
ISSN 0280-5316
ISRN LUTFD2/TFRT--5655--SE

Supervision of computer equipment
In ABB OperateIT using WMI

Jens Axelsson

Department of Automatic Control
Lund Institute of Technology

October 2000

Document name
MASTER THESIS
Date of issue
October 2000

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD2/TFRT—5655--SE
Supervisor
Jan Gjerseth ABB
Karl-Erik Årzén LTH

Author(s)
Jens Axelsson

Sponsoring organization

Title and subtitle
Supervision of computer equipment in ABB operateIT using WMI
(Övervakning av datorutrustning i ABB OperateIT med hjälp av WMI)

Abstract

This document details the investigation and implementation of a product intended for supervision and management
of standard computer and office equipment. The product is run from inside the ABB OperateIT Platform, as an Aspect
System. The Aspect receives its data through communication with the CIM Object Manger, as suggested in the
WBEM Initiative. The document also details the WBEM Initiative and some the standards brought forward by this
initiative.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
66

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.se

Abstract
This document details the investigation and implementation of a product intended for
supervision and management of standard computer and office equipment. The product
is run from inside the ABB Operate IT Platform, as an Aspect System. The Aspect
receives its data through communication with the CIM Object Manger, as suggested in
the WBEM Initiative. The document also details the WBEM Initiative and some the
standards brought forward by this initiative.

OperateIT

WMI Powered Aspect

Master Theses at: Lund Institute of Technology
Author: Jens Axelsson
Examiner: Karl-Erik Årzén, Associate Professor in Automatic Control
Supervisor: Jan Gjerseth
Site: ABB Automation Products AB
Document number: 3BSE022901/0.6

2

OperateIT WMI Aspect

Document number: 3BSE022901 3

Table of Contents

1. PROJECT SPECIFICATION .. 7
1.1 MOTIVATION 7
1.2 OBJECTIVES 7

2. FEASIBILITY-STUDY ... 9
2.1 DIRECT ACCESS TO THE DRIVER 9
2.2 ACCESSING SPECIALLY DESIGNED MANAGEMENT APPLICATIONS 10
2.3 UTILIZING WINDOWS MANAGEMENT INSTRUMENTATION 11
2.4 CONCLUSION FROM THE FEASIBILITY-STUDY 11

3. DESCRIPTION OF OPERATE
IT..14

3.1 INTENDED USE AND POSSIBILITIES 14
3.2 GOALS FOR THE OPERATE

IT
 PLATFORM 15

3.3 THE ABB ASPECT OBJECT MODEL 15
3.3.1 ASPECT OBJECTS 16
3.3.2 ASPECTS 17

3.4 SYSTEM STATUS FRAMEWORK 17
3.4.1 SYSTEM STATUS PROVIDER 18
3.4.2 SYSTEM STATUS VIEWER 18

4. PRE-STUDY OF WINDOWS MANAGEMENT INSTRUMENTATION..21
4.1 WEB-BASED ENTERPRISE MANAGEMENT 21

4.1.1 DISTRIBUTED MANAGEMENT TASK FORCE 21
4.1.2 COMMON INFORMATION MODEL 22
4.1.3 OTHER DMTF STANDARDS 24
4.1.4 THE STATUS PROPERTY 24

4.2 DESCRIPTION OF WMI 25
4.2.1 WMI QUERY LANGUAGE 26

4.3 RISK ESTIMATION 27

5. ABB ASPECT OBJECT MODEL AND CIM..29
5.1 REPRESENTATION OF CIM PROPERTIES IN ASPECT OBJECTS 29
5.2 CREATION OF WMI POWERED ASPECT OBJECTS 30
5.3 MAPPING 32

5.3.1 HARD CODING 32
5.3.2 MAPPING THE STATUS PROPERTY 33
5.3.3 GENERIC MAPPING 34

6. PROTOTYPING THE WMI ASPECT ...38
6.1 SOFTWARE ENGINEERING 38

6.1.1 REQUIREMENTS ENGINEERING 39
6.1.2 SOFTWARE PROTOTYPING 39

4

6.2 OUTLINE DEFINITION 41
6.3 THE IMPLEMENTATION 41

6.3.1 CREATING THE SKELETON OF THE ASPECT 41
6.3.2 CONNECTING TO THE CIM OBJECT MANAGER 42
6.3.3 SELECTING WMI PROPERTIES 43
6.3.4 NOTIFICATION OF CHANGE IN WMI PROPERTIES 44
6.3.5 DESIGN OF THE CONNECTION TO WMI 45

7. IMPLEMENTATION OF A SIMPLE WMI PROVIDER...47
7.1 PROVIDER 47
7.2 MSDN TUTORIAL 47
7.3 ABBGENERATOR PROVIDER 48

7.3.1 FUNCTIONAL DESCRIPTION 48
7.3.2 IMPLEMENTATION 48

8. EVALUATION OF THE WMI CLIENT-PROVIDER SOLUTION ..51
8.1 WMI PROVIDER 51
8.2 WMI CLIENT 52
8.3 WMI CLIENT-PROVIDER 53
8.4 CONCLUDING REMARKS 54

9. FUTURE WORK...55
9.1 IMPROVED WMI ASPECT 55
9.2 WMI RELATED EXTENSIONS 56

10. CONCLUSION ...58
10.1 FULFILLMENT OF THE OBJECTIVES 58
10.2 CONCLUDING REMARKS 58

APPENDIX A – DESCRIPTION OF ABBREVIATIONS AND WORDS ...60

APPENDIX B – MOF FILE FOR THE WMI PROVIDER ABBGENERATOR62

APPENDIX C – WMI ASPECT USER GUIDE...64
C.1 USER INTERFACE COMPONENTS 64
C.2 TUTORIAL 67
C.3 PITFALL AVOIDANCE 68

REFERENCES ..69

OperateIT WMI Aspect

Document number: 3BSE022901 5

Document outline
All abbreviations used in the text, except ones that has become names, will be
described, or at least typed out in full, in Appendix A – Description of Abbreviations and
Words.

1. Project Specification
This chapter answers the questions: Why is this project initiated and what are the
objectives of this investigation?

2. Feasibility-Study
This chapter describes a selection of possible methods to get the Operate IT Platform, an
application that is run on the Microsoft Windows 2000 operation system, to supervise
and manage standard computer and office equipment.

3. Description of OperateIT

This chapter describes the Operate IT Platform, why it is used, possibilities with it, its
goals, and some features of the product. The last part of this section is devoted to the
system status framework.

4. Pre-Study of Windows Management Instrumentation
This chapter summarizes a pre-study of WMI and the results will be used to increase
the understanding of the problem domain. The purpose of the pre-study is to lie as a
foundation for the outline of the WMI Aspect prototype.

This chapter starts off with a description of the roots of WMI that can be found in
WBEM. The information content herein are from press releases and other material
found on the DMTF’s website. The pre-study will then continue with a more detailed
look upon WMI. The chapter will then conclude with a number of estimated risks that
come with relying on WMI for critical and non-critical tasks.

5. ABB Aspect Object Model and CIM
This chapter will cover design specific details on how to access management data
published by WMI from the Operate IT Workplace. This will be done through a WMI
powered Aspect that the engineer can use as a building block when making structures
of managed elements with Aspect Objects.

There are three sections in the chapter, the first describes how the two object models
can be fitted together, i.e. CIM and the Aspect Object Model. The second section covers
the building of structures and how the Aspects should be configured. The last section
describes how the mapping of WMI Properties to OPC Properties could be done.

6. Prototyping the WMI Aspect
This chapter covers the prototyping of the Operate IT WMI Aspect. The first section, 6.1,
will be a motivation of the development model chosen, namely prototyping. The main
source of information contained in the motivation is, Sommerville, I. (1995) [9]. Then the
next section is a brief overview of the tools used to build the foundation of the aspect

6

system. The last section, 6.3, covers implementation specific details, like how the
connection to the CIM Object Manager is established and how the communication
works.

7. Implementation of a Simple WMI Provider
This chapter covers WMI Provider writing in general and specially the implementation
details of a sample provider, the ABBGenerator.

8. Evaluation of the WMI Client-Provider Solution
This chapter describes the functionality of the WMI Client-Provider implemented in
chapter 6 and 7 of this document. This description will be more focused on the
functionality of the WMI Provider and the WMI Client from a users point of view, where
as chapter 6 and 7 focuses more on how they are implemented. How the pieces of this
chapter fits together can be seen in Figure 2-2, but the box at the bottom “Managed
System” does not exist.

9. Future Work
This chapter is divided into two parts. Part one covers the evolution of the WMI
Powered Aspect, and part two covers how WMI might be used in future products.

10. Conclusion
This chapter summarizes the final conclusions drawn from the entire lead-time of the
project.

OperateIT WMI Aspect

Document number: 3BSE022901 7

1. Project Specification
This chapter answers the questions: Why is this project initiated and what are the
objectives of this investigation?

1.1 Motivation
The OperateIT workstation is fundamentally designed to supervise and manage
automated plants with, among other things, sensors, controllers, and feeders. For more
information about Operate IT see chapter 3, “Description of Operate IT”. Sensors,
controllers, and feeders are all specially designed for use in the industry and are
therefore often rather expensive. Equipment constructed for use in the industry are,
compared to office equipment, more expensive mainly because (1) higher quality, (2)
smaller series, and (3) less competition. An alternative to using industry standard
products is the use of common of the shelf, COTS, components for non-critical tasks.
As more COTS components make their way into the world of automation the necessity
to supervise them grow. Since COTS components are not usually designed for the often
dirty and trying environment found in most factories, the fault frequency will be even
greater than with the more costly industry standard equipment. The two factors above
put together give that the need to detect faults in standard office equipment will increase
over the time to come.

Naturally ABB Automation Products AB, the developers of Operate IT, does not want to
spend a lot of time and effort on designing special functionality for fault detection in
standard office equipment. It is also not likely that the constructors of the equipment are
keen on developing specially designed drivers were data could easily be published and
processed in Operate IT.

1.2 Objectives
In this section the main objectives and additional objectives are presented. These
objectives are presented in natural language and do not contain any kind of unique
identifier for later reference. The objectives are also not presented in any given order of
importance.

1) This project opts to make it easy to supervise and manage standard office and
computer equipment using the existing ABB Operator Station, Operate IT.

2) Examine WBEM and describe Microsoft’s implementation, WMI.
3) Investigate how the CIM-schema can be extended with ABB Objects.
4) Investigate if it is possible, and what is required, to make Operate IT specific

data available to third-party software via WMI with the help of a WMI Provider.
5) Examine the support WMI is getting from third-party developers.
6) Investigate how to map the CIM into the ABB Aspect Object Model.

8

OperateIT WMI Aspect

Document number: 3BSE022901 9

2. Feasibility-Study
This chapter describes a selection of possible methods to get the Operate IT Platform, an
application that is run on the Microsoft Windows 2000 operation system, to supervise
and manage standard computer and office equipment.

The most obvious solutions are presented below:
1) Direct access to the driver
2) Accessing specially designed management applications
3) Utilizing Windows Management Instrumentation, WMI

Possibilities and constraints put upon the method originate in Windows NT’s layered
structure, and the Intel processor architecture, not particularly in the Operate IT Platform.
If the OperateIT Platform were run on Microsoft DOS none of the solutions mentioned
above would be possible. The solution in that case would most likely be to use the port
command, reading and writing to different ports accessing the hardware directly.

2.1 Direct access to the driver
In the first solution there is a hard coupling to the device, even though not as hard
coupling as using the port command mentioned above. This is how communication is
traditionally done with devices in Windows NT/2000.

Windows NT/2000 is based on a layered structure, as can be seen in Figure 2-1 [2],
where the standard user applications runs in user mode whereas the kernel runs in
kernel mode. These are two of the four, 0 to 3, protection modes [1] introduced with the
Intel 80386 processor, and give the running code different privileges. The kernel runs in
mode 0, most privileged, and the user applications in processor mode 3, least
privileged. This protection mechanism provides the ability to limit access to certain
segments or pages based on the privilege levels. A user mode process that wants
access to the hardware has to make a system call to the kernel. The processor will then
enter mode 0 and the request will be sent to the appropriate module in the kernel,
where it will be processed and then the call will be passed to the hardware through one
of the three exit points, hardware device drivers, hardware abstraction layer, or graphic
device driver. Any answer or result has to be propagated back the same way.

10

Figure 2-1. Windows NT 4.0 Modular Architecture.

