ISSN 0280-5316
ISRN LUTFD2/TFRT--5652--SE

Implementing a Wireless I/O Unit
using Bluetooth

Per Nilsson
Johan Brodin

Department of Automatic Control
Lund Institute of Technology
November 2000

Document name

Department of Automatic Control | paSTER THESIS

Lund Institute of Technology Date of issue
Box 118 November 2000
SE-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--5652--SE
Authon(s) Supervisor
Johan Brodin Bo Bernhardsson (LTH)
Per Nilsson Lennart Andersson (Sigma Exallon)

Sponsoring organisation

Title and subtitle
Implementing a Wireless I/O Unit using Bluetooth
(Implementering av tradlés in- och utenhet med Bluetooth)

Abstract

Bluetooth is a new standard for wireless communication. The aim so far has mostly been to use this
technology in an office environment. This master thesis considers the advantages of Bluetooth in an
industrial environment.

A general circuit board that uses Bluetooth for wireless communication has been constructed. The board
can be seen in the picture to the right. This platform can easily be connected to almost any electrical
device, which then gains the benefits of wireless communication. The devices can for example be carports,
door locks, or sensors and actuators in industrial processes. The developed software does not support any
Bluetooth profile, but is general and easy to expand.

To show the possibilities with the hardware platform a 1/10th-scale car application has been developed.
The car is steered by a joystick and both devices are attached to the general hardware platform.

Key words

Classification system and/ or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes
English 154

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 2224422 E-mail ub2@ub2.1u.se

Implementing a Wireless I/O unit using Bluetooth™

Table of Contents
Implementing a Wireless I/0 Unit using Bluetooth™ccccoiiiiniriinininiieneeecneneeee 0
TabIE OF CONLENLS.eeiuiieiieiiieieete ettt ettt et st ab e st e b e et e beenbeenbeesaeens 1
ACKNOWISAZEIMENLSooueiiiiiiiiiiieieeieete ettt ettt st e et e e teesbe et e e bt essaesneesnnesnseennas 3
AADSTIACE ...ttt ettt et h ettt e h et e bt e a e bt bt et e bt ent e bt st et e nae e st e b ne 4
L. INEEOAUCTION ..ttt et ettt et et et e st esatesabeeabeenbeenbeebeeseenseasseens 5
2. Hardware SOIULIONcc..eiiuiiiiieie ettt sttt e b saee 7
2.1 CIrcuit BOATdco.eouiiieiieieeeeee ettt 7
2.2 COMPONENLS ...eeureeirieeiieeeiteeiteesiteestteesteesseeesseessseeessseessseessseeasaessssessssesssseessseessseessssesnns 11
2.3 How to Access the HardWarecccoeeiireriiiininiienccececeteeseee e 12
2.4 Development ENVIFONMENT...........cciiiiiiiieeiieeiieceie e eeieeeieeeieeeseeeesseeesseesseesseesnseeenns 12
3. Software Solution of Bluetooth Connectionccceeviieiiiniiniinienieeeee e 14
3.1 SOftWATE 1N MASTET.....eeiutiiiieiiiieeeeeet ettt sttt et es 14
TN B B TS 4 s DS PO PR PP 16
3.1.2 Application Programmable Interface, APL..........cccooeviiieiiiiiiiiiieeeeee e 17
3. 1.3 IMPIEeMENTATION ..ottt ettt sttt ettt st e b eaees 18
BT TS ettt ettt h et e s bt e s at e et s b et e erean 19
3.1.5 Future IMProVemMENLS.c.cevuiiiriiiiniieeiteeiieeite ettt ettt e st 19
3.1.6 Development ENVIrONMENLt.cccueervieriiiieiiiieiieeeieeeiee et seee st e e 19
3.2 SOfIWAIE N SIAVE....eeiuiiiiiieeiiecee ettt ettt aae s e e s sbe e ssteeensaeesaeesaeensseenanes 19
T B D 1<) T4 s H OSSPSR 20
3.2.2 SYNCATONIZATIONvtiiieeiiieieeiieit ettt et ettt et ettt et e st e sseesabeenseeabeenseenseas 21
3.2.3 IMPIEMENLATIONccitiiiiiieiiie ettt ettt ettt et e st e e e e essaeessbeesnbeeeseeesseenanes 22
R T K] £ PSPPSRt 22
3.2.5 Future IMProVemMENTS......ccc.eeeruiieriieeieeeiieeieeesite e e ereeereeeereeseaeessseesnseeesaeennseennnes 22
3.2.6 Development ENVIrONMENt.cccueieuieeiiieeiieecie et eeee e e e e e reeeseaee e 22
4. CommuUNICAION PIOLOCOL .. .uviiiiiiiiieeiieete ettt et e et et e et eesbeeebeeetae e saeesaseesaseesaseens 22
4.1 MASEET £0 SIAVE ...eiiuiiiiiieeiieciie ettt ettt e et e et e e e b e e s aeesbaeessaeessseessseesnseesnseeesaeenns 24
4.2 S1AVE t0 MASTET ...ttt et ettt ettt st e e et e bt e e e b eae 27
5. The Bluetooth Controlled Beetle.........ccouiiiiieeiiieiieeiieeeeeeeeee e e 29
5.1 Software Solution of Car APPlICALIONeeveriieiieiieiieie ettt eee e e 30
R B D 1SS T o OO U USRS URRURRRPRRRPO 30
5.1.2 CONLIOL STALEEYvveieieeiieeiieieeieeieeriee et e st et e et e eateesaeeteesbeebeebeesseesseesssesssesssesnsenns 31
5. 1.3 ITMPIEMENTALION ...c..eiiiiiiiieiieieete ettt ettt et b et sbe e st e st e satesaneeas 32
6. PC Application controlled by BCCccoooiiiiiiiiiiiieiiciteteteseeee e 33
7. CONCIUSIONS ..ttt ettt et ettt e bt e bt e st e s st e satesaeesabesnbeenseenseenseenseenseas 35
B RETRIIICES. ...ttt ettt ettt ettt st s be et ae e enee 36
Appendix A: Time PIANNINg........cccooviiiiiiiiiiieeee ettt st st e 37
Appendix B: Circuit BOArd..........c.oooiiiiiiioiiciieeeeeeee et s 38
Appendix C: Code IN SIAVE........eeiiiiiiie ettt s b e e st e e reeesreeessaeenans 40
Appendix D: Code 1N MASTETcovuiiiiieiieeeiee ettt sttt e st e e s beesbeessseeesaaeesanes 69
Appendix E: Code in Bluetooth Controlled Beetle...........cocceoveviniiiiininiiininiiiineniccneee 100
Appendix F: Technical Information about Bluetoothccceeviiiniiiiniiieniicieeeeee, 139
F.1 General INformationcccueieiieiiieeiieeie ettt et ee e e e e e bee e e enne s 139
F.2 Technical InfOrmationcccooeiiiniiiininiieeeeeeeee et 140
F.3 The Bluetooth specification 1.0 B Stackccccocervveniriiiininiiiiiniccneciceeecceeene 142
F.4 QUL ICALIONviiieiiie ettt e e e et e e e eeareeeeeaneeeeentaeeeesaeeeanes 144
F.5 Competitors and Future Development of Bluetooth...........c.ccccveeeiiiiciienciicieeiece, 145

-1-

Implementing a Wireless I/O unit using Bluetoot

hTM

Appendix G: Press release
Appendix H: Performance

and characteristicS 0f the BCC....oovvuummeeeeeeeeeeeeeeeeeeeeeeeeeeeenn

Appendix I: User’s manual for the Bluetooth controlled Beetleccccoeviiiieniniinincnnens

Implementing a Wireless I/O unit using Bluetooth™

Acknowledgements

There were a lot of unanswered questions when the master thesis project started. It was not
clear at all how to construct the wireless I/0O unit using Bluetooth. The success of the master
thesis project is much due to the combination of knowledge we have. We are both masters of
science students but in two different fields, computer science and electrical engineering. The
project could not have been done in 20 weeks without our different experience and
knowledge.

Our supervisors, Ph.D. Lennart Andersson at Sigma Exallon System and Professor Bo
Bernhardsson at the Department of Automatic Control, have both contributed to the final
result. Lennart Andersson by helping us in the daily work and Bo Bernhardsson with the
master thesis paper.

People who have contributed to the master thesis project with lots of ideas and enthusiasm are
Henrik Svensson, Ph.D Johan Eker and Bo Lincoln.

We would like to thank Rolf Braun at the Department of Automatic Control for helping us
etch the circuit board and Lars Andersson for his contribution of knowledge about radio cars.

We would also like to thank Sigma Exallon System, especially Jan Enejder and Anders
Ohlsson, for providing us with all resources we have needed.

Finally, are we very thankful that our girlfriends, Sara and Ulrika, have put up with us during
the project.

Implementing a Wireless I/O unit using Bluetooth™

Abstract

Bluetooth is a new standard for wireless communication. The aim so far has mostly been to
use this technology in an office environment. This master thesis considers the advantages of
Bluetooth in an industrial environment.

A general circuit board that uses Bluetooth for wireless communication has been constructed.
This platform can easily be connected to almost any electrical device, which then gains the
benefits of wireless communication. The devices can for example be carports, door locks, or
sensors and actuators in industrial processes. The developed software does not support any
Bluetooth profile, but is general and easy to expand.

To show the possibilities with the hardware platform a 1/10"-scale car application has been
developed. The car is steered by a joystick and both devices are attached to the general
hardware platform.

Implementing a Wireless I/O unit using Bluetooth™

1. Introduction

Bluetooth is the fastest growing industrial standard in the history. It is a wireless
communication technology, which can transmit both speech and data at a relatively high
speed. For a detailed description of Bluetooth, see Appendix F. Bluetooth is a low cost
solution to replace cables in an office environment. The technology is supported by 2000
companies around the world, and this will ensure that a wide range of different devices will be
compatible which each other. The market potential for Bluetooth is estimated to be more than
one billion units in a couple of years.

The main goal with the master thesis project is to consider the advantages of Bluetooth in an
industrial environment. Questions we have investigated are: How should a general Bluetooth
I/O unit be constructed? What functionality is required for the I/O unit? How small can the
delay and sample time be made? Is it possible to steer retransmission of lost packages? How
should lost connections during execution be handled?

This master thesis project has been developed at the company Sigma Exallon Systems AB,
and at the Department of Automatic Control at Lund University. The department’s goal has
been to develop a generic Bluetooth communication solution, and Sigma’s desire has been to
implement it in a prototype that shows the potential of Bluetooth. Constructing a generic I/O
unit called Bluetooth Control Card (BCC), using Bluetooth for wireless communication has
fulfilled this goal.

The communication solution can be seen in Figure 1.1. Analog signals at the BCC’s inputs are
sampled and transmitted over the Bluetooth channel to the PC. At the same time signals can
be sent to the BCC and set at the outputs. To speed up the development process a Bluetooth
module from Ericsson was used instead of integrating a module into the BCC. The BCC can
be attached to many devices, e.g. door locks, carports, and sensors and actuators in industrial
processes.

The Bluetooth modules Bluetooth Control Card (BCC)

[LSIGMA
<>
b
”
.

Bluetooth™

5 SIGMA %
-

Bluetooth channel

" Buetootn”

Inputs and outputs that can be connected
to an electrical device

Figure 1.1: The Figure shows the communication solution developed in the master thesis project. Bluetooth
modules are attached to the PC and to the Bluetooth Control Card (BCC). Data packages can be sent in both
directions over the Bluetooth channel. The BCC is a circuit board developed in the master thesis project and it
contains inputs and outputs. The inputs are sampled at a user defined period and sent over the Bluetooth
channel. The PC sets the outputs on the BCC.

Implementing a Wireless I/O unit using Bluetooth™

The master thesis report is organized as follows.

In Section 2 the hardware solution is discussed. Section 3 shows the software solution and the
definition of the master slave concept. Section 4 defines the communication protocol between
the master and slave. Section 5 describes the radio car application. Section 6 illustrates a
general application running on the PC, controlled by the BCC. Conclusions are drawn in
Section 7. Section 8 contains the references.

Several appendices are included in the report. The time planning and all documentation for the
construction of hardware and software are incorporated. A general appendix of Bluetooth is
attached to give an overview of the technology. Appended is also the press release from the
Bluetooth Developers Conference in San José [4], where the master thesis project will be
demonstrated. A specific appendix on the performance and characteristic of the BCC and a
user’s manual on the Beetle radio car application are also included.

Implementing a Wireless I/O unit using Bluetooth™

2. Hardware Solution

Bluetooth module Bluetooth Control Card

GSIGMA
+ Q@%.

Bluetooth”

Figure 2.1: The two circuit boards that the hardware solution consists of. On the board to the right is the
Bluetooth chip and the antenna. The board to the right is constructed in the master thesis project and it contains
a micro controller that controls the inputs and outputs. Figure 2.2 below shows an overview of the different
components at the BCC.

The hardware solution consists of two circuit boards, see Figure 2.1. The board to the left is
the Bluetooth module and antenna. This board is constructed by Ericsson and is sold as an
Application and Training Tool Kit. The board to the right is the one that is constructed in the
master thesis project and is called Bluetooth Control Card (BCC). On this board the Bluetooth
module and the antenna could have been implemented, but it would then have taken longer
time to construct the hardware. This would of course have been done in a commercial product
to make it cheaper and smaller.

The BCC has all the logic for the analog inputs and outputs. Below is described how it is
constructed and how the different components on the card interact. There is also a Section that
describes how to access and use the card.

2.1 Circuit Board

The task of the BCC is to be the communication link between the Bluetooth module and the
inputs and outputs. The data it receives from the Bluetooth module is forwarded to the
outputs. The values that the inputs have is sampled by the card and sent to the Bluetooth
module. A micro controller handles all the communication to and from the circuit board.
Figure 2.2 below shows an overview of the different components of the BCC. To make the
drawing easier to study some lines have been made thicker. The thicker lines symbolize that
two or more wires are implemented equally. For example do the four inputs go to one
operational amplifier each and then four wires go to the micro controller.

Implementing a Wireless I/O unit using Bluetooth™

> Bluetooth module 2 Analog >
outbuts P
¢ f 2PWM [P
ounuts P
Reset RS232 > D/A-converter [~

button 2 Analog <«
* f inouts —

SPI Dat.
p| Micro controller [/ In e

Blue mnput

Light Clock
Diode < output >

Figure 2.2: Overview of the Bluetooth Control Card which shows how the components interact. The micro
controller’s tasks are to receive information for the outputs from the Bluetooth module and set this on the
outputs. It also samples the inputs and sends this information to the Bluetooth module. To see the schematic view
which shows all the connections on the BCC see Figure 2.3.

The chosen micro controller is a PIC16F876. It is a good choice since it has a lot of built in
functionality such as A/D-converters, PWM modules, timers, flash memory, an SPI module
and a USART. This makes both the hardware and software easier to implement. The A/D-
converters do not have to be asserted on the board and the software for timing issues is easy to
implement because of the already implemented timers. The communication between the micro
controller and the Bluetooth module is done over the serial channel RS232. The RS232-
component converts the micro controller’s voltages to RS232 voltages. The maximum speed
over the RS232 channel is constrained by the micro controller to 57.6 kbps.

The outputs from the card are two analog outputs and two PWM (Pulse Width Modulation)
outputs. The micro controller sends the digital values to a D/A-converter. The D/A-converter
delivers a value between 0 and 2.4V, which is amplified a factor 2 to 0 to 5V by an
operational amplifier. The PWM period and duty cycle is received from the remote Bluetooth
device and the correct pulse is created in the micro controller and sent to an operational
amplifier. The amplifier has unity gain, but is needed to drive the outputs, as the micro
controller can not drive any outputs itself. For further information about the PWM signals see
Section 4.1.

The inputs consist of two analog inputs and an SPI (Serial Peripheral Interface). All the
signals from the inputs go to operational amplifiers with unity gain. This is to protect the
inputs at the micro controller, as the highest voltage that can come from the amplifier is 5V
and the lowest is OV. The voltages from the analog inputs go to the A/D-converters in the
micro controller.

The SPI consists of a digital input, an SPI Data In (SDI), and one clock output from the
micro controller. The digital input decides when the BCC can receive data on the SDI. The
device that sends the data uses the clock from the micro controller. The micro controller can
not simultaneously set the analog outputs and sample the SDI. For further information about
the SPI see Section 4.2.

Implementing a Wireless I/O unit using Bluetooth™

When the reset button is pressed it resets both the BCC’s micro controller and the Bluetooth
module’s micro controller. There is also a blue light diode on the board. This is controlled by
the micro controller and is used to show when the reset button is pressed, when a connection
with another Bluetooth device is established, and when an software error occur.

Figure 2.3 shows a schematic view of the BCC with all the components. The power supply of
the board is 5.5 to 35V and this voltage is stabilized by a 1uF capacitor. The internal power
supply then becomes 5V from the voltage regulator. The power supply to the Bluetooth
module is also 5V. To make the board less sensitive to disturbances, capacitors of 100nF are
put at each component, and to stabilize the signals on the inputs, capacitors with the same
capacitance are put there. The two components “Bluetooth Signals” and “Bluetooth Power
Supply” at the bottom of the figure are the sockets that are connected to the Bluetooth
module. The component to the right has the pins that it is possible to connect to.

It was a little bit tricky to make the reset button able to reset both cards. Both cards should
have zero volts when they are reset, but otherwise the BCC’s reset pin should usually have 5V
and the Bluetooth module should not be connected at all. To solve this, a button with three
connections is used as can be seen above the micro controller’s clock. When the reset button
is pressed all three wires are connected to each other.

Pouer Supply: 5.5 ta 35 U Schematic Vieu af Bluetooth Contral Card

Designed by Per Nilsson & Johan Brodin

&

Outputs & Inputs
GRF [B S

eent

Usltage regulator

|E§"‘5—H%J

1 —
4 PuF = %Tﬂ U—%g —%:
% 0 VAR T 4 “-ﬁ ‘*ﬁ
Yo . [sk
L e = =
e[ok [Tt S
I+
= a7 — +
= o LEE
—
By o - n ¥ me
]
= . uszrre e
PiclélFEFe
rg 478 Ohm —
@: R eﬁ o4k rop B
e 47k e | f - REE [T g g
G207 7 25 ———A6nt] 4
= i
fore ung 18 T
" L—sf 1 OUTH QUTE 1
[~ 2 1 psa oem
I = REFR REFE |
S LL POL =
S 0s Up
BT cennection diode _aa_] omoour L -—
oSOk SPr | | SOl OGND . j_— o
outA oUTD [
(Y -IHA -1MD _g_l
1 +INA +1RD <
1w -
B +HNE +INC —;é—
S dME i S
‘ CUTE QT
[T
U Bluetooth Signals
T R —
1eent RO TED 1
—e—— A1l U=z
% | T Ci-E
i ANDL CE+E
L= W
fem Ci- = Blustooth Control Card <BCCD
auoz -1
—{ £2-1 CBH
Constructed in the master thesis
T Implementing a Mireless I0 using Blustooth
I
Rewv. vi.@
Date: 25.13 - BO Sheett 1 1)

Figure 2.3: This is the schematic view of the BCC which shows how all the wires are drawn. The drawing was
made in a Eagle CAD-program. For further information about the development environment see Section 2.4.

Implementing a Wireless I/O unit using Bluetooth™

During the development of the BCC an iterative approach was chosen and two boards were
built. The first board was built to test and study the construction so the second and final board
could be implemented correctly. The first BCC that was constructed is 8*10 cm and has two
large expensive DC/DC converters. The idea was to get a working board as soon as possible
in order to start developing the software. The second and final board is 8*5 cm and is
connected back to back to the Bluetooth module.

The first board can be seen in Figure 2.4. The board is driven by both 3.3V and 5V. The
reason behind the different power supplies was that the Bluetooth chip is driven by 3.3V, and
the outputs were driven with SV. This solution could not be used, since the Bluetooth module
from Ericsson is driven with 5V instead of 3.3V. The first hardware design did work despite
the design error. The construction of the first board was good for the master thesis project,
since a prototype became available early in the development. Although it had drawbacks both
in size and cost it was perfect as a platform for the software development.

- 4

T

- ¥
o >
i
L)

™R
oC

Figure 2.4: The first board that was constructed can be seen above. This board was made to study the problem
and to develop the software early in the project. The picture is in natural size and the board has some drawbacks
and design errors which are altered to the next board, which can be seen in Figure 2.5.

The second board is shown in Figure 2.5. It was quite hard to get all the components into this
area, but the shorter the wires are, the less disturbances occur. The wires between the micro
controller, the RS232 component, and the socket with the Bluetooth signals should maybe
have been a little shorter to decrease the errors over the RS232 link. To connect the BCC to
the Bluetooth module with sockets is though a smart choice, as the wires between the cards
becomes as short as possible. The circuit board is shown in appendix B.

-10 -

Implementing a Wireless I/O unit using Bluetooth™

i
i
i3

-
=T - i

= TCNERE N 0T LS

Figure 2.5: The second and final board is shown above in natural size. It has two sockets with ten pins each to
left in the figure, which are used to connect the card to the Bluetooth module. The RS232 wires then become as
short as possible. The small size of the board makes it less sensitive to disturbances. See appendix B to see the

drawing of the circuit board..

2.2 Components

In this Section the different components are listed in Table 1 below. The total cost of the

components on the final card is between 300 to 500 SKr.

Component Elfa's stock no. Quantity
Power Supply Socket, EIAJ RC 5320 42-053-57 1
Socket for Bluetooth Application Tool Kit 43-708-21 2
Socket for inputs and outputs 48-354-84 1
Micro controller, PIC16F876 Ordered from Memec 1
D/A-converter, MAX5158CPE Ordered from Maxim 1
Operational amplifier, OP496 73-016-41 2
Voltage reference, ICL8069 73-101-21 1
Micro controller clock 3.5796 MHz, HC49/4H 74-515-03 1
Blue light diode 75-042-44 1
RS232, Max 203ECPP 73-229-77 1
Reset button, APE2F-6M-10 35-548-39 1
Voltage regulator, L7805CV 73-095-60 1
Capacitor, 1 uF 65-743-05 1
Capacitor, 100 nF 65-736-87 10
Capacitor, 4.7uF 1
Resistor, SkQ 60-730-76 2
Resistor, 5.4kQ 60-731-18 2
Resistor, 6.8kQ2 60-732-33 1
Resistor, 10kQ 60-734-23 1
Resistor, 470Q 60-719-06 1
Resistor, 47kQ 60-741-81 1
Resistor, 20Q2 60-703-20 1
Plastic distance 48-846-56 1

Table 1: The table lists all the components on the Bluetooth Control Card.

-11 -

Implementing a Wireless I/O unit using Bluetooth™

2.3 How to Access the Hardware

Figure 2.6 below shows where the pins, the reset button, and the power supply are situated on
the BCC. It is easy to connect wires to the pins. A small screwdriver is needed to attach the
wires, which then are safely connected to the card. The Bluetooth module can be pressed on
the sockets that are shown to the left in the figure. The upper socket has the power supply and
reset wire for the Bluetooth module and the lower socket has the RS232 signals. The socket
for the power supply can be seen down to the right and the plug for that socket can be bought
from a component retailer, for example Elfa. This plug usually sits on battery eliminators, so
it is easy to supply the card with power. When the wires are attached and the card is supplied
with power, the card waits for another Bluetooth device to communicate with it.

Sockets for Bluetooth
module Reset button
H Pin #1: Analog in 1
] — Pin #2: Analog in 2
: Jir JeT Pin #3: Analog out 1
! ! Pin #4: Analog out 2

: Pin #5: PWM out 1
o =~ Pin #6: PWM out 2

2 - - Pin #7: Ground

Pin #8: Clock

Pin #9: SPI Data In
Pin #10: Digital input

Pin #10 The power supply

Pin #1

Figure 2.6: The Figure shows the BCC and how it is accessed. The two sockets to the left is connected to the
Bluetooth module. The reset button sits on top of the card and when it is pressed the blue light diode to the left of
it flashes. The 10 pins with the inputs and ouputs are situated on the bottom of the card and the figure shows
where the different inputs and outputs are. The power supply is to the right of the pins and and the plug for it can
be bought from a component retailer.

2.4 Development Environment

To develop the hardware of the BCC the CAD program Eagle was used. The card was then
etched at the Department of Automatic Control at LTH and assembled at Sigma. The light
edition of Eagle was used, because the BCC is small enough and has only two layers of wires.

The design of cards in Eagle contains three different stages: design of components, making
connections between these, and placing them on the board. It is not necessary to design all the
components on the card, since a lot of them already exist in Eagle, e.g. resistors, capacitors,
and the standardized packages. Designing components is very easy, but it can however be a
little tricky to redesign them, because components that are used can not be redesigned. That
will say, if a component is placed in a view so connections to other components can be made,
and it shows out that the component must be altered it is not permitted to have it in a view

-12 -

Implementing a Wireless I/O unit using Bluetooth™

where connections can be made. Therefore it has to be removed from all boards before it can
be redesigned or a new component must be made.

After the components are designed they are placed in a “schematic view” and electrical
connections are made between them. Eagle is very user friendly and to check that the
connections are correct there is an “eye” that can be used. It is a special feature of the program
that makes it possible to see which pins that are connected with each other. This is very
powerful and it is recommended to use this final check before the last stage.

In the last stage the components are transferred to the “board view”. When the placement of
the components is done, it is possible to either route the wires by hand or to let the program
auto route the wires. In BCC’s case there are a lot of wires and the area is quite small so the
auto routing could route 70 percent and the rest was routed by hand. The drawing of the wires
on the circuit board was printed on a slide with a laser printer, see Appendix B, and then the
card was etched. It has to be quite good quality of the printed slide in order to make a good
etching.

-13 -

Implementing a Wireless I/O unit using Bluetooth™

3. Software Solution of Bluetooth Connection

The software is designed and implemented as a master to slave solution. The PC is the master
of the connection and the BCC card is the slave. They are both refereed to as the host with the
Bluetooth module as the host controller. The hosts refer to each other as remote devices.
Figure 3.1 below shows the general design of the system.

Master Remote devices Slave

~

SN
2o

" Bustooth*

Host Host controller Host controller Host

Figure 3.1: The general design of the system is a master and slave solution. The PC is the master and the
Bluetooth Control Card (BCC) the slave. The master contains all the logic of the Bluetooth connection. The slave
samples its inputs at a user defined sample period. The input values are then transmitted to the master over the
Bluetooth channel. The packages that are sent from the master to the slave set the outputs of the BCC.

All the logic for the Bluetooth connection and control of the BCC card is gathered in the
master. This makes the BCC card very generic and allows it to be attached to many different
applications.

The master initialized the Bluetooth connection and data packages can be sent from the
master to the slave and vice versa. This means that that the master can measure input signals
and set different output signals at the slave.

The Bluetooth package type chosen for the Bluetooth connection is a DM1 package, see
Appendix F Section 3. This package can transfer data payload between 0-17 bytes with full
error coding at the symmetric max rate of 108.8 kbps over the air. A typical DM1 package is
shown in Figure 3.2.

3.1 Software in Master

The software is developed in the program language Java. Java’s main advantage is the
machine independent structure of the language. It is also easier, compared with C++, which
makes it more time effective to work with. The functionality is not constrained in any way
using Java so it was the natural language to choose. Another advantage with Java is the
communication package JAVACOM that simplifies communication with the serial port.

The software is designed as a Bluetooth stack with its different layers. The lower layers
provide different services to the above layer. The benefit of dividing the program in different
separated layers is an easier task of adding functionality. Different applications access the
stack through an Application Programmable Interface (API). The API offers all functionality
needed for hardware independent wireless communication. The ability to access the stack in a
well-defined way makes it easy to develop new software, as well as modifying existing
programs to gain the functionality of wireless communication.

