
ISSN 0280–5316
ISRN LUTFD2/TFRT--5656--SE

Identify a Surface with
Robot Force Control

Anders Olsson
Sara Liljenborg

Department of Automatic Control
Lund Institute of Technology

November 2000

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden

Document name
MASTER THESIS

Date of issue
November 2000

Document Number
ISRN LUTFD2/TFRT--5656--SE

Author(s)

Anders Olsson and Sara Liljenborg
Supervisor

Anders Robertsson and Rolf Johansson

Sponsoring organisation

Title and subtitle
Identify a Surface with Robot Force Control
(Identifiera en yta med en kraftreglerad robot)

Abstract

The topic of this thesis is to identify a surface with robot force control. To achieve this a robot performing
contact force control on a surface while it also follows a trajectory is needed. All experiments were per-
formed in the robot laboratory at the Department of Automatic Control at Lund Institute of Technology.
The robot used was an ABB Irb-2000 robot, equipped with a wrist mounted force and torque sensor of
type JR3.

In the master thesis the robot kinematics is treated. Kinematics describes the geometric relationship
between the motion of the robot in joint space and the motion of the tool in the task space. Furthermore
a compensation for the gravitational force acting on the end-effector was implemented.

Direct force control has been used throughout this thesis. Direct force control operates on a force er-
ror between the desired and the measured values and aims to have a constant value of the contact force.
When only controlling on three joints a PI force controller with variable proportional part is to be pre-
ferred. This because it can be tuned to be very fast, when in contact and thereby it can apply a constant
force on an object without large force errors. The simulated result did not completely agree with the
result achieved when the experiment was done in the reality. The reason is probably the assumption in
the simulation that the force signal was without noise.
The result from the three-dimensional experiments was applied to the six joint controller structures.
All the simulations using six joints worked successfully, both reorienting and reorienting while follow-
ing a trajectory. In the simulations it was possible to identify parts of simpler surfaces such as planes,
cylinders, and spheres.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280–5316

ISBN

Language
English

Number of pages
47

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.lu.se

Contents

1. Introduction . 3
1.1 Problem formulation . 3
1.2 Method . 3
1.3 Experimental platform 3
1.4 Simulation platform . 5

2. Literature study . 6
2.1 Background . 6
2.2 Sensor based force control 6
2.3 Force sensors . 7
2.4 Industrial application 9

3. Theory . 9
3.1 Forward kinematics . 10
3.2 Inverse kinematics . 12
3.3 The Jacobian . 12
3.4 Gravity compensation 12

4. Communication between Matlab and Envision 13
5. Simulations and Experiments with three joints 14

5.1 Simulation . 14
5.2 Experiment with only position control 15
5.3 Experiment with position and force control 16
5.4 Experiment with force and position controller on joint

one . 16
5.5 Variable K in the force controller 17
5.6 Remark on the force error 20
5.7 Verifying the results in Envision 22
5.8 Conclusions . 22

6. Simulations and Experiments with six joints 23
6.1 Reorienting the end-effector normal to a surface 23
6.2 Reorienting while following a trajectory 26
6.3 Conclusions . 31

7. Practical problems . 31
8. Conclusions and recommendations 31
9. Future work . 33
10. References . 34
A. Program lists . 35

A.1 Forward . 35
A.2 Jacobian . 35
A.3 Gravity compensation 36
A.4 Communication between Matlab and Envision 36
A.5 Six joint control . 40

B. Controller charts . 45
C. Robot drawings . 47

1

2

1. Introduction

1.1 Problem formulation
The topic of this thesis is to identify a surface with robot force control. To
achieve this a robot performing contact force control on a surface while
it also follows a trajectory is needed. All the time it should keep the tool
mounted in the gripper perpendicular to the surface in order to determine
the normal. To solve this problem it was split into smaller parts:

• An overview in form of a literature studie of force controlled robots
in industrial automation. This was done as a project in the course
Industrial Automation [Liljenborg and Olsson, 2000], Chapter 2.

• Establish the transformation matrices for forward and inverse kine-
matics, Chapter 3.

• Compensate for the gravitational force acting on the gripper on the
measurement side of the force sensor, Chapter 3.

• Make a connection between different simulation programs to be able
to make both a numerical and a visual simulation, Chapter 4.

• To perform a controlled contact with a non parallel surface, follow a
trajectory and to visualize the non parallellity in a simulation pro-
gram, Chapter 5.

• To perform a controlled contact with a surface, follow a trajectory,
reorient the tool in the gripper to be perpendicular to the surface and
to visualize the surface in a simulation program, Chapter 6.

Some practical problems that came up during the work are discussed in
Chapter 7. The results and conclusions are presented in Chapter 8. Some
recommendations for extensions and future work is presented in Chapter 9.

1.2 Method
To learn Envision some of the laboration material from the robot technology
course from the Division of Robotics, LTH was used, [Bolmsjö and Olsson,
1999]. All our programs and models have first been simulated in Mat-
lab/Simulink and in Envision. Finally experiments have been performed
on the open robot control system at the Department of Automatic Control
[Nilsson, 1996].

In the first experiments the nominal experimental setup consists of
one-dimensional force control perpendicular to a planar surface, where the
surface is parallel to the robot links two and three, see Figure 2. Position
control for joint two and three has been used to follow a trajectory along the
surface and joint one to do the force control and to compensate for the load
disturbance which occurs when the surface is not located parallel to the
robot. To compare the result between different controllers the maximum
movement of joint one while still keeping the contact with the environment
is used.

1.3 Experimental platform
All experiments were performed in the robot laboratory at the Department
of Automatic Control at Lund Institute of Technology. The robot used was

3

Figure 1 The ABB Irb-2000 robot.

an ABB Irb-2000 robot, equipped with a wrist mounted force and torque
sensor of type JR3.

ABB Irb-2000 robot The Irb-2000 robot is an industrial robot which
has six degrees of freedom (DOF), see Figure 1. Joint one, four, and six are
of cylindrical type and joint two, three, and five are of revolute type, see
Figure 2. To be able to go to any position with a arbitrary orientation the
six DOF:s are needed. Mounted outside and attached to joint six is a force
sensor. The force sensor’s coordinate system is rotated 45 degrees in the
positive direction of joint six. Outside the force sensor a gripper is mounted.
Because of the rotation of the sensor the gripper is also rotated compared
to joint six. In the gripper it is possible to attach a pen. The pen is used
when drawing on a white board with the robot. The pen is attached to the
gripper with a spring in order to make it more compliant. The spring also
helps forces in the force sensor to build up slowly when the robot gets in
contact with an object. The spring constant was measured to 0.35 N/mm.

Robot control system The robot control system was developed at the
department and it allows a wide range of applications that the standard
ABB control system will not permit [Nilsson, 1996]. The robot can be pro-
grammed in several different programming languages for example Pålsjö
[Blomdell, 1997], [Eker, 1997], [Eker, 1999] Matlab/Simulink [Mathworks,
Inc., 2000], Modula 2, or C-code. In this master thesis mostly Pålsjö and
Matlab/Simulink had been used. Pålsjö is a real-time system which en-
ables logging of joint angle values and forces from the sensor when run-
ning the robot. Matlab/Simulink with Real-time workshop [Mathworks,
Inc., 2000] enables Simulink models to be translated to C-code and down-
loaded to the robot system. In the control system for the robot some Mat-
lab functions and programs are available that can be used when control-

4

Figure 2 Joints on the ABB Irb-2000 robot.

ling the robot. Functions that will be mentioned later in this thesis is for-
ward2400.m and invkin2400.m. A program much used was Exc_handler.
This program was used when a trajectory was to be applied to the robot.
The Exc_handler also allows logging of the current joint values, reference
joint values, joint motor torques, joint velocities, and sensor forces. The
sample rate for the position controller in the robot system is 5 ms.

Force sensor The force sensor used in the experiments was of type
100M40A manufactured by JR3 Inc., see Figure 4. The force sensor mea-
sures forces and torques in x-, y-, and z-direction. These forces and torques
are read into the robot system via a DSP-board and can be reached from
all the above mentioned software. The sample rate for the force sensor is
8 kHz.
To protect the sensor the gripper is mounted with a pneumatic lock that
will come loose if the gripper is exposed for a large load. The sensor used
in the experiments works in the range ±400N. Since the forces used in
the experiments are very small compared to the measurement range, the
measurement errors and the noise become very big.

1.4 Simulation platform
In the project, simulations of the developed controllers were an important
part. Several different softwares were used. Due to that all controllers
were implemented in Matlab/Simulink a first numerical simulation was
performed there. When simulating in Simulink there was no opportunity
to add the robot graphics, therefore a Matlab program called Robotpos
was implemented, see Figure 5. This program shows the position and ori-
entation of the robot for given joint values. When this was not sufficient
a robot simulation software called Envision [Deneb Robotics, Inc., 2000]

5

was used. Envision has a robot library which makes it easy to import the
wanted robot, it allows also in a convenient way to import 3D-CAM models.
This makes it possible to build good simulation environment and to spec-
ify nominal trajectories. In order to use Envision with a Matlab/Simulink
controller a network connection was needed between Matlab and Envision,
which is further discussed in Chapter 4.

