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1. Introduction

Most control problems in the process industry are solved using PID con-
trollers. There are several reasons for this. One is that the PID controller
can be tuned manually by “trial-and-error” procedures, since it only has
three adjustable parameters. The possibility to make manual adjustments
of the controller parameters is important even when automatic tuning pro-
cedures are available.

When there are long dead times in the process, the control performance
obtained with a PID controller is, however, limited. For these processes,
dead-time compensating controllers (DTC) may improve the performance
considerably. These controllers require a process model to provide model-
predictive control. This usually means a significant increase in controller
parameters.

The use of DTC’s also brings into existence new robustness problems
connected to the dead-time. The classical ways to characterize robustness,
phase margin and amplitude margin are not sufficient. In this paper, the
delay margin which is the greatest variation in dead-time that can occur
in the process before the closed-loop system becomes unstable, will be used
as well.

The aim of this paper is to show how it is possible with simple ex-
periments to find parameters for the DTC’s that give good performance
while remaining robust. The experiments are composed of an identifica-
tion of simple process models and then an experiment to determine an
upper limit on closed-loop bandwidth. The latter is performed in open loop
while the former is partially performed in closed-loop. As a measure of
closed-loop bandwidth, the reciprocal of the time constant of the set point
response is used. This can then be related to other measures such as the
loop-gain crossover frequency. The DTC’s used in this paper have certain
PID qualities, i.e. few parameters that can be tuned manually and have
good interpretation in terms of classical control theory concepts. It will also
be shown how the DTC’s can be given a guaranteed delay margin.

For the identification of the simple process models in the DTC’s an iden-
tification method first presented in [Ingimundarson and Hägglund, 2000a]
is used. In this paper only the main equations and results are presented.

The paper is arranged in the following manner. In section 2 the iden-
tification method is introduced. In section 3, dead-time compensating con-
trollers are discussed. In section 4 the tuning procedure for stable processes
is presented. This is followed by the procedures for integrating processes
in section 5. Finally conclusions are drawn in section 6.

2. Identification

The two processes that are identified are the first-order plus dead-time
(FOPDT)

Pn(s) = Kn

Tns+ 1
e−Lns (1)

and the two-parameter model

Pn(s) = Kn

s
e−Lns (2)
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These models are frequently used in the process industry and are consid-
ered to capture dynamics of real plants sufficiently well for many applica-
tions.

The identification method presented in this paper can be divided into
two phases. First the average residence time, Tar = Ln + Tn and the gain
Kn are estimated with a change in operating levels. This change can be
accomplished by a change in set point while operating in closed loop. The
approach is based on the method of moments, see [Åström and Hägglund,
1995] for a general input signal applied to a linear system initially at rest.
Secondly the apparent time constant Tn is determined with an open loop
experiment where the input signal is a step or a ramp. In the case of the
two-parameter model given by Eq. (2) only the first part of the experiment
is necessary.

2.1 The method of moments
The method of moments can be explained with the following equations. For
a general transfer function G(s) an arbitrary input signal U(s) results in
an output signal given by

Y(s) = G(s)U(s) (3)

By derivating Y(s) with regard to s one gets

Y′(s) = G′(s)U(s) + G(s)U ′(s) (4)

The transfer function G(s) and its derivative can be evaluated at an arbi-
trary point α by calculating

Y(n)(α ) = (−1)n ∫∞0 tne−α t y(t)dt

U (n)(α ) = (−1)n ∫∞0 tne−α tu(t)dt

and solving Eqs.(3) and (4). Notice that if α = 0 it is necessary for the
signals considered to go to zero as time goes to infinity. Otherwise the
integrals will not converge. Typically an input signal of the sort ū(t) =
u(∞) − u(t) is selected. u(∞) is the value of the input signal after steady
state has been reached again. The corresponding output signal is then
ȳ(t) = y(∞) − y(t). Then it is only necessary to integrate for a finite time
interval. This interval is denoted [tb, t f ] in the following.

In the case of the FOPDT model, (Eq. 1) it is easy to get the following
expression

P′n(s)
Pn(s) = −Ln − Tn

1+ Tns

By evaluating the transfer function at α = 0, Tar can be written as

Tar = −P′n(0)
Pn(0) (5)

To evaluate P′n(0) it would be necessary to calculate the first moment of
ȳ(t) and ū(t) for signals for which the integrals converge. These integrals
have bad noise properties because of the factor t. Values at the end of the
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experiment have much higher weight than the ones in the beginning of the
experiment. Therefore it is beneficial to consider the artificial signals

yd(t) = d
dt ȳ(t)

ud(t) = d
dt ȳ(t)

The novelty of the method is the use of these signals. Denoting the n-th
moment of yd and ud with yn and un respectively it is possible to evaluate
P′n(0) as

P′n(0) =
y1 − Pn(0)u1

u0
(6)

Evaluating the moment integrals y0 and y1 gives

y0 =
∫ ∞

0
yd(t)dt = [ ȳ(t)]∞0

= − ȳ(0) (7)
y1 = −

∫ ∞

0
tyd(t)dt

= − [t ȳ(t)]∞0 +
∫ ∞

0
ȳ(t)dt

=
∫ ∞

0
ȳ(t)dt (8)