-14 -

Implementing a Wireless I/O unit using Bluetooth™

All received packages are reassembled from the byte stream and then scheduled in a Java
thread. The thread copies the data contained in the package from the general receiver butfer,
into its own memory space. The data is maintained in a vector without any other copying
needed during stack executing. This is done using the vector as a parameter together with a
pointer to the first byte. Above layers simply peels off its own data by adjusting the pointer.
Sending data is done in the same way. The top layer reserves all memory needed in a byte
vector and copies its data into the vector. A pointer is used to keep track of the first byte and
no extra memory allocation and vector copying is needed. This is illustrated in Figure 3.2.

Incoming data in a byte vector

Head Payload

T Pointer

The same data vector presented to the application

Head Payload

T Pointer

Figure 3.2: The Figure shows how incoming data packages are threaten by the master. The data of a package is
copied to a data buffer in a software thread. The thread contains a pointer to the first correct byte. This pointer
is changed during execution when different software layers “peel of” its data bytes. No extra data copying is
then needed during execution.

The software in the master thesis is designed for communication with multiple remote devices
on several channels. Due to the lack of support for multiple connections in Bluetooth
firmware from Ericsson, the software is not implemented to support multiple devices.
Multiple channels are not either supported, but are not a major task to implement on the
current design.

The software stack is a prototype and has no claim of following the Bluetooth specification
1.0 B [2]. The main reason for this is the time constraint in the master thesis project.

-15 -

Implementing a Wireless I/O unit using Bluetooth™

3.1.1 Design

Figure 3.3 below shows the design of the Bluetooth stack. The design is done according to the
Object Oriented Modeling and Design OOMD [1] process.

Application

ControlLayer

{

L2CAP

¢

HCI

I I Double direction

RS232 reference

Figure 3.3: The Figure shows the design of the Bluetooth stack used in the master. Different layers access each
other according to the arrows. Applications access the stack through an Application Programmable Interface
(API). The API provides a user with well-defined methods and simplifies the development. The stack
communicates with the Bluetooth module over the serial port RS232.

Description:

e Application
A user developed application running on top of the stack gaining the increased
functionality of wireless communication.

e Application Programmable Interface, API
The API is a Java interface that is implemented by the application. It provides well-
defined methods between the stack and the application. The benefit is rapid application
development.

e ControlLayer
The layer performs multitask functions, provided to the application by the API. An
example is the initialization of the Bluetooth host controller that is performed in several
steps. These methods are written with the goal of hiding the Bluetooth specific parts from
the user.

e Logical Link Control and Adaptation Protocol, L2ZCAP
The layer adds the functionality to send data packages over a Bluetooth channel. For more
information on the L2ZCAP layer se appendix F Section 3.

e Host Controller Interface, HCI

-16 -

Implementing a Wireless I/O unit using Bluetooth™

The layer adds the general functionality of communication with the Bluetooth host
controller. The Bluetooth host controller is accessed through the HCI layer. The layer is
also dividing incoming packages in two categories. Data packages are sent to the L2CAP
layer and event packages to the ControlLayer. For more information on the HCI layer see
Appendix F Section 3.

e RS232
The class establishes communication with a serial COM port. The byte stream that is
received from the serial port is reassembled into data or event packages, and sent to the
HCI layer. Data or command packages that are received from the HCI layer, are
transmitted over the serial COM port.

3.1.2 Application Programmable Interface, API

The application implements the API. This means that the application has to implement the
following methods, which are called upon by the stack.

e void receiveData(byte[] data,int pos)
The method is called each time a data package is received. The integer variable pos points
to the first data byte in the vector data.

e void receiveEvent(byte[] event)
The method is called each time the stack receives an event from the host controller that it
does not understand. The user should write the event to a debug window.

e void BTFound(byte[] adress)
This method is called for each remote device found during inquiry. The vector contains
the unique Bluetooth address of the remote device.

¢ void connectionlsClosed(byte[] btAdress)
This method is called if the remote device closes the connection

¢ void stackInformation(String t)
During stack execution this method is called with an explaining text. The method is
essential for both debugging reasons and knowledge of the work being done in the stack.
The text starts with “I ->” for information messages and “E ->” for error messages.

e void receiveRSSI(byte value)
The user can call the stack and ask for the strength of the radio connection. The stack
returns the difference between the measured Received Signal Strength Indication (RSSI)
and the desired RSSI of the radio. Range —128 <= value <=128 with the unit dB.

The following methods are located in the ControlLayer and are the functionality gained from
the stack.

e Dboolean init()
The method is blocking and returns true if Bluetooth initialization was a success,
otherwise false. If the Bluetooth host controller is not properly attached to the serial port,
or if the host controller hardware is not in reset mode, the thread will never return. The
method can be called multiple times during initialization, returning all threads in case of a
success.

-17 -

Implementing a Wireless I/O unit using Bluetooth™

boolean inquiry()

The method is blocking and returns true if Bluetooth inquiry was a success otherwise
false. For each found remote Bluetooth device the stack calls Btfound. The inquiry length
is 6.4 seconds and the thread is always returned after that time period.

byte[] createConnection(byte[] adress)

The method is blocking and returns the channel identifier (CID). The CID is used to
specify the unique data channel. The return vector is two bytes long and will, if a channel
was established, have a value not equal to zero. The inparameter is the Bluetooth address
of the remote device.

A remote device cannot be connected if it is not found during an inquiry, and the inquiry
must be completed before it tries to connect. After inquiry the remote device is stored in
the stack and can then be connected without any further inquiries. If the Bluetooth
controller has not received an answer within 5.12 seconds, it will timeout and the thread
will be returned.

void sendData(byte[] CID,byte[] data)
The method sends data payload over the created channel. If any error occurs while
transmitting the data, the method stackInformation will be called with an error massage.

void closeConnection(byte[] btAdress)
The method closes the connection with a specific remote device.

void readRSSI(byte[] btAdress)

The method measures the radio signal strength of the connection. The value is then
compared with the ideal radio signal strength and returned with a call to the method
receiveRSSI.

reset()
The method invokes software reset on the Bluetooth controller.

3.1.3 Implementation
The implementation beside from the API below is found in Appendix D.

interface API {

// Bluetooth stack to application

void receiveData(byte[] data,int pos);
void receiveEvent(byte[] event);

void BTFound(byte[] adress);

void connectionlsClosed(byte[] btAdress);
void stackInformation(String t);

void receiveRSSI(byte value);

/**

* Methods that the application can call in the Bluetooth stack

* boolean init(); // blocking call
* boolean inquiry(); // blocking call
* byte[] createConnection(byte[] adress); // blocking call

* sendData(byte[] CID,byte[] data);
* closeConnection(byte[] btAdress);

-18 -

Implementing a Wireless I/O unit using Bluetooth™

* readRSSI(byte[] btAdress);
* reset(); // software reset of Bluetooth host controller
*/

}

3.1.4 Tests
All functionality provided by the API was tested and is working.

3.1.5 Future Improvements

A future improvement is to implement the stack according to the Generic Access Profile
(GAP), which is specified by the Bluetooth specification 1.0 B [2]. When this is done the
software can be tested and qualified as a Bluetooth product. The estimated time for this is
around four weeks.

3.1.6 Development Environment

The software was developed on an ordinary PC using the Java virtual machine version 1.2.2
[12]. Access to the serial port was gained from the extension classes found in the serial
communication package JAVACOM [12].

3.2 Software in Slave

The software was implemented in ANSI C and then downloaded into the flash memory of our
micro controller. The program contains five different files that are compiled together. They
have all well separated functions and provide each other with hardware independent services.

The software is very general and can control many types of processes. It can simultaneously
be used for sampling inputs and setting outputs. For further information on the inputs and
outputs see Section 2.3. The data measured at the inputs are sent over the Bluetooth
communication channel in one package at a user defined sample period. The sample period is
user defined between 6-255 milliseconds. All outputs are updated each time a valid data
package is received. The protocol for transmitting and receiving data packages is described in
chapter 8.

The general functionality of the software is illustrated in Figure 3.4. The micro controller is
interrupt driven and sets different status flags depending on the interrupt type. The different
interrupts can be individually shut off, but the status flags are still raised. This allows the
developer to use both polling and interrupts.

The software in the slave uses different status flags to keep track of internal and external
actions. An interrupt subroutine is called for every generated interrupt. The subroutine
investigates the interrupt and sets different status flags depending on the origin. The main
thread is polling a general event flag that is raised during an interrupt, such as the receiving of
a data package. After the general event flag is raised, the main thread investigates other flags
to establish the reason of the event, and take appropriately action.

Actions that are taken by the master thread are done by polling. An example is the
transmission of data to the Bluetooth host controller, which is done byte by byte. A register is
loaded with the byte and a special status flag is polled. When the flag is changed the register
has sent the byte and is ready to transmit the next one.

An interrupt that occurs during execution in the interrupt subroutine is lost, so it is essential
to keep the interrupt subroutine as small as possible.

-19-

Implementing a Wireless I/O unit using Bluetooth™

Status flags

Main thread - Interrupt subroutine

Figure 3.4: The Figure illustrates the general functionality of the software in the slave. The sofiware samples its
inputs at a user set sample period and updates its outputs. The inputs/outputs data is propagated over the
Bluetooth channel. All the logic of the software is located in the main thread.

External events are detected by the interrupt subroutine, which upon detection of an event sets the correct status
flag. The main thread is polling the status flags and takes the appropriate action when it sees a raised flag. The
interrupt subroutine stores incoming byte of the Bluetooth channel in a general buffer and sets the new package
status flag when it has received a whole package.

Human interaction with the software is provided by a blue flash diode on the BCC card. This
diode flashes ten times after a hardware reset. If a not repairable software error occurs, the
diode will start flashing, indicating the need of hardware reset. If the slave connects to another
remote Bluetooth device, the diode will be turned on. Turning the diode off indicates the
closing of the connection.

The software stack is just a prototype and has no claim of following the Bluetooth
specification 1.0 B [2]. The main reason for this is the time constraint in the master thesis
project.

3.2.1 Design
Figure 3.5 shows how the software is divided in different files.

| g Global.h ¢

Main.c Hci.c Isr.c Application.c

Figure 3.5: The Figure illustrates the structure of the software in the slave. The software solution is divided in
five different files. The program starts in Main.c where the initialisation of the Bluetooth channel also is defined.
The file Hci.c contains all Bluetooth specific information and provides the other files with Bluetooth independent
services. Isr.c contains the interrupt subroutine and Application.c the logic of the software. The file Global.h
defines all global variable and methods and is included in the other files.

File description

e Global.h
The file contains a list of all global variables, functions and macro variables. The other
files include this file.

-20 -

Implementing a Wireless I/O unit using Bluetooth™

e Main.c
The program execution starts in this file. It contains the initialization code for the micro
controller, Bluetooth controller and the application. The file Hci.c provides the
initialization functionality of the Bluetooth controller. Main.c also creates the different
status flags and most global variables used in the program.

e Hcic
The file contains all Bluetooth hardware dependencies. Initialization of the Bluetooth
controller is done with different function calls. The calls are blocked and are not returned
until the Bluetooth controller has answered with an event that indicates the success of the
command. The file also provides the service of sending data over an L2ZCAP channel. A
function call for sending a data package is blocked and the call is returned when the
package is transmitted.

e Isr.c
This file handles all micro controller interrupts. The file investigates the interrupts and sets
different status flags. The decision on what action to take based on the interrupt is then left
to the application. The interrupts that are used are received byte interrupt from Bluetooth
controller on USART, three different timer interrupts, digital input interrupt and Serial
Peripheral Interconnect (SPI) interrupt.

e Application.c
The file contains all logic based upon different interrupts. The application investigates the
status flags in a priority order, with the goal of minimizing the risk of overwriting old
interrupt data.

3.2.2 Synchronization

All data to the different outputs are guaranteed to belong to the same data package. If
incoming data corrupts an old not handled package, the old package is thrown away. This
solution is essential if data structure larger than two bytes are used and guarantees atomic
data.

The system clock in the micro controller is running at 3.5795 Mhz and the time to execute one
instruction is one microsecond. The main mechanism for the synchronization is that all
external events are much slower than the system clock. The interrupt routine is short and can
very often execute the interrupt before the next happens. Multiple interrupt flags can be set.

There are two ways to lose an interrupt. The first is if the system does not have time to deal
with an existing interrupt, before another with the same origin occurs. The other way is that
two interrupts occur when already executing in the interrupt subroutine.

The system is deadlock free. Although the systems do not have time to take appropriate
action on all incoming interrupts, the old interrupt and data are replaced with the most
recently received. The execution of the interrupt routine is much faster then the occurrence of
two interrupts with the same origin.

The received bytes from the Bluetooth host controller are stored internally in a two byte
large FIFO queue. These bytes are copied to the receiver buffer in the interrupt routine. The
interrupt routine sets a status flag when it has detected a whole package. This solution based
on the incoming low speed of 57.6 kbit/s, guarantees that no bytes are missed.

221 -

Implementing a Wireless I/O unit using Bluetooth™

A larger problem is the occurrence of corrupted bytes between packages, and the 2.9% large
error probability, imposed by the micro controller, of the receiver channel (USART). The very
high error probability depends on that the chosen speed is the highest supported by the micro
controller. The corrupt bytes are easy to detect and remove, but the error probability can lead
to the loss of synchronization of data and event packages. The largest package that the system
expects is 20 bytes. Recognizing when too many bytes are received solves the synchronization
problem. The system then resynchronizes by searching for the start byte in a data or event
package. The system has no double buffering, due to the lack of memory, of incoming bytes
and can loose Bluetooth packages when not synchronized. The loosing of synchronization has
been tested and has shown to be of no real problem. A bigger and unsolved problem is the
corruption of data on the USART channel that the high error probability imposes.

3.2.3 Implementation
The implementation is found in Appendix C.

3.2.4 Tests

All functionality is working and is tested with the exception of the SPI input. But the SPI
input is implemented and has passed different code reviews. The reason for this is that the
functionality of the application in the master thesis project changed during the development.
The idea was to attach an ultra sound position sensor to the SPI input. The sensor was
developed by others and could not be developed within the master thesis project’s time plan.

3.2.5 Future Improvements

A future improvement is to implement the stack according to the Generic Access Profile
(GAP), specified in the Bluetooth specification 1.0 B [2]. When this is done the software can
be tested and qualified as a Bluetooth product. The estimated time for this is around five
weeks.

3.2.6 Development Environment

The software is developed and debugged in the MAPLAB-ICD environment. MAPLAB is the
main development environment for micro controllers [10]. The emulator ICD is a low cost
emulator for the PICF87- family, which only costs 1500 SKr. The compiler used is

HT-PIC [11], and this compiler is not included in MAPLAB-ICD. A range of diffrent
compiles can be used with MAPLAB-ICD.

4. Communication protocol

The protocol for data packages allows a user to update all outputs or receive all input values in
one package. The solution fits in one Bluetooth package, and thereby maximizes the data
speed, and decreases the complexity of the software. It composes no constrain to the user
functionality, other then unchanged outputs have to be written to new packages. The bytes are
transmitted with the Least Significant Byte (LSB) first. Data fields bigger then one byte is
also sent LSB first.

Figure 4.1 shows the general structure of a data package. The Payload is user defined and
controls the BCC card. The head is added to the package in the stack and is of no interest to
applications using the API.

-2

Implementing a Wireless I/O unit using Bluetooth™

LSB

MSB

Head 9 bytes Payload 11 bytes

Figure 4.1: The Figure shows the general structure of a data package that is sent from master to slave or slave
to master. The head is illustrated in Figure 4.2 and contains Bluetooth specific information in order to propagate
on the Bluetooth channel. All data is contained in the payload field and can be seen in Figure 4.5 and 4.8.

Byte0 Bytel Byte2 Byte3 Byte4
Package type Connection Handle | PB | BC Total data Length
L2CAP data Length L2CAP Channel (CID)

Figure 4.2: The Figure illustrates the head part of a data package. The head is set in the Bluetooth stack and is
hidden to any application developer. The first five bytes contain information of the HCI layer and the last bytes

the L2CAP layer of the Bluetooth stack.

The head is illustrated in Figure 4.2 and consists of the following byte fields:

e Package type

There are four types of packages specified in the Bluetooth specification 1.0 B.

Value | Package type

0x01 |Command package

0x02 | Data package on a ACL connection

0x03 | Voice package on a SCO connection

0x04 | Event package

The package type used here is the data package 0x02.

e Connection Handle

The Bluetooth channel between two Bluetooth devices. The data field is 12 bits long.

e Packet Boundary flag (PB)

Value | Parameter description

00 Reserved for future use

01 Continuing Fragment Package of Higher Layer Message

10 First Package of Higher Layer Message (i.e. Start of an L2ZCAP package)

11 Reserved for future use

The software does not support the splitting of data into multiple L2CAP packages. The

field is 2 bits long and is always set to 0x10.

e Broadcast Flag (BC)

Value |Parameter description

00 No brodcast only point to point connection

01 Active Broadcast. Package is sent to all active slaves

-23-

Implementing a Wireless I/O unit using Bluetooth™

10 Piconet Broadcast. Package is sent to slaves including slaves in “Park Mode”
11 Reserved for future use.

The Bluetooth firmware from Ericsson supports not either Piconets or broadcast. The field
is 2 bits long and is always set to 0x00.

e Total data length
The total data length specified in bytes including the L2CAP data length and channel
fields.

e [2CAP data length
The total length of the payload in bytes

e [L2CAP channel (CID)
The CID channel, of the connection.

4.1 Master to slave

The maximum number of packages per second that the master can send to the slave varies
with the user set sample period at the slave, see Figure 4.3. This has not been tested in the
master thesis project but is discussed in the text below.

At the highest speed the slave sends one package each 6 milliseconds to the master. Sending a
package over RS232 is done at 57.6 kbit/s and takes 3.5 milliseconds, including the stop and
start bits, leaving the processor 2.5 milliseconds when a sample period of 6 millisecond is
used. During the 2.5 milliseconds, 2500 instruction cycles, the slave has to sample its inputs
and update its outputs. Receiving and transmitting packages can occur simultaneously.

If the master to slave package rate is too high, the slave will not have time to update and
sample its outputs/inputs and meanwhile receive and send bytes. The user set sample period
will start varying, and received packages will be overwritten before they have updated the
outputs.

Update
T Sample ————————— 1
|
: D E— I
3.5ms 2.5 ms
- g
Receive
Transpit === Recevie package
< > —— Transmit package
6 milliseconds (ms)

Figure 4.3: The Figure illustrates that the maximal dual speed of the system varies with the timing of transmitted
and received packages in the slave. Packages are received and transmitted simultaneously at a maximum rate of
166 package/second. The time to update the outputs and sample the inputs before the next package is
transmitted/received is at these rate 2.5 milliseconds. At the maximum data package rate the sample period can
start varying depending on the timing. Received packages can also be overwritten before they have updated the
outputs.

-4 -

Implementing a Wireless I/O unit using Bluetooth™

LSB MSB

Head 9 bytes Payload 11 bytes

Figure 4.4: The Figure shows the structure of a master to slave package. The head is defined in Figure 4.2 and
the payload in Figure 4.5.

Byte0 Bytel Byte2 Byte3 Byte4
Analog 1 Analog 2 PWM Period
PWM Duty cyclel PWM Duty cycle2 Sample period
Digital input

Figure 4.5: The Figure shows the data contained in the payload field of a master to slave data package, see
Figure 4.4. Analogl and Analog2 are analogue outputs at the slave. The PWM fields define two PWM outputs
and the sample period byte is a user defined input sample rate that can vary between 6-255 milliseconds. The
digital input byte enables or disables the digital input.

The payload is illustrated in Figure 4.5 and consists of the following byte fields:

e Analogl
This field has 10 active bits. The bytes are sent LSB first and control the BCC’s output
pin 3. If all active bits are set to zero the output will be 0 V, and if all active bits set to one
5V.

e Analog2
This field has 10 active bits. The bytes are sent LSB first and control the BCC’s output
pin 4. If all active bits are set to zero the output will be 0 V, and if all active bits set to one
5V.

The relation between PWM period and duty cycle is illustrated in Figure 4.6

e PWM Period
The field sets the period length of the PWM outputs. The output range varies between 0-4
milliseconds in 255 discrete intervals. Pulse Width Modulation output is a feature of the
micro controller, which means that the output values on BCC’s pin 5 and 6 are exact and
will not vary in time, no glitches. The period time of 4 milliseconds is achieved if the byte
is set to Oxfe.

The radio car application needs a period time between 18-25 milliseconds. This is solved
with internal timers, which simulates the PWM outputs. Setting this byte to Oxff will give
a period time of 22 milliseconds. The timers are interrupt driven and because of this the
period time varies 256 microseconds.

-25 -

Implementing a Wireless I/O unit using Bluetoot

hTM

PWM Period
< >
1 | 1
| | |
| | |
| | | 5 V
ov
| H |
I | I
| | |
| ¢—Pp H
| ! |
PWM Duty cycle

Figure 4.6: The Figure illustrates a general Pulse Width Modulating output. There are two PWM outputs on the
Bluetooth Control Card (BCC). The output signal has a PWM period in which it can vary the voltage in two
discrete intervals 0 or 5V. The PWM duty cycle specify the time of the signal when the output is 5 V, the
remaining time of the period the output is 0 V. The PWM period is repeated and looks exactly the same if the
user does not changed the duty cycle.

PWM Duty cycle 1:
The byte specifies the value of the duty cycle, which can vary between 0-4 millisecond. If
the byte is set to 0xff the duty cycle will be 4 milliseconds.

If the PWM period byte is 0xff, the duty cycles interval changes, and can vary between
0-2.38 milliseconds. This mean that if the PWM period byte is 0xff, and this byte 0xff, the
duty cycle will be 2.38 milliseconds. The duty cycle can than not be chosen within the
entire PWM period interval.

PWM Duty cycle 2:
The byte specifies the value of the duty cycle, which can vary between 0-4 millisecond. If
the byte is set to Oxff the duty cycle will be 4 milliseconds.

If the PWM period byte is 0xff, the duty cycles interval changes, and can vary between
0-4.56 milliseconds. This mean that if the PWM period byte is 0xff, and this byte 0xff, the
duty cycle will be 4.56 milliseconds. The duty cycle can than not be chosen within the
entire PWM period interval.

Sample period

The user can set the sample period of the inputs at the BCC card. The allowed sample
period varies between 6-255 millisecond. If the sample period is less than 6 milliseconds,
the software in the slave will change the time to 6 millisecond. The byte value 0x09 will
set the sample period to 9 milliseconds.

Digital input on

If this byte is set to 0x01 the digital input will be enabled otherwise disabled. This allows
the user to leave the digital input pin 10 unconnected. The SPI pin 9 can also be
unconnected if the digital input is turned off. The clock output at pin 8 will always be on
regardless of the value of this byte.

-26 -

Implementing a Wireless I/O unit using Bluetooth™

4.2 Slave to Master

The slave transmits packages to the master at a user defined sample period. The sample period
can vary between 6-255 milliseconds, which gives a maximal rate of 166 packages/second.
The packages contain all input values of the BCC card.

LSB MSB

Head 9 bytes Payload 11 bytes

Figure 4.7: The Figure shows the structure of a slave to master package. The head is defined in Figure 4.2 and
the payload in Figure 4.8.

Byte0 Bytel Byte2 Byte3 Byte4

Analog 1 Analog 2 Digital input

SPI input

Figure 4.8: The Figure shows the byte contained in the payload field of a slave to master data package, see
Figure 4.7. Analogl and Analog2 are analogue inputs. These inputs have 10 active bits that are sent Lest
Significant Byte (LSB) first. The digital input byte is the digital interrupt and SPI input the digital input bytes. All
inputs are sampled at a user defined sample rate that can be between 6-255 milliseconds.

Figure 4.5: The Figure shows the data contained in the payload field of a master to slave data
package, see Figure 4.4. Analogl and Analog2 are analogue outputs at the slave. The PWM
fields define two PWM outputs and the sample period byte is a user defined sample rate that
can vary between 6-255 milliseconds. The digital input byte enables or disables the digital
input.

The payload is illustrated in Figure 4.8 and consists of the following byte fields:

e Analogl
This field has 10 active bits, the bytes are sent LSB first and specify the input voltage at
pin 1 on the BCC card. If all active bits are set to zero the input is 0 V, and if all active
bits are set to one 5 V.

e Analog2
This field has 10 active bits, the bytes are sent LSB first and specify the input voltage at
pin 2 on the BCC card. If all active bits are set to zero the input is 0 V, and if all active
bits are set to one 5 V.

e Digital interrupt
The digital interrupt pin 10 is triggered on the raising edge. The detection of the raising
edge will set this byte to 0x01 for one package. The next packages until a new detection
will always be 0x00. If two raising edges occur before the master thread has taken action

-7 -

Implementing a Wireless I/O unit using Bluetooth™

on the first interrupt. The software will remove the first interrupt, and not send 0x01 in the
next package.

e Serial Peripheral Interface (SPI) input
The field is 6 byte large and contains the serial data received from input pin 9. The input
pin 9 is enabled by a raising edge on the digital interrupt pin 10, and disabled on the next
raising edge. The data is not written to the transmit buffer before the slave has received all
6 bytes, and is transmitted in the next data package. Information can be lost if the SPI
input speed is greater than the input sample period for the slave.

-08 -

Implementing a Wireless I/O unit using Bluetooth™

5. The Bluetooth Controlled Beetle

Figure 5.1: The Bluetooth Controlled Beetle is an application that is done to show the possibilities with the
Bluetooth Control Card (BCC). The car is in 1/10" scale and is steered by the joystick next to it.

To show the possibilities of the Bluetooth Control Card (BCC) a car application was
designed and implemented. It is a radio control car in 1/10" scale. The brand of the car is
Volkswagen Beetle. It can be seen in Figure 5.1 together with the joystick that is controlling
it. This application was chosen since Sigma wanted to have a fun Bluetooth demonstration to
present on fairs and other events. A car is nice to show as the impression is visual and it is
easy to convince people that the wireless technology works. Figure 5.2 shows how the control
of the car is configured. The signals from the joystick are transmitted to the PC and then steer
signals in the PC are computed and transmitted to the car. The car could of course have been
steered directly from the joystick, but then the software in one of the BCC would have to be
changed. In the PC it is also easy to add features such as limited speed or special control
strategies.

| Ericsson Bluetooth Application Tool Kit |

N

ﬁSIGMA
G A0 Joystick with a
Rlueatnnth Cantral (Mard

Radio control car with
a Rlnatanth (CMantral

Figure 5.2: An overview of the Bluetooth Controlled Beetle which shows that the signals go from the joystick to
the PC and then to the car. The car could of course have been steered directly by the joystick, but then the
software in the BCC would have to be altered. In the PC there is an interface where the Bluetooth links can be
controlled and it is also possible to limit the speed of the car.

-20 .

Implementing a Wireless I/O unit using Bluetooth™

5.1 Software Solution of Car Application

The software is the same as described in Section 3. The two Bluetooth modules at the PC are
the masters. Two Bluetooth modules are needed at the PC, because the modules only support
point-to-point connections so far. To communicate with the Bluetooth modules the API that
was described in Section 3.1.2 is used. The API is quite easy to use and that speeds up the
development of the application. The software is written in Java, which is a natural choice as
the stack of the master is written in the same language. Java is platform independent and that
is of course an advantage.

5.1.1 Design

The software in the PC handles the Bluetooth connections and the control of the car. The class
diagram can be seen in Figure 5.3.

GUI < > HostList

DebugWindow < Car < ControlThread
JoyPort CarPort
API API

Figure 5.3: The class diagram of the software for the car application shows which classes that have a refence to
the other classes. For example does ControlThread have a reference to the class Car and therefore the arrow
goes from the class ControlThread to the class Car. The logic for the Bluetooth connections and the car control
is handled by Car, which communicates through CarPort and JoyPort and displays the status in the Graphical
User Interface (GUI). The GUI can be seen in Figure 5.4.

