
ISSN 0280-5316
ISRN LUTFD2/TFRT--5658--SE

Linearization and Nonlinear Control
in Flight-control and Aerolasticity for

Civil Aircraft using MATRIXx

Peter Odebjer
Johan Svahn

Department of Automatic Control
Lund Institute of Technology

December 2000

Document name
MASTER THESIS
Date of issue
December 2000

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD2/TFRT—5658--SE
Supervisor
R. Johansson and M. Gäfvert (LTH) G. Mai and.
J. Schuler (EADS Airbus GmbH)

Author(s)

Peter Odebjer and Johan Svahn

Sponsoring organization

Title and subtitle
Linearization and nonlinear control in flight-controls and aeroelasticity for civil aircraft using MATRIXx.
(Linearisering och olinjär reglering av styrsystem och aeroelastiska modeller för civila flygplan i
MATRIXx).

Abstract
This Master Thesis has been written at EADS (European Aeronautic Defence and Space Company)
Airbus in Bremen.The work contains a description of a few methods when linearising SystemBuild
models in MATRIXx. MATRIXx is a tool for matrix manipulations (similar to Matlab) and SystemBuild is
a graphical modeling environment (similar to SimuLink). The methods examined are the linearization
command “lin” and the method of attaining a linear model through system identification (subspace
identification). A command scipt for frequency response analysis has also been written.
To get more familiar with the tools in MATRIXx an attempt to solve a control problem has also been
made. The problem consists of a limit cycle that appears in an airplane when one control surface (outer
aileron) is in damping mode. The two main ideas that have been investigated are scalar feedback and
nonlinear feedback. Due to the cxomplexity of the model the outcome is that a simple feedback is the best
solution of the approaches made.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
84

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.se

Master-of-Science Thesis in Electrical Engineering

Peter Odebjer
Johan Svahn

Linearization and nonlinear control

in flight-controls and aeroelasticity

for civil aircraft using MATRIXx

Lund Institute of Technology, Lund, Sweden
Department of Automatic Control
Prof. Rolf Johansson, MD, Ph.D.

EADS Airbus GmbH, Hamburg, Germany

Segment Flight Controls, Bremen, Germany
Segment Aeroelasticity, Bremen, Germany

Attendants:

Magnus Gäfvert, M.Sc.
Department of Automatic Control at Lund Institute of Technology, Sweden

Dipl.-Ing., Dipl.-Wirt.-Ing. Georg Mai

Flight Controls at EADS Airbus GmbH, site Bremen, Germany

Dr.-Ing. Jörg Schuler
Aeroelasticity at EADS Airbus GmbH, site Bremen, Germany

g

MSc-Thesis-PO-JS.doc Contents Dec. 2000

Contents

 Page

1 Preface ...5

1.1 Project description ...5

1.2 Abstract ...6

1.3 Acknowledgements ...6

1.4 Declaration ..6

1.5 Table of abbreviations ...7

1.6 Table of terms and definitions ...7

2 Linearization ...8

3 Linearization in MATRIXx using the “lin” and “trim” commands10

3.1 Methods used in the “lin” command..11

3.1.1 Exact linearization ..11

3.1.2 Finite-Difference approximation ...11

3.1.3 Kalman-Bertram method ..12

3.2 How to use the keywords in the “lin” command ..12

3.3 Linearization of selected blocks...13

3.3.1 Saturation block..13

3.3.2 General Algebraic Expression block...16

3.3.3 Dead Band block ..19

3.3.4 Quantizer block ..20

3.3.5 Gain Scheduler block ...21

3.3.6 Hysteresis block ...22

3.3.7 Small nonlinear system ..24

3.4 The “trim” command ...25

4 Frequency response analysis (FRA)...26

4.1 Background ...26

4.2 Theory ...26

4.3 Given implementation of FRA in ACSL ...27

4.4 Usage of MATRIXx for FRA ..28

4.4.1 Implementation of FRA in MATRIXx ..28

4.4.2 Comments on the implementation in MATRIXx..29

4.4.3 Validation of FRA implemented in MATRIXx..30

4.4.4 Discussion of the keywords in the “nfr” command for FRA function.......36

5 Linearization using subspace identification in MATRIXx ..37

5.1 The identification process..37

5.2 Experiment design...37

5.3 Data pre-processing ..38

5.4 Model determination..38

5.5 Validation...39

5.6 The final model..39

6 Linearization of an elevator flight control model ...40

6.1 Description of the elevator flight control model (pitch control)40

6.2 Linearization example using “lin” & “trim” commands42

6.3 Linearization example using subspace identification.......................................44

g

Contents

6.3.1 General.. 44

6.3.2 Experiment design... 44

6.3.3 Data pre-processing .. 45

6.3.4 Model determination .. 47

6.3.5 Validation... 47

6.3.6 The input’s effect on final model.. 48

6.4 Discussion of results... 50

7 Linearization of a rudder model ... 51

7.1 Linearization using ”lin” and “trim” commands... 51

7.2 Linearization using subspace identification .. 52

7.3 Comparison between results from all presented procedures.......................... 52

8 Nonlinear control.. 54

8.1 Aircraft model ... 54

8.2 Problem description .. 55

8.3 Analysis through describing function analysis .. 56

8.4 Initial approach to eliminate the limit cycles.. 60

8.5 Investigation and optimization of scalar feedback .. 61

8.6 A nonlinear approach to eliminate the non-linearity.. 64

8.7 Further control approaches... 69

9 Summary ... 70

10 Table of references .. 71

11 Appendix .. 72

11.1 Inputs and outputs on the aircraft model .. 72

11.2 FRA function implemented in MATRIXx ... 73

11.3 List of commands used in the subspace identification.................................... 79

g

 List of figures

List of figures

 Page

Fig. 1 System with saturation..13

Fig. 2 Saturation system analysis ...14

Fig. 3 Saturation system Bode plot ...15

Fig. 4 Step response comparison 1 ..17

Fig. 5 Comparison of gain and derivative ...17

Fig. 6 Step response comparison 2 ..18

Fig. 7 Dead-band block...19

Fig. 8 Dead-band analysis ..19

Fig. 9 Quantizer block ...20

Fig. 10 Gain scheduler example ...21

Fig. 11 Gain scheduler analysis..22

Fig. 12 Hysteresis block..22

Fig. 13 Hysteresis analysis ...23

Fig. 14 System with nonlinear states and output ..24

Fig. 15 Frequency Response Analysis (FRA) algorithm ...26

Fig. 16 Sub functions of FRA in MATRIXx..28

Fig. 17 Transfer function used for validation of FRA...30

Fig. 18 FRA of transfer function with default error criterion 0.1 rad30

Fig. 19 FRA of transfer func. with “errcrit” 0.01 rad and theoretical values.........31

Fig. 20 System used for Validation of the average function......................................31

Fig. 21 FRA of system with “errcrit” 0.08 rad ..32

Fig. 22 Simulation of system with an input of 15.407 Hz and amplitude 1................33

Fig. 23 Examination of frequencies close to system model critical frequency33

Fig. 24 Rudder model (input “delC”, output “del”) ..34

Fig. 25 FRA of rudder model ..34

Fig. 26 Simulation of the model with an input sine of 10 Hz and amplitude 1º35

Fig. 27 The identification process ...37

Fig. 28 Elevator flight control (side stick input is no. 5) ...40

Fig. 29 Effect of rate limiter...41

Fig. 30 Linearization effects due to perturbation vectors ..43

Fig. 31 Choice of “dx“ and “du“ ..43

Fig. 32 a) Part of PRBS input, b) Spectral density of input44

Fig. 33 Output from system when fed with the mentioned PRBS signal...................45

Fig. 34 Spectral density of output ...46

Fig. 35 Coherence spectrum between input and output ...46

Fig. 36 Bar plot showing singular values...47

Fig. 37 a) Prediction plot, b) Residual plot ..48

Fig. 38 a) Covariance of residuals, b) Cross correlation ...48

Fig. 39 Pole-zero plot of above mentioned system...49

Fig. 40 Comparison between the nonlinear- and the linearized model51

Fig. 41 Validation output ...52

Fig. 42 Comparing Bode plots from the different methods53

Fig. 43 Comparing Step Responses from the different methods53

Fig. 44 Generic aircraft model (linear) ..54

Fig. 45 Investigated model (nonlinear)..55

Fig. 46 The examined nonlinear system...56

Fig. 47 The linear part of the examined system..57

Fig. 48 Nyquist plot of linear system between 0.1 Hz and 6 Hz................................58

g

List of figures

Fig. 49 The output containing the limit cycles .. 59

Fig. 50 Plot of output from feedback system (outputs in deg and deg/sec) 60

Fig. 51 Nyquist plot - outer aileron velocity due to inner aileron............................... 61

Fig. 52 Nyquist plot - outer aileron deflection due to inner aileron position.............. 62

Fig. 53 Nyquist diagrams for different feedback gains ... 63

Fig. 54 System with elimination of non-linearity ... 64

Fig. 55 Comparison between original filter ()sF and reduced filter ()sF̂ 66

Fig. 56 Comparison between () ()sFsG ˆ* and ()sH in a Bode plot....................... 67

Fig. 57 Comparison between the reduced filter before and after it is stabilized....... 67

Fig. 58 Comparison between filter solution (top) and scalar feedback (bottom) 68

Fig. 59 Bode plot of error ... 69

g

Preface

1 Preface

1.1 Project description

Modern Airbus aircraft use Electronic Flight Control Systems (EFCS) to control the
aircraft via digital computers and electrical signals (fly-by-wire technology). In a recent
research program DaimlerChrysler Aerospace Airbus GmbH (DA) developed a
complete fly-by-wire system including Flight Control Laws (FCLs). These flight control
systems consist of highly nonlinear control algorithms, as well as hydraulically or
electrically powered actuators, which too have nonlinear dynamic characteristics.
Control algorithms of interest and the actuation are modeled using the tool
MATRIXx/SystemBuild for the description of their functional behavior with nonlinear
differential equations. For certain analysis tasks and especially for flutter calculation,
which takes place in frequency domain, linear system descriptions are necessary and
must be elaborated from the nonlinear models using state of the art linearization
techniques and the control software package MATRIXx/SystemBuild.

As an extension of the work a nonlinear control case will be investigated for an actuator
failure mode.

The Master Thesis shall elaborate the following subjects:

• Theory and investigation:
1. Theoretical chapter to describe the technique of linearization
2. Theoretical chapter to describe the linearization techniques using MATRIXx
3. Investigation and analysis of the MATRIXx “lin” command taking into account

dependencies on working point, mix of continuous and discrete models,
application considerations on the usage of specific nonlinear blocks (like
Quantization, Dead Band, Saturation, Gain Table, Time Delay etc.) and
parameter settings inside the analysis commands

4. Theoretical chapter to evaluate a given nonlinear frequency analysis algorithm
5. Elaboration of basic techniques for nonlinear control

• Implementation:

1. Implementation of the “lin” command applicable to nonlinear models
described in SystemBuild

2. Implementation of a given nonlinear Frequency Response Analysis (FRA)
algorithm in MATRIXx/SystemBuild

3. Implementation of an alternative linearization algorithm, if the built in functions
should fail (Subspace identification)

4. Implementation of nonlinear control laws

• Application and analysis:
1. Linearization of nonlinear actuator models and an elevator flight control system
2. Modular linearization of specific nonlinear elementary blocks
3. Nonlinear control to reduce structural accelerations due to actuator failure mode
4. Elimination of the limit cycle due to actuator failure mode

g

Preface

• Available resources:
1. Actuator models and flight control axis model elaborated with SystemBuild
2. Given algorithm for nonlinear Frequency Response Analysis (gain and phase

plot) using Advanced Continuous Simulation Language (ACSL), described in the
ACSL reference manual

3. Generic linear aero-elastic model using SystemBuild
4. Combined linear aero-elastic model and nonlinear actuator force leading to limit

cycle

1.2 Abstract

This Master Thesis has been written at EADS (European Aeronautic Defence and
Space Company) Airbus in Bremen. The work contains a description of a few methods
when linearising SystemBuild models in MATRIXx. MATRIXx is a tool for matrix
manipulations (similar to Matlab) and SystemBuild is a graphical modeling environment
(similar to SimuLink). The methods examined are the linearization command “lin” and
the method of attaining a linear model through system identification (subspace
identification). A command scipt for frequency response analysis has also been written.

To get more familiar with the tools in MATRIXx an attempt to solve a control problem
has also been made. The problem consists of a limit cycle that appears in an airplane
when one control surface (outer aileron) is in damping mode. The two main ideas that
have been investigated are scalar feedback and nonlinear feedback. Due to the
complexity of the model the outcome is that a simple feedback is the best solution of
the approaches made.

1.3 Acknowledgements

This work has been elaborated during our stay at EADS Airbus GmbH, site Bremen,
Germany between July and November 2000.

We would like to show our appreciation to the following persons and organizations:
Dipl.-Ing., Dipl.-Wirt.-Ing. Georg Mai, Dr.-Ing. Jörg Schuler, M.Sc. Magnus Gäfvert, Prof.
Rolf Johansson, Beck’s (brewery), the ladies in the Dasa breakfast cafeteria, the
French guys (dear colleagues), Sebastian Lauckner (bar friend), Purnendu Sarkar
(MATRIXx support), Studentenwerk (housing), Lloyd Imbiss (curry Bratwurst), Bremen
Police Department (good cooperation), die Oase (health spa), and CSN (sponsoring).

1.4 Declaration

We hereby declare that we edited the presented Master Thesis independently and only
using resources explicitly mentioned.

Peter Odebjer Johan Svahn

g

Preface

1.5 Table of abbreviations

Abbreviation Full description

ACSL Advanced Continuous Simulation Language (http://www.acslsim.com)

CIT Comfort In Turbulence, control to improve passenger comfort

CPU Central Processing Unit

DA DaimlerChrysler Aerospace Airbus GmbH, Hamburg, Germany;
Predecessor of EADS Airbus GmbH, Hamburg, Germany

Dasa DaimlerChrysler Aerospace AG, Munich, Germany

CMU Configuration Modification Unit

EADS European Aeronautic Defence and Space Company
(http://www.eads-nv.com)

EFCS Electronic Flight Control System

FCL Flight Control Laws

FCS Flight Controls Segment at EADS Airbus GmbH

FRA Frequency Response Analysis

GUI Graphical User Interface

MIMO Multiple-Input / Multiple-Output

PDM Parameter-Dependent Matrix, storage format in MATRIXx

PRBS Pseudo Random Binary Sequence

URL Uniform Resource Locator

1.6 Table of terms and definitions

Term Definition

Aliasing Sampling interval is too low to detect frequencies
uniquely. A high frequency is then detected as a lower.