2. Literature study

2.1 Background
The research about force controlled robots has been going on for about
20 years. However, it has been hard to apply the research results to the
product lines. There are only a few examples where force control has been a
success. In some applications it has been easier to implement visual control
instead. However, in the last few years the industry has been requesting
sensor based force control again. In some occasions they can benefit from
the use of force control to compliment the usual position control when
programming a robot. Some examples:

1. Applying a limited force needed for a manufacturing process. When
drilling a certain force is needed but the force is not allowed to exceed
a certain limit, which will cause damage to the tool.

2. Pushing an object using a controlled force.

3. Dealing with geometric uncertainty by establishing controlled con-
tacts. When polishing a surface a certain contact pressure is needed.

The last area is the most used. Experiments have been carried out trying
to grind with a hybrid force position controlled robot. In the case where the
tool was compliant it was successful. When hard tools are used they often
break or the force sensor breaks. The main reason is that the time delay
between detection of the force and response of the controller is too large.

2.2 Sensor based force control

Direct force control Direct force control operates on a force error be-
tween the desired and the measured values and aims to have a constant
value of the contact force. Motion control capabilities along the uncon-
strained task directions are recovered using a parallel composition of the
force and motion control actions. This is desirable in order to realize a
compliant behavior only along those task directions that are actually con-
strained by the presence of the environment.

Hybrid control Hybrid control is a combination of control with force
and torque sensors, and ordinary position control [Siciliano and Villani,
1999], [Shutter et al., 1997]. The workspace is divided into purely motion-
controlled directions and purely force-controlled directions. The position
controlled part and the force controlled part results in two torques. The
output is the sum of the torques. Force control and position control are
decoupled with leads so that the control laws for each can be designed

6

Figure 3 Block scheme for an impedance controller. Md is the mass matrix, KD

the damping matrix, and KP the stiffness matrix. hA is the equivalent force. KA is
the environment stiffness matrix and xe the undeformed environment rest position.

independently. Normally, the force control part consists of a PI-controller
and the position part of a PD-controller. The reason for this is, in the
position part, it is more desirable to have a quick response, while in the
force part a smaller error is preferred. When a conflict between force and
position errors occurs, the force error dominates over position error.

Impedance control In impedance control, the ratio of force to motion is
regulated [Hogan, 1985], [Johansson and Spong, 1994], [Zeng and Hemami,
1997], [Whitney, 1987]. It can be implemented in many ways depending
on how the measured signals are used. The velocity is used to modify
the damping constant of the manipulator. The manipulator control system
does not only follow a trajectory, but also changes the impedance of the
manipulator. Impedance control is often used when the robot needs to adapt
to the damping of its environment. The block scheme of a manipulator in
contact with an elastic environment under impedance control is in Figure 3.
It can also be discriebed with Equation 1 where x̃ = xd − x.

Md ¨̃x + KD ˙̃x + KP x̃ = hA (1)
xd, ẋd, and ẍd represent the position, velocity and acceleration references.
Md is the mass matrix, KD the damping matrix, and KP the stiffness
matrix. hA is the equivalent force.

Parallel control Both hybrid control and impedance control have to
cope with imperfections, such as unknown robot dynamics, measurement
noise, and other external disturbances. To overcome these problems exper-
iments have been carried out with combined hybrid and impedance control
called parallel control. A combination between hybrid and impedance con-
trol makes it possible to distinct impedance for the position controlled and
for the force controlled part. This makes it possible for the controller to
maintain position or velocity and follow a force trajectory. Two impedances
can be chosen by the user, one for the velocity part and one for the force
part of the controller.

2.3 Force sensors
Force measurements are mainly based on determination of an equilibrium
condition between two forces. The one which is better known is taken as

7

Figure 4 The sensor used in the experiments.

a reference in order to determine the value of the other. Force sensors are
built according to the principal strain gauges on an elastic component or
the piezoelectric method.

The elastic component on the strain gauge deforms elastically when it
is loaded. This deformation causes the gauges to deform which causes its
resistance to change. The voltage over the resistance can be amplified and
measured. The measured voltage is proportional to the load, which makes
it possible to estimate the force. In a strain gauge based transducer, the
conversion chain is force-stress-strain-resistance-output voltage. At every
conversion step in this chain parasitic influences can interfere with the re-
sult and may cause a loss in accuracy. The placement of the strain gauges
on the elastically component depends on the measurement direction of the
force or torque respectively. It also depends on if the sensor should be sen-
sitive to temperature or not. The gauges are connected to each other in
bridges. There are several kinds of bridges depending on if the sensor is
used to measure only force or both force and torque. Some of these bridge
couplings are not sensitive to the temperature component of the strain [Ek-
dahl, 1999]. Force sensors should be placed at locations close to application
point of external forces such as end-effector or the tool itself.

The piezoelectric method uses a piezoelectric material that yields an elec-
trical charge when it is mechanically loaded. In contrast to sensors using
strain gauges, no flexing spring element is required. The force to be mea-
sured induces a mechanical stress that loads the piezoelectric material and
produce an output signal. As piezoelectric material quartz can be used.

A force sensor is designed after the following criteria [Nasri, 1999]:
Application related requirements:

• accuracy,

8

• sensitivity,

• rigidity,

• dimension,

• force and moment range,

• weight,

• compact shape,

• robust construction.

Manufacturing related aspects:

• simple design of elastic component,

• easy gauge installation.

Transducers for forces from 0.1 to 10 MN are commercially available and
used for industrial as well as research purposes. A typical force sensor is
shown in Figure 4.

2.4 Industrial application
Industrial manufacturing is the largest area in which robot force sensors
are used. Examples of applications were robot force sensors can be used
[CRS, 2000]:

• product life cycle testing,

• force monitoring and control,

• dispensing of sealants and adhesives,

• deburring of metals and plastics,

• assembly machines and work cells,

• touch control and effort sensing,

• material handling.

3. Theory

The modeling of industrial robots is usually divided into kinematic and dy-
namic modeling. Kinematics of a robot refers to the geometric relationship
between the motion of the robot in joint space and the motion of the tool
in the task space. In Figure 5 the two frames are represented by the co-
ordinate systems o0x0 y0z0 and oSxS yS zS respectively. Robot dynamics are
not treated in this thesis.

9

Figure 5 The coordinate systems for the robot.

link ai [mm] α i di [mm] θ i

1 0 -π/2 750 θ1

2 710 0 0 θ2-π/2
3 125 -π/2 0 θ3-θ2

4 0 π/2 850 θ4

5 0 -π/2 0 θ5

6 0 0 100 θ6

S 0 0 Tool length π/4

Figure 6 The ai, α i, di, and θ i parameters for the ABB Irb-2000 robot.

3.1 Forward kinematics
When the joint angles for all joints are known, the position and orienta-
tion for the end-effector can be calculated using forward kinematics. The
orientation of the coordinate systems for the joints of the robot was in-
vestigated and the axes not defined by ABB robot standard were defined
as shown in Figure 5. The standard Denavit-Hartenberg convention has
been used, see Figure 7 [Denavit and Hartenberg, 1955], and the following
definitions. With the coordinate system and the dimensional drawings of
the robot, Appendix C, the parameters ai, α i, di, and θ i could be obtained,
Figure 6.

10

Figure 7 Standard Denavit-Hartenberg convention

ai, link length the offset distance between the zi−1 and zi axes
along the xi axis.

α i, link twist the angle from the zi−1 axis to the zi axis about the
xi axis.

di, link offset the distance from the origin of frame i-1 to the xi
axis along the zi−1 axis.

θ i, joint angle the angle between the xi−1 and xi axes about the
zi−1 axis.

The transform, i−1
i T, relation between coordinate system i with respect

to coordinate system i − 1 could be calculated as Equation 2 [Spong and
Vidyasagar, 1989]

i−1
i T = Rotz,θ i ⋅ Transz,di ⋅ Transx,ai ⋅ Rotx,α i (2)

The general form of the i−1
i T matrix then becomes:

i−1
i T =

cos(θ i) −sin(θ i) ⋅ cos(α i) sin(θ i) ⋅ sin(α i) ai ⋅ cos(θ i)
sin(θ i) cos(θ i) ⋅ cos(α i) −cos(θ i) ⋅ sin(α i) ai ⋅ sin(θ i)
0 sin(α i) cos(α i) di

0 0 0 1

The last row in Equation 3.1 is just filled out to get a square matrix that is
easy to use in calculations. The elements in the T matrix could be explained
in the following matrix:

i−1
i T =

1
1R 1

2R 1
3R px

2
1R 2

2R 2
3R py

3
1R 3

2R 3
3R pz

0 0 0 1

 (3)

were the elements p represent the position for the ith coordinate system
relative to the (i−1)th coordinate system and the R matrix represents the
orientation.

