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Chapter 1

Introduction

Uncertainty in the plant model may have several origins: there are always pa-
rameters which are only known approximately, the parameters in the linear
model may vary due to nonlinearities or changes in the operating conditions,
measurement devices have imperfections ... or even when a very detailed
model exists we may choose to work with a simpler nominal model.

The various sources of model uncertainty can be grouped into two main
classes:

Parametric uncertainty. Here the structure of the model is known, but
some of the parameters are uncertain.

Unstructured uncertainty. Here the model is in error because of missing
dynamics, usually at high frequencies.

Uncertainty in the model should be taken into account not only to assure
stability but also performance. In this thesis the stress is on the latter,
particularly in the presence of parametric uncertainty. The flexible servo
used throughout the thesis is described in Chapter 2. Chapter 3 presents a
description of the uncertainty models used in the thesis. Chapter 4 contains
some controller designs from a previous project. In Chapters 5 and 6 a
series of controllers are developed using H,, techniques, specifically mixed
sensitivity and H,, loop-shaping. Chapter 7 contains a comparison of the
different designs shown up to this point. Chapter 8 presents the calculations
for a particular controller design problem to which the algorithm explained
in [5] can be applied. Finally Chapter 9 presents the conclusions.



Chapter 2

Process model

2.1 Description of the plant

The flexible servo used is the “Rectilinear Dynamic System.Model 210”of
ECP Educational Control Products. There is a complete description in [11].
Here we give a brief summary. The mecanism consists of two mass carriages
interconnected by a spring. A dashpot with adjustable damping is coupled
to the second mass. Each mass carriage can load several brass weights of
500 £ 5g each, and carriage suspension is an anti-friction ball bearing type
with approximately +3cm of available travel. Springs of various stiffness
may be attached between masses. The linear drive connected to the first
mass is comprised of a gear rack suspended on a carriage and pinion cou-
pled to the brushless servo motor shaft. Optical encoders measure the mass
carriage positions via a cable drive with pulley.

In order to get a linear model of the plant, it can be supposed both brushless
servo and encoders only introduce constant gains. These will be taken into
account in the implementation of the controllers. In practice the motor also
introduces a dead zone and non-ideal effects such as motor cogging which
will be neglected.

Coulomb (or static) and viscous friction between the different mechanical
elements of the plant can not be neglected and will be approximately mod-
elled as a damping of the masses with a different damping coefficient for
each mass. A scheme of the model is found in figure 2.1.

Newton’s second law of motion gives

mydy + c11 + k(y1 — y2) = F(t)
mais + el + k(y2 — 1) =0



yl y2

F(t) k
—» ml —/\/\/\— m2
cl c2

Figure 2.1: Diagram of the plant

In state space form and taking as states the positions and weighted
velocities of the two masses

2T = i VB9 v /TR

gives
¢ = Az + BF(t)
y=Cz
with
% - 3
0 — 0 0
k c k
Ao | TVm Tmr Vm O
k
0 0 0 =5
ke 0 — ]k _e
L mz m2 m2 |

The state vector has been weighted, instead of taking as states the po-
sitions and velocities, in order to avoid numerical problems due to a badly



conditioned matrix A.
Since only SISO systems are going to be treated in this thesis and the goal
is to control the position of the second mass, the matrix C becomes

C=1[0 0 1 0

The transfer function from F(t) to y, is

k
— (m?+ c18 4 k)(mas? 4 cos + k) — k2

F(t)

Y2

For the nominal plant the medium stiffness spring and three brass weights
per carriage were chosen, so it’s easier to change parameter values in the
real plant. These parameters have been identified as described in Appendix
A and the resulting values are

k = 423 N/m
m, = 225 Kg
mg = 2.07 Kg

cg = 325 Ns/m
ca = 818 Ns/m

Table 2.1: Nominal plant parameters

substituting in the transfer function and transforming to zero-pole form

90.82
= F(t
5(s +2.656)(s% + 2.74s + 390.8) (®)

Y2

This can be represented by

_ Kp
o (s + a)(s? + 2(pwps + wg)

Y2 F(t)

with Kp = 90.82, a = 2.656, {, = 0.069, w, = 19.77.



