
ISSN 0280–5316
ISRN LUTFD2/TFRT--5649--SE

A Matlab Tool for Rapid Process
Identification and PID Design

Martin Andersson

Department of Automatic Control
Lund Institute of Technology

September 2000

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden

Document name
MASTER THESIS

Date of issue
September 2000

Document Number
ISRN LUTFD2/TFRT--5649--SE

Author(s)

Martin Andersson
Supervisor

Krister Forsman, ABB
Anders Wallén, Tore Hägglund

Sponsoring organisation

Title and subtitle
A Matlab Tool for Rapid Process Identification and PID Design
(Ett Matlabverktyg för snabb processidentifiering och PID-design)

Abstract

In process industry many control loops are far from optimally tuned. In this master’s thesis a tool for rapid
process identification and control design has been developed. The tool, which is implemented in Matlab
5.3, identifies a process model out of the step response of the real process. A PI or PID controller can then
be designed and evaluated. The tool contains three different automatic design methods: Lambda tuning,
which is a well known PI design method in process industry, PI design based on non-convex optimization
and PID design based on constrained optimization. The two later methods are both recently developed
at the Department of Automatic Control at Lund Institute of Technology.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280–5316

ISBN

Language
English

Number of pages
37

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.lu.se

1

1 Introduction ... 3
1.1 Brief background.. 3
1.2 The idea.. 3
1.3 Input data... 3

2 Process identification ... 4
2.1.1 Open loop step response analysis ... 4
2.1.2 Model Structures ... 5
2.1.3 Step responses ... 6

3 Control design ... 8
3.1 Only PID controllers.. 8
3.2 Constrained/Non-Convex optimization.. 9

3.2.1 The design variable Ms.. 9
3.2.2 Optimization... 10

3.3 Lambda tuning.. 10
3.3.1 PI controller for self-regulating processes.. 11
3.3.2 PI controller for integrating processes .. 12

4 Controller performance assessment... 12
4.1 Simulation of closed loop system.. 13
4.2 Sensitivity functions.. 13
4.3 Evaluate.. 14

4.3.1 Evaluation of load disturbance rejection... 14
4.3.2 Stability margins ... 15

4.4 Comparison between Lambda tuning, PI_opt and PID_opt ... 17
4.4.1 Why? ... 17
4.4.2 How?.. 17
4.4.3 Process one... 17
4.4.4 Process two .. 18
4.4.5 Process three .. 20
4.4.6 Process four.. 22
4.4.7 Conclusions.. 24

5 Implementational aspects .. 25
5.1 Graphical User Interface ... 25
5.2 File structure ... 25
5.3 Data structure.. 26
5.4 Model estimation.. 27

5.4.1 Handles ... 27
5.4.2 T-handle for model structures with n>1 .. 28

5.5 Simulation.. 28
5.6 Special functions.. 29

5.6.1 FindSteps.. 29
6 User’s guide... 30

6.1 System demands... 30
6.2 Input data... 30

6.2.1 Tests on real process... 30
6.2.2 Measurement Ranges ... 30
6.2.3 Input data stored in a file.. 31

6.3 Starting the tool .. 31
6.4 Inspecting data.. 32

6.4.1 Select region... 32
6.4.2 View... 32
6.4.3 Data properties... 33

6.5 Model estimation.. 33
6.5.1 Select Model... 33
6.5.2 Manipulation of model parameters .. 33
6.5.3 Automatic Estimation of model parameters ... 33
6.5.4 Saving a model... 34

2

6.6 Design a controller... 34
6.6.1 Saving a controller.. 35

6.7 Evaluate the controller performance... 35
6.7.1 Simulation... 35
6.7.2 Sensitivity functions... 36
6.7.3 Evaluate... 36

6.8 Exit the tool... 36
7 References.. 37

3

1 Introduction

1.1 Brief background.
In today’s process industry many controllers are far from optimally tuned. The reason for this is partly lack
of knowledge but also lack of time. It is time demanding to make identifications of the processes and
calculate new controller parameters. Tests have to be done on the processes and that means time is lost and
raw material is wasted from the production. Short tests are desired to make the production disturbances as
small as possible, preferably at a time when the production should change anyway. The control designs are
often limited to rules of thumb. In this master thesis a tool for rapid process identification and control
design has been developed. The tool is implemented in Matlab 5.3 and is an extension of a similar tool
presented in Wallén (2000) and uses the same name, Transient Response Analyser, TRA.

1.2 The idea
The tool is intended to help the user to get new controller parameters out of some simple tests on the
process. The figure below shows what part of the work TRA helps with.

Figure 1: Overview of how to use TRA.

First data has to be collected during tests on the real process and converted into Matlab vector format. The
tool identifies, with help from the user, a linear transfer function. A controller of PI/PID-type can then be
designed with one of the included design methods. A simulation and an evaluation of the closed loop
system can be done to determine the qualities of the controller. All calculations that otherwise would have
required skills and experience in control theory are done by the tool under the user’s supervision. When a
satisfactory controller has been designed the user can return to the real process and enter the new controller
parameters. For specific guidance regarding the tool, see User’s guide.

1.3 Input data
The tests that are needed for the tool are one or several step responses, or bumps. The controller is
disconnected and the control signal is adjusted manually. Under manual control one or a few steps are
made on the control signal. A data logger samples both (the manual) control signal u and the process output
y. The tool demands at least one step in the control signal, otherwise it won’t have anything to analyse.
Several step responses make the result more reliable. Generally, it is a good idea to make several steps in
different regions of the measurement range. Non-linear behaviour like varying gain is then easily
discovered. If the process has a strongly non-linear behaviour perhaps a more complex controller than a
standard PI/PID should be used. A PID controller with gain scheduling is enough, in many cases. The tool
does however not support any non-linear modelling or non-linear control design in its present status.
Needed input data is the sampled control signal (u), the sampled process output (y) and a time vector (t), if
the sample time is constant the vector t may be replaced by a scalar defining the sample time (Ts).

Collect input
data from the
real process.

TRA
 Not OK

 OK

Find a
satisfactory

model
(transfer
function).

Design a
controller.

Simulate/
evaluate

the closed
loop

system.

Apply the
new

controller
parameters on
the controller.

4

2 Process identification
Identifying a completely accurate model of a process can be, if not impossible, very time demanding. In
this thesis a simple way of identifying a process model is used. It is based on step response analysis and it
catches some of the most important properties of the process behaviour. The process is identified by
comparing the step responses of the real process and the responses of the suggested model. The user selects
an appropriate model structure. Model parameters are then adjusted until a high similarity is obtained.

Figure 2: The main window.

The Loss function is calculated to measure how well the models step response agrees with real data. The
loss function tells the average square deviation between model response and data. It is calculated as:

[] []()

N

kyky
functionLoss

n

k
m

2

1_
∑

=

−
=

Where y[k] is sample number k of the process output and ym[k] is the calculated model output at the same
position, N is the total number of samples.
The parameter estimation can be made both manually and automatically. The automatic estimation
optimises the parameters to minimise the loss function.

