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1 Introduction

1.1 Background

A majority of fusion experiments are based on the TOKAMAK (acronym cre-
ated from the Russian words, ”TOroidalnaya KAmera ee MAgnitnaya Katushka,”
or ”Toroidal Chamber and Magnetic Coil”) configuration. It is characterized by
a large externally applied toroidal magnetic field, and a smaller poloidal field
generated by plasma current, to provide confinement. The toroidal field coils
require huge amounts of power or must be made of superconducting material.

The experiment in Alfvénlaboratoriet, EXTRAP-T2, is of the reversed field
pinch (RFP) type. Here the plasma itself generates most of the magnetic field,
with toroidal and poloidal components of comparable amplitudes. Among the
advantages of an RFP reactor compared to a TOKAMAK are higher energy
density and ability to reach ignition without auxiliary heating. This would lead
to a more compact and economical reactor.

1.2 Problem description

Normally RFP experiments rely on a perfectly conducting shell that stabilizes
plasma instabilities through induction. In a reactor this approximation would
not be valid due to long pulse times during which the magnetic field would have
time to penetrate the shell. In EXTRAP the problem with a resistive shell is
studied; the shell penetration time is 5 ms compared to pulse times around 20
ms. The stabilizing effect of the shell is then reduced and active feedback is
required.

While the copper shell can take care of variations in plasma position on time
scales smaller than the penetration time, the controller has to handle slower
fluctuations. Using a preprogrammed vertical magnetic field, the plasma can
be centered under constant conditions. Looking at earlier shots, it can be seen
clearly that the plasma drifts radially during the shot. Eventually it hits the
wall and the pulse is terminated. With a feedback system keeping the plasma
centered the pulse length could hopefully be increased and the experimental re-
sults more reproducible. The design goals for the controller have been a settling
time τ . 1 ms and a phase margin ϕ ≥ 30◦.

2 Model

2.1 Components

The following parts of the experiment are modelled:

• Plasma

• Copper shell

• Vertical field (control) coils

• Power supply

Only a simple representation will be considered here. Following the lines of
the paper from the CLEO experiment [3], plasma, copper shell and vertical field
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Figure 1: Overview of the EXTRAP-T2 experiment
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Figure 2: Block diagram of the control loop
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coils are modelled with an equation of motion for the plasma and two circuit
equations for coil and shell. A switching power supply is assumed, even though
the specifics are not yet determined. It is modelled as a limiter and a time delay.
See figure 2 for an overview.

Although the sensors measure induced voltage and the signals have to be
integrated to get magnetic flux density their dynamics are neglected.

2.2 Equations

For a detailed derivation of the plasma equation of motion, see [3]. The result
(valid for small displacements x) is

d2x

dt2
= −Ω2

Fx (1)

with

Ω2
F =

µ0I
2
0

2R0M

[
(1 + m)Γ0 −

1
2

]
(2)

Stability requires Ω2
F to be positive which leads to a minimum value for the

vertical field gradient index m > −1 + 1
2Γ0

A few rather suspicious assumptions had to be made. In particular one
concerning toroidal flux conservation leading to a relation between plasma minor
radius and position: (

a

a0

)2

=
R

R0
(3)

In T2 the plasma fills up the vacuum vessel and is bounded by the molybdenum
limiters along the inner wall. It would then perhaps be more appropriate to use
(see HBTX1A [5])

a = a0 − |x| (4)

and that changes the 1
2 in Ω2

F and with it the stability requirement for m. How-
ever, the assumptions from CLEO has been used here.

Forces from currents in the copper shell and the control coils also act on the
plasma and have to be accounted for.

M

(
d2x

dt2
+ Ω2

Fx

)
=

d

dx
(L13I1I3 + L12I1I2) =

2
πb

(L22I1I2 + L23I1I3) (5)

Here index 1 stands for plasma circuit, index 2 for the conducting shell eddy cur-
rents and index 3 for the VF coil circuit. The last step comes from expressions
for L12 and L13, they are both of the form L1k = 2

πbxL2k (see B.3 and B.4).
Index k can stand for both 2 and 3. As the mass M of the plasma particles is
very small the inertial term M ∂2x

∂t2 can be neglected. To test this a computation
with the mass included was made. It was found that the system has a resonance
peak at around ω = 5·106 rad/s, well outside the range of interesting frequencies.

Moving on to the circuit equations we have

0 = I2R2 +
d

dt
(I1L12) + L22

dI2

dt
+ L23

dI3

dt
(6)

V = I3R3 +
d

dt
(I1L13) + L23

dI2

dt
+ L33

dI3

dt
(7)
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for the shell and control coils respectively (The inductances L22, L23 and L33

are constant). The time derivatives of the inductances can be rewritten:

d

dt
(I1L1k) =

dL1k

dx

d

dt
(xI1) =

2L2k

πb

d

dt
(xI1) (8)

The first step comes from

d(I1L1k)
dxI1

=
d(xI1

dL1k
dx )

dxI1
=

dL1k

dx
(9)

It turns out that xI1 is a natural control variable. The circuit equations contain
it and the sensors measure it (as xI1 is proportional the flux enclosed by the
plasma). To simplify things xI1 will sometimes be called Ξ. After multiplication
by I1 and linearization, equation 5 becomes (the currents I2 and I3 are much
smaller than I1)

MΩ2
FΞ =

2I2
0

πb
(L22I2 + L23I3) (10)

All three equations assembled in matrix form: 2
πbL22 L22 L23
2
πbL23 L23 L33

0 0 0

 Ξ̇
İ2

İ3

+

 0 R2 0
0 0 R3

−MΩ2
F

2I2
0

πb L22
2I2

0
πb L23

 Ξ
I2

I3

 =

 0
1
0

 V

(11)
or

Eẋ− Ax = B V̂ (12)
where x = [Ξ I2 I3]T . The set of equations is Laplace-transformed

(sE− A)x̂ = Bû (13)

and the displacement Ξ̂ solved for with e.g. Maple. The resulting transfer
function from V̂ to Ξ̂ is of the form

G(s) =
K

(1 + s
ω1

)(1 + s
ω2

)
(14)

The numerical values are: ω1 = 161.5 rad/s and ω2 = 3.1 rad/s.