Flap High-Lift surfaces at the trailing edge of the wings

MATRIXx MATRIXx is a tool for matrix manipulations (with its core
module Xmath) especially in automatic control and also
provides a graphical modeling environment for block
diagramming called SystemBuild. MATRIXx is provided by
WindRiver, Inc. (which took over former Integrated
Systems Inc.), Internet URL:
http://www.windriver.com/products/html/matrixx.html.

Slat High-Lift surfaces at the leading edge of the wings.

SuperBlock Well-defined block-diagram (sub-model) in SystemBuild.

SystemBuild Graphical modeling environment of SW-tool MATRIXx.

Validation Proving that the model is correct, e.g. comparing with a
different method or with different data.

Xmath Command oriented core module of SW-tool MATRIXx.

g

Linearization

2 Linearization

Linearization means that nonlinear equations are approximated with linear equations
around a working point. This is done to make the analysis of a system’s dynamic
behavior possible and also, many methods for system analyses only support systems in
linear form.

Linear systems are made to match the original nonlinear system well around a
stationary working point. Most of the time the system is controlled and this controller is
designed to keep the system close to the same working point. Linear approximations
are therefore usually good approximations of the system’s behavior.

If a system is to be linearized, the Taylor expansions are taken for each equation and
terms of order 2 and higher are neglected [SLOTINE, LI]. The state and input values of
the working point are then inserted and a linear system is attained as follows.

Assume that the following system is nonlinear

()uxfx ,=
•

The systems dynamics can be described by the Taylor expansion

() () () () () () () ()� �
∞

=

∞

=

−
+

−
+=

1 1

00

0

00

0

00 ,
!

,
!

,,
k k

k

k

k

k

uxf
k

uu
uxf

k

xx
uxfuxf

Where the term f(k)

(x0, u0) is the kth derivative of the function f(x,u). Under the
assumption that f(x0, u0)=0 the following expression can be given:

() ()ufu
u

f
xfx

x

f
x h

u

h

x

+�
�

�
�
�

�

∂
∂++�

�

�
�
�

�

∂
∂=

==

•

00

Where h means higher order terms. This system is also valid for a MIMO (Multiple-
Input/Multiple-Output) system, in other words a matrix- and vector-system.

When the system is of MIMO type then:

00

,
==

�
�

�
�
�

�

∂
∂=�

�

�
�
�

�

∂
∂=

ux u

f
B

x

f
A

is the approximation of the nonlinear system matrix. The A matrix is called the
Jacobian, and the linear system becomes:

which is the linearization of the original nonlinear system.

BuAxx +=
•

g

Linearization

A linear system is characterized by the two following equations:

() ()
() () ()yfxfyxf

xfaaxf

+=+
∗=

This means that a zero input must give a zero output (no offset allowed). Outputs of
positive inputs are equal to those of negative with the change of sign. Two inputs, one
half the magnitude of the other, will result in the same output with the same shape, only
different magnitudes. A sinus shaped input will result in a sinus shaped output.

These things are important to bear in mind when linearising. A linear model has
limitations of what it can model.

g

Linearization in MATRIXx using the “lin” and “trim” commands

3 Linearization in MATRIXx using the “lin” and “trim” commands

Linearization in MATRIXx is done with the command “lin”. It is a very flexible
command that can perform linearization of discrete-, continuous-, hybrid- and multi-rate
systems around a working point. A hybrid system is a system that consists of both
discrete and continuous sub-models, while a multi-rate system consists of discrete sub-
models with different sampling rates. The command could be used to either get the
linearized system in explicit or implicit form.

The explicit form of a system with p inputs, n states and q outputs contains the following
data:

• A, the (n, n) Jacobian matrix
• B, the (n, p) input matrix
• C, the (q, n) output matrix
• D, the (q, p) direct term matrix
• u , the p rows vector of the inputs
• 0x , the n rows vector of the initial states

• x , the n rows vector of the states
• x� , the n rows vector of the states derivatives
• y , the q rows vector of the outputs

The explicit system can then be written as:

() 00 xtx

DuCxy

BuAxx

==
+=
+=

•

When the implicit form is used information about the matrices A, B, C, D, and
additionally E, F, Sampling Rate (“tsamp”), State Names, Input Names, Output Names
and Implicit Output Names is needed. The implicit form of linearization is then:

DuCxxFy

BuAxxE

++=

+=
•

•

The syntax of the command is:

Sys = lin(“modelname”, {keywords})

For more information about the keywords see MATRIXx/SystemBuild user’s guide
[MATRIXX_SBUG].

g

Linearization in MATRIXx using the “lin” and “trim” commands

3.1 Methods used in the “lin” command

The methods of linearization depend on what kind of system is to be linearized. For a
pure continuous system or a pure discrete system with all SuperBlocks having the
same computational timing attributes two different approaches may be used:

• Exact linearization

• Finite-difference approximation

If any or all of the perturbation vectors “dx, du” and “dxdot” are specified in the
command, then the system is automatically linearized using the finite-difference
approximation. The perturbation vectors indicate how much the states and the inputs
are going to be excited around the working point. In the ideal case the perturbations are
infinitely small.

Systems that are hybrid or multi-rate use the Kalman-Bertram method to merge the
systems with different sampling rates together to a system with same sampling rate,
then the linearization is done with finite difference approximation.

Algebraic loops that occur in a system are always resolved for continuous systems. For
a discrete system it is possible to set the keyword “algloop=0”, which means that the
loops are not resolved, this makes the loops instead appear as additional states.

3.1.1 Exact linearization

Many of the SystemBuild blocks have build in exact linearisations. This does not mean
that the linearization makes an exact fit to the nonlinear system, it means that the
linearization is analytically and not numerically solved.

3.1.2 Finite-Difference approximation

The problem making a linearization with a computer is to calculate the Jacobian, while it
can’t be solved analytically it has to be solved by finite difference approximation
[JORDAN]:

() () () ()
h

xf

h

xfhxf
xDf h

hh

∆
=−+=

→→ 00
limlim

This gives a linear approximation of the nonlinear function. This approximation is only
valid in a certain input interval, depending on the function and on the demands of the
approximation.

g

Linearization in MATRIXx using the “lin” and “trim” commands

3.1.3 Kalman-Bertram method

The Kalman-Bertram method is not a linearization method, it is used in hybrid (a system
containing both continuous and discrete systems) and multi-rate systems to merge the
different subsystems together [MATRIXX_SBUG]. The actual linearization is then done
with finite-difference approximation.

To be able to use the Kalman-Bertram method all the different systems and
subsystems must be transformed into systems having the same sampling rate. This
sampling rate is called the basic time period. The basic time period is calculated so that
all subsystems are sampled at the same time, with a maximum difference that is
proportional to the “btptol” value. When this is done the actual merging of the
systems starts.

The merging is done during one basic time period, T. The continuous system is
updated between t=0 and t=T

-, and the discrete is updated between t=T
- and t=T

+.

First a transition matrix for the continuous systems is made and then a transition matrix
for the discrete systems is calculated.

When the matrix for the continuous states is calculated, two assumptions are made:

• The discrete states are assumed to be constant over the sample interval. This is
perhaps not true since most of the subsystems have a faster sampling rate,
which means that they are updated more often.

• The external input is also assumed to be constant, which implies that a zero-
order hold sampler is used.

During the computation of the discrete transition matrix, the continuous states are held
constant as well as the external inputs. This means that the external inputs are not
updated until the discrete subsystems have been updated.

Then the overall state matrix is computed as:

FTGe=Φ ,

where G is the discrete transition matrix and F is the continuous transition matrix.

3.2 How to use the keywords in the “lin” command

The “u0“ and “du“ keywords are aiming on the input, while the “x0“ and “dx“ aims on
the states.

The keywords “u0“ and “x0“ are used in purpose to set the working point of the system.
The working point of the non-linearity is then calculated with the system equations. This
is of course a problem when setting several working points for systems containing more
than one nonlinear block.

g

Linearization in MATRIXx using the “lin” and “trim” commands

A great deal of consideration has to be done, while it is important to get the keywords
“u0“ and “x0“ to satisfy the equilibrium points of the system, in order to achieve a good
linearization. This is not a problem for small systems, but for larger systems the “trim”
command can be of great help, see chapter [The “trim” command]. The keywords “du”
and “dx” are used for setting the perturbation around the working point for each non-
linearity. The values that are specified also have to be recalculated according to the
system equations to get the correct values for each non-linearity.

The linearization is then calculated in the same way as described by the finite
difference approximation. This means that the perturbation value that was achieved for
a certain nonlinear block is centered around the respective working point.

3.3 Linearization of selected blocks

In this chapter it will be discussed how to linearize the nonlinear blocks in System Build.
This will be done by showing some simple examples of all the blocks; all examples are
based on the same dynamic system. Since the nonlinear block is only affecting the
output the only matrices that will be affected by the linearization is the C and D
matrices.

This means that the only difference between the examples is the nonlinear block. The
dynamic system is a small system consisting of only two states. The first example in
this chapter will be thoroughly and the rest of the examples will be a little more basic.
While the blocks are rarely linearized one and one the purpose of this chapter is to
increase the understanding of linearization strategy in MATRIXx.

At the end of this chapter a linearization of a small system containing nonlinear blocks
in a way so that the non-linearities also affects the states.

3.3.1 Saturation block

Example [2-1.]:

Fig. 1 System with saturation

To be able to calculate the working point and the perturbation vectors for the nonlinear
block the dynamic system in front of the saturation block (see Fig. 1 above) has to be
considered.

g

Linearization in MATRIXx using the “lin” and “trim” commands

This dynamic system has the following system matrices:

[] []43.06794.06407.0

0

1

05.0

42.051.0

==

�
�

�
�
�

�
=�

�

�
�
�

� −−
=

DC

BA

Since it is only the output that is affected of the non-linearity, the only equation that has
to be linearized is the output equation. According to the explicit form equations the
output signal is given by:

uDxCy ⋅+⋅=

The keywords are set to:

[] []
[] []11

2,41,1

0

0

==
==
duu

dxx

With the above given “x0” and “u0” values and the output equation the working point
becomes 1.7501. This is the point, which the linearization is going to be made around.
The perturbation vectors are then perturbated around the working point, and the new
matrices are then calculated.

Fig. 2 Saturation system analysis

g

Linearization in MATRIXx using the “lin” and “trim” commands

In Fig. 2 above the saturation function, the working point and the perturbation intervals
can be seen. The perturbation intervals are calculated by multiplying the predefined
“dx” and “du” values with its respective matrix value.

43.043.01

3588.16794.02

5628.26407.04

2

1

=⋅=
=⋅=
=⋅=

du

dx

dx

Then the derivative is estimated with the finite different approximation. The new
linearized matrices are then calculated by multiplying the old matrices’ values with its
estimated derivative.

00

00

132825.0207312.06407.0207312.0

1

2

2

1

1

=∆=
∂
∂

=∆=
∂
∂

=⋅=∆=
∂
∂

d
u

f

c
x

f

c
x

f

[]
[]0

01328.0

=∆
=∆

D

C

This example shows a very ill conditioned linearization. To get a better linearization of
this system all of the perturbation areas have to be inside the non-linearities non-zero
derivative area. Of course this is not always possible. In the Bode diagram (see Fig. 3
below) the solid line shows the bode plot of an exact linearization and the dashed line
gives the bode plot of the linearization calculated above.

Fig. 3 Saturation system Bode plot

g

Linearization in MATRIXx using the “lin” and “trim” commands

The exact linearization could have been achieved if the linearization parameters “du,
dx, x0” and “u0“ had been chosen better. For example:

[] []
[] []100

11000

==
==
duu

dxx

This makes all the perturbation intervals stay inside the non-linearities non-zero
derivative area and the linearized matrices C and D will make a good fit to the nonlinear
system around the working point.

3.3.2 General Algebraic Expression block

In this block it is possible to enter a general algebraic expression. The block is always
linearized using finite difference approximation, since there is no exact linearization
available.

Example [2-2.]:

In this example the General Algebraic Expression Block, contains the following
expression:

31.0 23 +++⋅= UUUY

The gain of the system without the nonlinear block is 2. To be able to linearize around
this point the “x0“ and “u0“ parameters have to be chosen carefully. Having chosen
“x0“ first, “u0“ can be calculated so that the desired working point is achieved.

[]

5811.1
43.0

6794.06407.02

11

0

0

=−−=

=

u

x

To get an as accurate as possible derivative the perturbation vectors should be chosen
as small as possible. The perturbation values after multiplication with their respective
matrix values, see matrices C and D, are given below:

[] []1.01.01.0 == dudx

g

Linearization in MATRIXx using the “lin” and “trim” commands

A comparison between the linearized and the nonlinear step response is given in Fig. 4
below:

Fig. 4 Step response comparison 1

Comparison of the estimated derivative and the true value shows a good match.

2.6:

2003.6:

=
∂
∂
u

f
valueTrue

valueedApproximat

Fig. 5 Comparison of gain and derivative

As can be seen in Fig. 4 above the two systems do not match each other very well. This
can be understood if figure Fig. 5 above is considered. The solid line shows the exact
match to the nonlinear system when the input is 2.

The dashed line shows the linearization, and as can be seen there is an offset between
the two curves that is approximately 2.6. So the source of the difference in amplitude
between the different input steps has been found.

g

Linearization in MATRIXx using the “lin” and “trim” commands

To make a better linearization it is possible to calculate the difference in gain and then
find a new working point that has the desired slope and linearize around that working
point instead. The difference in gain is:

9.43.12.6:

3.1
2

6.2

=−=

==−

new

nonlin

kgainnewThe

kk

To be able to find a working point with this slope, the derivative of the function must be
considered:

2436.85770.1

9.4123.0

21

2

−==

=+⋅+⋅=
∂
∂

UU

UU
u

f

U1 is chosen to be the working point. A linearization around this point should give a gain
around 4.9, depending on the perturbation vectors. U1 can be achieved by choosing:

[]
5974.0

43.0

6794.06407.05770.1

11

0

0

=−−=

=

u

x

With these values a gain of 4.9003 is achieved, which is a good approximation. The
comparison of the nonlinear step response and new linearization step response can be
seen in Fig. 6 below.