The stack’s APIs communicate with CarPort and JoyPort. The class Car handles the logic of
the Bluetooth connections and the car control. The program is started from this class and it
creates the other objects. The debug information that comes from the stacks or the other
classes is sent to the DebugWindow. It is possible to show all information or just the errors. It
is very convenient to use the DebugWindow if something goes wrong, for example with the
initialization of the Bluetooth modules or the establishing of the Bluetooth connections. The
communication with the user is done through the Graphical User Interface (GUI), which can
be seen in Figure 5.4.

-30 -

Implementing a Wireless I/O unit using Bluetooth™

E%%Taking Bluetooth One Step Furter H=] B3
File View

BLUETOOTH COMMUNICATION

COM1: Iln'rt succeded Init BT at COM1
COM2: Iln'rt succeded Init BT at COM2

‘ Search for BT-devices |

Available BT-devices:

Device | Status | Command
Radiocar Connected Dizcannect
Joystick Connected Disconnect

Connect
Disconnect

CONTROL OF RADIOCAR

Minimum speed Maximum speed
Steer with joystick [v] Use distance control
Minimum distance Maximum distance

Figure 5.4: The Graphical User Interface for controlling the Bluetooth connections and the control of the car.
The user begins to initialize the COM ports and then he or she searches for other Bluetooth devices. When the
car and joystick are connected the user can choose to steer the car with the joystick. It is also possible to limit
the speed of the car.

The user begins to initialize the Bluetooth modules and then he or she searches for other
Bluetooth devices. Those units that answered are stored in the HostList and displayed by the
GUL. It is then possible to connect to the car and the joystick. The car can then be steered by
the joystick. When the class JoyPort receives information from the joystick it calculates the
speed and steering and sends them to the class Car. The class ControlThread wakes up ten
times per second and transmits the speed and steering to the car through the class CarPort.

5.1.2 Control Strategy

The PC has a very powerful processor and can be used for a lot of computing. Different
control strategies can be implemented, for example could the PC automatically control the car
if the car’s position would be sent to it. In the master thesis project the car is only steered by a
joystick and no automatic control is implemented. The application was designed so the car
could be steered by the mouse, but this was never accomplished. However, the implemented
control strategies are described below.

The BCC supplies the joystick’s two vertical axes with power. The outputs are set to 5 V and
steering and speed information is read on the analogue input pins as a voltage between 0-5 V.
The steering and speed information is sent to the PC, which converts them to PWM signals
that fit the car. These are then sent to the car. It is not sure that the packet that sets the ouputs
to 5V reaches the joystick. Sometimes the voltages are set to zero, which is due to the bad
RS232 link. To guarantee that the right voltages arrive, the master has to retransmit the
package until it sees that the voltage received from the slave is not equal to zero.

The PWM modules in the slave could not have as long period as the car needed, so the PWM
was remade in software. The remade PWM is interrupt driven, which makes the duty cycle
vary randomly. This means that the control of the car becomes a little shaky. To make the car

-31 -

Implementing a Wireless I/O unit using Bluetooth™

completely still when the joystick is in its center position, the PWM are turned off and the
signals from the joystick become flat.

If the joystick or car either is brought out of range or reset the connection is closed. The
master is then automatically trying to reconnect. The closing of the connection is shown as a
message in the status field in the GUI. The reconnect time can vary between 1-40 seconds and
can often be improved by a software reset when the host is brought back in range of the
master. The variation in the reconnect time is due to hardware constraints in the Bluetooth
module that was available in the master thesis project.

The slave listens every 1.28 seconds for a connection attempt during 10.25 milliseconds.
This is done on a special radio frequency, and that frequency is changed at the next attempt. If
the master at the same time tries to connect, it has time to scan 16 of the 79 frequencies. If the
master fails to connect it changes the scan frequencies. This means that there is a high
probability that they miss each other. The search time of the slave can be adjusted according
the Bluetooth specification 1.0 B, but this is not implemented in the Bluetooth module.

The application was also designed to have some kind of distance control. This was not
implemented either. However, the distance to the car could perhaps be measured by checking
the strength of the radio waves from the car. In the Bluetooth standard there is something
called the RSSI value, which is proportional to the strength of the radio waves. When the
RSSI value becomes low some kind of control action can be taken, for example can the speed
be constrained or the car can be steered back. The RSSI functionality is provided by the API
but not used in this application.

5.1.3 Implementation
See Appendix E.

-32-

Implementing a Wireless I/O unit using Bluetooth™

6. PC Application controlled by BCC

Figure 6.1 shows the joystick that is used for controlling the application at the PC.

Figure 6.1: The Figure shows the joystick that controls the application running on the PC. The black box is 8*4
cm large and contains the Bluetooth module, Bluetooth Control Card (BCC) and battery for power supply. When
the joystick is steered the analogue values are sampled at the BCC and sent to the PC over the Bluetooth
channel. The analogue values are then transformed in the PC to steer information controlling the application. A
general picture of the system can be seen in Figure 1.1. Figure 6.2 shows a screen dump of the application.

Figure 6.2 illustrates a screenshot of the application running on a PC. The software is written
in Java and can without modification be executed on other hardware platforms.

Stoppl Aterstélll Styrmetod: IHastighet =

=
. .
. .
| »
L]
*
*
L
[

Barhastighet: &1 2 3

Figure 6.2: The Figure shows a screen dump of the application running on the PC. The line running from left to
right shall be steered between the dots by the joystick in Figure 6.1. The line simulates different processes and by
applying different regulators to the system the line will become easier to steer. The joystick can be passed
around the audience up to a distance of 20 m. By visualising the benefits of different regulators automatic
control can be made more popular, and the motivation of students studying automatic control courses can
increase.

-33 -

Implementing a Wireless I/O unit using Bluetooth™

The application is developed at the Department of Automatic Control at Lund University, and
modified to gain the functionality of wireless communication during the master thesis project.
It shows how different types of regulators make it easier to control a process. The idea is to
increase the motivation of students who are studying automatic control. The benefit of using a
regulator is made clear by the application.

A joystick can control the application up to a distance of 15-20 meters. This allows the
joystick to be passed around in the audience.

The application is written in Java and gains the wireless functionality using the API in the
Bluetooth stack, se Section 3.1.2. The program is started with the serial port e.g. COM1 used
as an in parameter. A Bluetooth module in reset mode should be attached to the port. The first
thing that happens is that the Bluetooth stack tries to initialise the module. After the
initialisation has succeeded it starts an inquiry after remote Bluetooth devices and connects to
the first found.

In an environment with multiple Bluetooth hosts, it is possible that it connects to another
host then the one in the joystick. This has to be solved by implementing the specific Bluetooth
address of the host in the joystick and only allow connections to that address. This feature has
not yet been implemented and is left to the user of the application. Debug and stack
information is written to the Dos window.

The joystick is attached to the BCC. The card supplies the joystick’s two vertical axes with
power. One output is set to 5 V and steering information is read on the analogue input pin as a
voltage between 0-5 V.

The input is sampled each 50 milliseconds and transferred to the master. In order to supply
the joystick with power, a correct package has to be received at the joystick. To guarantee
this, the PC has to retransmit the package until it sees the voltage change in the next package,
received from the joystick.

Human interaction with the hardware and software is provided by a blue flash diode on the
BCC card. This diode flashes ten times after a hardware reset. If a not repairable software
error occurs, the diode will start flashing, indicating the need of hardware reset. If the joystick
connects to the application, the diode will be turned on. Turning the diode off indicates the
closing of the connection.

If the connection is lost, because the slave is out of range or a reset, the master will start trying
to reconnect. This issue is discussed in Section 5.1.2. If the slave is brought back in range of
the master the reconnect time can vary between 1-40 seconds. This time can often be
improved if a reset is done to the slave.

-34 -

Implementing a Wireless I/O unit using Bluetooth™

7. Conclusions

In the master thesis project a generic I/O unit has been constructed. This platform can be
attached to sensor and actuators in industrial processes, gaining the functionality of wireless
communication provided by Bluetooth. To demonstrate the ability of Bluetooth and the
generic I/O unit, a radio car application has been developed.

The application has gained a lot of interest. It will be presented at the Bluetooth Developers
Conference in San José¢ USA [4], with 1500 persons in the audience. When the master thesis
project is finished, it will be used at the Department of Automatic Control at Lund University
to control different processes. Sigma Wireless will also use the car application to demonstrate
the Bluetooth technology and to market the company worldwide. The master thesis project
has been completed within the planned 20 weeks.

Bluetooth is a well-suited technology for automatic control. Problems like retransmission and
lost connection can easily be dealt with. But the communication speed is a constraint
compared with other technologies, see Appendix F Section 5, which makes Bluetooth less
suitable for fast and time critical systems.

Using the existing Bluetooth Application Tool Kit [3], the development can be done
simultaneously in both hardware and software. The achievement of the master thesis project
shows that Bluetooth is a mature technology.

We think the future success of Bluetooth depends on when the price of 5 US dollars per
Bluetooth module can be achieved. This will make the Bluetooth concept cheaper than cables
in an office environment. Bluetooth will then automatically be included in e.g. mobile
telephones and computers.

Although there are a lot of competitors to Bluetooth, which have better performance in
single areas, there is no one that already is supported by 2000 companies, nor with the aim of
becoming a worldwide wireless standard supporting both data and voice.

-35-

Implementing a Wireless I/O unit using Bluetoot

hTM

8. References

[1]
2]
[3]
[4]
[5]

[6]
[7]
[8]
[9]

[10]

[11]
[12]

James Rumbaugh, ” Object Oriented Modeling and Design”, 1991, Prentice Hall.
www.bluetooth.com/developers/specification/specification.asp
WWW.comtec.sigma.se

bluetooth.jli.net

Gote Andersson, “Bredbands konkurrens i sikte for Bluetooth”, Elektroniktidningen,
20 Okt, 2000

Dagmar Zitkova, “Genombrott for radio-lan som klarar 11 Mbit/s”,
Elektroniktidningen, 20 Okt, 2000

Eve Ekelof, “Fel i specifikationen forsenar Bluetooth”, Elektroniktidningen, 20 Okt,
2000

Lisa Ringstrom, “Svért och dyrt att fa fram fungerande blatandsprylar”,
Elektroniktidningen, 20 Okt, 2000

Magnus Ewert, “Datakommunikation Nu och i framtiden”,1998, Studentlitteratur
www.microchip.com

www.htsoft.com

java.sun.com/products

General references:
www.bluetooth .com

-36 -

Implementing a Wireless I/O unit using Bluetoot

hTM

Appendix A: Time Planning

Time Planning

Commitment

P=Part time week, 3-4 days
F= Full time week

Week Activity

16 P Study Bluetooth specific information

17 P Study Bluetooth specific information

18 Vacation

19 School

20 School

21 School

22 F Design of prototype

23 F Design/Cad of prototype

24 F The construction of the prototype

25 F General software development

26 F General software development

27 F Communication between prototype and Bluetooth
28 F Design of BCC

29 Vacation

30 Vacation

31 F CAD/construction of BCC

32 F Software development in slave

33 F Software development in slave

34 P Software development in master

35 P Software development in master

36 P The development of PC controlled application
37 P The development of car application

38 P The development of car application

39 P The development of car application

40 F Master thesis report

41 F Master thesis report

42 F Reserved time

43 F Presentation and demonstration of the master

thesis project on ARKAD 7-9 november

-37-

Implementing a Wireless I/O unit using Bluetooth™

Appendix B: Circuit Board

The components’ location on the circuit board is shown below. The size is 8 * 5 cm.

CI—UC'<I314;16LF876
UFS 28

-38-

Implementing a Wireless I/O unit using Bluetooth™

Top layer, the size is 8 * 5 cm.

Bottom layer, the size is 8 * 5 cm.

-39.

Implementing a Wireless I/O unit using Bluetooth™

Appendix C: Code in slave

Global.h
#ifndef GLOBAL H
#define GLOBAL H
typedef unsigned char BYTE;
typedef union
{
struct S1 // control bits, 0 disable, 1 enable
{
unsigned int global interrupt:1; // general interrupt bit
unsigned int transmit_allowed:1; // transmitting on UART is allowed
unsigned int timer_interrupt:1; // timer0 interrupt
unsigned int receive_interrupt:1; // receive interrupt on UART
unsigned int spi_interrupt:1; // spi interrupt
unsigned int spi_sending:1; // sending on on spi
unsigned int digital interrupt:1; // interrupt on digital input
unsigned int init:1; // the system in init bluetooth
unsigned int connected:1; // bluetooth is connected
unsigned int new_data:1; // new data is read. For synchronization
}bit_name;

}system_reg t;

[sk kR ok sk \ [, o ok skttt stttk skoskostokok siolokokoskokoskokoskokokoskokokokokokok /

extern bank1 system_reg t system_reg; // control bits

extern bank1 unsigned int buffer num; // maximal number of package in buffer
extern bank1 unsigned int package size; // maximal number of byte in package
extern bankl BYTE receive buffer index; // possition in receive vector

extern bankl BYTE transmit_buffer index; // position in receive vector

extern bank3 BYTE receive buffer[80]; // Define receive _vector 1

extern bank2 BYTE transmit_buffer[20]; // Define transmit_vector

extern bank?2 unsigned int package length; //length of receiving package

extern bank?2 unsigned int transmit_length; //length of transmitting package

extern bank2 BYTE connection_handle[2]; // connection_handle

extern bank2 BYTE digital value; // value of digital input
extern bank2 BYTE SPI_value; // value of SPI input
extern bank2 BYTE CTS; // flow control from RS-232

extern void wait(unsigned int count);

/***************** isr c *************************************/

extern bankl BYTE car_count;
extern void init_isr(void);
extern void send UART(unsigned int length);

/**************** hei.c ***************************************/

extern BYTE send_data(void); // send transmit_buffer with protocol length
extern BYTE HCI_Reset(void);

extern BYTE HCI Read Buffer Size(void);

extern BYTE HCI_Write Autentic_Enable(void);

extern BYTE HCI_Set Event Filter(void);

extern BYTE HCI_ Write Connection Timeout(void);

extern BYTE HCI Write Page Timeout(void);

extern BYTE HCI_Write Scan_Enable(void);

extern BYTE HCI_Set Event Mask(void);

extern void CommandComplete(void);

[k stk ke kok ok application © sttt tokoskoskokok skotokoskokockokoskokokoskokoskokokokokokkok /

- 40 -

Implementing a Wireless I/O unit using Bluetooth™

extern bank1 unsigned int sample_time;
extern bankl BYTE receive SPI on;
extern bankl BYTE car pwm;

extern bankl BYTE timer pwm_one;
extern bankl BYTE timer_ pwm_two;

void initControl(void);

void application_control(void);

void flashDiod(BYTE forever,int speed);
void error_SPI(void);

#endif

-41 -

Implementing a Wireless I/O unit using Bluetoot

hTM

Main.c

#include <pic.h>
#include "global.h"

[k ok skl GLOBAL VARTABLIE % # s ok st s o ok ke oo ok ke ook ol ok ok /

// Bank 0 local variable

// bank 1 global variable

// bank 2 global variable

// bank 3 incomming datapacket

bankl system reg_t system_reg;
bank1 unsigned int buffer num;
bank1 unsigned int package size;
bankl BYTE receive buffer index;
bankl BYTE transmit_buffer index;
bank3 BYTE receive_buffer[80];
bank2 BYTE transmit_buffer[20];
bank2 unsigned int package length;
bank?2 unsigned int transmit_length;
bank2 BYTE connection_handle[2];
bank2 BYTE digital value;

bank2 BYTE SPI_value;

bank2 BYTE CTS;

// Control bits

// maximal number of package in buffer
// maximal number of byte in package
// possition in receive vector

// position in receive vector

/I Define receive_vector 1

// Define transmit_vector

/' length of receiving package

// length of transmitting package

// connection_handle

// value of digital input

// value of SPI input

// RS-232

/**/

//The execution start in main and main calls initPIC
/**/

void wait(unsigned int count){
do{
} while (count-- > 1);

}

static void initPIC(){

// init control variable

system_reg.bit name.global interrupt=0;
system_reg.bit name.transmit_allowed=1;
system_reg.bit name.timer_interrupt=0;
system_reg.bit name.receive interrupt=0;
system_reg.bit name.spi_interrupt=0;
system_reg.bit name.spi_sending=1;
system_reg.bit name.digital interrupt=0;
system_reg.bit_name.init=0;
system_reg.bit name.connected=0;
system_reg.bit name.new_data=0;

//'1 during init

// init variable
buffer num=1;
package size=255;
receive_buffer index=0;
transmit_buffer index=0;
package length=0;
transmit_length=0;
connection_handle[0]
connection_handle[1]

>

>

=0
=0

-42 -

Implementing a Wireless I/O unit using Bluetooth™

digital value=0;

//Configuration of inputs and outputs. Ports which are not used are set as outputs.
TRISA=0x03;

TRISB=0x10; // digital input initialiti disable

TRISC=0xd0;

RBPU=0;

// turn off diod on RCO
RCO0=0;

//[UART TRANSMITTER

SPBRG=0x03;

BRGH=1;

SYNC=0;

SPEN=1;

TX9=0;

TXIE=0; //Disable interrupt
TXEN =1;

//UART RECEIVER
RCIE=I;

RX9=0;

CREN=1,;

//SPI and SDO

SSPIE=0; // disable interrupt in SPI. Enable while receiving

STAT _SMP=I;

STAT CKE=I;

CKP=0;

SSPM3=0; //The following four bits set the speed of SPI synchronous speed to f osc/4.
SSPM2=0;

SSPM1=0;

SSPM0=0;

SSPEN=1;

//Configuration of the digital input, which is the interrupt input RB0 on the PIC.
INTEDG=1,; //nterrupt on rising slope
INTE=0; // disable interrupt

//ADconverter
//ADCON1
ADFM=1;
PCFG3=0;
PCFG2=1;
PCFG1=0;
PCFGO0=0;

//ADCONO

ADCS1=0;

ADCSO0=1; //DA-conversion to f osc/8.
CHS2=0;

CHS1=0;

ADON=1;

//init timerQ
TOCS=0;
TOIE=0; // disable interrupt

-43 -

Implementing a Wireless I/O unit using Bluetooth™

//RTS/CTS
RB3=1;
CTS=RB4;

//Clear all input to DA Converter

RB2=0;
wait(10);
RB2=1;

//Chip select DA
RBI1=1;

//init PWM
CCP1M3=1;
CCPIM2=1;
CCP2M3=1;
CCP2M2=1;
PR2=0x00;
CCPRIL = 0x00;
CCPR2L = 0x00;

//init timer1 for PWM
TMRI1CS=0;
TICKPS1=1;
TICKPSO0=1;
TMR1ON=0;
TMRIIE=0;

//init timer2 for PWM
TMR20ON=1;
T2CKPS1=1;
TMR2IE=0;

//Enable interrupt
GIE=1;

PEIE=1;

//sleep

wait(200);

}

//RTS=RB3

//mot

// not

//period Oms
/lcycle Oms
// cycle Oms

//Use internat clock Fosc/4
// timer1 prescale value is set to 8

/[Timer] off
//Disable interrupt

// timer2 prescale value is set to 16
//Disable interrupt

BYTE initBluetooth(void){

BYTE temp;
int data_temp;

// init mode

system_reg.bit name.init = 1;

temp = HCI_Reset();
if(temp != 0x00){
return temp;

}

// Command Error

temp = HCI_Read_Buffer_Size();

-44 -

Implementing a Wireless I/O unit using Bluetooth™

if(temp != 0x00){ // Command Error
return temp;

}

// LSB transmitted first

package size =0;

package size = (int) receive_buffer[7];
data_temp = 0;

data_temp = (int) receive buffer[8];
data_temp = data_temp<<sS;

package size = package size | data_temp;

// LSB transmitted first

buffer num = 0;

buffer num = (int) receive_buffer[10];
data_temp = 0;

data_temp = (int) receive_buffer[11];
data_temp = data_temp<<8;

buffer num = buffer num | data_temp;

temp = HCI_ Write_Autentic_Enable();
if(temp != 0x00){ // Command Error
return temp;

}

temp = HCI_Set Event Filter();

if(temp != 0x00){ // Command Error
return temp;

}

temp = HCI_Write_Connection_Timeout();
if(temp != 0x00){ // Command Error
return temp;

}

temp = HCI_Write_Page Timeout();

if(temp != 0x00){ // Command Error
return temp;

}

temp = HCI_Set Event Mask();

if(temp != 0x00){ // Command Error

return temp;
!
s

temp = HCI_ Write Scan_Enable();
if(temp != 0x00){ // Command Error
return temp;

}

system_reg.bit name.init = 0;
return 0x00; // init OK.

}

void main(void){

BYTE success;
BYTE number;

- 45 -

Implementing a Wireless I/O unit using Bluetooth™

initControl();
init_isr();
initPIC();

// flash during one second. BT need one secod after reset
flashDiod(0,5000);

success = 0x01;
number =0;

while(success = 0x00){
success = initBluetooth();

// lasting error during init flash diod and wait for user reset
if(number > 15){

flashDiod(1,5000);
}

number++;
v
s

TOIE=1; // enable interrupt
application_control();

- 46 -

Implementing a Wireless I/O unit using Bluetooth™

Hci.c

#include <pic.h>
#include <string.h>
#include "global.h"

// Private variables
bank]1 volatile static BY TE CommandCompleteResult = 0;

// sk sk ske st st s sk sk sk sk skeskeoseoseoskoskok Commandcomplete s sk sk she sk sie sk st s sk sk sk skeskeoskeskeoskeoskoskoskok
/*

Called from interupt layer when a command complete event occurs
must NOT be called in any other situation.

*/

void CommandComplete(void){

//Avoid stall

if (receive_buffer[6] == 0xff){
CommandCompleteResult = 0x01;

} else {
CommandCompleteResult = receive buffer[6];

}
}

// sk sk sk sk sk sk skosk stk skeskeoskeoskoskoskoskok WaitFOrCOmmandCOmpete sk sk sk sk sk sk sk sk sk ko skoskoskoskosk
/*

All HCI command functions shall during init call this to wait for
command complete event from hostcontroller

*/

static void WaitForCommandComplete(void){

// Wait on a spinlock until we receive a command complete event
while(CommandCompleteResult == 0xFF) // Error replace OxFF eith a define

{
}
}

[/ Rk sk sk sk ok sk ok sk k Sand Commuand ¥k s kot koot skokoskock ook

wait(1); // don't hang the computer

static BYTE send command(unsigned int length){

CommandCompleteResult = OxFF; // Engage the spinlock

//allowed to transmit
while (system_reg.bit name.transmit_allowed == 0){

}

// Send the command
send UART(length);

// Wait for command complete
WaitForCommandComplete();
// Return the result

return CommandCompleteResult;

-47 -

Implementing a Wireless I/O unit using Bluetooth™

}

//****************** Send Data sk sk sk sfe sk sk sk sk sk sk sk sk sk skeosk skeskeoskeoskoskoskoskok
/*

My data package is only 21 byte so thay allways fit in

one bluetooth package. I haven't to bother about package size
*/

BYTE send_data(void){

BYTE temp[2];

/flow control of RS-232, Bluetooth dosen't send correct CTS always 0.
if(CTS==0){

// Bluetooth connected to other host
if (system_reg.bit name.connected == 1){

//fix
//buffer num=10;

//num of data package that fits in bluetooth buffer
if (buffer num > 0) {

//allowed to transmit
while (system_reg.bit_name.transmit_allowed == 0){

}

temp[0] = connection_handle[0];
temp[1] = (BYTE) (connection_handle[1] & 0x0f);
temp[1] = temp[1] | 0x20;

// HEAD of data package
transmit_buffer[0] = 0x02;//type

transmit_buffer[1] = temp[0];;
transmit_buffer[2] = temp[1];
transmit_buffer[3] = 0x0f; //length HCI LSB

transmit_buffer

[

[

[
transmit_buffer][

[5] = 0x0b;//length L2CAP LSB

[

[

[

1]
2]
3]
4] = 0x00;
5]
6]
7]
8]

transmit_buffer[6] = 0x00;
transmit_buffer[7] = 0x00;//CID LSB
transmit_buftfer[8] = 0x00;

transmit_length=20;

send UART(transmit length);
buffer num--;

return 0x00; /transmit OK

} else {
return 0x01; //transmit error
J
} else {
return 0x01; //transmit error
)

} else {
return 0x01;
}

- 48 -

Implementing a Wireless I/O unit using Bluetooth™

BYTE HCI_Reset(void){
static const BYTE data[] = {0x01,0x03, 0x0C, 0x00};

transmit_length=4;

transmit_buffer[0]=d: 1;
transmit_buffer[1]=data[1];
transmit_buffer[2]=data[2]
transmit_buffer[3]=data[3]

=data[0

>

>

return send command(transmit_length);

// 3k 3k sk sk sk sk sk sk seoske sk sk sk sk skeskok HCI Read Buffer SiZe sk 3k skeoskok skoskok skoskok sk
BYTE HCI_Read Buffer Size(void){

static const BYTE data[] = { 0x01,0x05,0x10,0x00 };
transmit_length=4;

transmit_buffer[0]=data[0];
transmit_buffer[1]=data[1];
transmit_buffer[2]=data[2];
transmit_buffer[3]=data[3];

return send _command(transmit_length);

}

// sk sk sk sk sk sk skosk stk skeskeoskeoskoskoskoskok HCI Write Autentic Enable sk sk sfeosk sk sk skoskoskok
BYTE HCI Write Autentic_Enable(void){

static const BYTE data[] = { 0x01,0x20,0x0¢,0x01,0x00};
transmit_length=5;

transmit_buffer[0]=data[0];
transmit_buffer[1]=data[1];
transmit_buffer[2]=data[2];
transmit_buffer[3]=data[3];
transmit_buffer[4]=data[4];

return send _command(transmit_length);

}

// scdecktckockskkckockskekkck skl k CT Set Event Filter ks sk skokskok sk

BYTE HCI_Set_Event_ Filter(void){
static const BYTE data[] = { 0x01,0x05,0x0¢,0x03,0x02,0x00,0x02};

transmit _length=7;

-49 -

Implementing a Wireless I/O unit using Bluetooth™

transmit_buffer[0]=data[0];
transmit_buffer[1]=data[1];
transmit_buffer[2]=data[2];
transmit_buffer[3]=data[3];
transmit_buffer[4]=data[4];
transmit_buffer[5]=data[5];

[6]=]

transmit_buffer[6]=data[6

>

return send _command(transmit_length);

}

[FFFFAI A ARk HCL Write. Connection Timeout * %% %% sk
BYTE HCI Write Connection Timeout(void){

static const BYTE data[] = { 0x01,0x16,0x0c,0x02,0xa0,0x1{};

transmit_length=6;

transmit_buffer[0]=data[0];
transmit_buffer[1]=data[1];
transmit_buffer[2]=data[2];
transmit_buffer|3]=data[3];
transmit_buffer[4]=data[4];
transmit_buffer[5]=data[5];

return send command(transmit_length);

}

// sk ok sk ok ok ok skokoskeok skeskeoskoskoskosk HCI Write Page Timeout sk sk sk sk sk sk okok ko skoskoskeskosk
BYTE HCI Write Page Timeout(void){

static const BYTE data[] = { 0x01,0x18,0x0c,0x02,0x00,0x20};
transmit_length=6;

transmit_buffer[0]=data[0];

transmit_buffer[1]=data[1];

transmit_buffer[2]=data[2];

transmit_buffer[3]=data[3];

transmit_buffer[4]=data[4];

transmit_buffer[5]=data[5];

return send command(transmit_length);
1
)

// sk sk sk sk sk sk skosk skoskoskeskoskoskosk HCI Write Scan Enable sk sk sk sfe sk skoskoskoskoskoskosk sk ok ko