To change between coordinate systems, the T-matrices between the sys-
tems has to be multiplied. For example, to get the transformation matrix

11

from the base coordinate to the sensor (frame S) all the T matrices has to
be multiplied.

0
ST =0

1 T ⋅12 T ⋅23 T ⋅34 T ⋅45 T ⋅56 T ⋅6S T

To calculate forward kinematics forward2400.m was used when transform-
ing between coordinate system 0 to 6 otherwise the Matlab code in Ap-
pendix A.1 was used.

3.2 Inverse kinematics
If the end-effector position and orientation are known the joint angles can
be calculated using inverse kinematics. To simplify it a bit the problem
is separated into two subproblems. This separation is possible because
the last three joint axes intersect in one point. First calculate the wrist
position were the last three joint axes intersect from the known TCP, tool
length, and orientation. From the wrist position the first three joint angles
are then calculated. After this the last three joint angles can be found.
Unfortunately there usually exists more than one solution. The function
used was invkin2400.m.

3.3 The Jacobian
The Manipulator Jacobian can be used as a transformer of forces and
torques between different coordinate systems. The Jacobian can also trans-
form linear and angular velocity between different coordinate systems. The
analytical Jacobian is a different matrix calculated from the derivatives of
the position and orientation. The analytical Jacobian is not treated in this
thesis.
The matrix operator

P� =

 0 −pz py

pz 0 −px

−py px 0

corresponds to taking the cross product with the vector p = [px py pz]T and
is used to calculate the Jacobian [Craig, 1989]. The Jacobian is calculated
with the R matrix, Equation 3, and the matrix operator P�. Equation 4
shows the force and torque Jacobian.

Jf orce =
(

0
S R 0

0
S P�0

S R 0
S R

)
(4)

The Jacobian for transforming linear and angular velocity is the transpose
of Equation 4. Several m-files were written to support the calculations of
which some are presented in Appendix A.2.

3.4 Gravity compensation
Because of the gravitational force acting on the end-effector outside the
sensor, the values read from the sensor varies a lot depending on the robot
configuration and in which position the force sensor was reset. This problem
was solved using the Jacobian and an assumption that the force sensor was
reseted when the end-effectors gravitational force only was acting in the
sensors z-direction. The end-effector weight could be determined when the

12

robot was in its home position, all joints equal to zero, by reading the
sensor’s force in the z-direction or the absolute value of the x and y forces.
To get a better accuracy of the end-effector weight several readings were
made when the robot was in different positions. This readings were made
when joint one to four and six were set to zero and joint five was set to
values between -90 and 90 with 10 degrees step between the readings. With
simple trigonometry Equation 6 could be found and the mass computed.√

F2
x + F2

y = m ⋅ n ⋅ cosα (5)
Fz +m ⋅ n = m ⋅ n ⋅ sinα (6)

A mean value of the computed mass from all the measurements was cal-
culated and found to be m = 7.0 kg. When weighing the end-effector on a
scale the mass was found to be 6.7 kg. In all further calculations m = 7.0
kg is used, this because all other collected force data is read from the sensor.

The center of gravity (COG) of the end-effector could also be determined
using the collected data. By dividing the torques in the x direction with the
forces in the y direction or the other way around the lever from the sensor
to the COG of the end-effector could be computed. The lever was computed
to 139 mm. With a known end-effector COG, a Jacobian from the COG to
the sensor frame was computed. To eliminate the gravitation force a force
was applied at the COG in the opposite gravitational force direction. This
force was mapped to the sensor frame using the Jacobian. When adding
the mapped force from the COG and the read forces from the sensor a
gravitational compensation was made which eliminates the gravitational
force independent of the robot configuration. The Matlab source code for
this operation is presented in Appendix A.3.

4. Communication between Matlab and Envision

To visualize the results from a robot simulation were the controller is imple-
mented in Matlab a link between Matlab and Envision is needed [Olsson,
2000]. In Envision there is an environment called LLTI (Low Level Teler-
obotic Interface). This environment is described in [Olsson, 2000] and in
the Envision-help. The main stucture of Envision is shown in Figure 8.
LLTI provides a possibility to either control a real robot from the simu-
lation program or to control the modeled robot in Envision. To be able to
use the LLTI a C-program which both handles the interface with Envision
and acts like a network client had to be implemented. The server which
communicates with the client was developed in Matlab as a m-file. The
communication between the client and the server uses the local network
and a communication software called Matcomm which is developed at the
department [Blomdell, 1997]. The use of these programs makes it possible
to execute Envision commands from Matlab/Simulink. There are two types
of commands that can be executed, either CLI-commands (Command Line
Interpreter) or LLTI-commands. When a CLI-command is to be executed
a text string is sent from the Matlab server using the function runCLI.m.
The client receives the string and adds a code which tells Envision that

13

 Socket
ENVISION

ENVISION

 Interface

Nettools

CLI Simulation
Engine

GSL

LLTI
Processor

Motion
Pipeline

LLTI
User
I/O

SHLIB

User Code

Nettools

L
L
T
I

S
o
k
e
t

P
i
p
e
s

P
o
r
t
s

Executive

A

y
n
c

Hardware
interface

UNIX
Files

MouseKey
Board Dials Space

Ball

Deneb User Interface

TCP/IP

User

Codes

s

User

Figure 8 The ommunication used between Matlab and Envision was the LLTI
(Low Level Telerobotic Interface).

the received string is a CLI-command. Both the code and the string is re-
turned to Envision. If a LLTI-command is to be executed then an array
of type double is sent from the Matlab server using the m-file runLLTI.m.
The client will return the array to Envision without altering it. How these
command arrays are used is described in the Envision online help under
the section LLTI [ENVISION, 2000]. All code for the communication is to
be found in Appendix A.4.

5. Simulations and Experiments with three joints

The purpose of the experiment was to examine if the robot could follow
a trajectory on a surface not parallel to the robot and to visualize the
nonparallellity in Envision. The trajectory was chosen to be a circle with
a diameter of 500 mm, see Figure 9. To follow this trajectory only three
joints are needed. Joint 2 and 3 for the circle trajectory in the plane and
joint 1 for compensationg for the deviation perpendicular to the circle.

5.1 Simulation
The circle trajectory was generated in the robot simulation program En-
vision. The trajectory made only uses joint two and three on the robot. In
order to verify that the trajectory was correct a simulation in Envision was
performed, this to minimize the risk of failure when the trajectory was to
be applied to the real robot. During a simulation in Envision it is also pos-
sible to see if the robot joints stay within their mechanicle boundaries. In
order to make a good simulation a model of the experiment platform was
created in Envision, see Figure 9. When the simulation performed well the
trajectory was saved to a ASCII text file. This file contained joint values

14

Figure 9 Simulation setup

for joint two and three and the corresponding time for these values.

5.2 Experiment with only position control
In order to apply the Envision generated trajectory to the robot system
from Matlab some corrections had to be made. The trajectory was sampled
with a 200 ms interval, however the robot system uses a sample time of
5 ms. To solve this a simple interpolation of the trajectory’s joint values
were made. The robot system also requires all joint values to be in motor
radians. The conversion for joint six is calculated differently due to a me-
chanical coupling between joint five and six.

For joint 1..5.

ValueInJointDEG(i)=180/pi/N(i)*ValueInMotorRAD(i);

For joint 6.

ValueInJointDEG(6)=180/pi/N(6)*(ValueInMotorRAD(6)
+ValueInMotorRAD(5));

where Ni is the gear ratio for joint i.
After these conversions the trajectory could be downloaded as position ref-
erence for the internal position controller of the robot using the Exc_handler.
The trajectory was applied to joint two and three, while the other joints
were given zero reference value and should stay in their initial positions.
When running the trajectory the non parallellity of the white board to-
wards the robot showed. It resulted in that the robot only had been in
contact with the white board during some of the time.

15

Filter

Output from Robot System

Input to Robot System

pos_ref

x

start_pos

Fz

measured force

1

s+1

Transfer Fcn

Product1

Product

s

1

Integrator

−4

Fref

−0.5

Error gain

2

1/Ti

Figure 10 This is the force controller model that was downloaded to the robot
system.

5.3 Experiment with position and force control
To compensate for the uncertain angle of the white board a force controller
was implemented in Matlab/Simulink. The controller type used was a
direct force PI-controller, see Figure 10, which gives an input to the robot
systems position controller. This controller should keep the force measured
by the sensor at 2N, i.e. a 2N force acting on the white board. Because
of a great deal of noise when reading from the force sensor, the signal is
filtered through a low pass filter. When applying this controller to joint one
and then running the trajectory the robot stayed in contact with the white
board during the entire run but the maximum movement of joint one could
only be about 0.9 degrees. The force and the filtered force is plotted in
Figure 11. The parameters used was Fref = −2, Kf = −0.5 and, Ti = 0.5.