This solution will require intimate knowledge of the supervised equipment, but might
result in the most flexible design of the management aspect, and will also result in the
shortest access time to the managed device. The fundamental difference between this
solution and the other solutions mentioned is that in those solutions more software
layers are added on top, as applications or services running in user mode.

This method could be recommended only when a small and well-defined set of
equipment is to be supervised. The equipment in question should also be well known to
the developer, this since all communication is done directly with the device.

2.2 Accessing specially designed management applications
Some hardware manufacturers develop applications, specially designed for the
supervision and management of their particular product. This is the case with for
example Hewlett-Packard. They develop a tool called “HP Web JetAdmin” [3]. The tool
is designed for configuration and supervision of printers, network scanners, and CD-
ROMs over a local network or even Internet. What this program does is very close to
the objectives of this project, but it should be done from within Operate IT. If it would be
possible to access the application from Operate IT in a seamless manner this could be a
viable solution. Another problem that comes to mind is that for example JetAdmin only
supervise a small set of the standard equipment that could be found on the market,
namely HP products and printers that are Standard Printer MIB compliant. This gives
that to increase the set of equipment that Operate IT is able to manage, more
management applications has to be accessed and when such an application is not

Hardware

Win32
subsystem

Hardware Abstraction Layer (HAL)

Microkernel

Executive Services

User Mode

Kernel Mode

System Services

I/O Manager

Cache
Manager

File System
Drivers

Network
Drivers

Hardware
Device Drivers

Window
Manager

(WIN32K.SYS)

Graphic Device
Drivers

Object
Manager

Security
Reference
Monitor

Process
Manager

Local
Procedure

Call
Facility

Virtual
Memory
Manager

Security
subsystem

OperateIT WMI Aspect

Document number: 3BSE022901 11

available, no supervision is possible. One can also image that if the applications are at
all accessible the functionality and how to access it might vary greatly.

2.3 Utilizing Windows Management Instrumentation
Windows Management Instrumentation, WMI, is Microsoft’s implementation of WBEM a
standard for distributed device management. One of the most attractive objectives of
WBEM is that all management data is supposed to be accessed in a uniform way. The
implementation of WMI consists of two strongly coupled software layers, see Figure 2-2,
but in between the device driver and the management application. The top-layer is a
service developed by Microsoft. To that service so called WMI Providers are attached at
run-time when needed. The device driver developer and hardware manufacturer
develop these WMI Providers. This leads to both the advantages and the drawbacks
with WMI.

Figure 2-2. WMI Architecture.

The main advantages are that the management data is retrieved from the device by a
component developed by the persons that one could expect to have the best knowledge
about the device, and that it is then accessed by the management application in a
uniform way.

The main disadvantages are that the standard is rather new, and the implementation is
even newer. The full implementation is, as of today, only available in Windows 2000.
This gives that the standard might change and might not get the strong support
expected. This can lead to few fully-fledged implementations, by third party developers,
of WMI Providers. Another disadvantage, even though it might be insignificant in most
situations, is that adding more software layers will require more CPU power, this will
inevitably make the final management product slower.

2.4 Conclusion from the Feasibility-Study
The first solution, direct driver access, can be used in special cases where a low-latency
high-speed management data access is more important than a short development time.
This solution will not be described in greater detail in this report. Even with the

Management
Application

Managed System

CIM Object
Manager

Provider

CIM Repository

12

disadvantages mentioned above, in section 2.3, WMI is the only viable solution for a
general and generic management application. Because of the uniform management
data access, once a WMI powered management application is developed, adding new
devices requires no additional development.

OperateIT WMI Aspect

Document number: 3BSE022901 13

14

3. Description of OperateIT

This chapter describes the Operate IT Platform, why it is used, possibilities with it, its
goals, and some features of the product. The last part of this section is devoted to the
system status framework.

3.1 Intended Use and Possibilities
The possibility to see what happens on the factory floor is severely limited due to for
example spatial distribution, and machine safety shielding. Still the need to know what
happens is great, due to the fact that malfunction might pose a threat to the machines,
the staff, the public, or at least the production. This knowledge could be used for error
detection, maintenance, and process optimization. Desired is also to move the
information out of the often noisy and not seldom ill conditioned environment of the
factory floor.

There are a number of issues with plant supervision, like should one use centralized or
distributed management, and what information should be presented to different users.
The points of view put forward above, are all in favor of centralized supervision, i.e. all
the information from all different apparatus in the plant is brought to one location. But
this is not the best solution in all situations [7], when maintenance personal for example
are correcting malfunction in a machine the need to diagnose the machine might occur
frequent. If the distance from the machine to the supervision room is great this could be
tedious work. This problem could be solved in a number of ways:

1) Phone conversation between the maintenance personnel and the personnel in
the supervision room

2) Redistribute the information around the plant floor
3) Use the faulty machines own interface
4) Use WAP enabled hardware to distribute the information

Solution 1 might be the natural and cheapest way but might also be error prone, due to
difficulties inherited with vocal communication. The often noisy environment found in
factories makes vocal communication even harder. Solution 2 might be a good thing if
the cost of the terminals is low. Solution 3 is a traditional solution but requires the
personnel to understand and cope with a number of different implementations. Solution
4, the use of rather new technology as of 2000, here this is can be that information is
brought to a wireless handheld device, like a Palm Pilot or a WAP enabled mobile
phone. All solutions are possible with Operate IT, due to the high degree of scalability.
The WAP solution was demonstrated on the International Trade Fair Interkama ’99 in
Düsseldorf, using the WAP enabled mobile phone, Ericsson R380s, as of that time a
prototype.

OperateIT WMI Aspect

Document number: 3BSE022901 15

The second issue mentioned above is, what information should be presented to
different users. In today’s systems the users spend a lot of time searching for the
information instead of using the information. This is because the information is scattered
in different binders, databases, files, and around the web. The problem is not lack of
information, rather the lack of structure in the information. One of the main concepts of
the OperateIT workplace is to focus on the information. The information should only be
one click away in a context sensitive manner. This means that depending on who clicks
and where, the information the person is confronted with will be customized accordingly.
The focus on information distribution is to ease the navigation and thereby optimize the
productivity of the coworkers of the plant. The concept also includes focusing on the
right information and to not present unnecessary and unwanted information and thus
clutter the view. An example could be that administrative personnel, would in most
cases not want to see the blueprints of an entity, but this might be the first choice for
maintenance personnel. Further, both administrative and maintenance personnel might
want historic data. But the administrative personnel as an excel sheet for further
processing and presentation, and the maintenance personnel as an overview graph to
look for trends to decide about preventative maintenance.

The main concepts to deal with these two issues mentioned above are ABB Aspect
Objects, this via scalability and flexibility. This concept is described in more detail in
the following sections below.

3.2 Goals for the OperateIT Platform
A transcript of the four major goals of the Operate IT Platform, as presented in [8], are

1) to provide a system that solves the customer’s problem, is easily understood
and allows him to work efficiently with all the complexities inherent in an
automation system,

2) to ensure (or at least make possible) that the software developed for the
different functions can work together as one consistent and integrated system,

3) to provide a system in which reusable solutions can be developed. As ABB
does much of its business by providing customers with solutions it is important
that the solutions can be reused, and

4) that the architecture and the platform that supports this architecture will make it
possible to develop software that is compliant with the architecture at low and
predictable cost.

3.3 The ABB Aspect Object Model
The ABB Aspect Object Model addresses the issue of presenting information and
allowing a user to operate on information in a consistent way. The model also
addresses how different functions are integrated into the system in a way natural to the
user. The ABB Aspects Object Model is based on ABB Aspect Objects and Aspects.

16

3.3.1 Aspect Objects

The fundamental building block in Operate IT is the Aspect Object. Aspect Objects tend
to map to real world entities, like a valve, a motor, a controller, or a sensor. But can also
map to abstract entities like user groups, functions, or software. Aspect Objects can be
put in different hierarchical structures for different viewing purposes. Examples of
structures can be seen in Figure 3-1. One Aspect Object can be found in many
structures. These structures can be used to navigate, and easily find objects of interest.
When for example the “V37, Block Valve” in Figure 3-1a, Functional Structure, is found
the user can switch to the Location Structure to find where in the plant the Block Valve
is located. Then to identify to what network the block valve is connected the user only
needs to switch to the Control Structure. This is one example of how information is
easily cycled through for commonly performed tasks.

Figure 3-1. Three possible structures, the same entity of a block valve are marked in gray.
From the left a) Functional Structure, b) Location Structure, and c) Control Structure.

One benefit of the Aspect Objects are the possibility to re-use solutions. This is an
actual advantage because a lot of objects in the real world consist of the same type of
objects. This is especially true in automated plants, where for example multiple identical
tank farms might exist for cooling and/or buffering. The engineer can create a type
solution consisting of many Aspect Objects like for example a Supply, a Transfer Pump
and a Block Valve. The engineer can then select the aspects of his liking to be
contained in the objects.

When a type solution is created it is possible to instantiate any number of copies of it,
this to easily create any number of complex instances. This reduces the time consumed
by creating many similar objects; this time can then be invested in assuring that the type
solution created is correct and well optimized. Every time this type solution then is re-
used, the engineer then saves time and can be sure that new instances are well

OperateIT WMI Aspect

Document number: 3BSE022901 17

designed. The use of type objects also leads to another advantage that if one wants to
update the objects, one only needs to change the type object and this change is then
reflected in all the instantiated objects.

3.3.2 Aspects
The Aspect Objects are a more conceptual part of the ABB Aspect Object Model, the
real strength is the Aspects of the objects. The Aspect Objects can be thought of as
folders, i.e. they function as containers that contain the information carrier. Aspects can
be seen as different ways to view the objects, i.e. viewpoints. The different viewpoints
are suitable for different purposes and persons of different professions. Examples of
possible aspects on an Aspect Object are name, functional description, operator
graphics, maintenance record, and so forth. These are all representations of the same
real world entity but from different perspectives. The aspects not of any interest to the
operator are hidden; this so that the amount of information will be kept to a minimum
because unnecessary information will just clutter the view. One of the ideas is that the
user is supposed to, from any aspect, be able to navigate to any other aspect of the
Aspect Object. This, together with the possibility to navigate the structures of Aspect
Objects, does make it easy to find specific information and to get an overview of the
entire plant.

All interaction with the Aspect Objects is done through its Aspects, i.e. methods and
properties only exist on the aspects. A user can only perceive an Aspect Object through
its aspects as opposed to the systems internal representation of the Aspect Object as a
GUID. This gives that multiple Aspect Objects can have for example name aspects with
identical name attributes. It is then still different objects but the user will not be able to
tell them apart.

The Aspect Directory is the component that keeps track of and stores the association
between aspects and Aspect Objects. Aspects, as Aspect Objects, are identified by a
GUID. This construction makes it possible to move them between systems, it does in
this process retain its GUID. If for example an Aspect Object is developed in one
system, then exported to another system, and then modified in the first system, and
then re-exported to the second system it will be correctly updated in that system.

3.4 System Status Framework
The functionality of system status framework is described in the document [13]. The
system status framework consists of two complementing parts: the viewer and provider
requirements. The viewer is an Aspect that is used to view the status of Aspect Objects
providing system status in accordance with the requirements put upon them.

18

3.4.1 System Status Provider
Any aspect can be a system status provider by just fulfilling the requirements put upon
them. But if an Aspect Object has more than one Aspect that functions as a system
status provider the result is undefined. The requirements put upon a system status
provider are (1) implementing the IAfwSystemStatusReporter interface, (2)
must at least provide the subscribable OPC Property S_STATUS, and (3) detailed
description should be implemented as aspect views and have the aspect key System
Status Details. The key, in requirement three, is added through Operate IT Workplace
when the system is configured at run-time. The other two requirements are fulfilled at
design-time. To requirement one can be added that the OPC Properties S_TIME and
S_DESCRIPTION ought to also be supported for additional information about any error
presented [14].

3.4.2 System Status Viewer
The System Status Viewer is used to view the status of Aspect Objects with an Aspect
fulfilling the requirements put upon a System Status Provider. The System Status
Viewer implements an aspect system that displays an overview of the status for the
Aspect Objects in the structure. This can be seen in Figure 3-2. At the top of the figure
are buttons and boxes for navigating structures in Operate IT, below this are buttons and
boxes to control and navigate the structure presented by the System Status Viewer.

Figure 3-2. System Status Viewer.