BYTE HCI_Write_Scan_Enable(void){
static const BYTE data[] = { 0x01,0x1a,0x0c,0x01,0x03};

transmit _length=5;

transmit_buffer[0]=data[0];
transmit_buffer[1]=data[1];
transmit_buffer[2]=data[2];
transmit_buffer[3]=data[3];
transmit_buffer[4]=data[4];

-50 -

Implementing a Wireless I/O unit using Bluetooth™

return send command(transmit_length);

}

//***************** HCI Set EVent Mask sk sk sk sk sk sk sk ske sk skosk ko sk skoskeskesk

BYTE HCI_Set_Event Mask(void){
static const BYTE data[] = { 0x01,0x01,0x0c,0x08,0x14,0x60,0x04,0x00,0x00,0x00,0x00,0x00} ;

transmit_length=12;
transmit_buffer[0]=data[0];
transmit_buffer[1]=data[1];
transmit_buffer[2]=data[2];
transmit_buffer[3]=data[3];
transmit_buffer[4]=data[4];
transmit_buffer[5]=data[5];
transmit_buffer[6]=data[6];
transmit_buffer[7]=data[7];
transmit_buffer[8]=data[8];
transmit_buffer[9]=data[9];
transmit_buffer[10]=data[10];
transmit_buffer[11]=data[11];

return send command(transmit_length);

}

-5] -

Implementing a Wireless I/O unit using Bluetooth™

Isr.c

#include <pic.h>
#include "global.h"

bankl static int time count;
bank1 static BYTE first;
bank1 static BYTE error;
bankl BYTE car_count;

/*********************** Descr]’pt]’on ************************************/

/**/
void init_isr(void){

time_count=0;
car_count=1;
first=1;
error=0;

interrupt isr(void){

int t; //testing
int data_temp;

/* TIMERO GENERALL INTERRUPT*/
if(TOIF == 1){

//Sample of input
if(time_count >= sample_time){

time_count=0;
system_reg.bit name.timer_interrupt=1;

system_reg.bit name.global interrupt=1;

} else {
time count++;
}
//Simulated PWM
if (car_pwm == 0x01){

if(car_count >= 80){

car_count=0;

//PWMI1

if(timer pwm_one != 0x00){
RC2=1; // set high value on PWM
TMRI1ON=1; //enable timer

/Iset timer register
TMRI1H=0xff; //timer 1 equal with TMRIL prescaled 16
TMRI1L=(0xff-timer pwm_one);

-52-

Implementing a Wireless I/O unit using Bluetooth™

}

//PWM2
if(timer_ pwm_two !=0x00){

//set timer register

PR2=timer pwm_two; //timer 2 prescaled 16
RC1=1; // set high value on PWM
TMR20ON=1; //enable timer
}
} else {
car_count++;
}
}
TOIF=0;

}

/* TIMER1 INTERRUPT PWM 1%/
if TMRIIF == 1){

if(car_pwm == 0x01){

RC2=0;

TMRION=0; //Stop timer
}

TMR11F=0;

/* TIMER2 INTERRUPT PWM2*/
if TMR2IF == 1){

if(car_ pwm == 0x01){

RC1=0;

TMR20ON=0; //Stop timer
1
5

TMR2IF=0;

-

/* SPI INTERRUPT RECEIVING MODE*/
if (system_reg.bit_ name.spi_sending==0 && SSPIF==1) {

/I Error last event not handled avoid losing information

if(system_reg.bit name.spi_interrupt==1){
error_SPI();

}

SPI_value=SSPBUF;
system_reg.bit name.spi_interrupt = 1;
system_reg.bit name.global interrupt = 1;

SSPIF=0;

-53-

Implementing a Wireless I/O unit using Bluetooth™

/* DIGITAL INTERRUPT */
if(INTF==1){

//No interrupt during powerup and init
if(system_reg.bit name.init == 0){

// old interrupt not handled avoid deadlock on SPI
if (system_reg.bit name.digital interrupt ==1){

// if two interrupts occure simultaniously, before the first was handled,
// is it the same as no interrupt at all arrived.
system_reg.bit name.digital interrupt=0;

} else {
digital value = RB0O; //RB0==1 of course

system_reg.bit _name.digital interrupt=1;
system_reg.bit name.global interrupt=1;

-

INTF=0;

/* RECEIVE UART INTERRUPT */
if (RCIF){

receive_buffer[receive buffer index++]=RCREG;

// Garbage byte at position zero. Allways a zero on reset
if(receive_buffer index == 1 && (receive buffer[0] != 0x02 && receive buffer[0] != 0x04)){
receive_buffer index--;
}

// Two byte large FIFO receiving buffer
if(RCIF){
receive_buffer[receive buffer index++] = RCREG;

// Garbage byte at position zero
if(receive_buffer index == 1 && (receive buffer[0] != 0x02 && receive buffer[0] != 0x04)){
receive_buffer index--;
}

}

// Error receiving, to large packet. Start looking after data or event packages
if(receive_buffer index >=30){
receive_buffer index=0;

}

/levent package length
if(((receive_buffer_index -1) >=2) && (receive buffer[0] == 0x04) && (first==1)){

package length=(int) receive buffer[2];

-54 -

Implementing a Wireless I/O unit using Bluetooth™

first=0;
}

//data package length
if(((receive_buffer_index - 1) >=4) && (receive_buffer[0] == 0x02) && (first==1)){

package length = (int) receive buffer[3];
data_temp=0;
data_temp = receive buffer[4];
data_temp = data_temp<<sS;
package length = package length | data_temp;
first = 0;

}

//synchronization to keep data structure intact. First data byte read

if(receive buffer[0] == 0x02 && receive buffer index == 10){
system_reg.bit name.new data=1;

}

//received whole event package
if(receive_buffer[0] == 0x04 && receive buffer index == (package length+3)){

receive_buffer index=0;
package length=0;
first=1;

//init of bluetooth

if(system_reg.bit name.init == 1){
CommandComplete();

}else {
system_reg.bit name.receive interrupt=1;
system_reg.bit name.global interrupt=1;

}

//received whole data package
if(receive_buffer[0] == 0x02 && receive buffer index == (package length+5)){
receive buffer index=0;
package length=0;
first=1;
//synchronization to keep data structure intact
system_reg.bit name.new_data=0;
system_reg.bit name.receive interrupt=1;
system_reg.bit name.global interrupt=1;

-

/* Error receiving cleared in software*/
if (OERR==1){
OERR=0;
CREN=0;
CREN=1;
}

-55-

Implementing a Wireless I/O unit using Bluetooth™

void send UART(unsigned int length) {

transmit_buffer index = 0;
system_reg.bit name.transmit_allowed=0;

while(transmit_buffer index < length){
TXREG = transmit_buffer[transmit_buffer index++];
/transmit buffer empty

while(TRMT == 0){

}

}

system_reg.bit name.transmit_allowed = 1;

- 56 -

Implementing a Wireless I/O unit using Bluetooth™

Application.c

#include <pic.h>
#include "global.h"

/3% sk s e st st s s st stesi s st st sk sk ke sk sk sk ke sk skeoskoste sk stk sk skt sk stk st stokokostekokokostekokokotokokokoskolokokokokskokokokekook /

bank]1 static unsigned int pos_SPI out;
bankl BYTE car_pwm;

bank1 unsigned int sample_time;
bank1l BYTE receive SPI on;

bankl BYTE spi_data[6];

bankl BYTE int_value;

bankl BYTE timer pwm_one;

bankl BYTE timer pwm_two;

void initControl(void){
pos_SPI out=0;

/'S ggr/s
sample_time=800;

// Not receiving
receive_SPI_on=0;

// using PIC PWM
car_pwm=0x00; //false

//Setting digital interrupt to 0 between interrupts
int_value=0;

}

/] F Rk ck sk ok kskokoksk ok kokskokok fla gl do ok kekek sk okt skokokoskokoskotokskokodokoskolokoskokokor sk

// reset = flash one second forever=0
// error = flash forever seconds forever=1
void flashDiod(BYTE forever,int speed){

int t;
int stop;

if (forever==1){
while(1){
RCO0=1;
for(t=0;t<speed;t++){
}
RC0=0;

for(t=0;t<speed;t++){

}

} else {

stop=0;
while(stop<10){

-57-

Implementing a Wireless I/O unit using Bluetooth™

}

RCO0=1;
for(t=0;t<speed;t++){

}

RC0=0;
for(t=0;t<speed;t++){
}

stop++;

}

// Sample analog input and store values in transmit_buffer at pos 9-12

static void inAD(void){

}

//Storing the voltage from the FIRST analog input.
CHS0=0;

wait(5);

ADGO=1;

while(ADGO){

35

transmit_buffer[10] = ADRESH;

transmit_buffer[10] = (BYTE) (transmit_buffer[10] & 0x03);
transmit_buffer[9] = ADRESL;

//Storing the voltage from the SECOND analog input.
CHSO0=1;

wait(5);

ADGO=1;

while(ADGO){

35

transmit_buffer[12] = ADRESH;

transmit_buffer[12] = (BYTE) (transmit_buffer[12] & 0x03);
transmit_buffer[11]= ADRESL;

//Only two LSB
// LSB

//Only two MSB
// LSB

[k 3 st st sk s ke st sk sk ke sk stk skekoskokok Output to DA kst stk e steoskoskoke stk skokokoskokokokoskokskokokok

/I Write Analog output from received buffer to the cards DA converter

static int outAnalog(void){

BYTE temp;
BYTE data[4];

temp=0x00;

//synchronization to keep data structure intact
if(system_reg.bit name.new data == 0){
data[0] = receive_buffer[9];
data[1] = receive_buffer[10];
data[2] = receive_buffer[11];
data[3] = receive buffer[12];
} else {
return 1;

}

if(system_reg.bit name.new data == 0){

-58 -

Implementing a Wireless I/O unit using Bluetooth™

//Send to DA A and update its input register
RB1=0; /I CS

temp = 0x20;

temp = temp | (data[1] << 3);

temp = temp | (data[0] >> 5);

SSPBUF=temp;

temp=0x00;
temp = temp | (data[0]<<3);

while(SSPIF==0){

}
SSPIF=0;

SSPBUF=temp;
while(SSPIF==0){

}

SSPIF=0;

RB1=1;

//Send to DA B and update its input register
RB1=0; /I CS

temp = 0xa0;

temp = temp | (data[3] << 3);
temp = temp | (data[2] >> 5);
SSPBUF=temp;

temp=0x00;
temp = temp | (data[2]<<3);

while(SSPIF==0){
éSPIF=0;
SSPBUF=temp;
while(SSPIF==0){
§SPIF=0;

RBI=1;

//Send to DA and output its input register
RB1=0; /I CS
SSPBUF=0x80;
while(SSPIF==0){
éSPIFZO;
SSPBUF=0x00;
while(SSPIF==0){

}
SSPIF=0;

-59 .

Implementing a Wireless I/O unit using Bluetooth™

RB1=1;
return 0;

} else {
return 1;
}

}

// store SPI byte. Send by storing in transmit_buffer when received all bytes;
static void store SPI(void){

// store
spi_data[pos_SPI out++]=SPI value;

//read all 6 byte
if (pos_SPI_out == 6){

=spi_data[0];
spi_data[1];
spi_data[2];
spi_data[3];
spi_data[4];
spi_data[S];

transmit_buffer[
transmit_buffer[
transmit_buffer[
transmit_buffer[
[
[

transmit_buffer
transmit_buffer

14]
15]
16]=
17]=
18]=
19]=

pos_SPI_out=0;

}

/ reciving a byte when not done with the old interrupt
void error_SPI(void){

// Store the old not handled value in right position.
store_SPI();

}

// store digital input in transmit_buffer place 13;
static void store DIGITAL(void){

transmit_buffer[13] = digital value;
int_value=1;

}

// store flow control from RS-232
static void store CTS(void){

CTS=RB4;
b

// Set PWM in PIC
static int outPWM(void){

-60 -

Implementing a Wireless I/O unit using Bluetooth™

BYTE temp;
BYTE data[5];

//synchronization to keep data structure intact

if(system_reg.bit name.new_data == 0){
data[Q]=receive_ buffer[13];
data[l]=receive_ buffer[14];
data[2]=receive_ buffer[15];
data[3]=receive buffer[16];
data[4]=receive buffer[17];

} else {
return 1;

}

if(system_reg.bit name.new data == 0){
PR2=data[0]; /Iperiod

//duty cycle one

temp = (BYTE) (data[2]<<6);

temp = temp | (data[1]>>2);
CCPRIL = temp;

temp = (BYTE) (data[1] & 0x03);
CCP1X = (temp>>1);

CCP1Y = (BYTE) (data[1] & 0x01);

//duty cycle two

temp = (BYTE) (data[4]<<6);

temp = temp | (data[3]>>2);
CCPR2L = temp;

temp = (BYTE) (data[3] & 0x03);
CCP2X = (temp>>1);

CCP2Y = (BYTE) (data[3] & 0x01);

return 0;

} else {
return 1;

}

] F kR ok pamp Yoy R R R

// Ramp down signal when losing connection
static void rampDown(void){

int t;
// set analog outputs to zero

//Send to DA A and update its input register
RB1=0; /I CS

SSPBUF=0x20;
while(SSPIF==0){
}

SSPIF=0;

SSPBUF=0x00;

-61 -

Implementing a Wireless I/O unit using Bluetooth™

while(SSPIF==0){

}
SSPIF=0;

RBI=1;

//Send to DA B and update its input register
RB1=0; /I CS
SSPBUF=0xa0;

while(SSPIF==0){

j
SSPIF=0;

SSPBUF=0x00;

while(SSPIF==0){

}
SSPIF=0;

//Send to DA and output its input register
RB1=0; /I CS
SSPBUF=0x80;

while(SSPIF==0){
}

SSPIF=0;
SSPBUF=0x00;

while(SSPIF==0){

j
SSPIF=0;

RBI=1;

//if car_pwm change to PIC PWM
if(car_pwm == 0x01){

car_pwm = 0x00;

//turn off interrupt
TMRIIE=0;
TMR2IE=0;

//turn off timer1
TMR10ON=0;

//Enable PIC PWM
CCPIM3=1;
CCPIM2=1;
CCPIMI1=1;
CCPIMO=1;

CCP2M3=1;
CCP2M2=1;
CCP2M1=1;

-62 -

Implementing a Wireless I/O unit using Bluetooth™

CCP2MO=1;

// enable timer2
TMR20ON=1;
}

// set PWM to zero
PR2=0xff; //period

//duty cycle one
CCPRI1L = 0x00;
CCP1X=0;
CCP1Y =0;

//duty cycle two
CCPR2L = 0x00;
CCP2X=0;
CCP2Y =0;

//set TransmittBuffer to zero
for(t=0;t<20;t++){

transmit_buffer[t]=0x00;
}

}

/*

Main loop

*/

void application_control(void){

BYTE more_interrupts;
int temp;
int data_temp;

while(1){

/Iwait for interrupt
while(system_reg.bit name.global interrupt==0){

1
s

more_interrupts=1; /TRUE

// deal with interrupt
while(more_interrupts){

/* RECEIVE PACKAGE FROM BLUETOOTH */
if(system_reg.bit name.receive interrupt == 1){

//All allowed event package
if(receive_buffer[0] == 0x04){

/* Connection complete event */
if(receive buffer[1] ==0x03 && receive buffer[3]==0x00){

connection_handle[0] = receive_buffer[4];
connection_handle[1] = (BYTE) (receive buffer[5] & 0x0f);

-63 -

Implementing a Wireless I/O unit using Bluetooth™

// connected to other bluetooth host
system_reg.bit name.connected = 1;

// turn on diod
RCO=1;

/* Disconnect complete event*/
if(receive_buffer[1] ==0x05 && receive buffer[3] == 0x00){

system_reg.bit name.connected=0;
connection_handle[0]=0;
connection_handle[1]=0;

rampDown();

// Bluetooth data buffer
buffer num = 10;

sample_time=1000;

// turn off diod
RCO0=0;

}

/* Number of complete package*/
if(receive_buffer[1] ==0x13){

temp = 0;
temp = (int) receive_buffer[6];
data_temp=0;

data_temp=receive buffer[7];
data_temp=data_temp<<S8;
temp = temp | data_temp;

buffer num += temp;

}

/* Command Complete Event*/
if(receive_buffer[1] ==0x0e && receive buffer[6]==0x00)¢{

}

/* Command Status Event*/
if(receive buffer[1] ==0x0f && receive buffer[3]==0x00){

}

// data package
} else if(receive buffer[0] == 0x02){

//Store period time for simulated PWM
timer_pwm_one=receive_buffer[14];
timer_pwm_two=receive buffer[16];

//set Analog outputs if in SPI sending mode
if(system_reg.bit name.spi_sending == 1){

-64 -

Implementing a Wireless I/O unit using Bluetooth™

outAnalog();
}

//PIC PWM
if(car pwm == 0x00 && receive buffer[13] != 0xff){

/Iset PWM
outPWM();

// Change from simulated PWM to PIC PWM.
} else if(car pwm ==0x01 && receive buffer[13] != 0xff){

car_pwm = 0x00;

//turn off interrupt
TMRIIE=0;
TMR2IE=0;

//turn off timerl
TMR1ON=0;

// enable timer2
TMR20ON=1;

//Enable PIC PWM
CCPIM3=1;
CCPIM2=1;
CCPIMI1=1;
CCPIMO=1;

CCP2M3=1;
CCP2M2=1;
CCP2M1=1;
CCP2MO=1;

//setPWM
outPWM();

// Change from PIC PWM to simulated PWM
} else if(car_ pwm == 0x00 && receive buffer[13] == 0xff){

//Disable PIC PWM
CCP1M3=0;
CCP1M2=0;
CCP1IM1=0;
CCP1MO0=0;

CCP2M3=0;
CCP2M2=0;
CCP2M1=0;
CCP2M0=0;

/Ivariabel in isr
car_count=l;

//stop timers to get synchronized start
TMR10ON=0;
TMR20ON=0;

//setoutput

- 65 -

Implementing a Wireless I/O unit using Bluetooth™

RC1=0;
RC2=0;

//enable interrupt on timerl and timer2
TMRIIE=1;
TMR2IE=1;

// first change of period
car_ pwm = 0x01;

//[simulated PWM
} else if(car pwm ==0x01 && receive buffer[13] == 0xff){

// The system handles simulated PWM by timers
}

// set sample period of analog inputs
if (receive_buffer[18] > 4){
temp=0;
temp = (int) receive_buffer[18];
sample_time = temp*4;
}else {
// min 4 ms
sample time=16;

}

// enable/disable SPI intput
if (receive_SPI_on==0){

//enable otherwise continue
if(receive buffer[19]==1){

TRISBO=1;
pos_SPI out=0;
receive_SPI_on=1;

wait(5);
INTE=1,; // enable interrupt

}else {

//disable otherwise continue
if(receive_buffer[19]==0){

//Allways allow AD conversion
if(system_reg.bit name.spi_sending==0){

//disable SPI interrupt
SSPIE=0;
system_reg.bit name.spi_sending = 1;

}

TRISB0=0;
receive_SPI_on=0;

wait(5);

- 66 -

Implementing a Wireless I/O unit using Bluetooth™

INTE=0; // disable interrupt
}

}

system_reg.bit name.receive_interrupt = 0;

/* INTERRUPT ON DIGITAL INPUT */
} else if(system_reg.bit name.digital _interrupt == 1){

//Possible chance of deadlock error if digital interrupt to close!!!
system_reg.bit name.digital interrupt = 0;

// SPI receiving mode enable
if(receiveSPI on==1){

store DIGITAL();

// Reveive on SPI Recive data change between receiving and sending
if(system_reg.bit name.spi_sending == 1){

//Chip not select DA
RBI=1;

//Enable SPI interrupt
SSPIE=1;

pos_SPI out=0;
system_reg.bit name.spi_sending = 0;

// Send on SPI
} else {

//disable SPI interrupt
SSPIE=0;

system_reg.bit name.spi_sending = 1;

/* INTERRUPT ON SPI */
} else if(system_reg.bit name.spi_interrupt == 1){

// receiving spi
if(system_reg.bit name.spi_sending == 0){

// Store data in transmit vector
store_SPI();

}

system_reg.bit name.spi_interrupt = 0;

-67 -

Implementing a Wireless I/O unit using Bluetoot

hTM

/* TIMER INTERRUPT */
} else if(system_reg.bit name.timer_interrupt == 1){

-

//Reseting int interrupt value after detection. Interrupt only on ones
if(int_value >= 2){

transmit_bufter[13]=0x00;

int_value=0;
} else if(int_value == 1) { //always send the detected interrupt

int_value++;
1
)

inAD();
store_ CTS();

//Send data to bluetooth if we are connected
send_data();

system_reg.bit name.timer_interrupt = 0;

// more interrupt available while dealing with this

if(

system_reg.bit name.timer_interrupt == 0 &&
system_reg.bit name.receive_interrupt == 0 &&
system_reg.bit name.spi_interrupt == 0 &&
system_reg.bit name.digital interrupt == 0){

more_interrupts=0; //FALSE
system_reg.bit name.global interrupt=0;

- 68 -

Implementing a Wireless I/O unit using Bluetooth™

Appendix D: Code in master

ControllLayer
import java.util. Vector;
public class ControllLayer {

private L2CAP capLayer;
private HCI hciLayer;
private API application;

private int numOfCommandPackage;
private int initState;

private int flowNum;

private int flowSize;

private boolean debug;

private boolean sucess; // return value

private boolean init; /I True -> the stack is initialised
private Host temp;

private HostList myList;

private String myPort;

Jx*

* Constructor
%

* @param String comPort the port COM the stack will use
* @param topLayer the next layer in the stack.

*/

public ControllLayer(String comPort,API topLayer){

myList = new HostList();

hciLayer = new HCI(this);

capLayer = new L2CAP(1,320,this,hciLayer);
RS232 r = new RS232(comPort,hciLayer,this);
application=topLayer;

myPort=comPort;

hciLayer.setInitValue(capLayer,r);

numOfCommandPackage=1;
initState=0;

sucess = false;

init= false;

debug=true;

}

SRRk sk Rk Rk kR ok Public methods for APT %% %% %%k sk ks stk ok ook ok sbook ko sk ok okok o/

JH%

* Initialise Bluetooth controller. The Thread is blocked until success or failure
%

* (@return true if success otherwise false
*/
public synchronized boolean init(){

try {

nitState=0;

- 69 -

Implementing a Wireless I/O unit using Bluetooth™

mylnit();
wait();
return sucess;

} catch (Exception e){

write("E -> Exception during init " + e.toString() + " ");
return false;

}

/**
* Inquire after other Bluetooth devices. The Thread is blocked until success or failure
*

* (@return true if success otherwise false
*/
public synchronized boolean inquiry(){

try {

// must have initialised the connection before inquiry
if (init){
byte data[] = new byte[9];
data[1] = 0x01;
data[2] = 0x04;
data[3] = 0x05;
data[4] = 0x33;
data[5] = (byte) 0x8b;
data[6] = (byte) 0x9e;
data[7] = 0x05;
data[8] = 0x00;

hciLayer.sendData(data,BlackBox. COMMANDPACKAGE);

//blocking
wait();
return sucess;
} else {
return false;
}

} catch (Exception e){

write("E -> Exception during inquiry " + e.toString()+ " ");
return false;

}
}
JE*
* Connect to Bluetooth device. The Thread is blocked until success or failry
*
* @param int Bluetooth address
* @return the CID of L2CAP layer 0x0000 if error
*/
public synchronized byte[] createConnection(byte[] adress){

Host temp;
byte data[];
byte myCID[];
byte tempv][];

-70 -

Implementing a Wireless I/O unit using Bluetooth™

tempv = new byte[2];
myCID = new byte[2];

if(numOfCommandPackage >0 && init){

temp = myList.getHost(adress);

if (temp != null){

try {

byte[] clock;

// The bluetooth host is already connected
if (temp.getConnected()){

write("] -> Can't connect the bluetooth host is already connected ");
return tempv;

}

ata = new byte[17];
lock=temp.getClockOffset();

data[1] = 0x05;
data[2] = 0x04;
data[3] = 0x0d;
data[4] = adress[0]; //MSB

data[5] = adress[1];

data[6] = adress[2];

data[7] = adress|[3];

data[8] = adress[4];

data[9] = adress[5];

data[10] = 0x08;

data[11] = 0x00;

data[12] = temp.getScanRepetition();
data[13] = temp.getScanMode();
data[14] = clock[0]; //MSB
data[15] = clock[1];

data[16] = 0x00;

//buffer empty when not connected. Needed when reconecting lost connection
capLayer.setFlowControl(flowNum,flowSize);

hciLayer.sendData(data,BlackBox. COMMANDPACKAGE);
//Only one connection and therefore only one CID

myCID[0] = 0x01;

myCID[1] = 0x00;

temp.setCID(myCID);

//blocking
wait();

} catch (Exception e){

}

write("E -> Exception during create connection " + e.toString() +" ");
return tempv;

if (sucess){

-71 -

Implementing a Wireless I/O unit using Bluetooth™

return myCID;
} else {

return tempv;
}

} else {
write("E -> Error connecting to bluetooth, adress not valid ");
return tempv; // 0x0000;

}

}else {

return tempv; // 0x0000;
1
S

}

[*
* Send data packet.

