It is possible to see that the recurrent
network makes the linear identification well, just as well as the identification made in chapter

3. The conclusions are that if the process is nonlinear the neural network approach might be
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better than the linear approximation the linear control provides. This has to be verified by
further studies before it is considered as a fact. It is important to notice that there are other

ways to build nonlinear regulators than with neural networks.

The fact that changes of the parameters change the behaviour quite much is worrying. It
seems possible but difficult to create an adaptive on line identification of the process

parameters.
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8. Appendix

8.1. Matlab code for the adaptive control

function main

R LT Initialization

i nitdac; % he data aqusition board is initialized

Arod=[ 1 -1.5 0.5 ]; % he initial paraneters of the system nodel

Bnrod=[ 0 0.2 0.5 1];

ord=2; % he order of the systemis initialized

Acl =zeros(1, ord+1); % he cl osed | oop shold have this size

Acl (1: ord+1)=poly([ 0.85 0.8 ]); % he cl osed | oop poles are..

Ts=200; %Ganpling tine

F = 3*eye(4); % he covariance matrix is initialized

Th= [ Anpd(2) Anpd(3) Bnod(2) Bmod(3)]’; 9%dhe paranmeter vector is
%nitialized

| anb0=0. 97; | anb1=0. 95; | anb2=1; %-orgetting factors are

%nitialized
al pha=l andl1/ | anb2;

uk=3* sun{ Anod) / sum( Bnod) ; % he initial value are chosen so the
Y%out put is at
%steady state with the value 3

ukl=uk; uk2=uk; uk3=uk; uk4=uk; ukb5=uk; %nd the 'forner’ val ues
%re initialized according

%o this
yk=3; ykl=yk; yk2=yk;
ykf=yk; ykfl=yk; ykf2=yk; ykf3=yk;
R Def i ne i nput

I = ([3*ones(1, 60) 5*ones(1,48) 2*ones(1,72) 4*ones(1,41)
1. 5*ones(1, 60) 5*ones(1,90) 2*ones(1,60)]);
% i nput vector is created

N=si ze(l); %N = the input length

N=N(1, 2);

AB=zeros(N, 4); %A\B is a matrix containing all the
%model paranmeters throughout time

| anb=zeros(N, 2); %anb is a matrix containing the

% orgetting factors throughout tine

Up=zeros(N, 1); %ontrol signal vector is initialized
Yp=zeros(N, 1); %out put vector is initialized

R e e Di ophanti ne equation

[ S, R, T] =col pol os(Bnod, Anod, Acl, ord, 1); % he Di ophanting

%equation i sol ved

Linear and Neuro Control Strategies: Some Experimental Results 82



%ornmally it is not needed
%t this point
%but here it is needed to
o%avoid errors

R R control loop -----------------------
for k=1:N
st =nmycl ock; % he clock is ’started
rk=1(k); % he reference is | (k)
R T out put
yk = read; % new output is read fromthe process
ykf =0. 6*yk+0. 4*ykf 1; % he feedbacked output is filtered
%k = B(1:3)*[uk ukl uk2]' -A(2:3)*[ykl yk2]'; % he sinul at ed
%out put is cal cul ated
% f want ed
R e e updat e adapti ve paraneters
0o = [-ykfl -ykf2 ukl uk2]"'; % he ol d-val ues-vector is updated
ek = (ykf - Th'" * 0)/(1 + 0" * F* 0); %he error is calculated
Th = Th + F * o * ek; %he new paraneters are cal cul ated
% anmbl=l anb0*| anbl+1- | anbO; % he forgetting factors are
% anb2=1; %udat ed according to sone rule
| anbl=trace(F-((F*o*0o' *F)/ (al pha+o' *F*0)))/trace(F);
| anb2=I anbl/ al pha;
F = (1 lanmbl)*(F - (Ffo*o' *F)/((lambl/lanmb2) + o' * F * 0));
% he covariance matrix are updated
Anod=[1 Th(1:2)']; % he new nopdel is extracted
Brod=[0 Th(3:4)'];
R e Di ophanti ne equation
[ S, R, T] =col pol os(Bnod, Anod, Acl ,ord, 1); % he Di ophantine is solved
LR L Some data is saved
AB(Kk, :)=[ Arod(2: 3) Brnod(2:3)];
lanb(k,:)=[lanbl | anb2];
err (k) =ek;
R e control

uk = T*rk - R(2:ord+1)*[ukl uk2]' - S*[ykf ykfl ykf2]';
% he control is calcul ated