Chapter 3

Uncertainty models

There are several ways of representing uncertainty. For unstructured uncer-
tainty the following methods are common:

1. Direct Multiplicative perturbation. If G(s) is the nominal plant and
Gp(s) the perturbed one, then

Gy(s) = G(s)(1 + wi(s)Ar(s))

with Aj any stable transfer function such that |Ar(jw)| < 1Vw and
wy(s) an stable weight. It is assumed that no unstable poles of G(s) are
canceled in forming Gp(s). Thus, both have the same unstable poles.
It is often used to represent uncertainty arising from high frequency
unmodelled dynamics.

2. Inverse Multiplicative perturbation. If G(s) is the nominal plant and
Gp(s) the perturbed one, then

Gp(s) = G(s)(1 + wi(s)Ar(s))™

with Ay any stable transfer function such that |Ar(jw)| < 1Vw and
wy(s) an stable weight. Better suited for representing pole uncertainty,
it allows for poles crossing the imaginary axis. On the other hand it
is assumed no open loop zero crosses the imaginary axes. It is often
regarded as arising from low frequency parametric uncertainty.

3. Coprime Factor Uncertainty. The set of perturbed plants is

Gp = (M + Ay) (N1 + Aw), ||[AN Au]lleo < €
where G = M, l_lNl is a left coprime factorization of the nominal plant.

It can be regarded as a combination of multiplicative and inverse mul-
tiplicative uncertainty. It allows both zeros and poles to cross into the

10



right-half plane. In Appendix B the method to get the coprime factors
of G(s) is briefly outlined.

For structured uncertainty there are several methods. Of these only
parametric state-space uncertainty and an extension of the coprime factor
uncertainty representation, explained in [9], are going to be treated in the
following sections. In the above mentioned reference uncertainty is repre-
sented by an artificial feedback loop, following the general control problem
formulation represented in figure 3.1.

G(s)

= K(S)

Figure 3.1: General control problem formulation

The only limitation is that w must be scalar in order to be able to apply
convex optimization. The different uncertainty representations can be cast
in this general setting.

3.1 Parametric state-space uncertainty

This uncertainty description has not been used in subsequent chapters, but
it led to the choice of mgy , ¢y as the only parameters to be regarded as
uncertain. Consider an uncertain state-space model

= Apz + Bpu
y=Cpz + Dyu

Assume the cause for uncertainty is uncertainty in some real parameters
81,62 ... and assume for simplicity the state-space matrices depend linearly
on these parameters ,

11



Ap = A-l—Z&,‘Ai, B,= B+Z6iBia
Co=C+)» 6Ci;, D,=D+) 6D;

where A,B,C and D model the nominal system.

The initial objective was to study the effects of uncertainty in the real
parameters my , ¢z , and k. It turned out it is not possible get a state-space
representation in such a way that once transformed to the general setting w
is scalar. The following state matrices are taken

0 1 0 0
-k _a k 0
— mi my mi
4 0 0 0 1
k 0 -k _e
ma m2 ma

which have as state vector

2T = [1n 91 y2 9o
In this case only A is perturbed with Ap=A+4+ A and

00 0 0
|6 0 & o
A=10 0 0 o

6 0 6§ 6

In order to fit in the general setting, the state-space representation of
the perturbed system must be of the form

z = Apz + Bu = Az + As6Csz + Bu = Az + Asw -+ Bu
z=Cse
y=Cc

12



withw = 62 w € Rand § = [§; 8, 83]. This is only possible if
the matrix A has rank one, so it is necesary to choose between two sets of
uncertain parameters my ¢y or k. This fact motivated the choice of my ¢
as uncertain parameters throughout the thesis. In that case