*

* @param char[] CID number

* @param char[] The data

*/

public void sendData(byte[] CID,byte[] data){

Host temp;

byte[] test;

byte[] dataPackage;

byte[] newHandle;

byte[] tempHandle;

temp = null;

newHandle = new byte[2];

//find bluetooth connection
for (int i=0;i<myList.getSize();i++){
temp = (Host) myList.getHostAt(i);
test = temp.getCID();
if (test[0] == CID[0] && test[1]==CID[1]){
break;
}

}
if(temp != null && temp.getConnected()){
dataPackage = new byte[20];
for (int i =9;i<dataPackage.length;i++){
dataPackage[i]=data[i-9];
}

tempHandle = temp.getConnectionHandle();

newHandle[0]=tempHandle[0];
newHandle[1]=tempHandle[1];

capLayer.sendACL(temp.getCID(),newHandle,dataPackage);

} else {
write("E -> Bluetooth device not connected. Error sending data ")

}

-72 -

Implementing a Wireless I/O unit using Bluetooth™

/**

* Close Connection
%

* @param byte[] the Bluetooth adress of the external host
*/
public void closeConnection(byte[] btAdress){

byte[] data;
byte[] handle;
Host temp;

if(numOfCommandPackage>0){
data= new byte[7];
temp=myList.getHost(btAdress);

if (temp != null && temp.getConnected() == false){
write("E -> Can't disconnect. The host is not connected ");

}
if(temp != null){
handle=temp.getConnectionHandle();

data[1]=0x06;

data[2]=0x04;

data[3]=0x03;

data[4]=handle[0];
data[5]=handle[1];

data[6]=0x13; //Reason

hciLayer.sendData(data,BlackBox. COMMANDPACKAGE);

} else {
writeByte("E -> Error disconnecting bluetooth host, CID not valid ", btAdress);
}
} else {
write("E -> Cant disconnect. Bluetooth command buffer is full ");
}
H
/*

* Read the RSSI value, strength of connection, of the host. The Bluetooth module must have

* an connection to send a readRSSI request
*

* (@param byte[] The address of the Bluetooth device
*/
public void readRSSI(byte[] btAdress){

byte[] data;

byte[] handle;

Host temp;
if(numOfCommandPackage>0){

data = new byte[6];

-73 -

Implementing a Wireless I/O unit using Bluetooth™

temp=myList.getHost(btAdress);

if (temp != null && temp.getConnected() == false){
writeByte("E -> Can't read RSSI. Host not connected or invalid host ",btAdress);
} else {

handle=temp.getConnectionHandle();

data[1]=0x05;
data[2]=0x14;
data[3]=0x02;
|
]

data[4]=handle[0];
data[5]=handle[1];

hciLayer.sendData(data,BlackBox. COMMANDPACKAGE);

}
} else {
write("E -> Can't send command package. Bluetooth buffer is full ");
}
b
/*
* Software reset of Bluetooth device
%
*/
public void reset(){
byte[] data = new byte[4];
data[1]=0x03;
data[2]=0x0c;
data[3]=0x00;
if (numOfCommandPackage >0){
hciLayer.sendData(data,BlackBox. COMMANDPACKAGE);
} else {
write("I -> Can't send reset package. Bluetooth buffer is full ");
}
}

[RFFFRFAR R R kR R * Public method available for lower parts of the stack ** %% sk skoksksoskxokokkkkx

/**

* Receive data packet
*

* @param String The data

* (@param int the position of the first data byte
*/

public void receive ACL(byte[] data,int pos){

/IwriteByte(data,pos,"Receiving data: ");
application.receiveData(data,pos);

/**

-74 -

Implementing a Wireless I/O unit using Bluetoot

hTM

* Receive event
%

* @param The event

* @param int the index of the first byte

*/

public synchronized void receiveEvent(byte[] s,int pos){

Host temp;
int eventCode;
byte adress[];

—nn,

String inData="";
adress = new byte[6];

temp=null;

for(int i=0;i<s.length;i++){
inData=inData + "0x" + UnicodeFormatter.byteToHex(s[i]) + " ";

}

write("] -> Incomming event " + inData);

eventCode = (int) s[pos];

switch (eventCode) {

/* Inquiry Complete Event */
case | : //Inquiry OK
if(s[2+pos] == 0x00){

} else {

if(myList.getSize() == 0){

} else {

write("E -> No bluetooth hosts answering ");
sucess = false;
releaseLock();

//change status of Host and notify application
for (int i=0;i<myList.getSize();i++){
temp = (Host) myList.getHostAt(i);
if (temp.getStatus() == false){
temp.setStatus(true);

}

}

sucess = true;
releaseLock();

// remove Host from system

for (int i=0;i<myList.getSize();i++){

}

temp = (Host) myList.getHostAt(i);
if (temp.getStatus() == false){
myList.removeHost(temp);

}

sucess = false;

-75 -

Implementing a Wireless I/O unit using Bluetooth™

releaseLock();

write("E -> Inquiry failed ");

}
break;

/* Inquiry Result Event */
case 2 : byte[] clock;

clock = new byte[2];

adress[0]= s[3+pos];
adress[1]= s[4+pos];
adress[2]= s[5+pos];
adress[3]= s[6+pos];
adress[4]= s[7+pos];
adress[5]= s[8+pos];

clock[0] =s[15+pos];
clock[1] =s[16+pos];

temp = new Host(adress,s[9+pos],s[10+pos],s[11+pos],clock);
myList.storeHost(temp);

// notify application
application.BTFound(temp.getAdress());

if(s[2+pos] = 0x01){
write("I -> More then one inquiry result, bother only of the first ");

J
break;

/* Connection complete event */
case 3 : //Command ok
if(s[2+pos] ==0x00){

byte[] connectionHandle;
connectionHandle = new byte[2];

connectionHandle[0]=s[3+pos];
connectionHandle[1]= (byte) (s[4+pos] & 0x0f);

adress[0]=s[5+pos];
adress[1]=s[6+pos];
adress[2]=s[7+pos];
adress[3]=s[8+pos];
adress[4]=s[9+pos];
adress[5]=s[10+pos];

// insert connectionHandle

temp = myList.getHost(adress);
temp.setConnectionHandle(connectionHandle);
temp.setConnected(true);

sucess = true;
releaseLock();

-76 -

Implementing a Wireless I/O unit using Bluetooth™

} else {

sucess = false;
releaseLock();

write("E -> Error code connection complete event ");

)
break;

/* Disconnection Complete Event*/
case 5 : //Command ok
if(s[2+pos] ==0x00){

byte[] handle;
byte[] tempHandle;
boolean found=false;

handle = new byte[2];
tempHandle = new byte[2];

handle[0]=s[3+pos];
handle[1]= (byte) (s[4+pos] & 0x0f);

//lremove connectionHandle in host

for (int i=0;i<myList.getSize();i++){

temp = (Host) myList.getHostAt(i);

if (BlackBox.equals(handle,temp.getConnectionHandle())){
if(temp.getConnected() == true){

/fwrite("I -> Host disconnect");

tempHandle[0]=0;

tempHandle[1]=0;

temp.setConnected(false);
temp.setConnectionHandle(tempHandle);
application.connectionlsClosed(temp.getAdress());
found=true;

break;

write("E -> The host is not connected ");

if(!found){
write("E -> Disconnection failed in bluetooth stack. Bluetooth host not found ");

}
} else {

write("E -> Error code disconnection complete event ");
}
break;

/* Command Complete Event */
case 14 :// command ok
if(s[5+pos] == 0x00){

// save commandpackage buffer
numOfCommandPackage = (int) s[2+pos];

-77 -

Implementing a Wireless I/O unit using Bluetooth™

//Read Buffer Size

if (s[3+pos] == 0x05 && s[4+pos] == 0x10){
int num;
int size;

size=s[6+pos];
size += s[7+pos]<<8§;

num=s[9+pos];
num += s[10+pos]<<8;

flowNum=num;
flowSize=size;

capLayer.setFlowControl(num,size);

}

/I RSSI
if(s[3+pos]==0x05 && s[4+pos] == 0x14){

//only one connection
application.receiveRSSI(s[pos+8]);

}

// Next initialisation step
if (initState <=5){

mylnit();

} else {
// init suceeded
sucess = true;
nit=true;
releaseLock();

}

} else {

// Initialisation failed
sucess = false;

init = false;
releaseLock();

write("E -> Error code commandcomplete event ");
|

s
break;

/* Command status event */
case 15 ://Command Ok
if(s[2+pos] ==0x00){
numOfCommandPackage = (int) s[3+pos];

} else {
write("E -> Error code command status event ");

¥
break;

/* number of complete packets event*/

-78 -

Implementing a Wireless I/O unit using Bluetooth™

case 19 : if(s[2+pos] == 0x01){
int sendPackage;

sendPackage=s[5+pos];
sendPackage += s[6+pos]<<§;

capLayer.finishedSendPackage(sendPackage);
} else {

write("E -> More then one connectionhandle in complete package event"
+ " ,bother only of the first. ");

}
break;

default : application.receiveEvent(s);

/*********************************Private methods ************************************/

/**

* Intern initialisation of Bluetooth Controller
*/

private synchronized void mylInit(){

byte data[];

/I Compiler complains
data = new byte[1];

// In case of multiple initialisation threads
switch(initState){

// HCI Reset
case 0 : data =new byte[4];

data[1]=0x03;
data[2]=0x0c;
data[3]=0x00;
break;

// HCI Read buffer Size

case 1 : data =new byte[4];
data[1]=0x05;
data[2]=0x10;
data[3]=0x00;
break;

// HCI Write Autentic Enable
case 2 : data =new byte[5];
data[1]=0x20;
data[2]=0x0c;
data[3]=0x01;
data[4]=0x00;

-79 -

Implementing a Wireless I/O unit using Bluetooth™

break;

// HCI Set Event Filter

case 3 : data =new byte[7];
data[1]=0x05;
data[2]=0x0c;
data[3]=0x03;
data[4]=0x02;
data[5]=0x00;
data[6]=0x02;
break;

e e —

// HCI Write Connection Accept Timeout
case 4 : data =new byte[6];
data[1]=0x16;
data[2]=0x0c;
data[3]=0x02;
data[4]=(byte) 0xa0;
data[5]=0x1f;
break;

// HCI Write Page Timeout

case 5: data =new byte[6];
data[1]=0x18;
data[2]=0x0c;
data[3]=0x02;
data[4]=(byte) 0x00;
data[5]=0x20;
break;

default : write("E -> Error init bluetooth ");

// Am I allowed to send data package
if(numOfCommandPackage >0){
initState++;
hciLayer.sendData(data,BlackBox. COMMANDPACKAGE);
} else {
write("] -> Can't send command package. Bluetooth buffer is full ");
}

}

private synchronized void releaseLock(){
notifyAll();
}

/***********************Output to the application ************************************/

/**

* Write to API

*

* @param String Text that will be written

*/

public void write(String s){
application.stackInformation(s + "at " +myPort);

}

/**

-80 -

Implementing a Wireless I/O unit using Bluetooth™

* Write to API

* String + byte vector
%

* (@param String Explanation
* (@param byte[] byte vector
*/
public void writeByte(String s, byte[] b){

ST

String temp="";;

temp=temp-s;
for (int i=0;i<b.length;i++){

temp = temp + String.valueOf(b[i])+ " ";
}

temp=temp+"at " +myPort;
application.stackInformation(temp);

}

/* %
* Write to API

* String + byte vector. Length number of byte is written.
%

* @param String Explanation
* (@param byte[] byte vector
* (@param int Length of byte vector must be smaller or equal with length of byte vector
*/
public void writeByte(String s, byte[] b,int length) {

String temp="";

if (length < b.length){
temp=temp-+s;
for (int i=0;i<length;i++){
temp = temp + String.valueOf(b[i])+ " ";
}

temp=temp +"at " +myPort;
application.stackInformation(temp);

/** Write to API in form the String + byte vector.

* Start writing at position startPos in byte vector.

*

* @param byte[] byte vector

* (@param int start position in byte vector

* @param String Explanation

*/

public void writeByte(byte[] b, int startPos, String s){

String temp="";
temp=temp-s;

for (int i=startPos;i<b.length;i++){
temp = temp + String.valueOf(b[i])+ " ";
}

-81 -

Implementing a Wireless I/O unit using Bluetooth™

temp=temp +"at " +myPort;
application.stackInformation(temp);

} // end class ControllLayer

sk Rk e p clagses R Rk ks o
JE*

* The class contains a accessible list of all Bluetooth devices.
*/
class HostList{

private Vector myVector;

/ Kk
* Constructor
*/
public HostList(){
myVector = new Vector();
}
JH*

* Return a stored host object
%

* @param byte[] The address or CID of the host
* @return The found Host object otherwise null
*/

public synchronized Host getHost(byte[] adress){

Host temp;

for (int i=0;i<myVector.size();i++){
temp = (Host) myVector.elementAt(i);
if(BlackBox.equals(adress,temp.getAdress())){
return temp;
}

}

for (int i=0;i<myVector.size();i++){
temp = (Host) myVector.elementAt(i);
if(BlackBox.equals(adress,temp.getCID())){

return temp;
v
s

}

return null;

}

/**

* Return host at index
%

* @param int index

* (@param A stored Host

*/

public synchronized Host getHostAt(int index){

if(index < 0 || index >= myVector.size()){
return null;
}

-82-

Implementing a Wireless I/O unit using Bluetooth™

return (Host) myVector.elementAt(index);

}

/ K3k

* Store Host object in class

%

* @param Host The object

*/
public synchronized void storeHost(Host s){

myVector.addElement(s);
}

/**

* Return number of stored hosts
*
* @param Stored hosts
*/
public synchronized int getSize(){
return myVector.size();

}

/**

* Remove host from class

%

* @param The host that will be removed

*/
public synchronized void removeHost(Host s){

myVector.remove(s);
}
}

/**

* A Bluettooth device
*/

class Host{

private byte[] BD_Adress;
private byte[] CID;

private byte[] connectionHandle;
private byte pageScanRepetition;
private byte pageScanPeriod;
private byte pageScanMode;
private byte[] clockOffset;
private boolean isConnected;
private boolean status;

/%
* Constructor
k
* @param byte[] The Bluetooth adress
* (@param byte scanRep page scan repetition of the connection
P P pag P
* @param byte scanPeriod page scan period mode of the connection
* (@param byte scanMode page scan mode of the connection
* @param byte[] offset, the clock offset of the connection
*/
public Host(byte[] adress, byte scanRep, byte scanPeriod,

-83-

Implementing a Wireless I/O unit using Bluetooth™

byte scanMode, byte[] offset){

BD_Adress= new byte[6];

CID = new byte[2];

clockOffset = new byte[2];
connectionHandle = new byte[2];

pageScanRepetition = scanRep;
pageScanPeriod = scanPeriod;
pageScanMode = scanMode;

for(int i=0;i<adress.length;i++){
BD_Adress[i]=adress][i];
!
s

for(int i=0;i<offset.length;i++){
clockOffset[i]=offset[i];
}

connectionHandle[0]=0;
connectionHandle[1]=0

>

CID[0]=0;
CID[1]=1;

isConnected = false;
status = false;

[sk st st sk sk ke skoskok ek skokoskoskskokock sk ko skl ok sk (Get Operation et st st s st st sk sk st stk sk stttk stk kol skokokokoskok skokokok /

public byte[] getAdress(){
return BD_Adress;

}

public byte[] getCID(){
return CID;

}

public byte getScanRepetition(){
return pageScanRepetition;

}

public byte getScanPeriod(){
return pageScanPeriod;

}

public byte getScanMode(){
return pageScanMode;
}

public byte[] getConnectionHandle(){
return connectionHandle;

}

public byte[] getClockOffset(){
return clockOffset;
}

-84 -

Implementing a Wireless I/O unit using Bluetooth™

public boolean getConnected(){
return isConnected;

}

public boolean getStatus(){
return status;

}

[s s sk stk ke stk skekokokoskokokockokok skokokock kekok sk k kG at Operation et st sk e sk st stk st st stk skeskeskoskoskeskokokokokokokoskosk skokokoskekok /

public void setConnectionHandle(byte[] b){
connectionHandle[0]=b[0];
connectionHandle[1]=b[1];

}

public void setCID(byte[] b){
CID[0] = b[0];
CID[1]=b[1];

}

public void setConnected(boolean connect){
isConnected = connect;

}

public void setStatus(boolean s){
status=s;

}

-85 -

Implementing a Wireless I/O unit using Bluetooth™

L2CAP
/ kk
* L2CAP layer
*/
class L2CAP{
private int numOfPackage;
private int sizeOfPackage;
private ControllLayer app;
private HCI myHClILayer;
private boolean debug;
/ kk

* Constructor

*

* (@param int num Maximal number of packages in Bluetooth buffer

* (@params int size maximal size of data package in Bluetooth buffer

* @param ControllLayer controls the stack

* @param HCI the HCI layer

*/

public L2ZCAP(int num,int size,ControllLayer theController,HCI theHCILayer){

numOfPackage = num;
sizeOfPackage = size;

app = theController;
myHClILayer = theHCILayer;
debug = true;

}

[**

* Flow Control for ACL/data package
%

* @param int Maximal Bluetooth ACL buffer
* @param int Maximal size of a ACL package
*/

public void setFlowControl(int num,int size){

numOfPackage = num;
sizeOfPackage = size;

if (debug) {
app.write("I -> FlowControl, ACLBuffer = " +String.valueOf(num) +
" ACLPackageSize =" + String.valueOf(size) + " ");

}

/**

* Acknowledge from Bluetooth host. The host has sent send number of packages

* and the buffer increases with that size
%

* (@param int Number of sent package from Bluetooth buffer
*/
public void finishedSendPackage(int bufferIncrease) {

numOfPackage += bufferIncrease;

if (debug){
// app.write(" I -> Bluetooth buffer size " + String.valueOf(numOfPackage) +
" packages ");

- 86 -

Implementing a Wireless I/O unit using Bluetooth™

}

/**

* Send ACL package.
%

* @param byte[] The CID of the connection

* @param byte[] The connectionHandle

* (@param byte[] the data package. All byte allocated and the data is inserted
* @return true if sucess otherwise false

*/
public boolean sendACL(byte[] CID,byte[]connectionHandle,byte[] data){

byte[] packageHCILength;
byte[] packageL2CAPLength;

//A fix. It can otherwise in strange be set to zero
numOfPackage=10;

// Package size less then maximal size
if (((int) (data.length + 9) <= sizeOfPackage) && (numOfPackage >= 1)){

packageL2CAPLength=new byte[2];
//'length of L2ZCAP head

packageL.2CAPLength[0] = (byte) ((short) (data.length-9));
packageL.2CAPLength[1] = (byte) ((short) ((data.length-9)>>8));

data[5] = packageL2CAPLength[0];

data[6] = packageL2CAPLength[1];

data[7] = CID[O0];

data[8] = CID[1];
myHCILayer.sendData(data,BlackBox.ACLPACKAGE,connectionHandle);
numOfPackage--;

return true;

// flow control for data packages

} else {
app.write("E -> L2CAP Bluetooth buffer full ");
return false;

/**

* Receive package from Bluetooth
*

* @param byte[] InPackage
* (@param int the position of the first byte in the vector
*/

public void receive ACL(byte[] data,int pos){

/Ipeel of L2ZCAP package head
app.receiveACL(data,pos+4);

}

} // end class L2CAP

-87-

Implementing a Wireless I/O unit using Bluetooth™

Hei

/* *
*HCI layer in the Bluetooth stack
*/

class HCI{

private RS232 myTransmitt;
private LZCAP myL2CAP;
private ControllLayer app;

Jx*

* Constructor
*

* (@param The controll layer
*/
public HCI(ControllLayer blue){

app = blue;

}

Jx*

* Register L2CapLayer

*

* @param L2Cap My L2Caplayer

* @param RS232 The serial port

*/

public void setInitValue(L2CAP cap,RS232 r){

myL2CAP = cap;
myTransmitt = r;

}

/**

* Receiving ACL or EventPacket from RS232 layer. Always all data in the package
*

* (@param byte[] One package from serial port
* (@param int start position of the first byte

*/

public void reciveData(byte[] data,int pos){

byte[] temp;
byte[] storedData;

// data package. The packet has always all of it's byte in one package
if (data[pos] == 0x02){

// must contain data and the conection handler must be one. Error check that can be removed
if(data.length > 9) {

if(data[pos+1] == 0x01){
/Ipeel of package type and HCI head
myL2CAP.receiveACL(data,5);
} else {
// This message has never been writen
app.write("E -> Error synchronization incomming package ");

- 88 -

Implementing a Wireless I/O unit using Bluetooth™

} else {
app.write("E -> Incomming data package has no data ");
b

// EventPackage
} else if(data[pos] == 0x04){

/Ipeel of package type
app.receiveEvent(data,1);

}else {

//Wrong input package
app.write("E -> Error input package type. ");

}

JE*

* Sending a command package to serial port
k

* @param String The Data that will be sent
* @param int Type of package se BlackBox
*/

public void sendData(byte[] data, int type){

if(type == BlackBox. COMMANDPACKAGE){
String inData="";

data[0]=0x01;
for(int i=0;i<data.length;i++){
inData=inData + "0x" + UnicodeFormatter.byteToHex(data[i]) + " ";

}

app.write("I -> Sending command " + inData);
myTransmitt.sendData(data);

} else {

app.write(" E -> Trying to send datapackage as commandpackage ");

}

/**
* Sending a data packet to serial port. The data package from L2CAP

* does always fit in one hci package so there is no need for segmentation-
*

* @param String The Data that will be sent

* @param int Type of package se BlackBox

* @param byte[] The connectionhandle

*/

public void sendData(byte[] data, int type,byte[] connectionHandle){

byte[]packageHCILength;

packageHCILength = new byte[2];

-89 -

Implementing a Wireless I/O unit using Bluetooth™

if(type == BlackBox. ACLPACKAGE){
data[0]=0x02;
// put in BC and PB flag of HCI head

connectionHandle[1]= (byte) (connectionHandle[1] & 0x0f);
connectionHandle[1] += 0x20;

// length of HCI Head
packageHCILength[0] = (byte) ((short) (data.length-5));
packageHCILength[1] = (byte) ((short) ((data.length-5)>>8));

data[1]=connectionHandle[0];
data[2]=connectionHandle[1];
data[3]=packageHCILength[0];
data[4]=packageHCILength[1];

myTransmitt.sendData(data);

} else {
app.write(" E -> Trying to send commandpackage as data package ");

}

-90 -

Implementing a Wireless I/O unit using Bluetooth™

RS232

import java.io.*;
import java.util.*;
import javax.comm.*;

JH*

* This class listens from serial port and buffer package. When the class has received a package it is sent to
* the HCI layer. It also transmit packages over the serial port

*/

class RS232 implements SerialPortEventListener {

private CommPortldentifier portld;
private Enumeration portList;
private SerialPort serialPort;

private OutputStream outputStream;
private InputStream inputStream;

// For debug
public int variabel;

private ControllLayer app;
private boolean newPackage;
private boolean readLength;
private int packageType;
private int nbrOfBytes;
private int packageLength;
private byte packet[];
private byte temp_vector[];
private int pos;

private HCI myHCILayer;
private boolean debug;
private String myPort;

/ k%

* Constructor

*

* @param String COM port to connect

* (@param HCI HCILayer

* (@param ControllLayer theApp for debug information

*/

public RS232(String connectPort, HCI theHCILayer,ControllLayer theApp) {

packet=new byte[BlackBox.MAXSIZE];
packageType = BlackBox. NOPACKAGE;
newPackage=true;

readLength=false;

debug=true;

pos=0;

myPort=connectPort;

app=theApp;

myHCILayer = theHCILayer;
portList = CommPortldentifier.getPortldentifiers();

while (portList.hasMoreElements()) {
portld = (CommPortldentifier) portList.nextElement();

-9] -

Implementing a Wireless I/O unit using Bluetooth™

if (portld.getPortType() == CommPortldentifier. PORT SERIAL) {
if (portld.getName().equals(connectPort)) {

try {

serialPort = (SerialPort) portld.open("Receive", 2000);

} catch (PortInUseException e) {
app.write("PortInUseException " + e.toString()+ " ");

}

try {
inputStream = serialPort.getInputStream();
outputStream = serialPort.getOutputStream();
} catch (IOException e) {
app.write("Error creating stream " + e.toString()+ " ");
}

try {
serialPort.addEventListener(this);
} catch (TooManyListenersException e) {
app.write("TooManyListenerException "+ e.toString()+ " ");
}

serialPort.notifyOnDataAvailable(true);
try {
serialPort.setSerialPortParams(57600,
SerialPort. DATABITS 8,
SerialPort.STOPBITS 1,
SerialPort.PARITY NONE);
} catch (UnsupportedCommOperationException e) {
app.write("CommOperationException at port " + e.toString()+ " ");

}
}
}
}
if(inputStream != null){
//OK
}else {
app.write("E -> Couldn't create RS-232 receiver ");
}
b
Jx%
* Send data over serial port
*
* (@param byte[] The data
*/
public synchronized void sendData(byte[] b){
/*
if (debug){
app.writeByte("I -> Sending byte vector: ",b);
}
*/
try {

outputStream.write(b);

} catch (IOException e) {
app.write("E -> IOException writing data " + e.toString()+ " ");

92

Implementing a Wireless I/O unit using Bluetooth™

} catch (Exception e){
app.write("E -> Generall exception transmitting " + e.toString() + " ");
}

[**

* Listen on event from serial port
*

* @param SerialPortEvent
*/
public synchronized void serialEvent(SerialPortEvent event) {

switch(event.getEventType()) {
case SerialPortEvent.BI: app.write("E -> SerialPortEvent.BI ");

break;

case SerialPortEvent.OE: app.write("E -> SerialPortEvent.OE ");
break;

case SerialPortEvent.FE: app.write("E -> SerialPortEvent.FE ");
break;

case SerialPortEvent.PE: app.write("E -> SerialPortEvent.PE ");
break;

case SerialPortEvent.CD: app.write("E -> SerialPortEvent.CE ");
break;

case SerialPortEvent.CTS: app.write("E -> SerialPortEvent.CTS ");
break;

case SerialPortEvent.DSR: app.write("E -> SerialPortEvent. DSR ");
break;

case SerialPortEvent.RI: app.write("E -> SerialPortEvent.RI ");
break;

case SerialPortEvent. OUTPUT BUFFER EMPTY: app.write("E ->
SerialPortEvent. OUTPUT _BUFFER EMPTY ");
break;
case SerialPortEvent. DATA_AVAILABLE:

int numBytes;
int temp;

numBytes=0;

try {
byte[] rb = new byte[20];

while (inputStream.available() > 0) {

numBytes = inputStream.read(rb);
|
s

/lapp.writeByte("] -> SerialPortEvent. DATA AVAILABLE ",rb,numBytes);

//Store input byte
for (int i=0;i<numBytes;i++){

if(pos == 0 && rb[i] == 0){

// Do not read if zero garbage bytes
} else {

packet[pos]=rb[i];

pos++;

//Do not read other garbage byte at front
if(pos == 1 && (rb[0] != 0x02 && rb[0] != 0x04)){

-93 -

Implementing a Wireless I/O unit using Bluetooth™

pos--;

// What type of package is it
if (pos > 0 && newPackage) {
newPackage = false;
if (packet[0] == 0x02) { //DataPackage

packageType = BlackBox.ACLPACKAGE;

} else if (packet[0] == 0x04) { // EVENTPACKAGE

} else{

packageType = BlackBox. EVENTPACKAGE;

//Garbage byte

/lapp.write("E -> Wrong packettype at " + myPort
/! +". Package start with byte "

/! + String.valueOf(packet[0])

1l);

//Garbage bytes between incoming package. Remove the byte

int k =0;

while(k<pos && (packet[k] != 0x02 && packet[k] != 0x04)){
k++;

}

pos=pos-k;

for(int t=0; t<pos;t++){
packet[t]=packet[t+k];

}

newPackage=true;
packageType = BlackBox.NOPACKAGE;

/' how long is data package

if(packageType =

=BlackBox.ACLPACKAGE && pos >=4 && readLength ==false){

readLength=true;

packageLength = (int) packet[3];
temp=(int) packet[4];

temp=temp<<8§;

packageLength =packageLength | temp;

// how long is event package

if(packageType =

=BlackBox. EVENTPACKAGE && pos >=2 && readLength ==false){

readLength=true;
packageLength = (int) packet[2];

-94 -

Implementing a Wireless I/O unit using Bluetooth™

// have I read the whole data package
if(packageType == BlackBox. ACLPACKAGE && pos >= (packageLength + 5) &&
readLength == true){

readLength=false;

newPackage=true;

// received bytes from another package
if (pos > (packageLength +5)){

temp_vector = new byte[packageLength+5];

for (int k=0;k<(packageLength+5);k++){
temp_vector[k]=packet[k];

}

for (int k=(packageLength+5);k<pos;k++){
packet[k-(packageLength+5)]=packet[k];
}

pos=pos-(packageLength+5);

PackageJob job=new PackageJob
(this,myHCILayer,temp_vector,temp_vector.length,app);

job.start();

} else {
pos=0;

PackageJob job=new Packagelob
(this,myHCILayer,packet,packageLength+5,app);
job.start();
}

packageType=BlackBox.NOPACKAGE;

// Have I read the whole event package
if(packageType == BlackBox. EVENTPACKAGE && pos >= (packageLength + 3) &&
readLength == true){

readLength=false;

newPackage=true;

// Received bytes from another package
if (pos > (packageLength +3)){

temp_vector = new byte[packageLength+3];

for (int k=0;k<(packageLength+3);k++){
temp_vector[k]=packet[k];

}

for (int k=(packageLength+3);k<pos;k++){
packet[k-(packageLength+3)]=packet[k];
}

pos=pos-(packageLength+3);
PackageJob job=new PackageJob

(this,myHCILayer,temp_vector,temp_vector.length,app);
job.start();

-95 -

Implementing a Wireless I/O unit using Bluetooth™

} else {
pos=0;

PackageJob job=new PackageJob
(this,myHCILayer,packet,packageLength+3,app);
job.start();

}

packageType=BlackBox.NOPACKAGE;

}

// the data buffer still contains a whole package
} while(pos > 19);

} catch (Exception e) {
app.write(" E -> Exception while recieving data ");
app.write(e.toString());

}

break;

default : app.write("E -> Error strange serial event ");

}
J
} // end RS232

[k ks ko sk okl kokk k% % The thread class that contains a full package sk stesk s ke stk sk skokok sdekokok kol /
JE*

* Package that are recived from the serial port
*/
class PackageJob extends Thread {

private HCI myHCI;
private ControllLayer app;
private RS232 t;

private byte[] data;

JE*

* Constructor

*

* @param Rs232 test. To detect number of threads in the system

* @param HCI the HCI layer

* @param String The data that will be transmitted

* (@param int theLength number of bytes

* @param ControllLayer theApp for debug information

*/

public PackageJob(RS232 test,HCI theHCI,byte[] theData,int theLength,ControllLayer theApp){

super();
myHCI=theHCI;
t=test;
app=theApp;

data = new byte[theLength];

- 96 -

Implementing a Wireless I/O unit using Bluetooth™

//Copy the data/event package
for(int i=0;i<theLength;i++){
data[i]=theDatali];

}
//Increase number of thead in system
t.variabel++;

}

JE%

* Run method

*/

public void run(){
myHCl.reciveData(data,0);
// decrease number of thread in system
t.variabel--;
// debug information
if(t.variabel != 0 && t.variabel%100 == 0){

app.write("l -> Number of in pacakge threads in system: " + String.valueOf{t.variabel));

b

H

} // end PackageJob

-97 -

Implementing a Wireless I/O unit using Bluetooth™

Help classes in the stack

/*

* The class contains definition and global variable and methods used in the stack. It provide a way of changing
variable all

* over the stack without changing the specific files.