In order to reduce the force sensor noise effect on the controller the force
reference was raised from 2N to 4N and the speed of the circle trajectory
was cut in half. After these changes the maximum movement of joint one
for still beeing in contact was about 6.2 degrees. The plot of the force can be
seen in Figure 12. The plot reveals that the filtered force is in the interval of
4N ±0.7N which means that the controller fails to keep the force constant
at 4N. In the plot it also can be seen that the measured force suffered from
noise. The controller parameters used in this experiment was Fref = −4,
Kf = −0.5 and, Ti = 0.4.

5.4 Experiment with force and position controller on joint one
Another control structure was implemented with a proportional position
controller. Instead of giving an position reference to the system’s position
controller a torque reference direct to the robot motor for joint one was
the output of this controller. This controller is shown i Figure 13. When
running the slow circle with a force reference of 4N about the same result
was reached as in Section 5.3, see Figure 14. The values for the plot is taken
at the same angle as when using force control. The control parameters used
is KForce = −0.8, TiForce = 0.5, and KPosition = 0.5.

Some experiments with a PI-force controller and a PD-position con-
troller was also accomplished but it proved to be very difficult to tune

16

0 5 10 15 20 25 30 35
−8

−6

−4

−2

0

2

4
Fast circle with 2 N reference force

Time [s]

F
or

ce
 [N

]

Figure 11 The force signal and the filtered force signal when drawing a circle at
the higher speed. The force controller in Figure 10 is used.

0 10 20 30 40 50 60 70
−9

−8

−7

−6

−5

−4

−3

−2

−1

0
Slow circle with 4 N reference force

Time [s]

F
or

ce
 [N

]

Figure 12 The force signal and the filtered force signal when drawing a circle at
the lower speed. The force controller in Figure 10 is used.

the derivative part. This also probably because of the noise from the force
sensor.

5.5 Variable K in the force controller
One problem during the experiments was the proportional K parameter
in the force controller. When the robot is approaching the surface a small

17

Input to Robot System

Output from Robot System

torque_ref

1

s+1

Transfer Fcn

Saturation

Product3

Product2

Product1

0.5

Position error gain

pos

Measured Position

Fz

Measured Fz

s

1

Integrator

Init_pos

Init position

−4

Fref

−0.8

Force error gain

2

1/Ti

Figure 13 The force position controller used in the experiments.

0 10 20 30 40 50 60 70
−9

−8

−7

−6

−5

−4

−3

−2

−1

0
Circle with a force position controller on joint one

Time [s]

F
or

ce
 [N

]

Figure 14 The force signal and the filtered force signal when drawing a circle at
the lower speed. The force position controller in Figure 13 is used.

K is needed otherwise it will smash too hard into the surface. But when
the robot is in contact a big K is desirable so it will not loose the contact.
To handle this gain scheduling have been tried with respect to the mea-
sured contact force. A simulation in Simulink was made to try out different
control parameters, see Figure 15. K varies as the following equation:

varK = K ⋅ (−atan(Fz)/π + 1/2) (7)

The used parameters was K = −1.3, Ti = 0.25 and, Fref = −4N. The
simulation setup is described closer in Chapter 6.1. The model was changed
to run at the robot system, see Figure 16. The same experiments as in the

18

Outjoints

In1 Out1

Simulate the robot system1

circletrajectory

From
Workspace

In1 Out1

Force control

Define a normal to a plane

traj traj+force

Fz

pos_ref

1

Out1

f(u)

u(1)*(−atan(u(2))/pi+1/2)

0

startpos

MATLAB
Function

simplanvark.m

0.35

kf

1

0.1s+1
joint 1

MATLAB
Function get Fz

MATLAB
Function

addj1
470

Tool length

Product2

Product1

0Nz
1Ny0Nx

s

1

Integrator

1

s+1

Fz

.014

From motorradians
to radians

−4

Fref

−1.3

Error gain

4

1/Ti

1

In1

Figure 15 The Simulink models when experimenting with variable K. The sys-
tem below is the subsystem in the box Force Control to the right in the upper block
diagram. The box in the middle simulates the robot and is explained in Chapter 6.1.

sections above was performed but a much better result was achieved. The
K and Ti was changed to give a slower system than in the simulation
and then with small steps the system was made quicker. The best result
was estimated when K = −1 and Ti = 0.5. During the run joint one has
moved 16.0 degrees. Movement up to about 24.0 deg was possible but then
the force varies a lot. Even bigger movements were tried but then the
robot lost the contact with the white board and once the contact was lost
the variable K parameter becomes much smaller and it takes a while to
establish contact again.

When drawing the circle on a non parallel surface the projection will
be ellipsoidal or egg-shaped. The drawn curve can be seen in the sequence
of pictures in Figure 18.

To achieve even better results a pole placement were tried. To do a
proper pole placement design more variables than K and Ti was needed
so also the filter used to filter the measured force was used in the design.
With the pole placement the following values were estimated K = −0.2,
Ti = 0.15, and the time constant in the filter M = 0.1. The simulation
became much better with this values but in the reality they did not work
as well. The time constant for the filter could not be less than M = 0.25
otherwise the system became unstable and then the parameters used before
were faster.

19

Filter

Output from Robot System

Input to Robot System

pos_ref

f(u)

u(1)*(−atan(u(2))/pi+1/2)

1

s+1

Transfer Fcn

0

Start position

Product3

Product1
F

Measured force

s

1

Integrator

−4

Fref

−1

Error gain

2

1/Ti

Figure 16 The variable K model that was tried on the robot.

0 10 20 30 40 50 60 70
−12

−10

−8

−6

−4

−2

0

2

Time in seconds

T
he

 fo
rc

e
in

 th
e

se
ns

or
 F

z
di

re
ct

io
n

Figure 17 The contact force between the robot and the white board when using
the variable K controller in Figure 16.

5.6 Remark on the force error
As can be seen especially in Figure 17 the force varies. From the block
scheme in Figure 19 the transfer functions from the reference force Fref
and from the load disturbance D to the control error e, could be calculated:

E = 1
1+ Gf ⋅ Gp ⋅ Gc

⋅ R − Gf ⋅ Gp

1+ Gf ⋅ Gp ⋅ Gc
⋅ D (8)

The integral part in the controller takes care of constant load disturbances.
However, following a trajectory along a non parallel surface will give a load
disturbance which increases/decreases with respect to the horizontal pro-

20

Figure 18 The robot draws after a circle trajectory using variable K. The ellip-
soidal form can be seen.

21

D
Load disturbance

Fref e pos_ref
mesured force

y

Measurement
disturbance

Gp

Robot

Gc

PI−regulator

JR3

Force sensor

Gf

Filter

−1

.

Figure 19 The schematic figure over the variable K.

Time (sec.)

A
m

pl
itu

de

Linear Simulation Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
o:

 Y
(1

)

Figure 20 The theoretically calculated force error for a disturbance ramp.

jection of the trajectory. When plotting the response of a step disturbance
for the transfer function in Equation 8 the error will go to zero. When plot-
ting the transfer function against a disturbance ramp the error will go to
one, see Figure 20, which is in the same area as the error in Figure 17.

5.7 Verifying the results in Envision
During the experiments joint values for joint one, two, and three were
recorded and stored. After some conversions Envision could read the values.
When putting a trace in Envision on the robot’s TCP the non parallellity
of the white board could be seen and measured when running through the
collected joint values, see Figure 21.

5.8 Conclusions
The best result were achieved when the variable K model was used. The
simulated result did not completely agree with the result achieved by ex-
periments. The reason is probably the assumption in the simulation that
the force signal was without noise. In Envision the orientation of the white

22

Figure 21 The non parallellity of the real white board compared to the virtual
can be seen.

board compared to the robot could be seen very clearly.

6. Simulations and Experiments with six joints

To be able to both follow a trajectory and reorient along a surface all six
joints are needed.

6.1 Reorienting the end-effector normal to a surface
The purpose of the experiment was to make the robot perform controlled
contact with a surface and then reorient its end-effector to be perpendicular
to that surface. This is accomplished when there is only a force in the force
sensor’s z-direction, i.e. no forces in the sensor’s x- and y-direction. In order
to reorient the end-effector all six joints had to be controlled. When the end-
effector is not in contact with a surface it should move in the end-effector’s
z-direction until it comes in contact with a surface.