By evaluating Eq. (5)with moment equations Eqs. (7) and (8) the following
expression is derived

Tar = −P′n(0)
Pn(0) =

−y1 + Pn(0)u1

u0Pn(0)

=
∫ tf

tb

ȳ(t)
ȳ(0)dt−

∫ tf

tb

ū(t)
ū(0)dt

(9)

This can be rewritten as

Tar =
∫ tf

tb

u(t) − u(tb)
u(t f ) − u(tb)

dt−
∫ tf

tb

y(t) − y(tb)
y(t f ) − y(tb)

dt (10)

The limits of the integrals have been changed to tb and t f . Eq. (10) has a
nice graphical explanation. The functions under the integrals have begin-
ning value equal to zero and final values equal to one. Tar is simply the
area between the two signals when they go from 0 to 1. This is shown in
Fig. 1.

The method presented requires a change in the process levels. If this
is accomplished by changing the set-point in closed-loop a stable controller
is assumed to be present. The form of this change is not important but
a step or a ramp would be easiest to implement in practice. Since the
identification is based on integrals of the input and output signals it is
preferable that the experiment is as short as possible in the presence of
measurement noise.
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0

1

y(t)−y(tb)
y(tf )−y(tb)

u(t)−u(tb)
u(tf )−u(tb)

t ftb

Tar

Figure 1 Graphical explanation for Eq. (10)

If an integrator is present in the process the method presented can
be used in the same way by considering the integral of the process input
signal

ui(t) =
∫ t

tb

u(t)dt

and replacing ui(t) with the input signal in the previous paragraphs. Dead-
time Ln in Eq. (2) is then given by Tar

Process gain Kn is trivially estimated as the ratio between input and
output signal change, Kn = ȳ(0)/ū(0).

2.2 Open loop experiment to identify Tn

If a step or a ramp is applied to the FOPDT model analytical expressions
for the output signal are easily obtained. By integrating these expressions
from 0 to Tar it is possible to get expressions with only Tn as the unknown.
In Eqs. (11) and (12) Tn is given for a step or ramp input signal.

Step : Tn = Ae1

hKn
(11)

Ramp : Tn =
√

A
hKn(1/2− e−1) (12)

Parameter A is the integral of y(t) from 0 to Tar. The parameter h is the
amplitude for a step signal or the rate for a ramp signal. The length of the
open loop experiment is always Tar.

Notice that Eq. (12) can be used for a FOPDT model with integrator
as well. Sending a step of height h to an integrating process is the same
as sending a ramp with rate h to the process without an integrator. In
both cases Eq. (12) can be used to find Tn. The problem with the open-loop
ramp experiment is that if the dead-time Ln is sufficiently larger than time
constant Tn, the final value of output signal y(t) will be quite large if one
selects a large h. But it is necessary for good estimation of the integral A
to have a large h. This limits the use of this extension to cases where there
is little measurement noise.
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yb

y1 ← A

yf

t ftb t f + Tar

ub

uf

u1

Figure 2 Identification experiment for G(s) = 1
s+1 e−5s

2.3 Identification procedure
The basic steps in the identification procedure can now be presented. In
Fig. 2. the input and output signals are shown for a specific FOPDT process.
For simplicity the change in set-point for the closed loop experiment is a
step. The open loop experiment is also a step.

1. Control the process to a steady state initial level yb. Record the signal
levels ub and yb.

2. Apply a step in the reference signal ysp(t) at time tb

3. Integrate y(t) and u(t) until process reaches steady state again. This
occurs at time t f . Again record the signal levels uf and yf .

4. Determine process gain Kn by observing the signal levels and Tar
from Eq. (10).

5. Apply a step in open loop and integrate the area A using the estimate
of Tar obtained from previous step.

6. Estimate time constant Tn from Eq. (11) and dead time by Ln =
Tar − Tn.

The method requires a decision criterion on when steady state has been
achieved. This occurs at times tb and t f . If integral action is present in the
controller the steady state error should be zero. This reduces the task to
determining when y(t) is the same as the set-point ysp(t).

In the presence of noise the steady state values ub, uf , yb and yf can
be determined by averaging the signals over a period of time.

In the presence of measurement noise the numerical evaluation of the
integrals might have large variance. Less variance would be assured by
proper noise filtering. The noise filter would then of course be considered
as part of the controlled process.
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Figure 3 Block diagram of a Smith predictor.

3. Dead-time compensation

The most common dead-time compensating controller is the Smith Predic-
tor (SP) [Smith, 1957]. The structure of this controller is shown in Fig. 3.
The controller output u is fed through a model of the process and through
the same model without dead time. In this way, the controller acts, in the
ideal situation of perfect modeling, on a simulated process which behaves
as if there was no dead time in the process.

The real process is assumed to be linear time invariant and is denoted
as P(s). The model is denoted Pn(s) = Gn(s)e−Lns. Gn(s) is delay free.