*/

class BlackBox {

public static int NOPACKAGE=-1;

public static int COMMANDPACKAGE=0;
public static int ACLPACKAGE=1;

public static int EVENTPACKAGE=2;

public static int TRANSMITTPACKAGE = 3;

public static int FORWARD=0;
public static int LEFT=1;
public static int RIGHT=2;
public static int REVERSE=3;

// maximum size of payload transfered between bluetoth units, not used ?
public static int MAXSIZE = 10000;
public static int MAXSIZE PACKAGE = 800;

public static double MAX ANALOG =5.0; // max voltages

public static double MAX PERIOD = 4; // max period length
public static double MAX SAMPLE TIME = 255; // max sample time in BCC
/**

* Return true if vector one has the same order and length of bytes as vector two.
*

* @param byte[] First vector

* @param byte[] Second vector

* @return True if First vector = second vector otherwise false
*/

public static boolean equals(byte[] a, byte[] b){

if(a.length !=b.length){
return false;
}

for (int i = 0; i<a.length;i++){

if(a[i] !=b[i]){

return false;
}

}

return true;

}

/**

* Convert a vector of byte to a string and

* switch the order of the byte byte[0] MSB

*

* (@param byte[] The byte vector with the length of 6 byte
*/

-98 -

Implementing a Wireless I/O unit using Bluetooth™

public static String convertToString(byte[] hostAdress){
String temp;
temp = String.valueOf(hostAdress[5])+String.valueOf(hostAdress[4])+
String.valueOf(hostAdress[3])+String.valueOf(hostAdress[2])+
String.valueOf(hostAdress[1])+String.valueOf(hostAdress[0]);

return temp;

-

/*
* Copyright (c) 1995-1998 Sun Microsystems, Inc. All Rights Reserved.
%

* Permission to use, copy, modify, and distribute this software

* and its documentation for NON-COMMERCIAL purposes and without

* fee is hereby granted provided that this copyright notice

* appears in all copies. Please refer to the file "copyright.html"

* for further important copyright and licensing information.

%

* SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF
* THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED

* TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR
* ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
* DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

*/

import java.io.*;
class UnicodeFormatter {

static public String byteToHex(byte b) {
// Returns hex String representation of byte b
char hexDigit[] = {
IO" lll, |2|’ |3” |4|, ’5', |6’, |7|’
|8‘, |9|, la', lbl, 'C', ldl, ’e’, lf
35
char[] array = { hexDigit[(b >> 4) & 0x0f], hexDigit[b & 0x0f] };
return new String(array);
1
s

static public String charToHex(char c¢) {
// Returns hex String representation of char ¢
byte hi = (byte) (c >>> 8);
byte lo = (byte) (¢ & 0xfY);
return byteToHex(hi) + byteToHex(lo);
}

} /lclass

-99 _

Implementing a Wireless I/O unit using Bluetooth™

Appendix E: Code in Bluetooth Controlled Beetle

CarPort

import java.util.Vector;
import java.awt.*;
import javax.swing.*;

public class CarPort implements API{

private Car myCar;
private ControllLayer comStackl;
private byte[] address,cid,

/ skok

* Constructor

*/

public CarPort(Car blue, byte[] radiocarAddress){
myCar=blue;
address=radiocarAddress;

}

/*

* Store The channal of the connection
*/

public void storeCID(byte[] temp){

cid=new byte[2];

cid[0]=temp][0];

cid[1]=temp[1];
}

[s stk sk skokosk sk skokoskoskekokockokeskekockoskek ok ek Qi ck to application st st sk st sk stk sk sttt skokoskok skokoskokokokokoskokokokek ok /
/¥

* Receiving data from bluetooth stack
*

* @param byte[] data received

* (@param pos start position of the first byte
*/

public void receiveData(byte[] data, int pos){

}

/*
* Error event from bluetooth received
*

//do nothing

* (@param byte[] event
*/
public void receiveEvent(byte[] event){
String s=new String();
for(int k=0;k<event.length;k++){
s =s +" " + UnicodeFormatter.byteToHex(event[k]);
}

myCar.write("E -> Strange event at radiocar: " + s);

}

/*
* Bluetooth unit discovered
*

* @param byte[] The address of the bluetooth unit

- 100 -

Implementing a Wireless I/O unit using Bluetooth™

*/
public void BTFound(byte[] address){

//Don't update GUI if the stack finds the joystick

if(!BlackBox.equals(myCar.joyAddress,address)){
myCar.newHost(address);
myCar.write("I--> New host at CarPort");

} else {
/ljoystick
}
}
/*
* Close connection from other Bluetooth unit
*/

public void connectionlsClosed(byte[] address){
byte[] temp;

myCar.setCarConn(false);
myCar.myGUL.setRightButtonMode();
myCar.myGUI.connectionClosed(address);
myCar.write("I --> Connection is closed at CarPort");
temp = comStack1.createConnection(address);
while(temp[0]==0x00& &temp[1]==0x00){
myCar.write("E --> New connection to car failed");
temp=comStack.createConnection(address);

}

myCar.myGUILwriteConnected(address);
myCar.setCarConn(true);
myCar.myGUL.setRightButtonMode();

}

%

* Information if stack exucuation

%

* (@param String The information

*/

public void stackInformation(String t){
myCar.write(t + " at CarPort");

}

/*
* Information about the RSSI value
*/
public void receiveRSSI(byte value){
//set something in myCar
//System.out.println("RSSI 0x" + UnicodeFormatter.byteToHex(value));

- 101 -

Implementing a Wireless I/O unit using Bluetooth™

[HEERR R R R ApD]iCation 0 Stack FHFREERERR R KRR AR AR
/* *
* Methods that the application can call in the bluetooth stack
%
* boolean sendData(byte[] CID,byte[] data);
* boolean init();
* boolean inquiry();
* byte[] createConnection(byte[] address);
* boolean closeConnection(byte[] btAddress);
* boolean readRSSI(byte[] btAddress);
* reset(byte[] btAdress)
*/

/*

* init comPort at computer

* return true if success otherwise false

*/

public boolean initComPort(int comPort){

if(comStack1 == null){
comStackl = new ControllLayer("COM]1" this);

return true;
} else {
return false;
}
}
/*
* init bluetooth card at computer
*/
public void initBT(){
CarPackageJob temp = new CarPackageJob(myCar.myGUI,myCar,comStack1,1);
temp.start();
}
/*
* Inquiry for bluetooth host
*/
public void inquiry(){
CarPackageJob temp = new CarPackageJob(myCar.myGUI,myCar,comStack1,2);
temp.start();
}
%

* Create connection with car

* (@param byte[] bluetooth address

*/

public void createConnection(byte[] address){

CarPackageJob temp = new CarPackageJob(myCar.myGUI,myCar,comStack1,3);
temp.storeData(address);
temp.start();

}

/*
* Send data to car
*

* (@param byte[] The channel

-102 -

Implementing a Wireless I/O unit using Bluetooth™

* (@param byte[] The data

*/

public void sendData(byte[] data){
comStack1.sendData(cid,data);

}

/*
* Close connection
*

* @param byte[] The BT-address
*/

public void closeConnection(byte[] address){
myCar.setCarConn(false);
myCar.myGUL.setRightButtonMode();
comStack1.closeConnection(address);

}

/*

* Software reset on bluetooth stack

*/

public void reset() {
myCar.setCarConn(false);
myCar.myGUI.setRightButtonMode();
comStack].reset();

}

public void readRSSI(){
comStackl.readRSSI(address);
}

}

/**

* Package that will be transmitted over the RS-232 to bluetooth device
*/

class CarPackageJob extends Thread{

private GUI myGUI,

private Car myCar;

private ControllLayer myStack;
private byte[] dataByte;

private int command;

Jx*

* Constructor
%

* @param GUI the grapichal interface
* (@param int command 1 = init

* 2 = inquiry
* 3 = createConnction
*/

public CarPackageJob(GUI theGUI, Car theCar,ControllLayer theStack,int theCommand){

super();

myGUI = theGUI;
myCar=theCar;
myStack=theStack;
command=theCommand;

- 103 -

Implementing a Wireless I/O unit using Bluetooth™

//in case
dataByte = new byte[1];
}
/**
* Run method
*/
public void run(){
byte[] temp;
boolean sucess;
switch(command){
/Mnit

case 1 : myCar.write("I -> Init BTcard at carPort...");
sucess=myStack.init();
myGULinitCOM1Done(sucess);
myCar.setCarlnitialized(true);
break;

/finquiry
case 2 : myCar.write("I -> Inquiry at carPort....");
sucess=myStack.inquiry();

//write error mesages
if(sucess){

myCar.write("[--> Inquiry sucess at CarPort...");
} else{

myCar.write("E--> Inquiry failed at CarPort...");

myGULinquiryDone();
break;

//CreateConnection
case 3 : myCar.write("I -> Connecting to Car...");
temp=myStack.createConnection(dataByte);

/lupdate GUI

if(temp[0]==0x00 && temp[1]==0x00){
myCar.write("E --> New connection to car failed");
myGUI.connectionFailed(dataByte);

}else {
myGUI.connectionSuccess(dataByte);
myCar.myCarPort.storeCID(temp);
myCar.setCarConn(true);

if(myCar.getControlMode()== myGUI.stopMode){
myGUILsetRightButtonMode();

}else{
myGUI.setStopButtonMode();
}
}
break;
//Error
default: myCar.write("E -> Trying to make illegal operation to controllLayer");
break;

- 104 -

Implementing a Wireless I/O unit using Bluetoot

hTM

}

/*

* The data of the package are stored
*

(@param byte[] the data

/

public void storeData(byte[] data){

*
*

dataByte = new byte[data.length];
for(int i=0;i<data.length;i++){

dataByte[i]=data[i];

-

- 105 -

Implementing a Wireless I/O unit using Bluetooth™

JoyPort
import java.util.Vector;

import java.awt.*;

import javax.swing.*;

public class JoyPort implements API{

private Car myCar;

private ControllLayer comStack?2;
private byte[] address,cid,;

private int count=0;

private double maxSpeed=1;
private boolean minSpeed=false;

public byte btemp=0x45;
public byte ttemp=0x40;
public boolean init;

/ skok

* Constructor

*/

public JoyPort(Car blue, byte[] joyAddress){
myCar=blue;
address=joyAddress;
init=false;

}

/*

* Store The channal of the connection
*/

public void storeCID(byte[] temp){

cid=new byte[2];
cid[0]=temp][0];
cid[1]=temp[1];

[s stk sk stk sk kokoskoskokckockockek okl ok ek S ck to application st sk sk ke sk stk sk skokokosk skokokoskokokokokek /

/*

* Receiving data from bluetooth stack

*

* (@param byte[] data received

* (@param pos start position of the first byte
*/

public void receiveData(byte[] data, int pos){

double d;

byte b,bl;

byte speed=0x00;
byte steering=0x00 ;
byte check=0x00;

/[conver the analog input one by removing 2 LSB
check = (byte)(data[pos+1]<<6);

bl = (byte)((data[pos] & 0xff) >>> 2);

check = (byte) (check | bl);

d = convertToDouble(check);

// make sure that outputvoltage is correct at the beginning. Over 1 volt
if(linit && d <= 51){

- 106 -

Implementing a Wireless I/O unit using Bluetoot

hTM

} else {

myCar.write("E --> Init voltage to low at joystick resending start package");

// resend first data package

byte[] joyData=new byte[11];

joyData[0]=(byte)0xff; //analogoutl=5V
joyData[1]=(byte)0x03;

joyData[2]=(byte)0xff; //analogout2=5V
joyData[3]=(byte)0x03;

joyData[4]=(byte)0xfe; //sets PWM period to 4.2 ms
joyData[5]=0x00; //sets the PWM dutycycles to zero
joyData[6]=0x00;

joyData[7]=0x00;

joyData[8]=0x00;

joyData[9]=0x14; //sets sampling sampling time=20ms
joyData[10]=0x00; //sets SPI off
sendData(joyData);

nit=true;

b1=0x00;
b=0x00;

speed = (byte) (data[pos+3]<<6);
bl = (byte) ((data[pos+2] & 0xff) >>> 2);
speed = (byte) (speed | bl);

steering = (byte)(data[pos+1]<<6);
bl = (byte)((data[pos] & 0xff) >>> 2);
steering = (byte) (steering | b1);

d = convertToDouble(steering);
b = convertToHex(((65*d)/255)+115);
myCar.setSteering(b);

if(minSpeed) {
d = convertToDouble(speed);
d=((33.0*d)/255.0);
d=(d-13.5) +13.5;
d = d+60.5;
if(d>77){
d=77;
telse if(d<71){
d=71;
}

b = convertToHex(d);

telse{
d = convertToDouble(speed);
d =((33.0*%d)/255.0);
d = (d-13.5)*maxSpeed +13.5;
d =d+60.5;
b = convertToHex(d);

}

if(b==0x4c){
b=0x00;

else if(b==0x4b){
b=0x00;

else if(b==0x4a){

- 107 -

Implementing a Wireless I/O unit using Bluetooth™

b=0x00;
}else if(b==0x49){
b=0x00;
}

myCar.setSpeed(b);

}

%
* Error event from bluetooth received
*
* (@param byte[] event
*/
public void receiveEvent(byte[] event){
String s= new String();
for(int k=0;k<event.length;k++){
s =s + " "+ UnicodeFormatter.byteToHex(event[k]);
}

myCar.write("E -> Strange event at joystick: " + s);
|
s

/*

* Bluetooth unit discovered

%

* (@param byte[] The address of the bluetooth unit
*/

public void BTFound(byte[] address){

//Don't update GUI if the stack finds the car
if(!BlackBox.equals(myCar.carAddress,address)){
myCar.newHost(address);
myCar.write("I--> New host at JoystickPort");
} else {
//The car
}

}

/*

* Close connection from other Bluetooth unit

*/

public void connectionIsClosed(byte[] address){
byte[] temp;

//stop the car
myCar.setControlMode(2);

myCar.setJoyConn(false);
myCar.myGUL.setRightButtonMode();
myCar.myGUI.connectionClosed(address);
myCar.write("I --> Connection is closed at JoystickPort");
temp = comStack?2.createConnection(address);
while(temp[0]==0x00 && temp[1]==0x00){
myCar.write("E --> New connection to Joystick failed");
temp = comStack?2.createConnection(address);

}

init=false;

- 108 -

Implementing a Wireless I/O unit using Bluetooth™

byte[] joyData=new byte[11];

joyData[0]=(byte)0xff;, //analogoutl=5V
joyData[1]=(byte)0x03;

joyData[2]=(byte)0xff;, //analogout2=5V
joyData[3]=(byte)0x03;

joyData[4]=(byte)Oxfe; //sets PWM period to 4.2 ms
joyData[5]=0x00; //sets the PWM dutycycles to zero
joyData[6]=0x00;

joyData[7]=0x00;

joyData[8]=0x00;

joyData[9]=0x14; //sets sampling sampling time=20ms
joyData[10]=0x00; //sets SPI off
sendData(joyData);

myCar.myGUIwriteConnected(address);
myCar.setJoyConn(true);
myCar.myGUL.setRightButtonMode();

}

/*
* Information if stack exucuation
k

* @param String The information

*/

public void stackInformation(String t){
myCar.write(t+" at JoystickPort");

}
/*
* Information about the RSSI value
*/
public void receiveRSSI(byte value){
//do nothing
}
/************************** application to Stack ***********************************/
/**

* Methods that the application can call in the bluetooth stack.
%

* boolean sendData(byte[] CID,byte[] data);

* boolean init();

* boolean inquiry();

* byte[] createConnection(byte[] address);

* boolean closeConnection(byte[] btAddress);

* boolean readRSSI(byte[] btAddress);

*/

/*
* init bluetooth card at computer
%

* return true if success otherwise false
*/
public boolean initComPort(int comPort){
if (comStack2 == null){
comStack2 = new ControllLayer("COM?2",this);
return true;
} else {
return false;
}

- 109 -

Implementing a Wireless I/O unit using Bluetooth™

/*

* init bluetooth card at computer

*/

public void initBT(){
JoyPackageJob temp = new JoyPackageJob(myCar.myGUI,myCar,comStack2,1);
temp.start();

}

/*

* Inquiry for bluetooth host

*/

public void inquiry(){
JoyPackageJob temp = new JoyPackageJob(myCar.myGUI,myCar,comStack?2,2);
temp.start();

}

/*

* Create connection with joystick

*

* (@param byte[] bluetooth address

*/

public void createConnection(byte[] address){

JoyPackageJob temp = new JoyPackageJob(myCar.myGUI,myCar,comStack2,3);
temp.storeData(address);
temp.start();

}

J*

* Send data to joystick

%

* (@param byte[] The data

*/

public void sendData(byte[] data){
comStack2.sendData(cid,data);

}

/*
* Close connection
k

* (@param byte[] The BT-address
*/
public void closeConnection(byte[] address){

myCar.setJoyConn(false);
myCar.myGUL.setRightButtonMode();
comStack2.closeConnection(address);

/*

* Software reset on bluetooth stack
*/

public void reset(){

- 110 -

Implementing a Wireless I/O unit using Bluetooth™

myCar.setJoyConn(false);
myCar.myGUI.setRightButtonMode();
comStack2.reset();

}

/************************** other methods **********************************/

JE*

* Converts a double between 0-255 to hex
*

* @param double The analog value that will be converted
*/
private byte convertToHex(double d){

double temp;
byte b = 0x00;
byte mask = (byte) 0x80;

for (int i=7;i>=0;i--){
if(d/((double) Math.pow(2,i)) >= 1){

d -= Math.pow(2,i);
b = (byte) (b | mask);

mask = (byte) ((mask & 0xff) >>> 1);
}

return b;

}

[**

* Converts the byte to a double
*

* @param the byte containing the data max
*/
private double convertToDouble(byte b){

double sum =0;
byte mask = 0x01;

for (int i=0;1<8;i++){

if (((b & 0xff) & mask) !=0x00){
sum = sum+ Math.pow(2,i);

1

)

mask = ((byte) (mask<<1));
}

return sum;

}

public synchronized void setMaxSpeed(int sp){
maxSpeed=(double)sp/30;
if(sp==6){
minSpeed=true;
}else{
minSpeed=false;

-111-

Implementing a Wireless I/O unit using Bluetooth™

}

}

public synchronized void addOne(){
btemp++;
ttemp++;

System.out.print("steering"+ UnicodeFormatter.byteToHex(ttemp));

System.out.println("speed"+ UnicodeFormatter.byteToHex(btemp));
1
)

} //end class

/ kok
* Package that will be transmitted over the RS-232 to Bluetooth device
*/

class JoyPackageJob extends Thread {

private GUI myGUI;

private Car myCar;

private ControllLayer myStack;
private byte[] dataByte;

private int command;

/**

* Constructor
*

* @param GUI the grapichal interface
* (@param int command 1 = init

* 2 = inquiry
* 3 = createConnction
*/

public JoyPackageJob(GUI theGUI, Car theCar,ControllLayer theStack,int theCommand){

super();

myGUI = theGUI;
myCar=theCar;
myStack=theStack;
command=theCommand;

//in case
dataByte = new byte[1];
}

/**

* Run method

*/
public void run(){

byte[] temp;
boolean sucess;

switch(command){

/nit

case 1 : myCar.write("I -> Init BTcard at JoyPort...");
sucess=myStack.init();
myGULinitCOM2Done(sucess);
myCar.setJoylnitialized(true);

-112 -

Implementing a Wireless I/O unit using Bluetooth™

break;

//inquiry

case 2 : myCar.write("I -> Inquiry at JoyPort....");
sucess=myStack.inquiry();

//write error mesages
if(sucess){

} else{

}

myCar.write("[--> Inquiry sucess at JoyPort...");

myCar.write("E--> Inquiry failed at JoyPort...");

myGUILinquiryDone();

break;

//CreateConnection

case 3 : myCar.write("I -> Connecting to JoyStick...");
temp = myStack.createConnection(dataByte);
if(temp[0]==0x00 && temp[1]==0x00){

} else {

)
break;

//Error

myCar.write("E --> New connection to joystick failed");
myGUI.connectionFailed(dataByte);

myGUI.connectionSuccess(dataByte);
myCar.myJoyPort.storeCID(temp);
myCar.mylJoyPort.init=false; //in case of error transmitting startvalue

byte[] joyData=new byte[11];
joyData[0]=(byte)0xff;, //analogoutl=5V
joyData[1]=(byte)0x03;
joyData[2]=(byte)0xff; //analogout2=5V
joyData[3]=(byte)0x03;
joyData[4]=(byte)Oxfe; //sets PWM period to 4.2 ms
joyData[5]=0x00; //sets the PWM dutycycles to zero
joyData[6]=0x00;
joyData[7]=0x00;
joyData[8]=0x00;
joyData[9]=0x14; //sets sampling sampling time=20ms
joyData[10]=0x00; //sets SPI off
myCar.myJoyPort.sendData(joyData);
myCar.setJoyConn(true);
if(myCar.getControlMode()== myGUIL.stopMode){
myGUL.setRightButtonMode();
yelse{
myGUI.setStopButtonMode();

}

default: myCar.write("E -> Trying to make illegal operation to controllLayer");

break;

}
/*

* The data of the package are stored

*

* (@param byte[] the data
*/

-113 -

Implementing a Wireless I/O unit using Bluetooth™

public void storeData(byte[] data){
dataByte = new byte[data.length];
for(int i=0;i<data.length;i++){

dataByte[i]=data[i];

-

114 -

Implementing a Wireless I/O unit using Bluetooth™

Car

import java.util. Vector;
import java.awt.*;
import javax.swing.*;

public class Car{

private ControllLayer com1stack,com2stack;

private DebugWindow debug;

private final int mouseMode=0, joyMode=1, stopMode=2;

private int controlMode=stopMode, maxDistance, maxSpeed, mouseX, mouseY;
private byte speed, steering;

private boolean carlnitialized,joyInitialized;

private boolean carConn,joyConn,distanceControl;

public final byte[] carAddress = new byte[6];

public final byte[] joyAddress = new byte[6];

private ControlThread t;

public GUI myGUI,
public JoyPort myJoyPort;
public CarPort myCarPort;

public static void main(String args[]){
Car host = new Car();

}

/* *

* Constructor

*/

public Car(){
debug=new DebugWindow();
debug.setSize(new Dimension(850,500));
debug.setLocation(0,500);
myGUI = new GUI(this);
myGUL.setSize(new Dimension(850,500));
myGULsetVisible(true);
this.setAddresses();
carConn=false;
joyConn=false;
myJoyPort = new JoyPort(this, joyAddress);
myCarPort = new CarPort(this, carAddress);
t = new ControlThread(this);
t.start();

}

/***************************** Stack to Car *********************************/

/*

* Bluetooth unit discovered

%

* (@param byte[] The address of the bluetooth unit

*/

public void newHost(byte[] address){
myGUIL.newHost(address);

-115-

Implementing a Wireless I/O unit using Bluetooth™

[R R Application 0 stacks FEERER KRR KRR R R R Rk |
%

{" Send data to car

*

* (@param byte[] The channel

* (@param byte[] The data

%

pilblic void sendCarData(byte[] data){

myCarPort.sendData(data);
1
)

/*

* Softwaer reset on carport
*/

public void resetCar(){

if(myCarPort != null){

myCarPort.reset();
}
}
/*
* Software reset on joyport
*/

public void resetJoy(){

if(myJoyPort !=null){
myJoyPort.reset();
}

}

/*

* Send data to joystick

*

* @param byte[] The channel

* (@param byte[] The data

*/

public void sendJoyData(byte[] data){
mylJoyPort.sendData(data);

1
s

/*
* init bluetooth card at com1
k

*/

public void com1init() {
myCarPort.initComPort(1);
myCarPort.initBT();

}

/*
* init bluetooth card at com2
%

*/
public void com2init(){

mylJoyPort.initComPort(2);
myJoyPort.initBT();

-116 -

Implementing a Wireless I/O unit using Bluetooth™

/*
* Inquiry for bluetooth hosts with com1, the answer can be used by
* both com1 and com2.

*/
public void inquiry(){
if(carInitialized){
myCarPort.inquiry();
}
if(joyInitialized){
mylJoyPort.inquiry();
}
}
/ *

* Create connection with car

* (@param byte[] bluetooth address

*/

public void createCarConnection() {
myCarPort.createConnection(carAddress);

}

/*

* Create connection with joystick

*

* (@param byte[] bluetooth address

*/

public void createJoyConnection(){
myJoyPort.createConnection(joyAddress);

}

/*

* Close car connection
*

@param byte[] The BT-address
/
public void closeCarConnection(){

myCarPort.closeConnection(carAddress);

}

/*

* Close joystick connection

*

* (@param byte[] The BT-address

*/

public void closeJoyConnection(){
myJoyPort.closeConnection(joyAddress);

}

/***************************** Other Car Methods ***************************/
/*
* Shows the DebugWindow, where onlyErrors decide whether Errors or
* Errors&Info should be shown
*
*/
public void openDebugWindow(boolean onlyErrors){
debug.setinfoMode(onlyErrors);
debug.setVisible(true);
debug.repaint();

k
*

-117 -

Implementing a Wireless I/O unit using Bluetooth™

}

/*

*Writes a string to the DebugWindow.
*/

public void write(String s){

debug.write(s);
}

/ *

*Methods that return variables.

*/

public synchronized byte getSpeed(){
return speed;

public synchronized byte getSteering(){
return steering;

public synchronized int getControlMode(){
return controlMode;

public synchronized byte[] getCarAddress(){
return carAddress;

public synchronized byte[] getJoyAddress(){
return joyAddress;

public synchronized boolean isCarlnitialized(){
return carlnitialized;

public synchronized boolean isJoylnitialized(){

return joylnitialized;

}

public synchronized boolean isJoyConn(){
return joyConn;

}

public synchronized boolean isCarConn(){
return carConn;
}

/*

*Methods that set variables.