Simulating a plane In order to make a realistic simulation a virtual
surface had to be implemented. The virtual plane was chosen by defining a
fix point on the plane and the normal vector to it. The function simulating

23

link samples T[s]
1 22.5 0.1125

2 19.5 0.0975

3 14 0.07

4 20 0.1

5 16.5 0.0825

6 22 0.11

Figure 22 The estimated time constants for the joints.

the plane returned forces in x-,y- and z-direction to the controller depend-
ing on the position of the robot relative to the defined plane. Forces in
z-direction was set to zero if the Tool Center Point (TCP) of the robot was
not in contact with the plane. Else if the TCP had past through the plane
the force in z-direction was calculated to be proportional to the distance
to the plane. Forces in x- and y-direction was estimated by comparing the
end-effector normal with the normal to the plane. Using the Jacobian a
comparation of the two frames were possible by mapping the plane’s coor-
dinates and orientation in world coordinates to the end-effector frame. The
force in x-direction was chosen to the x-component of the plane’s normal in
end-effector frame. The force in y-direction was chosen to the y-component
of the plane’s normal in end-effector frame. The Matlab code for the simu-
lated plane is presented in Appendix A.5.

Limitation of joint angles and joint velocities In order to be sure
that no corrupted joint angles were sent to the robot a Matlab-function was
implemented, see limitedjoints.m in Appendix A.5. This function checks all
joint angles to be reasonable and within the robot’s reach. If the input joint
angles are corrupt then the last setup of correct joint angles are sent to the
robot. The function also checks that all joint velocities are within a certain
limit. A speed limit of 50 deg/s seemed reasonable.

Simulating a robot Because of the fact that the virtual robot in En-
vision moved instantly to the joint values received from the controller a
closed loop with Envision was impossible. Instead of full robot dynamics,
the PID-controller in the robot system, was modeled as six decoupled first
order systems in Matlab. The time constants for the joints were identified
by sending a step to each of the robot’s joints and then logging the move-
ment of the robot. The estimated time constants for the joints are shown
in Figure 22. The samples column shows how many samples the robot sys-
tem needed before the robot had reached 63% of the step height. With a
known sample time, 5 ms, the time constant for the different joints were
computed.

The simulation To communicate with Envision from the Matlab con-
troller a network connection was established with a communication pack-
age called Matcomm. The connection is described in Chapter 4. This con-
nection enables Envision commands to be executed from within Matlab.
A Matlab/Simulink controller chart was developed which is designed to

24

Define normal to plane

(Fx Fy Fz)

Output current joint values for robot Input reference joint values to robot

(J1 J2 J3 J4 J5 J6) (J1 J2 J3 J4 J5 J6)

Error gain

Send current joint values to Envision

(Fx Fy Fz)

(J1 J2 J3 J4 J5 J6)

Reorient end effector

Translate end effector

Checks
joint values

Filter the output joints
to prevent steps to be

sent to the robot
Simulate a plane

Inverse
kinematics

Forward
kinematics

Isolate Fz

MATLAB
Function

translz.m

MATLAB
Function

simplan.m

MATLAB
Function

orientarm.m

In Out

low pass filter with initial values

MATLAB
Function

linitedjoints.m

MATLAB
Function

invkin2400.m

MATLAB
Function

getfz.m

MATLAB
Function

forward2400.m

Fref

force reference

Tl

Tool length

joints

Store correct
joint values

Kf

Spring constant
for the plane

INOUT

Simulate the robot system
with first order system

joints
Read last
correct
joint values

0Nz1Ny1Nx

K

Joints

Envision

Figure 23 Sixaxes PI force controller for use in simulations

use the real robot system’s position controllers, Figure 23. The force con-
troller is a PI-controller. The output from the controller i.e., the input posi-
tion reference to the robot, should be in joint angles. This simulation ver-
sion of the controller should send the joint angles to Envision after each
sample. In order to translate or rotate the end-effector a conversion from
joint angles to Cartesian coordinates were needed. The controller uses the
forward kinematics described in Chapter 3.1, for this. After this conver-
sion the controller makes the necessary translations and rotations for the
end effector depending on the read forces from the simulated plane. The
controller translates the end-effector in its z-direction until it intersects
with a surface. When a surface is found the controller strives to hold a
constant reference force, Fref , acting on the plane. When the end effector
is in contact with a surface the controller tries to reorient the end-effector
to be normal to the surface. This is done by rotating the end-effector to
a orientation where the forces in x- and y- direction are zero. The reori-
entation of the end-effector only happens if the end-effector is in contact
with a plane. Then the TCP-coordinates is converted back into joint values
by using the inverse kinematics, Chapter 3.2. These joint values are sent
through a low pass filter before they are returned to the robot system as
reference joint values. This to prevent large steps in joint values to be sent
to the robot.

When running the simulation all robot joints were set to zero except
joint four and five which were set to 90 deg. Furthermore a plane was
chosen with a plane normal to (1 1 0) in world coordinates and fixed at a
position 100 mm in front of the robot in the sensor’s z-direction. Moreover
the reference force, Fref , was chosen to −4N. The simulation result is
shown in Figure 26. The simulated forces in x- and z-direction during the
simulation are presented in Figure 24. There are no forces in the y-direction

25

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1
Simulated sensor forces in x−direction. Plane normal [1 1 0]

time [s]

F
x

[N
]

0 5 10 15 20 25 30 35 40 45 50
−7

−6

−5

−4

−3

−2

−1

0

1
Simulated sensor forces in z−direction. Plane normal [1 1 0]

time [s]

F
z

[N
]

Figure 24 Simulated sensor forces in x- and z-direction.

due to the chosen plane normal.

Experiment Unfortunately some problems occurred when trying to down-
load the controller to the robot system. This problem made it impossible to
see if the controller worked in reality. Details about the downloading prob-
lem could be found in Chapter 7. A controller based on the successfully
performed simulations was developed anyway and it hopefully works in
reality. This controller is shown in Appendix B, Figure 34. The controller
is based on a force PI-controller with variable proportional part which gives
an input to the robot system’s built in PID position controllers. Before the
joint values are sent to the robot system’s PID-controllers they are checked
in a Matlab-function to be reasonable. This is described in Chapter 6.1.
Furthermore the controller is provided with a Matlab-function to compen-
sate for the influence of the gravitational force on the end-effector for dif-
ferent joint values. This is described in Chapter 3.4.

6.2 Reorienting while following a trajectory
The next step was to reorient the end-effector normal to a surface while
simultaneously following a trajectory. The robot should if not in contact to
a surface translate in the end-effector’s z-direction during the trajectory
until it reached a surface. When overloading with a trajectory a new set
of joint values is taken each sample from the trajectory. This change in
trajectory joint values acts like a feed forward to the force controller.
This kind of controller would be useful when scanning an object with an
unknown or inexact position. By logging the joint values of the robot when
in contact with the object, the exact position and the objects surface nor-
mal could be obtained. With this kind of information a computer image of
the object could be created. Furthermore the information could be used to
calibrate a robot system with respect to a robot cell.

Controller By using the main structure of the controller developed in
Chapter 6.1, a controller that worked relative to a trajectory was imple-
mented. The controller principle is shown in Figure 27. This controller
start out from trajectory joint values for the robot’s all six joints, and then
adds the output reference joint values from the force PI-controller. This
forms a position reference to the robot system’s PID-controller. The con-
troller used in the simulations, see Figure 28, simulates the robot system
and its PID-controllers with a first order system. All Matlab m-files in the

26

Figure 25 To the left is the robot’s initial position. The initial position can be
changed to a direction that makes it possible to find the plane. To the right the
robot is searching for a plane in the z-direction.

Figure 26 When a force greater than 3 N is detected the robot starts reorientat-
ing, left picture. In the picture to the right the robot has found the normal to the
plane and stays there.

controller chart is presented in Appendix A.5. The force PI-controller uses
an variable proportional part, in the sensors z-direction. This type of con-
troller was developed in Chapter 5.5. In force x- and y-direction an ordinary
PI-controller is used.

Simulating a cylinder Instead of the previous simulation with a plane
a virtual cylinder was implemented in Matlab. The code is presented in
Appendix A.5. When using a cylinder instead of a plane the normal in
the contact point between the robot and the surface changes depending on
where the robot gets in contact with the cylinder. For this reason the robot
has to reorient the end-effector more during the trajectory than when using

27

Pos_traj

F_ref
pos_ref q

Robot and
robot system PID

q F

Position in
forces out

F_err pos_ref

Force PI−controller

Figure 27 Controller principle

a plane, and thereby it will be easier to see if the controller works properly.
The implementation of the cylinder returns forces in x-, y-, and, z-direction
which depends on the robot’s end-effector orientation and position. Fz is
set to zero if the robot is not in contact with the cylinder, and when in
contact it is set to be proportial to the distance to the cylinder surface. Fx
and Fy are determined by looking at the difference of the cylinder surface
normal in the intersection point and the end-effector’s z-direction. If these
two directions are the same then the end-effector is normal to the surface,
which leads to that the forces in x- and y-direction is set to zero.