uk=0. 6*uk+0. 4*uk1;
% .. and filtered

i f uk>10, uk=10.0; end; %rhe control is linmted

if uk< O, uk= 0.0; end;
write(uk); % he control is put at the input of the process
disp([ rk yk uk ]) % he signals are witten on screen
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R R T updat e states
Yp(k) =yk;
Up(k) =uk;
yk2=yk1l; ykl=yk;
uk5=uk4; uk4=uk3; uk3=uk2; uk2=ukl; ukl=uk;
ykf 3=ykf 2; ykf2=ykfl; ykfl=ykf;
et =nmycl ock; % he clock is ’stopped
if (et-st)<Ts & (et-st)>=0 % he systemis delayed so the
del ay(Ts-et +st); %sanpling tine is correct
el se
disp(’ ------ short sanpling tine ----- ")
end ;
R control loop end ------------------
end
savedat (' ab. dat’, AB) % he data is saved to files

savedat (' | anb. dat ', | anb)
dat=[1’ Yp Up];
savedat (' data. dat’, dat)
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8.2. Matlab codefor identification of the neural network

% DATA
% —==—=—=—=======

| oad ur. dat
| oad yr. dat
filt;

i np= ur';
out= yr';

inicio= 1;
fim= length(out)-1;
TAM = fiminicio+l

UR= inp(:,inicio:fim;
YR= out(:,inicio:finm;

YR=YR- YR(1);

YR1= YR

for i=1:TAM 1 %WR1 is YR shifted one step to
YRL(:,i+1)=YR(:,i) ; % he right (sane |ength)

end

URl= UR;

for i=1: TAM 1 URL(:,i+1)=UR(:,i) ;
end

plot ([YR UR YRL'])

% I NI TI AL

% —==—=—========

nu = 1; % # inputs =nu

ny = 1, % # outputs =ny

nx = 3; % # neurones in |ayer X=nx

nz = 3; % # neurones in |layer z=nz

EPCCAS = 4 % # epochs =epocas

EXTERN = 0 %

TREINA = input('TREINA = ') %help variable TREINA is chosen. 1
%reans train, O nmeans not train

t o=cl ock; %start tine

ss_nod % un the function ss_nod

t enpo=eti me(cl ock, to)/ 60 % he run tine is cal cul ated
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8.3. Matlab code for initialisation, training and simulating

the neural net

i f TREI NA
% NETWORK DEFI NI TON
%
num nputs = 2; %t inputs to the net are 2. (input and feedback)
nunmLayers = 3; %t | ayers are 3;
tnet = network(num nputs, nun_Layers); % he net is created with

% he right anounts of
% nputs and out puts

t net . bi asConnect =[000O0]"; %i as = zero;
tnet.inputConnect =[10; 01;00]; %lefine connections for the

%wei ght s between the |ayers
tnet.layerConnect =[010; 110; 010];
t net. out put Connect = [0 0 1 ];
tnet.targetConnect = [0 0 1 ];
tnet.inputs{1l}.size = nu; %t nputs to the first input

%ode are nu from I N TI AL

tnet.inputs{2}.size = ny;

%f#i nputs to the second input node

% f eedback) are ny fromIN TIAL
tnet.inputs{l1l}.range = [ -1*ones(nu,1) 1*ones(nu,1)];

% he i nput range are defined
tnet.inputs{2}.range = [ -1*ones(ny,1) 1*ones(ny,1)];

tnet.layers{1}.size = nz; %tnodes in layer 1 is...

tnet.layers{1l}.transferFcn = 'tansig'; %tout put function from
% ayer 1 is...

tnet.layers{2}.size = nx; %tnodes in layer 2 is...

tnet.layers{2}.transferFcn = 'purelin';

tnet.layers{3}.size = ny; %tnodes in layer 3 is...

tnet.layers{3}.transferFcn = 'purelin';

tnet. | ayer Wi ght s{ 2, 2}. del ays
tnet. | ayer Wi ghts{1, 2}. del ays

1; %elay in layer(.),node(.) is ...
1;

= 0. 1*rand(nz, nx); %Par aneters are randonml y chosen exept for WD
= 0. 1*rand(nz, nu);

= 0. 1*rand(ny, nx);

= eye(nx, nz);

= 0. 1*rand(nx, ny);

= 0. 1*rand(nx, nx);

tnet. 1 W1, 1}
tnet.LW?2, 2}
tnet.LW1, 2}
tnet.LW?2, 1}
tnet.LW 3, 2}
tnet.l W2, 2}

