Equalization of Co-Channel
Interference in Future Mobile
Communication Systems

Anders Nilsson-Stig and Henrik Perbeck

22nd January 1999




Document name

Department of Automatic Control MASTER THESIS

Lund Institute of Technology Date of issue
P.O. Box 118 January 1999
S-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--5610--SE
Author(s) Supervisors
Anders Nilsson-Stig and Henrik Perbeck Bengt Lindoff, Bo Bernhardsson, Jan Holst

Sponsoring organisation

Title and subtitle
Equalization of Co-Channel Interference in Fiuture Mobile Communication Systems.

Abstract

This study shows that Joint Detection is a powerful method for eliminating co-channel interference in 8-PSK
(Phase Shift Keying) modulation, provided a carrier SNR (Signal to Noise Ratio) greater than 15 dB. Joint
Detection refers to decoding information from two parallel data sources receiving the same input signal.

A full-state Joint MLSE (Maximum Likelihood Sequence Estimation) algorithm was implemented, and showed
good performance but great numerical complexity. For multi-path fading channels, a BER (Bit error Rate)
less than 5% is achieved for any strength of the interferer, provided a carrier SNR of 25 dB or more.

To reduce complexity, 2 Conventional MLSE for the carrier including a built-in Decision Feedback algo-
rithm for the interferer was implemented and evaluated. For multi-path fading channels, in most cases this
MLSE/DF algorithm provides about 95% of the performance gain produced by Joint MLSE. Thus, for prac-
tical implementation, MLSE/DF may be an interesting solution.

The results are based on the assumption that carrier and interferer bursts are synchronized and that the
training sequences of both carrier and interferer are known to the channel estimator. The need for further
studies on Blind Detection of the interferer is pointed out, and a moment estimator for detection of a possible

interferer is also discussed.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information
Also available as report 1999:E1 from the department of Mathematical Statistics

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes
English 46

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Fax +46 46 110019, Telex: 33248 lubbis lund.




Preface

This Master’s thesis was produced at Ericsson Mobile Communications AB,
Lund, in corporation with the Dept. of Automatic Control and the Dept.
of Mathematical Statistics, Lund Institute of Technology. We would like to
thank our competent and encoﬁra,ging supervisors Bengt Lindoff (Ericsson),
Bo Bernhardsson (Automatic Control) and Jan Holst (Mathematical Statis-
tics). Our regular meetings left us with an insight to the joy of science, and
with new spectacular problems for the world to solve after this study.

Finally, we would like to thank Bengt for considering passing this thesis,
although he swore not to when beaten on the golf course.

Lund, January 1999

Anders Nilsson-Stig Henrik Perbeck




Contents
1 Introduction

2 Background »
2.1 Mobile Communication Systems . . ... ...........
2.2 Modulation of Digital Signals . . . ... ............
2.3 Equalization. . . . . . . . . . . i i e
2.3.1 Imterference . . . . .. . . . . . i i i i it
2.3.2 Channel Estimation . ... ...............
233 DataDecoding . ... ......... ... ......

3 Simulation Environment
31 Genmeral Setup. . . . . . v .t it e
3.1.1 Definitions . . . . . . . ... e e
3.1.2 Choice of H and G Channels . . . . ... ... ....
3.1.3 TransmittingData . . ... ... ............

3.1.4 Significance of Simulations Results . . . ... ... ..
3.2 Implementation of Decoders . . . . ... ... ... ......
3.2.1 General Algorithm Design . . . . .. . ... ......

3.2.2 Technical Details . . . .. ... .. .. ... ...,
3.2.3 Overviewof thedecoders . .. .............

4 Simulation Results
4.1 Conventional MLSE in a CCI Environment . ... ... ...
4.2 Performance of MLSE/DF and Joint MLSE . . . . ... ...
421 Constant Channels . . . .. ... ... .. ¢ ....
4.2.2 Fading Channels . .. ..................
4.3 Choiceof Decoder . .. . .. ... it v
4.4 Complexity Reduction by Channel Memory Truncation

5 Future and Associated Research
5.1 An Interference Detection Method . . .. ... ........
52 BlindDetection . . . . . . . . . . it
5.3 Complexity reduction of the Viterbi algorithm . . ... ...

6 Conclusion

A Table of Acronyms

10
11
13
14

18
18
18
19
20
20
21
22
24
24

26
26
26
27
33
33
37

38
38
42
43

44

45




1 Introduction

The use of mobile communication systems has increased significantly over
the last several years. Digital systems such as GSM have made it possi-
ble to improve the quality of speech and data transmission. The available
bandwidth is limited and much effort is made to use it efficiently. The GSM
system sends one bit of data per symbol. A future system, EDGE (Enhanced
Data rates for GSM Evolution), proposes sending three bits per symbol in
the same GSM system as today. The modulation used by such a system
becomes more sensitive to noise and other disturbances. This thesis focuses
on one such disturbance, co-channel interference. Base stations covering
adjacent cells cannot use the same frequencies since the cells overlap. To
optimally utilize the bandwidth, not directly neighbouring cells are allowed
to use the same frequencies. When an undesired signal (interferer) at the
same frequency disturbs the main signal (carrier) it is referred to as co-
channel interference. The structure of the interferer is assumed known and
the aim of the thesis is to decode it in order to increase the quality of the
carrier.

The underlying work of this report consists of developing equalizers that
decode the carrier better by decoding and removing the interferer. First,
a MLSE equalizer for the carrier only was designed using the Viterbi algo-
rithm. It can be seen as a reference for what today’s systems would achieve.
Second, a full MLSE for both the carrier and the interferer was designed.
Due to high numerical complexity it is probably not suitable for practical
implementation. Finally, in order to reduce complexity, a MLSE equalizer
for the carrier was combined with a decision feedback equalizer for the in-
terferer.

This thesis analyzes the results of simulations using the different equal-
izers. It will be shown that large gains in performance can be achieved by
decoding the interferer.

A Master’s thesis made at Ericsson, see [2], examined possible gains of
Joint Detection for binary GSM modulation, simulating a whole mobile
communication system. This study focuses on the radio channel, and inter-
ference cancellation for the more sensitive EDGE system.

The report consists of four main parts. First, Section 2 provides general
background and presents relevant underlying theory. In Section 3 the simu-
lation environment, model assumptions and the design of the equalizers are
explained. Section 4 presents the results of the simulations. Finally, Section
5 connects this work to related research in the field and considers areas of
future interest.




2 Background

2.1 Mobile Communication Systems

To see the context of this essay ‘it is necessary to understand the structure
and use of mobile communication systems. In the last years there has been
significant growth in the use and need for mobile communication, particu-
larly following the introduction of digital systems like GSM. This has made
it possible to increase the quality and rate of the information transmitted.
So far the focus has been on speech, i.e. mobile phones. However, future
mobile digital data communication will greatly increase the demands of the
systems currently being designed.
A mobile communication system consists of the following basic units:

e mobile units, typically a mobile phone or a communication module for
a portable computer,

e base stations, large radio transmitters/receivers distributed to cover a
certain limited area (cell),

e communication network, the network to which the user wants to be
connected e.g. a stationary telephone network or the Internet.