2.3 Power supply

As mentioned above the power supply is modelled as a time delay. Its transfer
function becomes

W (s) = e−Ts (15)
with a delay T corresponding to half the switching time 1

fPS
of the power supply.

A first order Pade approximation of this transfer function is

WP =
2
T − s
2
T + s

(16)

It is valid for small ω but quite adequate for the range of interesting control
frequencies (ω . 104). Another aspect that is modelled is output voltage sat-
uration, causing non-linear effects. One suggested type of power supply would
use IGBT (Insulated Gate Bipolar Transistor) as switching components. They
typically have a rating of around 800 V.

Finally, ripple with the switching frequency and unknown amplitude will be
present.
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Figure 3: Output voltage saturation

2.4 Disturbances

Various disturbances can be introduced into the equations, e.g. variations in
plasma parameters δΛ or vertical magnetic field δBz.

In the approximate model used here, δΛ will not induce any currents in
the shell and VF coil directly, but affects the plasma equation of motion. An
expression of the total radial force acting on the plasma is (see CLEO [3])

f = 2πRI1(Bze −Bz) (17)

with the equilibrium field

Bze =
µ0I1Γ
4πR

(18)

and
Γ = ln(

8R

a
)− 1

2
+ Λ (19)

Differentiation with respect to Λ around the equilibrium position gives

δf = 2πR0I0
µ0I0

4πR0
δΛ =

µ0I
2
0

2
δΛ (20)

Adding this, and remembering to multiply by I0, the matrix equation becomes

(sE− A)x̂ = B V̂ +

 0
0

−µ0I
3
0

2

 δ̂Λ (21)

The resulting transfer function from δ̂Λ to Ξ̂ is of the form

GΛ(s) = −KΛ

(1 + s
ωΛ

1
)(1 + s

ωΛ
2
)

(1 + s
ω1

)(1 + s
ω2

)
(22)
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Figure 4: Bode diagram of GΛ

Numerical values for the zeros are: ωΛ
1 = 290.9 rad/s and ωΛ

2 = 68.7 rad/s. The
effect of the resistive shell can be seen here as a damping of high frequencies
(figure 4).

A disturbance in the vertical field δBz acts differently because it also induces
currents in the shell (and coils). This adds terms proportional to dδBz

dt to the
circuit equations. The coupling coefficients, here called D2B and D3B, can be
calculated in the same way as inductances. Differentiation of the force expression
is simply δf = 2πR0I0 δBz. The sign of δBz is chosen so that positive δBz

compresses the plasma.

(sE− A)x̂ = B V̂ +

 sD2B

sD3B

−2πR0I
2
0

 ˆδBz (23)

A calculation of the transfer function from ˆδBz to Ξ̂ yields

GB(s) = −KB

1 + s
ωB1

(1 + s
ω1

)(1 + s
ω2

)
(24)

Where ωB1 = 127.2 rad/s. In this case the shell acts as a first order low-pass
filter (see figure 5).

3 Sensors

3.1 Setup

Signals from three different sensors have to be combined to get the plasma
position:

• Differential flux loops or saddle coil (average vertical magnetic field, Bvf )

10
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Figure 5: Bode diagram of GB

• Cosine coil (asymmetric part of the poloidal magnetic field, Bcos)

• Rogowski coil (plasma current, I1)

See [4] for a detailed description of the procedure. The effect of the liner current
is neglected here.

In a more simple version only the vertical field sensor would be used. The
controller would then regulate so as to achieve zero vertical flux. This has
been tried in the CLEO experiment [3] with limited success. The problem with
this configuration is that it is not possible to distinguish between actual plasma
movement and disturbances that change vertical flux (such as δBz). The system
will also be of higher order (because of components ∼ I2 in the expression for
Bvf ) and harder to control.

Figure 6 shows how the different sensors are positioned. The cosine coil
is comprised of the two Bp solenoids making detection of first harmonic fields
possible (∼ cos θ). Two or more solenoids may be added at different angles to
suppress higher order fields (cos 2θ, cos 3θ etc.).

3.2 Equations

Starting from an expression for the flux function Ψ(r, θ), magnetic field compo-
nents are obtained through B = −∇Ψ. Bcos and Bvf are then identified from
the expressions. The unknowns are xI1 and Λ (or Bext

z , depending on the choice
of flux function). The resulting equations are (using Bext

z ):[− µ0
2πr2

c
kzc

µ0
2πr2

vf
kzvf

][
xI1

Bext
z

]
=

[
Bcos

Bvf

]
−
[

kp c

kpvf

]
I1 (25)
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where rvf and rc are the minor radius where the saddle coil and the cosine coil
are placed at respectively and

kp c =
µ0

4πR0

(
(1 +

a2

r2
c

)(ln
8R0

a
− 1) + ln

a

rc
+ 1
)

kp vf =
µ0

4πR0

(
(1− a2

r2
vf

)(ln
8R0

a
− 1) + ln

a

rvf

)

kzc = (1 +
a2

r2
c

)

kzvf = (1− a2

r2
vf

)

The equation for the control variable xI1 can be written

xI1 = aΞBcos + bΞBvf + cΞI1 (26)

To extract xI1 from sensor data it would be necessary to implement and
calibrate an analog equivalent circuit to perform the three multiplications and
additions.
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If Λ is chosen as the second variable instead, the matrix equation takes the
following form:[− µ0