The simulation To be able to test the controller properly a trajectory
had to be created which was chosen to be a circle with a radius of 150 mm.
The trajectory should initiate in the robot’s TCP when its joint values are
[0 0 0 90 90 0] degrees. This position is thereby chosen to be the starting
point of the simulation.
In the simulation the cylinder radius was set to 400 mm, and its center was
positioned 500 mm in front of the end-effector. Furthermore the cylinder
was chosen to be horizontal. With this placement of the cylinder the robot
has to translate 100 mm to intersect with the cylinder. The simulation
environment can be seen in Figure 29. In addition the force reference, Fref
was set to −4N. The simulation resulted in plots of the contact forces
between the end effector and the cylinder and forces in x- and y-direction.
These plots can be seen in Figure 30. The controller strives to keep the
forces in x- and y- direction to zero which it accomplished quite well. Forces
in z-direction should be zero when not in contact and Fref when in contact.
The plot shows that the contact force varies some around Fref , but the error
is small. The total time for completing the trajectory is 80 s. When cutting
the total trajectory time in half it resulted in more variations around Fref
as can be seen in Figure 31. The force error in this plot is bigger than when
running the slower trajectory. This concludes that the force error depends
on the speed of the trajectory. If a bigger error can be tolerated then a
faster trajectory can be overloaded. The graphical part of the simulation
made in Envision is shown in the Figures 32 and 33 as a sequence. The
sequence shows how the robot starts 100 mm from the cylinder surface and
starts translating towards it, furthermore the robot follows the predefined
trajectory. As soon as the end-effector of the robot reaches the cylinder
surface the reorientation begins to keep the end effector normal to the
plane. When the robot reaches the last set of trajectory joint values it will
only strive to keep a constant force acting on the surface.

28

Trajectory input
joint values

Send joint values
to Envision

MATLAB
Function

matcommarray

In1 Out1

Simulate robot system
with a first order system

circtraj

From
Workspace

In1 Out1

Force control

Figure 28 Controller used in the simulations in Section 6.2.

29

Figure 29 Simulation environment in Envision. The robot is in its initial position.

0 10 20 30 40 50 60 70 80 90
−0.02

−0.01

0

0.01

0.02

Time [s]

F
x

[N
]

0 10 20 30 40 50 60 70 80 90
−0.1

−0.05

0

0.05

0.1

Time [s]

F
y

[N
]

0 10 20 30 40 50 60 70 80 90
−6

−4

−2

0

Time [s]

F
z

[N
]

Figure 30 Forces in x-, y-, and, z-direction during the simulation of following a
circle on the cylinder.

Experiment The downloading problem described in Chapter 7 resulted
in that it was impossible to verify the simulated controller in reality. A
controller based on the successfully performed simulations was developed
anyway to be used when the code generation problem has been solved.
This controller is shown in Appendix B, Figure 35. The trajectory should
be downloaded via the Exc_handler and is then accessible in the model
by Traj j1 to Traj j6, which corresponds to the joint values in the trajec-
tory. Furthermore the controller is equipped with force filters in order to
minimize the effect of the noise. The forces are also compensated for the
gravitational force acting on the end-effector before they are used in the
controller. Before the controller sends a new set of reference values to the
robot system a final check is performed to see if the values are reasonable.

30

0 5 10 15 20 25 30 35 40 45
−6

−4

−2

0

Time [s]

F
y

[N
]

0 5 10 15 20 25 30 35 40 45
−0.4

−0.2

0

0.2

0.4

Time [s]

F
y

[N
]

0 5 10 15 20 25 30 35 40 45
−0.04

−0.02

0

0.02

0.04

Time [s]

F
x

[N
]

Figure 31 Forces in x-, y-, and, z-direction during a simulation when the speed
is the dubble compared with in Figure 30.

6.3 Conclusions
All the simulations worked successfully, both reorienting, Chapter 6.1, and
reorienting while following a trajectory, Chapter 6.2.

7. Practical problems

During the work with the master thesis some unexpected problems oc-
curred. The most significant problem was the compiling and download-
ing of the controller charts developed. All controllers were implemented
in Matlab/Simulink. The interfacing with the robot system was handled
by a Matlab–toolbox called Real-Time Workshop. This toolbox translates
the Matlab/Simulink–charts to C–code which then can be compiled and
downloaded to the robot system. The most of the source code written was
implemented as Matlab–functions which was not supported by Real-Time
Workshop. This should not be a problem to evade by using the MCC, Matlab
to C/C++ Compiler. This compiler compiles Matlab–functions to C/C++–
code which should be supported by Real-Time Workshop but unfortunatly
was not. After extensive research it became clear that this problem was
due to an error in MCC. According to Matlab this error will be corrected
in future versions of the compiler. The MCC used was Version 2.0.1.

8. Conclusions and recommendations

When only controlling on three joints a PI force controller with variable
proportional part is to be preferred. This because it can be tuned to be very
fast when in contact and thereby it can apply a constant force on an object
without large force errors. The simulated result did not completely agree
with the result achieved when the experiment was done in the reality. The
reason is probably the assumption in the simulation that the force signal
was without noise. From the measurements during the force control, it
is possible to update and calibrate the simulation model with respect to
the real work-cell, as for instance measuring the angle or the curvature

31

Figure 32 Simulation sequence of force control on a cylinder during a trajectory.

32

Figure 33 Simulation sequence of force control on a cylinder during a trajectory.

of a surface. All the simulations using six joints worked successfully. It
was possible to reorient the gripper to be perpendicular to the surface
meanwhile following a trajectory. In the simulations it was possible to
identify parts of simpler surfaces such as planes, cylinders, spheres.

9. Future work

The main future expansion is to get the controllers that control all six axes
to work on the real robot. This can not be done until Mathworks releases
a new version of the MCC, Matlab to C/C++ Compiler, that is a newer
version than 2.0.1, or until all Matlab–code is translated to C–code man-
ually. However, since Matlab-toolboxes and Matlab matrix manipulation
commands which are not present in the C–language is frequently used in
the developed software, a manual translation to C is not reasonable.
The controller charts developed with a direct force controller can also be

33

developed further by controlling both the joint positions and joint velocities.

10. References

ABB Robotics (1991): Product Manual IRB 2000.

Blomdell, A. (1997): “A real time control language for the Pålsjö environ-
ment.”. Master’s thesis ISRN LUTFD2/TFRT--5578- -SE, Department
of Automatic Control, Lund Institute of Technology.

Bolmsjö, G. and M. Olsson (1999): Robot Technology, Exercise 1-3, UARC.
Division of Robotics, Dept. of Mechanical Engineering, Lund University.

Craig, J. J. (1989): Introduction to Robotics. Addison-Wesley Publishing
Company.

CRS (2000): “CRS robotics.”
http://www.crsrobotics.com/markets/mkt_intro.html.

Denavit, J. and R. S. Hartenberg (1955): “A kinematic notation for lower-
pair mechanisms based on matrices.” Journal of Applied Mechanics,
pp. 215–221.

Deneb Robotics, Inc. (2000): “Deneb Robotics, Inc homepage.”
http://www.deneb.com/.

Ekdahl, I. (1999): Mätning av icke elektriska storheter. Department of
Industrial Electrical Engineering and Automation, Lund Institute of
Technology, Lund, Sweden.

Eker, J. (1997): A Framework for Dynamically Configurable Embedded
Controllers. Licenciate Thesis ISRN LUTFD2/TFRT--3218--SE, De-
partment of Automatic Control, Lund Institute of Technology.

Eker, J. (1999): Flexible Embedded Control Systems. Design and Imple-
mentation. PhD thesis ISRN LUTFD2/TFRT--1055--SE, Department of
Automatic Control, Lund Institute of Technology.

ENVISION (2000): “ENVISION Online Documentation.”
file:/usr/deneb/vmap/docs/envision_HOME/HOMEPAGE.html.

Hogan, N. (1985): “Impedance control: An approach to manipulation, Parts
I-III.” Journal of Dynamic Systems, Measurement, and Control ASME,
107, pp. 1–24.

Johansson, R. and M. Spong (1994): “Quadratic optimization of impedance
control.” In Proc. 1994 IEEE Int. Conf. Robotics and Automation,
pp. 616–621.

Liljenborg, S. and A. Olsson (2000): “Force controlled robots in industrial
automation.” Technical Report. Department of Industrial Electrical
Engineering and Automation (IEA).

Mathworks, Inc. (2000): “Mathworks, Inc. homepage.”
http://www.mathworks.com/.

Nasri, H. (1999): Modelling and requirements of the automated deburring
process. PhD thesis, Division of Robotics, Department of Mechanical
Engineering, Lund University, Lund.

34

Nilsson, K. (1996): Industrial Robot Programming. PhD thesis ISRN
LUTFD2/TFRT--1046--SE, Department of Automatic Control Lund
Institute of Technology.

Olsson, M. (2000): “How to extend Vmap functionality.” Technical Report.
Division of Robotics, Dept. of Mechanical Engineering, Lund University.