The main area are divided into a number of fields of which the rightmost are the
structure selected showing Aspects Objects complying to the requirements of a System
Status Provider. The next field shows the status of the managed element represented
by the Aspect Object. In this case all objects are ‘Ok' except the logical disk ‘C:’ and the
signal generator generating a rectangular wave. These are in the state ‘Warning’
respectively ‘Error’. The states are represented by: a green circle for ‘Ok’, a white cross
on a red background for ‘Error’, and an exclamation sign on yellow background for

OperateIT WMI Aspect

Document number: 3BSE022901 19

‘Warning’. The next field shows the time of the last change in status for the Aspect
Object. The field after that is a description of current state, not needed for the ‘Ok’ state.

In the scenario presented in Figure 3-2 the disk drive is ok but the ‘c: partition’ is in a
warning state, how can this be? One possibility is that the disk drive is working fine but
the ‘c: partition’ is almost full, and accordingly the status is set to ‘Warning’. Another
possibility is that the file structure on the ‘c: partition’ is corrupt.

20

OperateIT WMI Aspect

Document number: 3BSE022901 21

4. Pre-Study of Windows Management Instrumentation
This chapter summarizes a pre-study of WMI and the results will be used to increase
the understanding of the problem domain. The purpose of the pre-study is to lie as a
foundation for the outline of the WMI Aspect prototype.

This chapter starts off with a description of the roots of WMI that can be found in
WBEM. The information content herein are from press releases and other material
found on the DMTF’s website. The pre-study will then continue with a more detailed
look upon WMI. WMI is Microsoft’s implementation of WBEM and is an integral part of
Windows 2000. It is strongly connected with the Microsoft Management Console, and
the Windows Driver Model. WMI is a technology pushed by Microsoft with the release of
Windows 2000. The chapter will then conclude with a number of estimated risks that
come with relying on WMI for critical and non-critical tasks.

4.1 Web-Based Enterprise Management
Web-Based Enterprise Management, WBEM, started as an industry initiative in 1996
and has evolved into Distributed Management Task Force in 1999 [4]. The problem
WBEM tried to address is that element management is done in isolation, i.e. little or no
integration, and that the burden of interpreting objects are placed on each management
application. There are some standard protocols for management but they only address
a small piece each, like for example network devices utilizes SNMP, desktop systems
DMI, telecom devices CMIP and yet other devices uses their own private protocols.

The goal of WBEM was (1) to harness the power of the web for management
interoperation, (2) build a Common Information Model for management, and (3) to
integrate existing standards (SNMP, DMI, CMIP, etc). With “harness the power of the
web” it is meant that management data and the actual managed elements should be
accessible from the Internet, and the second vision states that all managed entities are
accessed through a single unified standard protocol in this case xmlCIM.

4.1.1 Distributed Management Task Force
The Distributed Management Task Force, DMTF, is an industry organization that is
leading the development, adoption and unification of management standards and
initiatives for desktop, enterprise and Internet environments. The DMTF is chartered to
adopt, create, and maintain the specifications and technologies that provide
management tools with the ability to discover, deploy, and control management data in
a standard way. Working with key technology vendors and affiliated standard groups,
the DMTF is enabling a more integrated, cost effective, and less crisis-driven approach
to management through interoperable management solutions. Worth noting is that the
meaning of the D in DMTF has altered, the former meaning was Desktop but it has
changed to Distributed.

22

The initial WBEM initiative that came from BMC Software, Cisco Systems, Inc.,
Compaq, Intel, and Microsoft has transformed into DMTF with the current board
members shown in Table 4-1. Together with these 13 board members, there are other
types of members, Contributing Members, Associate Members, Alliance Partner
Members, Customer Advisory Board Members, and Academic Alliance Members. There
are about 200 members of the DTMF of which a handful are Ericsson, AT&T, Fujitsu
Limited, Motorola, Nokia, and Lund Institute of Technology.

Board Members
3Com

Avaya
Cisco
Compaq Computer Corp.
Dell Computer Corp.
Hewlett-Packard Company
IBM/Tivoli Systems, Inc.

Intel Corporation
Microsoft Corporation
NEC Corporation
Novell
Sun Microsystems, Inc.
Symantec Corporation

Table 4-1. Table showing current members of the DMTF board.

Different management applications need to have a common understanding of the
managed elements regardless of how that information is stored or transported, DMTF’s
solution to this problem is called Common Information Model and is based on an object-
oriented model, in that sense that it incorporate for example such ideas as classes,
instances, inheritance, properties, and methods. CIM is described in mode detail in the
following section, section 4.1.2.

4.1.2 Common Information Model
One of the main objectives of the DMTF was to establish a uniform standard on how
management information should be represented; this standard is called Common
Information Model or CIM for short. The management model is divided into the following
conceptual layers [5]:

1) Core Model – an information model that captures notations applicable to all
domains of management.

2) Common Models – information models that capture notions common to
particular management domains but independent of a particular technology or
implementation. The common domains include Systems, Applications, Devices,
Users, Networks, Policies and Databases.

OperateIT WMI Aspect

Document number: 3BSE022901 23

3) Extension Models – represent technology-specific extensions of the Common
Models. These models are specific to environments, such as operating
systems, or to vendors.

CIM is based on concepts known from object-orientated design, and is in the
documents from DMTF modeled in UML. The basic building block in the CIM is the
class, in UML modeled as a box. The attributes of a class are known as properties, the
classes are furthermore built of methods. The methods can be used to interact with the
managed element; one example could be a reset method to reset a malfunctioning
logical device. The CIM object hierarchy is based on inheritance and the top of the CIM
core model v2.4 can be seen in Figure 4-1. Inheritance is a subclass/superclass
relationship where the subclass inherits the properties and methods from the
superclass. The CIM does not support multiple inheritances.

As described in chapter 3, “Description of Operate IT”, objects and aspects are all thrown
into a void uniquely identified only by their GUID. This is called an object identity model.
This in contrast to the keyed object model used in CIM where all class instances are
uniquely named and referenced by the class’ keys. Instances of CIM classes are
uniquely identified by their key properties, their class name, and a namespace identifier.
As CIM is only an information model the implementation may require different
identifiers, one may use GUIDs another like DEN may use distinguished names.

Figure 4-1. The CIM object hierarchy v2.4.

The Managed Element class roots the CIM object hierarchy and acts as a reference for
associations that apply to all entities in the hierarchy. Managed System Elements
represent Systems, components of Systems, any kinds of services (functionality),
software and networks. The definition of “System” in the CIM context is quite broad,
ranging from computer systems and dedicated devices, to application systems and
network domains. Both Logical and Physical Elements are subclasses of Managed

ManagedElement

ManagedSystemElement

Product Collection

PhysicalElement LogicalElement

LogicalDeviceSystem

Configuration StatisticalInformationSetting

24

System Element. Further definition and specification of these subclasses are provided
in the Core and Common Models. For example, System and Logical Device objects are
subclasses of Logical Element, defined in the Core Model.

The Common model is an information model that captures notions that are common to
particular management areas, but independent of a particular technology or
implementation. The information model is specific enough to provide a basis for the
development of management applications. This model provides a set of base classes
for extension into the area of technology-specific schemas. The Core and Common
models together are expressed as the CIM schema. The currently defined common
areas are Systems, Devices, Applications, Networks, and Physical.

The CIM Schemas are described by a text format called Managed Object Format, MOF,
and its syntax reminds a lot of the syntax of C++. The CIM Schemas can also be
expressed in XML as defined by the “XML Mapping White Paper” [6].

4.1.3 Other DMTF Standards
As mentioned above WBEM is not supposed to eliminate other standards for
management but rather incorporate them and, by that, the work put into them. Here two
DMTF Standards incorporated in CIM will be briefly described, this for completeness
and for possible future extensions of this investigation. The two standards are DMI and
DEN.

Desktop Management Interface, DMI, details a standard framework for managing
networked desktop systems and servers and details a standard way of sending DMI
management information across a network. DMI also incorporate a highly flexible event
model, where it is possible to describe and filter the events. To see how CIM and DMI
are related to each other look at Figure 4-2.

Directory-Enabled Networks, DEN, is an initiative to develop a standard and extensible
directory schema foundation for heterogeneous networks providing interoperable
directory services for networking. The DEN specification allows applications to
transparently leverage network infrastructure from the users perspective, and support
distributed network-wide service creation, provisioning and management. DEN specifies
a common data model, CIM v2.3, with LDAP mappings from CIM to X.500.

4.1.4 The Status Property
The classes that apply to many real world office objects like Printers, Hard Drives,
Memory, CPU, and so forth are all classes that inherit from the class
CIM_ManagedSystemElement. Its position in the CIM Schema v2.4 can be seen
in Figure 4-1 above. CIM_ManagedSystemElement represent systems
(computer, network, storage library, and application system), the software running on
them, the functionality provided by them, and the hardware that compose them. This
class has the properties Name, Description, Caption, Install Date, and

OperateIT WMI Aspect

Document number: 3BSE022901 25

Status. The Status property is of great importance in this project since it describes
operational and non-operational states for a managed system element. Like all other
properties, the Status property is inherited by all derived classes. This gives that for
example Printers, Hard Drives, and Memory, and so forth all have their own copy of the
same type of property.

The status property is a 10-character string that, in CIM Schema v2.0, can have the
values shown in Table 4.2. In CIM Core Model v2.4 white paper [10] the explanation to
why the status property remained a short string instead of a uint16, i.e. an enumeration,
when moving to version 2 of the CIM is that implementations built on version 1 of the
CIM relied on the string format.

OK
Error

Degraded
Unknown
Pred Fail
Starting
Stopping
Service

Table 4-2. The defined values of the Status property.

The states of the status property is described in the Microsoft Platform SDK
documentation as the current status of the object. The operational states are “OK”,
“Degraded”, and “Pred Fail”. “Pred Fail”, i.e. an element where failure is predicted in the
near future. It is a state set by for example an element such as a SMART-enabled hard
drive or other elements designed to foresee a coming failure. All the other states are
non-operational states.

The unknown state should be read as that the provider is not able to gather the
management information. This could for example be the case because of network
failure and such types of events. In version 2.4 of the CIM Schema two more detailed
unknown states are added, “No Contact”, i.e. the entity is known to exist but no
management contact has been made, and “Lost Comm”. These two states add some
information to why the status is unknown.

4.2 Description of WMI
WMI is currently based on the DMTF CIM Schema v2.0, with a substantial addition in
form of extended schemas, the Win32 extended schema. One example of how Win32
extends the CIM Schema is that Win32_Printer inherits from CIM_Printer,
and adds operating system specific properties like Attributes, e.g. if it’s the default
printer, DriverName, and PrintProcessor.

26

On computers running Microsoft Windows NT/2000, WMI runs as a service. On
computers running Windows 95/98, the Windows Management Service runs as an
application. The Windows Management Service is invoked on either operating system
by running the executable file WinMgmt.exe. It is possible to stop and restart WMI
manually whenever one wants to. In Figure 4-2 all that is contained inside the dotted
oval is the functions of the WinMgmt service, providers are COM commponents linked
to the process when needed.

Figure 4-2. The WMI Architecture in detail.

A central goal of WBEM is uniform representation of data, and this data is encapsulated
in object-oriented fashion in the CIM Objects Repository. The CIM Object Manager is a
collection and management point for managed objects stored in the repository. Data is
not accessed by the CIM Object Manager directly. This is done by WMI Providers whom
gather information from a resource and then make it available to the CIM Object
Manager. WMI Providers are described in more detail in section 7.1.

4.2.1 WMI Query Language
To access management information managed by the CIM Object Manager queries are
used. The syntax of the queries is defined by the WMI Query Language, WQL. WQL is
a subset of ANSI SQL. Unlike SQL, WMI can only be used to retrieve data; it cannot be
used in operations involving modification, insertion, or deletion of data. To access
management information, queries are used, examples of such queries are:

“SELECT * FROM Win32_LogicalDisk WHERE DeviceID=’C:’”

This query will retrieve all properties from the logical disk named ‘C:’. This query can be
specialized to retrieve only a subset of the properties of a class:

“SELECT FreeSpace,Size FROM Win32_LogicalDisk WHERE
DeviceID=’C:’”

Management
Application

CIM Object
Manager

Object Providers

CIM Repository

MMC

Snap-in Snap-in

WDM Kernel
Objects

SNMP
Objects

DMI
Objects

Win32
Objects

Other
Objects

WinMgmt.exe

WDM

DCOM

RPC WIN32 Other

DCOM

SNMP

DCOM

OperateIT WMI Aspect

Document number: 3BSE022901 27

This query will only retrieve the amount of free space and the size of the logical disk
named ‘C:’, to further specialize the query, more conditions can be added:

“SELECT FreeSpace FROM Win32_LogicalDisk WHERE
DeviceID=’C:’ AND FreeSpace < 10485760”

In this last example a second condition is added to the query. The property, FreeSpace,
will only be retrieved if the conditions are fulfilled, i.e. there is less than 10Mb of free
space on the logical disk with the device identifier ‘C:’. Of course version two and three
of the query are not pure optimizations of query one in that sense that they do exactly
the same just better they are just examples of how to use some features found in WQL.
They are optimizations in that sense that if one wants to do what is done in example
three, using query one and then stripping the result will be a waste of resources.