A SP which uses the simple FOPDT model given by Eq. (1) combined
with a PI controller

C(s) = K
(

1+ 1
sTi

)
(13)

requires five parameters to be determined, namely K , Ti, Kn, Tn, and Ln.
These parameters may be obtained from a systematic process identification
experiment. However, it is practically impossible to tune this controller
manually by trial and error procedures. Therefore, replacing a PID con-
troller with a standard SP gives a drastic increase in operational complex-
ity. This increase is present in both the commissioning and maintenance
of dead-time compensating controllers.

A common way to deal with this complexity is to automize the tuning
procedure. Automatic tuning of DTC’s has received some attention in the
literature, some references are [Palmor and Blau, 1994], [Lee et al., 1995]
and [Vrancić et al., 1999]. But even when automatic tuning procedures are
available simpler structures are advantageous since it provides a possibil-
ity for the user to make the last final adjustments manually or manually
re-tune the controller later.

A few papers have been written that emphasize the importance of less
complex DTC’s. In the stable case, [Hägglund, 1996] is one example and
in the case of integrating processes [Matausek and Micic, 1999] have ad-
dressed the problem.

The bandwidth of DTC’s is usually related to the model parameters
which are assumed to be available when the DTC’s are initially tuned. In
[Palmor and Blau, 1994], the closed-loop time constant was set proportional
to the apparent dead-time of the process. In [Hägglund, 1996] it was related
to the open-loop apparent time constant. In [Normey-Rico et al., 1997] the
closed-loop bandwidth was related to both of these.

In the case of integrating processes, it has been more common that
the initial bandwidth is supposed to be manually tuned. Guidelines are
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given from where a starting point can be obtained. In [Normey-Rico and
Camacho, 1999] the closed-loop time constant was related to an assumed
dead-time error between the model and process. In [Matausek and Micic,
1999] it was suggested that the closed-loop time constant should be set
equal to the apparent time constant of the dynamics additional to the
integrator.

In this paper a new approach is taken to determine the closed-loop time-
constant in the initial tuning. Given the model parameters it is possible
to calculate the uncertainty norm boundary of the DTC’s. The uncertainty
norm boundary tells how much the real process can deviate from the model
at each frequency without the closed loop system becoming unstable. Then
it is shown how it is possible with simple experiments to obtain frequency
dependent inequalities bounding the model uncertainty. A lower bound
on the closed-loop time constant is then found by making sure the model
uncertainty found is always less than the uncertainty norm boundary of
the DTC’s. The goal is that this initial tuning is, when the model is close
to the process, less conservative but robustly stable.

It was mentioned in the introduction that classical measures of robust-
ness such as gain and phase margin are not sufficient when dealing with
dead-time systems. This is discussed in [Palmor, 1980]. In addition to these
classical ones it is proposed that a third one is used, namely the delay
margin. The delay margin of a closed-loop system can be defined in the
following way (modifying slightly the definition in [Landau et al., 1995]).
If the Nyquist curve intersects the unit circle at frequencies ω i with the
corresponding phase margins Φ i then the delay margin can be defined as

DM = min
i

Φ i

ω i

Most of the tuning rules for DTC’s presented in the literature provide
a certain delay margin. The initial tuning, which results from the proce-
dures in this paper, can have an arbitrary small delay margin if the model
describes the process well. Therefore it is shown how the DTC’s can be
re-tuned with a guaranteed delay margin. This can have a practical value
when it is known how much the dead-time might vary around the operat-
ing point. Finally it is also shown what delay margin can be expected from
the initial tuning in the nominal case, i.e. when the model and process are
equal.

4. Stable Case

In [Hägglund, 1996], a dead-time compensating controller with only three
adjustable parameters was presented. The controller can be viewed as a
PI controller with model-based prediction. The abbreviation PPI stands for
“Predictive PI”. The controller can be tuned manually in the same way as
a PID controller.

The structure of the PPI controller is the same as for the Smith pre-
dictor, with the FOPDT model (1) combined with the PI controller (13).
The only difference is the parameterization. The five adjustable parame-
ters are reduced to three by introducing constraints between the controller
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Figure 4 The FPPI

parameters and the model. These constraints are

Tn = Ti

Kn = κ /K
(14)

κ is a constant to be determined later. The identification method presented
before only provides a good approximation of the real process at low fre-
quencies. Robustness problems for PPI can occur because of model error
at high frequencies. In [Normey-Rico et al., 1997] a filter was proposed
to provide robustness towards high frequency model errors. The resulting
controller was abbreviated FPPI. The proposed controller structure can be
seen in Fig. 4. The filter F(s) is typically a one parameter low-pass filter
and it is shown later that it is sufficient for the purpose of this paper to
assume it is of first order

F(s) = 1
Tf s+ 1

In the nominal case, that is when the model describes the process per-
fectly, P = Pn, the controller parameterization given by Eq. (14) results in
a closed loop set point response

Y(s)
Ysp(s) =

1
Trs+ 1

e−Lns (15)

where Tr = Tn/κ . This is a familiar result regarding Smith-predictors.
The time constant of the closed loop system can be reduced by increasing
κ . Notice that κ = 1 places the closed-loop pole in the same place as the
open loop one. A proper selection of Tr will be the main subject of the
next subsection. It is shown how an lower limit on Tr can be obtained by
performing a simple open-loop step experiment.