Fig. 6 Step response comparison 2

Now the linearization is much better, but since the new slope is not the true derivative of
the working point, the interval where the linearization is valid is very small.

g

Linearization in MATRIXx using the “lin” and “trim” commands

3.3.3 Dead Band block

In the Dead band block the output is zero until a certain value is reached.

Fig. 7 Dead-band block

A dead band that has a working point close to zero will probably get a bad linearization.
This depends of course also on the width of the dead band and the amplitude of the
input.

Example [2-3.]:

The following parameter values are used for the linearization:

[] []
[] []35.2

213.05.0

0

0

=−=
==
duu

dxx

This gives us the working point -0.55083. In figure Fig. 8 below it is shown how the
different perturbations are located in relation to the working point (the thick line):

Fig. 8 Dead-band analysis

g

Linearization in MATRIXx using the “lin” and “trim” commands

As can be seen in the above figure (Fig. 8) the only element that has a good match is
the “dx(1)”, since it is almost equal to one. But this does not mean that this
linearization is bad, it all depends on how the linearization is going to be used.

The derivative vectors become:

[] []612403.0442788.0969533.0 == ee dudx

And the linearized matrices will become:

[] []315277.00.4901150.62118 =∆=∆ DC

As mentioned above the linearization of the dead band is not trivial, but depending on
the usage, the derivative can be altered so it makes a good approximation of the non-
linearity.

3.3.4 Quantizer block

The quantizer block estimates a value with different resolution depending on the step
size. A perfect linearization of a quantizer block would of course be a straight line with a
slope equal to 1. A quantizer block can be seen in Fig. 9 below:

Fig. 9 Quantizer block

A linearization of the quantizer block with the “lin” command can either be done by
choosing the perturbation vectors very carefully and by this way getting an exact
linearization, or the perturbation vectors can be chosen very large with respect to the
resolution.

Example [2-4.]:

Here a quantizer with resolution 0.5 is used. The working point in this example is set to
zero, and the perturbation vectors are set to:

[] []555 == dudx

The perturbation vectors are then multiplied with their respective system matrix:

[] []15.24.32.3 == nn dudx

These values are then perturbated around the working point.

g

Linearization in MATRIXx using the “lin” and “trim” commands

The resulting quantisized values are then:

[] []20.30.3 == qq dudx

The derivative vectors are:

[] []9302.08824.09375.0 == ee dudx

Multiplying the derivative vectors with the system matrices gives the new linearized
system matrices:

[] []4.06.06.0 =∆=∆ DC

As can be seen in the above example the choice of perturbation vectors can be rather
critical. By choosing the perturbation vectors large in comparison to the quantizer’s
resolution, the derivative vectors will converge to 1. Of course the derivative vectors can
also become 1 with smaller perturbation vectors, if they are correctly chosen.

3.3.5 Gain Scheduler block

The gain scheduler block has different gains for different inputs; this is a type of
adaptive control.

Example [2-5.]:

The dynamic system is linked to the gain scheduler block as Fig. 10 shows below.

Fig. 10 Gain scheduler example

The parameters in the Gain Table are set to:

• Break Points = [-2.0, -1.0, 0.0, 1.0]
• Gain Matrices = [0.0, 1.0, 0.0, 3.0]

From the former examples the system matrices are known. The working point, and the
perturbation vectors have been chosen as follows:

[] []
[] []100.10

320.10.10

==
==

duu

dxx

g

Linearization in MATRIXx using the “lin” and “trim” commands

The working point and new perturbation values of the system can be calculated. The
working point and the perturbation areas are shown (Fig. 11) below together with the
Gain Scheduler function.

Fig. 11 Gain scheduler analysis

The derivatives are then calculated as previous and the new C and D matrices can be
calculated.

[] []21002.17692.29221.1 =∆=∆ DC

3.3.6 Hysteresis block

The hysteresis block can be seen in Fig. 12 below:

Fig. 12 Hysteresis block

It is linearized according to the thick lines in Fig. 13 below.

g

Linearization in MATRIXx using the “lin” and “trim” commands

The working point is calculated by the following equation:

00 uxwp −=

Often a perfect linearization of a hysteresis is a line with the same slope as the slope of
the hysteresis. If this is considered perfect, then the perfect linearization of a hysteresis
will result in a state space system looking like following:

[] []

[] []0==
=−=
DkC

BA cc ωω

The “k” is the slope that is chosen and the “ωc“ is the chosen cut-off frequency. Both
choices are made in the hysteresis block.

Fig. 13 Hysteresis analysis

g

Linearization in MATRIXx using the “lin” and “trim” commands

3.3.7 Small nonlinear system

The biggest difference between this model and the others are that in this system it is
not only output that is affected by the non-linearity, but also the states. The system
used is a very simple system just to show how the linearization works.

Fig. 14 System with nonlinear states and output

If the system is analyzed and put on state space form the following matrices are
received.

[] []0)(limit0

0

1

01

)(quant)(sat

2

21

==

�
�

�
�
�

�=�
�

�
�
�

�=

DxC

B
xx

A

As can be seen the first state and the output are affected by the non-linearities. A
perfect linearization of the system would be if all nonlinear blocks were replaced by a
gain of one, since the linear parts of the Saturation and Limiter blocks has a slope of
one and an approximation of the Quantizer is a slope of one. To be able to achieve this
linearization an analysis of the system has to be done.

Since the Limiter makes the system non symmetrical the working point cannot be put in
the origin. The interval of the Limiter goes from –0.1 to 1.0 this tells us that the working
point should be at 0.45, since this is in the middle of the interval. If the working point is
put here it gives us the possibility to use the perturbation vectors as much as possible.
If “u0=[0.45]” and “x0=[0,0]” this gives a working point of 0.45 for all blocks except
the Quantizer block that gets a working point around 0.5 because of the resolution.

The perturbation value of the first state is not critical as long as it is kept under 1.1.
State number two’s perturbation value has to be chosen a little more carefully because
of the Quantizer and the Limiter, since the working point is 0.5, the nearest multiples of
0.1 is 4*0.1 and 6*0.1, this gives us a perturbation value of 0.2. The output perturbation
value has no limitations and therefore it is not necessary to specify this.
If a linearization is done with these values an exact fit is achieved.

g

Linearization in MATRIXx using the “lin” and “trim” commands

3.4 The “trim” command

The “trim” command is used to find the trimmed input, state and output vectors for an
equilibrium point. These vectors can then be used for linearization purposes.
To be able to use this command the system has to have at least one state, a system
without inputs can also be trimmed [MATRIXX_SBUG].

The syntax of the command is:

[xt, ut, yt, yimpt] = trim(model, {keywords})

If the “u0“ keyword is not specified then it is initialized to zero, if “y0” is not specified
then it is calculated with help of the “simout“ function and if “x0“ is not specified its
values are taken from the SystemBuild catalogue.

The algorithm used can have some problems with free integrators, using the keyword
“xdt_float” can sometimes solve this problem.

Often are the vectors “xt” and “ut“ the only ones needed to make a linearization. To get
these vectors it is often enough to specify the input vector, i.e. the working point.

When one or several equilibrium points are found a good linearization can be achieved
by altering the perturbation vectors.

g

Frequency response analysis (FRA)

4 Frequency response analysis (FRA)

4.1 Background

Frequency Response Analysis (FRA) is used at EADS Airbus in Bremen when a
nonlinear system needs to be analyzed. For some analysis questions in flight controls
development and aeroelasticity linear models are needed, but for others a frequency
response graph is sufficient. The Flight Controls Segment (FCS) elaborates detailed
specifications of aircraft systems and equipment, e.g. the high-lift system moving the
leading edge Slats and the trailing edge Flaps of the wing. Further, hydraulic and
electrical control surface actuators are specified. These latter specifications include
gain and phase margins, which could be evaluated with the tools described below.

Up to now a programming language called “Advanced Continuous Simulation
Language” (ACSL) has been used. In this tool a frequency response analysis algorithm
is documented [MGA]. Since the FCS more and more switched over to use MATRIXx
as the general purpose simulation tool and for early Validation of required behavior, the
algorithm had to be implemented in there. The frequency response analysis (FRA)
worked perfect in ACSL and has therefore been missed in MATRIXx. As part of this
thesis the function has been implemented in MATRIXx.

4.2 Theory

The basic idea behind frequency response analysis (FRA) is to find the gain ()ωiG ,

and phase shift ()ωφ of a system at different frequencies [JOHANSSON]. By doing this

the output from a system fed with a certain frequency ω , and magnitude m, can be
estimated as:

() () ()()ωφωω += tmiGty sin , () ()ωφ iGw arg=

The simplest way to do this is to feed the system with a sinusoid of a particular
frequency and then plot the input and the output. From the plot it is easy to find the gain
and the phase shift. This is repeated for different frequencies in an interval of interest.
Finally a Bode-style diagram can be drawn. A more sophisticated way of finding phase
shift and gain is to use a method based on averaging. One way of doing this is to
multiply the output of the system with a sine and a cosine of the same frequency as the
input (see Fig. 15 below):

Fig. 15 Frequency Response Analysis (FRA) algorithm

g

Frequency response analysis (FRA)

The results of these multiplications are often called in-phase, P, and quadrature, Q.
These are then integrated over a full number of periods of the input signal. By
integrating over a full number of periods, effects of disturbance are minimized. The
outputs then look like:

Sine output: () () () ()ωφωωω cos
2

1
sin

0

miGTdtttyP

T

== � , kT
ω
π2=

Cosine output: () () () ()ωφωωω sin
2

1
cos

0

miGTdtttyQ

T

== �

Where k is an integer. From these, phase shift and gain can be estimated as:

() ()
() π
ω
ωωφ k

P

Q += arctan and () () ()ωωω 222
PQ

mT
iG +=

To get a good result that is not affected by non-zero initial conditions, it is
recommended to let the system settle before P and Q evaluation is started.

The results from several computations with different frequencies in a frequency range
of interest can then be presented in a regular Bode-style diagram.

When this method is applied to nonlinear time invariant systems there is a problem with
the system’s response depending on input magnitudes. A way to solve this is to feed
the system with different magnitudes of the input sinus. This means that the frequency
interval has to be scanned once for each magnitude. The magnitudes should be
chosen so that they match the systems working environment.

4.3 Given implementation of FRA in ACSL

The method used in the ACSL implementation [MGA] is based on the theory previously
explained [Theory]. To avoid effects from non-zero initial conditions the program
calculates phase shift and gain for one period at a time. The results of the last period
are then compared with the results of the previous period. If the difference is
considered small the output calculation (phase shift and gain) is recorded.

Frequency calculations are started from the top end of the frequency interval and then
the frequency is reduced geometrically. The start from the top means that the fast-
simulated high frequency points give a fast clue of what the result will look like. The
geometrical reduction of frequencies results in equal spacing on a logarithmic plot
scale. When the frequency has to be changed, this is done in a way so that no “jump”
occurs, i.e. the input signal is continual. This is done by adding a phase shift to the
forcing sine function. By doing so, the settling time is reduced.

The sampling rate of the data evaluation in the FRA changes during the run of the
program. For high frequencies it is set as a 10th of the period length and for low
frequencies it is set to an absolute time parameter, depending on the system’s
dynamics.

g

Frequency response analysis (FRA)

4.4 Usage of MATRIXx for FRA

4.4.1 Implementation of FRA in MATRIXx

In MATRIXx the method has been implemented [FRA function implemented in
MATRIXx] in basically the same way as it is implemented in ACSL. It is however divided
into sub functions for better overview (see Fig. 16 below).

Fig. 16 Sub functions of FRA in MATRIXx

A special feature is that it also detects the offset in the output for an input signal with a
mean of 0 for each frequency. This feature was a request from the FCS. This of course
only applies to nonlinear systems.

The following sub functions are used:

• “response” retrieves all data needed from the examined system for one period
simulation for a certain frequency. It generates a time vector and an input sine
vector and then simulates the system. For each new period when the frequency
is maintained it restarts the old simulation.

• “determine_pg” determines the phase shift, gain, and offset for a certain

frequency and magnitude. It keeps calling the “response” function until the
phase and gain have settled. When this is done, phase shift, gain, and offset are
passed on to the “generate_matrices” function (see below). If no settling
occurs after twenty periods, it stops. This can occur when the system is unstable
or more common when there is interference between a discrete system’s
sampling rate and the update rate of the output of the system. It can also occur
when too high accuracy is demanded or when the gain of the system is too low.
Then it is possible to form the average phase shift and gain of the last ten
periods.

• “generate_matrices” simply loops the “determine_pg” function over

frequencies and magnifications, where magnification is the outer loop. The
values are then put into matrices. It also tracks phase shift for jumps over 360˚.

• “present” plots the result in Bode form and the additional plot with offset if this

keyword is set. All evaluated frequencies are marked with a circle. If the result
was achieved by taking the average as mentioned earlier, the result is marked
with a triangle. One should be a little careful with these.

• “nfr” is the main function called by the user.

g

Frequency response analysis (FRA)

The inputs to “nfr” are: SystemBuild model name, frequency vector or interval, and
vector of magnifications to be evaluated.

Outputs from “nfr” are: estimated frequencies, matrices with phase shifts in radians
and degrees, matrices with gains and gains in decibel, and matrices showing which
values that have been estimated with the average. These are marked with a “1”.

Keywords are: “makesteps”, “errcrit”, “step”, “ialg”, and “offset” and control
the following:

• “makesteps” generates frequency steps in the input frequency interval if this is
used as an input. Default is 0. Step size can be changed with keyword “step”.

• “errcrit” is the difference in phase shift and gain compared with the previous

period that determines if the system has settled enough or not. Default is 0.1,
which equals 0.1 rad for phase shift, and 0.01 for gain. The value for gain is
always a tenth of that for phase shift.

• “step” (step size) can be used if a frequency interval is used as an input. “step”

is then the multiplication factor in the geometrical increment of frequencies.