A mobile communication system is limited by the ability to transmit data
only over a certain bandwidth. The available bandwidth is a finite resource
and consequently calls for measures of efficient use. Figure 1 is an illustration
of the components needed for digital data to be communicated through the
air [1].

Information Source Channel Digital
source and
input transducer encoder encoder modulator v
Channel
Output Source Channel Digital . I
transducer decoder decoder demodulator

Figure 1: Elements of a digital communication system. The focus of the
thesis is on the digital demodulator.

The main focus of this thesis is on what is called the digital demodulator
and how it is being affected by the channel. To understand the importance
of this interaction a brief discussion of the other components is useful.




The first element of a digital communication system is the information
source and input transducer, i.e. the signal that is to be transmitted. This
has to be converted into a sequence of binary digits by the source encoder.
The information sequence is then passed to the channel encoder which will
introduce redundancy to reduce information losses due to noise and distur-
bances. Another technique to achieve this is called interleaving. Consecutive
data is portioned out and blocks to be transmitted are built so that loss of
such a block will have limited consequences. This can be seen in more detail
in Figure 2. The binary sequence ready to be transmitted is then passed
to the digital modulator which is the interface to the channel. Here the
binary sequence is mapped into signal waveforms which can be transmitted
over the communication channel. The channel may be any physical medium
but in the case of mobile systems mainly open air. The channel is always
corrupted to some extent, due to thermal noise. Also, further disturbances
can be caused by other sources such as automobile ignition noise, atmo-
spheric noise and interference. A realistic model of the physical channel is
very important to be able to design the system and in particular the digi-
tal demodulator. This component’s job is to process the channel-corrupted
transmitted waveform and transform it into a sequence of binary digits.
These digits are ideally the same as those the digital modulator received
in the first place, but in practice are always an approximation thereof. Fi-
nally the information sequences are reassembled by the channel decoder and
converted back to its original signal form by the source decoder.

This thesis analyses different types of equalizers which are part of the
digital demodulator in Figure 1. The role of the equalizer is better seen
in Figure 2. Also the interleaver is here separated out from the channel
encoder. The block interleaver takes blocks of data from different sequences
and mixes them so that a whole sequence should not be lost. The binary
sequence continues to the digital modulator, which maps the symbols onto
the carrier frequency. The waveform signal is then transmitted over the
channel. Further, the channel is fading. This means that due to reflection,
many copies of the transmitted signal will arrive at the receiver with a
slight time-delay. The phase shift of these signals can cause constructive
or destructive interference which will affect the channel. Noise, n(t), is
also added to the signal. The received signal is band pass filtered, down
converted to baseband, low pass filtered (LPF) and sampled at kT,. At this
stage the role of the equalizer is to decide which sequence was sent. It must
use information about the channel and noise. The most likely sequence is
passed to the block deinterleaver and further channel decoded.
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Figure 2: Block diagram of the digital demodulator showing interleaving and
equalization.

TDMA and Burst Structure

Today’s GSM system uses TDMA (Time Division Multiple Access) to ef-
ficiently use the available bandwidth of a frequency band, 200 kHz. The
system’s symbol rate is 271 kb/s, which gives a symbol time of 3.6 us. Each
frequency band is divided into eight time slots which are dedicated to dif-
ferent users. Consequently, the symbol rate for each user is 34 kb/s to be
used for information and coding. During a time slot a burst is sent which
includes data and a training sequence known to the receiver, see Figure 3.
The time slot has length equivalent to 156.25 symbols, out of which 148
are used. The training sequence makes it possible to estimate the channel
during the burst. For slow moving objects (< 100 km/h) the fading will not
have an effect within a burst and the channel can be considered constant, i.e.
no channel tracker is needed. The tails are used to get a final state for the
Viterbi-coder. Sometimes the data sent are hand-over information which is
then indicated by the flag. Details about the GSM system are found in [9].

F F
Traini
Tail Data i | Data Tail
a | Sequence |,
g g
3 57 1 26 1 57 3

Figure 3: GSM burst structure.

Cell Planning and Co-Channel Interference

Cellular communication systems are based on the idea that each base sta-
tion covers a certain area, a cell. These cells are mostly circular (directed
antennas also exist). To be able to cover a larger area completely the cells
need to overlap. The mobile unit picks the base station with the best signal




(the nearest) and changes base stations when needed. Clearly the neigh-
bouring cells cannot use the same frequency as this would cause problems
at the borders and high interference. However, base stations that are not
direct neighbours can use the same frequency and can thus interfere with
each other. The reason for allowing this is to increase the available band-
width for each base station. The distance to an interfering base station is
hopefully large enough that the co-channel signal is small compared to the
main signal. Today co-channel interference (CCI) is treated as extra noise.
In this thesis it will be shown that considerable improvements can be made
if the channel of the interferer can be estimated and its signal removed.

EDGE and the Future

Future mobile communication systems will demand higher data rates and
higher quality. To transmit computer data much lower bit error rates (BER)
are required than for speech. One way to increase the data rate is to choose
a different modulation. Instead of using only one bit for each transmit-
ted symbol as GSM does today, the future GSM system EDGE (Enhanced
Data Rates for GSM Evolution) suggests three bits per symbol, using 8-PSK
modulation [4]. Types of modulation are discussed in Section 2.2 below.
These signals, e.g. 8-PSK, will be more sensitive to noise and interference
and the performance would consequently increase substantially if the CCI
could be reduced. Other systems with very high capacity, such as WCDMA
(Wideband Code Division Multiple Access) [11], requires completely new
technology and infrastructure. The advantage of EDGE is that it could be
incorporated into the GSM system. When the system no longer is able to
function with EDGE-quality it can switch to GSM as its fall-back mode.

2.2 Modulation of Digital Signals

To transmit a sequence of digital data over a communication channel the
data must be transformed into an analog waveform. This is done in the dig-
ital modulator, see Figure 1. The sinusoidal waveform has a certain carrier
frequency, f.. The three basic types of modulation are amplitude modula-
tion (AM), phase modulation (PM) and frequency modulation (FM). They
represent the different parts of a waveform that can transmit information.
A PM'signal typically looks like

s(t) = cos(2n fct + 0(t)),

where the information is represented by 6(¢). Although abrupt changes of
the phase are possible, they demand increased bandwidth of the signal. In-




stead, a method called continuous phase modulation, CPM, is often used [1].
The phase changes during the symbol duration time. This also introduces
the notion of memory. How to interpret the information from the phase
depends on which symbol was sent before. Today’s GSM system uses CPM
where 6(t) is convoluted with a smoother Gaussian function, §(t), such that

s(t) = cos(2m fot + 0(t) * (1)),

This is called GMSK (Gaussian Minimum Shift Keying), see [9]. This is a
non linear modulation. However, its linear approximation is a PSK-signal
(Phase Shift Keying) represented as

s(t) = g(t) cos(2m fct + 6(2)),

where g(t) is related to g(¢) in a certain sense. The structure of an M-
PSK, (M-ary Phase Shift Keying), signal will now be analyzed further. As
mentioned, EGDE uses 8-PSK and GSM uses BPSK (Binary Phase Shift
Key, M = 2). Let g(t) be the pulse shape of the signal. Assume M different
signal waveforms are to be transmitted, then 6() = 2n(m — 1)/M,m =
1,2,...,M and

s(t) = g(t)cos 27rfct+2ﬁ7r(

27 . 2w .
= g(t)cos A—Z—(m —1) cos 2 ft — g(t)sin J\_J-(m — 1) sin 27 f.t.

m—1)

Consequently, the signal waveforms can be represented as a linear combina-
tion of two orthonormal signal waveforms, f1(t) and f2(t). Thus,

5(t) = sm1f1(t) + smafa(t),

fit) = \/g—g(t) cos 27 ft
9
f2(t) —\/gzg(t) sin 27 ft.