4.1 Selection of Tr

The closed loop characteristic equation for the FPPI is

1+ C
1+ CGn

F(P − Pn) = 0 (16)

Denoting the difference between model and process as δ P = P − Pn the
maximum value of hδ Ph allowable while maintaining closed loop stability,
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or the uncertainty norm boundary can be obtained from Eq. (16) by solving
for δ P

h∆PhFPPI = Kn

∣∣∣∣ (iω Tr + 1)(iω Tf + 1)
(iω Tn + 1)

∣∣∣∣ (17)

Notice that if an inequality of type

hδ Ph ≤ Aω (18)

is available the system can be made stable by chosing appropriately Tr
and Tf . This follows from the fact that the degree of the denominator
polynomial is one higher than the numerator polynomial. The condition
for stability would then be

hδ Ph ≤ Aω < h∆PhFPPI ∀ω (19)

An uncertainty bound of type (18) can be obtained with a simple open-
loop step experiment. The step response of the real system is denoted by
y(t). After an identification experiment the FOPDT model response is avail-
able and given by

yn(t) =
{

0 for t < Ln

Kn(1− e−(t−Ln)/Tn) for t > Ln
(20)

Denoting the difference between the two responses f (t) = y(t)− yn(t), the
following expression is the definition of the Laplace transform

P(s) − Pn(s)
s

=
∫ ∞

0
e−st f (t)dt (21)

Putting s = iω the following equation is obtained∣∣∣∣P(iω ) − Pn(iω )
iω

∣∣∣∣ =
∣∣∣∣∫ ∞

0
e−iω t f (t)dt

∣∣∣∣
≤

∫ ∞

0
h f (t)hdt

= A (22)

Note that the error is weighted with one over ω . At stationarity there-
fore there can be no error. Therefore Pn(s) and P(s) have to have the same
steady state gain Kn.

If a time constant T̄f = A/Kn is defined the relevant areas can be
graphically displayed on a normalized step response. This is shown in Fig.
5.

Inequality (19) can now be restated the following way∥∥∥∥ T̄f ω (iTnω + 1)
(iTrω + 1)(iTf ω + 1)

∥∥∥∥
∞
< 1 (23)

Notice that T̄f and Tn are assumed to be known while Tr and Tf are
design parameters. The latter two should be chosen to minimize some per-
formance criteria while fulfilling the above inequality. For a fast set point
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Figure 5 Step responses y(t) and yn(t) normalized to 1.

response, Tr could be chosen small while Tf would be used to fulfill the
above inequality. Commonly in process control, regulatory performance is
considered more important. The performance criteria recommended here
is to minimize the integrated error when load disturbance l is a unit step.
Using the final value theorem the following expression is obtained.∫ ∞

0
e(t)dt = (Tr + Tf + Ln)Kn (24)

The design problem can be set up as a minimization problem where Eq.
(24) is the cost function and Eq. (23) is the constraint. This problem can
be further simplified. Notice that Tr and Tf enter the cost function and
the constraint the same way. Using this fact it is possible to obtain nec-
essary conditions that show that at the optimum, Tr is equal to Tf . Still
the analytic solution to this problem quickly becomes rather involved. A
necessary condition is that the direct term in the transfer function is less
than 1. This gives the following condition

Tr >
√

TnT̄f (25)

A further simplification of the problem can be obtained by normalizing the
frequency in inequality (23) with Tr. If the following quantities are defined

ω̄ = Trω γ = T̄f /Tr

inequality (23) can be written as∥∥∥∥γ ω̄ (iκω̄ + 1)
(iω̄ + 1)2

∥∥∥∥
∞
< 1 (26)

κ was defined following Eq. (15). Using a bisection algorithm, an upper
limit on κ for which inequality (26) holds, was calculated as a function of
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Figure 6 κ and γ within the shaded area fulfill inequality (26). The edge of the
shaded area corresponds to the equality. Also shown are design lines κ = 1/γ and
γ = 1

γ . This is shown in Fig. 6. Any pair of κ and γ that lies within the shades
area fulfills inequality (26). Using the above figure the following design
rules are proposed

γ κ ≤ 1 γ ≤ 1 (27)
In terms of the time constants this becomes

Tr ≥
√

T̄f Tn (28)
Tr ≥ T̄f (29)

Remark The use of an equality in Eq. (28) requires justification. In-
equality (22) allows infinite error when ω →∞. Most normal processes are
on the other hand of low-pass character. This means the inequality could
be replaces with a strict inequality at high frequencies. When κγ = 1 the
supremum of the norm in Eq. (26) is achieved when ω → ∞. So using
additional information about inequality (22), Eq. (28) can be justified.

4.2 Sensitivity to dead-time errors
Robustness of DTC’s has been analyzed by many authors. Some references
are [Morari and Zafiriou, 1989], [Palmor, 1980] and [Lee et al., 1996]. Usu-
ally most attention is devoted to analyzing the sensitivity towards errors
in the dead-time. The reason for this is that it is often towards these errors
dead-time compensators are most sensitive.