4.3 Risk Estimation
As stated in the feasibility-study in section 2.3 a risk could be seen that the support for
WMI is as of yet not complete. But after some further investigation a number of
implementations using the CIM have been found.

A number of large companies have announced support for the CIM Standard in their
Management Software. In Table 4-3 some of these products can be seen along with its
respective developer.

Management Software Developer

Insite Manager Compaq
IT Assistant Dell
OpenView Network Node Manager Hewlett-Packard
SMS Microsoft
ManageWise Novell
NetView IBM/Tivoli

Unicenter TNG Computer Associates

Table 4-3. Management Software with support for the CIM Standard.

The major intention with the uniform management information model, CIM, is for
different applications from different application vendors to access the management
information in a uniform way. But another advantage with the uniform information model
is the possibility to use it even when the management application and the managed
device are developed by the same company. One of the advantages with using CIM in
this situation, are the elimination of having to design a special purpose information
model just for the companies own needs.

The broad support WBEM, and thus WMI, is getting from the industry with applications
from major vendors already supporting the CIM Standard it is more than likely that the
risk of using WMI for supervision and management is small.

28

OperateIT WMI Aspect

Document number: 3BSE022901 29

5. ABB Aspect Object Model and CIM
This chapter will cover design specific details on how to access management data
published by WMI from the Operate IT Workplace. This will be done through a WMI
Powered Aspect that the engineer can use as a building block when making structures
of managed elements with Aspect Objects.

There are three sections in the chapter, the first describes how the two object models
can be fitted together, i.e. CIM and the Aspect Object Model. The second section covers
the building of structures and how the Aspects should be configured. The last section
describes how the mapping of WMI Properties to OPC Properties could be done.

5.1 Representation of CIM Properties in Aspect Objects
CIM is an object model and so is the ABB Aspect Object Model so there is a strong
possibility that they could be fitted together. There is a number of potential ways to fit
the models, all with different advantages and drawbacks. The two main objectives are to
make the final solution consistent with the ABB Aspect Object Model and also easy to
comprehend and work with. Some of the possible solutions are shown in Figure 5-1,
Figure 5-2, and Figure 5-3 below.

The first possibility is to map one WMI Object to one Aspect Object. This case is shown
in Figure 5-1. One downside to this model is that multiple types of configurations must
be included in the same aspect if it should be possible to import more than the status
property from the WMI object. This can easily be solved in a tidy way with for example a
tab control that has one tab for each imported WMI property. This will be discussed in
more detail later in the document. Another issue with this model is the question, how
this complies with object-oriented design, since this solution actually has multiple
aspects (different WMI Properties) mapped to one single Operate IT Aspect.

Figure 5-1. Multiple objects with single WMI aspect with multiple properties.

The second solution is to map one Operate IT Aspect to one WMI Property, as can be
seen in Figure 5-2. The downsides to the first model are here eliminated, there is one
type of configuration view for each Operate IT Aspect and an Operate IT Aspect is closely
related to what is meant by an aspect in object-orientation. Unfortunately other
downsides has emerged, one being that the number of aspects on an Aspect Object will
increase tremendously. This might lead to that the view of the aspect directory is

Hard Drive
PC

CPU
Local Printer

Network Printer
WMI Aspect

S_STATUS

Free Space

Status

FreeSpace

30

cluttered, and that it might be a more tedious work creating multiple aspects, depending
on the level of automation.

Figure 5-2. Multiple objects with multiple WMI aspect with single properties.

The third way that is presented here is to have one Aspect Object mapping to a subset
of the whole WMI database or namespace in WMI terminology. What this would look
like is modeled in Figure 5-3. In Figure 5-3 multiple aspects are used to model different
aspects of an office, it is also possible to have a single Operate IT Aspect for the whole
WMI namespace. This model does not work well with the aggregation used in the
OperateIT Class structure where for example status codes are propagated up in the
hierarchy. This is mainly due to the fact that status codes are bound to objects. This
leads to that the status of the office equipment object in Figure 5-3 could either be in the
state ‘Ok’, ‘Error’, or ‘Warning’ and all the details of the problem would have to be
shown in the system status description. This is mainly a problem when multiple
warnings and errors exist at the same time.

Figure 5-3. Single object with multiple aspects.

Of these three possible ways of including WMI objects in Operate IT, the third is the most
flexible in that meaning that it is possible to derive the first and the second solution out
of it, and the second is the least flexible. As a matter of fact the design choice here is if
one should impose a structure upon the user like in solution one or give the user total
freedom like in solution three.

5.2 Creation of WMI Powered Aspect Objects
Not all computers are created equal, some have one processor and another has two
some have one hard drive and others have multiple drives with multiple partitions. There
are also for example plug-and-play enabled USB Devices that the user expects to show
up, or at least be easily accessible when plugged-in to the system.

Three levels of update automation can be identified:
1) Manual Creation,

PC
Hard Drive
CPU
Local Printer

Network Printer

WMI Aspect
WMI Aspect

S_STATUS

Free Space

Status

FreeSpace

Office equipment WMI Aspect (Printer)
WMI Aspect (LogicalDrives)

WMI Aspect (CPU)

S_STATUS

LogicalDrives Status

Printer Status

CPU Status

OperateIT WMI Aspect

Document number: 3BSE022901 31

2) Up-Loader, and
3) Auto Update Service.

The least complicated solution is to fulfill the first level. This solution completely lacks
automation. The user has to create the Aspect Object in the structures of choice and
add a WMI Aspect to the object. The WMI Aspect then has to be configured to reflect
the functionality that was intended with the Aspect Object. If the systems setup
changes, like for example a disk is repartitioned, the configuration of the aspects has to
be updated and new Aspect Objects might have to be created. This will or won’t be a
problem depending on the amount of work needed to configure the WMI Aspect. If for
example only the WMI Status property is mapped to OperateITs System Status, see next
section 5.3 Mapping, no configuration is needed, then the problem will be minimal and
thus the benefit of a higher level of automation will be small.

The second level is to have some sort of up-loader aspect that, after a minimal amount
of configuration, can fill the structures, for example location structure and/or control
structure, with Aspect Objects already configured with the right information. This up-
loader should for example add two WMI Powered CPU Aspect Objects to the structure if
there are two CPUs in the computer system examined. The configuration of this aspect
could, let the engineer identify the entity to up-load, what structures it should be added
to, and what aggregated entities to check for. An example of what the configuration view
described above might look like can be seen in Figure 5-4. This solution makes the
construction and configuration substantially easier for the user, this since the user
needs not know what devices are connected to the computer system. But on the other
hand it would require a lot of engineering and forethought by the constructor of the
implementation.

Figure 5-4. Possible configuration view for WMI Aspect Objects Up-Loader.

If the third level is fulfilled Aspect Objects representing the device will directly be created
in the appropriate structures when devices are connected. This would require a lot of
further investigation but would be a nice feature and ease the use for operators. To
make this direct update possible a process would have to run all the time and constantly
monitor, for example, the WMI events “__InstanceCreationEvent”, and
“__InstanceDeletionEvent” updating any structures when changed. This

Computer System

C4000538

Functional Structure
Location Structure
Control Structure

CPUs
System

Hard Drives
Printers
Operating System

Up-Load

32

solution is fully automated and requires minimal interaction with the user, and
guarantees that true and updated information is accessible at all times.

What level should be implemented? Is level two and tree obtainable? The second
question will be left for future investigation, and the answer to the first is that it depends
on the outcome of the first question. The second question could also be broadened to
include how much work has to be done to reach level two and three. But for a prototype,
level one should be sufficient, even though it lacks the additional eye-candy.

5.3 Mapping
What mapping means here is that a number of WMI properties should get a meaningful
sense in the OperateIT Platform. Example of this is to map the WMI Status property to
S_STATUS in OperateIT. But other more advanced functions could also be thought of,
like for example when the size of free space on the hard drive is below 10 Mb,
S_STATUS should be set to warning. This requires a more advanced form of mapping.

Three types of mapping will be discussed here, when the mapping is done in the source
code of the aspect, when the mapping is done in a simple way at runtime, or a generic
mapping.

5.3.1 Hard Coding
The easiest way of mapping, from the creator’s point of view, is where the configuration
is done mainly or totally in the source-code of the aspect. It is easy to use and create
aspects in this manner but very inflexible, and the use of each aspect is severely
limited.

This method could be used mainly in three cases, namely

1) Prototyping,
2) Limited support, and
3) Advanced queries.

To prototype a feature is a good second step after a feasibility study. This prototype
could be used to show the possibilities of the functionality, but it will lack a lot of user
interaction functionality, and the possibility for the user to customize it. This will make
the prototype only useful for demonstration purposes, not for evolving the functionality.
This since changing something will require the code to be recompiled, so this will restrict
the user testing and evaluating the prototype.

The second situation where a hard coded version could be used is if the support for the
feature should be limited. If for example only status for hard drives and CPU utilization
should be present then the most cost effective method could be to hard code the
aspects instead of creating a fancy GUI to configure the aspect.

OperateIT WMI Aspect

Document number: 3BSE022901 33

The third situation where one might consider using a hard coded aspects is where the
queries or the answers are to advanced to create a user interface that the user can
comprehend. In this situation one would use it mainly to make the life of the users
easier.

5.3.2 Mapping the Status Property
If the users interest only lie in the status of the office equipment it is sufficient to map the
WMI status property to Operate IT Platforms System Status properties, of which required
are, S_STATUS, S_DESCRIPTION, and S_TIME. This functionality could easily be
configured by the user, with some minor assistance from the platform. The configuration
view would only consist of for example a combo box showing a number of instances of
some predefined classes.

If for example Win32_Keybord, Win32_PointingDevice, and
Win32_LogicalDisk are selected then the combo box might show “Enhanced
(101- or 102-key)”, “Microsoft PS/2 Mouse”, “A:” and “C:” to the user to choose from. To
build a hard drive object the user then creates a new object, includes the WMI aspect
and then chooses to configure the aspect then selects the “C:” from the combo box and
clicks apply.

The mapping of WMI Status to Operate ITs S_STATUS could be configurable by the
user, but a natural way to map is shown in Table 5-1. The Unknown state is, as can be
read in section 4.1.4, a state where communication failure is detected and the managed
element might function perfectly. But it might still be a good idea to signal Warning, thus
making the operator aware of the fact that the communication with the element is lost.
The warning signal should be accomplished with a detailed description of the situation
so the operator can start to look for the faulty component in the right place.

WMI Status S_STATUS
OK Ok
Error Error
Degraded Warning

Unknown Ok/Warning
Pred Fail Warning
Starting Out of Service
Stopping Out of Service
Service Out of Service

Table 5-1. The WMI Status property and what it could mean in OperateIT.

If one estimate that there will be to many objects in the combo box showing instances,
this could be if one has selected 10 to 20 interesting classes and for example there are
multiple hard drives with multiple partitions. An easy solution could be to have two
combo boxes, one showing classes and the other instances of that class. This would

34

effectively eliminate clutter and the data could more naturally be presented in
alphabetical order.

This would give the user an easy to use but rather inflexible instrument to supervise the
condition of office equipment. If one wants a more flexible instrument the mapping must
be done in a generic way.

5.3.3 Generic Mapping
The user might want to monitor the free space of the hard drive and issue a warning
when it goes above 10% of the total hard drive space, to be able to do this a more
advanced type of query must be used. This might lead to a paradox, where a better and
more flexible tool is less used because it becomes too complex.

In this system complexity might not have to be a problem because it is possible to
create object types with pre-configured aspects. Object types with pre-configured
aspects are Aspect Objects that are setup with any number of ready-configured Aspects
before the product is shipped. This is done by the developers or engineers. When the
Aspect Objects are instantiated in a structure the only choice the user has to make is
whether the aspects are to be duplicated or linked to the Aspect Object. Linking are
preferred because it enables the engineer to do a change at one place and have
multiple instances changed. This concept leads to that one can make a rather complex
and thus difficult to use interface and still have a tool that is easy to use by the general
user. This tool would then be used in two ways, (1) just importing ready aspects and, (2)
constructing aspects to map WMI properties to OPC properties in Operate IT. An
example of a generic user interface is presented in Figure 5-5. The figure shows two
combo boxes at the top and two list boxes, and below them a textbox.