% he paraneters are put into the net
%net.LW1,2} neans to layer 1 fromlayer 2

F553%5

disp(' -------- NETWORK initialization --------- )

% NETWORK TRAI NI NG
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tnet. perfornfFcn = ' nse’; % he paraneters are changed
%ccording to the function...
%ere ’'nse’ =nean square error

tnet.trainFcn = "trainln; % he | earning training nmethod
% s... Here Levenberg- Marquar dt

tnet.trai nParam goal = le-15; % he goal of the training is to
Y%ave an error less than...

t net. trai nParam epochs= EPCCAS; %t epochs is... If the # of
%terations is exeeded the
%raining will stop

tnet.trai nParam show = 1; % he training status will be
%hown every... iteratrions of
% he al gorithm

tnet.trai nParam nu_nax = 1e50; %mw is the initial value for ny.

tnet. | ayer Wi ghts{2, 1}.1 earn=0. 0; % he learning rate for node (.,.)

US = con2seq(UR1); %makes a sequence of the shifted input signal

YS = con2seq( YRL); %makes a sequence of the shifted output

TS = con2seq(YR); %makes a sequence of the unshifted output

XS =[Us; YS];

tnet= train(tnet, XS, TS); % r ai ni ng begi ns

W = tnet.l W2, 2}; %he weights of ... are...

WB = tnet.I W1, 1};

WH = tnet.LW2, 2};

WA = tnet.LW1, 2};

W = tnet.LW?2, 1};

WC = tnet.LW 3, 2};

ys = sinm(tnet, XS); %imulation starts

ys = seq2con(ys); % .. and is nade into a sequence

YS = ys{1,1}; %makes YS to the output vector of
% he sinul at ed net

disp(’ -------- NETWORK | earning --------- ")

data3=[ URL’ YR’ YR YS 1;

UR=UR*10;
YR1=YR1*10;
YR=YR* 10;
YS=YS* 10;

save data3.dat data3 /ascii %saves data to file
save WA dat WA /asci
save WC. dat WC / asci
save WD. dat WD / asci
save WB.dat VB / asci
save WF. dat WF /asci

i
i
i
i
i
save WH dat VWH /ascii

plot([YR YS]) %l ots the real systemw th the sinulation
el se

% NETWORK VALI DATI ON

%

| oad WA. dat % oads existing data

| oad WB. dat
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| oad WC. dat

| oad WD. dat

| oad WF. dat

| oad WH. dat

| oad dat a3. dat

UR1= data3(:, 1:nu)’; % ef erence
YR1= dat a3(:, nu+1: nu+ny)’ ; % ef er ence
YR = dat a3(:, nu+ny+1: nu+ny+ny)’;

YS = dat a3(:, nutny+ny+1: nu+ny+ny+ny)’ ;

i nput del ayed one sanple
out put del ayed one sanpl e
% ef erence out put
%out put fromthe simulink

%i mul ati on nade during the
% ear ni ng

[nz, nx] =si ze(WA) ;

[ nx, nu] =si ze(WB) ;

[ ny, nx] =si ze(\WO) ;

TAMEl engt h( YR) ;

YN= zeros(ny, TAM;
xn= zeros(nx, 1); xnl=xn;
yn= YRL(:,1); ynl=yn;
for t=1: TAM %si mul ati on
ukl= URL(:,t);
yk1= YRL(:,t);
xn = tansig( WA*xn + WB*ukl) + WF*WC*xn + WH xn;
yn = WC*xn ;
YN(:,t)=yn; %out put fromthe neural net and
% he sinmulati on made above
ynl=yn;
end
YN=YN* 10;
YR=YR* 10;
plot([YR YN]) %l ots the simulation
ERRGB = sun(abs(YR -YN)) % he error is...
end
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8.4. Matlab codefor control with feedforward linearisation

cl ear
pack

% DEFI NI TONS
%

| oad WA. dat o%Par aneters are | oaded
| oad VB. dat
| oad WC. dat
| oad V\D. dat
| oad WF. dat
| oad VWH. dat

[ nz, nx] =si ze(WA) ; %5i ze of the layers are read
[ nx, nu] =si ze( WB) ;
[ ny, nx] =si ze(WO) ;
X0 = zeros(nx, 1);

R e Pol e pl acenent controller
R e Ref erence

T =1,

tf = 360;

t =0:Ttf-T;

TAME | ength(t);
RR = referenc([] 0.2 0.9 0.1 1.2 ]',TAM4 )"
ocreate reference val ues