With this in mind it is important to give easy ways to reduce the dead-
time sensitivity and be able to set a desired delay margin without limiting
the bandwidth, i.e. sacrificing performance, to much. If the dead-time is
expected to vary an amount ∆ L the increase in integral A in Eq. (22) is
at most Kn∆ L. So an arbitrary delay margin can be set by adding the
expected dead-time variation to T̄f and recalculating Tr with Eq. (28).

Using the result of [Palmor, 1980] one can see that with the tuning
presented in this section, the resulting DTC has phase margin 60o and
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gain margin equal to 2 in the nominal case. The way to see this is to note
that the loop-gain is

L(iω ) = e−iLnω

(iTrω + 1)2 − e−iLnω (30)

which can be written as

L(iω ) = N(iω )
1− N(iω )

where N(iω ) is a frequency response with amplitude less than 1 for all ω .
Further insight can be obtained into the relation between the delay

margin and closed-loop time constant Tr by normalizing the variables of
the loop-gain with Ln. This is the same approach as was taken in [Palmor
and Blau, 1994]. If the process is equal to the model except for an error in
the dead-time, L = Ln + δ L, the loop-gain becomes

L(s) = e−Ls

(Trs+ 1)2 − e−Lns (31)

If the variables are normalized with Ln the following dimensionless vari-
ables are obtained.

δ L = δ L/Ln ω̄ = ω Ln T̄r = Tr/Ln (32)

The normalized loop-gain is then

L̄(iω̄ ) = e−iω̄(1+δ L)

(iT̄rω̄ + 1)2 − eiω̄ (33)

The relationship between the two loop-gains is L̄(iω Ln) = L(iω ). By using
the Nyquist criterion it is possible to calculate a lower limit on T̄r for which
the closed-loop is stable, as a function of δ L. This is shown in Fig. 7. The
figure shows that if T̄r ≥ 0.22, δ L can vary from -1 to 1 without the closed-
loop system becoming unstable. It also shows that very aggressive tuning,
T̄r = 0.01 would give a relative delay margin from -0.2 to 0.15.

It is of interest to see what time constant T̄r is obtained by specifying a
desired delay margin, ∆ L and calculating T̄r from Eq. (28). Dividing by L

T̄r =
√

∆ L
L

Tn

L

In Fig. 7 T̄r is plotted as a function of ∆ L/L for different values of Tn/L.
Also shown is T̄r calculated with Eq. (29). The recommended T̄r is well
above the stability limit so a certain degree of robust performance should
be assured. Notice that when Tn is close to Ln the tuning can be quit
conservative. Increasing dead-time results in lower delay-margins.

The lower limit on T̄r in Fig. 7 is calculated for the nominal case. Ex-
perience from simulations indicate that this lower limit is not a bad ap-
proximation for other processes, specially if T̄f /Tn is little. Notice that the
method of setting a desired delay margin by adding ∆ L to T̄f is valid for
any process.
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Figure 7 Thick line is the lower bound on T̄r for a given error δ L. The dashed
lines are the design recommendation for T̄r for Tn/Ln equal to 0.5, 0.2 and 0.1
counting from above. Finally the thin solid line is the design rule given by Eq.
(29).

4.3 Practical issues
Some comments are in order relating to the practical use of the FPPI and
specially the selection of Tr.

• If the model is close to the real process, T̄f will be small resulting
in a small Tr. Other limiting factors such as actuator saturation will
then come into the picture.

• The performance of the FPPI is always limited by the dead-time of
the process. Therefore tuning aggressively by selecting a small Tr
might only give marginal improvements. In the nominal case this
is apparent from Eq. (24). This fact can be used to motivate tuning
rules. One can decide how large portion of the integrated error comes
from Ln, which one can do nothing about. From this and equation
relating Ln and Tr can easily be obtained.

• Looking at Fig 7 while keeping Eq. (24) in mind, the tradeoff between
performance and robustness is apparent. Robustness in terms of delay
margin costs in terms of increased Tr.

• The value of controller parameter Tf should be equal to Tn/κ = Ti/κ .
The FPPI has then 3 parameters to tune, namely K ,Ti and Ln. After
the open-loop experiment where T̄f is obtained and a delay margin
∆ L has been decided upon, κ can be calculated as

κ =
√

T̄f + ∆ L
Tn

(34)

Notice that κ is not related to Ln. It can be related to the assumed
error in Ln trough ∆ L. The controller parameters Ti and K respond
as in a normal PI controller.
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Table 1 FOPDT model parameters as well as A and κ

i Tn Ln T̄f Tr κ
1 10.4 6.8 0.27 1.7 6.2

2 2.0 6.2 0.27 0.7 2.7

3 3.0 9.1 1.06 1.8 1.7

4 1.7 8.4 1.18 1.4 1.2

5 0.8 5.4 0.17 0.4 2.4

6 7.6 2.6 1.32 3.2 2.4

7 1.3 5.7 0.17 0.5 2.7

4.4 Simulation examples
Simulation results for the PPI and the FPPI have been presented in [Häg-
glund, 1996; Normey-Rico et al., 1997; Ingimundarson and Hägglund, 2000b].
To give an idea of how conservative the design method presented is, a FPPI
controller was designed for a collection of processes. They are shown here
without the dead-time.