• “ialg” is the integration algorithm used in the simulation of the system. Default
is Variable-step Kutta-Merson Method. This is a good and reliable method for
most cases. It has however shown difficulties when applied to stiff nonlinear
systems. Then Gear’s method is recommended.

• “offset” toggles the presentation of offset on (1) and off (0). Default is off.

4.4.2 Comments on the implementation in MATRIXx

The expression for the phase shift does not give a unique solution. The frequency is
therefore started from the bottom. Most systems used at the FCS, which the function is
written for, are of low pass type.

It is known that phase shift is close to 0 for low pass systems at low frequencies. This
solves the problem with the non-unique solution in most cases. The phase shift is also
tracked so that no jumps of 360˚ are made.

The time consuming calculations are the calculations made for low frequencies,
therefore it is good to make those first to get a hint of how long it will take to perform the
full evaluation. Maybe the frequency span could be changed.

In the ACSL implementation frequency evaluation is started with the highest frequency.
With this implementation a lot of work might have been done before the user realizes it
will take to long to evaluate the selected frequency interval.

g

Frequency response analysis (FRA)

4.4.3 Validation of FRA implemented in MATRIXx

For Validation the code has been run on a few systems. The first system is a simple
transfer function, which can be seen in Fig. 17 below.

Example [4-1.]:

Fig. 17 Transfer function used for validation of FRA

The result in the frequency range between 0.1 and 10 Hz with the “makesteps”
keyword is presented in a bode style plot (see Fig. 18 below). For comparison the
theoretical values are also plotted in the same plot. Since a linear system has been
analyzed, only one magnitude is used for the input. A problem with the implementation
is to determine when the system is settled. When the gain is low, the forcing sine signal
dominates in the integrated sine and cosine outputs. This could be the reason for the
jump in phase shift that is seen at 6 Hz. This is a problem related to deciding when
settlement has occurred. Theoretically the plot should be smooth and monotonically
negative as the phase approaches –90˚.

Fig. 18 FRA of transfer function with default error criterion 0.1 rad

g

Frequency response analysis (FRA)

An attempt to lessen the effect of the driving sine is to set the “errcrit” keyword
value to 0.01. As can be seen (see Fig. 19 below) the graph becomes more accurate
(theoretical values are also plotted in the same graph). The elapsed CPU time for the
run goes up from 10 seconds to 17 seconds.

Fig. 19 FRA of transfer func. with “errcrit” 0.01 rad and theoretical values

There is not so much to gain in gain accuracy by changing the error criterion from 0.1 to
0.01. For phase shift however there is a quite a difference for the highest frequencies
as can be seen in the previous plots. By setting the error criteria to 0.001 this is
reduced to less than 1˚. The low frequencies are not affected since settling is achieved
after the first periods anyway.

Example [4-2.]:

The second system illustrates the averaging function well (see Fig. 20 below):

Fig. 20 System used for Validation of the average function

g

Frequency response analysis (FRA)

It has the same value on the two input ports. This is a system which in reality has no
application but thanks to the two different quantizations shows the task well.

When the program is run on it the following result is achieved (see Fig. 21 below).

Fig. 21 FRA of system with “errcrit” 0.08 rad

Magnification has very little or no effect on the system, despite the non-linearities, and
only one magnification is therefore examined. The fifth examined frequency from the
right is 15.407 Hz and it is marked with a triangle in both the gain and the phase plot.
This means that no settling was reached within the first 20 periods. The average is then
taken for the last ten periods. (The first ten are not used since the system should be
somewhat stationary before the measurements are taken.).

In this case phase shift and gain never reaches stationary values due to the
interference between sample period and input frequency (see Fig. 22 below). This is
also the reason for the returned offsets. Since the system obviously have problems in
getting accurate values the offsets have to be dealt with care. Since the offsets that
should not at all be there are quite small and irregular this could be suspected.

If a poorly damped system that never settles within the first 20 periods is examined, it is
possible to give it more time by adding a keyword. This is not done since the systems at
the FCS are well damped and the program should be kept simple.

g

Frequency response analysis (FRA)

Fig. 22 Simulation of system with an input of 15.407 Hz and amplitude 1

To verify that the estimation by taking the average gives a fairly good result when
applied to interference between sample period and frequency, two frequency points on
each side of the frequency 15.407 Hz that do reach stationary values are examined
(see Fig. 23 below). These have the frequencies 15.39 Hz and 15.42 Hz.

No problems were encountered when the evaluation of these frequencies was
examined.

Fig. 23 Examination of frequencies close to system model critical frequency

g

Frequency response analysis (FRA)

Example [4-3.]:

To evaluate the function for a larger system it was ran on a version of a rudder model
(by EADS also known as Actuator Transfer Function) for an aircraft (see Fig. 24 below).

Fig. 24 Rudder model (input “delC”, output “del”)

This system has many non-linearities and is therefore fed with a few magnitudes (see
Fig. 25 below). These could be seen in the upper right corner legend. By changing the
error criterion from the default 0.1 to 0.01 phase shift becomes a little smoother for high
frequencies whereas gain is not affected at all. The reason for this is that the systems
used are very well damped due to their applications. A further change of error criterion
down to 0.001 does not have any effect. The only result from this is that the numbers
get so small so that no settling is reached and the result gets averaged instead. This
only makes the run time longer.

Fig. 25 FRA of rudder model

g

Frequency response analysis (FRA)

The values in the diagrams can be verified by looking at the simulation of the system for
each frequency and magnitude.

For example it could be seen that for 10 Hz and 1 in magnitude the gain should be
around -14 dB, which equals 0.20 absolute and the phase shift should be just below
160˚.

This could be verified by plotting the simulation of the system for this frequency, see
Fig. 26 below:

Fig. 26 Simulation of the model with an input sine of 10 Hz and amplitude 1º

A common problem for these big systems is that the default integration algorithm
(Variable-step Kutta-Merson Method) takes so small steps that they become too many.
If the message “more than 1000 steps needed” appears this has happened.

Then “Gear’s method” is a good option. When Gear’s method is used on this system no
difference in results were found.

g

Frequency response analysis (FRA)

4.4.4 Discussion of the keywords in the “nfr” command for FRA function

The “step” keyword is good for initial analysis on a system. Default it is set to 1.2, but
can for initial evaluation be set for example to 3 or any other number. Larger numbers
give less plot density in the frequency domain, which result in faster execution time.

“errcrit” gives more accurate results when changed from default 0.1 to lower
decimal numbers. There is however a limit for how little it can be set for further
accuracy. This can be examined by observing in the Xmath window the result matrices
that are generated after each run. Higher accuracy means that more periods have to be
run for each frequency and that means longer execution time. Eventually settling is not
reached at all for the requested accuracy and an averaged result is returned instead.

“ialg” changes the integration algorithm in the simulation. If the default “VKM”
(Variable-step Kutta-Merson) does not work, try “GEAR” (Gear’s method).

“makesteps” generates steps if an interval is used as frequency input.

g

Linearization using subspace identification in MATRIXx

5 Linearization using subspace identification in MATRIXx

5.1 The identification process

The identification of a system is an iterative process (see Fig. 27 below). As more
information about the system is attained it might be necessary to go back in the
procedure and change values or methods.

Fig. 27 The identification process

An example of the identification procedure described in general in this section can be
found in the [Linearization example using subspace identification]. All commands used
and mentioned can be found in the System Identification Toolbox of MATRIXx.

5.2 Experiment design

The procedure starts with the design of the experiment. This includes the choice of
input, sampling interval and duration of the experiment. As more knowledge about the
system is achieved the input could be made more optimal for the given system.

A PRBS (Pseudo Random Binary Sequence) is a suitable input to choose
[JOHANSSON]. This is available in MATRIXx. The periodicity of the signal is dependant
on the number of states used and should be chosen so that it does not repeat during
the experiment. The sampling of the PRBS could also be set so that it contains the
bandwidth of interest. This can be investigated through the auto-spectra which is
available through the command “sdf” in MATRIXx.

The offset and amplitude of the PRBS is of most interest since the models often are
nonlinear. The input offset should be the same as the operating point of the input to the
system since the identified model should be well modeled around this point. The
amplitude should be set to match the working interval of the system. The result will vary
depending on if the input enters non-linearities or not. It should also be big enough to
give a good signal to noise ratio. A good choice of input should reflect the inputs under
normal use of the system.

The sampling interval should be set so that no Aliasing or interference is experienced
with discrete parts within the system. If a discrete system is to be identified the
sampling rate is chosen to equal the sampling rate of the system.

If the sampling rate is chosen to high, the poles of the model will appear as integrators
(close to the real number 1 in a pole-zero plot). Experiment duration is also proportional

g

Linearization using subspace identification in MATRIXx

to the accuracy of the model. The longer duration the more accurate model. A rule of
thumb is to choose it larger than 5 to 10 times the largest time constant to be
considered by the identified model [JOHANSSON].

5.3 Data pre-processing

By just looking at the data it is easy to see if there are any major errors with the
recorded set. Things that are easy to spot are outliers, areas of saturation, quantization
effects and sampling interference. By plotting the spectral density function it is easy to
spot periodic disturbances. This is done with the “sdf” command.

Since system identification results in a model, which is a linear approximation of the
true system around its operating point, the operating point has to be subtracted from
the data. “detrend” is a command useful for this.

The coherence spectrum is a correlation analysis made for each frequency. It indicates
the degree of linear dependence between input and output. Good correlation is
indicated with a value close to 1. It also indicates in what frequency interval a model
could be expected to be valid.

Scaling is necessary if the identification involves the MIMO case. Then magnitude 1 is
requested. It could also be good to remove the initial values of a data set to avoid the
problem of initialization and non-settlement.

5.4 Model determination

The implementation in MATRIXx identifies systems by creating estimates of states by
calculating the states as intersections between past and future input-output
[MATRIXX_ISIM]. This is done with the function “sds”.

Singular values or principal angles of the system are then calculated, based on whether
a dependent scaled or an independent scaled method is used. This is chosen by
setting the keyword {basis} to either “combined” or “unscaled”. Default it is set to
“combined”. The dependent scaled method will turn the system into frequency
weighted balanced form (frequency weighting by the spectrum of the input). Scaling the
input-output data will not affect the result. The independent scaled method will just turn
the system into balanced form without frequency weighting. This method will result in a
slightly different algorithm in MATRIXx that might give a slightly different result.

Singular values or principal angles are used for determining the order of the system,
which has to be done by the user. A good model order is chosen by examining the
number of dominant singular values or by seeing how many principal angels that are
significantly different from 90˚. A singular value that is lower than another shows that
this state has less effect on the system’s behavior than the other.

g

Linearization using subspace identification in MATRIXx

The same applies to principal angles except that an angle close to 90˚ is less significant
than a value closer to 0˚. A singular value equal to 0˚ and an angle equal to 90˚ shows
that the state has no effect on the system’s behavior.

After that model order has been determined it is time for determining a state space
model. This is done by using the input-output data and the chosen model order. There
are two methods implemented in MATRIXx for this. One is an asymptotically biased
method and one an unbiased method. The biased method often gives better results on
real-life data [MATRIXX_ISIM]. The keyword {bias} is used for choosing method and
can be set to 0 for the unbiased method and 1 for the biased. 0 is default.

The “gui” keyword is very helpful when using the “sds” function since it gives the user
a Graphical User Interface (GUI) box containing all the tools available and related to the
“sds” function, also the Validation methods.

5.5 Validation

There are several tools for Validation purposes. Some useful are the following:

• Knowledge of the system suggests a certain model order.
• Prediction – the systems real output is plotted together with the output of the

model fed with the same input. This is very revealing since the two should match
well. If possible it is to prefer to use a different data set than the one used for
identification.

• Prediction errors – the difference between the results in “prediction” is plotted.
This should look like white noise. This is also called “residuals”.

• Covariance prediction errors – gives the covariance of the residuals. There
should be a spike for zero and in the rest of the interval it should stay within the
95% confidence interval.

• Cross correlation input <-> prediction error – this is a test to see the correlation
between input and residuals. As low correlation as possible is demanded. There
is a 95% confidence interval drawn in the plots when they are presented. This is
a good limit to aim for. If the plot is within the limits for positive values the model
is not under modeled (too small order). If they are outside the model order is too
small. For negative values the plot indicates presence of feedback in the system.
This means that residuals affect later inputs. It could also indicate on non-
causality. In MATRIXx “lags” is the number of samples cross correlation is
estimated for.

• Pole-zero plots give a hint if the model has too high order. If this is the case there
should be pole zero cancellations. This means that there are poles and zeros
close to each other.

5.6 The final model

The final model given by MATRIXx is in state space form and discrete. To get the
numerator and denominator for a transfer function the command “numden” can be
used. To make the system continuous the command “makecontinuous” is helpful.

g

Linearization of an elevator flight control model

6 Linearization of an elevator flight control model

6.1 Description of the elevator flight control model (pitch control)

The elevator flight control model describes how the inputs from the side stick should be
translated to outputs to the elevator (see Fig. 28 below).

Fig. 28 Elevator flight control (side stick input is no. 5)

The main input, which is a side stick command in the range of ±1, enters the system as
input no. 5 in block no. 8. The signal then continues through blocks no. 5, 6, 15, and 1.
The output is a command to the elevator.

The other blocks set the values in blocks no. 5 and 6 depending on the configuration of
the aircraft. Descriptions for each block:

• Block no. 97 – CMU code is the choice of control laws. Only the normal law has
been examined. This means that the CMU code is 0 and the CMU code input is
neglected in the description of the following blocks.

• Block no. 8 – Contains a saturation with limits ±1. A gain scheduler follows the
saturation. The inputs are between –1 and 1 and the outputs are also between –
1 and 1. The shape is close to linear, only a slight shift.

• Block no. 5 – A regular multiplication with a factor given by the flap setting. The
factor also depends on if the aircraft is on ground or in the air and if both
elevators are functional or if only one is. The factor also changes if the side stick
has a positive or negative deflection (positive is forward). The values for normal
flight are fixed defined parameters for positive and negative deflection.

g

Linearization of an elevator flight control model

• Block no. 6 – Adds an offset to the elevator deflection. The value is dependent
on the flap setting only. This is done to compensate for the nose down
momentum when a higher flap setting is set.