0 0 0 O
0 0 0 O
a5 0 0 0 O
66 0 &6 &

obtaining

H _ [05(31_ A)"14; Cs(sI - A)‘lB] H

] C(sI-A)'4s C(sI-A)'B| |u
® 4
> - =
- Y
u y
K(8) f=

Figure 3.2: System representation

3.2 Parametric coprime factor descriptions

One consequence of the results in [9] is that coprime factor descriptions of
uncertain systems can be extended for the SIMO and MISO cases to include

13



parametric uncertainty and yet allow robustness optimization by convex
techniques. These plant descriptions are of the form

Gsa = 1.\7(5) + §s(s) + A(s)Na(s)
T M(s)+ 6Ms(s) + A(s)Ma(s)

where
- MM is the coprime factorization of a nominal transfer function.

- Ms,M a,Ns, Na are all fixed known transfer matrices with elements in
RH,.

- § € R™ and A € RH,, are uncertain but bounded in norm.

Such a representation can be derived from a block diagram of the form

= N5
- AN -

u y
- N =

Figure 3.3: Parametric coprime factor description
the intermediate equations being
y=M Y Nu+ ¢)
d=Ajgu—Apyy+w

w=46z

z= ﬁgu— ng

The procedure to get N, M, N5 and Mj is explained in chapter 8.

14



Chapter 4

Previous designs

In this chapter several designs, taken from a previous thesis [2] on the
same plant, are recalculated. The objective is to have a reference for the
performance to be expected from subsequent controllers. The main idea is
to get a closed-loop response to a step input which is as fast as possible but
keeping overshooting below 5% or even to have no overshooting. All details
of the designs can be found in [2] and here only the results are presented.

4.1 PI control

The plant has four poles: one at the origin, one on the negative real axis and
two oscillatory poles just barely in the negative half plane. The PI adds one
pole at the origin and a zero that can be placed anywhere on the real axis.
The location of the zero will determine the location of the closed loop poles.
The first idea is to move the two poles at the origin into the negative half
plane but that also moves the pole on the negative real axis towards and
eventually past the origin. One possible choice is to place all three poles
at the same distance a from the origin. The two oscillatory poles of the
process will then be almost unaffected and will not particularly influence
the behaviour of the closed loop system. The three slow poles are placed
at the same distance of the origin by setting the desired damping of the
closed loop system. In addition, in order to reduce the overshoot of the step
response only a fraction 8 of the reference signal acts on the proportional
part of the controller. So the PI controller implemented is described by

u(s) = Ke(r(s) = u(s)) + 2 (r(s) ~ 4(6))

and the expressions of K. and T; are

15



2,.,2
awp

K= g0+

(26 +1)?
- a

T;

The value of 8 is set to 8 = 0. Below a table is shown with the values
of K. and T; for three different values of the closed loop damping (.

¢ K. T;
0.3 | 18.9703 | 0.9639
0.5 | 15.1762 | 1.5060
0.7 | 12.6469 | 2.1687

Table 4.1: PI parameters

A comparison of the step response of all three resulting PIs is shown in
figure 4.1 and the corresponding values of settling time and overshooting
in table 4.2.

¢ | Overshooting % | Settling time ¢, (sec)
0.3 23 5.2
0.5 8 4.5
0.7 0 4

Table 4.2: PI specifications

Accordingly with these results the PI for { = 0.7 was chosen for com-
parison with subsequent controllers.

16



Second mass position

zeta=0.3
zeta=0.5|""]
zeta=0.7| |
I
9 10
Control action
0.15 T T T T T T T T T
0.1 ]
0 e =
-0.05 | 1 1 1
0 6 7 8 9 10

Figure 4.1: PI for various ¢

4.2 PID control

When using a PI controller the speed of the closed loop system was limited
by the real pole at s = —a. With a PID controller there is one extra zero
which can be used to cancel this pole. The two poles at the origin can now be
moved further into the negative half-plane, limited instead by the oscillatory
poles which will move towards and eventually past the imaginary axis. In
order to ensure the cancellation of the pole in s = —a the parameters of the
PID must fulfill the following condition