P1(s) = 1
(10s+1)(2s+1) P2(s) = 1

(s+1)3
P3(s) = −s+1

(s+1)5 P4(s) = −2s+1
(s+1)3

P5(s) = 9
(s+1)(s2+2s+9) P6 = 0.5

(s+1) + 0.05
s+0.1

P7(s) = 64
(s+1)(s+2)(s+4)(s+8)

The dead-time was always equal to 5 making the total process equal to

P(s) = Pi(s)e−5s

for i ranging from 1 to 7.
The results can be seen in Table 1 Notice that Tr is in all cases smaller

than Tn which means that the closed-loop system has a faster step set
point response than the open-loop one. Notice that the two processes with
smallest Tn/Tr ratio are non minimum phase and not monotonically de-
creasing. Since the response goes in the wrong direction in the beginning
the area A becomes quite large in those cases. This reduces the bandwidth
through T̄r.

4.5 Application to a tank lab process
The above mentioned methods were applied to a tank laboratory process
at the Department of Automatic Control in Lund. It consists of a tank
with free outflow and a level sensor as well as a pump. The process has a
long dead-time because the pump pumps the water into an open channel
with a small slope. Obvious nonlinearities in the process are the relation
of outflow to the height in the tank as well as non-symmetry because the
pump cannot remove water from the tank. A PI controller was tuned and
a closed-loop experiment performed followed by a an open-loop step exper-
iment. The result of the open-loop experiment as well as the corresponding
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Figure 9 Closed loop step response of the real tank with a FPPI controller.

FOPDT response are shown in Fig. 8. The sampling time was 1 second.
The identified FOPDT model was

Pn(s) = 5.6
40.2s+ 1

e−93.9s

From the area between the responses T̄f was found to be equal to 4.4. This
gave Tr = 13.3. In Fig. 9 a set point step response can be seen. The gain in
the proportional part of the PI controller was set to 0 from the set point to
achieve a smoother response. The controller was started with a reference
value of 4 cm. Then an additional step was applied at time 1000 taking
the level to 8 cm. The over shoot is caused by unexplained nonlinearities.
Reducing κ considerably did not eliminate it. Otherwise a smooth control
is observed.

5. Unstable case, integrating processes.

The extension of the Smith predictor to the unstable plant case was first
presented in [Watanabe and Ito, 1981]. The compensator used here is the
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Figure 10 The improved dead-time compensating controller for integrating pro-
cesses.

Modified Smith Predictor (MSP) presented in [Matausek and Micic, 1996].
There, care was taken to make sure all parameters could be related to
identified parameters of the process model or to classical control theory
concepts.

The block diagram of the dead-time compensator can be seen in Fig.
10. The model of the plant is the simple two-parameter model

Pn(s) = Gn(s)e−Lns = Kn

s
e−Lns (35)

The transfer function F(s) is a constant K0 which is related to the two-
parameter model parameters as

K0 = 1
2LnKn

(36)

Introducing

Tr = 1
Kn Kr

the transfer function from set point value r(t) is in the nominal case given
by

Y(s)
Ysp(s) = 1

Trs+ 1
e−Lns (37)

(38)

Tr has therefore the nice interpretation of being the time constant from set
point to the output signal.

From the above equations it is clear that given a process model Pn(s)
the only parameter left to determine is Tr. That is the subject of the next
section.

5.1 Determining Tr

In [Normey-Rico and Camacho, 1999] a DTC for integrating processes was
proposed whose closed-loop time constant was related to asymptotes of the
uncertainty norm-bound of the DTC. The same approach is taken here.

The error between the plant and the model is

δ P(s) = P(s) − Pn(s) (39)
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The uncertainty norm-bound for the MSP or the maximum value of hδ Ph
allowed while keeping closed loop stability is

h∆PhMSP =
hKn( jω Tr + 1)(2Ln jω + e− j Lnω )h

h − (2Ln + Tr)ω 2 + jω )h (40)

This equation is obtained from the characteristic equation in a similar way
as Eq. (17).

As pointed out in [Normey-Rico and Camacho, 1999] this bound depends
almost entirely on Tr. The bound is shown in Fig. 11. For low frequencies
the bound behaves as

h∆P(iω )h � Kn

ω
For high frequencies the bound has an asymptote given by

lim
ω→∞ =

2Kn LnTr

2Ln + Tr
(41)

To evaluate the minimum of the uncertainty norm-bound it is fruit-
ful to consider it a product of two factors, one of which is monotonically
decreasing. The one that has local minima is

f (ω ) =
∣∣∣∣2 jLnω + e− j Lnω

ω

∣∣∣∣
The minimum value of this function can be approximated with Ln. This
gives a lower bound of h∆P(iω )h

β = Kn LnTr

2Ln + Tr
≤ min

ω
h∆P(iω )h (42)

Taking this into account when solving for Tr gives

Tr = 2Lnβ
Kn Ln − β

(43)

From closer inspection of Fig. 11 it can be concluded that for Ln larger
than 1, the bound given by Eq. (42) is conservative, and that the real
minimum is much closer to the value given by Eq. (41).

