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Preface

This master thesis project is a joint project between the Department of Au-
tomatic Control and the Department of Mathematics. The project is divided
into two parts: one concerning the robot system and one concerning the image
processing part. Therefore have we decided to write two reports. In this report
we describe and evaluate the robot system, the vision system is only briefly
described. A more detailed description and evaluation of the vision system is
presented in the vision report, see [9]
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ance and presence during the project. Finally, I want to thank my advisor Bo
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1 Introduction

When we approached the department and said we were interested in doing a
master thesis on vision and robot control we were given the following challenge:
Can you make a system with a robot and a camera that plays “Scrabble”? For
those of you that do not know: Scrabble is a word game where every player is
given a number of letters and the goal is to construct long words out of them.
For instance the letters could be ABMOORRT which can give the word: ”
MOTOR”, ”"ROBOT?”. The letters should be put on small cubic pieces of wood
and the robot and camera should be able to first find out where the letters are
located and then move the cubes into long words. To do this we need both a
robot system and a vision system. The interesting part in the project is not the
fact that the robot actual plays Scrabble. It is the fact that we use feed back
from the camera to control the robot trajectory. Even the idea not is new, there
exist few system that accomplish this fact good.

1.1 Earlier projects

There has been at least two previous studies in Lund with the goal of picking
up objects by using a robot with a camera attached to the arm [1] [2]. These
projects did not, however, reach the final goal even though big steps where taken
in right the direction. The aim of this project is similar but will use another,
less theoretical, approach.

A quite big part of Bjorn Johanssons report [1] was about how to be able
to identify the position of certain points, such as corner points, in an image
with very high, sub-pixel, precision. The focus of our work has rather been how
to use these corner points to reconstruct the three-dimensional scene. This is
actually quite close to the focus of the report of Peter Lindstrém [2]. However,
there is a big difference between our solutions. He uses (thanks to sub pixel pre-
cision) a mathematical construction called “shape” to make a three-dimensional
reconstruction. In our case, we do not use sub pixel resolution and due to that
we can not use any shape criteria. Instead we have added a priori knowledge
to our system. We know all objects we can encounter (just cubes) beforehand.
That allows us to use many more images per time unit to make an average of
the estimated three-dimensional positions.

One of the biggest differences in initial conditions between Peter Lindstroms
and Bjorn Johanssons project and our project is that we are using feedback not
only from the camera, but also from the robot. The feedback from the robot
contains the robot positions. That makes it possible for us to determine from
where the different images are taken with a quite good accuracy. They had to
do the reconstruction only from a set of images. That also gave them a scaling
problem: you can not tell if an object is big or if you are close to it without
using the relative movement between the images.




1.2 Existing system

We have used the RobotLab of Department Automatic Control Lund, in which
two robot systems exist, one ABB Irb-6/2 and one ABB Irb-2000/3. The
used control system can in large be described as three modules which are :
IgripServer, Trajec and Regul. These modules did only work on the Irb-6 robot
system, but effort had been made to get the modules work with the Irb-2000/3
robot system. We have finish these efforts. In other words we are using these
modules on both robot systems. The robot systems uses two different coordi-
nate systems, Cartesian and Joint. The Cartesian coordinate system expresses
a world position in terms of x, y, and z values. The Joint coordinate system
expresses a world position in a joint angle for each joint of the robot.

Trajec IgripServer e\ trajectoria

Figure 1: Existing system

IgripServer communicates by a socket to an application,e.g. Matlab, which
generates the trajectory. Socket sets up a two ways network communication and
usually does not use TCP. This makes it possible to communicate between com-
puters, so the application only have to be run on a computer which is connected
to the network. The IgripServer supports precalculated trajectories, which con-
sists of a several via points, and it is prepared to support commands. Every via
point include a so called time stamp, the position of every joint, and velocity
references to every joint. The time stamp expresses the time the robot has to
move to the via point. The IgripServer sends the precalculated trajectory to the
Trajec module and which call-back routine Trajec is actual. The later, means
which procedure in IgripServer Trajec will run when it call for it’s call-back.
Later, when Trajec runs the call-back routine in IgripServer, it is possible to
perform changes in the via points. The call-back routine is performed for each
via point in the trajectory. In the call-back routine IgripServer has access to
the Trajec context. The existing context is given by the following table :




context description

ActTime The time since the motion started

RemainingTime | Remaining time of the motion

IsAtTarget TRUE if the motion is completed

CoordMode Active coordmode

CartDesiredOld | The Cartesian coordinates for the former via point

CartNom The Cartesian coordinates for next via point

JointDesiredOld | The Joint coordinates for the former via point

JointNom The Joint coordinates for next via point

TimeStep The time for next via point

NormStep Normalized value of TimeVia Point

CartStep The length in Cartesian coordinates for next via
point

JointStep The length in Joint coordinates for next via point

Sensorbased TRUE sensor is used

Trajec module is able to calculate a trajectory or use a precalculated trajec-
tory. From the via points Trajec calculates velocity and acceleration references
for every joints. These are used in the feed forward block of the controllers in
Regul. Trajec sends the position, velocity, and acceleration of each joint to the
Regul module, which will perform the motion.

Regul module controls the robot and uses cascaded PI controllers for each
joint. The velocity and acceleration are feed forwarded.
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Figure 2: q is the position reference, ¢ is the velocity reference, ana ¢ is the
acceleration reference.

The two robot systems are supported by computers operating in two software
layers. On top is a SUN workstation on which the development and compilation
takes place. Below is the target computer which is a VME system with M68040
as main processor. This real-time system runs the robot controllers, reads the
sensors, etc. The existing control system is in greater part implemented us-
ing Modula-2 and a real-time kernel developed at the department. For more
information about the existing system see [3] and [4].
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Figure 3: The hardware of the Irb-2000 system.

The camera we use is an analog SUN camera, and it uses composite video.
This is the format a common video recorder uses. The camera is connected to a
Silicon Graphics workstation, O2, on which the image processing is performed.
We have also used the commercial program Envision, which is a 3-dimensional
CAD program with a graphical simulation environment. It contains complete
robot models, which are able to simulate the robots. Envision uses a special pro-
gramming language called Graphic Simulation Language, GSL. Every device in
the work cell can be accessed and controlled from a GSL program. Envision also
provides an opportunity to manipulate the devices in a work cell, e.g. change
the devices position from outside Envision, by the Low Level Telerobotics Inter-
face, LLTI. LLTI specifies an interface to the world outside Envision. This make
it possible to e.g. get a device’s position in a work cell. For more information
on Envision see [5].




A work cell in Envision could look like :

Swept Yolume

Figure 4: Envision

The cubes we use to play scrabble with look like :

Figure 5: cube

1.3 Problem formulation

Our main goal is to construct a system that is able to get a robot using informa-
tion from a camera, to play scrabble. This means that the robot should be able
to move the cubes and construct long words. A camera is attached to the robot




gripper. In contrast to ordinary scrabble where you play with makers with one
letter on it, we use cubes. Each cube has 6 letters. The a priori knowledge the
system has is the number of cubes, that every object on the board is a cube and
the height of the table on which the board is put. The scrabble algorithm uses
a simple scoring system where each letter in a word will give one point and the
lengths of the words are limited to 7 letters. Except for this modification all the
common rules in scrabble is used. The main problem can be divided into the
following subproblems.

1.3.1 Camera calibration

In the task of finding the objects the vision system accesses the data from the
camera and the coordinates and orientation of the hand of the robot. However
some parameters have to be estimated so that we can get an interpretation of
the video data. To achieve that we have to calibrate the camera, i.e., determine
its position and orientation in relation to the robot hand as well as its intrinsic
parameters.

1.3.2 Finding three-dimensional coordinates

The vision system tries to make a three dimensional reconstruction using a
series of images, projections, of the scene. Since the calculations are based on
the movements of the projection of physical objects the vision system has to
search for "points of interest” , physical points that can be easily distinguished
in the different images. They can for example be corners of cubes. Those
projected points are used together to find the original physical point.

1.3.3 Tracking ”points of interest”

When using an image sequence with a multitude of ”points of interest” we have
to decide what projection that belongs to which physical point, i.e. the link
"points of interest” in different images together. This can be done by using
epipolar planes or reprojection of estimated physical points.