Shutter, J. D., H. Bruyninckx, W.-H. Zhu, and M. W. Spong (1997): “Force
Control: A Bird’s Eye View.” In Siciliano and Valavanis, Eds., Control
Problems in Robotics and Automation, number 230 in Lecture Notes in
Control and Information Sciences. Spinger-Verlag, London, UK.

Siciliano, B. and L. Villani (1999): Robot Force Control. Kluwer Academic
Publishers.

Spong, M. W. and M. Vidyasagar (1989): Robot Dynamics and Control.
John Wiley & Sons, Inc.

Whitney, D. E. (1987): “Historical Perspective and State of the Art in
Robot force Control.” The International Journal of Robotics Research,
6. Massachusetts Institute of Technology.

Zeng, G. and A. Hemami (1997): “An overview of robot force control.”
Robotica, 15. Cambridge University Press, Cambridge.

A. Program lists

A.1 Forward
function result=T01(j1)
% function result=T01(j1);
% Calculates the transformation matrix from frame 0 to 1 for
%joint angle j1;
result=[cos(j1) 0 -sin(j1) 0 ;sin(j1) 0 cos(j1) 0 ;
0 -1 0 750 ; 0 0 0 1];

A.2 Jacobian
function result=jacobian0S(joints)
% function result=jacobian0S(joints);
% Calculates the force jacobian from frame 0 to frame S(ensor);
t0s=T0S(joints);
px=t0s(1,4);
py=t0s(2,4);
pz=t0s(3,4);
p=[0 -pz py;pz 0 -px;-py px 0];
r0s=t0s(1:3,1:3);
J11=r0s;
J21=p*r0s;
J12=zeros(3);
J22=r0s;
Jupper=cat(2,J11,J12);
Jlower=cat(2,J21,J22);
result=cat(1,Jupper,Jlower);

35

A.3 Gravity compensation
function result=gravcomp(joints,FM,mg);
% function result=gravcomp(joints,FM,mg);
% function result=gravcomp(joints,FM);
% This function requires that the force sensor is reset when
% fz=mg;
% FM=[fx fy fz mx my mz] in sensor frame;
% mg is optional (default=70) = sensor weight*g (ca 70);

if nargin ==2
mg=70;

end;

% Make force coord. syst. right oriented (left oriented from
% the start);
FM(2)=-FM(2);
FM(5)=-FM(5);
%add mg to fz (because the sensor is zeroed in this direction);
FM(3)=FM(3)+mg;
% Convert from Ndm to Nmm;
FM(4)=FM(4)*100;
FM(5)=FM(5)*100;
FM(6)=FM(6)*100;

% Force to prevent grav. force;
Fgrav=[0 0 mg 0 0 0];
Ftp=inv(jacobianTP0TP(joints))*Fgrav’;
Fcomp=jacobian0TP(joints)*Ftp;
FS=inv(jacobian0S(joints))*Fcomp;
FM=FM+FS’;

% Make force coord. syst. left oriented again;
FM(2)=-FM(2);
FM(5)=-FM(5);
% Convert from Nmm to Ndm;
FM(4)=FM(4)/100;
FM(5)=FM(5)/100;
FM(6)=FM(6)/100;
result=FM;

A.4 Communication between Matlab and Envision

runCLI

function runCli(clistring,id);
% function runCli(clistring,id);
%
% id is the communication line obtaind when starting the
% communication with Envision.
% id=matcomm(’server’,’matlabc’);
% Example:
% runCli(’PAN CAMERA RIGHT 20 IN 20’,id)

36

%
matcomm(id,clistring);

runLLTI

function runLLTI(LLTIarray,id);
% function runLLTI(LLTIarray,id);
%
% id is the communication line obtaind when starting the
% communication with Envision.
% id=matcomm(’server’,’matlabc’);
% Example
% runLLTI([10.0 6 0 0 0 0 0 0],id)
% This cmd sets all the six joints on the robot to 0.
matcomm(id,LLTIarray);

matenv

/*Functions which makes it possible to communicate with Envision
from Matlab via LLTI (Low Level Tele Robotic)*/

#include <stdio.h>
#include <string.h>
#include <shlibdefs.h>
#include "libmatcomm.h"
static MatCommLine *mcLine;
static int i=100000;
static char cliCommand[144];
static float packet[144];
/*static char charpacket[144];*/

/*-------------------------IRIX------------------------------*/
/*-------------Error handling functions----------------------*/
void error(char *message)
{

fprintf(stderr, ": ERROR: %s\n", message);
exit(1);

}

void warning(char *message)
{

fprintf(stderr, ": WARNING: %s\n", message);
}

/*--------------------Setup connection-----------------------*/
void
llti_init_1()
{

int errcode;
/* char n="rune"; */
char *name="rune";
printf("Initializing\n");
/*satt treje parametern till tio med nyare matcomm*/

37

mcLine=MatCommOpen("bellman.control.lth.se","matlabc", 1000);
if(!mcLine)

printf("llti_init_1: Can’t initialise client socket\n");
else
printf("Connection established\n");

/* name=n; */
errcode=msg_pop_create(name);
return;

}

int readfloat(int nrows,int ncols){
int i;
int j;
float floatdata[nrows][ncols];
MatCommReadFloat(mcLine, floatdata, nrows, ncols);
for (i = 0 ; i < nrows ; i++) {
for (j = 0 ; j < ncols ; j++) {

printf("%f ", floatdata[i][j]);
packet[j]=floatdata[i][j];

};
printf("\n");

};
free(floatdata);
printf("Recevied data in readFloat\n");

return(1);
}

int readchar(int nrows,int ncols){
int j=0;
char *chardata = (char*) malloc(sizeof(char)*nrows*ncols+1);
if(MatCommReadChar(mcLine, chardata,nrows,ncols)==0){
printf("Failed to receive string\n");

}
else{
printf("Recevied string= ");
chardata[sizeof(char)*nrows*ncols]=’\0’;
printf(chardata);

j=0;
/*Save the text string direct int the static var. cliCommand*/
while(chardata[j]!=0){

cliCommand[j]=chardata[j];
j++;

}
cliCommand[j]=’\0’;

}
chardata="\0";
free(chardata);
return (1);

}

38

void sendCliCommand(){
int errcode= cli (cliCommand);

}
/*----------------Read from communication line---------------*/

float *llti_read_1(){
int nrows;
int ncols;
int datarec=0;
int j=0;
int ecode;
int yy;
int slength;

/* float *packetPointer; */
/* char *cliCommandPointer; */

i++;
if(i>100000){
printf("The program has now scanned the communication line

for data 100 000 times since last message\n ");
i=0;

}

if(MatCommDataAvailable(mcLine)){
if (MatCommIsReal(mcLine, &nrows, &ncols)){

ecode=readfloat(nrows,ncols);
j=0;
/*The next statement will only write none zero floats*/
while(packet[j]!=0){
printf("Packet to return to Envision= %f ", packet[j]);
printf("\n");
j++;

}
return packet;

}
else{

if(MatCommIsChar(mcLine, &nrows, &ncols)){
ecode=readchar(nrows,ncols);

j=0;
slength = strlen(cliCommand);
printf("%s length: %i\n",cliCommand,slength);
packet[0]= 130.0;
packet[1]= slength;
memcpy(&packet[2],cliCommand,slength);
/*Return packet to Envsion*/
return packet;

}
}

}
else
return(0);

39

}

/*-------------------Close connection function---------------*/
void llti_close_1()
{

printf("Closing down connection\n");
MatCommClose(mcLine);
printf("Connection closed\n");
return;

}

/*-------------------Test main program-----------------------*/

/* int main(){ */
/* float* mainpacket; */
/* int y; */
/* int t; */
/* printf("Nu i main\n"); */
/* llti_init_1(); */

/* while(1){ */
/* mainpacket=llti_read_1(); */
/* for (y = 0 ; y < 2 ; y++) { */
/* printf("main %f ", mainpacket[y]); */
/* printf("\n"); */
/* }; */
/* sleep(1); */
/* } */

/* } */

/*------------------------IRIX-------------------------------*/

A.5 Six joint control

orientarm

function result = orientarm(par);
% function result = orientarm(par);
% par(1:12)=[T(1,1:4) TT(2,1:4) T(3,1:4)]
% where T is the transformer matrix.
% par(13:18)=[Fx Fy Fz Mx My Mz]
% The function reorients the endeffector if the contact force
% (Fz) is 2N<Fz<8N.
T=[par(1:4)’;par(5:8)’;par(9:12)’; 0 0 0 1];
FM=par(13:18)’;
%Make sensor coordintae system right oriented
FM(3)=-FM(3);
%Define rotation angles