To evaluate the value of hδ P(iω )h for each frequency, the assumption is
made that the real process is given by a first-order plus dead-time transfer
function with an integrator

P(s) = Kp

s(Ts+ 1) e−Ls

The absolute value of δ P(iω ) is then

hδ P(iω )h =
∣∣∣∣Kp e−iLω − Kn(iTω + 1)e−iLnω

(iTω + 1)iω

∣∣∣∣
17
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Figure 11 Uncertainty norm boundary for Tr = Kn = 1 for varying Ln equal to
1 (−), 3 (−−), 5 (− ⋅−) and 10 (⋅ ⋅ ⋅).

As pointed out in [Normey-Rico and Camacho, 1999] this function can be
characterized by three main frequency intervals. For small ω this function
behaves as

hδ P(iω )h �
∣∣∣∣Kp − Kn

ω

∣∣∣∣
For large ω this function has a slope of 20dB/dec. For sufficiently high
and low frequencies hδ Ph will be smaller than h∆Ph. It is the error at in-
termediate frequencies that is of most interest. This will be referred to as
δ P0 in the following.

In [Normey-Rico and Camacho, 1999] the value at intermediate frequen-
cies was approximately calculated by assuming that the velocity gains of
the model and process were equal, Kp = Kn. Then δ P0 could be estimated
as

δ P0 = lim
s→0

δ P(s) = Kn(L+ T − Ln) (44)

In [Normey-Rico and Camacho, 1999] δ P0 is viewed as a tuning parameter
from which the closed-loop time constant is calculated. The methodology
is therefore to assume an error between L+ T and Ln and from there get
the initial tuning.

Here the approach is to perform a simple open-loop experiment from
where a upper bound is found on δ P0. The area between the actual response
and the response of the model is calculated when the input is an impulse
of height hp and duration τ p. Denoting as before f (t) = y(t) − yn(t) the
following equation is the definition of the Laplace transform.

δ P(s)hp(1− e−τ ps)
s

=
∫ ∞

0
e−st f (t)dt (45)

From this equation, by replacing the argument s with iω the following
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inequalities are obtained.∣∣∣∣δ P(iω )hp(1− e−τ piω )
iω

∣∣∣∣ =
∣∣∣∣∫ ∞

0
e−iω t f (t)dt

∣∣∣∣
≤

∫ ∞

0
h f (t)hdt

Notice that an upper bound on δ P0 can be obtained as

δ P0 ≤
∫∞

0 h f (t)hdt
hpτ p

= A (46)

The area A has a nice graphical interpretation if the impulse response of
the model and real process is normalized to 1 and plotted on the same
graph. A is then the area between the curves. This is shown in Fig. 12.

Notice that this bound on δ P0 is always larger and therefore more
conservative than the value obtained by Eq. (44). Since δ P(iω ) is weighted
with (1 − e−iτ pω )/ω in the inequality, δ P(iω ) can be arbitrary large when
τ pω = 2π . The above method therefore does not guarantee stability but
should work well for well-behaving processes. The gain is that it eliminates
the need to tune the last parameter. Substituting β with A in Eq. (43) gives
then the time constant Tr.

5.2 Sensitivity to dead-time errors
Given an error ∆ L in the dead-time of the real process, the increase in
integral A would be maximum ∆ LKn. Suspected variations in the dead-
time can therefore be taken into account by increasing β in Eq. (43) by
∆ LKn.

If it is assumed that the process has the same structure as the model
but a different dead-time, L = Ln + δ L the loop gain of the MSP is

L(s) = 1
2

e−Ls((2Ln + Tr)s+ 1)
sLn(Trs+ 1− e−Lns) (47)

19



−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

δ L

T̄
r
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line is the design recommendation for T̄r according to Eq. (43).

Using the same approach as in the previous section the following dimen-
sionless variables are defined

δ L = ∆ L/Ln ω̄ = ω Ln T̄r = Tr/Ln (48)

This gives the following dimensionless loop gain

L̄(iω̄) = 1
2

e−i(1+δ L)ω̄ (i(2+ T̄r)ω̄ + 1)
iω̄(iT̄rω̄ + 1− eiω̄ ) (49)

Fig. 13 shows the lower bound on T̄r to maintain stability as a function
of δ L. The bound is not symmetric around 0. Rather it is shown that an
increase in dead-time is more likely to cause instability than a decrease. If
T̄r is larger than 0.4 it will be stable for any decrease in δ L down to -1. For
an initial tuning which would give T̄r equal to 0.01, the controller would
be stable for δ L ∈ [−0.22, 0.14].

The design rule given by Eq.(43) can be rewritten relating T̄r to an
assumed error ∆ L by using β = ∆ LKn. This results in

T̄r = 2δ L

1− δ L
(50)

This function is also shown in Fig. 13. The suggested T̄r is well above the
stability limit.