1.3.4 Identifying object

Even if features have been linked together into three-dimensional points and
those points have been put together into objects, it is not always enough. Some-
times are we interested in telling two similar objects apart and we have to use
other criteria as color or structure of the objects. In this case we must be able
not only to find the cubes but also be able to read the letters.

1.3.6 Generation of trajectories

We want the robot to follow a particular trajectory, e.g. move to a cube. The
position of the cube is given from the vision system. In order to make the
robot perform a desired motion there will have to be some generation of the so
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called “via points” in the trajectory. The via points can either be generated in
real-time or be precalculated.

1.3.6 Correction of the trajectory

There are uncertainties in the positions from the vision system. The vision sys-
tem gives a position of the cube and from it a tentative trajectory is generated.
This needs to be corrected due to the feedback from the vision system to get
a better accurate position of the cubes when we move the camera closer to the
cube.

1.3.7 Grab the cube

In the existing robot system it is not possible to open or close the gripper. To
be able to move the cubes and play scrabble the robot must be able to grab and
drop the cubes.

If these subproblems are solved, we have the blocks needed to put together
a system which is able to perform the different phases in the Scrabble. The
Scrabble can be divided into a few phases, e.g. draw phase : The robot take
cubes from the cube pool, put it on the hand and the most important construct
word from the given letters.

1.4 Organization of the report

The structure of the report is following: In chapter 2 we presents our solution to
the problems. In chapter 3 the result of our solutions is presented. In chapter 4
we discuss possible improvements of the system and the conclusions is presented
in chapter 5.
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2 Methods

2.1 Introduction

It is appropriate to divide the system into two parts, one controlling the robot,
robot system and one handling the image processing, vision system. We have
made two different implementations. We started with one using the Irb-6 robot
system and a vision system implemented in Matlab, and later changed to one
using the Irb-2000 robot system a vision system in C, implemented on the SGI
platform. The reason why we change robot system is two : Firstly, the Irb-
2000/3 robot has better precision, due to better mechanic and control system.
This make it possible to use higher speed and still have good precision of the
robot motions. Secondly, we want to have a robot with six degrees of freedom.
Hence, six degrees of freedom is necessary to get the robot able to grab a cube in
a general position. We have also implemented two different methods of genera-
tion and correction of the trajectory, one using Matlab and one using Envision.
Envision is made for robots with six degrees of freedom. Hence, we generate
the trajectories in Matlab when the Irb-6 robot system is used.

2.2 The Robot systems
2.2.1 Matlab

First we have to decide which type of trajectory generation we want to use, real-
time generated trajectory or precalculated trajectories. Real-time generation of
the trajectory means we do not know the end of the trajectory at the actual time,
we know only a short distance ahead. We use the feedback from the camera
to generate the trajectory and to correct the real-time generated trajectory.
Using a precomputed trajectory means that we let the vision system calculate
a position of the cube. Then we generate the complete trajectory, from start
position to end position and only use the feedback from vision to correct the
trajectory. A robot system has very high real-time requirements whereas Matlab
is very slow and for that reason real-time generation of the trajectory is rejected.
Due to this it is appropriate to chose a method that precalculates the trajectory.
To solve the problem, new functions have to be added to the already existing
robot-system and an interface to the vision-system has to be designed.

Trajectory generation The first subproblem to solve is the trajectory gen-
eration. To be able to generate a tentative trajectory, the Matlab program needs
to know the start point and the an end point of the motion. Since this informa-
tion comes from the vision system the Matlab program needs to communicate
directly or indirectly with it. Moreover, if only a start point and end point is
used, the path is not specified. Is the path important? Yes, the path and the
information the vision receives is correlated. Since the system we desire should
give us the best determination of the position of the cubes, the tentative trajec-
tory should be generated from the image processing point of view to get good
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precision in the cube positions. A path which moves straight to the end point
will not provide the image processing much information, since the information
change between the images is small. But we want the path to be relatively
straight in order to get to the end position in a acceptable amount of time.

Figure 6: The path

The path we used is seen in figure 6 which is compromise between the needed
information and the time fo perform the trajectory. To generate a trajectory
which looks like the one in Figure 6 we used the spline function in Matlab.
This trajectory is expressed in Cartesian coordinates and the robot uses joint
coordinates, the trajectory has to be converted to Joint coordinates before it is
transmitted to Trajec. We also supply every via point in the trajectory with a
time stamp.

Correction of the trajectories The correction of the trajectories could be
done in the Matlab program or in IgripServer. It is not suitable to place it
in Matlab, because of the high requirement of real-time performance. Hence,
the correction must be done in IgripServer. By the feedback from vision, the
IgripServer gets an updated position of the cube.

One solution is to use the differences Az between the cubes current position
estimate and its former position estimate. Since it is possible to change the
reference value for the next via step, y(k), in the IgripServer call-back routine it
is possible to add the difference Az to the reference values y(k). If the difference
is large and it is added without restriction you will get unwanted jumps of the
robot. If the difference is very large, the robot will even stop. Due to this
fact there has to be some limitation of the difference Az before adding it to
the reference. The use of the limited difference Azims: is following: In the
IgripServer call-back routine we check if the trajectory need to be corrected, if
so the limited difference Azyimi; is added to y(k) and to all following y(k). The
call-back routine runs for each y(k) perform the correction until we have change
the end position of the trajectory so it corresponds to the new cube position.
The trajectory needs to be corrected if the position of the cube is changed or if
the trajectory not have been completely corrected. What should the limit of the
difference Azymi: be 7 We want the correction to be fast but the robot should
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not jump, therefore we have to compromise. The limit we chose expressed in
Cartesian coordinates was 1 mm, so much do we change y(k) in x- ,y- ,z-values
in the call-back routine.

Grab the cube The IgripServer needs to support the commands Grasp,
Drop if we should be able to get the robot to grab and pick the cubes . We
will first describe the methods for the commands Grasp and Drop. The Irb-6
robot system already has the I/O-module Gripper which we use to control the
gripper. The IgripServer is prepared to support commands, it sort out the com-
mands from the trajectory. All the commands have a negative number instead
of a time stamp which is used to sort out the commands. The number we add is:

command | number
Grasp -b
Drop -6

The Grasp and the Drop commands look like [ command type, tool, force,
grasptime, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] for the Irb-2000/3. The Irb-6 robot has
one joint fewer and the grasp command look like [ command type, tool, force,
grasptime, 0, 0, 0, 0, 0, 0, 0 ]. The tool value determines which tool should
perform the command. The force value determines the force which is used to
open or close the tool. The Irb-6 robot can not vary the force. The grasp-
time determines when the Grasp/Drop command will perform. We connect
the Grasp/Drop command to a via point in the trajectory by using the grasp-
time. This makes it easy to know in the call-back procedure when to perform
the Grasp/Drop. In order to know when the Grasp/Drop commands is to be
performed in the call-back procedure the context of Trajec has to include the
commands. For that reason we expand the context to include Client Context.
The Client context is an address reference to the Grasp/Drop commands. The
IgripServer expands to also contain a process which manages the performance
of the opening or closing the tool. solution is almost correct, but will make
the Grasp/Drop command perform one step earlier than wanted, due to the
structure of the Trajec and IgripServer. This problem is solved by making the
context also contain the time stamp of the following via point. This element is
referred as GraspDelay.

The system Due to previous conclusions, Matlab needs to know the cube
positions to generate the tentative trajectory. The existing interface between
IgripServer and Matlab has been extended to also contain the cubes position.
The data which is sent between the IgripServer and Vision is the following.
Vision sends the position of the cubes to IgripServer and IgripServer sends back
the robots position. Vision needs the robot position to be able to calculate the
cube positions from the information the camera provides. Moreover, if vision
needs long time to process an image, we want the robot to slow down. This
problem is solved in appendix A.
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TgripServer vision

Figure 7: The Matlab system

This system is able to generate trajectories and correct them and also grab
the cube.

2.2.2 Envision

Envision offers the opportunity to generate the trajectories in real-time. More-
over, the correction of the trajectories can also be done real-time in Envision.

Trajectory generation The problem to generate trajectories has already
been solved in a joint project between the Departments Automatic Control
and the Division of Production and Materials Engineering. A summary of the
method in Envision is: By specifying “tag” points in the work cell, it is possible
to control the movement of the robot. Tag points store position, orientation and
configuration information. A tag point is represented as a coordinate system
with the labels x, y, and z. It is possible to order a robot to move to a tag
point, if reachable. This mean that the joint values of the selected robot device
so the grippers center point coordinate system reaches the identical position
and orientation as the tag point. Then by using LLTI, see [5], a C-program
read the robots position and generate the via points in the trajectory, which is
transmitted to IgripServer. By using tag points it is possible to decide how the
path will look like. We place the tag points so the path look likes the one in
Figure 6.