2.1.1 Open loop step response analysis
Analysing a single step response is in most cases not enough to identify all dynamics of a process. But
since the purpose of this rapid identification is to get sufficient information to design a PI or PID controller
it covers our needs. Properties that can be determined with this method are for example time delay, static
gain and dominating time constant.

5

Figure 3: The step response for a model structure of type 1 with n=1 (described below). A is the amplitude
of the input step, L is the process time delay, K is the static gain and T is the time constant of the process.

Current parameters are L=2, T=2 and K=1.5.

2.1.2 Model Structures
The five model structures are common in process industry and cover many kinds of processes.

1. ()
()

sL
n

e
sT

K
sG −⋅

+
=

1

2. () ()
()

sL
n

z e
sT

sTK
sG −⋅

+
+

=
1

1

3. () sLe
s
K

sG −⋅=

4. ()
()

sLe
sTs

K
sG −⋅

+
=

1

5. () ()
()

sLz e
sTs
sTK

sG −⋅
+
+

=
1
1

For model structures 1 and 2 the static gain is calculated as

A
yy

K final 0−
= .

A is the amplitude of the input step.
Model structures 3 to 5 are integrating. K is then called the velocity gain instead of static gain since an
integrating process doesn’t reach a steady state.
The velocity gain in integrating processes is calculated as

A
dt
dy

dt
dy

K
final 0)()(−

=

6

 i.e. the difference between initial slope and final slope normalised by the amplitude of the input step.

Figure 4: The step response of an integrating process of type 3, current parameters are L=20 s and
K=0.03.

2.1.3 Step responses
If the input is a step with amplitude A, the output becomes

() ()
s
A

sGsY ⋅=

The step responses in time domain are then:

() A
T

Lt
k

eKty
n

k

k

T
Lt

⋅





























 −

−⋅= ∑
−

=

−
− 1

0
1 !

1
1 , t ≥ L , n ≥ 1

() () A
T

Lt
kT

Lt
nT
T

eKty
n

k

kn
zT

Lt

⋅





























 −

⋅−





 −

⋅
−⋅

+⋅= ∑
−

=

−−
− 1

0

1

2 !
1

!1
1 , t ≥ L

() () ALtKty ⋅−⋅=3 , t ≥ L

() AeTLtKty T
Lt

⋅

















−⋅−−⋅=

−
−

14 , t ≥ L

() () AeTTLtKty T
Lt

z ⋅

















−⋅−−−⋅=

−
−

15 , t ≥ L

In the equations above it is assumed that the initial value is zero and that the system is at rest before the
step. This is too much to expect when dealing with real processes. The step response is added to the initial
value to get the models true output signal. For a model of type 1 the complete output ym(t) after an input
step will be:

7

() ()tyytym 10 += .

For an integrating model structure, such as structure 3, the expression is slightly more complicated. Now
both the initial value and the initial slope have to be considered,

() ()tytkytym 300 +⋅+= .

If the control signal (u) contains more than one step, the responses are simply added. The response to each
single step in the control signal is calculated as if the initial values (initial output value and initial slope)
were zero. The separate responses are then added with the initial conditions to become the complete model
output.

Figure 5: The lower dashed line shows the initial value y0 and the upper dashed line shows the final level
after the first step.

In the figure it is easy to see that multiple input steps only result in adding the step responses.

() () () ...2
1

1
10 +++= stepstep

m tytyyty

Integrating models such as type 3 will consequently get the output

() () () Κ+++⋅+= 2
3

1
300

stepstep
m tytytkyty .

8

3 Control design

A basic description of a control system is shown below.

V(s) N(s)

R(s)
 U(s) Y(s)

 + +

Figure 6: A standard control system.

The two extra inputs V(s) and N(s) represent load disturbances and measurement noise respectively.

3.1 Only PID controllers
Only PI and PID controllers can be designed with the tool. This choice was made since the majority of all
controllers in process industry are of PI or PID-type and one of the major employment areas for the tool is
to calculate new parameters to already existing controllers.

Three different design methods are used; two different PI-designs and one PID design. The PID design and
one of the PI designs share design problem formulation. These two strongly connected design methods are
based on constrained optimization. The last method, a PI-design called lambda tuning is because of its
simplicity very common in process industry. Each method has a design parameter. The design parameter
somehow lets the user decide the trade off between stability and performance. A PI controller is described
by

() () ()()∫ −+−⋅= τττ dyr
T
K

tytrbKtu
i

c
c)()()(

in time domain and have the Laplace transform

))()(())()(()(sYsR
sT

K
sYsRbKsU

i

c
c −⋅

⋅
+−⋅=

The controller parameters to design are bTK ic ,, .

A PID controller is described by

() () ()()∫ 





−⋅⋅+−+−⋅=

dt
tdy

TKdyr
T
K

tytrbKtu dc
i

c
c

)(
)()()(τττ ,

with Laplace transform

)())()(())()(()(sYsTKsYsR
sT

K
sYsRbKsU dc

i

c
c ⋅⋅⋅+−⋅

⋅
+−⋅=

and have an additional design parameter dT .

Controller
Gr(s)R(s)-
Gy(s)Y(s)

Process
G(s)(U(s)+V(s))

9

b is the set point weight. Unfortunately many control systems don’t have the possibility to adjust b, then
b=1 or b=0. Normal values are 0 ≤ b ≤ 1. A low b-value gives a slow response to set point changes. The
advantage is decreased amplitude on the control signal. If a fast set point response is required b is set to one
or more.

3.2 Constrained/Non-Convex optimization
These are two recently developed control design methods based on constrained/non-convex optimization,
Panagopoulos (2000). The two methods share design problem formulation. In the tool these methods are
referred to as PI_opt and PID_opt.

The goal of the design is a well-damped, robust system with good rejection of load disturbances. Robust
means that the system has low sensitivity to modelling errors and changes in process behaviour.
One way to measure a systems ability to reject disturbances is to calculate the integrated error, IE after a
step load disturbance.

()dttytrIE ∫ −=)()(

A small IE means no steady state error (if the control error doesn’t change sign) and fast rejection of load
disturbances. It has been shown that IE is minimised by maximising ki (= Kc/Ti). The disadvantage with
IE is that a harmonic oscillation around the set point is invisible. An oscillating output seems perfect if IE is
the only measure since the positive error compensates the negative error.

An additional constraint is needed to make sure that the closed loop system stays within desired stability
margins. The stability of a closed loop system can be viewed in the Nyquist curve of the system, from now
on called Nc. Nc is the curve G0(iω) for all real w. G0(iω) is called the loop transfer function and is
explained thorough further down. If Nc encircles the point –1 on the real axis the system is unstable. The
further away from –1 Nc passes the more stable the system is.