40

if FM(3)>2 & FM(3)<8
alfa=atan(FM(1)/FM(3));
beta=atan(FM(2)/FM(3));

else
alfa=0;
beta=0;

end
%Rotate the transformer matrix
TT=T*roty(alfa)*rotx(-beta);
%Return the new reoriented transformer matrix as an array
result=[TT(1,1:3) TT(2,1:3) TT(3,1:3)];

translz

function result=translz(par);
% function result=translz(par);
% par(1:12)=[T(1,1:4) TT(2,1:4) T(3,1:4)]
% where T is the transformer matrix.
% par(13)=The distance the endeffector should be translated in
%its z-direction.
T=[par(1:4)’;par(5:8)’;par(9:12)’; 0 0 0 1];
lz=par(13);
TT=T*transl([0 0 lz]);
%Return the new translated transformer matrix as an array
result=[TT(1,4) TT(2,4) TT(3,4)];

invkinarray

function result=invkinarray(par);
T=[par(1:3)’ par(10); par(4:6)’ par(11);

par(7:9)’ par(12); 0 0 0 1];
toollength=par(13);
result=invkin2400(T,1,1,toollength);

forwardarray

function result=forwardarray(par);
joints=par(2:7);
tool_length=par(1);
T=forward2400(joints, tool_length);
result=[T(1,1:4) T(2,1:4) T(3,1:4)];

simplan

function result=simplan(par)
% function result=simplan(par)
% par(1:3)=[Nx Ny Nz]. The disired plane’s normal array.
% par(4:9)=[j1 j2 j3 j4 j5 j6]. Robot joint angles.
% par(10)=The end effector tool length .
% par(11)=The spring constant for the plane.
%
% This function simulates a plane choosen by its normal array
% and a fix point. The function returns forces in x-, y-, and
% z-direction depending the robot’s position relative to the

41

% defined plane.
par=par’;
Kf=par(11);
joints=par(4:9);
toollength=par(10);

%**
% Define a plane in coord syst 0

Nsurf0=unit(par(1:3));
% Define plane point as the startingpoition of the robot +100 in
% x- and y-direction

tmppos=forward2400([0 0 0 pi/2 pi/2 0],toollength);
xref=tmppos(1,4)+100;
yref=tmppos(2,4)+100;
zref=tmppos(3,4);

% Write plane on kx*X+ky*Y+kz*Z+d=0;
kx=Nsurf0(1);
ky=Nsurf0(2);
kz=Nsurf0(3);
d=-(kx*xref+ky*yref+kz*zref);

%**
%******************FZ**********************
%End effector origin coords in world coord syst.

T=forward2400(joints,toollength);
x=T(1,4);
y=T(2,4);
z=T(3,4);

%End effector z-direction in world coord syst.
N=[T(1,3) T(2,3) T(3,3)];
t=(-d-kx*x-ky*y-kz*z)/(kx*N(1)+ky*N(2)+kz*N(3));

%The line (in zeffector direction) cuts the plane in (px,py,pz)
px=x+N(1)*t;
py=y+N(2)*t;
pz=z+N(3)*t;

%distance from end effector origin to (px,py,pz)
% in the world coordinate systen

dist0=[px-x py-y pz-z 0 0 0];
%distance from end effector origin to (px,py,pz) in end effector
%coord. syst

dist6=inv(jacobian06(joints))*dist0’;
if dist6(3)<0

Fz=Kf*dist6(3);
else

Fz=0;
end

%**

%******************FX AND FY***************
Nsurf0=[Nsurf0 0 0 0];
Nsurf6=inv(jacobian06(joints))*Nsurf0’;%stämmer;

% Plane in cord syst 6

42

Nsurf6=inv(jacobian06(joints))*Nsurf0’;%stämmer;
F=[Nsurf6(1) Nsurf6(2) Fz];

%**
% Return the simulated forces [Fx Fy Fz]
result=[F(1:3)];

limitedjoints

function result=limitedjoints(par)
% If the joint values moves out of the specifed limit, the
% outvalues will be the last valueble jointvalues.
j1=par(1);
j2=par(2);
j3=par(3);
j4=par(4);
j5=par(5);
j6=par(6);
oldj1=par(7);
oldj2=par(8);
oldj3=par(9);
oldj4=par(10);
oldj5=par(11);
oldj6=par(12);
gr2rad=pi/180;
maxv=50*gr2rad; % [rad/sec];
h=0.005; % change this value when you change sampletime;

if (j1 > -150*gr2rad)&(j1 < 150*gr2rad)&((j1-oldj1)/h < maxv)
j1OK=1;

else
j1OK=0;

end

if (j2 > -60*gr2rad)&(j2 < 60*gr2rad)&((j2-oldj2)/h < maxv)
j2OK=1;

else
j2OK=0;

end

if (j2+j3 >-60*gr2rad)&(j2+j3< 60*gr2rad)&((j3-oldj3)/h < maxv)
j3OK=1;

else
j3OK=0;

end

if (j4 > -180*gr2rad)&(j4 < 180*gr2rad)&((j4-oldj4)/h < maxv)
j4OK=1;

else
j4OK=0;

end

if (j5 > -100*gr2rad)&(j5 < 100*gr2rad)&((j5-oldj5)/h < maxv)

43

j5OK=1;
else

j5OK=0;
end

if (j6 > -200*gr2rad)&(j6< 200*gr2rad)&((j6-oldj6)/h< maxv)
j6OK=1;

else
j6OK=0;

end

if j1OK*j2OK*j3OK*j4OK*j5OK*j6OK > 0.5
result=[j1 j2 j3 j4 j5 j6]’;

else
result=[oldj1 oldj2 oldj3 oldj4 oldj5 oldj6];

end

getfz

function result=getfz(FM);
% function result=getfz(FM);
% FM=[Fx Fy Fz Mx My Mz]
%
% This function returns the z-component of the force-torque array.
result=FM(3);

44

B. Controller charts

Figure 34 Controller developed for the robot system for reorienting to be normal
to a surface.

45

logdata1−
 6 are used for logging signals

w
ith the E

xcitation handler

O
u

tp
u

t fro
m

 R
o

b
o

t S
yste

m

A
nalogIn, A

nalogO
ut: [−

1,1] −
>

 −
10V

..+
10V

C
heck joint values

Joint values
C

artesian

S
im

ulate a cylinder

R
eorient end−

effector

T
ranslate end−

effector

F
orw

ard kinem
atics

Inverse
kinem

atics

Isolate z−
part

C
om

pensate
for gravity

M
A

T
LA

B
F

unction

translz

m
otor_out

output from
 S

im
ulink

M
A

T
LA

B
F

unction

orientarm
.m

M
A

T
LA

B
F

unction

lim
itedjoints.m

M
A

T
LA

B
F

unction

invkinarray.m

M
A

T
LA

B
F

unction

gravcom
p.m

M
A

T
LA

B
F

unction

getz.m

M
A

T
LA

B
F

unction

forw
ardarray

f(u)

V
ariable K

function1

V
ariable K

T
l

T
ool length

T
l

T
ool length

In1

[rad] q_1
q_2
q_3
q_4
q_5
q_6

[rad/s] dq_1
dq_2
dq_3
dq_4
dq_5
dq_6
q_1r
q_2r
q_3r
q_4r
q_5r
q_6r

dq_1r
dq_2r
dq_3r
dq_4r
dq_5r
dq_6r
m

odeF
x

F
y

F
z

M
x

M
y

M
z

L1L2L3L4L5
A

nalogIn0
O

ut38
O

ut39
O

ut40
T

raj j1
T

raj j2
T

raj j3
T

raj j4
T

raj j5
T

raj j6

S
ubsystem

1

q_1r [rad]
q_2r
q_3r
q_4r
q_5r
q_6r
dq_1r [rad/s]
dq_2r
dq_3r
dq_4r
dq_5r
dq_6r
tau_1r [N

m
]

tau_2r
tau_3r
tau_4r
tau_5r
tau_6r
logdata_1
logdata_2
logdata_3
logdata_4
logdata_5
logdata_6
A

nalogO
ut0

O
ut1

S
ubsystem

1

s+
1

Low
 pass filter F

y1

1

s+
1

Low
 pass filter F

y

1

s+
1

Low
 pass filter F

x

In1
O

ut1

Low
 pass filter

to prevent step outputs

s 1

Integrator z

s 1

Integrator y

s 1

Integrator x

M
otor In

Input to S
im

ulink

F
ref

F
orce reference

K
z

E
rror gain z

K
y

E
rror gain y

K
x

E
rror gain x

em

em em em em

joints

D
ata S

tore
W

rite

joints
D

ata S
tore

R
ead

joints

D
ata S

tore
M

em
ory

1/T
i

1/T
iz

1/T
i

1/T
iy

1/T
i

1/T
ix

Figure 35 Controller developed for the robot system when reorienting and fol-
lowing a trajectory.

46

C. Robot drawings

Figure 36 The dimensional drawings of the robot [ABB Robotics, 1991].

47