*/

public synchronized void setAddresses(){
carAddress[0]=(byte)0x17;
carAddress[1]=(byte)0x28;
carAddress[2]=(byte)0x03;
carAddress[3]=(byte)0xb7;
carAddress[4]=(byte)0xd0;
carAddress[5]=(byte)0x00;
joyAddress[0]=(byte)0x5c;
joyAddress[1]=(byte)0x16;
joyAddress[2]=(byte)0x03;

joyAddress[3]=(byte)0xb7;
joyAddress[4]=(byte)0xd0;
joyAddress[5]=(byte)0x00;

public synchronized void setMaxSpeed(int sp){
//maxSpeed=sp;

- 118 -

Implementing a Wireless I/O unit using Bluetooth™

mylJoyPort.setMaxSpeed(sp);

}

public synchronized void setDistanceControl(boolean b){
distanceControl=b;
myJoyPort.addOne();

}

public synchronized void setMaxDistance(int di){
maxDistance=di;

}

public synchronized void setSpeed(byte sp){
speed=sp;

public synchronized void setSteering(byte st){
steering=st;

public synchronized void setCarConn(boolean conn){
carConn=conn;

public synchronized void setJoyConn(boolean conn){
joyConn=conn;

public synchronized void setControlMode(int mode){
iflmode==stopMode){
t.firstTime=true;

controlMode=mode;

public synchronized void setCarlnitialized(boolean 1){
carlnitialized=i;

}

public synchronized void setJoylnitialized(boolean i) {
joylnitialized=i,

}

-119 -

Implementing a Wireless I/O unit using Bluetooth™

ControlThread

public class ControlThread extends Thread{
private Car myCar;
private int controlMode;
private final int mouseMode=0, joyMode=1, stopMode=2;
private byte[] carData=new byte[11];
public boolean firstTime=true;

/*
*Constructor
*/
public ControlThread(Car blue){
myCar=blue;
carData[0]=(byte)0x00; //analogOutl=0V
carData[1]=(byte)0x00;
carData[2]=(byte)0x00; //analogout2=0V
carData[3]=(byte)0x00;
carData[4]=(byte)0xff, //sets maximum pulse period=23ms
carData[5]=(byte)Oxal; //This will make the dutycycle 1.5ms in pwm 1
carData[6]=(byte)0x00;
carData[7]=(byte)0x4a; //This will make the dutycycle 1.5ms in pwm 2
carData[8]=(byte)0x00;
carData[9]=(byte)Oxff; //sets maximum sampling time=255ms
carData[10]=(byte)0x00; //sets SPI off
}
/*
*The infinite loop
*/
public void run(){
while(true){
if(myCar.isCarConn()){
controlMode=myCar.getControlMode();
if(controlMode==stopMode){
if(firstTime) {
//This will make the dutycycle 1.5ms
carData[5]=(byte)0xAl;
//This will make the dutycycle 1.5ms
carData[7]=(byte)0x49;
myCar.sendCarData(carData);
firstTime=false;
1
s
telse{//joyMode or mouseMode
carData[5]=myCar.getSteering(); //sets the speed
carData[7]=myCar.getSpeed(); //sets the steering
myCar.sendCarData(carData);
}
}
try {
sleep(100);
} catch (Exception e){
myCar.write("E -> ControlThread woke up during sleep! " + e.toString());
}
}
}

- 120 -

Implementing a Wireless I/O unit using Bluetooth™

DebugWindow

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

public class DebugWindow extends JFrame {
private boolean justErrors=true;
private JList eList,eiList;
private DefaultListModel eModel, eiModel;
private JScrollPane ePane, eiPane;
private Container contentPane;

public DebugWindow() {
super("Debug Information for the Bluetooth Connections");
contentPane = getContentPane();

eModel=new DefaultListModel();

eModel.addElement("START OF COMMUNICATION");

eList = new JList(eModel);

ePane = new JScrollPane(eList);

ePane.setVerticalScrollBarPolicy(JScrollPane. VERTICAL SCROLLBAR ALWAYS);
ePane.setHorizontalScrollBarPolicy(JScrollPane. HORIZONTAL SCROLLBAR ALWAYY);
contentPane.add(ePane);

eiModel=new DefaultListModel();

eiModel.addElement("START OF COMMUNICATION");

eiList = new JList(eiModel);

eiPane = new JScrollPane(eiList);

eiPane.setVerticalScrollBarPolicy(JScrollPane. VERTICAL SCROLLBAR ALWAYYS);
eiPane.setHorizontalScrollBarPolicy(JScrollPane. HORIZONTAL SCROLLBAR ALWAYS);

addWindowListener(new Cross(this) {

I3K

J
public synchronized void setinfoMode(boolean onlyErrors){

if (justErrors)
contentPane.remove(ePane);
else
contentPane.remove(eiPane);
justErrors=onlyErrors;
if (justErrors)
contentPane.add(ePane);
else
contentPane.add(eiPane);

}

public synchronized void write(String t){
try {
t.trim();
eiModel.insertElementAt(t,0);
/leiModel.fireIntervallAdded(t,0,
if (t.charAt(0) =="E' || t.charAt(0) =="¢e'){
eModel.insertElementAt(t,0);
}

// remove old messsages

- 121 -

Implementing a Wireless I/O unit using Bluetooth™

if(eModel.size()>=200){
try {
eModel.removeElement(eModel.lastElement());
} catch (Exception e){
System.out.println("Exception while removing error");

}
}
if(eiModel.size()>=200){
try {
eiModel.removeElement(eiModel.lastElement());
} catch (Exception e){
System.out.println("Exception while removing error");
}
}

contentPane.repaint();

} catch (ArrayIndexOutOfBoundsException e){
System.out.println("Out of Bounds");
} catch (Exception e){

System.out.printIn("Generall");
1
)

}

public void repaint(){
contentPane.repaint();

}

} // end class

class Cross extends WindowAdapter {
DebugWindow debug;
public Cross(DebugWindow d){
debug=d;
H

public void windowClosing(WindowEvent e) {
debug.setVisible(false);

——

- 122 -

Implementing a Wireless I/O unit using Bluetooth™

GUI

import javax.swing.table.TableColumn;
import javax.swing.DefaultCellEditor;

import javax.swing.table.TableCellRenderer;
import javax.swing.table.DefaultTableCellRenderer;
import javax.swing.JTable;

import javax.swing.JSlider;

import javax.swing.table.AbstractTableModel,;
import javax.swing.JScrollPane;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

import javax.swing.JOptionPane;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.event.*;

import java.awt.Color;

/nOo

import java.io.*;

import java.util.*;

import java.lang.*;
import javax.comm.*;
import java.util.Calendar;

public class GUI extends JFrame implements ActionListener {
protected JMenuBar menuBar;
private JMenultem menultem;
private J]Menu menu,menu2;
private MyTableModell defaultModel;
private GUIHostList myList;

public Car myCar;

public Container contentPane;

public ImagePanel picturePanel;

public JPanel bottom, btPanel, carPanel, com1Panel, com2Panel,connPanel;
//public MousePanel mousePanel;

public JButton mouseButton, joyButton, stopButton, com1Button, com2Button;
public JButton searchButton;

public JCheckBox distance;

public JSlider distanceSlider,speedSlider;

public Hashtable labelTable;

public JLabel textl, text2, text3, com1Field, com2Field;

public DefaultListModel btModel,;

public JList btList;

public JScrollPane btScroll;

public JTable controllTable;

private boolean inAnApplet,found;
public final int mouseMode=0, joyMode=1, stopMode=2;

public GUI(Car blue) {
super("Taking Bluetooth One Step Furter");

myCar=blue;

menuBar = new JMenuBar();
set’MenuBar(menuBar);
myList=new GUIHostList();

- 123 -

Implementing a Wireless I/O unit using Bluetooth™

//Build the first menu.
menu = new JMenu("File");
menu.getAccessibleContext().setAccessibleDescription(
"The only menu in this program that has menu items");
menuBar.add(menu);

//Build the next menus
menu2 = new JMenu("View");
menuBar.add(menu2);

menultem = new JMenultem("Exit");
menultem.addActionListener(this);
menu.add(menultem);

menultem = new JMenultem("Errors");
menultem.addActionListener(this);
menu?2.add(menultem);

menultem = new JMenultem("Errors & Info");
menultem.addActionListener(this);
menu2.add(menultem);

// Create btpanal

btPanel = new JPanel();

btPanel.setLayout(new BoxLayout(btPanel, BoxLayout.Y AXIS));
btPanel.setBorder(BorderFactory.createLoweredBevelBorder());

// Create carpanel
carPanel = new JPanel(new GridLayout(0,2,15,5));
carPanel.setBorder(BorderFactory.createLoweredBevelBorder());

// mousePanel=new MousePanel(); // is added at mouseControl

/! mousePanel.setSize(new Dimension(250, 100));

/! MyMouseListener m = new MyMouseListener(mousePanel,myCar);
/! mousePanel.addMouseMotionListener(m); //movement

//Create picture panal with a car image

Image mylmage = Toolkit.getDefaultToolkit().getimage("Beetfinal.gif");
picturePanel = new ImagePanel(mylmage);

picturePanel.setSize(new Dimension(300, 200));

textl = new JLabel("BLUETOOTH COMMUNICATION");
textl.setFont(new Font("hej",Font.BOLD,17));
textl.setAlignmentX(CENTER ALIGNMENT);
btPanel.add(textl);

com1Panel = new JPanel();

coml1Panel.add(new JLabel("COM1:"));
comlPanel.add(com1Field = new JLabel(" Press init --> "));
comlField.setBorder(BorderFactory.createLoweredBevelBorder());
comlPanel.add(com1Button = new JButton("Init BT at COM1"));
com1Button.addActionListener(this);

btPanel.add(com1Panel);

com2Panel = new JPanel();

com2Panel.add(new JLabel("COM2:"));
com2Panel.add(com2Field = new JLabel(" Press init --> "));
com2Field.setBorder(BorderFactory.createLoweredBevelBorder());
com2Panel.add(com2Button = new JButton("Init BT at COM2"));
com2Button.addActionListener(this);

btPanel.add(com2Panel);

btPanel.add(searchButton = new JButton("Search for BT-devices"));

124 -

Implementing a Wireless I/O unit using Bluetooth™

searchButton.setAlignmentX(CENTER _ALIGNMENT);
searchButton.setEnabled(false);
searchButton.addActionListener(this);

text2 = new JLabel("Available BT-devices:");
text2.setAlignmentX(JLabe CENTER ALIGNMENT);
btPanel.add(text2);

// Create JTable

defaultModel = new MyTableModell(this);

controllTable = new JTable(defaultModel);
controllTable.setPreferredScrollable ViewportSize(new Dimension(400,200));
btScroll = new JScrollPane(controllTable);

//Fiddle with the Mode column's cell editors/renderers.
setUpModeColumn(controllTable.getColumnModel().getColumn(2));

//SetSize of table
TableColumn column = null;
for (inti=0;1<3;i++) {
column = controllTable.getColumnModel().getColumn(i);

ifi==1){
column.setPreferredWidth(200); //Status column is bigger
} else {
column.setPreferred Width(100);
}
}
btPanel.add(btScroll);
/*

btModel=new DefaultListModel();

btList = new JList(btModel);

btScroll = new JScrollPane(btList);
btScroll.setBorder(BorderFactory.createLoweredBevelBorder());
btPanel.add(btScroll);

*/

text3=new JLabel("CONTROL OF RADIOCAR",JLabel. CENTER);
/1 text3.setHorizontal TextPosition(JLabel. CENTER);

/I carPanel.setAlignmentX(CENTER ALIGNMENT);
text3.setFont(new Font("hej",Font. BOLD,17));

carPanel.add(text3);

carPanel.setAlignmentX(CENTER ALIGNMENT);
carPanel.add(new JLabel(""));

carPanel.add(mouseButton = new JButton("Steer with mouse"));
mouseButton.addActionListener(this);

speedSlider = new JSlider(6,30,30);

labelTable = new Hashtable();

labelTable.put(new Integer(6), new JLabel("Minimum speed"));
labelTable.put(new Integer(24), new JLabel("Maximum speed"));
speedSlider.setLabelTable(labelTable);
speedSlider.setPaintLabels(true);
speedSlider.addChangeListener(new SpeedSliderListener());
carPanel.add(speedSlider);

carPanel.add(joyButton = new JButton("Steer with joystick"));
joyButton.addActionListener(this);

carPanel.add(distance = new JCheckBox("Use distance control" true));
distance.addActionListener(this);

distance.setEnabled(false);

carPanel.add(stopButton = new JButton("Stop car"));

- 125 -

Implementing a Wireless I/O unit using Bluetooth™

stopButton.addActionListener(this);

distanceSlider = new JSlider(10,30,30);

labelTable = new Hashtable();

labelTable.put(new Integer(6), new JLabel("Minimum distance"));
labelTable.put(new Integer(24), new JLabel("Maximum distance"));
distanceSlider.setLabelTable(labelTable);
distanceSlider.setPaintLabels(true);
distanceSlider.addChangeListener(new DistanceSliderListener());
distanceSlider.setEnabled(false);

carPanel.add(distanceSlider);

this.setRightButtonMode();

addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
if (inAnApplet) {
dispose();
} else {

// reset bluetooth devices
myCar.resetCar();
myCar.resetJoy();

// sleep to allow proper disconnect
//sleep(400);

System.exit(0);

I3R

//Use the content pane's default BorderLayout.
bottom = new JPanel(new BorderLayout(2,2));
bottom.add(btPanel,BorderLayout. WEST);
bottom.add(carPanel,BorderLayout. SOUTH);
bottom.add(picturePanel,BorderLayout. CENTER);
contentPane = getContentPane();
contentPane.add(bottom);

contentPane.repaint();

class SpeedSliderListener implements ChangeListener {
public void stateChanged(ChangeEvent ¢) {
JSlider source = (JSlider)e.getSource();
myCar.setMaxSpeed((int)source.getValue());

}

class DistanceSliderListener implements ChangeListener {
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider)e.getSource();
myCar.setMaxDistance((int)source.getValue());

}

public void setUpModeColumn(TableColumn modeColumn) {
//Set up the editor for the sport cells.
JComboBox comboBox = new JComboBox();

- 126 -

Implementing a Wireless I/O unit using Bluetooth™

comboBox.addItem("Connect");
comboBox.addItem("Disconnect");
//comboBox.showPopup();

modeColumn.setCellEditor(new DefaultCellEditor(comboBox));

//Set up tool tips for the sport cells.

DefaultTableCellRenderer renderer =

new DefaultTableCellRenderer();

renderer.setTool TipText("Press button and choose command");
modeColumn.setCellRenderer(renderer);

//Set up tool tip for the sport column header.

TableCellRenderer headerRenderer = modeColumn.getHeaderRenderer();

if (headerRenderer instanceof DefaultTableCellRenderer) {
((DefaultTableCellRenderer)headerRenderer).setTool TipText(
"Click below to see a list of choices");

}

// knapparnas hindelsehanterare och meny
public void actionPerformed(ActionEvent ¢) {
if (e.getActionCommand().equals("Errors & Info")) {
myCar.openDebugWindow(false);
telse if (e.getActionCommand().equals("Errors")) {
myCar.openDebugWindow(true);
telse if (e.getActionCommand().equals("Exit")) {

// reset bluetooth devices
myCar.resetCar();
myCar.resetJoy();

// sleep to allow proper disconnect
/Isleep(400);

System.exit(0);
telse if (e.getActionCommand().equals("Init BT at COM1")) {

comlField.setText(" Init failed ");
myCar.comlinit();

telse if (e.getActionCommand().equals("Init BT at COM2")) {

com2Field.setText(" Init failed ");
myCar.com2init();

telse if (e.getActionCommand().equals("Search for BT-devices")) {
//btModel.removeAllElements();
searchButton.setEnabled(false);
myCar.inquiry();

telse if (e.getActionCommand().equals("Steer with mouse")) {

myCar.setControlMode(mouseMode);
this.setStopButtonMode();

telse if (e.getActionCommand().equals("Steer with joystick")) {
myCar.setControlMode(joyMode);

- 127 -

Implementing a Wireless I/O unit using Bluetooth™

this.setStopButtonMode();
telse if (e.getActionCommand().equals("Stop car")) {
myCar.setControlMode(stopMode);
this.setRightButtonMode();
telse if (e.getActionCommand().equals("Use distance control")) {
if (distance.isSelected()){
myCar.setDistanceControl(true);

yelse{
myCar.setDistanceControl(false);
}
J
J
/*
* initMouseMode
*/
/*

public void initMouseMode(){
myMousePanel.addMouseListener(mouseAdapter);
myCarPanel.setSize(new Dimension(250, 100));
MyMouseListener m = new MyMouseListener(myCarPanel,myList,myLogic);
myCarPanel.addMouseMotionListener(m); //movement

-

*/
/*
* Update GUI after init on COM1
%
pilblic void initCOM1Done(boolean sucess){
if(sucess){
comlField.setText(" Init succeded ");

myCar.setCarlnitialized(true);
searchButton.setEnabled(true);

telse{

comlField.setText(" Init failed ");

b
coml1Panel.updateUI();
J
/*
* Update GUI after init on COM1
*/

public void initCOM2Done(boolean sucess){
if(sucess){
com2Field.setText(" Init succeded ");
myCar.setJoylnitialized(true);
searchButton.setEnabled(true);

telse{

com2Field.setText(" Init failed ");

- 128 -

Implementing a Wireless I/O unit using Bluetooth™

}
com2Panel.updateUI();
}
/*
* Update GUI after Inquiry. Enable new inquiry
*/

public void inquiryDone(){
searchButton.setEnabled(true);

1

5

/*

* The method that is invoked when the stack finds a device;
*/

public void newHost(byte[] address){

TableData temp;
found=false;

for(int i=0;i<myList.getSize();i++){

temp = (TableData) myList.getHostAt(i);
if(BlackBox.equals(address,temp.getAddress())){
found= true;
break;

}

if(!found){
byte[] carAddress;
byte[] joyAddress;

carAddress=myCar.getCarAddress();
joyAddress=myCar.getJoyAddress();

if(BlackBox.equals(address,carAddress)){
temp = new TableData("Radiocar");
temp.setAddress(address);
temp.setStatus("Not connected");
myList.storeHost(temp);
defaultModel.update(temp);

} else if(BlackBox.equals(address,joyAddress)){
temp = new TableData("Joystick");
temp.setAddress(address);
temp.setStatus("Not connected");
myList.storeHost(temp);
defaultModel.update(temp);

} else {
temp = new TableData("Unknown device");
temp.setAddress(address);
temp.setStatus("Not connected");
myList.storeHost(temp);
defaultModel.update(temp);

- 129 -

Implementing a Wireless I/O unit using Bluetooth™

/*

* The method that is invoked when the stack finds a device;
*/

public void connect(String device,TableData temp){

if(device.equals("Radiocar™)){

if(myCar.isCarlnitialized()){
myCar.createCarConnection();

temp.setStatus("Trying to connect");
} else {

temp.setStatus("Radiocar can only connect to COM1");
}

} else if(device.equals("Joystick")){

if(myCar.isJoylnitialized()){
myCar.createJoyConnection();

temp.setStatus("Trying to connect");
} else {

temp.setStatus("Joystick can only connect to COM2");

} else {

temp.setStatus("Can't connect to unknown device");

}
/%

*
*/
public void writeConnected(byte[] address){

TableData temp =null;
int i=0;

for(;i<myList.getSize();i++){

temp = (TableData) myList.getHostAt(i);

if(BlackBox.equals(address,temp.getAddress())){
break;

}

}
if(i<myList.getSize()){
if(temp.getDevice().equals("Radiocar")){
temp.setStatus("Connection reestablished");

} else if(temp.getDevice().equals("Joystick™)){
temp.setStatus("Connection reestablished");
}

defaultModel.updateAll();

- 130 -

Implementing a Wireless I/O unit using Bluetooth™

/*

* The method that is invoked when the stack finds a device;
*/

public void disconnect(String device, TableData temp){

if(device.equals("Radiocar")){

if(myCar.isCarConn()){
myCar.closeCarConnection();

temp.setStatus("Disconnected");
} else {

}

temp.setStatus("Car is not connected");

} else if(device.equals("Joystick")){

if(myCar.isJoyConn()){
myCar.closeJoyConnection();
temp.setStatus("Disconnected");

} else {
temp.setStatus("Joystick is not connected");
}
} else {
temp.setStatus("Can't disconnect unknown device");
}
}
/*
* Method updates GUI if connection is closed by other host
*/

public void connectionClosed(byte[] address){

TableData temp =null;
int i=0;

for(;i<myList.getSize();i++){

temp = (TableData) myList.getHostAt(i);

if(BlackBox.equals(address,temp.getAddress())){
break;

}

}

if(i<myList.getSize()){
temp.setStatus("Connection closed by other host");

temp.setCommand("Disconnect");
defaultModel.updateAll();

}
}
/*
* Metod updates GUI if a attemp to connect fail
*/

public void connectionFailed(byte[] address){

TableData temp =null;
int i=0;

for(;i<myList.getSize();i++){

- 131-

Implementing a Wireless I/O unit using Bluetooth™

temp = (TableData) myList.getHostAt(i);
if(BlackBox.equals(address,temp.getAddress())) {
break;
}

}

if(i<myList.getSize()){
temp.setStatus("Connection failed");

temp.setCommand("Disconnect");
defaultModel.updateAll();

}
§
/*
* Method updates GUI if a attemp ro connect is a success
*/

public void connectionSuccess(byte[] address){

TableData temp =null;
int i=0;

for(;i<myList.getSize();i++){

temp = (TableData) myList.getHostAt(i);
if(BlackBox.equals(address,temp.getAddress())){
break;
}

}

if(i<myList.getSize()){
temp.setStatus("Connected");
temp.setCommand("Disconnect");
defaultModel.updateAll();

}
}
/*
* Below are methods that enables different buttons.
*/

public void setStopButtonMode() {
stopButton.setEnabled(true);
joyButton.setEnabled(false);
mouseButton.setEnabled(false);

}

public void setMouseButtonMode() {
stopButton.setEnabled(false);
joyButton.setEnabled(false);

public void setJoyButtonMode(){
stopButton.setEnabled(false);
joyButton.setEnabled(true);

public void setNoButtonMode(){
stopButton.setEnabled(false);
joyButton.setEnabled(false);
mouseButton.setEnabled(false);

- 132 -

Implementing a Wireless I/O unit using Bluetooth™

public void setRightButtonMode(){
if(myCar.isCarConn()){
if(myCar.isJoyConn()){

setJoyButtonMode();
telse{
setNoButtonMode();
}
yelse{
setNoButtonMode();

}
}
} // end class

[ks Rk [age Pape] R Rk ok sk s ok ok /

class ImagePanel extends JPanel {
Image image;

public ImagePanel(Image image) {
this.image = image;

}

public void paintComponent(Graphics g) {
super.paintComponent(g); //paint background

//System.out.println("Painting image");

if(image == null)
System.out.println("E -> Cant Display image");

//Draw image at its natural size first.
g.drawlmage(image, 0, 0, this); //85x62 image

//Now draw the image scaled.
//g.drawlmage(image, 90, 0, 300, 62, this);

}

Rk [mage Pape] R Rk ks s ok /

class MousePanel extends JPanel {

public MousePanel() {

}

public void paintComponent(Graphics g) {
super.paintComponent(g); //paint background
}

}

SRRk sk sk sk sk kR Rk Rk kR T le MIode]] %% %3 sk sk sk sk ok koo sk ook ok ok ko /

Jx%

* Model for JTable

*/

class MyTableModell extends AbstractTableModel {
protected static int NUM_COLUMNS = 3;
protected static int START NUM_ROWS = 0;
protected int nextEmptyRow = 0;
protected int numRows = 0;

- 133 -

Implementing a Wireless I/O unit using Bluetooth™

private GUI myGUI,
final String[] columnNames = {"Device","Status","Command"};
protected Vector data = null;

public MyTableModel1(GUI theGUI) {
data = new Vector();
myGUI=theGUI;

J

public int getNumberOfRow(){
return numRows;
}

public int getColumnCount() {
return columnNames.length;

}

public int getRowCount() {
if (numRows < START NUM_ROWS) {
return START NUM_ROWS;
} else {
return numRows;
}

}

public String getColumnName(int col) {
return columnNames[col];

}

public Object getValueAt(int row, int col) {
try {
TableData ¢ = (TableData) data.elementAt(row);
switch (col) {
case 0: return c.getDevice();
case 1: return c.getStatus();
case 2: return c.getCommand();

}
} catch (Exception e) {
}
return "";
J
%

* Don't need to implement this method unless your table's
* editable.
*/

public boolean isCellEditable(int row, int col) {

if(col >=2){

return true;
} else {

return false;

}

- 134 -

Implementing a Wireless I/O unit using Bluetooth™

public void setValueAt(Object value, int row, int col) {

TableData temp;
int location;

location=0;
temp = (TableData) data.elementAt(row);

switch (col) {

temp.setDevice((String) value);
break;

temp.setStatus((String) value);
break;

String temp?2;
temp2 = (String) value;

// change panel

if(temp2.equals("Disconnect")){
myGUI.disconnect(temp.getDevice(),temp);
temp.setCommand("Disconnect");
updateAll();

} else if(temp2.equals("Connect")){
myGUI.connect(temp.getDevice(),temp);
temp.setCommand("Connect");
updateAll();

)
break;

fireTableCellUpdated(row, col);

case 0:
case 1:
case 2:
}

}

/%

* JTable uses this method to determine the default renderer/
* editor for each cell. If we didn't implement this method,

* then the last column would contain text ("true"/"false"),

* rather than a check box.

*/

public Class getColumnClass(int ¢) {
return getValueAt(0, c).getClass();

}

// stoppa in object av klassen number Data
public void update(TableData n){

numRows++;

data.addElement(n);
nextEmptyRow++;
fireTableDataChanged();

}

/*
* repaint on all table
*/

public void update All(){

- 135 -

Implementing a Wireless I/O unit using Bluetooth™

fireTableDataChanged();

public void delete(String device){
TableData t;

for (int i=0;i<data.size();i++){
t = (TableData) data.clementAt(i);

if(device.equals(t.getDevice())){
data.removeElementAt(i);
nextEmptyRow--;
numRows--;
fireTableDataChanged();

}

/*************************** TableData***/

/**

* (Class of the data that id stored in JTable
*/

class TableData{

private String myDevice; // description
private String myCommand; // mode
private String status;

private byte[] address; // BT adress

public TableData(String theDevice){

myDevice = theDevice;
myCommand = "Disconnect";
status="Not connected";

address = new byte[6];
}

public String getDevice(){
return myDevice;

}

public String getCommand(){
return myCommand;
}

public String getStatus(){
return status;

}

public byte[] getAddress(){
return address;
}

- 136 -

Implementing a Wireless I/O unit using Bluetooth™

public void setDevice(String s){
myDevice =s;
}

public void setCommand(String s){
myCommand=s;

}

public void setStatus(String s){
status=s;

}

public void setAddress(byte[] t){

address[0]=t[0];
address[1]=t[1];
address[2]=t[2];
address[3]=t[3];
address[4]=t[4];
address[5]=t[5];

[rFF*EFEFEETgbleData, Storage Place for Bluetooth connections * % ¥k kskksksdkokwskkodokokokkkx |

JE*

* Class containing a accesible list of all
* bluettoth devices.

*/

class GUIHostList{

private Vector myVector;

/ kk
* Constructor
*/
public GUIHostList(){
myVector = new Vector();
}
[%
* Return & stored GUIHost object
*

* @param byte[] The BT adress

* @return The found TableData object otherwise null
*/
public synchronized TableData getHost(byte[] adress){

TableData temp;

for (int i=0;i<myVector.size();i++){
temp = (TableData) myVector.clementAt(i);
if(BlackBox.equals(adress,temp.getAddress())){
return temp;

}

- 137 -

Implementing a Wireless I/O unit using Bluetooth™

return null;

}

/**

* Return TableData at index
%

* (@param int index

* @param A stored TableData

*/

public synchronized TableData getHostAt(int index){

if(index < 0 || index >= myVector.size()){
return null;
}

return (TableData) myVector.elementAt(index);
}
Jx%

* Store TableData object in class

%

* @param TableData The object

*/

public synchronized void storeHost(TableData s){
myVector.addElement(s);

}

/ K3k
* Return number of stored TableDatas
%
* @param Stored TableDatas
*/
public synchronized int getSize(){
return myVector.size();

}

/ k%
* Remove TableData from class
*
* @param The TableData that will be removed
*/
public synchronized void removeHost(TableData s){

myVector.remove(s);
1
s

- 138 -

Implementing a Wireless I/O unit using Bluetooth™

Appendix F: Technical Information about Bluetooth

F.1 General Information

Bluetooth is an industry standard for wireless connection between electrical devices. The idea
is that this chip should be implemented in all possible devices such as for example computers
and cellular phones. It will then be very easy to exchange information and a whole new world
of possibilities will arise, such as cheap wireless headsets and ad hoc computer networks. But
are there not already wireless systems today and why would Bluetooth be better than any
other system?