R real systeminitialization
xn=0. 01*rand(nx, 1); xnl=xn;

wk = 0; wk2=wk; wkl=wk;

uk = 0; uk2=uk; ukl=uk;

yk = 0;  yk2=yk; ykl=yk;

yn = 0; yn2=yn; ynl=yn;

ek = 0; ek2=ek; ekl=ek;

vk = 0; vk2=vk; vkl=vk;

i ek= 0;

en = O; %error with neural net

er = 0; %error with 'real' system

%o ------mm e neural nodel initialization
xn= zeros(nx,1);

zn= zeros(nz,1);

zo= zeros(nz,1);

yn= zeros(ny,1);

R real system + neural nodel
dx= zeros(nx, 1);

du= zeros(nu,1);

YN= zeros(ny, TAM;

YR= zeros(ny, TAM;

UR= zeros(ny, TAM;

EN= zeros(ny, TAM;

ER= zeros(ny, TAM;

WR= zeros(ny, TAM;

YN(:,1) = yn;

YR(:,1) = yk;
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UR(:,
ER(:,
ER(:,

%
%

1)
1
1

for tinme=2: TAM

end

= uk;
= er;
= en;
CONTROL LOCP
rk = RR(tine) ;
R R T real system out put
yk=pt 326( ukl, uk2, yk1, yk2); % produces the output, v,
% romthe process
R neural nodel out put

Xnl=xn;
xn = tanh(WA*xn + WB*uk ) + WF*ykl +WH*xn ;
%al cul ates the state, x, of the neural net

yn = WC*xn ; %al cul ates t he output vyl

R e linearization

dx = xn-xnl; %al cul ates dx

J = diag( sech(WA*xn + WB*uk) ); %alc. the deriv. of vyl

FL = WC* (J* WAHWHHWF* V\C) ; %al cul ates the linearisation of
% he neural network

G = WC*J*WB; %al cul ates G

ig =inv(Q); %al cul ates the inverse of G

R e control |aw

a 0.4 i Y%ole

uk = ukl + 0.1*ig*( (a-1)*yk + (1-a)*rk -FL*dx );

i f uk>10, %Jpper limt for control
uk=10;

end;

i f uk<o0, %bower limt for control
uk=0;

end;

0/8:***********************************************************
YR(:, time)=yk;
UR(:, tinme)=uk;
XN(:, tinme)=xn;
ZN(:,tinme)=zn;
YN(:,tine)=yn;

uk2=ukl; ukl=uk;
yk2=yk1l; ykl=yk;
ek2=ekl; ekl=ek;
vk2=vkl; vkl=vk;
Xxn2=xnl; Xxnl=xn;
yn2=ynl; ynl=yn;

plot([ YR YN RR WR ])
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8.5. Matlab code for solving the Diophantine equation

function [S, R T] =col pol os(B, A, Am ord, ti po)

for i=length(Am +1:1ength(A) %makes Amto the right size
Am=[ Am 0] ;
end
if tipo==1 %reates the Diofantine Equation
Mezer os(2*ord+1);
for i=1:ord

Mi:i+ord, i)=A";
end
for i=1:ord+1
Mi:i+ord-1, i+ord)=B(2:o0rd+1)’;

end
M 2*ord+1, 1: ord) =ones(1, ord); % he sum of the regul ator
Y%paraneters are ....

BB=[ Am(2:ord+1)’-A(2:0rd+1)’ % he right hand side vector
zeros(ord, 1) % s created
-11;

FG=i nv(M * BB; % he equation is solved

R=[1 FG1l:ord)’]; %nd the paraneters are extracted

S=FQ@ ord+1: 2*ord+1)’;
i f abs(sumB))<0.001 % nsurance that T is not getting too big
T=10;

T=sum( Am) / sunm( B) ;

el se
End

el se %same thing w thout integral action
Mezeros(2*ord-1);
for i=1:o0rd-1
Mi:i+ord, i)=A;

end
for i=1:ord

Mi:i+ord-1, i+ord-1)=B(2:ord+1)’;
end

BB=[ Am(2:ord+1)’-A(2:0rd+1)’
zeros(ord-1,1) ];

FG=i nv(M * BB;

R=[ 1 FQ1:o0rd-1)’ 01]; % zero at end to have the
%same size as integral
S=[ Ford:2*ord-1)" 0 ];
i f abs(sum(B))<0.001
T=10;

T=sum( Am) / sunm( B) ;

el se

end
end
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