2πr2
c

kΛc

µ0
2πr2

vf
kΛvf

][
xI1

ΛI1

]
=

[
Bcos

Bvf

]
−
[

kΛp c

kΛpvf

]
I1 (27)

with

kΛp c =
µ0

4πR0

(
ln

rc
a
− 1 +

1
2
(1 +

a2

r2
c

)
)

kΛp vf =
µ0

4πR0

(
ln

rvf
a

+
1
2
(1 − a2

r2
vf

)

)

kΛc = − µ0

4πR0
(1 +

a2

r2
c

)

kΛvf = − µ0

4πR0
(1− a2

r2
vf

)

Solving for Λ we get

ΛI1 = aΛBcos + bΛBvf + cΛI1 (28)

3.3 Extraction of magnetic noise

As can be seen above, Λ can be calculated in the same way as xI1. δBz however
requires additional analysis. Bext

z contains all vertical field components (shell,
OH, vf-coils. . . ) except that from the plasma itself. We can write

Bext
z = BOH

z + Bshell
z + Bvf

z + δBz

where δBz is a disturbance field. Apart from δBz, all of these field components
can be calculated or measured directly. That makes it possible to estimate the
magnetic noise and compensate for it through feed-forward control.

The components of Bext
z are:

BOH
z = −Be0

I1

I0

(
R

R0

)m
≈ −Be0

I1

I0
(1 + m

x

R0
) = −Be0

I0
I1 −

Be0m

R0I0
Ξ (29)

Be0 is the equilibrium vertical field Be0 = µ0I0Γ0
4πR0

B̂shell
z =

µ0

4b
Î2 = − µ0s

4bR2

[(
2L22

πb
+

πbΩ2
FM

2I2
0

)
Ξ̂ + (π2bR0 −D2B) ˆδBz

]
=

= −sm12 Ξ̂ (30)

Here the contribution from I3 has been eliminated using equations 11. The
factor in front of ˆδBz is zero for a homogeneous field.

Bvf
z =

µ0

π

(
x2

x2
2 + y2

2

− x1

x2
1 + y2

1

)
I3 = g3I3 (31)

See figure 26 for geometry.

In summary

ˆδBz = B̂ext
z +

Be0

I0
Î1 − g3Î3 + (m12s +

Be0m

R0I0
) Ξ̂ (32)

13
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Figure 7: Root locus plot of WG(s) for T = 20 µs (fPS = 25kHz)

4 The controller

4.1 Model stability

If only the plasma-shell model is considered it will be a simple second order
system. The power supply lowers the phase margin at higher frequencies. Ad-
ditional poles and zeros may be present, but are unaccounted for. This adds up
to a transfer function of the form

WG(s) =
Ke−Ts

(1 + s
ω1

)(1 + s
ω2

)
(33)

with 1
T � ω1, ω2. The closed loop system (without controller) becomes

GCL(s) =
WG

1 + WG
=

Ke−Ts

(1 + s
ω1

)(1 + s
ω2

) + Ke−Ts
(34)

In a root locus plot the poles of the closed system are plotted as a function
of system gain K. The stability requirement is that all poles are located in the
left half plane. As can be seen in figure 7 the system is stable as long as the
gain is small. The non-linearity presented by the limited power supply output
also degrades stability but has to be modelled in simulink.

How far the system is from instability is also of interest. The phase margin
is a measure of this. It is defined as the amount the phase curve in a bode
diagram could drop before reaching −180◦ at the point where the amplitude
curve cuts 0 dB (see figure 8). If the system amplification were higher than
0 dB (1) for −180◦ phase shift, instability would follow: A signal of the right
frequency would be amplified and then returned by the negative feedback in
phase, getting amplified again, and so on.
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Figure 8: Phase and amplitude margin

The sensitivity function

S(s) =
1

1 + FWG(s)
(35)

describes how well the system can handle model errors. It is a first order ap-
proximation of the transfer function from relative model error to relative output
error. Section 6.3 in [2] contains a derivation of this expression. See figure 14
for typical appearance of this function. Low frequency model errors are well
handled and at higher frequencies the shell should be able to compensate with-
out help from the controller (figures 4 and 5 show the transfer functions of the
disturbances).

4.2 PD controller

For a second order system the poles can be placed arbitrarily with a PID con-
troller. This is not the case here, but at the cross-over frequencies of interest
the system can be considered as a double integrator and a time delay. A PID
controller is well suited to handle such problems.

The integrating (I) part of the PID removes stationary errors. In this case
a small stationary error is of little importance and a fast settling time much
more interesting. Losing the I-part also takes care of problems with integrator
wind-up. Most of the controllers found in articles from other experiments (e.g.
CLEO [3] and ISX-B [1]) were of the PD type.

Using derivative action presents other difficulties. A pure PD controller is
impossible to construct in practice. It would require an infinitely high amplifi-
cation for (infinitely) fast changing error signals. High frequency measurement
noise would drown the control signal completely. So it is necessary to have some
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Figure 9: Bode diagram of realistic PD controller

sort of low-pass filtering. The realistic PD controller is modelled as

F (s) = Kp
1 + sTD

1 + sTDN
=

Kp

N

s + ωD
s + NωD

(36)

The factor N is chosen as high as possible to get a good derivative approxima-
tion while still providing adequate high frequency rejection. Usually N ∼ 10.

4.3 Parameter optimization

The objective is to have the fastest system for given values of phase margin ϕm
and T . That corresponds to finding as large cross-over frequency ( |GOL(iωc)| =
1 ) as possible while still having sufficient phase margin.

Starting from the open-loop transfer function

GOL(s) =
KKp

N

e−Ts

(1 + s
ω1

)(1 + s
ω2

)
s + ωD

s + NωD
(37)

the plasma-shell dynamics (ω1, ω2) can be approximated as a double integrator
in the range of interesting cross-over frequencies.