OperateIT WMI Aspect

Document number: 3BSE022901 35

Figure 5-5. An example of a generic interface.

The first combo box labeled “Class” is initially the only non-disabled object and it shows
all, or a subset, of the WMI classes. When one class is selected the combo box is
disabled and the other objects are enabled. The user then selects an instance from the
combo box labeled “Instance”, the properties of that instantiated class is then shown in
the list box “Non-subscribed properties”. The user can now subscribe to any properties
of his liking.

The steps before were all simple; the more advanced step is where one chooses how
these properties will be mapped to OPC properties on the Operate IT Platform. This
mapping is done in the area at the bottom of the view. The user should in the ideal
situation not be limited to map one WMI property to one OPC property. The user should
be able to map one WMI property to multiple OPC properties and vice versa. This could
be used as shown in the following example of a hard drive object.

The system status property, S_STATUS, should reflect changes in the WMI status
property of the hard drive, and an additional status property called FreeSpace should
report the WMI property FreeSpace, so far all is simple but the user would also like
to have a condition on the WIM property FreeSpace. If there is less than 10 MB free
space left, and the S_STATUS is in another state than error, it should be set to warning
and if there is less then 5 MB free space left S_STATUS should be set to error.

This last statement of the example leads to that the WMI property FreeSpace should
not only affect the OPC property FreeSpace. It also has to be connected in a
conditional way to S_STATUS.

Cancel Apply Help

Class

Instance

Non-subscribed properties Subscribed properties

Type of property notification

36

There are a number of methods to access WMI properties; of these two will be
presented here,

1) IWbemServices::GetObject followed by
IWbemClassObject::Get, or

2) IWbemServices::ExecNotificationQueryAsync.

In the first method one asks for an instance of a WIM class and then on that instance
asks for the specific property that is returned as a data type VARIANT. This is the upper
path in Figure 5-6. This could be used to access static properties or polling constantly
changing properties. A static property is for example the size of a hard drive, or a name
of an instance. Properties of this sort could for example be displayed in a process
pictures and for other information purposes. Constantly changing property can for
example be Win32_Processor:LoadPercentage, this type of properties one
might want to show in a trend diagram. LoadPercentage for example could be
used for debugging and optimization purposes.

In the second method, schematically described in the lower path in Figure 5-6, one
starts by setting up a callback sink that will perform some action, this together with an
advanced WQL query is passed to the method. Nothing is returned until the condition in
the query is satisfied.

The WQL query can be of the following form:
“SELECT * FROM __InstanceModificationEvent WITHIN <poll
time> WHERE TargetInstance ISA <WMI Class> AND
TargetInstance.DeviceID=<WMI Instance> AND
TargetInstance.<WMI property> <condition>”

As for example:
“SELECT * FROM __InstanceModificationEvent WITHIN 3
WHERE TargetInstance ISA 'Win32_LogicalDisk' AND
TargetInstance.DeviceID='F:' AND
TargetInstance.FreeSpace < 10485760”

The example above will call the callback sink when the logical disk ‘F:’ has less than 10
MB of free disk space. In the callback sink one could for example set the S_STATUS to
warning or set an alarm. The example above will call the sink every time a write is done
to the disk when it is less than 10 MB free space. This type of access could preferably
be used when properties change rather infrequent.

In the last example above the first part of the query could be filled in from the combo
boxes and list boxes and the last part could be typed in the box at the bottom of the
example user interface shown in Figure 5-5. But the user should also be able to select
between the two cases 1, and 2 described above so a more advanced list box should
be used.

OperateIT WMI Aspect

Document number: 3BSE022901 37

Figure 5-6. Visualization of how one WMI property is mapped to two properties in different ways.

It should also be mentioned that the sink could also update any OPC properties, a little
less natural way would be to monitor a status property by polling it. So one could
imagine a possible arrow from the Sink(FreeSpace) box to the Update(OPC Property)
box.

WMIFreeSpace

ABBFreeSpace

Sink(FreeSpace)

Updated with poll rate

Updated when change occur

Set S_STATUS

Update(OPC Property)

38

6. Prototyping the WMI Aspect
This chapter covers the prototyping of the Operate IT WMI Aspect. The first section, 6.1,
will be a motivation of the development model chosen, namely prototyping. The main
source of information contained in the motivation is, Sommerville, I. (1995) [9]. Then the
next section is a brief overview of the tools used to build the foundation of the aspect
system. The last section, 6.3, covers implementation specific details, like how the
connection to the CIM Object Manager is established and how the communication
works.

6.1 Software Engineering
There are four fundamental process activities in the software process; these four
activities can then be decomposed in different ways by different software processes.
The fundamental activities are Software Specification, Software Development, Software
Validation, and Software Evolution. Every activity builds directly on the outcome of all
the previous activities and should be executed with consideration of the future activities
to ease the activities to come. Software Specification is the activity where requirements
are extracted and the software is designed. This will be covered in more detail in section
6.1.1. The second step is where an implementation is done in accordance with the
design specification produced earlier. Validation is where the implementation is tested
to see if it functions in compliance with the functional description of the software. This
includes finding defects in the software. Evolution is the final stage of the process, and
presumably the longest, the software must evolve to meet the changing customer
needs.

These four fundamental process activities can be subdivided and described in greater
detail, there are a number of well known ways to do this. Among these are the waterfall
approach, evolutionary development, formal transformation, and system assembly from
reusable components. The first two are commonly used, the third is more experimental,
and the fourth is on the increase mainly thanks to the object-orientation paradigm.
These processes will, with the exception of formal transformation, be described below.
A software process describes the stages, what to do in each and what deliverables to
produce in each.

The most common and well know process is the waterfall model that is derived from
other engineering processes. During each step in the waterfall model one or more
documents are produced. The main concept here is that after each action is performed
satisfactory the produced documents are put into baseline and if, in a later stage, a
defect would be found in a baselined document, the defect is corrected and the
outcome is numbered with a new version number. This gives this model high visibility,
i.e. the progress of the process is externally visible. On the other hand the rapidity, i.e.
how fast a system can be delivered using the process, tend to be low. The lack of
rapidity is due to that a lot of work, other than only the implementation of the software,

OperateIT WMI Aspect

Document number: 3BSE022901 39

has to be done. Evolutionary development is based on the idea of developing an initial
implementation, exposing this to any stakeholders and collect their requirements and
this to refine the product. This is iterated through many versions until an adequate
system has been developed. The process ‘system assembly from reusable
components’ is focused on developing the system from existing components, where
only a smaller part of the implementation is spent to glue the components together. This
is an attractive approach since re-use is often rather inexpensive compared to
constructing new. One problem with re-use is that it is almost impossible to get exactly
what one wants. Also if the documentation of the component is insufficient, later stages
in the process like testing and maintenance will be more difficult, but this is a problem
with all ill documented code in all processes. Microsoft is pushing this technology with
their concept of Component Object Model, COM, where components even could be
added at software runtime.

6.1.1 Requirements Engineering
Requirements engineering is the activity of extracting requirements from anyone that
may have any influence on the system design. This is a difficult activity due to the facts
that it is required that the requirement specification should be complete, correct,
unambiguous, consistent, and verifiable. The activity of requirements extraction can be
divided into subactivities. The first and one of the more important subactivitie is domain
understanding. This is the activity where the analyst develops the understanding of the
application domain. Domain understanding is important to engineer adequate
requirements. Next the requirements are collected and classified to resolve conflicts
among the collected requirements. The requirements are then prioritized to, at
implementation time, be able to see where to start implement and in lack of time, which
requirements to neglect. The last step will be to validate the remaining bunch of
requirements, i.e. to see if they are complete, consistent and in accordance with what
stakeholders really want from the system. These activities all naturally lead to greater
domain understanding. This implies that the requirements will be better engineered if
the steps are iterated once more. This iterating should be done until the validation
activity does give a good enough result.

6.1.2 Software Prototyping
As stated before this project aims to investigate the possibility to use and the
possibilities with WMI, in contrast to developing a fully operational product. To
investigate this fully and to have something for demonstration purposes some sort of
software product would be needed. There were a number of design decisions that had
to be taken before considering implementing the functionality. Examples of these were
type of software process, implementation language, and platform for the
implementation.

The benefits of developing a prototype of the function to implements are

40

1) Misunderstandings between software developers and users may be identified
as systems are demonstrated,

2) Missing user services may be detected,
3) A working, albeit limited, system is available to demonstrate the functionality

and usefulness to management,
4) The limited system could be used for initial training of future users, and
5) The prototype serves as a basis for writing the specifications for a production

quality system.

Some negative aspects on prototyping are as follows
1) Poor visibility, i.e. the process activities does not culminate in clear results, this

leads to difficulties in making the progress of the project visible,
2) Poor maintainability, the rapidity of the project might lead to a lack of

documentation, and
3) Bad implementations and workarounds might find it’s way into the final product.

There are two types of prototyping software processes with different goals, the two
methods can be seen in Figure 6-1. In method one, evolutionary prototyping, the basic
idea is to develop an initial implementation, exposing it to user comment and refining
this through many stages until an adequate system is developed. The outcome of this
process is a delivered system. An important difference between evolutionary
development and structured development is in the validation phase. Validation is only
meaningful when the software is compared to a functional description. An additional
problem with evolutionary prototyping is that the initial outlined structure tends to be
corrupted with the constant changes made to the prototype.

Figure 6-1. Evolutionary and throwaway prototyping, and what is delivered.

Throwaway prototyping is the other type of evolutionary development. This method is
more focused on acquiring the system specification as a first step, and from this design
the system. The prototype is developed and changed according to user needs, and
when the prototype fits the users need it is frozen and requirements are extracted from
the prototype. The final product is then based on a design made from these
requirements. One advantage with this method is that the structure of the final product
is as described in the system specification. This correspondence between specification
and final product make the product possible to validate and easier to maintain.

Outline
requirements

Evolutionary
prototyping

Throwaway
prototyping

Delivered system

Executable prototype +
System specification

OperateIT WMI Aspect

Document number: 3BSE022901 41

6.2 Outline Definition
For the implementation the development model evolutionary prototyping was selected
but the final goal of this project is not a deployable product, so the product was not
iterated over until a final defect-free implementation was obtained, but rather until what
can best be described as demonstrator was obtained. A demonstrator is unlike a
prototype developed with evolutionary development not a product to build on but rather
use for demonstration purposes, i.e. demonstrating special functionality.

As development platform Visual Studio, using Visual C++, is the natural choice because
this is the platform Operate IT is implemented with, and thus has the best integrated
support in form of CM, from Visual SourceSafe, and automated code generation, from
“ABB Automation System Application C++ Wizard”, and “AfwTools Code Generator”.
Other than these, Visual Studio features no support for requirements handling or
software design.

6.3 The Implementation
A vague idea existed on the design of the component but most had to evolve along with
the implementation. The design was also restricted by what was generated by any
automated code generators used. This section will reflect the development process in
its layout. First the code skeleton was generated then the functionality was explored.
When understood and refined it was inserted in a controlled fashion into the code
skeleton. In this way a structure could still be kept and more functionality could be
added as the domain understanding increased over the development process. At the
end of this section is a description of what the design finally looked like.

6.3.1 Creating the skeleton of the Aspect
For a COM object to be able to function properly as an aspect a number of
requirements have to be fulfilled, i.e. a number of interfaces have to be supported. The
easiest way to fulfill these requirements is to use a wizard to generate the skeleton of
the code. This is of course only possible if a wizard exists that suite ones needs. The
skeleton of the Aspect was created using the “ABB Automation System Application C++
Wizard”. How this is done can be seen in document the related document [11].

42

Figure 6-2. Software relationship seen from the aspects point of view.

A brief overview of the design implied by the automated code generators can be seen in
Figure 6-2, which is a copy of a figure in section 1.4 of [11]. The Aspect View ASO
Aspect Page is in this project a COM Object named CInfoTab and the Aspect Data ASO
is basically composed of two COM Objects named CDiscStatus and CDiscStatusData
but also a number of classes designed for connecting to WMI and to exchange data.

6.3.2 Connecting to the CIM Object Manager
To be able to access the functionality of WMI a connection to the functionality CIM
Object Manager within the service WinMgmt.exe has to be established. As
WinMgmt.exe is a service, it is running in a separate process, this gives that the
address space is not the same as the one the aspect is using. This results in that
communication cannot be done in the same manner as is done with in-process
components. Data sent across process bounders has to be marshaled. Microsoft has
thought of this and has defined a standard for COM objects residing in different
processes, called Distributed COM, or DCOM. This standard will be used when
communication with the WinMgmt.exe process.