Correction of trajectories One advantage of using Envision is the easy
way to generate the trajectory with the tag points. This is not the only qual-
ity the tag points have, every tag point is connected to a device. That means
that if the device is translated the tag point is translated. This can be used to
correct the trajectory. We only have to use the feedback information from the
carmmera to translate the cube and the correction will be performed. There is one
drawback with the tag point. When the simulated robot have started to move
to the tag point. It will move to the position the tag point had when the motion
started, it does not care if it has been translated during the move. Therefore it
has to be close between the tag points. This is not any large problem, it is only
time consuming to create many tag points. We use 16 tag point when picking a
cube. To use this method we supply every cube device with own tag points. To
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be able to use the suggested solution, we have to be able to change positions of
different devices. This can be done by using the LLTI. We connect every cube
to the LLTI. This result in that all the cubes have the same routines, interface
and there is nothing that separates them from each other. Since we are going
to use many cubes, every cube needs to have some identification, to make it
unique. To every device in Envision is it possible to add kinematic. A robot
have kinematic, but a table have no kinematic. In Envision the kinematic of a
device can be changed and since the cubes do not have any kinematic, a kine-
matic parameter could be used as identification. One suggestion is to use the
length value, which we use. Then it is possible to check a device‘s identification
via LLTI, by check the device's kinematic. We are now able to move a specified
cube to a new position, the position is received from the vision system.

ENVISION

4‘ Robot 1 cube#(){ cube#l‘--n cube#30 E
T ¥ ¥ ]—rJ

f

cubeserver

vision

Figure 8: Envision system

The system The cubeserver is a C-program which uses the LLTI to ma-
nipulate the workcell, e.g. change the position of a cube. The cubeserver keeps
track of the cubes and uses the sensor information from the vision system in
order to update the cube positions in the workcell in Envision. The Irb-2000/3
robot does not as the Irb-6 robot has a “home” position, a position which the
robot automatically moves when the robot is started. This is a problem, be-
cause the start position of the real robot and the robot in Envision must be
the same. Trajec is capable to generate a trajectory from the actual position of
the robot to a specified position which is perform during a specified amount of
time. If we send a position and a time value ¢ Trajec will generate a trajectory
which move the robot to the position in the time t. Hence, we only need to
make the IgripServer support commands that use this function in Trajec. We
call the commands MoveL and MoveJ. As mentioned before, all the commands
have a negative number instead of a time stamp and the number we used is:

16




command | number
MoveL -7
MoveJ -8

The MoveL and MoveJ look like [ command type, jointl, joint2, joint3, joint4,
joint5, joint6, motion time, 0, 0, 0, 0, 0 ] for the Irb-2000/3. The Irb-6 robot
have one joint lesser and the grasp command look like [ command type, joint1,
joint2, joint3, joint4, joint5, motion time, 0, 0, 0, 0 ]. Joint1 to joint6 is the end
position value of the joints. Motion time is the time during the robot have to
perform the motion. We will not allow to mix the command MoveLl. and Movel
with the trajectory, there can not be any MoveJ or MoveL between the via
points in a trajectory. This is the only restriction in the use of the commands.

2.3 Vision

The ideal object to study when trying to make a three-dimensional reconstruc-
tion is covered by a mesh or some kind of numbered points. That makes it
possible to see the objects movement relative the camera. Otherwise, if we for
example move the camera radially around a sphere we will not notice any mo-
tion at all.

Figure 9: An image of a sample cube

As the reports of Bjérn [1] and Peter [2] among others have treated the
problem of how to find features we will only show an example. Given a problem
as this, where we are searching for cubes it might be a good idea choosing the
corners as features. The image in Figure 9 is a magnified part of an original
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Figure 10: Example of points of interest if they are chosen as the corners of the
cube

image of one of our cubes'. If we choose to use the corner points as features
we get a new image as in Figure 10 after corner detection. To make the imple-
mentation easier for us, as this work already has been done,we have marked the
corner with white dots so that they can be easily detected by thresholding the
original image. What we actually are interested in is the coordinates of those
points, so we scan through the image at this stage, discard the image and keep
the coordinates. The theory described here is general, it does not matter how
we find the points, any points will do as long as they are a fix three-dimensional
points.

To be able to use images to reproduce a three-dimensional scene we must first
investigate how an object is mapped onto the screen. We will here use a ho-
mogeneous (a base coordinate system) coordinate systemn hom, the coordinate
system of the robot rob, the coordinate system of the camera cam and the co-
ordinate system of the screen scr.

The transformation is divided into to steps: an euklidian transform and a pro-
jection. The affine transform corresponds to the motion of the camera in the
homogeneous coordinate system and consists of a rotation R (R € Ms,3) and a
translation b.

Trob Lhom bz
Yrob =R Yhom + by ( 1 )
Zrob Zhom b,

To write equation 1 more practically the use of homogeneous-vectors are

11t is also rotated 180 degrees, as all the other images from the camera as it is mounted
upside down on the robot hand
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introduced. The rotation and translation are put together as on single operation
by adding an extra element, always set to one, at the end of the vectors.

Ty ob Thom
Yrob Rt Yhom

= 2
Zrob [ 0 1 :| Zhom ( )
1 1

where ¢t = R+b. The whole transformation from the homogeneous coordinate-
system to the camera coordinate-system can be written.

> Lhom
cam R tTo om
Yoar | = [ Ream toom ] [ o ] o (3)
Zeam 1 om

where Riqm and teqm corresponds to the rotation and translation in respect
to the robot coordinate-system.

The second part of the transform is the projection from the coordinate-system

X

Xcam

Figure 11: Projection of a point on the image plane

of the camera to that of the image. This can be made in several ways. We are
here using a camera-model similar to the one found in [7].

Imagine having your eyes at the point e, the focal point, in Figure 11. You will
then know that the point P is situated somewhere along the line 1. In other
words, a projection is not invertible. So if the point P is projected onto the
plane IT you will not see any difference. The projection can be written (for one
out of the two dimensions of the image plane), using congruent triangles.

f z

Tscr _ Leam (4)
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As f is a camera constant the whole system can be written:

Lscr 1 .f 0 0 Lecam
Yser - 0 f 0 Yeam (5)
1 Feam | 0 0 1 Zeam
K

To get rid of the fractions, z.qom is normally replaced by A. The diagonal matrix
K describes the intrinsic properties of the camera

Tscr Team
A Yser =K Yeam (6)
1 zCllm

This is true only for an ideal camera. For a normal, non-ideal camera another
matrix K is used where four more parameters have been added.

f sf o
K=|0 79f w (7)
0 0 1

f works not surprisingly as a magnification factor. 7 is the ratio between the
size of the x and y pixels on the CCD. It is ideally 1. (x0,¥0) is the principal
point, that is the coordinate of the orthonormal projection of focal point onto
the image plane. Finally, s is the skew, that models the angles in CCD-elements
of the camera.

Combining equation (3) and (6) gives us the equation for the whole system.

- LChom
scr tro o
A Yser =K [ Reom  team ] [ R60b le :| Z: (8)
1 S~ om
_———
Peom I 1

P

In equation (8) have we have here distinguished between the different con-
tributions to P which will be determined in separate ways. The P, matrix
can be extracted from the robot system whereas the P,,,, has to be measured
by hand or calculated out of images taken by the camera. The next section will
describe the determination of P.4,.

2.3.1 Camera calibration

In camera calibration we distinguish between intrinsic and extrinsic calibra-
tion. Intrinsic calibration is to determine the parameters in the K matrix, i.e.
the properties of the camera. Extrinsic calibration, or hand-eye calibration, is
about finding position and orientation of the camera in relation to a known
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point. These two problems can either be solved individually or simultaneously.