GOL(s) ≈ ω1ω2KKp

N

s + ωD
s2(s + NωD)

e−Ts (38)

Taking the argument

arg GOL(iω) = arctan
ω

ωD
− Tω − π − arctan

ω

NωD
(39)

Resulting in a phase margin

ϕm = arg GOL(iω) + π = arctan
ω

ωD
− arctan

ω

NωD
− Tω (40)
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For constant ϕm and T the phase margin equation becomes a function ω(ωD).
This function has a maximum (see figure 10), so the derivative with respect to
ωD is taken of equation 40.

d

dωD
⇒ −

(
ω

ω2
D

− 1
ωD

dω

dωD

)
1

1 + ω2

ω2
D

+
(

ω

Nω2
D

− 1
NωD

dω

dωD

)
1

1 + ω2

N2ω2
D

− T
dω

dωD
= 0 (41)

dω
dωD

= 0 at the maximum.

− ω

ω2
D + ω2

+
Nω

N2ω2
D + ω2

= 0 (42)

⇒ ω

ωD
=

√
N2 − 1
N − 1

=
√

N + 1 (43)

Inserting this into the phase margin equation gives

ϕm = arctan
√

N + 1− arctan

√
N + 1
N2

− Tω (44)

and

ω =

(
arctan

√
N + 1− arctan

√
N + 1
N2

− ϕm

)
1
T

(45)
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By choosing an appropriate controller gain, the system cross-over frequency
ωc can be set to coincide with ω.

|GOL(iωc)|2 =
ω2

1ω2
2K

2K2
p

N2

ω2
c + ω2

D

ω4
c (ω2

c + N2ω2
D)

=
ω2

1ω2
2K2K2

p

N2

1 + 1
N+1

ω4
c (1 + N2

N+1 )
=

=
ω2

1ω
2
2K2K2

p

N2

N + 2
ω4
c (N2 + N + 1)

= 1 ⇒ Kp =
N

ω1ω2K
ω2
c

√
N2 + N + 1

N + 2
(46)

In summary the controller parameters are determined as follows.

ωD =
1√

N + 1

(
arctan

√
N + 1− arctan

√
N + 1
N2

− ϕm

)
1
T

(47)

Kp =
N

ω1ω2K

√
N2 + N + 1

N + 2

(
arctan

√
N + 1− arctan

√
N + 1
N2

− ϕm

)2
1

T 2

(48)

4.4 Feed forward

If a disturbance can be measured and modelled its effect on the output signal
can be eliminated or at least reduced through feed forward. See figure 12 for a
block diagram of the situation. The main advantage of feed forward is that it
counters the disturbance before it shows up on the output. In optimal conditions
the feed forward link can be set as

Ff = − H

GOL
(49)
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and completely eliminate the disturbance. However, the time delay in the power
supply would require a non-causal transfer function esT and has to be omitted.
In EXTRAP perturbations in Λ and δBz can, theoretically, be subjected to feed
forward reduction. When calculating the link Ff (s) for GΛ(s) and GB(s) it is
found that some form of derivation is required (double derivation in the case
of Λ). Consequently Ff (s) has to be approximated in the same way as the PD
controller.

5 Results

5.1 Settling time

The specifications for the controller call for a settling time of less than 1 ms
to a step load disturbance while still keeping a reasonable stability margin
(ϕm ≥ 30◦). Equation 45 gives a rough estimate of how the speed of the system
depends on T and ϕm (and N). Comparison with simulations in simulink show
that it agrees quite well. Controller parameters ωD and Kp are then obtained
using equations 47 and 48. These would be good starting values for tuning the
controller. Numerically, ωD is in the order of 103 and Kp ∼ 102. A minimal
switching frequency realizing the design goals is 7.5 kHz (cf figure 11). Increas-
ing the switching frequency further will result in a higher phase margin and/or
faster system. Typical step response curves for fPS = 7.5 kHz and 20 kHz can
be seen in figure 13.

5.2 Noise rejection

The sensitivity function S(s) (figure 14) indicates how well the system can sup-
press noise. Higher frequencies have much worse disturbance rejection. The
amplitude curve levels off at around ω = 106 rad/s. Two different types of dis-
turbances are discussed here, Λ and δBz. In addition to these two, measurement
noise can be a problem.
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s, ϕ = 40◦ and N = 10

The switching power supply generate high frequency ripple, but it will be
effectively filtered by the vf-coils and copper shell. Practically nothing will
penetrate to move the plasma.

The transfer function from some sort of fluctuation to plasma displacement
(see block diagram in figure 2) is given by

Gδ · S(s) (50)

Figure 15 shows this function for Λ and δBz. By far the hardest to control,
disturbances in Λ cause the plasma to move instantly (inertia neglected). A
reconfiguration of the plasma radial profile due to e.g. changes in current density
is the source of these disturbances. The current density changes could be caused
by influx of particles from the wall, cooling the plasma edge and increasing its
resistivity.

In contrast, δBz-disturbances are quite easy to control because of the low-
pass filtering of the copper shell. Variations in currents in external coils cause
fluctuations in the vertical magnetic field.

Measurement noise is typically ”white noise”picked up wires or produced by
electrical components and contains high frequency components. This will result
in plasma movement as the controller responds with false control signals. Since
the D-part of the controller amplifies transients, the high frequency contents
are the most problematic. Low-pass filtering the signal before feeding it to the
controller will reduce the problem. A cut-off frequency about a decade higher
than NωD would be sufficient.

5.3 Saturation

To see the effect of saturation a step load disturbance δBz of increasing am-
plitude was simulated. When the power supply starts to saturate (around
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δBz = 4 mT in figure 17), the settling time goes up. The plot looks irregular
because of over-shoot effects that go above or below the 95 % level defining the
settling time.