Here Sg denotes the energy in the pulse g(¢). Now the two dimensional
vectors s = [ Sml  Sm2 ] are given by

S=[\/_cosM -1) \/——smM(m—l)]y m=1,2...,M

where
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Figure 4: Signal space diagrams for BPSK and 8-PSK signals.

This vector representation can be illustrated in IQ-space and is called
signal space diagram. In Figure 4 this is shown for BPSK and 8-PSK.

When a signal is received the equalizer must decide which of the signal
waveforms was sent. In the case of BPSK it is clear that a signal with
a positive x-value in the signal space diagram will be considered a 1 and
negative x-value a 0. Also, in the case of 8-PSK the decision is based on
the shortest distance to a waveform. When an error is made, often one
of the neighbouring waveforms is erroneously chosen. Since every symbol
actually contains three bits of data it is desirable that as few bits as possible
are wrong. As seen in Figure 4 the different symbols are interpreted as
bit groups in such a way that only one bit changes between neighbouring
waveforms. This is called Gray encoding [4].

2.3 Equalization

The process of equalization deals with the issue of extracting the initial sig-
nal sent from the received signal. The received signal has passed through the
channel and been disturbed by noise. An effective equalizer should therefore
make use of information about the structure of the transmitted signal, the
radio channel, noise and other disturbances. In Section 2.3.1 the effects of
interference are treated. There are two main types of interference. Inter
Symbal Interference (ISI) occurs when reflected signals with longer path are
delayed into the next sampling interval and interfere with subsequent wave-
forms. The other type is Co-Channel Interference (CCI). This is a result
of signals from another transmitter, or cell, leaking into and consequently
interfering with the desired signal. To incorporate this kind of information
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the equalizer must estimate the channel and may use the training sequence
to do this, see Section 2.3.2. Thereafter, the equalizer must decide which
waveform actually was sent. The optimal way to do this is by using a Maz-
imum Likelihood Sequence Estimator (MLSE), which can be implemented
using the Viterbi-algorithm [1]. 'The Viterbi-decoder is central in the work
of this thesis and is described in Section 2.3.3.

2.3.1 Interference
Fading

The constantly changing characteristics of the media makes radio channels
time-variant. Reflections by the ground or objects close to the receiver
cause signals to arrive slightly out of phase due to different path lengths.
The interference pattern of these waves is sometimes constructive but some-
times destructive. The result is that the radio channel changes constantly, a
phenomenon called fading. The impulse response can be modelled as a zero-
mean complex valued Gaussian process with a Rayleigh distributed envelope.
The Rayleigh probability density function is described by
PR(r) = 2127, r>0.

Fading has been taken into account in the simulations in Section 4.2.2.
For slow moving objects the channel can be considered constant during one
burst in the GSM and EDGE systems. For greater speeds the receiver could
move into an area with a different channel within a single burst and a channel
tracker would be needed.

Intersymbol Interference

Depending on the surroundings, the channel response can sometimes be
longer than the symbol time. The consequence is that previously sent sig-
nals interfere with the latest symbol, intersymbol interference (ISI). This
typically occurs when the signal is reflected, refracted or diffracted by larger
objects, e.g. mountains and large buildings. The model of the received sig-
nal, down converted to baseband and sampled at symbol rate, y; becomes,

yt = houg + hqug—1 + ... +hrus + & = Hu+¢e

where u; is the signal sent at time ¢ and h; is the coefficient denoting the
influence of signal u;_;, see [1]. The noise €; is here assumed to be white,
although it is actually not as will be shown in Section 2.3.1. L is said to be
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the memory of a channel with tap length L + 1. In the GSM system the
components are designed to handle a full energy five-tap channel. Since such
a channel is not a very realistic surrounding, other typical surroundings are
presented in Table 1. For more detailed propagation models, see [10].

Surrounding Channel (H)
Rural area (1)
Urban area (10.1)
Hilly terrain (1000.20.1)
Equalization test | (1111 1)

Table 1: Typical GSM radio channels with ISI.

Not only do the physical surroundings affect the channel H experienced
by the equalizer. The transmitter and receiver filters must also be taken
into account to fully describe the incoming signal, see Section 3.1.2.

Co-Channel Interference

The type of interference focused on in this thesis is co-channel interference,
CCL. In areas where base stations are situated closely, e.g. in cities, signals
from other base stations may interfere with the main signal. As mentioned in
Section 2.1 directly adjacent cells are not allowed to use the same frequency,
but cells further away are. Due to the distance the interfering signals will
always be reasonably small. However, since the EDGE system is designed
to work in areas with high signal to noise ratio and closely situated base
stations, the problem of CCI will be more dominant than today. Classically,
CCI has been treated as part of the white noise. However, the structure of
the CCI signal is known and if its channel can be found then the model can
be refined as

Yyt = hour+hius1+...+hrus_g +ec = Hu+ &
= hout+hiug—1+...+hruer + gove + g1ve—1 + ... + grxv-k + &
= Hu+Gv+ey,

where u; and h; are defined as above. Similarly, v; and g; are the signal
and coefficients of the interfering transmitter, K its memory and e; is white
noise. 'In practice it is far more complicated than just extending the model.
The signals are most likely not synchronized. Estimation of the co-channel,
G, is difficult if its training sequence is not known. Further, since the desired
and unwanted signals are not synchronized, the corrupting signal might only
be switched on during a part of the burst.
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2.3.2 Channel Estimation

Effective equalization requires accurate estimation of the channel. In radio
transmission the channels are time-varying, making it necessary to follow
changes in the channel. In the GSM system every burst contains a training
sequence (see Figure 3), which is used to estimate the channel for that burst.
Estimation is done by least squares (LS), see [3], of the form

H=U0T0)"'0Ty

Not all 26 symbols of the training sequence are used. The reason is that
symbols sent before the training sequence should not effect the estimate due
to the memory of the channel (Ly,4; = 4). If the training sequence is the
first 26 symbols sent,

u(6+L) u(b+L) ... u(6) y(6+ L)
3 uw(T+L) w6+L)y ... u(7) o y(7T+ L)
u(21.+ L) u(20.+ Ly .. u(21) y(21-+ L)

The LS-estimate for this model is always consistent, providing the model
and reality coincide. This holds even when the noise is not white, see [3].
The most computationally expensive step in estimating H is calculating
(UTU)~!. However, the predefined training sequences that GSM uses are
designed such that (UTU)~! is always diagonal for the mid-16 symbols. The
computation therefore requires only a straightforward multiplication with a
normalizing factor. -

Estimating the co-channel is much more complicated. One method is to
use blind detection which has the advantage that the training sequence does
not have to be known. This is further discussed in Section 5.2. Since the
primary aim of this thesis is not to investigate estimation techniques, it is
assumed that the training sequences from the two signals are synchronized
and known. This is not a realistic assumption but it is convenient for show-
ing the performance gain of co-channel decoding . Further, synchronization
methods exist to find the training sequence of an unknown signal by cor-
relation, see [1]. By assuming that the training sequences are known and
synchronized the LS-estimation above can be extended to

( g ) — (UTU)—IUTY,

where Y is the same as before and
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u(6+L) wu(5+L) ... u6) v6+K) v(5+K) ... v(6)
w(7+L) wu@+L) ... u@ v(7+K) v6+K) ... 97

u(21'+L) u(20l+L) u(él) v(21'+K) v(20'+K) v(él)

It is important to note that for both H and G, assumptions need to be
made concerning the number of taps. In Section 4.4 the effects of choosing
the wrong channel model will be examined.