3.2.1 The design variable Ms
The added constraint is a measure of how close to –1 Nc may pass. 1/Ms is the shortest distance between
Nc and the point –1. It can be viewed as the radius of a circle with centre in –1, which Nc must avoid.

10

Figure 7: Nyquist curve and circle with centre in –1 and radius 1/Ms. Ms is the maximum gain of the
sensitivity function and is used as design variable.

Typical values for Ms are 1.2-2.0. Low Ms values gives robust systems, i.e. systems with low sensitivity to
modelling errors.

3.2.2 Optimization
To put it short, the optimization problem is to maximise ki (= K/Ti), while keeping the Nyquist curve
outside the circle with centre in –1 and radius 1/Ms. In mathematical terms:

()

s

i

M
iwG

k

1
)(1

max

0 ≥+−

3.3 Lambda tuning
This method can only be used to design PI-controllers for two different process structures. One is called a
self-regulating process and is the same as model structure type 1 with n=1. The other is an integrating
process, the same as model structure type 3.
The transfer functions are:

11

sLp e
sT
K

sG −

+
=

1
)(for the self-regulating process and

sLv e
s

K
sG −=)(for the integrating process.

3.3.1 PI controller for self-regulating processes
For a self-regulating process lambda (λ) is the time constant of the desired closed loop system. In other
words λ indicates how fast the process value will reach 63% of a set point change.

Figure 8: λ for self-regulating processes.

In this example the process has a time delay L=4 s and is controlled by a controller designed with λ = 8.

λ is selected with respect to L and T. This is where the indirect design-parameter τ enters. λ is selected as:

),max(TL∗= τλ (1)

τ decides the trade off between stability and speed for the closed loop system. Normal values are 2 ≤ τ ≤ 3.

τ > 3. Very stable but very slow design.
2 ≤ τ ≤ 3. Normal design, stable if process model is known with some accuracy.
1 ≤ τ <2. Fast design, stable if the process model is known with high accuracy.
τ < 1. Faster, but even a small deviation between process model and real process may give an

unstable system.

Once λ is determined, the controller parameters Kc and Ti are easily calculated through

TTi = (2)

)(LK
T

K
p

i
c +

=
λ

(3)

12

3.3.2 PI controller for integrating processes
For an integrating process λ indicates another measure than above. Here λ is defined as the time elapsed,
after the entrance of a step load disturbance, until the output error has reached its maximum and starts to
decrease.

Figure 9: λ for integrating processes.

In this type of processes λ is determined by the control demands on the process, λ may be chosen as:

vK
e

⋅
=

100
maxλ (4)

Where emax is the most extreme output error that may occur during normal use, 100 * Kv says how much the
process output at the most can change in one second (with a control signal at 100%).
If a tank level has the reference value 75% and the tank is full at 100%, emax = 25%. Then λ = 25/(100*Kv).

When λ is determined, control parameters Ti and Kc are calculated through

() LTi +⋅= λ2 (5)

()2LK
T

K
v

i
c +

=
λ

(6)

4 Controller performance assessment
If a controller has been designed with one of the methods above it is most likely stable, but to get a clearer
insight in the closed loop behaviour and to compare the qualities of different controllers it is useful to make
some kind of evaluation. The tool has three different functions.
1. Simulate closed loop system
2. Plot sensitivity functions
3. Evaluate closed loop system
Number 3 makes calculations on the simulation result, the sensitivity functions and the loop transfer
function.
A comparison between different design methods and design parameters is done at the end of this chapter
using the Evaluate part of the tool.

13

4.1 Simulation of closed loop system
A simple simulation can be done in the tool to see how well the closed loop system behaves. During the
simulation the system is exposed to a set point change and a step load disturbance.

Figure 10: Simulation with set point change at t=10 s and a step load disturbance at t = 70 s.

The simulation gives a clue of how well the controller handles disturbances and set point changes, but the
results are only true if the estimated process model is a good approximation of the real process. In other
words the simulation should mainly be used to compare different controllers, not to predict exact
performance of the real closed loop system. If the process model is badly chosen the simulation and
following evaluation are meaningless.

4.2 Sensitivity functions
A number of sensitivity functions can be calculated to describe the properties of a control system. A
sensitivity function tells how an input signal affects the process output. That description also fits the closed
loop transfer function, but then we specifically mean how the reference signal affects the output. The other
input signals are not real inputs but theoretical inputs that represents disturbances acting on the process
V(s) and measurement noise in the sensor at the process output N(s). By investigating the sensitivity
function from V(s) to Y(s) it is possible to tell how sensitive the system is to load disturbances. The
sensitivity function from N(s) to Y(s) tells how sensitive the system is to noise and to modelling errors.

V(s) N(s)

R(s)
U(s)

+ + Y(s)

Figure 11: Standard control system.

Controller
Gr(s)R(s)-
Gy(s)Y(s)

Process
G(s)(U(s)+V(s))

14

Gr(s) is the controllers transfer function from R to U and Gy(s) is its transfer function from Y to U. In the
most basic versions of PID-controllers such as PI_lambda Gr(s) = Gy(s).

The closed loop transfer function is calculated by putting V and N to zero.

() () () () () () () ()() () ()
() () ()sR

sGsG
sGsG

YsYsGsRsGsGsUsGsY
y

r
yr ⋅

+
=⇔−⋅=⋅=

1

The sensitivity function from V to Y is calculated by putting R and N to zero.

() () () ()() () () () ()() () ()
() () ()sV

sGsG
sG

sYsVsYsGsGsVsUsGsY
y

y ⋅
+

=⇔+−⋅=+⋅=
1

The sensitivity function from N to Y is calculated by putting R and V to zero.

() () ()() () () () ()() () () () () ()sN
sGsG

sYsNsYsGsGsNsUsGsY
y

y ⋅
+

=⇔+−⋅=+⋅=
1

1

Apparently all functions have the same denominator.

() () ()sGsGsG y 011 +=⋅+

G0(s) is called the loop transfer function and can be viewed in a Bode plot or a Nyquist diagram where it is
easy to decide if the system is stable. More discussions about stability and loop transfer function further
down.

4.3 Evaluate
To evaluate the closed loop system in a more scientific way than just looking at the simulation results the
tool contains the Evaluate function. A few important measures concerning load disturbance rejection and
stability margins are here calculated.

4.3.1 Evaluation of load disturbance rejection
For a servo system the responses to set point changes would be most interesting, but the tool is developed
with regulator systems in mind. For those the load disturbance rejection is of primary concern. All
calculations on load disturbance rejection are done on the simulation results after the entrance of the step
load disturbance. Four measures are calculated and displayed.

1. IAE
2. Emax

3. uovershoot
4. Var(u)

The Integrated Absolute Error, IAE is calculated as

() ()∫ −= dttytrIAE .

It indicates how well the controller corrects the process output after a step load disturbance, but it doesn’t
tell the actual size of the error or how long it takes to correct it.