• Block no. 15 – A saturation given by the maximum deflection of the elevator. The
signal is never saturated in normal flight configuration (flap 0, both elevators
working, and aircraft flying).

• Block no. 1 – A rate limiter for the elevator. The rate limiter can be seen as a
type of low pass filter. It limits the derivative of the input and always strives to
reach the same value as the input. For example, when it is fed with a relatively
slow sinus wave, the output is the same sinus. When either amplitude is made
larger or the frequency is set higher the rate limiter will be activated and
transform the sinus shaped input to a triangular shaped output (see Fig. 29
below). At 0.5 Hz and 7 in amplitude (far left), the output (dotted) is not affected.
As frequency is made higher the shape is turned more and more into a triangular
wave (1 Hz middle, and 2 Hz far right).

Fig. 29 Effect of rate limiter

• Block no. 2 – Determines if the side stick has positive or negative deflection.

• Block no. 99 – Sets the offset in block no. 6 depending on the flap setting. Flap
settings are: 0, 1, 2, 3, or 4.

g

Linearization of an elevator flight control model

• Block no. 9 – Sets different gains in block no. 5 for positive and negative side
stick deflection depending on flap setting and if both elevators work or not. The
outputs ranges between 5.8 and 10.5 depending on flap setting, lower values for
lower flap settings. The value for positive deflection is always a little (15-20%)
higher than the one for negative. If one elevator is broken the value is doubled.

• Block no. 98 – Sets the gains in block no. 5 when the aircraft is on ground. The
gains are typically between 12 and 20.

• Block no. 10 – Contains two integrators to ensure “smooth” switch between
different gains in block no. 5.

• Blocks 94–96 – Are used to set different configurations.

6.2 Linearization example using “lin” & “trim” commands

An examination of the model is done using the “trim“ command. All the inputs are
frozen except input number five since this is the only input that is going to change
during the later simulations. By then inserting different initial states it is possible to get
an idea of where the equilibrium points are located.

This shows that the system has an infinite numbers of equilibrium points. This is
confirmed by simulating the system with the different equilibrium points as initial states.

The simulation shows that there are no transitions, which indicates that the states are in
fact equilibrium points.

The only state that cannot be chosen arbitrary is the fourth state that is 1.3546e13. This
means that the only keywords that need to be used are the state, input perturbation
vectors and the initial states, “dx“, “du” and “x0”.

In the first linearization all perturbation vectors are set to one and then each state and
input are gradually decreased and then also increased. This is done just to get a hint of
how the system behaves after different linearisations.

If the model that is retained is investigated after each change, it is easy to notice that
the only parameters that are changing are the parameters connected to the fourth state
and the fifth input. This is not so surprising if it is considered, that the only state that
could not be chosen arbitrary was the fourth, and that all the other states could be
chosen arbitrary indicates that these three states are already linear.

That only input five makes a difference in the linearization could perhaps be explained
by the fact, that this is the only input, that was not frozen during the “trim” command.
So concentrating on these two elements it is possible to get a reasonably good
linearization, it is though only valid for a specific amplitude and frequency.

In the figures below (see Fig. 30a-d) it is shown how the linearization is affected during
the examination of the dependency of the perturbation vectors (see Fig. 31 below). The
dotted line is the linearization and the solid is the simulation of the system.

g

Linearization of an elevator flight control model

The plots show the amplitude as a function of time.

Fig. 30a

Fig. 30b

Fig. 30c

Fig. 30d

Fig. 30 Linearization effects due to perturbation vectors

Figure number Vector dx Vector du

Fig. 30a [1, 1, 1, 1] [1, 1, 1, 1, 1]
Fig. 30b [100, 100, 100, 1] [100, 100, 100, 100, 1]
Fig. 30c [100, 100, 100, 10] [100, 100, 100, 100, 1]
Fig. 30d [100, 100, 100, 10] [100, 100, 100, 100, 1.5]

Fig. 31 Choice of “dx“ and “du“

This shows how it is possible to achieve a reasonable good result. The frequency of the
sine wave in this example is 5 Hz. For this frequency it is, as visible in figure Fig. 30
above, not possible to get a linearization without a certain phase shift.

Investigating linearization for smaller frequencies it is shown that a linearization with a
much smaller phase shift can be obtained.

Time (s) Time (s)

Time (s) Time (s)

A
m

p
lit

u
d
e

A
m

p
lit

u
d
e

A
m

p
lit

u
d
e

A
m

p
lit

u
d
e

g

Linearization of an elevator flight control model

6.3 Linearization example using subspace identification

6.3.1 General

The method used here follows the procedure described in the chapter [Linearization
using subspace identification in MATRIXx]. All the used code can be seen in the
chapter [List of commands used in the subspace identification] of the appendix below.

6.3.2 Experiment design

The first step is to design the experiment. A PRBS is chosen as input. The PRBS
function implemented in MATRIXx initiates a change for every sample and therefore
emphasizes on quite high frequencies. This is not interesting in our case, so the rate of
change is decreased. This is done by keeping the value in the output for a few samples
and then take the next PRBS value. The chosen interval stretches up to 23 Hz. Higher
frequencies are not used since the sampling rate of the system is 0.022, which equals
46 Hz. The Nyquist frequency is therefore 23 Hz. By Nyquist frequency is meant the
largest frequency the system can handle where no Aliasing will appear.

The amplitude is set to 1 since there is a saturation with limits ±1 as first component in
the investigated system. Offset is initially set to zero to match the input interval of the
saturation. These levels of input also match the input under normal use, and are
therefore natural to choose. The sampling interval is set to the same as the system’s, to
be able to get as much information as possible from the system.

The input is plotted, to confirm that it looks as requested (see Fig. 32a below). The
spectral density is also examined to confirm that the frequency distribution is OK (see
Fig. 32b below). This is done with the command “sdf” and a “PDM” as input. By using a
“PDM” the correct values for frequency is attained.

Fig. 32 a) Part of PRBS input, b) Spectral density of input

g

Linearization of an elevator flight control model

Two simulations are run with different input series. This is to get one data set for
identification, and one for validation.

6.3.3 Data pre-processing

The simulations are then run. The output is plotted for confirmation and to get an
impression of what happens in the system (see Fig. 33 below). It is easy to see the
different effects of the system, the offset due to the different gains for positive and
negative deflection and the added offset.

The change from square shapes to ramps due to the rate limiter is also possible to
spot. It also looks like it saturates, but it does not. This is due to the shape of the input
and that the system basically only multiplies it with a factor.

Fig. 33 Output from system when fed with the mentioned PRBS signal

The spectral density can also be plotted to get an impression of which frequencies are
let through (see Fig. 34 below).

In this case it is easy to see that only low frequencies pass through the system.

This is due to the rate limiter that prohibits fast change.

g

Linearization of an elevator flight control model

Fig. 34 Spectral density of output

Plotting the coherence spectrum gives a good impression of in which frequency interval
the linearized model could be expected to be valid (see Fig. 35 below). The spectrum is
always mirrored in the Nyquist frequency. Only the left hand side should therefore be
considered. A value close to one is a sign of good dependence (linear dependence)
between input and output for the given frequency.

Normally a result lies very close to one for lower frequencies and then decreases, as
the frequency gets higher. In this case the best dependence reaches just over 0.8. This
indicates that the resulting linear model will not be as good as wanted. This is due to
the many strong non-linearities mentioned in the chapter [Description of the elevator
flight control model (pitch control)].

Fig. 35 Coherence spectrum between input and output

g

Linearization of an elevator flight control model

Detrending is done on the output to remove the offset, which cannot be modeled
anyway. Removal of the initial settling of the system is not done since it settles so fast
so that it has no effect on the retrieved model.

6.3.4 Model determination

The subsystem identification is then started with the command “sds” and the keyword
“gui”. A bar plot is showed (see Fig. 36 below). It is easy to see that a first order model
should be chosen. This is also the conclusion from the examination of the system,
where the rate limiter is seen as a low pas filter and the rest as a constant. This is done
and a model is calculated.

Fig. 36 Bar plot showing singular values

It is also possible to identify the system with the unscaled or unbiased method
explained in chapter [Linearization using subspace identification in MATRIXx]. This has
no effect on this system. The result is the same.

6.3.5 Validation

The Validation of the model is not a pretty sight. The prediction (see Fig. 37a below)
follows the basic shapes fairly well thanks to the low pass type characteristics, but that
is about it. The error is calculated to be 37.09 %. The residual plot (see Fig. 37b below)
is clearly not white noise.

The covariance of residuals (see Fig. 38a below) is rather a rectangular distribution
than a spike for value 0. The only thing that looks satisfactory is the cross correlation
between input and residuals (see Fig. 38b below).

This confirms that there are no dynamics that have not been modeled between the two.
This is an indication that the model order is not estimated to low which could have been
the reason for the other results.

g

Linearization of an elevator flight control model

Fig. 37 a) Prediction plot, b) Residual plot

Fig. 38 a) Covariance of residuals, b) Cross correlation

Since the result is so poor when validated against identification data, the validation
against the validation data is not done. This could be done in the same way as with the
identification data but the result would be even worse.

6.3.6 The input’s effect on final model

When the magnitude of the input is changed to a smaller, so that the effects of the rate
limiter almost disappear, the result will be radically different. Then all results are close
to perfect but the pole zero plot (see Fig. 39 below) indicates that the model might be
over-modeled. The pole-zero pair is quite close together and could be considered to
maybe cancelled.

g

Linearization of an elevator flight control model

Fig. 39 Pole-zero plot of above mentioned system

Actually a model with only a gain could be considered when modeling the system and
when the rate limiter is not in effect.

When an input with a magnitude that saturates in the first block is inserted the system
will experience the input as the input used in the first identification with magnitude 1.
This will result in the same model as in the first identification but with a lower gain, since
the input is immediately scaled to be smaller.

If the input is given an offset and a magnitude so it corresponds to only positive
deflection of the side stick, a better corresponding model will be attained. The reason
for this is that the non-linearity in block no. 5 (see Fig. 28 above) will become linear in
the interval. The model will however only be valid for positive deflection.

If the configuration of the aircraft in the model is changed, the linearized model will be
changed. The main difference is that the gains and the offset are changed according to
gain schedulers. Due to the gain schedulers it is wise to make a new linearization for
each case that will be studied.

What will be discovered is that when one elevator is broken, the signal will saturate for
certain magnitudes at a later stage within the model (Block no. 15 in Fig. 28) due to the
doubled gain. This will result in a model that for low magnitudes and frequencies is
equal to almost a constant since the rate limiter or the saturation have no effect. For
higher amplitudes and frequencies the shape will turn into triangular due to the effect of
the rate limiter. Then for higher amplitudes with lower frequency when the rate limiter
has no effect but the saturation does, the saturation will set in as a gain with a factor
less than 1. The shapes will then be close to square.

The result of all the identification of this system is, that a linearized model valid for more
than one configuration is virtually impossible to make. It is also impossible to make a
model valid for a wider frequency or magnitude interval within each configuration. This
is the sad fact that sometimes has to be realized and accepted when dealing with
linearisations.

g

Linearization of an elevator flight control model

6.4 Discussion of results

The application of the “lin” command and subspace identification on the elevator flight
control give limited results.

The attained linear models are only valid in very limited regions of frequency and
amplitude. The linearisations are also quite poor in the regions where they actually
should be valid. This is due to the many components in the system that are hard non-
linearities.

Here follows an explanation to the poor results when trying to linearize the model.

If the input is kept between ±1, the initial saturation in block no. 8 does not affect the
system. If the input is larger, the signal will be transformed to square shape by the
saturation. This is not possible to model good with a linear model. This is normally not
the case so this saturation should not affect the model. The gain scheduler in the same
block will affect a little if the input has different amplitudes in the interval of ±1.

The gain in block no. 5 is a major problem since it varies with positive and negative
inputs. This is not possible to do with a linear system according to the definition of a
linear system, see chapter [Linearization]. Therefore some sort of average has to be
taken. This will result in that the gain will not be correct. The gain may differ as much as
20% for certain configurations.

The addition of an offset in block no. 6 also causes trouble. Offsets do not work for the
same reason as in the previous block. The dynamics will be the same independent of
the offset, but the output will be shifted.

Under normal configuration the saturation in block no. 15 has no effect, but when
higher flaps are set and especially when one elevator fails, the saturation’s will be
reached. This will affect the transfer function’s gain and the shape of the output, which
cannot be modeled good with a linear model.

The rate limiter in block no. 1 is probably the largest problem. As seen in the general
description of the block, it is not only of low pass type; it also changes the shape of the
signal depending on amplitude and frequency (from sinus shape to triangular, see Fig.
29 below). This cannot be achieved with a linear function.

The many gain schedulers used to give different gains for different configurations
motivate that a linearization is done for each combination of interesting configuration to
make the best of the linearisations.

Due to the lack of dynamics in the path of the signal a simple constant is the best type
of linearization that is possible to achieve before the signal enters the rate limiter. The
best linearization of the rate limiter is a filter of low pass type. This will however not give
the triangular shape of the output that the system gives.

g

Linearization of a rudder model

7 Linearization of a rudder model

7.1 Linearization using ”lin” and “trim” commands

Since this rudder model (by EADS also known as Actuator Transfer Function) contains
several nonlinear elements it is necessary to use the trim command. The model has
four different inputs, all these inputs can be used in the trim command, but since three
of them are constant it is only necessary to enter one.
The command used to get the working point:

[xt, ut] = trim ("Rudder", {u0=[2], xdt_float = [1,2]})

When the working point is calculated the perturbation vectors must also be chosen, this
is a little harder. Often it is good to choose the parameters in the same size as the
working point. To achieve a good working point it is often necessary to try several
different combinations of the perturbation vectors. The linearization command used:

lin_sys = lin("Rudder",{u0=ut, x0=xt, dx = [3e7, 3e7, 0.0001, 0.01, 0.01, 0.01, 0.01,
0.01], du = [1]});

The result of the linearization compared to the original model when they are simulated
with a step is showed below (see Fig. 40 below). As can be seen they do not make an
exact match and it is probably possible to get a better match if the perturbation vectors
are studied and evaluated more.