Normally when calibrating, the most straightforward method of solving the
problem is to solve the linear system found in equation (8). Suppose that the
point of origin, Pob, is known. The matrix P € Mgx4 holds 12 unknown and
an additional unknown is added for A. As P depends only on K, the position,
and the orientation, this will remain the same for any number of added points.
Six points would ideally be enough. Each point gives 3 equations. Using 6
points we will have 18 unknowns and 18 equations. The trick for solving this
problem is rewriting equation (8) through

Lhom
yh m5!:7“
P T = A Yser | =0 (9)
Zhom 1
1
to the structure
[ P11 ]
P12
P13
Team(1l) Yeam(l) zecam(1l) 1 0 cer @ser(1) 0 P14
0 0 0 0 Zeam(2) ... yser(l) 0 pa1
0 0 0 0 0 e 1 0 - —0
0 0 0 0 0 0 Tyer(2) T
. . P44
AL
A
A 2
(10)

and calculate the null space with respect to the elements in P [6]. Actually it
is possible to do a parameterization of P using only 3( # unknown in a rotation
matrix)+3(# unknown in the translation) +5(# unknown in K)=11 unknown.
However that does not change anything while solving the problem as a system of
linear equations. All 12 unknown has to be found anyway as the decomposition
is made after having determined P.

The problem is that there are measurement errors. To minimize these we can
add even more points. Now an other problem emerges: the fact that we have
null space is because that the eigenvectors of A € M,,,«n does not extend R™.
If we add more points that will do no harm if the new rows of A are linear
dependent of the old. However, because of the measurement errors they will
not. So, after adding the seventh point A will no longer have a null space.

Ideally, A has a null space. To find it we can make a singular value (SVD)
decomposition of A into

A=UzvH (11)

Because of the trouble of measuring the tree-dimensional coordinates we used
a fixed single point and instead moved the camera. That is possible because of
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that the robot gives us the orientation and position of its coordinate system.
Equation (8) can the be rewritten as:

T Lrob
Moy | =& Yrob 12
Yser = [ Ream  tecam ] Zrob ( )
1 Py 1

P from equation (8) will alternate when moving the robot whereas P; from
equation (12) will remain constant for all points. After having found P; it may
be factorized into K [R t]. This algorithm is made to minimize the mean square
error of P but what happens to K, R, and t? We have as seen a problem with
that our initial conditions are not met. Another approach to solve the problem
is to do a parameterization in terms of the rotation angles o, 8 and v and the
positions, t., t, and t,, of the camera on the robot arm. Altogether we denote
them Az. We still do the calibration by using a kiown and fixed point.

If we try minimizing the error function

N AT Nzger(6) ”’bgg
=3 )\iys)‘w(i) — K [ Ream(A2)  toam(Az) ] z:zz(i) (13)
i=1 i 1

2
where N is the number of points used for the calibration. These are used to
construct Regm and teem. This is a problem that ought to be solvable with
any standard-method, like Steepest-descent or Newton-Raphson. This works
however only for variations in ¢, for variations in the R matrix the methods get
unstable.

A method actually do work is found in [8], using the Gauss-Newton method.
This method uses a vector Y that is the residual of the measured coordinates
and coordinates calculated with Az.

i i mrab(l) I
yrab(l)
Almscr(l) [Rcam5$ tcam] z'rab(l)
)‘lyscr(l) L 1 =
Y=o @ |~ mbgg ()

2Lscr Yrob

. [ Reambzr  team ] Zrob (2)
1

It minimizes the sum of the squared residual, f = Y7Y by doing a lineariza-

tion of Y (Awx)
§Y
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As we are searching for Y (Az) = 0, equation 15 can be rewritten as
Hir kan resten av metoden beskrivas

Screen coordinates
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Figure 12: Data from camera calibration off the Irb-2000. The first figure shows
the the @, y, and z coordinates of an object registered with the camera. The z
value is smplicitly 1, (as seen in equalion ( 8) ).

The second figure shows a superposition of the registered coordinates and
the calculated coordinates calculated.

The third figure shows the difference between the calculated and measured
z and y coordinates, that is why it here exists the double amount of points
compared with the figures above.

2.3.2 Determining 3D-coordinates

A projection is, as we have mentioned before, a non invertible transform. By
knowing the transformation,i.e. the intrinsic calibration of the camera, K,
Reamera, teamera, the extrinsic calibration Ryopot, trobot @nd the coordinates
of a projected point it is possible to determinate everything but the distance
to the it. To be able to find the three dimensional coordinates we can use tri-
angulization (see Figure 13). That is, if we have to different images, taken
from different positions, showing the same real point we can localize the three-
dimensional coordinates by finding the interception point of the two lines.
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Figure 13: Two images of the same physical point taken from two different
points

In practice this seldom occurs. Because of our limited camera resolution the

lines will not coincide. However, that does not pose us a big problem, we simply
have to settle with least-squares solution.
There are (at least)two different ways to find a solution to the problem stated
above. Either through direct geometrical calculations that are quite messy be-
cause of all the coordinate systems involved. At last we end up with the two
equations of the lines making it possible to determine A; and A;. One of those
values are then put back into the original equations to get the coordinates. The
other solution is simply to rewritten the equation ( 8) through equation ( 16)

Lhom 0
—Lser Yhom 0
p —Yser Zhom = 0 (16)
—1 1 0
At 0

The second solution is both easier to implement and more general than the
first one. It can be generalized as equation 17 , which make it possible to use
an arbitrary number of points, thus giving a higher resolution.
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Figure 14: The estimated x, y , and z coordinates of a feature, note the corre-
lation between them.

Lhom
:135”(1) 0o ... Yhom 0
P1P2(1) —yscr(l) 0 ... Zhom 0
-1 0 ... R ()
0 —mscr(2) e Al 0
PiPy(2) . : . Az

The problem above does not always have a solution. If we are unlucky the
motion of the camera has been the same as the direction to the point. That
makes the two lines [; and /5 identical and we will get a parametric solution to
the problem. Even though that scenario is not that probable we get into other
strongly related problems. If the difference between the lines are small and the
resolution is low the distance from the camera to the intersection point is quite
random. In practice it means that we loose primary resolution along z.qm. As
the camera coordinate system is rotated in respect with the homogeneous this
will be visible in all components in the homogeneous coordinate system as seen
in Figure 14.

By using the second method and adding more points the big variance can
be lowered and the penalty of unfortunate movements are more or less elimi-
nated. If we have an over determined system of equations and add a new set
of equations, no harm is done. In Figure 22 we have estimated the position
of the same real point, using 4,8,12 and 16 points. As seen in the picture, the
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Figure 15: Estimated three-dimensional coordinates using a different number of
simultaneous images

big peaks in the estimation of the position of the point occurs simultaneously
for all of the components. The reason is that we look at the position in the
homogeneous coordinate system when hardest part in determining the position
is finding the distance. As x, y and z all are linear dependent of the distance
they all change.

2.3.3 Tracking points

The problem of determining one or many three-dimensional points simultane-
ously is of course almost analog. In fact the only thing that makes it harder
finding many points is that we can not easily tell which points in different im-
ages that corresponds to same physical point. To be able to do that there exists
a multitude of various techniques. They are normally based on the principle of
gathering information about the physical point and later on use it to make a
guess of where the point ought to be. The calculated position is then compared
with the points actually found and the error in the prediction is fed back into
the prediction of the next point.

In the earlier projects, where they were only aware of the order of the images in
the image stream they assumed that the images were taken in a reasonable high
rate compared to the motion of the camera. So that the positions of a certain
physical point that appears in multiple images would be correlated. By using
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FIR-filtration they could use the old coordinates to predict the coordinates of
the new point.

As mentioned before, we can not rely too heavily on our earliest prediction
of a points position. However, as we know the position of the robot hand, and
thanks to the calibration the position and properties of the camera we can make
an artificial projection onto the screen our predicted point. In that task our for-
mer problem is helping us. By the same reasons as a small movement of the
camera gave us a poor resolution of the distance to the point a big difference in
distance will not ruin the projection of our estimation.

150
100+

504

=50

-100

Figure 16: This figure shows the epipolar plane created between the object point
and the two focal points

This approach is however only possible if we know already an approximate
position of the point. To find the second point we use something called epipolar
geometry. As seen earlier, for example in Figure 11 a point P projected onto
zgser is known to be situated somewhere along the line I. If two images are
taken from different positions as in Figure 16 we will get a plane through the
points P, ¢l and ¢2 who’s intersection with II5 is the same as the projection of
I onto II;. I.e. we know that the point seen in the last image will be situated
somewhere along the line. The exact position is depending on the distance to
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the point.