Emax is the maximum error,

()() () ()()tytrte −= maxmax .

15

It is of great interest to get small Emax since it is a natural quality measurement. A fast compensation for a
load disturbance could mean the difference between acceptable and unacceptable quality.

The two remaining measures concern the behaviour of the control signal. It is desirable to have a smooth
control signal without swinging or large overshoots. A nervous control signal will increase the wear on the
actuators and consumes more energy than a smooth signal. If the control signal becomes too large it may
saturate. That gives a non-linear behaviour, which is not expected and not very well handled by an ordinary
PID controller.
The normalised overshoot of the control signal is calculated as

1
0

0max −
−

−
=

uu

uu
u

final
overshoot .

Figure 12: Control signal with overshoot.

The variance of u is calculated as

() ()()∫ −=
T

dtutu
T

u
0

21
var

A large variance off course tells that the control signal is varying a lot. Oscillations are easily revealed
when inspecting the variance.

4.3.2 Stability margins
The stability margins are obtained from the bode plot of the loop gain.

16

Figure 13: Definition of phase margin and amplitude margin.

ωc, the (gain) crossover frequency, is the frequency where |G0 | =1. ωp, the phase-crossover frequency, is
the frequency where ϕ = (-180°). The phase margin is calculated as

ϕm = ϕ(ωc)-(-180°)

and the amplitude margin is

()p
m

iG
A

ω0

1
= .

When the phase margin is known it is possible to calculate a delay margin. It tells how much the process
delay may increase before the system becomes unstable. This is useful since the delay can vary a lot in

some processes. If the phase margin is expressed in radians the delay margin is simply
c

rm
mL

ω
ϕ ,= .

Phase margins are however commonly given in degrees. The delay margin then becomes

180⋅
⋅

=
c

m
mL

ω
πϕ

.

17

4.4 Comparison between Lambda tuning, PI_opt and PID_opt

4.4.1 Why?
PI_opt and PID_opt are as mentioned earlier two new design methods for PI and PID-controllers. As the
most common control design method in the paper industry is Lambda tuning it would be interesting to see
how large the improvements are when using the new methods.

4.4.2 How?
Lambda tuning is only defined for two model structures, the first order pole and the integrating structure.
This is a great disadvantage since more complex models better describe many processes. Not only Lambda
tuning has limitations regarding models, PI_opt and PID_opt requires for example that the process model
have a monotonously decreasing phase.
The comparison is made on data from four real processes. The best possible model is the one with least loss
function. This model is considered to be the true one and is used during the simulation and evaluation
regardless which model was used in the control design. If the model used in the simulation isn’t supported
by a design method the best of the supported models is used instead.
During simulations the system is exposed to a set point change and a step load disturbance with amplitude
10.

4.4.3 Process one
Data from file: flow2 (water flow 0-100 litres/second).
The process model used in the simulation could also be used in the “opt-designs”

() se
s

sG 40.2
3)107.1(

6592.1 −⋅
+

= .

Loss function = 0.0935.
The model used in lambda tuning was

() se
s

sG 60.3

113.2
6637.1 −⋅

+
=

Loss function = 0.1110.
Simulation time = 200 s.

Measure
/controller

Controller parameters IAE Emax uovershoot Var(u) ϕm (°) Lm (s) Lmax (s) Am Ms

Lambda
λ=4 τ =1

Kc=0.1682, Ti=2.13 78.11 8.63 0.02 2.41 64 8.7 11.1 3.23 1.57

Lambda
λ=8 τ =2

Kc=0.1103, Ti=2.13 116.6 8.91 0 2.74 73 15.0 17.4 4.93 1.33

Lambda
λ=12 τ =3

Kc=0.0820, Ti=2.13 156.7 9.05 0 3.01 77 20.9 23.3 6.62 1.23

PI_opt
Ms=1.6 Kc=0.1879, Ti=2.283 74.67 8.61 0.02 2.34 63 7.7 10.1 2.99 1.60

PI_opt
Ms=1.4

Kc=0.1464, Ti=2.394 98.52 8.76 0 2.54 71 12.1 14.5 4.12 1.40

PI_opt
Ms=1.2 Kc=0.0886, Ti=2.569 174.5 9.05 0 3.00 80 23.7 26.1 7.04 1.20

PID_opt
Ms=1.6

Kc=0.349, Ti=2.62
Td=1.23 54.84 7.73 0.08 1.82 55 4.5 6.9 2.80 1.62

18

PID_opt
Ms=1.4

Kc=0.266, Ti=2.74
Td=1.22 65.16 8.02 0.02 1.96 65 7.3 9.7 3.77 1.41

PID_opt
Ms=1.2

Kc=0.156, Ti=2.95
Td=1.19 113.8 8.41 0 2.47 77 15.0 17.4 6.4 1.20

The results for the two PI methods are very similar. The extra complexity in the model used to design
PI_opt didn’t make any large improvements compared to Lambda tuning. PID_opt has better simulation
results but less stability margins.

Figure 14: Simulations with three different controllers, PID_opt and PI_opt with Ms=1.4 and Lambda with
τ=2. Fastest response is received with PID_opt, slowest with Lambda and PI_opt in the middle.

4.4.4 Process two
Data from file: lev6. Level in a condensate vessel.
The process model used in the simulation is the same as the one used in PI_opt design:

()
()

se
ss

sG 00.2

133.49
00652.0 −⋅

+
−

= .

19

Figure 15: Integrating model with pole.

This model can for some reason not be used in the PID_opt design for Ms values between 1.2-2.0.
The model used in lambda tuning and PID_opt is

() se
s

sG 37.4400641.0 −⋅
−

=

Figure 16: Pure integrating model.

Simulation time = 5000 s.

Measure
/controller

Controller parameters IAE Emax uovershoot Var(u) ϕm (°) Lm (s) Lmax (s) Am Ms

Lambda
λ=100

Kc=-1.83, Ti=244 1335 4.86 0.393 3.98 40 63 65 33.6 1.64

Lambda
λ=150

Kc=-1.423, Ti=344 2420 6.08 0.304 4.32 47 94 96 47.3 1.44

Lambda
λ=300

Kc=-0.848, Ti=644 7543 9.60 0.194 5.75 58 184 186 86.9 1.24

PI_opt
Ms=1.6 Kc=-2.009, Ti=288 1432 4.64 0.358 3.63 42 63.4 65.4 30.6 1.60

20

PI_opt
Ms=1.4

Kc=-1.298, Ti=373 2870 6.56 0.286 4.53 49 101 103 51.9 1.40

PI_opt
Ms=1.2 Kc=-0.6246, Ti=628 10190 12.0 0.228 7.33 57 237 239 118 1.20

PID_opt
Ms=1.6

Kc=-2.1, Ti=110
Td=23.6 960 3.40 0.450 3.40 34 46.6 48.6 73.8 1.71

PID_opt
Ms=1.4

Kc=-1.59, Ti=152
Td=22.9 1464 4.49 0.397 3.82 40 68.4 70.4 99.1 1.49

PID_opt
Ms=1.2

Kc=-0.925, Ti=282
Td=21.4 3829 7.58 0.310 5.24 49 134 136 188.8 1.25

The calculated Ms-values for systems with PID_opt controllers are far from the desired ones, 1.25, 1.49
and 1.71 instead of 1.2, 1.4 and 1.6. This happens when a model not equal to the “real one” is used during
the design. In other respects the results are not surprising, what is won in performance is lost in stability.