5.3 Simulation examples
To get an idea about what closed-loop time constant one can expect to
obtain with the presented methodology, a two-parameter model was found
for a collection of processes. The dynamics additional to the integrator and
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Table 2 Identification and tuning results for integrating processes.

i Tn Tr A Ln

1 1 0.8 0.4 6.0

2 1.0 0.8 0.4 6.1

3 2.0 2.1 0.9 8.0

4 3.0 2.8 1.2 11.0

5 1.7 3.2 1.4 10.0

6 0.8 0.7 0.3 6.2

7 7.6 21.5 5.3 10.6

8 1.3 1.1 0.5 6.9

dead-time are shown below as P1(s) − P8(s)

P1 = 1
s+1 P2 = 1

(0.1s+1)(s+1)
P3 = 1

(s+1)3 P4 = −s+1
(s+1)5

P5 = −2s+1
(s+1)3 P6 = 1

(s+1)(s2+2s+9)
P7 = 0.5

(s+1) + 0.05
(s+0.1)

P8 = 64
(s+1)(s+2)(s+4)(s+8)

The dead-time, L, was equal to 5 in all simulations. The total process was
therefore

P(s) = Pi(s)1s e−5s

The resulting Tr is shown in Table. 2. In [Matausek and Micic, 1996] it
was suggested that a suitable value of Tr, given that this value would be
available, could be the apparent time constant of the dynamics additional
to the integrator or Pi(s)e−5s. This is shown as well in the table as Tn.
Notice that Ln is the dead time of the two-parameter model. Comparing
Tr and Tn one can see that usually they are quite close. Often Tr is a little
bit smaller than Tn. Exceptions to this are processes 5 and 7. Process 5 is
non-minimum phase while process 7 has a slow zero giving a large area A
compared to Tn. In the case of process 7, A is also very large compared to
Ln. This results in a large Tr according to Eq. (43).

Closed-loop set point and load disturbance responses are shown in Figs.
14 to 16 for a selection of processes when Tr is found from Eq. (43). Also
shown (dashed line) are simulations when Tr is set equal to Tn.

5.4 Practical issues
Some remarks on the practical use of the methodology presented are in
order. Most of the remarks made in Section. 4.3 apply here as well. No-
tice that when A is close to Kn Ln, Tr becomes very large calculated with
Eq.(43).

5.5 Extensions
In [Matausek and Micic, 1999] an extension to the MSP was proposed. To
improve load disturbance rejection the transfer function F(s) should have
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Figure 15 Simulation example. Process 5.

the form

F(s) = K0
sTd + 1

sTd/10+ 1
(51)

where Td = 0.4Ln and K0 = 0.6/(LnKn). The form of the transfer func-
tion is similar to a PD controller. It’s purpose is also to predict the load
disturbances l better which in turn leads to better disturbance rejection.
Simulation experience indicates it is possible to use this extension with the
tuning procedure presented. Sometimes the increase in conservativeness
associated with the procedure is welcomed. In Fig. 17 the Nyquist diagram
is shown for process 5 when Tr is found by the procedure presented and as
recommended in [Matausek and Micic, 1996]. It can be seen that the latter
results in an unstable closed-loop system.
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Figure 17 Nyquist curve for process 5, L = 10. Extended MSP with Tr found
from Eq.(43), (−). Extended MSP with Tr set equal to apparent time constant,
Tr = 1.7, (−−).

5.6 Application to a lab process
The method presented was used on the tank laboratory process presented
in Section 4 after some modification of the process. To make an integrating
process a tank without an outflow hole was added under the first one.
The controlled variable was therefore the height in the second tank. To
avoid nonlinearities at low flow levels, a second pump was installed which
pumped with a constant flow rate out of the lower tank. In this way the
first pump was set to work around a constant flow rate corresponding to 3
Volts.

The identification experiment was performed manually because it was
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Figure 18 Identification experiment for integrating case. The upper graph shows
the impulse response of real tank (−) and that of the two-parameter model (−−).

difficult to tune a suitable PI controller. An impulse of height 1 Volt and
duration 60 seconds was added to the equilibrium value of 3 Volts. The
response of the tank and the identified two-parameter model are shown in
Fig. 18. The identified two-parameter model was

Pn(s) = 0.07
s

e−132.5s

The area A between the responses was 1.6. This resulted in a closed-loop
time constant Tr = 54.8 seconds. In Fig. 19 a closed-loop step response
experiment using the MSP is shown. The controller was started at time
1000 while a step was applied at time 2000 taking the level in the tank
from 4 cm to 8 cm. The controller performs as expected. The step response
looks similar to what was seen in simulation.

6. Conclusions

In this paper tuning procedures for dead-time compensators have been pre-
sented. Dead-time compensators for both stable and integrating processes
are considered. The closed-loop time constant is found by comparing the
model output to the process output when a simple open-loop experiment is
performed.

In the case of integrating processes the procedure eliminates the need
to manually tuning one parameter.

The DTC’s are simple and can be manually fine-tuned or re-tuned. It is
also shown how the DTC’s can be given a guaranteed delay-margin.

Finally the methodology has been applied to a laboratory process with
success.
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Figure 19 Step response of the real tank.
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