2.3.4 Finding objects

When analyzing an image you have to be quite certain of what you are looking
for and looking at. Unlike us humans the image processing have no a priori
knowledge of the world. All it will know is what we tell it and because of that
it will of course have trouble adapting to shifting conditions. Normally the
conditions have to be tailored for the vision system and the program carefully
trimmed to achieve it’s goal.

Luckily much of the theory presented earlier is general. What we need to ob-
serve is just the coordinates of the projection of fix three dimensional points
onto the screen. Those points can be found in any way as long as they satisfy
this condition. A natural choice of features to use is the corner points of the
cubes. However, a series of problems then arise. Due to lack of precision in
the estimations of where to find a point there is a significant risk that an error
will occur and the wrong point will be picked. That will make later predictions
harder and of course makes the estimations even worse. Another problem is to
get the information of where to find the cubes out of the information of where
to find the corners. This rather trivial task can get bottle-neck in a time critical
system. If we for example have 20 cubes they have 160 corners all together of
which a maximum of 140 can be seen at one time. Matching them together in
a most naive manner is an operation of O(n!). This can of course be solved
much more efficiently by using more complex data structures but it still gives a
hint that it is a good idea to reduce the number of points being processed. We
can instead look at the hole cube as a unit. The images taken ( Figure 17 ) is
simply thresholded at a suitable level, which gives an output as in Figure 18
or in Figure 19 depending on which features that is demanded to detect. This
level has to be adjusted to the scene, lumination and objects.

A good property of the cube is that it is symmetrical in all three dimensions.
That means that the point you get by making a projection of cube and calculat-
ing the center of gravity is almost the same as the direct projection of the center
of gravity. The reason for that is a discrepancy is because of the distortion due
to the perspective transform. By instead using those points we get a direct
measurement of the position of the cubes.

However, this suffices only for retrieving three out of the cubes six degrees
of freedom. To get the orientation we have to reanalyze the picture searching
for the corners. As we already know that this can be done according to the
results from previous projects [1] [2] by using corner detection kernels or the
hough transform, we have not invested any time implementing it. Instead we
have chosen to marking the corners in a bright color so that they can be easily
found easily in the same way as we found the cubes by simply thresholding the
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Figure 17: a sample image

image ( picture 19).

Above, we talked about the problems we would get into by using the corner
points finding the cubes. What makes it better using the thresholded image
of the whole cube to find the cube and the thresholded image of the corners
to find its rotation? The answer is simply that the orientation of the cubes is
not as important. We can afford waiting to determine the rotation until we are
close enough and interested of picking up a cube. I.e. we will not see too many
corner points at the time.

What we are searching for now is simply the rotation of the cube round its
three axes. If we presume that the cube is lying flat on table it will only be
free to rotate around one of is axis. To find this angle as simply as possible we
note that the camera will be always be positioned at a higher level than the
cube. That means that the for upper corners will never be hidden neither by
other cubes nor by it self. This could of course be solved anyway, but by using
a somewhat more complicated method.

As we already know the position it is possible to give the cube an initial angle
of rotation and make a projection of its corner points onto the screen. Those
can be compared with the ones actually found in the image generating an error
E. We will now try to minimize the error by rotating the cube. As F is always
positive we need to use to different guesses of rotation of the cube to get aware
of in which direction to rotate the cube.

All this is of course something that has to be tested out practically. As the
methods are general it is possible to choose simply searching for the corners or
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Figure 18: A thresholded version of figure 17 to find the cubes center

Figure 19: A thresholded version of figure 17 the corners of the cube




to make some kind of combination of the techniques. We could for example
determine the three-dimensional positions for cubes and corners independently
and later on try to merge this information together.

2.3.5 Identifying objects

As we mentioned before we have to help the vision system to interpret what
it is seeing. We tailor the system to give it as much information that we can
without loosing to much generality. Here we tell the system that all it can see
is cubes. But the cubes are not identified as individuals, they are just cubes, all
alike. For some purposes, like building towers out of the cubes that suffice but
because that we will have the robot to play scramble it is not suffice.

There are some experiments done where vision systems have learned to dis-
tinguish between object itself. Objects were measured in some aspects, for
example size, texture and color and the result was put into a database. It could
afterwards decide itself how many different kinds of object there were, and how
to find them. Here we know what is the difference between the cubes: the tex-
ture. All cubes are given six properties, namely the letters on the sides. The
texture of the side of the cube can simply be compared to 29 prototypes, the
Swedish alphabet including W.

As we know the already the position and the rotation of the cube is it possible
to do an inverted projection, from the side of a cube to a plane, and compare it
pixel wise with the prototypes. The prototype with the least ”distance” to the
reprojected image is used. To minimize errors due to lack of precision of three
dimensional coordinates of the corner points of the cubes bold letters are used.
If we have a slender I on the side of the cube but misjudges the corner position
with a couple of millimeters the system will record that as a total failure and
another letter will be chosen instead.

This an isolated problem, quite different from our main tasks, that we un-
fortunately have not had time to implement.

2.3.6 Algorithm of the test system

The main task of our project wasn’t just to present the theory a system, but
as well to implement it. The first part of the problem was to implement the
functions discussed above. The second is to implement the ”logistics”, the part
that sorts and moves data around the system.

Matlab was well suited to solve the first part of the problem because of two
reasons: Thanks to the visualization possibilities in Matlab it is easy to verify
that you have succeeded or at least to find algorithmic errors. Secondly, all func-
tions useful to solve the problem, as matrix multiplication SVD-decomposition
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Figure 20: A sample image of two cubes

Figure 21: Threshholed image of figure 20 to recognizing letters

etc, are already implemented.

The drawbacks with using Matlab, which also was why we abandoned this con-
cept later on, was the lack of speed and communication problems with surround-
ing C-programs. It was impossible to use the algorithms real-time. Instead we
had to gather data while moving the robot and process it afterwards. This was
also partly due to the problems to get the video image from the C-program that
handled the camera to Matlab. As Matlab did not support pipes properly we
had to pass all files as complete shared files.

Most of the problems discussed earlier in the report were solved in Matlab
with the limitation that we could only find one three-dimensional point at a
time. This was because of the problems using data-structures in Matlab. There
exists some kind of data-structure support, but it is not possible to compile that
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part of the code.
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Figure 22: Trajectory used to calibrate camera

2.3.7 Algorithm of final system

The programs, although they work all together, can be divided into three dif-
ferent categories:

1. image manipulating

searching the image for interesting points
2. logistic transports information round the system
3. calculating programs implementing the theory from the earlier chapters

Unlike the former projects were they where using Matlab this is supposed to
be executing real time. After the first phase of the project when the main algo-
rithms where tested using Matlab we they were rewritten into C++ for speed.
C++ allows us as well to use data structures and objects in a totally different
manner.

C++ classes of the program
This sections deals with the inner data structures of the c++-programs. If
your not really interested of the details of the program you can browse throw
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this section.

The whole program is based upon objects. Each transformation is for example
one object, as is the points and the input image. This makes programming much
easier as the points can calculate their own position and matrix multiplications
can be performed without keeping in mind the dimensions of the matrixes.
Here follows a presentation of the most important classes to make the flowchart
Figure 2.3.7 easier to understand as well as the program code.

ilSearchlmg worldConnector epipolarSearch

projection

cubeServer

Robot Alfapet

Figure 23: A data flow diagram between the main objects

The different objects

o ilSearchImg a subclass to ilDatalmg found in the silicon graphics video
image library

e cubeHandler a class that is administrates the cubes seen by the vision
system.

e epipolarSearch a class to which coordinate, position and rotation data is
sent. Out of that information it matches points from the different images
together and creates an new point3D.

® projection is a class who performs a projection of a list of three-dimensional
coordinates and the robot pose onto the screen.

e pointdD is a class that represents a two dimensional point. The pose of the
robot is entered together with a two-dimensional coordinate and point3d
calculates it’s position out of that data.

o linkToFnuvision a class that handles the synchronization between the databases
of Envision and the vision system.

e mlMat a wrapper class for handling matrixes by using the cblas library

e point2Dsize a subclass to mlMat allowing different indexes to be added
to the different columns of the matrix. It is used to store the coordinate
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information of a series points, either directly from the ccd-matrix of the
camera or from a re-projection. The indexes that are used to indicate the
size of the points found in the image and to which point in the model of
the scene that the point belongs to.

of the algorithm

As mentioned earlier a lot of knowledge, and also limitations, are already
built into the system. It can for example only see cubes. Anything else, with
approximately the same size as the cubes will be mistaken for being cubes. This
is simply due to the method of identifying all cubes as is center point.
The system is constantly searching to increase it’s knowledge of the world. It
consist of an inner loop using it’s old knowledge, the cubes already found to
analyze the new images, and an outer loop getting information from the camera
used to find new cubes. The inner loop consist itself of an inner loop finding
the rotation of the cube the system is about to pick up.