2.3.3 Data Decoding

In this section two types of equalization methods will be discussed. The first
type, used in all the simulations in this thesis is based on the maximum-
likelihood sequence detection criterion. It is referred to as the Viterbi al-
gorithm or mazimum likelihood sequence estimation (MLSE) and is optimal
for minimizing the probability of error. The second equalization method is
called decision feedback equalization (DF). It uses previously detected sym-
bols to compensate for ISI in the present symbol. For a detailed analysis of
these methods, see [1].

MLSE

Consider a discrete time model where the n-th received signal is denoted
by yn. Let §p = houn + h1up—-1 + ... + hpun—r be the undistorted signal
produced by the last symbols (uy,...,u,—r) sent. Assuming u;,i=1...n,
are iid (independent and identically distributed) and the noise, € € N(0, 0?).
The channel, symbols and noise are all complex. The probability density of
Yn = Un + €n given that §, was sent is

e_lyn "'!71!|2/2‘72 .

P (Yn | Tn) = G

The aim is to find the symbol sequence (un,...,un—r) that maximizes
this probability, i.e. for a N-sequence of symbols received, yu, the sequence
Uy that maximizes

N N
plyn|yn) = (ﬁ) exp (—% > lyk = 'gk|2) :
k=1

This is equivalent to maximizing the logarithm and discarding any terms
independent of yx and {, i.e. maximizing

N
=3 lyk — Gkl
k=1

v
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or minimizing
N
> lyk — il
k=1

Using the vector representation in Figure 4, this can be seen as the sum
of the Euclidean distance between y; and gk. Call this the metric, PM;, of
the sequence with 7 symbols and

2
PMy(ug,w1) = Y |ye — Gl
k=1

P My (ug, ug,u1) = PM; (ug,u1) + |ys — 9al%.

One way to find the sequence with the lowest metric would be to calculate
the metric for all possible sequences. However, for a sequence of length IV
with M symbols in the sending alphabet, there are MY possible sequences,
making such a calculation difficult for large N due to high complexity. One
way to sidestep this problem is to the Viterbi algorithm.

The recursive representation of the metric implies that many sequences
will have the same metric up to a certain point. If such a metric is calculated
and is the lowest up to that point, its path is stored and only the new
branches need to be investigated. The number of branches that needs to be
investigated depends on the memory of the channel, L. Clearly, only symbols
which can influence §, will have an effect in minimizing the metric.

The Viterbi-algorithm is best illustrated by an example. Let H = ( 1 05 )
and the signal be 4-PSK, i.e. uy = [£1, +1]. Figure 5 shows the tree structure
for this example.

Since the channel has a memory, L = 1, the first time, all of the branches
survive to the next step, where the first metrics are calculated for all branches
having different U = (u2,u;).

2
PMy(uz,w1) = Y |ye— HUP
k=1

= |y —w? + |y2 — (uz2 + 0.5u1)]?

Now, the metrics of the branches ending with the same ug are compared
and only the one with the lowest metric needs to be built further. Had
the memory been longer than one, the paths with equal ending sequences
of length L would have been compared. Consequently, M’ branches will
survive to the next step (here ML = 4). These surviving branches are
extended and comparisons are made M times among ML metrics to again
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find the M’ best metrics. This gives a complexity of O(ML+1!). Hence,

PMy(us,uz,u1) = PMi(ug,u1)+ |ys — HU|?
= PMi(u2,u1) + lys — (us + 0.5u2) %,

which is dependent on uy only through the previous metric, chosen earlier as
the best one. By this way of identifying and discarding sequences which can
never be optimal, the Viterbi algorithm reduces the complexity of MLSE
from O(MYN) to O(NML+L),

Decision Feedback

The decision feedback equalizer consists of two filters and one detector, as
seen in Figure 6. The input from the receiver, yi, is passed through a
feedforward filter in order to concentrate the energy to the first taps. ISI
is reduced by removing previously detected symbols after passing through
a feedback filter. An approximation of the last sent symbol, i, is passed
to the detector. The detector chooses the symbol most likely sent from the
alphabet, 4, which is the output data. This symbol is also used again by
the feedback filter in order to reduce ISI in the next symbol. Clearly, the
advantage of DF is its low complexity, O(NM).

If the detected symbols are correctly identified this is a very effective way
of removing ISI. However, as soon as a decision error is made it will be used,
incorrectly, to remove ISI in the next symbol. That symbol is now more likely
to be detected wrongly. This phenomenon is called error propagation and
is the disadvantage of decision feedback equalization as opposed to MLSE
(see [1], pp. 622-626). In MLSE all possible combinations of symbols that
can affect the last symbol are compared.

Input from
matched filter Feedforward Symbol-by- Qutput data
transversal f.-!:\ - symbol -
{vd filter {u} detector {u}
Feedback
transversal
filter

Figure 6: Block diagram of a decision feedback equalizer.
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survive the first step. Subsequently, branches with equal ending
symbol are compared and the ones with the lowest metric survive.
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3 Simulation Environment

Implementation and evaluation of the algorithms were simulated using Mat-
lab. The main reason for the choice of Matlab was the ease of implementa-
tion and numerical reliability. Possibly, some of the results could be verified
analytically (see [1], pp. 593-601).

3.1 General Setup

The main task was to evaluate the idea of reducing CCI by decoding the
interfering data. The main environment for the work was Matlab, in which
both decoding algorithms and models for carrying out simulations were im-
plemented. The simulations were carried out in IQ signal space. In this
section, the Matlab implementation of the simulations is discussed. In Sec-
tion 3.2, the decoding algorithms are described in detail.

3.1.1 Definitions

In the simulations, the channels are modelled as
Yyt = hous + hqug—1 + ... + Apus_p + govt + q1ve—1 + ... + grvi_K + €

or . K
Yt = Z hiug_; + Zgivt_i + e = Hu+ Gv + e,
1=0 =0
where H and G are row vectors representing channel filters for the carrier
and interferer signals respectively, and u and v are column vectors represent-
ing sent symbols. The quantity y; is the received signal at a time ¢ and e; is
Gaussian noise. The sent symbols u;, v; are assumed to be independent and
identically distributed complex 8-PSK symbols with E|u;|? = E|v|? = 1.
The Signal to Noise Ratio, SNR, of a channel is defined as

_ BlHu? _ Sico b
SNR = —EW = 1010g10 1/3 3

where h; are the elements of the H carrier channel vector and V, is the
variance of the white Gaussian noise, i.e. V, = Var{e;}.
The Carrier to Interferer ratio, C/I, is defined as

EIHU|2 10 log Z'I{I:O h’z

C'/I = = 10
E|Gvf? Yicog?

where g; are the elements of the G interfering channel vector.