With a PD controller, transients generate very large control signals satu-
rating the power supply. Λ-noise is much more troublesome than δBz, as its
transfer function only damps, not filters, high frequencies. Also, a slower con-
troller is less likely to saturate. A fast system (small T and large ωD) without
voltage capabilities to match it can do more harm than good, see figure 18. It is
better to use a large switching frequency (small T ) to increase the phase margin.

If IGBT:s are used as driving components in the power supply the maximum
output voltage will be around 800 V. If two are connected in series, Vmax = 1600
V instead. Currents flowing in the control coil can then reach 2 kA. Testing
with these two alternatives figure 19 was created. It shows the disturbance
level at which the settling time has increased by 10 % due to saturation. The
disturbance was modelled as a step in Λ of amplitude δΛ. Clearly a slower
controller (corresponding to longer switching time T in the figure) can handle
higher amounts of noise before saturating.

5.4 Feed forward

Simulations with feed forward control appear to show that it would have little
or no effect on the overall performance. Some sort of approximation is necessary
because of the resulting pure derivatives and the time delay in the power supply.
In the case of magnetic fluctuations improvement can still be seen with feed
forward (figure 20). But for the dominating source of plasma displacement
noise, Λ, there seems to be no improvement. The reason for this could be that
a fluctuation is immediately visible as plasma movement. The feed forward link
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cannot compensate for the fluctuation before it appears as a displacement.

5.5 Real data

Sensor data from earlier experiments was used to test the controller. Signals
from cosine coil, vertical flux sensor and Rogowski coil was combined to extract
Λ and magnetic noise δBz during the shot (see figure 21).

Without feedback control the plasma drifted radially up to a centimeter
(figure 22). What the sensors actually measure is xI1 and that has to be divided
by I1 to get the displacement x. The strange values at the start and end of the
shot are explained by this, as the plasma current I1 is near zero there.

With the noise data as input, feedback control was simulated. The displace-
ment was effectively reduced by the controller to less than a millimeter (figure
22). The simulation parameters for this plot are T = 2.5 ·10−5 s, Vmax = 1.6 kV
and ϕ = 40◦. As can be seen in figure 23 the power supply is highly saturated
most of the time. A maximum output voltage of around 5 kV would have been
needed to avoid saturation. A faster system would benefit more from higher
output voltage, see figure 24.

6 Conclusions

The plasma radial position can be controlled with a PD controller and pulse
width modulated power supply. Equations 47 and 48 should give good starting
values for tuning the controller.

As for the power supply, increasing the switching frequency enables faster
control or greater phase margin (stability). To achieve minimum specifications,
τ = 1 ms and ϕm = 30◦, a switching frequency fPS > 7.5 kHz is required. If
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voltage limiter (shot 3583, ϕm = 40◦)

fPS is increased to 20 kHz, a settling time of just over 0.5 ms can be obtained
with a phase margin of 40◦.

Saturation increases the settling time and is an issue for Λ noise. A maximum
output voltage of 800 V could prove too small to combat disturbances in Λ.
Another effect of saturation is that it might not be best to use the fastest
possible controller. It would require large output voltages and saturate easily.
A better solution would be to settle for a slower controller but with a higher
phase margin.
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A Notation

A hat (̂) denotes a Laplace transformed variable. Index 0 generally stands for an
equilibrium state and 1,2,3 for plasma, shell, control coils respectively. δ repre-
sents a small perturbation. The following symbols are used throughout the text:

b Shell minor radius
a Plasma minor radius
R0 Plasma equilibrium major radius
R Plasma major radius
x Plasma radial displacement (R−R0)
M Mass of a plasma ion
m External vertical field gradient (dBzdR

R
Bz

)
ΩF Plasma oscillation frequency in vertical field
Λ Plasma asymmetry parameter
Γ ln(8R

a )− 1
2 + Λ

Bze Equilibrium field for the actual plasma parameters
BOH
z Vertical magnetic field from Ohmic heating transformer

Bshell
z Vertical magnetic field from induced currents in the copper shell

Bvf
z Vertical magnetic field from control coils

Bext
z Vertical magnetic field by external sources (not plasma)

δBz Disturbance in the vertical magnetic field
Bvf Average vertical magnetic field (measured by sensor)
Bcos First harmonic poloidal magnetic field (measured by sensor)
I0 Plasma equilibrium current
I1 Plasma current
I2 Total current flowing in one half of the shell
I3 Control current
V Control voltage
L12 Mutual inductance between plasma and shell
L13 Mutual inductance between plasma and control coils
L22 Shell self inductance
L23 Mutual inductance between shell and control coils
L33 Control coils self inductance
R2 Shell resistance
R3 Control coils resistance
Ξ xI1 (control variable)
x A vector [Ξ I2 I3]T

ω1 Plasma-shell dynamics first pole
ω2 Plasma-shell dynamics second pole
fPS Power supply switching frequency
T Half of the power supply switching time ( 1

2fPS
) ∼ 10− 60 µs
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G Control voltage V̂ to plasma displacement Ξ̂ transfer function
GΛ Perturbation in parameter δ̂Λ to plasma displacement Ξ̂ transfer function
GB Magnetic perturbation ˆδBz to plasma displacement Ξ̂ transfer function
W Power supply transfer function
F Controller transfer function
Ff Feed forward transfer function
GOL Open-loop transfer function (FWG)
GCL Closed-loop transfer function ( FWG

1+FWG )
TD PD controller derivative time
ωD

1
TD

Kp PD controller gain
N PD controller derivative cut-off factor
ϕm Phase margin
τ Settling time (95 % of final value)
ωc Cross-over frequency (|GOL(iωc)| = 1)

B Inductances

A large aspect ratio approximation (R0
b � 1) will be used in all of the following

calculations. That means toroidal effects are neglected and the vacuum vessel
can be considered as a cylinder.