The inner loop The purpose of the inner loop is to reuses it’s old informa-
tion by reprojecting already known points onto the screen.
The cubeHandler who is administrating the cubes collects their coordinates and
passes it over to projection. The projected coordinate as Here is the meeting
point of the inner and outer loop.

The outer loop

The input picture is represented by ilSearchImg which changes every time a
new image is taken. The points found in the image is then delivered for further
processing as a point2Dsize object. It is sent to world connection that searches
throw these points for matching points among the cubes already found. Here it
could be useful also examining the size of the cube found and predicted.
Those points found that will not matched with any old ones are then passed to
epipolarSearch

2.4 The final system

In order to get a system, which is able to play Scrabble, we need a main module
which coordinates the designed robot system and vision system. This can be
designed as a state machine. Hence, the game can easy be divided into different
phases: move to cube, play word, etc. We chose to divide the state machine
into the following phases: getNextCube, scan, checkCubeStatus, pickingCube,
identifyAndAnalysTheCube.

The state getNextCube checks if there are any available cube, i.e. if the
vision system found any cube in the pile of unused cubes. If so, one of the
available cubes is chosen and the state changes to checkCubeStatus. If not the
state changes to Scan. There is one exception: if all the cubes are used, the pile
is empty, the new state is identify And AnalysTheCube.

The state sean requests the robot to perform a motion, in which the board
is scanned. If a cube is found during the motion or if the motion is completed
the state changes to getNextCube. Note that we assume that at least one cube
is found if the motion has been completed.
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Figure 24: state machine

The state checkCubeStatus checks if it possible to grab a cube, e.g. checks
the cube vicinity. If it is possible to grab the cube then the state changes to
picking, if not the state changes to getNextCube.

The state picking requests the robot to move to the chosen cube and grab it.
When the robot is finished the state is changed to identify And AnalysTheCube.
If the cube during the motion becomes grabable or it is lost then the robot stops
and the state changes to getNextCube.

The state identify AndAnalysTheCube identifies the cubes letters and
puts it on the “hand”. The board has a defined area which is referred to as the
“hand”, this area contain the cubes which later is used to construct a word. If
the hand becomes full, contains 7 cubes, the Scrabble algorithm is requested to
make a word, using the cubes on the hand. Afterwards the robot is requested to
put the word on the board and the state changes to getNextCube. If the hand
does not becomes full, the state changes to getNextCube.

In order to get the robot to perform the different motions a GSL-program
can be used. In the GSL-program all the different motion is specified by dif-
ferent tag points. We refer to the GSL-program as the RobotController. The
RobotController communicates by socket with the state machine.

The cubeserver, which uses the LLTI to communicate with the cubes, is
expanded. It needs to know: If the cube is grabable, which side is the upper.
It also set the cubes state. The cube can be in two different states: grabbed or
not. When grabbed, the vision is informed and the feedback from the camera
does not effect the robot movements. It is the state machine which informs the
cubserver of the cubes state. It also sets the current chosen cube in focus to
facilitate the user which cube is chosen.

Now we only need one more module, the Scrabble module. This module can
from given cubes construct a word which give the highest point possible, if it
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is put on the board. There are many ways to do this. The easiest is to check
the given cube letters against a database, which contains a list of words. We
did this but this method is rather slow. Therefore we design another algorithm
this algorithm is described in Appendix F. We chose to implement the state
machine in Java and the cubeServer in C. C is suitable since the LLTT include
C-routines. The reason why we chose to implement the state machine and the
Scrabble algorithm in Java depend on the benefits the language provides.

ENVISION
cub e#O‘

~{ RobotJ cube#ll oo | cube#t30
L D ~—14 ¥

feleb |° 77

b - A
cubeserver A statemachine
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b

vision

Figure 25: Final system

All the signal between the modules is described in appendix D.
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3 Results

The greatest challenge in the project was to get a working robot system and
vision system. We have designed and implemented the two different systems
mentioned in Chapter 2, one with Matlab and one with Envision as the appli-
cation to generate the trajectories. Both implemented robot systems succeed to
generate a precalculated tentative trajectory and use sensor information from
the camera as feedback to correct the trajectories. Unfortunately did we not
get a vision system that works and all following results have been received by
simulate a vision system.

The first system precalculate the trajectories and there is one advantage in pre-
calculate the trajectories, you have completely control of the trajectory, its time
stamps,via points and velocity references. Hence, we can guarantee that the tra-
jectory is smooth and that it not includes any discontinuities. Also the speed
of the robot is known. The correction often works well, but it has problem if
it is necessary to correct the trajectory more than 70 cm. This is not normally
a problem since the correction that is needed is far less than 70 cm. The first
system will at best have a precision of 1 mm, since that is the resolution of the
correction. That is acceptable in our application. If better resolution is needed,
another method to correct the trajectory is needed.

The second system we implemented consists of a robot system with Envision
and a vision system in C. The implemented robot system can both generate
trajectories and correct them in real-time. The real-time correction in Envision
by using tag point works well, if sufficient tag points are used. We used 16 tag
points which is on the low side. But the drawback by using is that we can not
make any correction between the tag points. This is not a large problem in our
application, since our cubes do not move. Therefore we do not need any fast
correction, but in a such case there have to be very close distance between the
tag points. The real-time correction in Envision does not have the problem with
precision and speed as the former system, since the tag points are attached to
the cube. This guarantees that the correction is completely performed and the
precision of the system is not limited by the correction. Generating the trajec-
tories in real-time by using tag points is easy, but it has problems. There is a
real-time problem when using a soft real-time application as Envision to real-
time generate trajectories connected to a hard real-time system as our robot
system. The real robot Irb-2000/3 shade the simulated robot in Envision and
sometimes it happens that Envision do not fulfill the real-times demands. The
simulated robot in Envision jumps which also makes the real robot jump. This
behavior is not wanted, but the jumps are very small so it is acceptable in our
application. In another application even small jumps are intolerable for example
welding. We reduce the problem by only running the application Envision on
the workstation and by lowering the graphic resolution in Envision. Then the
jumps did occur less often. We have noticed that the time stamps generated
in Envision are sometimes wrong, but we have not succeeded to find why this
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happens, but it looks like the time stamps when this happens are all the same
in between two tag points. This gives the robot system problems.

The final system which includes the scrabble controller works. But it is only
use one letter on the cube, it is not capable to handle six letters on each cube.
The implemented scrabble algorithm works well, the time to check one potential
start letter is approximately 30 ms. The controller that manages the different
phases in scrabble works, but due to the time limits of the project we do not
have the time to implement the cubeserver and the vision system, so it support
cubes with 6 letters. The system we have accomplished is only able to handle
one letter on each cubes, but it is prepared for cubes with 6 letters. To get
the system to work, the IgripServer and Trajec had been expanded to support
commands and correction. The implementation works and the new commands
is Grasp, Drop, MoveJoint, and MoveCart.

When we implemented the final system we noticed some faults in Envision which
are presented in appendix C where also a way around the faults are presented.
The project has generate several side effect on the robot system. The project
have also generated several side effect is presented in appendix E
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4 Discussion

In this chapter we discuss possible improvements of the system. All the im-
provements will be in the robot system, improvement in the vision system is
discussed in the vision report [9].

We did not find the problem that generates the fault in the time stamps. This
has to be solved if we should get a robust system. The method for management
of 6 letters on each cube has to be implemented in the cubserver, if our goal
should be fulfilled.

The system we have achieved contains no feedback from IgripServer to Envi-
sion and this is a problem. If we stop the real robot, we also want the simulated
robot in envision to stop, this is to be able to continue the motion. In our sys-
tem we must reboot the robot system if the robot is switched to standby when
Envision is generating trajectories. This can be solved by IgripServer telling
Envision it is switched to standby. Then Envision stops the generation of the
trajectory. All this communication takes time during which via points have
been sent to IgripServer and buffered in Trajec, and to be able to continue the
motion they have to be buffered. This improvement will make the system more
“user friendly”. It is also needed to update Trajec with the position of the real
robot when it switches from standby to run. We have used a priori knowledge
about the table height. This is not necessary to know because we can get the
table’s height by using the robots force/torque sensors or use triangulation be-
tween images in the vision system. The robot position which the vision system
has used is the simulated robot position and there is some delay between the
two robots that lowers the vision system precision. We can improve the system
if we instead use position from the real robot. If the system works well it is
possible to get the two robots in the RobotLab play against each other, since
they have common workspace.