Fig. 40 Comparison between the nonlinear- and the linearized model

g

Linearization of a rudder model

7.2 Linearization using subspace identification

The same steps as presented before are used and the code used is adjusted just a bit
[Linearization example using subspace identification]. The proper sampling interval is
set and the frequency distribution is adjusted. Amplitude is set to 2 to simulate level
flight when deflection is not so large. Input and output are both detrended before
inserted and the “sds” function is invoked.

A sixth order model is chosen and the result from a simulation in time domain with a
validation input series indicate that the model is good (see Fig. 41 below).

As a reference the given manually linearized model is also plotted with the same input.
As can be seen the original nonlinear model (True system output in graph) and the
identified model follow each other closely.

Fig. 41 Validation output

7.3 Comparison between results from all presented procedures

A comparison between the two different linearization methods and the true output
shows well matching results.

The comparison is made in both time and frequency domain. In all three cases input
amplitude is set to two, to enable comparison between the three.

g

Linearization of a rudder model

Fig. 42 Comparing Bode plots from the different methods

As can be seen the result is very satisfactory. The plots match very well up to 45 Hz.
This is because of the Nyquist frequency that is 50 Hz.

Fig. 43 Comparing Step Responses from the different methods

g

Nonlinear control

8 Nonlinear control

8.1 Aircraft model

The generic elastic aircraft model (see Fig. 44 below) is based on a finite element
approximation of the structure in combination with unsteady aerodynamics [SCHULER].
The model is described by about 100 000 degrees of freedom. Using modal analysis
techniques the model is reduced to 33 modes. The resulting model consists of 3 rigid
body modes and 30 elastic and their cross coupling. It is possible to measure positions,
velocities and accelerations at different points of the aircraft. The model represents
cruise flight at a specific velocity and at constant altitude. The working point can be
changed by assigning the matrices different velocity and altitude values.

Fig. 44 Generic aircraft model (linear)

The original finite element approximation is made as a “half model” in order to save
computation time. This means that only one side of the aircraft is modeled and then the
aircraft is assumed to be symmetric. It is possible to model symmetrical or anti-
symmetrical movements of the aircraft. The longitudinal model, which will be regarded
here, has symmetrical movements of control surfaces on the left and right side of the
aircraft.

The natural (no control) aircraft is unstable due to the Phygoide mode for the regarded
working point. Phygoide mode oscillations is a phenomena when an aircraft starts to
oscillate up and down with a low frequency depending on variations in distribution of
energy between speed and altitude. Since the investigated control problem in this case
has nothing to do with these, a stable model is chosen through elimination of the
Phygoide mode.

g

Nonlinear control

Control surfaces can be deflected by affecting the implemented control inputs. The
controllable surfaces are:

• Elevator – surface positioned at the tail of the aircraft. It is positioned horizontally
and used primarily for changing the pitch of the aircraft. Maximum deflection is
+15° -30° (+0.26 rad –0.52 rad) and maximum rate of change is 30°/s (0.52 rad/s).

• Ailerons – (inner and outer) are positioned at the outer end of the wings along the
rear edges. The primary use for the surfaces is to control the aircraft in the roll
plane. Maximum deflection is ±25° (±0.44 rad) and maximum rate of change is
40°/s (0.70 rad/s). Thanks to fly by wire technique it is possible to deflect the
ailerons symmetrically.

The accessible inputs are the three surfaces mentioned above, and in the above order
(1 = elevator, 2 = inner aileron, 3 = outer aileron). The outputs are position and velocity
of the same surfaces (outputs 34 – 39). Further accessible outputs are a number of
points of the body where position, velocity, and acceleration can be measured (outputs
1 – 33, see chapter [Inputs and outputs on the aircraft model]).

8.2 Problem description

In the investigated model the outer ailerons are assumed to be in failure mode. This
results in that one control input is lost and the dynamics of the aileron is changed. The
dynamics now represent the case when one of two actuators on each aileron is
disconnected and the other goes into damping mode. For a functioning actuator the
stiffness is modeled with a spring. In the model this is done by “subtracting” the
dynamics of the functioning actuators by introducing a linear feedback (see Fig. 45
below). This corresponds to a free aileron and it results in an unstable linear model.
Instead a nonlinear actuator force is inserted. The force is a function of the velocity of
the aileron and is of quadratic character.

Fig. 45 Investigated model (nonlinear)

g

Nonlinear control

A limit cycle appears due to the above-mentioned actuator failure mode. For the chosen
working point the cycles have a frequency of about 2.64 Hz and the amplitude is about
13 centimeters at the wing tip and the accelerations there are about of 3.5 g. These
cycles of course spread through the aircraft and will be experienced rather
uncomfortable. In the cockpit and for those seated directly behind (1st class) the cycles
will be experienced with an amplitude of only 2 centimeters but the accelerations have
a maximum value of 0.6 g.

Normally both structural problems and passenger comfort is considered when dealing
with failure cases. The following investigation is however focused on passenger
comfort. Today there is no specific control for this carried out because the probability of
this failure mode is very low. The comfort control to improve the comfort in turbulence
(CIT) has however some mitigating effect on the limit cycles. They are not cancelled,
but the amplitude is decreased a bit. This controller is fed with the accelerations in the
body close to the cockpit. The controller moves the phase of the critical gain peaks,
giving them a 180° phase shift. A gain is tuned and a low pass filter is added. The
controller then feeds the elevator with control signals to minimize these accelerations.

8.3 Analysis through describing function analysis

The examined generic aircraft model has been put on a form (see Fig. 46 below)
recognizable from the theory behind describing function analysis (ref. SLOTINE, LI).
The added input is solely used for perturbating the system. The reason for not using the
standard input for this is to maintain the appearance of the original system where the
initiating pulse perturbates the system after the non-linearity.

Fig. 46 The examined nonlinear system

The nonlinear block contains the following function:

)(**2 2 ysignyalphau = where 2alpha is a constant,

y is the output (velocity of outer aileron) of the linear

system and u is the input to the same.

The linear system contains the 71-state original system (see below Fig. 47). The
constant 2alpha has been kept in the nonlinear block despite its linear characteristics.

This is done just to keep the original nonlinear block intact. It has no impact on the final
result of the describing function analysis.

g

Nonlinear control

Fig. 47 The linear part of the examined system

The computation of the describing function for the non-linearity is quite basic thanks to
its odd and frequency independent nature.

The ()AN part of the describing function –1/ ()AN can therefore be written on the form

()
A

b
AN 1=

where

φφφ
π

π

dub sin*)(
1

2

0

1 �=

where ()φu is the output of the non-linearity when fed with φsin*A . In our case

())sin*(*sin**2 22 φφφ AsignAalphau = .

The

1
b integral finally looks like

2

2/

0

32

2

0

32

1 *
3

2
7000

4
sin**2*

4
)sin*(*sin**2

1
AdAalphadAsignAalphab

π
φφ

π
φφφ

π

ππ

=== ��

2

1 *5942
18667

Ab ≈≈
π

The describing function becomes

()
A

AN
*5942

1
/1 =−

g

Nonlinear control

The Nyquist plot of the linear system can be seen in Fig. 48 below.

The first intersection (Re= –0.000775, f=2.64 Hz) between the Nyquist plot and the
describing function on the negative real axis represents a stable intersection. The
second intersection is unstable (Re=-0.0025, f=3.31 Hz).

The third intersection is also unstable (Re=-0.014, f=2.74 Hz). The theory behind which
intersections are stable and which are not will be discussed in chapter [Investigation
and optimization of scalar feedback].

Fig. 48 Nyquist plot of linear system between 0.1 Hz and 6 Hz

Therefore it is natural to expect a limit cycle to appear for the first stable intersection.
The frequency is known to be 2.64 Hz and the amplitude can be estimated as:

() () () 217.0*5942000775.0/1000775.0/1 ≈�==�−==− AAANiwfAN

When the system is simulated (see Fig. 49 below) the above-achieved values match
the result very well.

The output from the linear part has an amplitude of just above 0.2 and the frequency
content is 3.45 Hz below 75 seconds (no limit cycle) and 2.64 Hz thereafter.

g

Nonlinear control

Fig. 49 The output containing the limit cycles

g

Nonlinear control

8.4 Initial approach to eliminate the limit cycles

As an initial approach to eliminate the limit cycles the inner aileron is fed with a control
signal corresponding to the deflection of the outer broken aileron but with opposite sign.
This means that when the outer aileron in failure mode goes down, the inner will go up
with the same deflection. The “sum” of these will then result in a zero change of lift on
the wing and it will therefore not start to oscillate. It is implemented by just connecting
the output representing the position of the outer aileron to the control input to the inner
aileron with negative sign and unit gain.

This sort of individual steering of single control surfaces is possible on Airbus aircraft
thanks to the fly-by-wire system. On traditional aircraft the rudders are usually cross-
coupled with other rudders, which result in that when one surface is moved one or more
other surfaces move with it. For example with the movement of an aileron on a wing on
a traditional aircraft the aileron on the other opposite wing will move in the counter
direction. Sometimes the rudder in the back is also connected to the two.

The result from a realization where this feedback is connected after 140 seconds can
be seen in Fig. 50 below:

Fig. 50 Plot of output from feedback system (outputs in deg and deg/sec)

The amplitude of the limit cycle on the outer broken aileron is 0.75° and the velocity is
12°/sec. When the feedback is engaged the control signal damps the limit cycles

g

Nonlinear control

effectively. Control signals of the same magnitude as the magnitude of the limit cycles
are generated. It is also satisfactory to see that all signals are within the limits of
deflection and rate of change. The peak in inner aileron velocity comes from the
sudden engagement of the feedback.

8.5 Investigation and optimization of scalar feedback

In one approach to remove the limit cycles a scalar feedback has been investigated. A
feedback from the outer ailerons velocity to inner aileron position was tried. The Nyquist
diagram was investigated and this showed that it was not possible to find a scalar
feedback that will keep the system stable.

Fig 51a. 0.01Hz – 10000Hz

Fig 51b. 0.01Hz – 2Hz

Fig 51c. 2Hz – 10Hz

Fig 51d. 10Hz – 10000Hz

Fig. 51 Nyquist plot - outer aileron velocity due to inner aileron

In the Nyquist diagram (see Fig. 51a – Fig. 51d above) it can be shown that there does
not exist any stable intersections. Since the Nyquist diagram is quite complex an
alternative approach was tried when investigating the intersections. Since the diagram
consists of five different intersections on the negative real axis six different feedback
gains have to be tried in order to decide intersections are stable and which are not.

g

Nonlinear control

By investigating the eigenvalues of the A matrix in the system equations for different
feedback gains it can be decided whether the system is stable or not in the investigated
region. By investigation of all regions the intersections can be determined if they are
stable or not.

Feedback gains from all of the six intervals have been tried and all six give unstable
results, from this it is possible to draw the conclusion that it is not possible to make a
feedback from outer ailerons velocity to inner aileron position that keeps the system
stable.

Fig 52a. 0.01Hz – 10000Hz

Fig 52b. 1e-5Hz – 0.2Hz

Fig 52c. 3Hz – 4Hz

Fig 52d. 4.5Hz – 7Hz

Fig. 52 Nyquist plot - outer aileron deflection due to inner aileron position

While the previous approach did not work a second attempt was made using the output
from outer aileron deflection to inner aileron position. The investigation for this feedback
was made in the same way as in the previous attempt.

This investigation shows that the system is stable in the interval -0.7619 to -3.1398.
These values give that the system is stable for gain between 1/(-0.7619) and
1/(-3.1398), that is between -1.3125 and -0.3185.

g

Nonlinear control

So now when it is shown that there is a feedback that makes the system stable it is also
necessary to show that this feedback eliminates the limit cycles. The Nyquist diagram
for the linear part of the system with four different feedback gains is plotted. For some
of the feedback gains there are intersections with the negative real axis, but when these
are investigated it is shown that they do not initiate a limit cycle. The feedback gains
that do not give any intersections at all with the negative real axis initiate of course no
limit cycles.

Fig 53a. Feedback –0.3185

Fig 53b. Feedback –0.4

Fig 53c. Feedback –0.55

Fig 53d. Feedback –1.3125

Fig. 53 Nyquist diagrams for different feedback gains

Now when it is indicated that the feedback gains in the interval –0.3185 and –1.3125
are all useful to optimize the feedback gain with respect to the time it takes for the
oscillations to settle is done. A somewhat different optimization was done, a small
Xmath program was made that measures the time for the oscillation to reach a certain
lower mean amplitude. This program was run for 15 different gains in the stable
interval. When these times were measured a polynomial was fitted to the measure
values. The optimal feedback gain could then be seen in the plot, -1.12. Of course the
fitted polynomial could be derived and the minimum could be calculated, but since this
method only is approximate this is not necessary.

g

Nonlinear control

8.6 A nonlinear approach to eliminate the non-linearity

The central idea is to eliminate the nonlinear characteristics in the system. Seeing the
non-linearity as a known disturbance could do this. The non-linearity is a function of the
velocity of the outer broken aileron. This velocity is measurable and therefore used as
input to a feed forward block. The input to the inner aileron is used as input to the
system for the feed forward block (see Fig. 54 below).

Fig. 54 System with elimination of non-linearity

What is desired is that the dynamics from the inner aileron input to the velocity of the
outer aileron gets the same dynamics as the input for the non-linearity to the same
output. This should be possible with a feed forward filter inserted as in the Fig. 54
above. The feed forward is given a positive sign on its input to the system to eliminate
the negative sign of the non-linearities’ system input.

A linear combination of the two remaining inputs (elevator and inner aileron) has been
considered to get characteristics that equal the transfer function from the input of the
non-linearity to the velocity of the outer aileron better. The weighting could be done with
some minimization method and the result typically ends up with about 87-97%
weighting on the inner aileron input, depending on the method used.

This feels right since the coupling between inner and outer aileron is larger than the one
between elevator and outer aileron. Since the weighting is so dominated by the inner
aileron and the improvement of the weighting is barely noticeable, the inner aileron is
chosen as the only input for the feed forward block. Expression to be minimized,

() 321 1 CxCxC −−⋅−⋅

g

Nonlinear control

The problem can be expressed with transfer functions where y is the output from the

linear part of the system (velocity of outer aileron) and u is the inner aileron control
signal. The system can then be seen as

() () zsHusGy ** −=

() ()ysignyalphayfz **2 2==

where z is the output from the non-linearity, ()sH is the transfer function from the non-

linearities’ input (input positive) to y and ()sG is the transfer function from u to y .