18




It is natural to define the Interferer to Noise Ratio, I/N, as

L 2
I/N = 10logy, %.
[4

3.1.2 Choice of H and G Channels

The choice of the carrier channel, H, in the simulation models has been
based on real GSM conditions. The signal is affected by the transmitter
filter, Hirm, the propagation path, Hpep, and the receiver filter, Hyee. A
reasonable discrete model of the transmitter and receiver filters is

Hiypyy = Hpee = ( 03 1 0.3 )

This is a linear approximation of the GMSK pulse shaping filter, sampled at
a symbol rate (see [4]). In this model, Hp,y, is used to describe the effects
of multipath propagation. For simulations, the “Urban Area” channel from
Table 1 was chosen, since urban areas, where CCI is often an important
limiting factor, are the main destination for the new EDGE system. This
channel can be approximated by

Hpn=(1 01).

Thus, H is defined as the convolution of Hyrm, Hpetn and Hre.. Hence, a
scaled 3-tap approximation of the channel, which has been used in most of

our simulations, is
H=(04 1 05).

The interfering signal channel G was modelled under the assumption
that it is remote and the desired signal is dominant. Hence, we make the
assumption that the receiver is only reached by a single-tap width interfering
wave. Since the desired and interfering signals are unsynchronized, every
interfering symbol is likely to affect two sample intervals. The interfering
channel was modelled using two taps equal in energy:

G=(11).

When simulating fading channels, the same H and G as for constant
channels have been used. However, in each burst each tap is multiplied by
a N(0,1)-distributed number. Since these numbers are independent, the
energy of the signal reaching the receiver will be on average the same as
for a constant channel. Hence SNR and C/I.should in the case of fading
channels be interpreted as average values.
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3.1.3 Transmitting Data

Throughout the simulations 8-PSK signal modulation has been used, since
8-PSK is likely to be part of the new EDGE standard definition for future
GSM systems. While the charge from today’s two symbol alphabet to an
eight symbol alphabet aims to improve the data rate, it makes the signal
more sensitive to interference, since the distance between the data points
in signal space is reduced. In addition, it brings a dramatic increase in
complexity to the Viterbi decoder algorithm — from @(2L%1) to O(8L+1),
where L + 1 is the number of taps in the ISI filters.

Data were sent in bursts, similar to those in today’s GSM system. Each
burst consists of a 26-symbol training sequence, followed by a 57-symbol
data sequence. The training sequences used were selected from a set of
sequences used in the GSM system. The middle 16 out of the 26 symbols in
these sequences are specially designed to reduce numerical complexity when
estimating the radio channel. Thus, only 16 of the 26 symbols are used
for channel estimation. The data sequence was constituted by 57 random
symbols 0...7 from a rectangular distribution. Gray encoding (see Figure
4}, where symbol values with adjacent positions in symbol space only differ
by one bit, was used to reduce bit error rates.

The received and decoded data sequences were compared to the transmit-
ted true sequences, and the Bit Error Rate, BER, was calculated. Through-
out the results, the BER will be used as the measure of decoding quality.
Actually, raw Bit Error Rate is a more exact terminology, since BER often
refers to signals that have passed through the whole communication sys-
tem, including channel encoding and interleaving. Notice that the MLSE
algorithm is designed to minimize a metric, not the BER. Still, BER is the
commonly used measure of decoder performance.

When calculating the BER, the three last data symbols in each burst were
omitted, since these are not decoded using the full strength of the Viterbi
algorithm. This is because a proper MLSE decision on a symbol has to be
made using information from the L succeeding symbols, due to ISI. Hence,
only 54 symbols per burst were used for analysis. To achieve full decoding
of all symbols, a tail sequence, known to the decoder, must be transmitted
succeeding the data sequence. As can be seen in Figure 3, this is done in
today’s GSM.

3.1.4 Significance of Simulations Results

Assume the Bit Error Rate under certain circumstances is equal to p. Let
X be the sum of n independent observations of BER. Then X will follow a
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binomial distribution X € Bin(n,p), with E(X) = np and V(X) = np(1l —
p). The BER is estimated as p = X, and E(p) = p, D(p) = /2B, See
[12] for more information. If BER is to be estimated with a relative accuracy
of e = —D—é’—a then the number of samples n should satisfy the expression

vnp(L—p)
np
Using the approximation (1 — p) = 1, which is reasonable since the BERs
are small, the relation can be expressed
. 1
P = 3
Note that np is the total number of error bits. If simulations proceed until
100 error bits are detected, the BER will be estimated with an accuracy of
about £10%.
In the simulations 10% accuracy in BER is provided down to approxi-
mately the 3 - 1073 BER level. Lower BERs will be less accurate, and in

some figures a cut has been made at the 10~ BER level.

3.2 Implementation of Decoders

The implementation of Viterbi MLSE decoders had two major purposes.
The first was to design the MLSE/Decision Feedback and the Joint MLSE
algorithms and evaluate their performance for 8-PSK signals. In addition,
Ericsson needed general Matlab implementations of the decoders for future
simulation use. Thus, much effort was made to implement decoders as gen-
erally as possible. All the Matlab decoder functions will process

e any memoryless signal modulation type

e any ISI channel vectors H and G (when present)

e any data sequence length

e information concerning known symbols preceding the data sequence.
To the user they will return

e the decoded data sequence

e the decoded interfering data sequence (when present)

e a metric of the decoding quality.

Note that there are practical limitations for the input parameters. Algorithm
complexity grows significantly when increasing the number of possible values
per symbol, M, or the length of H or G.
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3.2.1 General Algorithm Design

The MLSE design is based on a Survivors array, containing all surviving
states at a certain time. A Conventional MLSE contains MZ states, while a
Joint MLSE contains ML+K states, where L and K refer to the ISI memory
length of H and G, respectively. Each surviving state represents a certain
path through the L latest symbol positions, as well as the K latest interfering
positions for the Joint MLSE algorithm. The number of states is equal to the
number of possible paths, which implies that two states cannot represent the
same path. This fact is used for optimization, and for each state S = 0,1, ...
in the Survivors array, the number S itself represents the specific latest L
symbols’ path. This is encoded by interpreting each state S as a M-ary
number, letting the M-ary digits represent the L latest symbols, as shown
by the example in Table 2.

State S | 4-ary representation | Latest L path
0 000 0,0,0
1 001 0,0,1
2 002 0, 0,2
3 003 0,0,3
4 010 0,1,0
5 011 0,1,1
63 333 33,3

Table 2: Latest path encoding for each state in the Survivors array. In this
example the modulation M = 4 and the memory length L = 3.

In addition to representing a path, each state in the array contains the
historical path preceding the L latest symbols, and a Fuclidean distance
metric, which is the accumulated Euclidean distance between the path signal
and the actual received signal.

First in each cycle of the algorithms, a Competitors array is created. It
consists of states representing all surviving paths from the previous cycle,
which are copied and extended to include all possible values of the sym-
bol received during the present cycle. The metrics of all these states are
calculated, and states with identical latest L symbols’ paths, including the
present cycle symbol, are compared. In these comparisons, only the state
with the smallest metric value for each L symbols’ latest path is passed on
to the new Survivors’ array. See Figure 7 for an example.