40




5 Conclusion

The purpose of this project was to get a robot to play Scrabble with the help
of a camera. This has not completely been achieved. We have a system that
includes a robot system, a vision system, and a scrabble algorithm. The robot
system and the scrabble algorithm works well, but the vision system does not
work. Even if it not works we know that it is possible to get a robot to play
scrabble. Even if the vision system not work we have seen by simulating the
vision system that the generation and correction of the trajectory b using the
feedback from the vision system works well.

We have used Envision in the final system and we found Envision is a good
simulation environment. A lot of time has been saved by simulating in Envision.
Except for the errors in Envision, see Appendix C, the only problem is that it
can not meet the demands of a hard real-time system. Even if we have focused a
lot to get the robot play scrabble the robot system and the vision system we have
achieved can be used to a lot of other applications in the industry. A system
that is able to use the information from a camera to change the trajectory of
the robot is still not common on the market.
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A Control of the robot speed using feedback
from vision

If, for some reason, Vision needs long time to calculate the cube position, you
do not want the robot to continue with unchanged speed. The performance of
the motion will be better if it is a quite short distance between the images. It is
possibly to observe the time distance between two images and to calculate the
distance between two images. Preferably, the time difference is used because of
the fewer calculations needed.

Before deciding how to control the speed, the IgripServer must be modified
to be able to perform a change of the motion speed. There are two methods to
slow down the speed of the motion. The first is to change the time stamps of
the via points or extend the trajectory by adding new via points in the trajec-
tory. The first method has a drawback: the Trajec does not support changes
in the time stamps and IgripServer needs some structural modifications. The
second method does not have this disadvantage. Even if the current Trajec and
IgripServer not supports extending of the trajectory, the needed changes do not
cause any structural problems. In fact by generating more via points we will
smooth the motion. By using the relative speed to set the speed, there is no
need to know the actual speed. To generate the new via points you could use
interpolation. Every via point need a corresponding time stamp and velocity
reference and the former via point time stamp and velocity reference could be
used. The behavior of the robot speed must fulfill: The Robot must not decel-
erate if not a specified amount of time has passed, in other words if the time
difference between two images is larger than the specified amount of time, the
speed should be decreased. If instead the time difference between the image
becomes small, the speed should be increased.

rel

Tl T2

Figure 26: velocity

Figure 26 shows how the velocity depends on the time. t is the time since
the former image. 77 expresses the time when there is need to slow down the
robot. If Vision needs more time than T3 it should be stopped. We formulate
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this as:

1, t< Ty
Ves () =4 1-£%, T<i<D
0, t> Ty

If Vyer is used to decide the speed of the Robots, it will result in a motion
which very often changes the speed. To get rid of this the model extends to
include the time between former images and the assumption: the current image
needs the same amount of time as the former image.

Veet(TPota — t), 1<, Tp < Ty
Vaew (t) = T/vrel(t); Tp>Ty,t>Tp
min(Veet(Trota — t), Veeat(Tp)), Tp > T1,t < Ty

Tp is the time Vision needed to treat the former image and Tpyqg is the
treating time for the image before. This controller adapts the speed fast if it
needs to be decreased, but the increase of the speed will always be one image
delayed.
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B Commands implementation

The IgripServer need to support the commands Grasp, Drop, MoveCart and
Move Joint if we if we should be able to get the robot play Scrabble. We will
first describe the methods for the commands Grasp and Drop. The Irb-6 robot
system already have a I/O-module Gripper in the static part of the system,
because of the open robot control system, see [3] we make the new module
Equipment, this will be dynamic linked to the system.

The IgripServer is prepared to support commands, it sort out the commands
from the trajectory. All the commands have a negative number instead of a time
stamp and that make it easy to sort out the commands. The number that is
used is:

command | number
Grasp -5
Drop -6
Movel -7
Movel] -8

The Grasp and the Drop command look like [ command type, tool, force,
grasp time, 0, 0, 0,0, 0, 0, 0, 0, 0 ] for the Irb-2000/3. The Irb-6 robot have one
joint lesser and the grasp command look like [ command type, tool, force, grasp
time, 0, 0,0, 0, 0,0, 0, 0, 0]. The tool value determine which tool should perform
the command. The force value determine the force which is used to open or close
the tool. The Irb-6 robot can not vary the force. The grasp time determinate
when the Grasp/Drop command will perform. We connect the Grasp/Drop
command to a via point in the trajectory by using the grasp time. This make
it easy to know in the call-back procedure when to perform the Grasp/Drop.
In order to know when when the Grasp/Drop command is to be performed in
the call-back procedure the context of Trajec has to include the commands.
For that reason we expand the context to include ClientContext. The Client
context is a address reference to the Grasp/Drop commands. The IgripServer
expand to also contain a process which management the performance of the
opening or closing the tool. This solution is almost correct, but this will make
the Grasp/Drop command perform one step earlier than wanted, due to the
structure of the Trajec and IgripServer. This problem is solved by the context
also contain the time when next step will perform. This element is referred as
GraspDelay.

The MoveL and Movel look like [ command type, jointl, joint2, joint3,
joint4, jointb, joint6, motion time, 0, 0, 0, 0, 0 ] for the Irb-2000/3. The Irb-6
robot have one joint lesser and the grasp command look like [ command type,
jointl, joint2, joint3, joint4, joint5, motion time, 0, 0, 0, 0 ]. Jointl to joint6 is
the end position value of the joints. Motion time is the time during the robot
should perform the motion. We will not allow to mix the command MoveL and
Move] with the trajectory, i. e. there can not be any Movel] or MoveL between
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the via points in a trajectory. This is the only restriction in the use of the
commands.
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C Envision problems

Envision is not a new program, it have been on the market for several years.
The version we used was released in December 1998. But even so it promise
several function do not work. In our application we need to have communi-
cation between our state machine and the GSL-program. The ordinary socket
communication in GSL is blockade, this result in that everything is stopped
until someone sent a message to the GSL-program. This is not acceptable. In
Envision there is a function called set async socket and it promise a socket com-
munication that is not blockade. This function do not work. We must have
communication both way between the state machine and the GSL-program and
there is a way to solve this. The problem is when the GSL-program reading
message, writing does not generate any blockade, so we have to use a other
way when the GSL-program read. The LLTI involves routines to set variables
in a GSL-program. If we let the state machine use the LLTT when writing to
the GSL-program will it be possible to communicate both directions with the
GSL-program.

The a other function that it promised is dout, this uses to pass signal between
devices. We wanted to use this to control the gripper, but it does not work.
This problem can be solved by using same method as before, using the LLTI.
Instead of use this dout function a variable in the GSL-program can be used
and by LLTT the value of the variable can be checked. The LLTI make it also
possible to open or close the gripper.