If u is chosen

the non-linearity is eliminated. We are interested in eliminating oscillations below 6 Hz

and we can therefore approximate the filter ()sF with a reduced filter ()sF̂ . Since the

system is not of minimum phase character there will also be a problem of instability in

the filter. This also has to be considered and corrected during design and the filter ()sF̂

will be even more an approximation of the ideal filter ()sF .

A problem with the whole approach is that the linear part without the non-linearity is
unstable. The linear feedback that is introduced with the failure mode moves two stable
poles to the right half plane. These poles will initiate oscillations with a frequency of 3.4
Hz.

Several attempts to make the system stable without also stabilizing the limit cycles have
been made without success. Therefore an approach with the scalar feedback earlier
mentioned is attempted [Initial approach to eliminate the limit cycles]. This feedback
also cancelled the limit cycles so instead it will be investigated how much the effect of
the non-linearity can be minimized.

The two transfer functions, ()sF and ()sG , both have 70 zeroes and 71 poles. To give

the filter a lower order a model reduction is performed. The method used is balanced
model reduction [JOHANSSON].

The two systems are non-minimum phase and therefore reduced separately, and not
when they are put together to the filter ()sF since this is instable. From the Gramian it is

possible to see which states that it is possible to eliminate when the system is put on
balanced form. ()sG can be reduced to an order of 36 and ()sF to order 29.

The two reduced functions are then put together accordingly to the formula above. This
system, 65 states, is then compared to the original system, 70 states (denominators
cancelled) (see Fig. 55 below).

()
() () zsFz
sG

sH
u ** ==

g

Nonlinear control

Fig. 55 Comparison between original filter ()sF and reduced filter ()sF̂

A pole zero plot is made and in this it is possible to see that many pole zero
cancellation can be made. With a pole zero cancellation, with tolerance 1e-5, the
system is reduced to order 42. This cancellation has marginal effect on the filter.

There is a peek at and around 10 Hz on the gain plot of the original filter that shall not
be there. It comes from numerical errors when converting the system from state space
form to transfer function form. It has however been shown that the Bode plot is correct
up to about 8.5 Hz and the problem has not been further analyzed.

The problem with the instability has to be solved. But first a test to verify the results so
far is carried out. By inserting u into y the following is attained

() () () zsHzsFsGy **ˆ* −=

This shall then equal zero in the interval up to 5 Hz where we set the cutoff frequency

for the filter. For this to happen the terms () ()sFsG ˆ* and ()sH have to equal each

other. The result is quite satisfactory when the two bode plots are compared (see Fig.
56 below).

g

Nonlinear control

Fig. 56 Comparison between () ()sFsG ˆ* and ()sH in a Bode plot

To make the system stable the poles in the right half plane are mirrored (Lemma 4.1,
[ÅSTRÖM]). There are four poles that have to be mirrored. The result of the mirroring is
that the gain is maintained but the phase is changed (see Fig. 57 below).

Fig. 57 Comparison between the reduced filter before and after it is stabilized

g

Nonlinear control

The phase is shifted 180° for low frequencies when the mirroring is performed.
Therefore the sign on the input for the filter is changed.

When the system then is simulated with the filter connected the result looks quite
satisfactory (see Fig. 58 below). However, when the filter solution is compared to the
scalar feedback alone, it can be seen that this solution (see Fig. 58 below) gives a
better result.

Fig. 58 Comparison between filter solution (top) and scalar feedback (bottom)

A lot of other filters were also tried, generated by different less sophisticated methods.
For example were all poles and zeros of higher frequency than 10 Hz removed
manually.

The results from these filters were often very poor, but results similar to the results from
the filter generated by balanced realization were also received.

The problem was that the trajectory escaped to infinity in finite time. This problem can
however be explained by the phrase “finite escape time”.

The finite escape time is explained by the term,

() () () zsH
sG

sG
zsH

sG

sH
sGzsHzsFsGy *)(*1

)(ˆ

)(
*)(

)(ˆ

)(
*)(**ˆ* �

�
�

�
�
�
�

�
−=�

�
�

�
�
�
�

�
−=−=

This never will equal zero when the filter ()sF is approximated with a filter ()sF̂ . The

error will have characteristics looking like

g

Nonlinear control

Fig. 59 Bode plot of error

8.7 Further control approaches

Additional approaches that have been considered are control through input-output and
input-state linearization [SLOTINE, LI]. Due to the complex characteristics of the
investigated system with the non-linearity entering all states directly this approach
would result in too complex controllers.

Both mentioned control methods build on the fact that the non-linearity is accessible in
the control signal. This will in this case result in that the 71 state equations will have to
be derived up to 71 times and then a control signal based on this. The controllers would
not only be sensitive to model variations, they would also become too big and complex.
Both crew and passengers would have second thoughts flying with an airplane with
such control implementations.

g

Summary

9 Summary

Both main methods used for linearising systems give good results. They do however
show different difficulty in application on certain systems.

Linearization by using the “lin” command is generally a good approach for small
systems. The “trim” command solves the problem of finding an equilibrium point but
the problem of finding the perturbation vectors still exists. This is where the limitation of
the system’s size enters; the perturbation vectors have to be found through trial and
error.

Linearization by using subspace identification requires some work with preparing data
sets and validation of the models, but after a few identifications it is pretty
straightforward. The attained model is not usually a theoretically correct linearization of
the original system, but it usually models its dynamics well. An advantage with the
identification approach is that model size is not usually a problem, and it is in most
cases possible to get a reduced order model of the original system. This is sometimes
requested since it makes computer simulations faster in execution time.

The attempt to solve the control problem resulted in something unexpected. The first
simple approach with scalar feedback ended up being the most successful. All other
attempts with more advanced filters and linearisations of the non-linearity resulted in
either less damped systems with longer settling time or systems with finite escape time.

Gratifying to hear is that the approach with scalar feedback gives so good results,
despite its simplicity, so that it will be further investigated at EADS and maybe
implemented in the control system of future aircraft models.

g

Table of references

10 Table of references

Reference Full reference information

[ÅSTRÖM] Åström, Karl Johan:
Reglerteori.
Stockholm: Almqvist & Wiksell Förlag AB, 1968

[JOHANSSON] Johansson, Rolf:
System Modeling and Identification.
Englewood Cliffs: Prentice Hall, New Jersey, 1993.

[JORDAN] Jordan, Charles:
Calculus of Finite Differences.
New York, NY: Chelsea Publishing Company, 1965.
Library of congress Catalog Card No. 58-27786

[MATRIXX_ISIM] Integrated Systems, Inc. (ed.):
MATRIXx product family, Xmath Interactive System
Identification Module, Part number 000-0027-002,
Santa Clara, CA: Integrated Systems, Inc., 1996.

[MATRIXX_SBUG] Integrated Systems, Inc. (ed.):
MATRIXx product family, SystemBuild User’s Guide, Part
number 000-0051-005,
Santa Clara, CA: Integrated Systems, Inc., 1996, chapter 5.6.

[MGA] MGA Software (ed.):
ACSL Reference Manual, Edition 11.1.
Concord, MA: MGA Software, 1995, p. A62-A69.

[SCHULER] Schuler, Jörg:
Flugregelung und aktive Schwingungsdämpfung für flexible
Großraumflugzeuge.
D sseldorf: VDI Verlag GmbH, 1998
ISBN 3-18-368808-5

[SLOTINE, LI] Slotine, Jean-Jacques E.; Li, Weiping:
Applied Nonlinear Control.
New Jersey 007632: Prentice Hall, 1991
ISBN 0-13-040890-5

g

Inputs and outputs on the aircraft model

11 Appendix

11.1 Inputs and outputs on the aircraft model

Inputs to control surfaces
 Position

[rad]
Elevator deflection 1
Inner aileron deflection 2
Outer aileron deflection 3

Outputs from points on fixed body
 Position

[m]
Velocity

[m/s]
Acceleration

[m/s2]
z front fuselage 1 12 23
x center of gravity 2 13 24
z center of gravity 3 14 25
theta center of gravity 4 15 26
z rear fuselage 5 16 27
x wing tip 6 17 28
z wing tip 7 18 29
y inner engine 8 19 30
z inner engine 9 20 31
y outer engine 10 21 32
z outer engine 11 22 33

Outputs from control surfaces
 Position

[rad]
Velocity
[rad/s]

Elevator deflection 34 37
Inner aileron deflection 35 38
Outer aileron deflection 36 39

g

FRA function implemented in MATRIXx

11.2 FRA function implemented in MATRIXx

---“nfr” function--

Function [SortedFrequency, PhaseMatrix, PhaseMatrixDEG, GainMatrix, ...
GainMatrixDB, PhaseAvMatrix, GainAvMatrix]= nfr(Model, Freq, Magnitudes, ...
{makesteps, errcrit, step, ialg, offset})

//----------gives the frequency responce of a model -------
//Inputs: Model name (Model), Frequency vector (Freq), ...
// Magnitude vector (Magnitudes)
//Keywords: Generate a frequency vector in the assigned interval, ...
// (makesteps=1) default (=0), Error criteria (errcrit) sets the ...
// allowed loop error (default=0.1), Step size (step) sets the ...
// frequency increment (default=1.2), Integration algorithm (ialg) is ...
// default "VKM" but "GEAR" is also good
//Outputs: plot and matrices
//Comment: Frequency vector can either be a vector with frequencies or ...
// an intervall if the makesteps keyword is used
//

clock({cpu}); //resets timer
DEFAULT step=1.2; //sets keyword defaults
DEFAULT errcrit=0.1;
DEFAULT ialg="VKM";
DEFAULT makesteps=0;
DEFAULT offset=0;

if makesteps==1 then //if makesteps keyword is assigned 1, ...
ind=1; // generate frequency vector
Frequencies(ind)=Freq(1);
while Frequencies(ind)<Freq(2) do

ind=ind+1;
Frequencies(ind)=step*Frequencies(ind-1);
if Frequencies(ind)>Freq(2) then

Frequencies(ind) = Freq(2);
endif;

endwhile
else

Frequencies=Freq;
endif

[SortedFrequency]=sort(Frequencies'); //sort frequency vector
SortedFrequency=SortedFrequency';

[SortedAmplitude]=sort(Magnitudes'); //sort amplitude vector
SortedAmplitude=SortedAmplitude';

[PhaseMatrix, GainMatrix, OffsetMatrix, PhaseAvMatrix, GainAvMatrix]= ...
Generate_Matrices(Model, SortedFrequency, SortedAmplitude, errcrit, ...

ialg); //Generate the phase and gain matrixes

PhaseMatrixDEG=PhaseMatrix*180/pi; //Transform phase shift values into
degrees

GainMatrixDB=20*log10(GainMatrix); //Transform gain values into Decibel

[]=present(Model, SortedFrequency, ... //present the result in neat diagram
SortedAmplitude, GainMatrix, ...
GainMatrixDB, PhaseMatrixDEG, OffsetMatrix, ...
PhaseAvMatrix, GainAvMatrix, offset);

CPUtime=clock({cpu})? //show elapsed CPU time

EndFunction

g

FRA function implemented in MATRIXx

---“generate_matrices” function-------------------------------------

Function [PhaseMatrix, GainMatrix, OffsetMatrix, PhaseAvMatrix, ...
GainAvMatrix] = generate_matrices(Model, Freq, Mag, ErrCrit, Int);

//----------Gives matrixes for phase shift, gain, and offset for input ...
// frequency and magnitudes--
//Inputs: Model name (Model), Frequency vector (Freq), Magnitude vector ...
// (Mag), Loop Criteria (ErrCrit), Integration algorithm (Int)
//Outputs: Matrix containing phase shifts (PhaseMatrix), Matrix ...
// containing gains (GainMatrix), Matrix containing offsets ...
// (OffsetMatrix), Matrixes showing if values are averaged or not ...
// (PhaseAv, GainAv)
//

For MagIndex=1:length(Mag) //loop over magnitudes
error("Setting Amplitude to ... //gives feed back to user that next ...

"+ string(Mag(MagIndex))) // magnitude is evaluated

OldPhase=0; //initializes phase shift
For FreqIndex=1:length(Freq) //loop over frequencies

error("Running Frequency "+ string(Freq(FreqIndex))+ " Hz");
//gives feed back to user that next frequency is evaluated

FrequencyInvestigated=Freq(FreqIndex)?
//showing on the screen which frequency is calculated

[Phase, Gain, Offset, PhaseAv, GainAv] = determine_pg(Model, ...
Freq(FreqIndex), Mag(MagIndex), ErrCrit, Int); //Retrieve phase and gain

If Phase>(OldPhase+1.74533) then
//attempt to avoid phase jumps on 360 dergrees

Phase=Phase-2*pi; //if phase shift makes a big possitive jump ...
endIf; // 360 degrees are subtracted to make it cont.

OldPhase=Phase; //save old phase for next comparison

PhaseMatrix(FreqIndex,MagIndex)=Phase; //store data in matrix
GainMatrix(FreqIndex,MagIndex)=Gain; //store data in matrix
OffsetMatrix(FreqIndex,MagIndex)=Offset; //store data in matrix
PhaseAvMatrix(FreqIndex,MagIndex)=PhaseAv; //stores a 1 if phase was ...

// averaged
GainAvMatrix(FreqIndex,MagIndex)=GainAv; //stores a 1 if gain was ...

// averaged
endFor

endFor

endFunction

---“determine_pg” function------------------------------------

Function [Phase, Gain, Offset, PhaseAv, GainAv] = determine_pg(Model, ...
Freq, Mag, ErrCrit, Int);

//----------Gives phase shift, gain, and offset for input frequency and ...
// magnitude--------
//Inputs: Model name (Model), Frequency (Freq), Magnification (Mag), ...
// Loop Criteria (ErrCrit), Integration algorittm (Int)
//Outputs: Phase shift (Phase), Gain (Gain), Offset (Offset), Matrixes ...
// showing if values are averaged or not (PhaseAv, GainAv)
//

Period=1; //First period for present frequency
MaxPeriods=20; //Maximum number of periods for each frequency ...
// before stoped and averaged
Average=11; //MaxPeriods-Average+1 = nr of periods used when ...
//averaging when no settlement

g

FRA function implemented in MATRIXx

PhaseAv=0;
GainAv=0;
DPhase=1; //Initialize difference in phase and ...
DGain=1; // gain to guarantee at least two cycles
[St,Ct, Offset]=response(Model, Freq, 30, Mag, Period, Int);
//Generate the first values for the integrals ...
//(30 is resolution in timevector)
Phase=atan2(Ct,St); //Generate the first values for phase ...
Gain=2*Freq*sqrt(St**2+Ct**2)/Mag; // and gain from the integrals
While ((DPhase>ErrCrit | DGain>ErrCrit*0.1) & ... //Until phase & gain ...