A main advantage of this path encoding system is that no search is needed
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Survivors Competitors New Survivors

000
1. 001 2.
002
00 00
003
01 010 01
02 .
03 :
100
10
101
11
: 102
103 |
110 |-
333

1. A Competitors array is created from the Survivors array. Each state
in the Survivors array results in four states in the Competitors array.

2. The (four) states whose latest 2 symbols are equal are compared to
each other, and the one containing the smallest metric value wins.
The winner is stored in the new Survivors array, at the correct po-
sition encoding the latest 2 symbols. For example, suppose the 16th
Competitors state, encoded 100 in the figure, was the winner. Then
the symbol 1 will be added to the historical path belonging to the state
00 in the new Survivors array.

Figure 7: A step in the Viterbi algorithm. M =4 and L = 2.
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when comparing adequate states to each other, since the array position itself
represents the path. The positions in the Competitors array are encoded
similarly to the Survivors’ array. This informs which positions should be
compared to each other and into which position in the Survivors’ array the
surviving state should be stored. Another advantage is that no time or
memory is used for saving the L latest symbols for each state.

3.2.2 Technical Details

The algorithm as implemented is not able to process H or G vectors with
less than two positions. If shorter vectors are inputed, the program will
automatically add a zero element, which may cause greater complexity than
expected by the user. Note that if H or G contains only a single element,
there is no intersymbol interference present, and consequently there is no
need for an MLSE decoder.

The user may input an initializing sequence containing the symbols im-
mediately preceding the data sequence. This would be the case, e.g. in the
simulation bursts, where the data sequence is preceded by a known train-
ing sequence. In this case, the program first compensates for ISI influence
from the initializing sequence on the received sequence, and then starts the
decoding algorithm assuming that the data sequence was preceded by zeros
only.

Before entering the “stationary” phase described in Figure 7, the algo-
rithm needs to build a startup Survivors’ array. To accomplish this a nec-
essary number of the first steps in the data sequence are used (see Section
2.3.3).

3.2.3 Overview of the decoders

Decoder Input parameters Complezity
MLSE Signal type, H, Received sequence, | O(MEL+1)

Sequence preceding u
MLSE / Decision | Signal type, H, G, Received se- | O(M%12)

Feedback quence, Sequence preceding u, Se-
quence preceding v
Joint MLSE Signal type, H, G, Received se- | O(MLTE+2)

quence, Sequence preceding u, Se-
quence preceding v

Table 3: A brief overview of the decoders implemented in Matlab.
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Table 3 shows a compilation of input parameters and algorithm complex-
ity for the implemented decoders. L refers to the ISI memory length of H,
i.e. the number of elements in A minus one. Analogously, K is the number
of elements in G minus one. Notice that complexity grows by a factor of M
as Decision Feedback is applied for the v sequence, and by a further factor
of M¥ as Joint MLSE is applied. M refers to the number of possible values
for each symbol, defined by M = 2", where n is the number of bits per
symbol.

Similarly, the signal type inputed to the program must contain M symbol
values and their corresponding positions in signal space.
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4 Simulation Results

The channels described in Section 3.1.2 were used in all simulations, i.e.
H=(04105)and G=(11).

4.1 Conventional MLSE in a CCI Environment

The first results show a Conventional MLSE performing in a CCI environ-
ment. The Conventional MLSE uses the model

ys = Hu + ey,
while the real channel can be described as
yt=HU+G’U+ét,

including an interfering channel G.

The conventional MLSE will treat the interfering signal Gv as white noise.
The performance for the MLSE for different SNR and C/I values is illus-
trated in Figure 8. Note the symmetry around the line C/I = SNR, which
shows that, in this case, co-channel interference is approximately equivalent
to white noise interference.

4.2 Performance of MLSE/DF and Joint MLSE

In a CCI environment a decoder uses the “real” model
y=Hu+Gu+e

and will be far more successful than a Conventional MLSE. In the following
sections the simulation results for MLSE/DF and Joint MLSE are presented.

Estimation of H and G

For channels H and G it is assumed that
¢ bursts, including training sequences, are synchronized.
e training sequences of H and G are known to the decoder.

H and G are estimated from the synchronized training sequences using LS
(see Section 2.3.2). In [2], it is shown that the performance of the esti-
mation is strongly dependent on the cross-correlation between the training
sequences used by the carrier and the interferer. However, today’s 8 existing
GSM training sequences are not designed to minimize cross-correlations. In
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ci SNR

Figure 8: Performance of Conventional MLSE in an AWGN and CCI en-
vironment. Channels are estimated from known training se-
quences. Note the approximate symmetry around C/I=SNR, im-
plying that performance degradation caused by co-channel inter-
ference is equivalent to degradation caused by white noise of sim-
ilar strength.

the simulations of this report, training sequence 0 has been used for the
carrier and training sequence 1 for the interferer. According to [2], the best
combination of training sequences is 0/2 and the worst is 4/5. The combina-
tion 0/1 is a bit worse than average in performance, implying that the results
presented below could be further improved by using better combinations or
improve’d design of the training sequences.

4.2.1 Constant Channels

In Figure 9, the performance of the Joint MLSE detector is shown. When
compared to Figure 8, it is obvious that performance is drastically improved
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when the interferer is stronger than the white noise, i.e. I/N > 0 dB.
This implies that for SNRs up to about 15 dB no big improvement can be
expected.

SNR

ch

Figure 9: Performance of Joint MLSE. Channels are estimated from known
training sequences. Performance compared to Conventional MLSE
is significantly improved when C/I < SNR.
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Figures 10, 11 and 12 show the results in detail for SNR = 20, 25, 30 dB.
For data transmission, a raw BER no higher than 5% is desirable. For lower
values, channel encoding and interleaving will be able to correct practically
all errors (see [1]). .

Consistently, the Joint MLSE and the MLSE/DF show their worst per-
formance for Interferer to Noise Ratios of about 15 dB. At this level the
interferer seems harder to separate from the noise, but still strong enough
to confuse the decoder.

From Figure 10, it can be concluded that at SNR = 20, 5% BER or less
can be obtained when the interferer is very strong (C/I < 1 dB) or quite
weak (C/I > 13 dB). In the latter case, however, 1-5 dB are gained compared
to using a Conventional MLSE. Note that at C/I = 25 dB, the MLSE/DF
algorithm actually performs slightly worse than Conventional MLSE. This
comes from overfit to a model which is more complex than reality, i.e. the
model assumes an interferer whereas in reality there is not. Obviously, BERs
are very low, but theoretically it would be better to ignore the interferer in
this case.