B.1 L22

The shell is assumed to carry a current varying as di(θ) = I2
2 cos θ dθ. This

produces a vertical homogeneous magnetic field inside the vacuum vessel. The
contribution from current element di(θ) to the vertical part of the magnetic field
in the center is:

dBz =
µ0

2πb
di(θ) cos θ (51)

Integration gives the field:

Bz =
∫ 2π

0

µ0

4πb
I2 cos2 θ dθ =

µ0

4b
I2 (52)
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In order to calculate the inductance, the shell is divided into infinitesimal circular
elements that has a certain loop voltage. Each loop encloses a magnetic flux
(see figure 25):

Φ(θ) =
∫ ∫

B · dS = πR2Bz = π(R0 + b cos θ)2Bz (53)

The magnetic field is not Bz outside the shell, but for every current element
di(θ) there is a corresponding element −di(θ) at the same height, so the outside
won’t contribute to the flux.

According to Faraday’s law the induced loop voltage is:

v =
∮

E · dl = −
∫ ∫

∂B
∂t
· dS = −∂Φ

∂t
(54)

Power in an element (directions defined so that the power is positive):

dp = v di = v
I2

2
cos θ dθ =

= π(R0 + b cos θ)2 ∂Bz

∂t

I2

2
cos θ dθ =

µ0π

8b
(R0 + b cos θ)2 cos θ I2

∂I2

∂t
dθ (55)

The total power flowing in the shell becomes:

P =
∫ 2π

0

µ0π

8b
(R0 + b cos θ)2 cos θ I2

∂I2

∂t
dθ =

=
µ0π

2R0

4
I2

∂I2

∂t
= L22I2

∂I2

∂t
(56)

And the inductance can be identified as:

L22 =
µ0π

2R0

4
(57)

B.2 L23

The calculation of L23 is pretty much the same as that for L22, except that
the magnetic field is generated by the control coils. Their field in the shell is
approximately homogeneous and the value in the center is chosen (see figure 26
for geometry, the small circles are control coil windings):

Bz =
µ0

π

(
x1

x2
1 + y2

1

− x2

x2
2 + y2

2

)
I3 (58)

An average of the field over the midplane relative to the value at the center has
been calculated for the Extrap T2 geometry,

Bave

Bcen
= 1.0061

justifying the homogeneous field approximation.
After integration of the total power, the inductance can be identified:

L23 = µ0πbR0

(
x1

x2
1 + y2

1

− x2

x2
2 + y2

2

)
(59)
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B.3 dL12

dx

If the plasma major radius changes by dx, the change in enclosed flux is:

dΦ = dABz(x) = 2π(R0 + x)dxBz(x) (60)

where Bz = µ0
4b I2 (see B.1).

dL12

dx
=

1
I2

dΦ
dx

=
2π(R0 + x)Bz

I2
=

µ0π(R0 + x)
2b

(61)

The plasma displacement is assumed to be small compared to the major radius.
Dropping terms in the order of x

R0
and comparing with L22 = µ0π

2R0
4 results in:

dL12

dx
=

2
πb

L22 (62)

Coupling between plasma and shell when the plasma current channel is centered
is zero, so

L12 =
2
πb

xL22 (63)

B.4 dL13

dx

The calculation is similar to that for L12, but the magnetic field is

Bz =
µ0

π

(
x1 − x

x2
1 + y2

1

+
x− x2

x2
2 + y2

2

)
I3

Consequently the derivative of the inductance can be written as:

dL13

dx
= 2µ0(R0 + x)

(
x1 − x

x2
1 + y2

1

+
x− x2

x2
2 + y2

2

)
(64)

32



Approximating x� x1, x2, R0 and comparing with L23 (see B.2) gives:

dL13

dx
=

2
πb

L23 (65)

and
L13 =

2
πb

xL23 (66)

C Simulation tools

C.1 Matlab programs

There are many more or less empirical ways to find the right controller param-
eters (see e.g. [6]). Here Matlab’s control toolbox has been used extensively. It
allows you to specify transfer functions as polynomials and use normal operators
(such as + and *) on them.

With rltool a model can be imported and its root locus plotted. Then
the controller is constructed by adding poles and zeroes in the plot with the
mouse. The gain can be set by selecting points in the root locus graph. The
characteristics of the system (e.g. Bode diagram and step response) are updated
in ”real time” in another window.

To model feed forward and saturation of the power supply simulink was
used. With it, noise could easily be injected at various points in the control
loop. Blocks representing transfer functions and sources are simply connected
and simulink then runs the simulation using an ode solver.

C.2 Matlab code

C.2.1 controlinit.m
Initialization file, run before starting simulink.

control2;

load transf9

load regulatorer2

H=tf(100/I0,1);

shot=3583

Bdistdata;

f2=tf(1,[1/(2*pi*2e3) 1])^3;

f=tf(1,[1/(2*pi*1e5) 1]);

feedforward;

T=1/(2*fps);

fim=40*pi/180;

N=10;

phasemargin4;
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C.2.2 control2.m

Main m-file. Sets up all geometry data and transfer functions.