Figure 17: Simulations made with PI/PID_opt, Ms = 1.4 and Lambda with λ=150. PID is fast but not as
stable as the other two. PI_opt is the slowest but has largest stability margins. Lambda is in the middle.

4.4.5 Process three
Data from file: dp2, differential pressure across a steam cylinder.
The process model used in the simulation is

() ()
()

se
s

s
sG 02.2

3158.8
1978.283292.0 −⋅

+
+

= .

Loss function = 0.3499.
This model cannot be used in PI_opt and PID_opt since the phase is not monotonously decreasing (Tz > T).
The second order model worked although the transfer function at a quick glance looks even worse, but the
larger time delay compensates and presses the phase down.

21

() ()
()

se
s

s
sG 44.4

2128.14
1251.393104.0 −⋅

+
+

= .

Figure 18: 2:nd order pole with zero.

The model used in lambda tuning is

() se
s

sG 46.3

174.5
4483.0 −⋅

+
= .

Figure 19: 1:st order pole for Lambda tuning.

Simulation time = 400 s.

Measure
/controller Controller parameters IAE Emax uovershoot Var(u) ϕm (°) Lm (s) Lmax (s) Am Ms

Lambda
λ=8 τ =1

Kc=1.117, Ti=5.74 187.1 8.84 0.06 47.4 59 10.5 12.5 4.67 1.65

Lambda
λ=16 τ =2

Kc=0.6578, Ti=5.74 264,5 9.96 0 55.0 83 25.7 27.8 7.93 1.35

Lambda
λ=24 τ =3

Kc=0.4662, Ti=5.74 371.6 10.6 0 61.2 93 48.2 50.2 11.18 1.24

22

PI_opt
Ms=1.6

Kc=1.476, Ti=6.194 165.5 8.24 0.137 44.8 50 7.5 9.5 3.61 1.82

PI_opt
Ms=1.4 Kc=1.132, Ti=6.635 190.4 8.92 0 46.9 67 13.1 15.1 5.2 1.53

PI_opt
Ms=1.2 Kc=0.6662, Ti=7.317 331.8 10.2 0 56.0 94 40.4 42.4 9.79 1.26

PID_opt
Ms=1.6

Kc=2.42, Ti=6.61
Td=1.23 117.5 6.71 0.21 36.4 42 4.8 6.8 5.36 1.84

PID_opt
Ms=1.4

Kc=1.88, Ti=7.18
Td=1.28 135.4 7.38 0.08 37.3 54 7.3 9.3 7.89 1.55

PID_opt
Ms=1.2

Kc=1.12, Ti=8.05
Td=1.37 217.6 8.74 0 44.9 82 19.2 21.3 13.82 1.28

The calculated Ms-values for PI/PID_opt differ from the desired values since the model used in the design
isn’t the same as the one used in the simulation.
Lambda tuning is for the first time noticeably worse than PI_opt. This is probably due to the large modeling
errors in the simple model used in Lambda tuning.

Figure 20: Simulations with PI/PID_opt with Ms=1.4 and Lambda with τ=2. The slow curve belongs to the
system with Lambda controller. PID_opt is the fastest as usual and PI_opt is in the middle.

The control signal reaches values above 100% and would, if it were a real control system, saturate. But
since the simulation is made on a linear model it’s the behaviour of the signal that is important, not the
exact levels. A lower initial level would have given a control signal within measurement ranges.

4.4.6 Process four
Data from file: lev3. Level in a condensate vessel.
The process model used in the simulation is also used in all design methods:

23

() se
s

sG 00.200651.0 −⋅
−

= .

Simulation time = 300 s.

Measure
/controller

Controller parameters IAE Emax uovershoot Var(u) ϕm (°) Lm (s) Lmax (s) Am Ms

Lambda
λ=6

Kc=-33.63, Ti=14 4.17 0.27 0.29 4.71 47 3.6 5.6 3.33 1.61

Lambda
λ=10

Kc=-23.49, Ti=22 9.37 0.35 0.21 5.21 56 6.0 8.0 5.01 1.36

Lambda
λ=18

Kc=-14.6, Ti=38 25.6 0.53 0.16 6.66 64 11.4 13.4 8.06 1.20

PI_opt
Ms=1.6 Kc=-28.36, Ti=10.1 4.06 0.29 0.38 5.27 41 3.5 5.5 3.93 1.60

PI_opt
Ms=1.4 Kc=-21.7, Ti=13.5 6.93 0.35 0.31 5.69 47 5.3 7.3 5.16 1.40

PI_opt
Ms=1.2

Kc=-12.73, Ti=23.5 20.2 0.55 0.26 7.21 55 10.2 12.2 9.24 1.20

PID_opt
Ms=1.6

Kc=-46, Ti=4.9
Td=1.06 1.74 0.18 0.42 4.21 37 2.1 4.1 2.50 1.68

PID_opt
Ms=1.4

Kc=-34.75, Ti=6.8
Td=1.03 2.80 0.22 0.36 4.42 43 3.1 5.1 3.31 1.44

PID_opt
Ms=1.2

Kc=-20.23, Ti=12.7
Td=0.97 7.78 0.34 0.29 5.38 51 6.3 8.3 5.77 1.22

In this case all methods designed controllers that are totally unrealistic, the gain is much too high. This is
due to an optimistic process model. Collected data showed almost no process time delay, the automatic
parameter estimation gave L = 2.00 seconds which is short for a process of this type. The simulation shows
that the control signal becomes very large, but the demands on Ms are still fulfilled.

Figure 21: Simulations with PI/PID_opt with Ms=1.4 and Lambda with λ=10.

24

A set point change at 10% gives very large control signals. The short time delay of the model and the high
gain of the controller make the effects of the step load disturbance very small. λ was selected to give a
closed loop system with Ms close to 1.6, 1.4 and 1.2 respectively. An experienced control engineer
wouldn’t choose such small λ-values for a process of this type. The rule of thumb (eq. 4 in chapter 3.3.2)
with emax = 25% gives λ = 38, which gives a better but still too large control signal. A more reasonable
control signal is achieved with λ ≥ 100 seconds.
The process time delay is in many cases longer than the estimated 2 seconds. A larger time delay gives a
lower gain with any design method. Process 2, which is a similar process, had L ≈ 44 seconds, then all
design methods gave reasonable control signals.