Well, this technology is made to be very cheap and compatible between all kinds of devices.
Bluetooth is a technology specification that has been developed by the Bluetooth Special
Interest Group, which consists of the leaders in telecommunication, computing, and network
industries. These are 3Com, Ericsson, IBM, Intel, Lucent, Microsoft, Motorola, Nokia and
Toshiba. The standard is also supported by 2000 adopter companies. It is therefore very likely
that this specification will be accepted. While so many companies have unified, it has become
the fastest growing industry standard ever. A big advantage with the Bluetooth chip is that
when it has been produced in a larger volume it is predicted to cost 5$. It will therefore be
possible to replace cables with this technology just because it is cheaper than cables. Another
great advantage is that it will be able to transmitt both a voice and data, which makes the chip
interesting for all kinds of devices. Personal ad hoc networks can also simply be set up and the
users will get instant access to each other’s data. In order for this standard to succeed though,
the technology must be good enough.

Ericsson in Lund has implemented one of the few applications that exists. It is a wireless
headset for cellular phones. Another powerful application that could be realized is the three-
in-one phone. That means that a person can use his or her cellular phone at home as a cordless
phone, outdoors as usual, and at work both as a cordless phone and an internal phone. When
the person is inside he or she needs a Bluetooth connection either to some device that
transmits the call to the telephone net or to a computer. In the latter case IP-telephony could
be used and the call would be transmitted over Ethernet, which then will make the phone call
very cheap. This could of course be combined with the wireless headset and then both devices
can be utilized. The Bluetooth chip in the cellular phone also makes it possible to connect to
other cellular phones and exchange data, for example can business cards or information about
a meeting be transmitted. Soon there will be a huge amount of cellular phones that can surf on
the Internet and when possible the phone can connect to a computer via Bluetooth and surf for
free. One incredible application is that personal ad hoc computer nets can be set up instantly
and files can be sent to each other easily. Imagine that all the students in a course have laptops
and when they enter the classroom they can all connect to the teacher’s computer. The
students can get any kind of information about the course on their computers and they can
also respond and book laboratory time immediately. Suppose a customer’s cellular phone
connects to the computer net at an airport. Directly when the customer comes inside the
airport the airport’s computer net can call him or her via the net and tell that the flight is
delayed or show how to get to the plane. The possibilities are enormous when Bluetooth chips
will be installed everywhere. Instead of keys the cellular phone opens the doors people can
access and the computer registers directly when the workers come and go from work.
Handheld scanners, mobile hard disks, and other handheld devices will be possible to make to
a low cost.

- 139 -

Implementing a Wireless I/O unit using Bluetooth™

As seen there are an infinite number of applications of this chip. The technology might have
some shortcomings, but it definitely has the best possible support from the industry. The
Special Interest Group believes that this chip will be built into more than a billion devices in a
couple of years. Bluetooth 2 is also on its way, with features such as ten times higher bit rate
and range, then the scope of applications will be even bigger. Therefore we should prepare for
a new world with Bluetooth in all possible digital devices. The great Viking Harald Bluetooth
made whole Denmark christian. Now this tiny chip is here to revolutionize our IT-world!

F.2 Technical Information

The information below is according to the Bluetooth specification 1.0B [2]. All the
functionality in the specification is though not supported by today’s Bluetooth module from
Ericsson. The technology consists of a tiny chip with a radio transceiver, which is built into
digital devices. The chip can be used for both voice and data communication. For the radio
communication, Bluetooth uses the free frequency band between 2.400-2.4835 GHz. These
frequencies can be disturbed by for example microwave ovens. For this reason the frequency
range is divided into 79 different 1 MHz bands, which the chip jumps between 1600 times per
second. If the transmission fails in one frequency, the data can be retransmitted in another
frequency. In each frequency GFSK (Gaussian Frequency Shift Keying) is used. This seems
as a strange choice to us, as QAM has a better power to bandwidth relation and could have
been used instead.

The different types of packages that can be sent are shown in Figure 1. The maximum bit
rate is 723 kbps in one direction. The packages have different advantages. The slower
packages are for instance smaller and safer to send.

type symmetric asymmetric
‘ DM1 ‘ ‘ 108.8 ‘ ‘ 108.8 H 108.8 ‘
‘ DH1 ‘ ‘ 172.8 ‘ ‘ 172.8 H 172.8 ‘
‘ DM3 ‘ ‘ 258.1 ‘ ‘ 387.2 H 54.4 ‘ [kbps]
‘ DH3 ‘ ‘ 390.4 ‘ ‘ 585.6 H 86.4 ‘
‘ DMS5 ‘ ‘ 286.7 ‘ ‘ 477.8 H 36.3 ‘
s | | a9 | | 7232 s76 |

Figure 1: The different packages that can be used and the speed they have. Symmetric and asymmetric dataflow
can be chosen. When the highest data rate is chosen the Bluetooth chip uses five consecutive time slots and this
is illustrated in Figure 2.

In order to get the asymmetric or the high bit rate the packages are sent in multi slots as can be
seen in Figure 2. The large package at the bottom of the figure is sent during five time slots.

- 140 -

Implementing a Wireless I/O unit using Bluetooth™

f(k+1) f(k+2) f(k+3) f(k+4) f(k+5)

f(k+3) | f(k+4) f(k+5)

| f(k) | f(ke5)

Figure 2: The figure illustrates how multislot packages are sent. In the lowest example five consecutice time slots
are used in order to get the highest data rate.

The high data speed is enough for many devices but not for example a video recorder, which
needs at least five times greater bit rate.

The radio output power is 1 mW maximum and therefore the maximum operating range
becomes 10 m. Note that the devices do not have to be in the line of sight, because radio
waves are used, so the devices can for example be in different rooms. The receiver has a
sensitivity level of at least =70 dBm, which makes the bit-error-rate become 0.1% at this
power level.

There can be up to eight Bluetooth units in a piconet. In such a net there are one master and
seven slaves, where the master controls all the communication. Every Bluetooth chip has a
unique address, which makes it possible to send a message to a certain unit. The master and
slave communication seems to have been developed to have one “intelligent” node, for
example a computer with a human, and several less intelligent. Therefore the slaves can not
communicate with each other directly, unless the master addresses the communication. Slave-
to-slave communication is though possible but it demands higher level protocols than
described in the Bluetooth Specification. The master and the slaves in one piconet can
participate as slaves in other piconets. Several piconets that are connected to each other form a
scatternet. In Figure 3 an example shows how two piconets form a scatternet.

- 141 -

Implementing a Wireless I/O unit using Bluetooth™

e m——
e slave 3 ~,
K4 . \\ *'—-___“'N
’ > ~
;7 slave 1 AN ~
’) i ,’ \ N
4 *, H \
s, Fi rd \
["o. H ? % A
i H '
H ‘ master A master B '
1 i canennle e @ e T 1
I . : slave 4 | . - I
] o o, I
\ o \ ! ey [
'.. \ , .y
' \) @
o \ 7
\) \ / slave 5
\ . 7 P
V. slave2 ‘»1 7
-~ ’ 2 -
~ ’ e ——-
-~ " b
- ~ -
S~ L - -

Figure 3: An example of how two piconets form a scatternet is shown above. Slave 4 participates in both
piconets and can _forward information from one piconet to the other.

The communication can either be synchronous or asynchronous. The standard can support
either an asynchronous data channel, up to three synchronous voice channels, or one
simultaneously synchronous voice and asynchronous data channel. The packets can be
protected by error correcting code and they may also be encrypted. The Bluetooth devices can
be in a couple of different modes, so that a device for example can participate in different
piconets or to save power. As seen above, the specification of the standard is quite flexible in
order to make the chip fit in many applications.

F.3 The Bluetooth specification 1.0 B stack

The Bluetooth stack can be seen in Figure 4. It is organised into different layers according to
the OSI model [9]. The functionality of each layer is defined in a specific protocol in the
Bluetooth specification 1.0 B [2]. The layers provide well-defined services to the above
layers. The profiles specify different user applications that are predefined in the specification.

Bluetooth stack OSI model
Profile < > Application layer Presentation layer

RFCOMM SDP < > Session layer

L2CAP < > Transport layer
HCI ;

Link Manager < > Network layer
Baseband < > Data Link layer
Radio < > Physical Layer

Figure 4: The Figure shows the Bluetooth stack and its relation to the OSI model [9]. The layers have all well
seperated functionality and provide the above layer with Bluetooth independent services.

- 142 -

Implementing a Wireless I/O unit using Bluetooth™

e Radio
The radio operates in the unlicensed ISM band at 2.4 GHz. The data transmitted is
frequency jumping at the rate of 1600 hop per second and has a symbol rate of 1 Mbit/s. A
Gaussion-shaped, binary FSK modulation is applied with a BT product of 0.5.

e Baseband
The baseband is the link between the radio and link manager. It performs services as error
coding and other low-level link routines.

e Link Manager
The link manager is used for link set-up, security and control.

e Host Controller Interface, HCI
The HCI provides a uniform interface method for accessing the Bluetooth hardware
capabilities.

e Logical Link Control and Adaptation Protocol, L2ZCAP
L2CAP provides connection data services to upper layer protocols with multiplexing
capability, segmentation and reassemble operation. L2ZCAP permits higher level protocols
and applications to transmit and receive L2ZCAP data packets up to 64 kilobytes in length.

e RFCOMM
The RFCOMM protocol provides emulation of serial ports over the L2ZCAP protocol.

RFCOMM is a simple transport protocol, with additional provisions for emulation of the 9
circuits of RS-232 (EIATIA-232-E) serial port.

e Service Discovery Protocol, SDP
The SDP provides a means for applications to discover which services are available and to
determine the characteristics of those available services. The services is specified in the
profiles e.g. fax profile and file transfer profile

e Profile
The profiles are predefined applications and are described in the text below. Different
Bluetooth devices can support different profiles.

The different profiles of the Bluetooth specification 1.0 B and their relations can be seen in
Figure 5. They are divided into three major groups. Generic Access Profile (GAP), Serial Port
Profile and Generic Object Exchange Profile. All of the profiles in the specification must
support the Generic Access Profile (GAP). The profiles in the serial port profile must as well
support the serial port profile, and the profiles in the Generic Object Exchange Profile must
support all three.

Products based on functionality not supported by the predefined profiles, can be developed
and qualified as long as the Generic Access Profile is supported. The whole idea with profiles
is that products developed by different developers still can communicate with each other.

- 143 -

Implementing a Wireless I/O unit using Bluetooth™

Relation between profiles

Generic Access Profile

E‘_ TCS-based profiles
1
Service Discovery M Cordless Intercom Profile
Application Profile 8l Telephony Profile

Serial Port Profile

-
[Dial-up Networking gﬁ:}ﬁgc Object Exchange
Profile

Fax Profile] Elrler;ll'ransfer

[Dbject Push Profile J

Synchronization
Profile

LAN Access Profile

[Headset Profile

Figure 5: The Figure illustrates the different profiles and there relationship. All profiles must implement the
Generic Access Profile. The profiles from the Serial Port Profile group must also implement the Serial Port
Profile. The profiles in the Generic Object Exchange Profile group must implement all three. By forcing
developers to support profiles the Bluetooth products are made compatible with each other.

e Generic Access Profile
This profile defines the generic procedures related to discovery of Bluetooth devices and
link management aspects of connecting to Bluetooth devices.

e Serial Port Profile
This profile defines the requirement for Bluetooth devices necessary for setting up
emulated serial cable connections using RFCOMM between two peer devices.

e Generic Object Exchange Profile
This profile defines the requirements for Bluetooth devices necessary for the support of an
general object exchange usage model. The requirements are expressed by defining the
features and procedures that are required for interoperability between Bluetooth devices in
the object exchange usage model.

F.4 Qualification

All Bluetooth products need to be tested and qualified according to the Bluetooth
specification. The qualification is needed in order for the Bluetooth standard to succeed and to
keep all Bluetooth products compatible with each other. If a company produces or trades a
product that does not comply with the specification or that has not completed the
qualification, the Bluetooth Special Interest Group (SIG) and all adopter companies will
sanction that company. It is therefore important to know how the qualification program works
and what it demands.

The Bluetooth Qualification Program is reviewed, managed, and improved by the Bluetooth
Qualification Review Group (BQRG). The program establishes the rules and procedures how
the manufacturer shows that their product complies with the specification, and how

- 144 -

Implementing a Wireless I/O unit using Bluetooth™

manufacturers and distributors may use the Bluetooth license. The qualification is done and
maintained by a Bluetooth Qualification Test Facility (BQTF), a Bluetooth Qualification
Body (BQB), and a Bluetooth Qualification Administrator (BQA). These three are authorized
by BQRG. Both the BQTF and BQB can be in-house functions in a company. When a
company wants its product qualified it first hands it to the BQTF that tests the product. When
the tests are done the test results plus the declarations and documentation are sent to a BQB. If
the BQB sees that everything complies with the specification, he or she sends information
about the new product to the BQA. The BQA puts the product into the Qualified Products List
that can be viewed by everyone. The BQA also maintains documents for the Qualification
Program so the manufacturers can get informed about the Qualification Process.

What is then demanded by the Qualification Program? Well, the product requirements are
divided into radio link, protocol, profile, and information requirements. The radio link shall
meet certain minimum requirements so the Bluetooth technology can assure a certain quality.
The lower layers’ protocols of the Bluetooth stack are tested with the Bluetooth Test Control
Interface. This checks that the LC, LM, L2CAP and the HCI are complying with the
specification. The BQRB will though authorize BQTFs that are allowed to qualify products
against the protocol requirements. On top of these layers are there different profiles. Examples
of these profiles are the synchronization profile and the headset profile. The following points
describe the profile requirements:

- All products must follow the General Access profile.

- All implemented Bluetooth services must be described in the “Implementation
Conformance Statement”.

- All profiles that the manufacturer has declared in the “Implementation
Conformance Statement” must be implemented according to each profile
specification.

- If a service, for which there exists a Bluetooth profile, shall be implemented, it
must be done according to that profile. It is permitted to make improvements or
add features to a profile, as long as interoperability is maintained with other
products that have implemented the standard. When extra features are added,
these must be negotiated between the Bluetooth devices when they connect to
each other.

The demand that all products must implement the General Access profile assures that all
Bluetooth devices can communicate with each other. In case the devices do not have any
common services they will at least get that information from each other. Finally, there are
certain requirements on the information about the product. The information should be clear
and consistent and should contain all the capabilities that are implemented in the device.

F.5 Competitors and Future Development of Bluetooth

Bluetooth does of course have a lot of competing technologies and the future depends on
which technology that is the best and first reaches the market. The technology of Bluetooth
does not excel in any special area; the thing is that there is no other technology that covers as
many areas as Bluetooth.

However, the technologies that compete with Bluetooth within the radio-lan area are
Hyperlan, IEEE 802.11, and Ultra Wideband (UWB). The American IEEE [5] will during
2001 choose one of the four radio techniques for the new standard Wireless Personal Area
Network (WPAN). This standard is supposed to support a data speed at 20 to 50 Mbit/s within
a range of about 10 meters. It is intended to be used for home nets and to simultaneously

- 145 -

Implementing a Wireless I/O unit using Bluetooth™

handle three video channels and five voice channels. It should also be used for telephony and
Internet. Today’s version of Bluetooth does not have higher speed than 1 Mbit/s, but the next
version of Bluetooth will have a speed around 10 Mbit/s. The 802.11 [6] has the capacity
11Mbit/s and is the strongest competitor to Bluetooth for the WPAN standard. UWB handles
the capacity demands in WPAN best, but it has problems to cope with the frequency
regulations in USA, Europe, and Asia.

Another area the Bluetooth standard aims for is the office environment with mice, printers,
keyboards, and all the devices around the computer. The competitors in this case are infrared
and other cheap radio based solutions. The Bluetooth chip will only cost $5 if it will be
produced in a larger scale. The standard is therefore likely to succeed in this area. Bluetooth
can be used in many areas where there is a need for wireless voice and data communication.
The most conspicuous features of the Bluetooth standard compared to other technologies will
be that it is cheap and has built in support to be compatible.

The Bluetooth specification has had some errors so far [7], therefore no products have been
released on the market. Version 1.1 of the specification that comes in November 2000 is said
to work correctly. The Bluetooth Special Interest Group (SIG) has strongly recommended all
adopters not to release any products based on former versions of the specification. One threat
to the Bluetooth standard is that there will continue to be errors in the specification. Another
threat might be that it will be time and cost consuming to qualify products [8].

Bluetooth 2 is on its way and will be finished during 2001. In this version the data speed
will be around 10 Mbit/s and the range up 100 meters. In this specification there will also be
more profiles, which will make the standard even more general. The SIG, which consists of
the nine leading companies in the telecommunications, computing, and network industries, is
driving the development of the technology and bringing it to the market. That is an important
fact that speaks in favor of Bluetooth.

- 146 -

Implementing a Wireless I/O unit using Bluetooth™

Appendix G: Press release

€3 Bluetooth™ | =

DEVELOPERS COMFEREMCE

THE NORTH AMERICAN BLUETOOTH SIG EVENT OF THE YEAR

http://207.94.167.208/keynoteBTeveryday.cfm#2

Tuesday, December 5
9:15 AM - 10:00 AM
Bluetooth Everyday

At Bluetooth Everyday you will watch someone perform everyday tasks in extraordinary
ways using Bluetooth wireless technology. With no technical experience, you will see the
demonstrator interact with Bluetooth in order to make life easier. Here's a glimpse of the
demos you'll see:

The Bluetooth Controlled Beetle

This demonstration shows a radio control car being driven by joystick. Input from the joystick
is transmitted using Bluetooth wireless technology to a computer that generates control
signals that are sent to the car also using Bluetooth. The platform used - developed by Sigma
with the Bluetooth Application Tool Kit - is generic and can also be used in a wide range of
industrial processes.

By Sigma Comtec

As you walk into a shopping mall with your PDA you will receive special offers that are
customized to where you are and who you are. You can easily accept the offer and perform
the transaction.

By Axis Communications

XyLoc conveniently protects and personalizes a laptop utilizing Bluetooth wireless
technology: a user will approach the PC and XyLoc will automatically unlock the PC, log the
user into his accounts, decrypt his files, and open his applications. When the user steps away
from the PC it will automatically be secured, preventing unauthorized access.

By Ensure Technologies

- 147 -

Implementing a Wireless I/O unit using Bluetooth™

Its Monday morning in the Bradford residence and Tim is headed out to Los Angeles this
morning for an important customer meeting. Tim comes down to breakfast in his kitchen.
While eating his cereal, he uses his "InfoPad", a 8.5x11 paper-sized wireless information
appliance, to log on to the Internet (using Bluetooth to dial out through the PC in his basement
home office), in order to check on his flight and the weather at LAX, so he knows if he has to
bring a jacket or a rain coat. While online he quickly notes that QCOM stock price is down
and puts in an order to buy 100 shares.

By Impulsesoft

With the Motorola Timeport phone, which utilizes Bluetooth wireless technology, purchase
gas and coffee at the gas station. While the gas is pumping, the Bluetooth Internet Server at
the pump sends ads to the Timeport. The user can browse gifts from the gas vendor's Intranet
and can also get directions on his Timeport.

By Motorola

Phone as remote control

The demo shows how you, via your Bluetooth mobile phone from Ericsson, can control
various devices in your home environment by using WAP (Wireless Application Protocol)
over Bluetooth wireless technology. In this particular demo the Bluetooth phone is used to
turn a lamp on and off.

Bluetooth Headset

Some research analysts claim the Bluetooth Headset will become the most popular product
that utilizes Bluetooth wireless technology. The Bluetooth Headset is connected to a
compatible mobile phone. The user can either receive or make phone calls. Voice dialing is
also possible. Not only will these products be demoed; they are made available by Ericsson.

Anoto pen

This pen brings the human pen-paper behavior to Bluetooth wireless technology. You use the
Anoto pen to write normally on any paper that has a unique (almost invisible) pattern printed
on it. The text is then wirelessly transferred via your Bluetooth phone. Imagine the e-
commerce possibilities!

By Ericsson

WAP over Bluetooth™ Demo

AU-System shows how to control PC-applications such as CD-player, MP3-player etc. from a
Palm Pilot. The demo will show how Bluetooth combined with WAP can enhance comfort in
an office or home network. The PDA with Bluetooth wireless technology can control different
devices without changing its interface.

By AU Systems

- 148 -

Implementing a Wireless I/O unit using Bluetooth™

DENSO BLUETOOTH CONNECTIONS "wireless car kit function"

This demo will illustrate a Bluetooth wireless synchronous link between a mobile phone and
an automotive hands free carkit. The user will be able to place a call with the phone, place it
anywhere within 10m of the car kit and carry on a conversation through the carkit.

By Denso

See how SPANworks 2000 can enable you to effortlessly transfer files to one, a few, or
everyone in your proximity with a simple drag 'n drop. Give a slide presentation among
several machines, with or without the use of a digital projector. Or, "whisper" among friends
using the chat messaging Application.

By Toshiba

- 149 -

Implementing a Wireless I/O unit using Bluetooth™

Appendix H: Performance and characteristics of the BCC

The Bluetooth Control Card (BCC) can set and measure analog signals in the region of 0-5 V.
It has also a digital Serial Peripheral Interface (SPI), which can receive and transmit 6 bytes of
data in each slave to master package. The sample period is user defined in the interval 6-255
milliseconds and the outputs are updated when a valid data package is received.

The BCC has 8 different input and outputs:
Analog in 1

Analog in 2

Analog out 1

Analog out 2

PWM out 1

PWM out 2

SPI

Digital interrupt

The general performance of the Bluetooth technology is discussed in Appendix F Section 2.

Figure 1 shows the delay from slave to master for a sampled input signal, before it is
presented to the API in the master. It has been measured to ~ 15 milliseconds. The same delay
is valid for output signals from master to slave.

Master Slave (BCC)

RS232

" Bustoom®

~4 ms 3.5ms ~3 ms 3.5ms ~1ms

Figure 1: The Figure shows the measured delay time in the system. A data package is delayed approximated 15
milliseconds in both the slave to master direction and master to slave direction. This time is divided with 7
milliseconds on the RS232 serial ports, 3 milliseconds in the air, 1 millisecond in the slave software and 4
milliseconds in the master sofiware. The time on the serial port has been measured and is according to the
theoretical value. The time spent in the air is almost a factor 2 larger then the theoretical value, which can not
be explained. Time spent in the software is only estimated.

Figure 2 shows the data package. The theoretical time for the data package to propagate on the
RS232 serial ports, with the speed of 56.7 kbps, is 3.5 milliseconds. The package is 20 bytes
long, 200 bits including start and stop bits. This time has been measured and found to be
correct.

The speed of the Bluetooth connection, using DM1 packages, is in both directions 108.8
kbps, see Appendix F Section 2. The theoretical time to propagate over the air with this speed,
including the error coding bits, is 1.8 milliseconds. Measurements have been done to
investigate this and the time found was around 3 milliseconds. This is almost a factor 2 larger
then the theoretical value, which can not be explained.

- 150 -

Implementing a Wireless I/O unit using Bluetooth™

Combining the theoretical and measured value gives a delay in the software of the master
and slave between 5-6 ms. Most of this time is probably derived from the master where the
software is threaded and written in Java.

LSB MSB

Head 9 bytes Payload 11 bytes

Figure 4.1: The Figure shows the general structure of a master to slave or slave to master data package. The
head is illustrated in Figure 4.2 and contains Bluetooth specific information in order to propagate on the
Bluetooth channel. All data is contained in the payload field and can be seen in Figure 4.5 and 4.8.

The minimal input sample period in the slave is constrained to 6 milliseconds. Measurements
on the system have shown that this rate is the fastest achieved, with the functionality of the
BCC intact. This is shown in Figure 3.

The software in the BCC is interrupt driven, which impose that the actual sample period
always will be a bit higher then the user set time. Lowering the interrupt overhead in the
system will allow an actual sample rate faster then 6 milliseconds. The software in BCC
interrupts each 256 microseconds. To boost the performance the interrupt rate should have
been each millisecond. This has not been done due to time constraint in the master thesis
project, and the actual impact it would have on the performance is hard to estimate.

BCC sample period

—e— User defined sample period —s— Mesured sample period

80
70 A
60 Yl
3 50
§ 40
- 2 _
: 20
b :7!/
0
1 2 3 4 5
—e— User defined sample period 4 8 16 32 64
—=— Mesured sample period 9.8 9.5 18.6 37 73.5

Figure 3: The Figure show the difference between the user defined sample period, and the measured sample
period presented to the API in the master. The micro controller is interrupt driven which mean that the measured
sample period always will be a little bit larger then the user defined. When the user defined sample period is set
to 4 milliseconds the overhead imposed by the interrupts are so large that the measured sampled period is
constrained. The maximal sampled period is achieved when the user defined sample period is 6 milliseconds.

The maximal simultaneious speed of master to slave and slave to master communication has
not been mesured. This issue is discussed in Section 4.1.

- 151 -

Implementing a Wireless I/O unit using Bluetooth™

The Bluetooth connection, that provides the BCC with wireless communication functionality,
performs retransmission on lost packages. The retransmission time can, according to the
Bluetooth specification 1.0 B [2], be user defined. This is not supported by the Bluetooth
firmware, which continues the retransmission until it succeeds transmitting the package. This
is not a good control strategy, as the Bluetooth module might continue to retransmit an old
package even if a newer package is available. Our intuitive retransmission control strategy
would have been to retransmit a package until the next package becomes available.

- 152 -

Implementing a Wireless I/O unit using Bluetoot

hTM

Appendix I: User’s manual for the Bluetooth controlled Beetle

Before the program is started the Bluetooth modules need to be plugged in, and the car and
the joystick should be supplied with power. All the devices should also be reset. After the
completing the following actions the Beetle can be steered by the joystick:

1.

2.

4.

5.

Press the two buttons that says “Init”. The Bluetooth modules are then initialized. Check
the fields next to the buttons to see whether the command succeeded or not.

To search for Bluetooth devices in the proximity press the button “Search for Bluetooth
devices”. It takes about five seconds until the Bluetooth modules are finished with the
inquiry. The devices that are found are then displayed in the field under the text
“Available BT-devices”. Hopefully both the joystick and the car are found. In that case the
texts “Joystick” and “Radio Control Car” will be displayed in the column “Device”. If
unknown Bluetooth devices are found they are listed as a “Unknown device”.

Press the combo box in the “Command” column to connect the car and the joystick. The
commands “Connect” and “Disconnect” appear when the combo box is clicked. Choose
“Connect”. In the column “Status” the success of the command is displayed. Sometimes
the command fails and it has to be given again.

If it is desired to limit the speed this can be done with the speed slider down to the right in
the GUI.

Press the button “Steer with joystick” to steer the car.

Distance control was not implemented so the distance slider does not have any function. It is
best to exit the program by pressing the cross in the top right corner. Signals to reset the
Bluetooth modules are then sent and the program can usually be restarted without pressing
their reset buttons. If something goes wrong when the connections are created it is
recommended to open the debug window to see the information. Go to the menu “View” and
press either “Errors” or “Errors and info”. Error messages begin with “E ->” and information
messages begin with “I ->”.

- 153 -