%

% model disturbance from external magnetic field Bext

% with only shell present

%

clear all

% physical constants:

%

% vacuum permeability

my0=4*pi*1e-7;

% experiment specific constants:

%

% control coil inboard position

x1=-0.44; y1=0.19;

% control coil outboard position

x2=0.56; y2=0.41;

% vacuum vessel radius

b=0.197;

% plasma minor radius

a=0.183;

% plasma mass

M=2e-8;

% equilibrium major radius

R0=1.24;

% equilibrium plasma current

I0=1.2e5;

% internal inductance per unit lenght

li=0.6;

% poloidal beta

betatheta=0.1;

% external vertical field gradient

m=-0.1;

% plasma current variation I~R^n

n=-0.2;

% copper shell time constant

tau2=5e-3;

% copper shell inductance

L22l=3.8448e-006; R2l=L22l/(tau2);

% shell-Bext mutual "inductance"

% from homogenous disturbance field

D2el=pi^2*R0*b;
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L23l=2*pi*R0*L23*4; L33l=260e-6; R2l=L22l/(tau2);

R3l=20e-3; D3el=2*pi*(1.8^2-0.8^2);

% derived constants

Gamma0=log(8*R0/b)-3/2+li/2+betatheta;

Omegaf2=my0*I0^2*((1+m)*Gamma0-1/2)/(2*R0*M);

% Omegaf2=my0*I0^2*((1+m)*Gamma0-(1-R0/a))/(2*R0*M);

% Useful transfer functions

shell=tf([L22l R2l],1); der=tf([1 0],1);

%

% model transfer function

%

cp2=M*Omegaf2*pi^2*b^2; es=4*I0^2*L22l;

% Plasma transfer function

q0=2*L23l*R2l*pi*b*I0^2; p0=cp2*R2l*R3l;

p1=cp2*(L22l*R3l+L33l*R2l)+4*I0^2*(L22l^2*R3l+L23l^2*R2l);

p2=(cp2+es)*(L22l*L33l-L23l^2); G=tf(q0,[p2 p1 p0]); zpk(G)

set(G,’inputn’,’control V’,’outputn’,’Displacement xI’);

% Control coil transfer function

q1=4*L22l^2*I0^2+M*Omegaf2*pi^2*b^2*L22l;

q0=M*Omegaf2*pi^2*b^2*R2l;

p2=-4*L22l*I0^2*L23l^2+4*L22l^2*I0^2*L33l

+M*Omegaf2*pi^2*b^2*L22l*L33l-M*Omegaf2*pi^2*b^2*L23l^2;

p1=4*L22l^2*I0^2*R3l+4*L23l^2*R2l*I0^2

+M*Omegaf2*pi^2*b^2*L22l*R3l+M*Omegaf2*pi^2*b^2*R2l*L33l;

p0=M*Omegaf2*pi^2*b^2*R2l*R3l; J = tf([q1 q0],[p2 p1 p0]); zpk(J)

set(J,’inputn’,’control V’,’outputn’,’control I’);

% Xi -> I2 transfer function

S1=2*L22l*der/(pi*b*shell);

% I3 -> I2 transfer funciton

S2=L23l*der/shell;

% Vertical flux sensor transer functions

% (assuming ideal integration after the flux loops)

M1=tf(2*my0*(R0-b)/b); M2=tf(pi*my0);

M3=tf(4*my0*b*(x2/(x2^2+y2^2)-x1/(x1^2+y1^2)));

% Power supply transfer function

% (modelled as time delay)

fps=2e4; % cut-off frequency

W2=tf(1,1,’iodelaymatrix’,1/(2*fps)); set(W2,’inputn’,’control

signal’,’outputn’,’control V’);

W3=pade(W2,1); % First order Pade approximation of time delay

set(W3,’inputn’,’control signal’,’outputn’,’control V’);

% transfer function for vertical field disturbance
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% with control coil and shell

a1=2*L22l/(pi*b)+pi*b*Omegaf2*M/(2*I0^2);

a2=2*L23l/(pi*b)+pi*b*Omegaf2*M*L33l/(L23l*2*I0^2);

b2=pi*b*Omegaf2*M/(2*I0^2); c1=L23l-L33l*L22l/L23l;

d1=pi^2*b*R0-D2el; d2=pi^2*b*R0*L33l/L23l-D3el;

G4=-tf([-d1*c1/R2l d2+R3l*L22l*d1/(R2l*L23l)

pi^2*b*R0*R3l/L23l],[-a1*c1/R2l a2+R3l*L22l*a1/(R2l*L23l)

b2*R3l/L23l]); G5=tf(1,[-a1*c1/R2l a2+R3l*L22l*a1/(R2l*L23l)

b2*R3l/L23l]);

set(G4,’inputn’,’B fluctuation’,’outputn’,’Displacement xI’);

set(G5,’inputn’,’control V’,’outputn’,’Displacement xI’);

% transfer function for disturbance in lambda

% with control coil and shell

a2=L22l*L33l-L23l^2; a1=L22l*R3l+L33l*R2l; a0=R2l*R3l;

d1=M*Omegaf2*pi^2*b^2; d2=4*I0^2*L22l; p2=(d1+d2)*a2;

p1=d1*a1+d2*(L22l*R3l+L23l^2*R2l/L22l); p0=d1*a0;

G6=-my0*I0^3*pi^2*b^2*tf([a2 a1 a0],[p2 p1 p0]);

set(G6,’inputn’,’Lambda fluctuation’,’outputn’,’Displacement xI’);

C.2.3 L23.m
Calculates the mutual inductance between the shell and the control coil.

function L23p=L23();

my0=4*pi*1e-7;

x1=0.44; y1=0.19; x2=-0.56; y2=0.41; b=0.25;

L23p=my0*b*(log(((b-x2)^2+y2^2)/((b+x2)^2+y2^2))

+log(((b+x1)^2+y1^2)/((b-x1)^2+y1^2)))/(4*b*2)

C.2.4 Bdistdata.m
Extracts δBz and Λ from measurement data. Λ is averaged over Nm data points and stored in
L2.