4.4.7 Conclusions
The comparison shows that Lambda tuning is a reliable design method that is easy to understand and use in
the absence of computer power. The design parameter λ has an intuitive meaning, although it’s an odd
meaning for integrating processes. PI/PID_opt are more scientific methods whose design parameter has a
less practical meaning, the maximum value of the sensitivity function cannot be verified by simple
measurements. Ms is an exact design parameter, which always gives the desired trade-off between
performance and stability. Knowing that Ms=1.4 gives a stable design (if the model is correct), it is
possible to design controllers without having even basic process knowledge. But as shown in the
comparisons on process 4, ignorance will be punished.
The comparisons on process four taught that process knowledge is important, it is also important to make
an estimation of the size of the control signal, for example in a simulation. Lambda tuning with λ according
to the rule of thumb gave a smaller (although still unacceptable) control signal than PI/PID_opt with Ms =
1.4. A low Ms value does apparently not always give reasonable control signals on integrating processes.

The differences between Lambda tuning and PI_opt are quite small as long as the best possible model has
one of the two structures supported by Lambda tuning, but when the process is better described by a more
advanced model structure Lambda tuning shows its limitations. Since the modelling error then becomes
larger than with the advanced model structure the controller has to be designed with larger stability
margins, this always gives lower performance.

25

5 Implementational aspects
This chapter contains some interesting (?) parts of the implementation …

5.1 Graphical User Interface
The GUI is partly built in Matlab’s GUI Development Environment GUIDE. GUIDE is very useful at the
beginning of the design, but when the rough work is done it is faster and safer to type code by hand. See
Matlab manual for further information about GUIDE.
The GUI contains not less than six windows: a main window and five sub-windows. The large number of
sub-windows depends on the gradually increased number of features. When a new feature was added it was
implemented in a new window.
All buttons, menus, text fields etc are represented as graphical objects with properties such as size, position,
colour etc. The actions that are executed when for example a button is pressed is defined by the object’s
callback function. Every graphical object can have a callback function. They are all collected in a large file.
Since all events are initiated by a callback this is where all the action is.

5.2 File structure
Current directory in Matlab’s workspace has to contain all files below when TRA is started.

Main files
1. tra.m (initialises the tool)
2. cbtra.m (performs all actions)

Automatic estimation of different model structures
3. squareerrorg1.m
4. squareerrorg2.m
5. squareerrorg3.m
6. squareerrorg4.m
7. squareerrorg5.m

PI/PID_opt, design files
8. optpi.m
9. optpi.p
10. optpid.m
11. optpid.p
12. funpid.m
13. funpid.p

Simulation model
14. simsystem.mdl

GUIs (contains information needed to create a window)
15. guiconstants.mat (common matrices and vectors)
16. tragui.m (information about the main window)
17. modelgui.m (… model window)
18. controlgui.m (… control window)
19. sensgui.m (… sensitivity window)
20. simgui.m (… simulation window)
21. Evalgui.m (… evaluation window)

26

Figure 22: File structure.

The tool is initiated and started with tra.m. Most functions and calculations are implemented in the large
callback file cbtra.m. A few constant matrices that are common for all GUI-windows are stored in the file
guiconstants.mat. Some Matlab functions prefer an external file as input argument. The estimation function
fmincon is one of those. The files squareerrorgX.m calculates the loss function for different model
structures and are used as input argument to fmincon. Files 9-14 are used in the PI_opt and PID_opt
designs. The file simsystem.mdl contains the simulation model. Files 16-21 are the GUI-window
definitions. They can be included in either tra.m or cbtra.m when all changes in the GUI are done (tragui.m
in tra.m and the rest in cbtra.m).

5.3 Data structure
One particular demand on the tool was that it had to be able to run at the same time as another Matlab
application (for example another TRA) without interference. This demand made it impossible to store the
variables as global variables in workspace. All TRA-variables are for that reason collected in a large struct.
The struct is defined in tra.m where the variables are given their initial values. The graphical objects in
Matlab have a property called “UserData”. The object doesn’t use UserData; it is free to fill with any
variable. The struct is stored in UserData of the main window. UserData in the sub-windows contains the
handle of (a pointer to) the main window. The struct is copied from UserData every time a callback is
performed. At the end of the callback the new values of the struct is stored in UserData again.

tra.m

Initialises the
GUI and sets
all initial
variables.

GUI

All events initiate a
callback. Examples
of events are:
pushing a button,
dragging a handle,
selecting a menu
etc. All variables
are stored in
“Userdata” of the
main window.

callbacks

cbtra.m

The callbacks
perform different
actions, f. ex. Load
new data, design
controller, start
simulation etc.

Simsystem.mdl

Simulink model.
Return updated variables

squareerrorgX.m

Calculate the loss
function for different
model structures,
used in the automatic
estimation.

optpid.p/optpi.p

Designs PI/PID_opt.

27

Figure 23: Data structure.

Win contain all variables concerning main window and data, models contain the five different model
structures and controllers contain the five different controller types. Cwin, mwin etc contain the handle
numbers to the sub windows. Currmod and currcont contains complete information about current model
and current controller respectively. Storedmodelmenus and storedcontrollermenus contain handle numbers
to the menu objects in Model menu and Control menu.

The data structure can be viewed in detail in tra.m where all variables get their initial values.

5.4 Model estimation

5.4.1 Handles
The handles are used to manipulate the model graphically. To enable complete manipulation of the model
parameters we need as many handles as model parameters. How the handle movements should influence
the model parameters is a matter of taste. The nicest way is probably to put all handles on the curve and let
them affect the shape of the curve, like dragging a rubber band. The most straightforward way is to have a
one to one relation; meaning only one parameter is affected when a handle is moved.
Most parameters have an intuitive placement of the handles, but some parameters in the more complex
model structures don’t have any intuitive placement on the model curve. The handle for Tz (the time
constant of the zero) is one of those. The Tz-handle is for that reason combined with the handle for T (the
time constant of the pole) and changes its value as it is moved along the time axis.

G1

Type: n:th order pole

G1

mgdata=get(maingui,’UserData’)

win

NoData:
y:
t:
u:
yLine:
uLine:
ymLine:
…
…

models

type: n:th order pole
name: ’untitled’
…
…

G1 G1

Type: n:th order pole

G1

name: ’PI_manual’
Type: ’PI’
Method: ’manual’
Storedname: 0
Kc: 0
Ti: 0
b: 0
…
…

C1

controllersstoredmodelmenus

storedcontrollermenus

cwin

mwin

simwin

senswin

evalwin

currmod

currcont

28

5.4.2 T-handle for model structures with n>1
It is necessary to make iterations to find the perfect position for the T-handle for model structures with n>1.
Perfect position is on the model curve at 63% of the final level. It is solved with Newton Raphson
iterations.

5.5 Simulation
The simulation is done in Simulink. The Simulink model is shown in the figure below.

Figure 24: Simulation model in Simulink.