At SNR > 25 dB Joint MLSE proves to be highly efficient. Strong inter-
ferers are almost completely identified and compensated for. From Figure 11
can be seen that even at its “worst” performance between C/I = 5 and 10 dB,
Joint MLSE reduces the BER 10 times compared to Conventional MLSE.
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Conventional MLSE |
— MLSE / DF oo

107 i

Figure 10: Performance at SNR = 20 dB of Conventional MLSE,
MLSE/DF and Joint MLSE. Channels are estimated from known
training sequences. Notice that at C/I = 25 dB the MLSE/DF
performs worse than the Conventional MLSE, due to overfit.
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Conventional MLSE
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Joint MLSE
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Figure 11: Performance at SNR = 25 dB of Conventional MLSE, MLSE/DF
and Joint, MLSE. Channels are estimated from known training
sequences. Missing data points represent very small or zero Bit
Error Rates (BER < 1074).
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Conventional MLSE
MLSE / DF

Figure 12: Performance at SNR = 30 dB of Conventional MLSE, MLSE/DF
and Joint MLSE. Channels are estimated from known training
sequences. Missing data points represent very small or zero Bit
Error Rates (BER < 10~*). Apparently, at very low noise levels
the performance gain when using Joint Detection is huge.
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4.2.2 Fading Channels

As discussed in Section 3.1.2, SNR and C/I for fading channels should be
interpreted as average values. The individual bursts are sent through ran-
domized channels, causing a great difference in quality. Performance of the
decoders is reduced, since data transmitted in low-quality bursts will render
a significant number of bit errors, which cannot be compensated for during
high-quality bursts. In Figures 13, 14 and 15, results are shown in detail for
SNR = 20, 25,30 dB.

The plots show huge improvements in BER — in some cases up to 1000
times — for Joint Detection. All plots appear to reach a “noise floor”,
the level of which depends on the SNR. In Figure 15, the performance of
Joint Detection at SNR = 30 dB appears to depend more on this noise from
low-quality bursts than on the strength of the interferer.

Clearly, Joint Detection brings huge improvements to decoding for fading
channels as well.

4.3 Choice of Decoder

From the results in 4.2, it is clear that the Joint MLSE decoder is the most
efficient. This also verifies theory. However, the Joint MLSE algorithm
increases complexity by O(M%+1) compared to the Conventional MLSE.
As shown in the results, the MLSE/DF algorithm has a performance not
far from the Joint MLSE, in most cases providing 95% of the Joint MLSE
BER reduction. For the MLSE/DF, complexity is only increased by O(M)
compared to the Conventional MLSE.

The tradeoff between complexity and performance deserves deeper anal-
ysis than is possible in this study. However, the less complex estimation of
the interferer carried out by the MLSE/DF proves to be quite successful.
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Figure 13: Performance at SNR = 20 dB of Conventional MLSE, MLSE/DF
and Joint MLSE when decoding multipath fading carrier and
interferer channels. Channels of each burst are estimated from
known training sequences. The Joint Detection performance gain
at BER = 5% is about 2 dB. Due to overfit, Joint Detection algo-
rithms slightly degrade performance compared to Conventional
MLSE when C/I > 25 dB.
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Figure 14: Performance at SNR = 25 dB of Conventional MLSE, MLSE/DF
and Joint MLSE when decoding multipath fading carrier and
interferer channels. Channels of each burst are estimated from
known training sequences. For Joint Detection, a BER of 5%
or less is achieved at any strength of the interferer, whereas the
Conventional MLSE requires C/I > 15 dB for BER to fall below
5%. Due to overfit, Joint Detection algorithms slightly degrade
performance compared to Conventional MLSE when C/I > 25

. dB.

35

30




MLSE /DF
Joint MLSE

Conventional MLSE |

Figure 15: Performance at SNR = 30 dB of Conventional MLSE, MLSE/DF

' and Joint MLSE when decoding multipath fading carrier and
interferer channels. Channels of each burst are estimated from
known training sequences. At the low noise level of SNR = 30
dB the Joint Detection algorithms will efficiently decode both
the carrier and interferer signals, irrespective of their relative
strength.
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4.4 Complexity Reduction by Channel Memory Truncation

One way to reduce the number of calculations is to assume a channel H in
the decoder that is truncated in length compared to the real channel. If
the tap or taps left out are small this approximation may seem reasonable.
However, according to [2], this causes severe degradation in performance.
This is illustrated by simulations presented in Figure 16. In this example
a signal through a channel H,.y = ( 1 1 o ) is decoded assuming the

channel Hgocoder = ( 11 ), i.e. the energy sent in the third tap a is
ignored by the decoder. No interferer is present in the example.

Notice that the tap o = 0.1 only represents —23 dB of the signal energy.
Still, ignoring it clearly reduces performance. I.e. a = 0.3 which represents
about —14 dB of the signal energy, causes severe degradation results.

0

10

Figure 16: Performance using channel memory truncation. A signal through
a channel Hyeqp = (1 1 ) is decoded assuming the channel

Hjeocoder = (1 1 ), o] = 0,0.1,. . ,04
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5 Future and Associated Research

This study indicates that before Joint Detection interference cancellation
techniques can be implemented, additional methods for identifying CCI en-
vironments need to be developed. The performance of the MLSE/DF algo-
rithm in Figure 13 shows that, for high C/I values, performance is degraded
when trying to decode the interferer.

In Section 5.1, a detector designed by Bo Bernhardsson [5] is presented.
Section 5.2 discusses blind detection, a method to estimate the channel
without knowing the training sequence. Finally, in Section 5.3, different
methods to reduce complexity of the Viterboi algorithm are discussed.

5.1 An Interference Detection Method

The goal of the detector is to determine whether there is channel interference
from another source. It is assumed that the remaining noise after (perfect)
channel estimation and Viterbi decoding of the main source has either of
the forms

Er = e no interference

er, = Gup+eg interference

where e € N(0,0?) is Gaussian noise, G is the interference transfer function
and vy is the output resulting from the accidental decoding of an interfering
signal.

If the interfering signal is 8-PSK modulated, vy can be assumed to have

the form
Ve = etk /4+d)

where ng € (0,1,...,7) is determined by the transmitted interference sym-
bol k£ and ¢ is the unknown phase. It might be natural to model ¢y with
a rectangular random variable in [0, 27], independent of eg.

The Case of a One-tap G=go=m

The complex random variable g, will have a probability distribution that is
circular and radially has a Rice distribution

3

r2 4+ m?
202
where I is the modified Bessel function of the first kind. The case with
no interference is the special case m = 0 where pg reduces to a Rayleigh

r mr
pr(rm,0) = Sy exp (< T h(Sy); 20
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distribution
r2

r
pr(r,0,0) = 7 eXP (—Zﬁ).
For large m/o the distribution is close to Gaussian with mean m

2
r—m
pr(r,m,0) = \/—0 exp (— (—2UT)); m/o large

For more information, see [6].
The random variable is illustrated for ¢, = 0 with 114 samples in Fig-
ure 17.
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Figure 17: The random variable e plotted in IQ signal space for o =1 and
varying m. The SNR is defined as 101log m?/202.

Maximim Likelihood Estimation of m and o

The m and o can be estimated by solving

max Z log(

ﬁ— +log(To("5)).
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Simulations show that this function may have local minima, especially when
m < o. In addition, the ML estimator is complex to implement.