%

% Calculation of disturbance part of Bz

% assumes Control2.m has already been run

%

my0=4*pi*1e-7;

x1=-0.44; x2=0.56; y1=0.19; y2=0.41;

b=0.197; % copper shell radius

m=-0.1; % OH-field gradient
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g2=my0/(4*b); g3=my0*(x2/(x2^2+y2^2)-x1/(x1^2+y1^2))/pi;

m13=(2*L22l/(pi*b)+pi*b*Omegaf2*M/(2*I0^2))/R2l;

Be0=my0*I0*Gamma0/(4*pi*R0); % equilibrium field

displacement;

xI2=zeros(size(xI,1),1);

xI2(2:size(xI,1)-1)=(xI(2:size(xI,1)-1)+xI(1:size(xI,1)-2)

+xI(3:size(xI,1)))/3;

dXi=diff(xI2)/dtmin; dXi=[0 dXi’];

dB=Bz+pla_ny’*Be0/I0+m13*g2*dXi’+Be0*m*xI/(R0*I0);

Lambda=0.5-log(8*R0/a)-4*pi*R0*Bz./(pla_ny’*my0);

lone=ones(size(Lambda)); Lambda=min(Lambda,lone*0.5);

Lambda=max(Lambda,-lone);

Nm=351;

L2=zeros(size(Lambda,1),1);

for j=500:size(Lambda,1)-Nm

L2(j+round(Nm/2))=sum(Lambda(j:j+Nm))/Nm;

end

C.2.5 displacement.m
Calculates the plasma displacement x from experimental data in shot number shot.

%

% This m-file calculates the displacement

% from experimental measurements

% of vertical field and cosine component

% of the poloidal field.

%

[t dtmin pla_ny cos_ny ver_ny]=conformdata2(shot);

% physical constants:

% vacuum permeability

my0=4*pi*1e-7;

% experiment specific constants:

%

% plasma minor radius

a=0.183;

% equilibrium major radius

R0=1.24;

% cosine coil radius

rc=0.1895;

% saddle coil radius

rs=0.197;

%

% constant definitions

%

kpc=my0*((1+a^2/rc^2)*(log(8*R0/a)-1)+log(a/rc)+1)/(4*pi*R0);

kps=my0*((1-a^2/rs^2)*(log(8*R0/a)-1)+log(a/rs))/(4*pi*R0);

kzc=(1+a^2/rc^2); kzs=(1-a^2/rc^2);
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A=[-my0/(2*pi*rc^2) kzc; my0/(2*pi*rs^2) kzs];

B=[cos_ny-kpc*pla_ny; ver_ny-kps*pla_ny];

C=A\B; xI=C(1,:)’; x=C(1,:)./pla_ny; xone=ones(size(x));

x=min(x,xone*0.02); x=max(x,-xone*0.02); Bz=C(2,:)’;

C.2.6 conformdata2.m
Conforms the measured data from vertical field sensor, cosine coil and Rogowski coil to vectors
having the same starting time and length.

function [t,dtmin,pla_ny,cos_ny,ver_ny]=conformdata2(nbr);

pla_str=strcat(’pla_’,int2str(nbr),’.dat’);

cos_str=strcat(’cos_’,int2str(nbr),’.dat’);

ver_str=strcat(’ver_’,int2str(nbr),’.dat’);

[pla_t,pla_d]=loaddata(pla_str); % Plasma current data

[cos_t,cos_d]=loaddata(cos_str); % Cosine coil data

[ver_t,ver_d]=loaddata(ver_str); % Saddle coil data (vertical flux)

pla_s=size(pla_t,1); cos_s=size(cos_t,1); ver_s=size(ver_t,1);

tstartmin=min(cos_t(1),ver_t(1));

tstartmin=min(tstartmin,pla_t(1));

tstartmax=max(cos_t(1),ver_t(1));

tstartmax=max(tstartmax,pla_t(1));

tstopmin=min(cos_t(cos_s),ver_t(cos_s));

tstopmin=min(tstopmin,pla_t(pla_s));

pla_dt=(pla_t(pla_s)-pla_t(1))/pla_s;

cos_dt=(cos_t(cos_s)-cos_t(1))/cos_s;

ver_dt=(ver_t(ver_s)-ver_t(1))/ver_s;

dtmin=min(ver_dt,min(pla_dt,cos_dt));

t=tstartmax:dtmin:tstopmin;

pla_ny=interp1(pla_t,pla_d,t,’cubic’)*1e3; % current measured in kA

cos_ny=2*interp1(cos_t,cos_d,t,’cubic’); % calibration error => 2*

ver_ny=interp1(ver_t,ver_d,t,’cubic’);

t=t’/1e3; % time measured in ms

% Assume integer multiple of dtmin

pla_nt=pla_dt/dtmin; ver_nt=ver_dt/dtmin; cos_nt=cos_dt/dtmin;

C.2.7 loaddata.m
Loads measurement data from ascii file and stores it in vector data.

function [t,data]=loaddata(fname)

fid=fopen(fname);

tmp=fscanf(fid,’%g’);

s=size(tmp,1);
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t=tmp(1:s/2); % Assume even size

data=tmp(s/2+1:s); fclose(fid);

C.2.8 feedforward.m
Extracts data from the theoretical feed forward transfer function and approximates it by
adding a high frequency pole.

Ff=-G4/(G); % power supply (1/W) neglected

[z p k]=zpkdata(Ff);

z1=sum(z{1})-sum(p{1});

fr=1e5;

Ff1=k*tf([1 -z1],[1 fr])*(fr);

C.2.9 phasemargin4.m
Calculates cross-over frequency ωc and controller parameters using the equations in section
4.3.

%

% Calculates the maximum cross-over frequency

% for a PD controller with power supply

% time delay T, phasemargin fim and derivative

% cut-off factor N.

% Also the derivate part frequency opd and

% controller gain K are calculated

%

om=(atan(sqrt((N.^2-1)./(N-1)))

-atan(sqrt((N.^2-1)./(N.^3-N.^2)))-fim)./T;

opd=om./sqrt((N.^2-1)./(N-1));

K=om.^2.*sqrt((N.^2+N+1)./(N+2));

[ans ans Kg]=zpkdata(G); Kp=K/Kg;

PD=tf([1 opd],[1 N*opd])*Kp/H;
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