Set point makes a step after a few seconds (default 10 seconds), after 55% of the simulation time Load
makes a step that represents a step load disturbance acting on the process. The controller is implemented
with standard Simulink blocks as shown below.

Figure 25: Controller implemented in Simulink.

Simulink does not automatically select a suitable simulation time. A time vector has to be given as input
when the simulation function is called. The tool calculates the time vector with respect to current model

simload

To Workspace3

simr

To Workspace2

simu

To Workspace1

simy

To Workspace
Set Point

num(s)

den(s)

Process modelProcess
Delay

Load

r

y
u

Controller

1

u
sTd

sTd/10+1
Transfer Fcn

s

1

Integrator

1/Ti

Gain2

b

Gain1

Kc

Gain

2

y

1

r

29

structure (integrating processes are treated specially), model parameters and current controller parameters.
It is also possible to set the simulation time manually in simulation properties.

To make the simulation result a bit more realistic the initial level of the set point and process output is set to
50% of y-range and the initial control signal is set to 50% of u-range. The amplitude of the set point step is
10% of y-range and the amplitude of the step load disturbance is default 10% of u-range.

5.6 Special functions

5.6.1 FindSteps
This function is used to find steps of various amplitudes in the control signal. It determines where and how
large the steps are. The steps that are found are used as input to the model to generate the model output.
Finding steps in a nice data vector is not very difficult, but to be able to use collected data although it is not
perfect the function has to perform a few checks. This can be done very sophisticated, but the present
version of the function is quite simple.
It is called with [steppos, stepsizes]=FindSteps (u, stepsens), where u is the control signal and stepsens is
the minimum amplitude, in percent of max (u) – min (u), of a step. The function returns two vectors.
Steppos contains the element positions and stepsizes the amplitudes of the steps in vector u. The function
searches for a difference between two following samples that is larger than stepsens. When a pair of
samples are found where |u(k+1)-u(k)| > stepsens*(umax-umin) the position k is stored in steppos. Next
step is to determine the amplitude of the step. The final level of the step is found by searching for a pair of
following samples with a very small difference. When a couple of samples are found where |u(c+1)-u(c)| <
0.1*stepsens*(umax-umin) stepsize is assumed to be u(c)-u level. Ulevel is the final level of the previous step
or the initial level of u if this is the first step. The user can set stepsens in Data Properties. Default value is
5%. This means that differences between two following samples less than 5% of measurement range will
not be considered as a step.

30

PID-
Controller

rescale

rescale

6 User’s guide

6.1 System demands
This version of TRA is written for Matlab 5.3 with Simulink, Control Systems Toolbox and Optimization
Toolbox. It is developed in Matlab 5.3.1 on Unix, Windows –98 and –NT with following toolbox versions:
Simulink (version 3.0, 10-september-1999)
Control Systems Toolbox (version 4.2, 10-september-1999)
Optimization Toolbox (version 2.0, 09-october-1998)

6.2 Input data

6.2.1 Tests on real process
Some tests have to be done on the real process.
• Disconnect the controller and adjust the control signal (the process input) manually.
• Make a few steps on the control signal (u), preferably in both positive and negative directions.
• Log process output (y) and the manually adjusted control signal (u). It is enough to save the sampling

time if it is constant. Otherwise all sampling instants have to be logged (t) as well.
• Transform sampled data into Matlab vector format.

The tool needs one vector containing the control signal (u), one vector containing the process output (y)
and one vector containing the sampling instants (t) alternately a scalar defining the sample time. All vectors
have to be of the same length. Vectors can be either 1*n or n*1, all input vectors are transformed to the
same format internally. The control signal must contain at least one step otherwise data is useless.

6.2.2 Measurement Ranges
The tool also demands information about measurement ranges ymin, ymax, umin and umax. Default values
are min=0 and max=100.
In many control systems the controller internally scales y to values in the range 0-100. This means that
when the process reaches its maximum value, whatever that may be in natural units, the controller receives
a scaled signal at 100. Internally it also gives a control signal (u) in the range 0-100. If y and u are
measured outside the controller’s internal structure the signals will probably not be within the range 0-100.

 Reference r (0 100)
 u (0-100)

 y natural units y (0-100)

Figure 26: Explanation of measurement ranges.

If both signals were measured in the internal scaling we wouldn’t have to worry, but some equipment
measures the process output (y) in its natural units (volts, amps, etc) and the control signal (u) in the
controllers internal scaling (0-100). For those cases the measurement ranges are ymin = y natural min, ymax =
y natural max, umin= 0 and umax= 100. This is a very common case, so the variables umin and umax are often
0 and 100. But to be prepared for the unexpected it is possible to give umin and umax any values.

If your control system doesn’t re-scale the signals as shown above or if you don’t have a clue what this
subchapter deals about just keep the default values.

31

6.2.3 Input data stored in a file
The vectors and scalars are preferably stored in a *.mat file. When loading data from a file the stored
variables must be named u, y and t. It is also a good idea to include the measurement ranges in the same
file, otherwise you will be asked to enter the ranges immediately after loading the file. Ranges must be
scalars named umin, umax, ymin and ymax. To save the variables in a *.mat file type:

save filename y t u ymin ymax umin umax
Type “help save” (without “ ”) in Matlab to learn more about saving.

6.3 Starting the tool
• Start Matlab. Make sure that all “tra-files” are in your current directory.
• There are several ways of starting the tool.

1. >>tra
The tool opens as an empty shell without data. Input data can then be loaded either from a
file or from Matlab workspace. This is the easiest way if your data is stored in a file.
Nothing else can be done before data is loaded.

2. >>tra(y,t,u,[ymin ymax],[umin umax])
This is the fastest way if all variables are in workspace.

3. >>tra(y,t,u)
A dialog box will be displayed immediately after start-up prompting you to enter the
measurement ranges. If you have data in workspace but are not sure about the
measurement ranges this gives you a chance to view data before setting ranges.

• Now data (blue line) and the output of a roughly estimated model (red thick line) are showed in the
axes and the tool is ready to be used. Short information messages are displayed in the white square at
the bottom of the main window.

32

Figure 27: The main window. Default model structure is first order pole. In this case that is obviously not a
good approximation of the real process. The transfer function of the model is displayed in the upper part of

the window. The loss function is displayed in the upper right corner. The encircled arrow-buttons can be
used to zoom in/out in either x- or y-direction. Zoom area is found in View menu.

6.4 Inspecting data
Make sure that input data is useful before too much work is done on modelling. If noise or disturbances are
too large it is difficult to make a true model of the process.

6.4.1 Select region
If only a part of input data is useful choose ”Data”->”Select Region” and select area by click and drag.
Then only data within the selected region is considered and displayed. When ”Data”->”Restore Original
Data” is selected all original input data is considered again.