To get the interface handle to the IWbemLocator, CoCreateInstance is called
as can be seen in Listing 6-1. This function returns the interface handle as the last
argument. It is in this code snippet assumed that a call to the function
CoInitialize(NULL), that has to be done once before connecting to COM
Objects, is already done for this process. This can safely be assumed because
CDiskStatus, the class that instantiates CWMIConn, is also a COM Object. The
connection to WinMgmt.exe is then done with a call to the command
IWbemLocator::ConnectServer.

CWMIConn::CWMIConn(CDiscStatus* pPar)
{
 IWbemLocator* pLoc = NULL;

Workplace Manager
Plant Explorer

Aspect System

Aspect View ASO
Aspect Page

Aspect Data ASO

Aspect Directory

OperateIT WMI Aspect

Document number: 3BSE022901 43

 DWORD dwRes = CoCreateInstance(CLSID_WbemLocator, 0,
 CLSCTX_INPROC_SERVER, IID_IWbemLocator, (LPVOID *) &pLoc);
 CoInitializeSecurity(NULL, -1, NULL, NULL, RPC_C_AUTHN_LEVEL_NONE,
 RPC_C_IMP_LEVEL_IDENTIFY, NULL, EOAC_NONE, 0);
 BSTR PathName = SysAllocString(L"\\\\.\\ROOT\\CIMV2");
 HRESULT hRes = pLoc->ConnectServer(PathName, NULL, NULL,
 0, 0, 0, 0, &m_pSvc);
 SysFreeString(PathName);
 if (pLoc) pLoc->Release();
 return;
}

Listing 6-1. The Connection Class’ Constructor connects to WinMgmt.exe.

When later on trying to use this connection to setup event notifications with the function
IWbemServices::ExecNotificationQueryAsync no query would be
setup and an error code would be returned, namely WBEM_E_ACCESS_DENIED. This
error can be avoided if the correct authentication information is set when accessing the
proxy stub used when communicating using RPCs as with DCOM. The correct
authentication information is applied using the command CoSetProxyBlanket as
can be seen in Listing 6-2. This function call is inserted after m_pSvc is set using
IWbemLocator::ConnectServer, and applied to m_pSvc.

 hRes = CoSetProxyBlanket(m_pSvc, // proxy
 RPC_C_AUTHN_WINNT, // authentication service
 RPC_C_AUTHZ_NONE // authorization service
 NULL, // server principle name
 RPC_C_AUTHN_LEVEL_CALL, // authentication level
 RPC_C_IMP_LEVEL_IMPERSONATE, // impersonation level
 NULL, // identity of the client
 EOAC_NONE); // capability flags

Listing 6-2. The function CoSetProxyBlanket used to set the authentication information.

When the connection to WinMgmt.exe is done then communication with the managed
elements through the CIM Object Manager can be done as described in section 6.3.3,
and section 6.3.4, both found below. When no more communication is to be performed
then all that is needed to disconnect is to release the reference to the interface
IWbemServices.

6.3.3 Selecting WMI Properties
For the user to be able to select which WMI Properties to subscribe to, the properties
should be shown to the user in for example a list box. The user might also be interested
in what instances of managed elements are available in the system. Those should also
be shown to the user, this time preferably in a combo box. What this initially was
intended to look like can be seen in Figure 5-5. However one problem arose, if the user
changed what class to configure, the whole or parts of the configuration would have to
be invalidated. This due to the fact that what properties exist are dependent of the class.

44

Therefore a button was added to instantiate the WMI Class. When this is done the
instances that are present on the system are enumerated in a combo box, and the
combo box with the WMI Classes are locked so no change can be made to it. If the
button is clicked one more time the configuration is invalidated and the combo box
showing the WMI Classes is unlocked.

Listing 6-3 shows, with appropriate simplifications, how a combo box is filled with
available instances of the selected WMI Class. By creating the query as is done in
Listing 6-3, only querying for two properties, the number of times the inner loop is
traversed is minimized.

 IEnumWbemClassObject* pEnum = NULL;
 IWbemClassObject* pInstance = NULL;
 query = L”SELECT Caption,__RELPATH FROM <Class Name>”;
 m_pSvc->ExecQuery(…, query, …, &pEnum);
 while (pEnum->Next(…, &pInstance, …)
 {
 pInstance->BeginEnumeration(NULL);
 while (pInstance->Next(…, &propName, &pVal, …)
 {
 … //add the value of the Caption propertie to combo box
 }
 if (pInstance) pInstance->Release();
 }
 if (pEnum) pEnum->Release();

Listing 6-3. Enumerating available Instances of WMI Classes.

Entering of the properties into the list box is done in more or less the same way. The
three differences are that (1) the query is changed to retrieve all properties not just
Caption, and __RELPATH, (2) the outer while loop are removed since all instances
have the same properties, and (3) the actual name of the property is added to a list box.

The splitting of the functionality to two separate loops is done for simplicity and
optimization purposes. It would be possible to query for all properties and then have an
if-statement checking if it was the first instance, then adding the names of the properties
to the list box, but this would result in that all the properties were retrieved for all the
instances.

6.3.4 Notification of change in WMI Properties
As mentioned above IWbemServices::ExecNotificationQueryAsync,
details can be found in section 5.3.3, would be used to let WinMgmt.exe tell the WMI
Aspect when the value of WMI Properties did change. This would ease the burden on
OperateIT and let WinMgmt.exe do all the work. Because not all management providers
support event notification it is possible to set a poll-rate for the query. This will tell
WinMgmt.exe to check the property at the poll-rate, compare it to the last time it was
pulled if a change in the property has occurred, the rest of the conditions in the query
are checked if they also are true a notification is sent to the process making the query.

OperateIT WMI Aspect

Document number: 3BSE022901 45

The last argument to ExecNotificationQueryAsync is a pointer to the
callback sink. The callback sink is an instantiated COM Object, with at least the
functions Indicate(), and SetStatus(), which are abstract functions in the
sinks super class, IWbemObjectSink, inherited by the sink. When WinMgmt.exe
recognize that the conditions of a query is fulfilled it makes a RPC to the
Indicate() function in the sink object passed to it.

6.3.5 Design of the Connection to WMI
When the functions “connecting to the CIM Object Manager” and “queering for
management data in an asynchronous fashion” was explored and refined, two classes
were designed, CWMIConn, and CMySinc that was supposed to function as an
abstraction layer between WMI and the Aspects main function. How the two abstraction
classes, the main function of the aspect, and WMI fits together can be seen in Figure 6-
3. An arrow with dashed line denotes construction, and thus a call to the class’
constructor. An arrow with a solid line denotes a function call. If an arrow starts in the
gray area with the class name it means that the call is done from the class constructor.
A description of the steps performed to connect and setup the callback sink can be
found below the figure.

Figure 6-3. Calling schema for the connection to WMI Server.
For efficiency not all methods are shown and no member variables at all are shown.

1) After CDiskStatus is instantiated its function FinalConstruct() is
called by its creator. In this method CDiskStatus instantiates a
CWMIConn class.

2) The CWMIConn constructor connects to the service WinMgmt.exe via DCOM
as described above in section 6.3.2.

CDiscStatus

FinalConstruct()
Init()
FinalRelease()

CWMIConn

ExecuteQuery()
ReleaseSink()

CMySinc

Indicate()

WinMgmt.exe

3

1

4

2

5

6

7

46

3) In the Init() function of the CDiskStatus class one event-sink is then
instantiated per query and there are one or more queries per queried WMI
Property. If there are no queries available the call chain is broken here.

4) After the sink is created it is passed along with the actual query to the method
ExecuteQuery() in the CWMIConn instance.

5) CWMIConn::ExecuteQuery() just passes the parameters on to the
service WinMgmt.exe.

6) WinMgmt.exe then connects to the instance of CMySinc that is passed to it in
step 5.

7) WinMgmt.exe can now send event notifications to the Sink by calling the
function CMySinc::Indicate().

OperateIT WMI Aspect

Document number: 3BSE022901 47

7. Implementation of a Simple WMI Provider
This chapter covers WMI Provider writing in general and specially the implementation
details of a sample provider, the ABBGenerator.

7.1 Provider
As can be seen in Figure 2-2 and Figure 4-2, the provider is a software layer between
the managed element and the WinMgmt service. The provider exists to let WinMgmt
access all devices in a uniform way. The provider is attached as an in-process object to
the WinMgmt service. When a management application instantiate a class the
corresponding provider DLL is loaded and attached, WinMgmt then call
CProvider::EnumerateInstances. The EnumerateInstances method
then access the device driver or some other information source and returns the
instances that exist. The properties of the instances returned are updated according to
the current state of the managed element.

The simple WMI Provider developed here does not access any outer source; it just has
an internal representation of three signal generators. The functionality and
implementation of the signal generator provider will be covered in greater detail in
section 7.3.

The provider developer does decide what functionality to implement, but some methods
are necessary for the provider to function at all, like for example
EnumerateInstances, and GetObject. Other methods are used if
implemented and the functionality is otherwise unobtainable like PutInstance, and
ExecMethod. Other methods still are, if not implemented emulated by WinMgmt using
the methods implemented. The third type of methods is implemented only for
performance purposes. An example of such a method is ExecQuery, used to get the
properties of an instance by querying for it. This can be a performance booster if for
example an instance or a property is rather expensive to collect, an example of this are
when enumerating the class Win32_LogicalDisk, among this class instances are
the removable media disk drive, and as every that has used it knows it is rather slow.
Excluding this instance when enumerating the class will enhance the performance. If on
the other hand if ExecQuery is not implemented, WinMgmt will use
EnumerateInstances anyway and the performance increase by using querying in
the management application will be zero.

7.2 MSDN Tutorial
Microsoft Developer Network contains a lot of information on how to design and
implement WMI providers with different functionality. A good starting point is the step-
by-step guide to developing a provider with basic functionality. The provider tutorial can
be found in MSDN Library – April 2000 under the headline “Framework Tutorial”. This
provider provides a set of software reindeers, i.e. the reindeers does not map to any

48

real-world entities. The tutorial was used to develop the ABBGenerator Provider
described below, in section 7.3.

7.3 ABBGenerator Provider
The ABBGenerator provider was developed to more thoroughly test the functionality
implemented in the Operate IT WMI Aspect. A second objective was to investigate if
developing a provider was difficult, and required a lot of special purpose knowledge.

7.3.1 Functional Description
The ABBGenerator Provider should be able to generate three types of signals, sine
wave, rectangular wave, and constant increasing signal. The update rate should be
constant and independent of the surrounding environment, especially uncorrelated to
the management application used to access the value of the signal. The user should be
able to set the frequency, of the sine and rectangular wave, from a WMI enabled
management tool that includes functionality to set properties. Other properties that the
user should be able to modify in the same manner is the amplitude, signal noise, and
the status of the generator. The phase shift of the sine wave is another property that the
user should be able to modify.

7.3.2 Implementation
The development was a pretty straightforward action following the steps in the tutorial
mentioned above, where mainly the class names and the properties were changed. The
file that describes the WMI Provider called the Managed Object File, MOF, for the
AbbGenerator provider can be seen in Listing B-1 in appendix B. The most evident
difficulty was to have a constant tick rate that was independent of the calls made to the
provider. If the rate that would be used to pull the values would be known, this could be
used but that would violate the requirements above. The two most evident solutions
were to, (1) setup a timer that would tick with a known frequency, and (2) spawn a new
thread that would tick at a constant rate. The result would be the more or less the same,
and the choice was in favor of the second. The thread was spawned in the object
constructor, which is run once at provider load time.

CAbbGenerator::CAbbGenerator (LPCWSTR lpwszName, LPCWSTR lpwszNameSpace) :
Provider(lpwszName, lpwszNameSpace)

{
DWORD dwTID;

m_dwTick = 0;
m_fUpAndRunning = true;

m_hThread = CreateThread(NULL, 0, TickerFactory, this, NULL, &dwTID);

SetThreadPriority(m_hThread, THREAD_PRIORITY_TIME_CRITICAL);
return;

}

OperateIT WMI Aspect

Document number: 3BSE022901 49

Listing 7-1. CAbbGenerator constructor in C++.