Period<MaxPeriods) do // have settled loop
Period=Period+1; //Increment to get the next period for present frequency
OldPhase=Phase; //Save old values of phase
OldGain=Gain; //Save old values of gain
[St,Ct, Offset]=response(Model, Freq, 30, Mag, Period, Int);

//Generate the next values for the integrals
If Period >= Average then //If more than "Average" number of ...

//periods start saving values
StMV(Period)=St; //St Memory Vector for averaging St when no setteling
CtMV(Period)=Ct; //Ct Memory Vector for averaging Ct when no setteling
OffsetMV(Period)=Offset //Offset Memory Vector for averaging ...

// Offset when no setteling
endIf
Phase=atan2(Ct,St); //Generate the next values for phase & ...
Gain=2*Freq/Mag*sqrt(St**2+Ct**2); // gain from the integrals
if Period == MaxPeriods then

error("Max runs reached: averaging"); //Giving feed back from analyze ...
// (could not find a better way)

StAverage=mean(StMV(Average:MaxPeriods)); //Average of St
CtAverage=mean(CtMV(Average:MaxPeriods)); //Average of Ct
Offset=mean(OffsetMV(Average:MaxPeriods)); //Average of Offset
if (DPhase>ErrCrit) then

Phase=atan2(CtAverage,StAverage); //Calculating average of ...
// phase if phase is not settled

PhaseAv=1; //Mark in "PhaseAv" that value is...
// averaged for later plotting

endif;
if (DGain>ErrCrit) then

Gain=2*Freq/Mag*sqrt(StAverage**2+CtAverage**2); //Calculating ...
// average of gain if gain is not settled

GainAv=1; //Mark in "GainAv" that value is averaged ...
// for later plotting

endif;
endif
DPhase=abs(Phase-OldPhase); //Determine the difference in phase and gain ...
DGain=abs(Gain-OldGain); // between the last two periods

endWhile

endFunction

---“response” function------------------------------------

Function [St,Ct, Offset] = Response(ModelName, Freq, Res, Mag, Run, Int);

//----------Produces output from one period input----------
//Inputs: Model name (ModelName), Frequency (Freq), Resolution (Res), ...
// Magnification (Mag), Nbr. of periods run (Run), Integration method (Int)
//Outputs: Integral of sine times the Output (St) and cosine times the ...
// Output (Ct), Offset in output (Offset)
//

W=2*pi*Freq; //Hz to rad/sec
PeriodLength=1/Freq; //length of period in sec
StepSize=PeriodLength/Res; //stepsize in time vector
InputTime=(((Run-1)*PeriodLength): ... //generate input time vector

StepSize:(Run*PeriodLength))';
InputTime(1)=InputTime(1)+1e-10; //guarantee resume time is ...

g

FRA function implemented in MATRIXx

// larger than previous end time
InputSignal=(Mag*sin(W*InputTime)); //generate input sine signal

If Run == 1 then //If first period of this Frequency
[WasteTime, SystemOutput]=sim(ModelName, ... //generate output from model,

InputTime, InputSignal, {ialg = Int}); //WasteTime is never used
Else //Else
[WasteTime, SystemOutput]=sim(ModelName, ... //generate output from ...

InputTime, InputSignal, {Resume, ialg = Int});// resumed model
endIf

Outputsin=sin(W*InputTime).*SystemOutput; //multiplication of output ...
// with sine
Outputcos=cos(W*InputTime).*SystemOutput; //multiplication of output ...
// with cosine
Outpdm=pdm([Outputsin, Outputcos], ... //creation of PDM for integration

InputTime, {domainName="Time", ...
ColumnNames=["Outputsine";"Outputcosine"]});

IntOutputs = integrate(Outpdm); //Integration of outputs ...
// (in-phase, quadrature)
Dim=size(IntOutputs); //for finding the last ...
// integration element
St=IntOutputs(1,1,Dim(3)); //the value of the ...
// integrated sine channel
Ct=IntOutputs(1,2,Dim(3)); //the value of the ...
// integrated cosine channel
Offset=mean(SystemOutput) //Compute offset

endFunctionFunction [St,Ct, Offset] = Response(ModelName, Freq, Res, Mag, ...
Run, Int);

---“present” function------------------------------------

Function [Waste] = present(Model, SortedFrequency, SortedMagnitude, ...
GainMatrix, GainMatrixDB, PhaseMatrixDEG, OffsetMatrix, ...
PhaseAvMatrix, GainAvMatrix, offset)

//----------Plots the result in bode form-------------

//Inputs: Model name (Model), Frequency vector (SortedFrequency), ...
// Magnitude vector (SortedMagnitude), Matrix containing gains ...
// (GainMatrix), Matrix containing gains in Db (GainMatrixDB), Matrix ...
// containing phase shifts in degrees (PhaseMatrixDEG), Matrix ...
// containing offsets (OffsetMatrix), Matrixes showing if values are ...
// averaged or not (PhaseAvMatrix, GainAvMatrix), Boolean indicating if ...
// offset should be drawn (offset)
//Outputs: Waste, which is not used for anything
//

display "----- Final result summery :" //Show results in Xmath window
display " "
display "----- Analyzed superblock = ", Model
display " "
display "----- Column domain of InputOutput-MATRICES is the Frequency !"
display "----- Row domain of InputOutput-MATRICES is the Amplitude !"
InputFrequencies = SortedFrequency?
InputMagnitudes = SortedMagnitude?
GainMatrix?
GainMatrixDB?
PhaseMatrixDEG?

GainDB_PlotMinimum_Default = -10; //Set graph axis defaults
GainDB_PlotMaximum_Default = 10;
Phase_PlotMinimum_Default = -10;
Phase_PlotMaximum_Default = 10;

g

FRA function implemented in MATRIXx

If (min(GainMatrixDB) > -Inf) //Use default or other axel numbering
GainDB_PlotMinimum = min(GainDB_PlotMinimum_Default, ...
10*round(min(GainMatrixDB)/10)-10);

else
GainDB_PlotMinimum = GainDB_PlotMinimum_Default;

endIf;
If (max(GainMatrixDB) < Inf)

GainDB_PlotMaximum = max(GainDB_PlotMaximum_Default, ...
10*round(max(GainMatrixDB)/10)+10);

else
GainDB_PlotMaximum = GainDB_PlotMaximum_Default;

endIf;
GainDB_PlotIncrement = 10

Phase_PlotMinimum = min(Phase_PlotMinimum_Default, ...
10*round(min(PhaseMatrixDEG)/10)-10);

Phase_PlotMaximum = max(Phase_PlotMaximum_Default, ...
10*round(max(PhaseMatrixDEG)/10)+10);

Phase_PlotIncrement = 20;

k=0; //Generate plot data for averaged gain values
SizeMatrix=size(GainMatrixDB);
For i=1:SizeMatrix(2)

For j=1:SizeMatrix(1)
if GainAvMatrix(j,i) == 1 then

k=k+1;
PlotGainAvMatrix(k)=GainMatrixDB(j,i);
SortedFrequencyGainAv(k)=SortedFrequency(j);

endif
endFor

endFor

l=0; //Generate plot data for averaged phase shift values
SizeMatrix=size(GainMatrixDB);
For i=1:SizeMatrix(2)

For j=1:SizeMatrix(1)
if PhaseAvMatrix(j,i) == 1 then

l=l+1;
PlotPhaseAvMatrix(l)=PhaseMatrixDEG(j,i);
SortedFrequencyPhaseAv(l)=SortedFrequency(j);

endif
endFor

endFor

For amp=1:length(SortedMagnitude) //Create legend
LegendText(amp) = "Amp=" + string(SortedMagnitude(amp))

endFor

if offset==1 then
NFR_Plot = plot({rows=3, columns=1}); //Generate 3 or 2 by 1 plot window

else
NFR_Plot = plot({rows=2, columns=1});

endif;

NFR_GainDB = ... //Generate gain plot
plot(SortedFrequency, GainMatrixDB, ...
{row=1, column=1, ...
x_log, yzero_line, ...
marker_style=[4,4,4,4,4], marker_color=[5,11,1,3,6], marker=1, ...
line_style =[1,2,7,4,5], line_color =[5,11,1,3,6], ...
xmin=SortedFrequency(1), ...
xmax=SortedFrequency(length(SortedFrequency)), ...
xinc=10, xlab="Frequency f [Hz]", ...

ymin=GainDB_PlotMinimum, ...

g

FRA function implemented in MATRIXx

ymax=GainDB_PlotMaximum, ...
yinc=GainDB_PlotIncrement, ...
ylab="Gain [db]", ...
title="Response of: " + Model, ...
legend=LegendText, date, time, keep=NFR_Plot});

If k>0 then //Mark the averaged dots, if any
NFR_GainDBAv = ...

plot(SortedFrequencyGainAv, PlotGainAvMatrix, ...
{row=1, column=1, line_style =" ", legend="Averaged", ...
marker_style=[8,8,8,8,8], marker_color=[2,2,2,2,2], marker=1,

keep=NFR_Plot});
endIf

NFR_Phase = ... //Generate phase shift plot
plot(SortedFrequency, PhaseMatrixDEG, ...
{row=2, column=1, ...
x_log, yzero_line, ...
marker_style=[4,4,4,4,4], marker_color=[5,11,1,3,6], marker=1, ...
line_style =[1,2,7,4,5], line_color =[5,11,1,3,6], ...
xmin=SortedFrequency(1), ...
xmax=SortedFrequency(length(SortedFrequency)), ...
xinc=10, xlab="Frequency f [Hz]", ...

ymin=Phase_PlotMinimum, ...
ymax=Phase_PlotMaximum, ...
yinc=Phase_PlotIncrement, ...
ylab="Phase [deg]", ...
!legend, keep=NFR_Plot});

if l>0 then //Mark the averaged dots, if any
NFR_PhaseDBAv = ...

plot(SortedFrequencyPhaseAv, PlotPhaseAvMatrix, ...
{row=2, column=1, line_style =" ", legend="Averaged", ...
marker_style=[8,8,8,8,8], marker_color=[2,2,2,2,2], marker=1,

keep=NFR_Plot});
endIf

if offset ==1 then
NFR_Offset = ... //Generate offset plot

plot(SortedFrequency, OffsetMatrix, ...
{row=3, column=1, x_log, yzero_line, ...
marker_style=[4,4,4,4,4], marker_color=[5,11,1,3,6], marker=1, ...
line_style =[1,2,7,4,5], line_color =[5,11,1,3,6], ...
xmin=SortedFrequency(1), xmax=SortedFrequency(length(SortedFrequency)),

xinc=10, ...
xlab="Frequency f [Hz]", ylab="Output Offsets", ...
!legend, keep=NFR_Plot});

endIf
NFR_Plot?

EndFunction

g

List of commands used in the subspace identification

11.3 List of commands used in the subspace identification

//-----code to generate a PRBS with lower rate of change----

t=(0:0.022:140)';
p=prbs(15);
f=30;
i=1;
delete u
gk=0;
for k=1:length(t) do

u(k)=p(i);
if mod(t(k),1/f)<gk then

i=i+1;
endif
gk=mod(t(k),1/f);

endfor
delete p
u=u-0.5;
u=2*u;

//-----generation of two input series and plotting of them--

inputpdm1 = pdm(u(1:3000), t(1:3000))';
inputpdm2 = pdm(u(3001:6000), t(1:3000))';

plot(inputpdm1)
plot(inputpdm2)
plot(sdf(inputpdm1,inputpdm1,128))
plot(sdf(inputpdm2,inputpdm2,128))

//-----system simulation and pre processing-----------------

outputpdm1=sim("Pitch_Gain_Direct_Law_SIM",inputpdm1);
outputpdm2=sim("Pitch_Gain_Direct_Law_SIM",inputpdm2);

plot(outputpdm1)
plot(sdf(outputpdm1,outputpdm1,128))

coh=coherence (inputpdm1,outputpdm1,20);
plot(coh)

outputpdm1=detrend(outputpdm1);

//-----model determination----------------------------------

[sys, sr]=sds(outputpdm1, inputpdm1, {gui});

//the model is saved as “test6“ and validated through the...
// use of the pull down menus in the "gui" user interface

//-----MATRIXX buggs quite a bit using the "gui" interface ...
//-----therefore a few validation methods are implemented ...
//-----manually. They can be found below.

//-----pole-zero plot---------------------------------------

[num,den]=numden(test)

ip=imag(roots(den));
rp=real(roots(den));
plot(rp,ip, {line=0, marker_style=1})

g

List of commands used in the subspace identification

in=imag(roots(num));
rn=real(roots(num));
plot(rn,in, {keep, line=0, marker_style=4})

pt=(0:0.01:3.2);
s=sin(pt);
c=cos(pt);
plot(c,s,{keep, linecolor=1})
plot(-c,-s,{keep, linecolor=1})

//-----prediction plots-------------------------------------

plot(outputpdm1)

valoutputpdm1=sdsmodel*inputpdm1;
plot(valoutputpdm1, {keep})

plot(outputpdm2)

valoutputpdm2=sdsmodel*inputpdm2;
plot(valoutputpdm2, {keep})

//-----to plot what is on the screen------------------------

hardcopy; oscmd("lp -onb");

//-----to generate a superblock with result-----------------

[Num,Den]=numden(test6);
NumCoef=makematrix(Num);
NumCoef=NumCoef';
DenCoef=makematrix(Den);
NumOrder = size(Num);
DenOrder = size(Den);
dT = period(test6);
CREATESUPERBLOCK "test", {type = "discrete", sampleperiod = dT };
CREATEBLOCK "NumDen", {DenominatorOrder = DenOrder, NumeratorOrder=NumOrder,
Denominator = DenCoef, Numerator = NumCoef};