Moment Estimator

A less complex, but still accurate, method is the moment estimator. The
moments of r are given by

v+2 v g2

)1F1(—§, 1, —555)

M, = E(r*) = (20%)/?I(
where 1 Fy(a, b, c) is the hyper-geometric function. From the moments
M1 =F (7‘1) =m

My = E(r; — Mp)? = m? + 202,

a test quantity F' is constructed:

F(’Y)=W=1+:Y‘; T=53

In Figures 18 and 19, plots of the test quantity values for 200 simulated
bursts are presented. In these plots, the detector tries to separate the cases of
an interferer with I/N = 10 dB from no interferer at all. It can be concluded
that given a sample length of 148, which is about one GSM burst length,
practically no wrong decisions are made. When given a sample length of
26, which is the length of the GSM training sequence, about 0.3% of the
decisions are incorrect.

40




Test Quantity F

Figure 18:

Figure 19:
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The moment detector Test Quantity F' using a sample length of
148 symbols. 200 bursts are simulated. The interferer strength is
I/N =10 dB (x), compared to no interferer present (o). Practi-
cally no wrong decisions are made.
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The moment detector Test Quantity F using a sample length of
26 symbols. 200 bursts are simulated. The interferer strength is
I/N =10 dB (x), compared to no interferer present (o). About
0.3% of the decisions will be incorrect.
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5.2 Blind Detection

In this study, the assumption has been made that the training sequence of
the interferer is known to the decoder. In reality there is a need for iden-
tification and estimation of the interfering channel without this knowledge.
Thus, the problem is to identify the interferer, only knowing that it is trans-
mitting symbols from a known alphabet (i.e. the 8-PSK waveforms) through
an unknown ISI channel. This is a Blind Detection problem, which needs
to be further studied in order to make a successful implementation of the
Joint Detection decoders.

Blind Detection could be applied to the residuals of the training sequence
left after estimating the carrier channel H. In GSM, this would give a 26-
symbol residual sequence to analyze for identifying an interferer, requiring
a fast convergence of the estimation algorithm. Other possible solutions
would be to implement various kinds of continuous channel trackers, i.e.
algorithms built-in to the decoders, aiming to improve the channel estimates
simultaneously while decoding the signal.

One algorithm that can be used for recursive estimation of a channel is
the Sato algorithm, which is described in [7]. The description refers to a
slightly different field of usage, but with some adaptions it may be useful.
Basically, an equalization filter is recursively updated to minimize a loss
function. A suitable loss function for PSK Modulation could be

V(e =[laf -1],

where ¢ is the equalization filter and 4 is a decision on a sent symbol. This
function uses the information that the amplitude of all waveforms are equal
for PSK Modulation. However, this algorithm is very sensitive to the initial
parameters of é. In addition, it requires several hundreds of symbols to
converge.

Fredrik Gustafsson’s work [7] suggests a more complex, but fast converg-
ing, method of estimating a channel (see [7]). It consists of one Kalman
filter for each possible symbol sequence sent. Each Kalman filter produces
an estimation of the channel, given its specific sent sequence. This requires
a huge number of Kalman filters, especially for long sequences. However,
the number of Kalman filters, and thus complexity, can be reduced using
the same ideas as the Viterbi algorithm (see Section 2.3.3). According to
Gustafsson, such a method will converge in 4-5 samples, which is a very
good performance.
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5.3 Complexity reduction of the Viterbi algorithm

The Viterbi algorithm is an implementation of the optimal MLSE. As dis-
cussed in Section 2.3.3 its complexity is O(NMZL+!). This complexity be-
comes too high for practical implementations when the channel has a long
memory, i.e. L is large. Since the Joint Detection methods developed in
this thesis have even higher complexity, the issue of complexity reduction is
of even more importance. Below, two methods of reducing the number of
states, and consequently the complexity, will be discussed.

The most common way to reduce complexity is to reduce the number of
states in the Viterbi algorithm by decision feedback, see [14]. For example,
a five tap channel, L = 4, of an 8-PSK signal has 4096 states with corre-
sponding metrics. The ideas behind MLSE and decision feedback can be
combined by making a decision after, say, three taps. The two remaining
taps are still allowed to affect the signal through DF. The number of states
in the Viterbi trellis is now reduced to 64 which is easier to handle. Clearly,
all combinations of symbols are not tested and the method is no longer op-
timal. However, assuming that most of the energy is in the first taps, the
reduced performance is redeemed by the reduction of complexity.

Another way to reduce the number of states is to analyze the metrics
of the paths and only let some of the paths survive. In [8] two ways of
limiting the number of paths that survive are analyzed. They are called the
M-algorithm and the T-algorithm. The basic principle of the M-algorithm
is the retention of only the ¢ best states at each stage of the trellis. A
search must be made among the metrics of the states in order to select the
best ones. These states survive whereas the others are discarded. The T-
algorithm also discards the survivors with the worst metrics. The decision
is now based on a threshold of the difference between a certain metric and
the best metric. Consequently, survivors whose metric is too far off the
currently best metric are discarded. Simulation results claim that the T-
algorithm follows the performance of the full Viterbi algorithm very well
whereas the M-algorithm is worse for high SNR. It should be noted that
while the M-algorithm has a constant complexity the T-algorithm has not.
In certain cases its complexity- will increase, but will still be significantly
lower than the full Viterbi algorithm.

The discussion above shows that there exists methods to reduce the com-
plexity of the Viterbi algorithm. Similar methods could be constructed and
applied to the Joint Detection equalizers used in the thesis.
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6 Conclusion

This study shows that Joint Detection is a powerful method for eliminating
co-channel interference in 8-PSK modulation, provided a carrier Signal to
Noise Ratio of more than 15 dB, and an interferer stronger than background
noise. A full-state Joint MLSE algorithm was implemented in Matlab and
showed good performance though at the cost of great numerical complex-
ity. As a less complex alternative, a Conventional MLSE for the carrier
including a built-in Decision Feedback algorithm for the interferer was im-
plemented and evaluated. In most cases, this MLSE/DF algorithm provided
about 95% of the performance gain from Joint MLSE. Thus, for practical
implementation, MLSE/DF may be an effective solution.

The results are based on the assumption that carrier and interferer bursts
are synchronized, and that the training sequences of both carrier and inter-
ferer are known to the channel estimator. In order to detect and estimate an
interferer using an unknown training sequence, which is the most realistic
scenario, further studies need to be carried out in the field of Blind Detec-
tion. Some ideas for rurther research are presented in this study. As for
detection, a moment estimator assuming a one-tap interferer is presented.

Implementing the decoders and simulation environments has demanded
much work. Still, execution time remains a bottleneck when carrying out
simulations, especially for the full-state Joint MLSE. For future simulations,
implementing the decoders in a faster, compiling language may be consid-
ered.
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A Table of Acronyms

AWGN
BER
BPSK
CCI

c/1

CPM
EDGE
GMSK
GSM

I/N

ISI

LS

MLSE
MLSE/DF
PSK
SNR
TDMA
WCDMA

Additive White Gaussian Noise

Bit Error Rate

Binary Phase Shift Keying

Co-Channel Interference

Carrier to Interferer ratio

Continous Phase Modulation

Enhanced Data rates for GSM Evolution
Gaussian Minimum Shift Keying

Global System for Mobile communication
Interferer to Noise ratio

Inter-Symbol Interference

Least Squares

Maximum Likelihood Sequence Estimator
MLSE with a built-in Decision Feedback estimator for the interferer
Phase Shift Keying

Signal to Noise Ratio ( = Carrier to Noise ratio)
Time Division Multiple Access

Wideband Code Division Multiple Access
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