As can be seen in the constructor above, Listing 7-1, the thread is created with the
same stack size as the parent thread, and the parent object is passed to the thread in
the fourth parameter. After the creation of the thread, the parent sets the priority for the
recently created thread to THREAD_PRIORITY_TIME_CRITICAL. In Windows
2000 this means that the priority is set to 15 if the process the thread is created in are
not running in REALTIME_PRIORITY_CLASS in witch case the priority are set to
31. This is done to make the time between two ticks more constant.

DWORD WINAPI TickerFactory(LPVOID pArg)
{

((CAbbGenerator *)pArg)->SetThreadAlive();

while (((CAbbGenerator *)pArg)->AmIUpAndRunning())
{

Sleep(500); // Provide a tick every half second
((CAbbGenerator *)pArg)->IncTick();

}

((CAbbGenerator *)pArg)->SetThreadDead();

return WBEM_NO_ERROR;
}

Listing 7-2. The thread starts in the global function TickerFactory.

As can be seen in Listing 7-2, the code above, the thread announces to the parent
object that it is alive when it starts, and that the thread is not alive before it is about to
terminate itself. At every loop the thread checks if it should terminate itself, this
condition will be false when the parent object’s destructor is run. The value of the signal
generator is only calculated when asked for by the management application.

50

OperateIT WMI Aspect

Document number: 3BSE022901 51

8. Evaluation of the WMI Client-Provider Solution
This chapter describes the functionality of the WMI Client-Provider implemented in
chapter 6 and 7 of this document. This description will be more focused on the
functionality of the WMI Provider and the WMI Client from a users point of view, where
as chapter 6 and 7 focuses more on how they are implemented. How the pieces of this
chapter fits together can be seen in Figure 2-2, but the box at the bottom “Managed
System” does not exist.

8.1 WMI Provider
The WMI Provider is not a visible product. It is linked to the WinMgmt.exe process when
needed and does not contain any GUI elements. This gives that it cannot be perceived
by the user directly only through management applications. One of the few ways to get
direct access to the WMI Provider is to attach a debugger to the WinMgmt.exe process
when the provider is linked. A more visually appealing way is still to use a management
application. In Figure 8-1 a management application, WMI CIM Studio can be seen.
WMI CIM Studio is delivered with the Microsoft Platform SDK. It runs as an ActiveX
inside the Microsoft Internet Explorer. The left panel, i.e. the tree-view, shows the CIM
Schema for the namespace, i.e. database, connected to, in this case “root\CIMV2”. In
Figure 8-1 the class AbbGenerator is selected and instantiated, one of the instances are
selected and displayed in the right panel.

Figure 8-1. WMI CIM Studio, an application developed by Microsoft
 created to access information handled by the CIM Object Manager.

At the top in the right panel the key property is shown in this case the Name Property,
the key property is also denoted by a small picture of a key in the property field. Below
the key property is a tabbed view, with the three tabs “Properties”, “Methods”, and

52

“Associations”. In Figure 8-1 the properties tab is visible, showing the properties of an
instantiated AbbGenerator. The properties shown here can be compared with Listing B-
1, the MOF file for the AbbGenerator, as can be expected it is a perfect match.

With WMI CIM Studio it is not only possible to view the values of an instance, it is also
possible to change the properties not locked. For example this can be used to set the
amplitude and noise level.

8.2 WMI Client
The WMI Client described here is the Operate IT WMI Powered Aspect. This Aspect can
opposed to WMI CIM Studio not change the values of WMI Properties. It can rather be
thought of as a one-way communication. The WMI Aspect subscribes to changed WMI
Properties and makes the value available to the Operate IT Platform as OPC Properties.
These subscriptions are setup from the Aspects configuration view, seen in Figure 8-2.

In Figure 8-2 an Aspect Object named MyGen1 is created and the WMI Aspect, named
nt_status00, is added. Here two WMI Properties are subscribed to, Status and Value.
The Value property is when received directly without any processing published as an
OPC Property. But the Status property is when changed processed, if it reports Error
then S_STATUS is set to Error and if it reports Degraded S_STATUS is set to Warning
this in accordance with the mapping proposed in section 5.3.2, Table 5-1.

Figure 8-2. Plant Explorer with the WMI Aspects configuration view showing.

The Non-Subscribed Properties plus the Subscribed Properties gives the same
properties as can be seen in Figure 8-1 and the MOF file in Appendix B.

OperateIT WMI Aspect

Document number: 3BSE022901 53

8.3 WMI Client-Provider
This section will answer the question of how does the WMI Client-Provider solution
function together. The main objective of this project is to supervise the status of
standard computer and office equipment. The AbbGenerator has the status property
and this can be used to simulate a status change in the managed element. Normally the
status property is set by the managed element, this is not so with the AbbGenerator,
where the status property is changeable from any management application that allows
writing to WMI Properties. The status property is changed to “Error”, “Degraded” and
then “Ok” and the result can be seen in Figure 8-3, this after a mapping like the one in
Figure 8-2.

Figure 8-3. The System Status Viewer Aspect showing the status of the MyGen1 Aspect Object,
which is powered by the AbbGenerator through WMI. From the top, a) Error, b) Warning, and c) Ok.

The next evaluation test is to publish mapped WMI Properties as OPC Properties. The
AbbGenerator WMI Property “Value” is mapped to the OPC Property “MyValue” for two
instances of the generator. One instance of the signal generator is generating a sine
wave and the other a rectangular waveform. The configuration of the second signal
generator can be seen in Figure 8-1, above, as can be seen the amplitude is 75 units,
and the frequency 1.667⋅10-3 s-1, i.e. period time of 600 s, and a noise level of ±5 units.
The two OPC Properties are plotted in a Trend Display Aspect, as can be seen in
Figure 8-4. If one compares the plot with the configuration of the provider the
congruence is striking. The average at the top values are around 75 and the period is
around 10 minutes or 600 s. The third, not so regular, plot seen in the Trend Display is
the current CPU utilization, this information is also received from WMI.

54

Figure 8-4. A trend display showing OPC Properties published by the WMI Aspect.

8.4 Concluding Remarks
The two main functionalities, supervision of status and generic mapping of WMI
Properties functions as expected. The configuration of the Aspect for generic mapping
of WMI Properties to OPC Properties functions rather well even though not all
functionality seen in the GUI are present, like removal and editing of queries. Also the
WMI Provider implemented in this project is working as expected.

OperateIT WMI Aspect

Document number: 3BSE022901 55

9. Future Work
This chapter is divided into two parts. Part one covers the evolution of the WMI
Powered Aspect, and part two covers how WMI might be used in future products.

9.1 Improved WMI Aspect
The basic functionality of the WMI Powered Aspect prototype worked well, if used in the
correct way. But the prototype lacked some necessary features. Example of such
features is the possibility to edit and delete queries used for retrieving WMI Properties.
Another necessary improvement is to streamline the user interface. The prototype
actually contained a number of graphical elements that could be removed, and still other
graphical elements could be replaced for a better and more easily comprehended user
interface. An example of an improved user interface will be detailed below.

For maximum rapidity of the development of the prototype the data handling was at
several places implemented where the data was most easily accessed. This in
opposition to Model-View-Controller design, where separation of the model, where the
data processing is implemented, and the view where the data is presented, is done. For
example the Add button in the configuration view implements the complete functionality
to build a query using WQL. In a more thought-trough design the functionality to build
the query should reside in a dedicated function, this function would build the query from
parameters passed to it.

In Figure 9-1 a layout of an improved user interface for the configuration view can be
seen. This layout should be compared to the layout in Figure 5-5, the pre-study layout,
and the one in Figure 8-2, the actual implemented layout.

Figure 9-1. What an improved user interface could look like.

The most interesting comparison is between the new layout and the implemented
layout, this since the implemented is an improvement of the pre-study layout. The
comparison gives that all buttons except the “Instantiate”/“Uninstantiate” are removed,
this to not confuse the user and to avoid unnecessary and time-consuming clicking.
Noteworthy is that the buttons “Cancel”, “Apply”, and “Help” are inherited from the
standard functionality of the aspect configuration view and not subject to review here.

WMI Class

WMI Instance

Instantiate

Active OPC Prop. WMI Prop. Type Override Name Poll-rate Condition

CPU Load LoadPercent uint16 4 > 10
Name Name string 30 none

Cancel Apply Help

56

Also the two list-boxes in the middle of the view are removed, this because their
function only was to give an overview of the WMI Properties possible to subscribe to.
Instead all the WMI Properties are shown in the field called “WMI Prop.” in Figure 9-1
when it is selected. This is possible if this field is a “hidden” combo-box, i.e. a combo-
box when selected and a text-field when not selected. The “hidden” combo-box would
when selected show all WMI Properties to let the user select what property to subscribe
to. When not selected the subscribed property would be shown. The major change is
that the multiple fields at the bottom of the configuration view in the implementation
have been replaced with a single list-view with multiple fields. The new list-view is taking
care of all the functionality of the old elements and a little additional functionality is also
added, like configuration of the overriding of the name property of the Aspect Objects
name aspect.

The first field in the list-view is a selection-box telling if the subscription to the WMI
Property is active. The second field is the published name of the OPC Property. The
third field is as described above a combo-box showing all the WMI Properties and a
feature that should be implemented is that when a valid selection is done, default values
for the other field should be presented. This feature makes the standard configuration
faster and less error prone. It should however not overwrite and already entered data.
The next field is a read-only text field telling the type of the WMI Property selected. The
fifth field is a radio button that is only active if the property is of string type. This field is
optional but should if implemented override the name property of the Aspect Objects
name aspect. The remaining fields are in essence the same as the ones in the
implementation just put in a list-view.

Removing an entry is done just by selecting the entire entry and clicking the delete key
on the keyboard. Editing is done by selecting the field and making the change. All
changes, i.e. Adding, Deleting, and Editing, are confirmed and performed by clicking the
Apply button.

Ideally five clicks with the mouse should be sufficient to setup a subscription to a WMI
Property. After the initial setup, adding more subscriptions requires a minimum of only
two clicks. These numbers builds on the assumption that one is satisfied with the default
values presented in the other fields.

9.2 WMI Related Extensions
This project evolves around the objective to supervise and manage standard computer
and office equipment. This is a natural way of using WMI but other applications could
also be thought of, like for example to present Operate IT specific data, like user groups,
using the CIM. Thus making it available to all CIM enabled management applications.
One immediate benefit of this would be that building configuration snap-ins for MMC
would be easy.

OperateIT WMI Aspect

Document number: 3BSE022901 57

It might also be possible to map the entire ABB Aspect Object Model using the CIM. But
this would require extensive research on how to do it, what benefits would be achieved,
and if it at all would be desired.

58

10. Conclusion

10.1 Fulfillment of the Objectives
In this section will validate the fulfillment of the objectives and where in the document
the particular objective is fulfilled.

Objective 1
This project opts to make it easy to supervise and manage standard office and
computer equipment using the existing ABB Operator Station, Operate IT.

The main sources of information are chapter 6, and chapter 8. But the other chapters
work to build a foundation for the fulfillment of this objective.

Objective 2
Examine WBEM and describe Microsoft’s implementation, WMI.

The first part of the objective is covered in section 4.1, especially 4.1.2, and the second
objective in section 4.2.

Objective 3
Investigate how the CIM-schema can be extended with ABB Objects.

This objective is not fulfilled but why is described in section 9.2.

Objective 4
Investigate if it is possible, and what is required, to make Operate IT specific data
available to third-party software via WMI with the help of a WMI Provider.

The implementation of a WMI Provider is done detailed in chapter 7, especially in
section 7.1 and 7.3. Also chapter 8 contains additional information.

Objective 5
Examine the support WMI is getting from third-party developers.

The support from third-party developers are investigated briefly in section 4.3.

Objective 6
Investigate how to map the CIM into the ABB Aspect Object Model.

This is covered in great detail in chapter 5, especially section 5.3.

10.2 Concluding Remarks
The OperateIT Platform is a newly designed and implemented supervision and
management platform for factory automation. This platform has many advantages over
its predecessors and competitors. The advantages include, 1) it is fundamentally based
on an object-oriented model that is powerful and easy to use and comprehend, 2) it
incorporates structures for the possibility to easily navigate through information, 3) it is
built on standard components, and 4) it is extendable with standard components.

OperateIT WMI Aspect

Document number: 3BSE022901 59

As more standard computer and office equipment are brought into the factories, for a
reliable production, supervision of these components are inevitable. The only viable
solution to supervise the innumerable large amount of different components on the
market today is to use the WBEM standard brought forward by DMTF. The Operate IT

Platform is currently only run on Windows 2000. Luckily Windows 2000 has support for
WBEM through Microsoft’s implementation WMI. The WBEM standard is designed so
that it incorporates a number of older standards and therefore the support for WBEM
are in some areas already well developed. But also since WMI builds upon providers
developed by the constructor of the managed element not all managed elements has a
provider and some of the providers that exists are lacking in functionality. Still it is more
than likely that the support for WBEM will grow rapidly.