. aly— N
" a(aTy(N +1)-N)

In addition, the influence of the reference signal on both the proportional
and the derivative part of the controller are weighted with parameters 8 and
v to reduce overshooting. So the implemented PID controller is described

17



by

sTy
1+ 2

1 sTy
)T(S) - Kc(]- + ST.; + 1 n %

u(s) = Kc(ﬂ + siT, e )?/(3)

The parameter N is set to N = 10, which is a usual value, and § =
vy = 0.The other parameters were chosen to be K. = 30 and T4 = 0.25, so
T; = 1.3038. The response to a step input of amplitude 0.01 compared to
that of the PI for {( = 0.7 is shown in figure 4.2, and the corresponding
values of settling time and overshooting in table 4.3.

Controller | Overshooting % | Settling time ¢, (sec)
PID 4 24
PI 0 4

Table 4.3: PID specifications

Second mass position
0.012 T 1 T T T T T T T

0.01

0.008- -

0.006 -

— PID
PI

0.002- -

Control action
008 T T T ] 1 T l T T

0.06

0.04

0.02

-0.02 1 | 1 I 1
0

Figure 4.2: PID and PI compared
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4.3 2 D.O.F. LQG plus feedforward

The controller described in this section has a structure with separate feed-
back and feedforward parts. The feedback part has two degrees of freedom,
that is, reference and measured signal are processed separately. Besides
that, it uses state feedback, consequently it uses more information about
the process than PID control. The reference is introduced through a ref-
erence model which gives a “desired state” that in turn is compared with
the estimated state. This “state error” is fed to the constant matrix gain.
Additionally the observer, a Kalman filter , uses an extended state vector in
order to introduce integral action as explained below. The general structure
is presented in figure 4.3.

I Referency uff
_—.
model
X m
u y
> K Process o
A
xe 8 e
Observer|

Figure 4.3: Controller structure

4.3.1 LQG state feedback

The process model is
£(t) = Az(t) + Bu(t) + Be(t)
y(t) = C=(t) + e(2)

where £(t) and e(t) are stochastic disturbances. By is equal to B, so the
state noise is considered to be entering the system in the same way as the
control signal. The cost function to be minimized is

19



.

N-

B E{ > [2T(£)Quex(t) + 22T (£)Quacu(t) + u” (£)Q2cu(t)] dt
+

&

=0

zT(Nh)rom(Nh)}

The design parameters are Q1., @12., @2. and , for the kalman filter
design, the approximated disturbance covariances o2 and ¢2. The meaning
of o2is explained below. Since only the steady state solution of the corre-
sponding Riccati equation is used, the parameter Qo. doesn’t have to be set.

Disturbances £(t) and e(t) can be considered as white noise with zero
mean value and covariances o2 and o2. However, this structure will not
be able to eliminate errors due to constant disturbances. If instead £(t) is
considered to be the integral of a white noise v(t) with zero mean value and
covariance o2 the process model will be

#(t) = Aa(t) + Bu(t) + Beé(t

&(t) = v()
y(t) = Ca(t) + e(t)

Constant disturbances can be compensated by substracting from the
control signal a term B_leé(t), since the disturbance can’t be measured
directly. The estimate of the disturbance ¢ is obtained using an extended
state vector zT = [2(t) £(t)] in the Kalman filter.

4.3.2 The reference model

The first mass is modelled as a second order system independent of the
second mass and with the reference signal r as its input. The transfer
function from the reference signal to the position 2* is

(12

Gy = sm—
ml (s + a)z
where « is a design parameter setting the speed of the model. Similarly
the second mass is regarded as a second order system with the position of
the first mass as as its input. The transfer function from z7* to the second
mass position 7' is

ﬂz

mt = vy

20



where (3 is another design parameter. The reference model can be expressed

as a state space system

T = AmZm + BT

where, using a weighted state vector zT = [y; +/ 91 Yo +/ T2Y2], we have

0
0

A= —az,/%l —2a 0
k

0 0 0 N

BVE 0 PR -
BT =[0 o%/3% 0 0]