6.4.2 View
It is possible to zoom the axis in the main window. It is done with either the small arrow-buttons at the end
of the y- and x-axes or from the “View” menu. Besides the normal zoom functions the menu also contains
“Fit Axes”. It adjusts the axes limits so that all handles and curves are visible within the axis.
Note the difference between zoom and select region. Select region discards data outside the selected region.
Zoom merely magnifies or shrinks the image.

Handles

Model output

Process output

Process input

33

6.4.3 Data properties
By selecting “Data” -> “Data Properties” it is possible to set new values on measurement ranges and step
trig level. “Step trig level” decides how much the control signal (u) must change between to samples to be
considered a step. Default value is 5% of max (u)-min (u). That is 5% of the span between the largest and
the smallest actual value in the vector u. With a very small trig level the tool considers any small change in
the control signal as a step. Then the computations will be much more time demanding and hence all handle
movements will become slow. If the control signal also contains measurement noise the advantage of a
well-balanced trig level is obvious.

6.5 Model estimation
The sampled output from the real process (y) is compared with the calculated output of a model given the
same control signal (u) as the real process. The model parameters are adjusted until the calculated output
agrees well with the sampled output of the real process (y). To see exactly how well the models response
agrees with y the loss function is displayed in the upper right corner of the main window. A small loss
function means that the process model agrees well with the real process.

6.5.1 Select Model
The user selects one among five major model structures. This is done in the “Select Model” window. The
window is opened from “Model” menu. In this window it is possible to select model structure, type specific
parameter values, mark/unmark parameters, make an automatic estimation of model parameters and reset
the model to its initial parameters. Only marked model parameter are affected by the automatic estimation

6.5.2 Manipulation of model parameters
To manually change the model parameters it is, besides typing new values in Select Model window, also
possible to drag the handles in the main window. Each handle corresponds to one parameter. The zero level
is an important parameter that is not needed in the model transfer function, but it has to be set to make the
model understandable. Integrating model structures also have an initial slope that has to be considered. The
initial slope can be manually manipulated by dragging the broad black handle. Models with zeros have a
combined handle for T and Tz, right click on the handle to switch between affecting T or Tz.

6.5.3 Automatic Estimation of model parameters
All marked parameters are optimised to minimise the loss function when the button “Estimate” is pressed.
The unmarked parameters are unaffected.
If the optimization fails and the parameters are totally wrong (It could happen!) press “Reset” in Select
Model window or in Model menu. The automatic estimation probably failed because the initial parameters
were too far from the optimal ones, causing the optimization function to find a false minimum. Improve the
initial parameter values and press “Estimate” again.

34

Figure 28: A closer region has now been selected. An integrating model structure with a pole (Integration
+ p) has been chosen and the parameters have been automatically estimated. The loss function is now

considerably smaller. The model name is displayed in the upper left corner, this model have not been saved
yet and has for that reason no name.

6.5.4 Saving a model
There are three ways of saving a model for later use.

1. Store Model (as…), stores the current model temporarily in TRA. The model is named
by the user and is stored in Model menu. There is no limit of how many models that
can be stored this way. The stored models are numbered in due order and the active
model is marked in the menu. All models stored this way will disappear when TRA is
terminated.
If a stored model is useless it might as well be deleted: Model → Delete Model…→
”model name”.

2. Export Current Model …→ … to mat-file, saves the current model in a separate *.mat
file on disk, only one model can be saved in each file. Default filename is the same as
the model name. Choose Model → Import Model … to load a previously exported
model.

3. Export Current Model …→ …to txt-file, saves information about current model in a
txt-file.

6.6 Design a controller
All control design is performed in the “Design Controller” window. Five different design methods can be
selected. Two of them are manual (one for PI and one for PID) and lets the user decide all controller
parameters. The other three methods are automatic; the user may set a design parameter. A default value of

Handle for
initial slope

35

the design parameter, giving a “normal” design, is displayed in the editable text field when a design method
is selected for the first time. The lambda method is an old PI design method that is only specified for two
model structures, the pure integrating structure and the 1:st order pole. The design parameter lambda has
different meanings for different model structures. For 1:st order pole it is the desired closed loop systems
time constant and for integrating models it is the desired time before the error starts to decrease after the
entrance of a step load disturbance. The remaining methods, PI_opt and PID_opt are recently developed at
the department of automatic control at Lund Institute of Technology. They can be used on all model
structures with monotonously decreasing phase. The design parameter Ms can be given any value between
1.2-2.0 where a low value (1.2-1.4) gives a slower but more stable system than a large value (1.8-2.0).
Default value is Ms = 1.4.

6.6.1 Saving a controller
This is done in the exact same ways as saving models but in the Control menu.

6.7 Evaluate the controller performance

6.7.1 Simulation
A simulation is performed when ”Simulate” is pressed in ”Design Controller” window. During the
simulation the closed loop system is exposed to a set point change and a step load disturbance. The
simulation is displayed in a window called ”Simulation”.

Figure 29: The simulation window.

The simulation time is calculated by a rough rule of thumb. If it is too long or too short it is possible to
adjust it by pressing “Properties”. In the appearing dialog box it is also possible to set the size and
occurrence time of the set point step and the size of the step load disturbance. The step load disturbance
will always enter after 55% of the simulation time. If the dialog box “Simulation Properties” is closed by

36

pressing “OK” the changes will attend the next time “Simulate” is pressed. A good advice is to clear the
simulation window before doing the new simulations.

6.7.2 Sensitivity functions
The sensitivity functions are calculated and displayed when ”Sens func” in the ”Design Controller”
window is pressed. The lower plot shows the sensitivity function from n to y. The design parameter Ms in
PI/D_opt is the maximum value of this sensitivity function.

6.7.3 Evaluate
To get a more scientific evaluation of the simulation and the sensitivity plots it might be a good idea to
press the ”Evaluate” button in the Simulation window. The Evaluate window is then opened and some
enlightening facts about the simulation and the closed loop systems stability are displayed. All
measurements from the simulation begin after the entrance of the load disturbance. The diagram shows the
Bode plot of the loop transfer function.

 Figure 30: The Evaluation window.

It is possible to zoom the Bode Diagrams by right clicking on it. Export Results writes the evaluation
results to a *.txt file. The file can then be read in an editor like Ms Word or Emacs.

6.8 Exit the tool
All sub-windows are closed and TRA is terminated when Exit in the main window is pressed. If you wish
to end your Matlab session select “Quit Matlab” under File menu in the main window.

37

7 References

Wallén, A. (2000): “Tools for Autonomous Process Control”. PhD thesis
ISRN LUTFD2/TFRT--1058--SE, Department of automatic Control, Lund Institute of Technology, Lund,
Sweden.

Panagopoulos, H. (2000): “PID Control; Design, Extension, Application”. PhD thesis ISRN
LUTFD2/TFRT--1059--SE, Department of automatic Control, Lund Institute of Technology, Lund,
Sweden.