By the LLTI Envision promises several function that could be used to change
the robot speed and acceleration. No of these function does actual work. Hence,
have we not been able to implement the speed controller described in Appendix
A into the final system with Envision.
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D The signals in the final system

The signals referred as A in figure 24

signal description

J2CS_pick_block order cubserver to pick the block

J2CS stop_picking inform cubserver the block is released

J2CS_find letter order cubserver to find letter

J2CS block_grabbed inform cubserver the block is grabbed

GSL_scan order cubserver to set the scan variable in the gsl program

GSL find letter order cubserver to set the findletter variable in the gsl program
GSL_put_letter order cubserver to set the putletter variable in the gsl program
GSL_grab_block order cubserver to set the grabblock variable in the gsl program
GSL_set_vel order cubserver to set the vel variable in the gsl program

The signals referred as a in figure 24

signal description

CS2J _block found inform the statemachine a block is found

CS2J _block lost inform the statemachine a block is lost

(CS2J block.in_critical_area inform the statemachine if a block is in the critical area
CS2J _found letter inform the statemachine a letter is found

The signals referred as B in figure 24

signal description

V2CS.object.moved order cubserver to move the object
V2CS_put_letter order cubserver which letter it is on the block
V2CS create_block order cubserver to create a new block
V2CS_delete_block inform cubserver a block is deleted
V2CS_get_robot_pose order cubserver to get the robot position

The signals referred as b in figure 24

signal description

CS2V pick_block infrom vision the block is picked
CS2V _get_letter order vision to identify letter
CS2V block_taken inform vision the block is grabbed
CS2V _put_block inform vision the block is released
CS2V robot_pose inform vision the robot position

The signals referred as C in figure 24
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signal description

CS2R set_gsl block_in_critical area | order robot to set the gsl variabel blockincriticalarea
CS2R set_gsl lost_block order robot to set the gsl variabel lostblock
CS2R _set_gsl.identified_block order robot to set the gsl variabel identifiedblock
CS2R set_gsl robot_pose order robot to set the gsl variabel robotpose
CS2R set_gsl.scan order robot to set the gsl variabel scan

CS2R set_gsl_grab_block order robot to set the gsl variabel grabblock
CS2R _set_gsl find letter order robot to set the gsl variabel findletter
CS2R set_gsl put_letter order robot to set the gsl variabel putletter
CS2R set_gsl found_block order robot to set the gsl variabel foundblock
CS2R set_gsl_vel order robot to set the gsl variabel vel

The signals referred as ¢ in figure 24

signal description
R2CS_robot_pose inform cubeserver the robot position

The signals referred as D in figure 24

signal description
C2CS_cube_pos inform cubserv the cube positions

The signals referred as D in figure 24

signal description

CS2C_set_in _focus order cube to set the cube in focus
CS2C set_out_focus order cube to set the cube out of focus
CS2C_hide_cube order cube to make the cube invisible
CS2C _move_cube order cube to move the cube

CS2C _get_cube_pos order cube to get the cube positions
CS2C show_cube order cube to make the cube visible
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E

Side effects on the robot system

During the projects there has been several improvements of the robot system.
The major improvements is listed below

The time which a trajectory use to performed the motion nowadays cor-
respond to the ordered time.

The structure with the IgripServer, Trajec modules was only used to con-
trol the Irb-6 robot nowadays also work robust on the Irb-2000/3 robot.

The Irb-2000/3 analog resolver signals is nowadays filtered and the bus
cable is put outside the robot. This has reduced the noise to a tolerant
level. Before was the noise level very high and made the robot have a very
shaky behavior.

The positive direction of the joints on the Irb-2000/3 has changed to agree
to the robot model in Envision.

The kinematic for joint 6 on the Irb-2000/3 is nowadays properly imple-
mented.

The I-part in the regulator on joint 1,4,5,6 is nowadays turn on. Before
did the high nose level make it necessary to have the I-part turned off.
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F The Scrabble algorithm

There are two ways of making a computer build words out of random letters.
Either by using statistics saying ”if b is followed by an @ it is often a good
idea putting a d behind” or by using a word list. We chose the word list which
greatest reward is that it constructs only existing words.

Our scramble algorithm use the common rules of Scrabble. We have to use
an already existing letter on the board, so the first step is to choose a letter on
the board. Using this letter, words can be constructed in two different direc-
tions, from left to right or from top to bottom. To find the optimal word we
can not assume the first letter to have any particular place in the word to be
played. arbritary.

Our algorithm do find the best word to play. The reason is that it test all
possibilities. What gives us the time is simply by excluding all test that are
unnecessary. A pseudo code version of our algorithm can be seen in Figure 27.
Notice that this is not the real code, it just illustrates the idea of the algorithm
and a lot of the special cases are not treated here.

We enter the algorithm at searchBackwards and simply check if there are
any words starting with the letter we have already put on the board so far. If so
we fixate the start of the word trying to build a word as long as possible down
streams by calling searchForward which test all possibilities. searchForward
will try to play its different remaining letters by checking with the dictionary if
the word written is a part of an existing word. If so it calls itself recursively, each
time with nbr letters_left_on hand decreased with one. After all possibilities
are tested down streams we try building one step up streams, using the same
strategy as down streams. Every time we succeed in going one step up streams
we will check start_of_word to see if it may be useful calling searchBackwards.
The result is gathered during the building of the word always saving the best
result.

This is sequence is repeated horizontal and vertical and for every letter already
on the board
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searchBackwards ()

{
for i=1 to nbr_letters_left_on_hand do
{
if(start_of_word)
searchForward;
searchBackwards;
1
T
searchForwards ()
{
for i=1 to nbr_letters_left_on_hand do
{
if possible_to_play(letter_i)
{
play(letter_i);
searchForwards;
¥
else
back;
¥
¥

Figure 27: The main idea of our Scrabble algorithm as pseudo code
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The secret of the algorithm is to easily be able to tell whatever a letter
combination is a part of real world or not. This is done be restructuring the
words from the lexicon into two different lists (Note the lexicon is Swedish):
a “backwards list” and a “forward list”. The backwards list is constructed as
following:

At start the backwards list and the forward list is lists of nodes containing
the alphabet letters a-6.

backwards list forwards list

[ | Fa |
b | b |
e | < |
| a | a |
e | e |
| £ ] 1|
e | g |
"

5 | 5

Figure 28: Start nodes

We will illustrate how the backwards list is built in a example.

Example: First a word from the word list is read in our example bada. The
first letter is read, b. Hence, the first letter is a start letter of a word, b in the
forward list gives the quality of be a start letter. Then the second letter is read,
we now have ba. To the backwards list is we add a new node.

v ]

m|p_]nlc‘

I
g
i
3

Figure 29: ba

The new node which contain b have also the quality of be a start letter of a
word. The procedure repeats until the entire word bada is read. The backwards
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list will then look like.

(o = e
(o]

HEERROERLE

Figure 30: bada

All nodes which contain b get the quality of be a start letter. Every word in
the word list is treated in the same way and the backwards list grows.

The building of the forward list is different to the backward list. We use a
example to illustrate the building of the forward list.
Example: The word bada is read from the word list. First is letter b read, we
note that the following node should be added after & in the forward list. Then
¢ is read, we add a node after the b node after that d is read and added after
the before made a node. Finally a is read, the e is added after the d node and
the a is the final letter of the word. Hence, the a node gives the quality of be
a final node. Every word in the word list is treated in the same way and the
backwards list grows.

EEEDBEEORD
B
B
8

Figure 31: forwards list

A example of how the forwards list could look like when the word bada, bdge,
band, and fana is read from the word list is given in Figure 31.

We now illustrate the algorithm in an example. Assume that the only is one
word on the board, ROBOT, and on we have the letters A, D, E, S, U, T, R
on the hand. The first step is to choose a letter on the board. We choose R.
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When we have chose a letter the algorithm starts. We use the backwards list
and notice that R is a possible start letter. Hence, we shift to the forwards list.
We take the first letter, A, in our hand and check if the forwards list contains
R-A. R-A exist in the forwards list, one possible continuation is D-I-O. Therefor
we take the second letter in our hand, D, and check if the forwards list contains
R-A-D. The forwards list contains R-A-D and we take next letter in our hand,
E. We check if the forwards list contains R-A-D-E. The forwards list do not
contain R-A-D-E, since the lexicon we have use to build the forwards list do
not contain any word that start with R-A-D-E. We put the E back to the hand
and take the S and check if the forwards list contains R-A-D-S. Again we fail,
we continue to try the remaining letters on the hand, but we fail to complete
a word. Then we go one step up and put the D back to the hand and replace
it with E. We check if the forwards list contains R-A-E. The forwards list do
not contain R-A-E. By using this manner we will finally have construct ever
possibly word that start with R and only contain the letters we have on our
hand. Then we a finish with the forwards list shift to use the backwards list.
We take one letter from the hand, A, and check if the backwards list contain
A-R. The backwards list contain A-R, one possible word is arm. We shift list
again to the forwards list and use the same method as before to construct every
possible word that start with A-R and only contain the letters we have left on
our hand. Then we again shift to the backwards list and take one letter on from
our hand, D, and check if the backwards list contain D-A-R. We shift list to the
forwards list and use same method as before to construct every possible word
that start with D-A-R and only contain the letters we have left on our hand,
E, S, U, T, R. We stop the example here. If have completed the example we
have found that the word STUDERA is one of the possible word which contain
7 letters. We chose to put this word on the board, since this is the first 7 letter
word that we found.

The hand

NEBR OO RN

The board

Figure 32: The board
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