WBEM standard and the Microsoft implementation WMI are easy to comprehend and
use. Although some issues existed with WMI, this because the connection to it is done
through DCOM. One of the ideas behind the COM/DCOM concept is that one should
not have to care about where the called function is executing, in-process or out-of-
process. This is not entirely true, if for example the string handling is done incorrect the
error will be hard to track and also the security has to be setup correct or strange run-
time errors will be obtained.

60

Appendix A – Description of Abbreviations and Words

.NET Concept designed by Microsoft to make the Internet a distributed
computing platform

ACP ABB (or, Advant, Automation) Control Platform, the word is obsolete
ADO ActiveX Data Object
Afw Aspect Framework

AOM ABB Object Manager
ASO Aspect System Object
ATL Active Template Library
CIM Common Information Model, standard by DMTF
CIMOM CIM Object Manager
COM Component Object Model

COTS
components

Common of the shelf components. Components not specifically
designed for the industry, but rather for the desktop and server market.

DCOM Distributed COM
DEN Directory Enabled Network
DLL Dynamic Link Library, library loaded at run-time when the code or data

contained therein is needed
DMI Desktop Management Interface, DMTF standard
GUI Graphical User Interface
GUID Globally Unique Identifier, 128 bit number unique in both time and space
HTA HTML Application

IDL Interface Definition Language, standard by OSF
IID Interface Identifiers
Interface In this document COM Interface, if not found right behind ‘user’
LDAP Light-weight Directory Protocol
MMC Microsoft Management Consol, delivered with Windows 2000, supposed

to handle all configuration of the computer system including software
MOF Management Object Format
MSMQ Microsoft Message Queue
NLS National Langue Support
OPC OLE for Process Control
OSF Open Software Foundation

RPC Remote Procedure Call, standard defined by OSF defining how a
procedure on a remote system should be accessed and how to return
data.

SNMP Simple Network Manage Protocol

SQL Structured Query Language
UML Unified Modeling Language, is a graphical language for visualizing,

OperateIT WMI Aspect

Document number: 3BSE022901 61

specifying, constructing, and documenting the artifacts of a software-
intensive system. [12]

UPS Uninterruptible Power Source

USB Universal Serial Bus
UUID Universally Unique Identifier, standard by OSF
WBEM Web-Based Enterprise Management
WDM Windows Driver Model
Windows
DNA

Evolved into .NET

WMI Windows Management Instrumentation
WQL WMI Query Language
WSH Windows Script Host
XML Extensible Markup Language

62

Appendix B – MOF file for the WMI Provider
AbbGenerator

For the WinMgmt.exe to know what providers are available and what to expect from
them a MOF file is used to describe the WMI Provider. Below in Listing B-1 the MOF file
for the AbbGenerator can be seen. To register the provider, use the MOF compiler,
MOFComp.exe, provided with the Microsoft Platform SDK. The compiler will parse the
file and check for errors and then store the data in the CIM Repository.

#pragma namespace ("\\\\.\\ROOT\\CIMV2")

instance of __Win32Provider as $P
{
 Name = "AbbGenerator";
 ClsId = "{2303e004-98e4-4fe0-a584-3b14608a0d72}";
};

instance of __InstanceProviderRegistration
{
 Provider = $P;
 SupportsGet = TRUE;
 SupportsPut = TRUE;
 SupportsDelete = FALSE;
 SupportsEnumeration = TRUE;
 QuerySupportLevels = {"WQL:UnarySelect"};
};

instance of __MethodProviderRegistration
{

Provider = $P;
};

[Dynamic, Provider ("AbbGenerator")]
class AbbGenerator
{

[read, key] String Name;
[read] String Caption;
[read] Real64 Value;
[read, write] uint32 Amplitude;
[read, write] uint32 Function;
[read, write] Real64 Frequency;
[read, write] Real64 Phase;
[read, write] Real64 Noise;
[read, write] String Status;

};

Listing B-1. The MOF file that is registered with the CIM Object Manager.

OperateIT WMI Aspect

Document number: 3BSE022901 63

64

Appendix C – WMI Aspect User Guide
Even though the final product developed by this project is a prototype it might be used
for demonstration purposes and similar types of events. This user guide will, first try to
describe the user interface and how to use it, then be a guide, on a step-by-step basis,
on how to expose a single OPC Property, and at the end describe the most evident
pitfalls and how to avoid them.

C.1 User Interface Components
The user interface is built on standard graphical elements found in the Microsoft
Windows environment. The elements used in this configuration view are listed in Table
C-1, along with what they look like and how they are used.

Graphical Element Appearance Usage
Label Text on a flat gray background Show static information

Button 3D Envelope with text Receive user actions
List-Box 3D Cutout and white area with a

number of single lines of text
Multiple selection with
predefined choices

Text field 3D Cutout and white area with
continuous text

Custom data input

Combo-Box Text field + button with an arrow,
when the button is pressed a list-
box is shown below

Single selection with
predefined choices, space
economical solution

Table C-1. Some graphical elements and how they are used in this project.

The graphical elements described above are assembled into a user interface for the
configuration view. This configuration view can be seen in Figure C-1. In this figure
numbers from 1 to 16 are added to all the graphical elements except the label elements.
This is to make it possible to reference them in following text sections. Labels are not
numbered; this because these elements are not usually interactive, they are just
information carriers. Also the “Cancel”, “Apply”, and “Help” buttons are not numbered,
this because they are not unique to the WMI Aspect, they exist and functions the same
in all aspect views. The numbering is done from top to bottom and left to right as
suitable.

Below are all the interactive elements described. The description consists of, how they
are used, where they get their information from and where they output any data if they
do.

OperateIT WMI Aspect

Document number: 3BSE022901 65

Figure C-1. The configuration view of the WMI Powered Aspect.

1) Decides what WMI Class this Aspect Object should correlate to. The name of the
Aspect Object should somewhat give a hint to what WMI Class is instantiated
here. The classes supported in this prototype can be seen in Table C-2.

AbbGenerator

Win32_CDROMDrive

Win32_ComputerSystem

Win32_DiskDrive

Win32_LogicalDisk

Win32_OperatingSystem

Win32_PerfRawData_PerfProc_Process

Win32_Printer

Win32_Process

Win32_Processor

1

3

4
5

6
7

11

12
13

16

2

10

9

8

15

14

66

Table C-2. A selection of the WMI Classes.

Most of the classes are self-explanatory, but two classes will be described in more
detail the class AbbGenerator, and Win32_PerfRawData_PerfProc_Process.
AbbGenerator is a class created in the same project as the WMI Aspect to test
the functionality of the Aspect. Win32_PerfRawData_PerfProc_Process is a class
receiving data from the low-level performance counters built into the Windows
NT/2000 kernel.

2) A button used to lock and unlock the currently selected WMI Class. Here, since
the class Win32_Processor is instantiated, the caption of the button says
“UnInstantiate” but if no class was it would say “Instantiate”.

3) In this combo-box the names of the instances that exist in the namespace are
entered. And the first in the list are selected by default.

4) List-box showing all the not yet subscribed WMI Properties. Naturally this list-box
shows all properties when the class is first instantiated.

5) “Wizard Button”, this button does the same as (6) but also adds default values to
the fields (11), (12), (13), (14), and (15).

6) Button used to subscribe to a WMI Property. When this button is clicked the
property marked in (4) are moved to (8) and (12).

7) Button used to unsubscribe a WMI Property. When this button is clicked the
property marked in (8) are moved to (4) and removed from (12).

8) List-box showing what properties are subscribed to. Always in synchronization
with (12).

9) Used to add queries, i.e. the fields (11), (12), (13), (14), and (15) are filled with
valid information. The query is then showed in (16) for debugging purposes.

10) Obsolete. Intended used, to remove queries. Not implemented in this prototype.

11) Text field where the name used for the publication of the OPC Property are
entered. Default (5): “My” + <WMI Property Name>.

12) List-box showing what properties are subscribed to. Always in synchronization
with (8). Default (5): Showing the latest added property.

13) Combo-box with the poll-rate used to poll the WMI Property in seconds. Values to
select from are {1, 2, 3, 4, 5, 10, 15, 30, 60, 120, 500}. Default (5): 30.

14) Combo-box with the event condition operator used to poll the WMI Property. This
together with (15) makes up the event condition. Values to select from are
{(none), =, <, >, <=, >=, !=}. Default (5): (none).

15) Text field with the event condition value. This together with (14) makes up the

OperateIT WMI Aspect

Document number: 3BSE022901 67

event condition. Only used if (15) is different from (none). Default (5): blank.

16) Shows all queries used. Queries are added to this list-box when button (9) is
clicked. This is so that the user can see what queries are active on this aspect,
and for debugging purposes.

C.2 Tutorial
This section covers the configuration of a WMI Aspect in a step-by-step fashion. The
requirements put upon the user are virtually none other than some normal Operate IT

know-how but on the other hand is the learning value rather low. The tutorial is
designed so that anyone who fulfills the requirement should be able to follow it.

The tutorial describes how to add the supervision of the CPUs utilization as an OPC
Property. This is performed on a single CPU system with a Pentium III processor. In this
scenario the user is only interested of the CPU utilization when it is above 50%. All
graphical elements will be referenced by the number given to them in Figure C-1.

Step 1
Q: What managed element do we want to supervise?
A: The CPU.

Q: What is the CIM Class covering the supervision of the CPU?
A: The Win32_Processor.

TODO: Select Win32_Processor in (1) and click (2).

Step2
Q: Which CPU does we want to supervise?
A: Only one is available, “x86 Family 6 Model 7 Stepping 2”.

TODO: Nothing, the correct instance are already selected.

Step 3
Q: What property tells us of the CPU utilization?
A: The property “LoadPercentage”.

TODO: Add it to (8) by clicking the ‘wizard’ button (5). This will take us to the situation
shown in Figure C-1, just that in that figure the properties Name and Status is also
supervised.

Step 4
Q: Is not 30 s between each poll a bit slow?
A: Might be, lover it to 4 s.

TODO: Set (13) to “4”, (14) to “>”, and enter “50” in (15). Figure C-2 shows the result.

68

Figure C-2. The query build bar, after the default values are customized.

Step 5
TODO: Click the add button (9) and then the apply button. The query is added.

C.3 Pitfall Avoidance
One of the more problematic things are that ‘ has to be used around the condition event
value when queering for properties of the type string.

OperateIT WMI Aspect

Document number: 3BSE022901 69

References
Due to the lack of maturity in the areas covered in this paper the references table are
rather unstructured. The goal has been to follow the structure

AUTHOR (year). Article. Paper. Page.

This has been hard especially with the electronically distributed information sources
where the paths from the root are in electronic form sometime gibberish, and explicit
form extremely long. Where at all possible the electronic form has been chosen for
reader convenience.

[1] Intel Architecture Software Developer’s Manual Volume 3: System
Programming, ordering number 243192.

[2] Windows NT Architectural Modules, MSDN as of April.
[3] HP JetAdmin Reference Manual,

http://www.hp.com/cposupport/networking/manuals/bpj06492.pdf
[4] Web-based Enterprise Management,

http://www.dmtf.org/download/spec/wbem.ppt
[5] WESTERINEN, A., STRASSNER, J. (2000). Common Information Model (CIM) Core

Model, version 2.4. DMTF White Paper, p. 1.
[6] DTMF (1998). XML As a Representation for Management Information – A White

Paper.
[7] (2000). WAP och Bluetooth – industriell IT med spets. ABB Kunden. Nr 2. p. 13.
[8] ANDERSSON, J. (2000). Goals, Requirements and Background. Architecture

Description IndustrialIT: Workplace and Server Architecture, p. 10.
[9] SOMMERVILLE , I. (1995). Software Engineering. 9.
[10] WESTERINEN, A., STRASSNER, J. (2000). Common Information Model (CIM) Core

Model, version 2.4. DMTF White Paper, p. 20.
[11] SVENSSON, K. (2000). Description of Function ABB Automation System

Application C++ Wizzard. Revision 1.
[12] BOOCH, G. (1998). The Visual Modeling of Software Architecture for the

Enterprise. MSDN Library October 2000.
[13] SVENSSON, A. (2000). Description of Function System Status. 3BSE018730.

Rev. B.
[14] SVENSSON, A. (1999). 2.4 Basic Status Properties. Programmer’s Guide System

Status. Page 5.