4.3.3 The feedforward

The feedforward control signal uysy is created from

Gml

Ufs = G T
4

0 — 0

ép is chosen to be a simplified process model transfer function

b

Gp = s(s +a)

he signal uss can then be expressed in terms of z,, and

K
where b = 2. T
b4

T as

ugy = —%mi" + — T
VE
and in state space form

T = Am@m + Bpr
r=ChpnEm + Dpr

with A,, and B,, as above and

)
[>]
|
[
R
o
=]
—

Cn=["% 7B



4.3.4 Nominal designs

Two designs have been tested, the corresponding parameters are summarized
in table 4.4. Then the response of both controllers to a step input is

compared to that of the PID.

“LQG+I+FF” | Qlc QZC Q12c 1 Oc | Oy l a J ,6 I
(a) 1000 I [ 0 [o0.0000L| 1 [2]6
(b) 750L | I 0 (000001 1|36

Table 4.4: “LQG+I+FF” parameters

Second mass position

0.012 ; : ; , ; , ._ !
0.01 : _'* — == -
0.008 e ..I'......... :..........%..... e ..;_._ -
0.006 |-+ -
0.004 /i 4 — LQG+FF (a] -
AN : i S LQG+I+FF Eb
0.002F i e v s Aot dia s b s Sl L e e s e - =
% s 5 7 8 5 10
Control action
0.4 T T T T T T T T
03 i
] ]
0.2 - -
0.1 . -
0 e == -
0.1 1 1 L 1 I | | | I
1 2 3 4 5 6 7 8 9 10
Figure 4.4: “LQG+I+FF” and PID compared
Controller Overshooting % | Settling time ¢, (sec)
LQG+I+FF (a) 1 1.9
LQG+I+FF (b) 2 1.1
PID 4 24

Table 4.5: LQG specifications

22



Chapter 5

Mixed sensitivity Hy control

In this chapter, and the following, the design strategy is to directly shape the
magnitudes of closed loop transfer functions such as the sensitivity function
S(s) and the complementary sensitivity 7'(s). This strategy is formulated
as an H,, optimal control problem and our main task will be to select
reasonable bounds on the desired closed loop transfer functions. Since S +
T = I, one may think it is enough to minimize the norm

|wpS|leo < 1

where w, is a weighting function. However, this specification only puts a
lower bound on the bandwidth, but not an upper one and doesn’t allow
to specify the roll-off of L(s) above the bandwidth. In addition there is
no restriction of the magnitude of control signals except if the plant has a
RHP-zero. In that case the stability requirement would indirectly limit the
controller gains. For these reasons the norm

wpS
wy, K S

| <
o]

is considered. The term w, K S puts a restriction on the magnitude of the
control action and T'(s) is indirectly shaped since T = GK S.

5.1 Weight selection

Typical specifications in terms of S are

1. Minimum bandwidth frequency wj.
2. An upper bound A for the magnitude of § at low frequencies.

3. Maximum peak magnitude of 5, ||S(jw)|lcc < M.
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1

Topa)] On the

These specifications may be captured by an upper bound
magnitude of S where

8 + w*
_ M B
wp(s) = s+ wpA

The above mentioned upper bound is equal to A < 1 at low frequencies,
equal to M > 1 at high frequencies and the asymptote crosses one at the
frequency wy. If a steeper slope for L ( and S) below the bandwidth is

desired, the following weight may be used

As for K S, the weight w, may be a constant or if we want to ensure K
is small outside the system bandwidth we may take

14+ 78

17 798 where 7 €K 1y

wy(s) =

5.2 Nominal design

For the parameters of the weight w,, the following values have been chosen:
M = 2, wg = 2 and A = 0.0001. When choosing w, we want a high
control gain for frequencies below wj and to make sure the gain is small for
frequencies over wg, particularly because it is important not to excite the
resonant mode of the plant. First the weight

s+ 10
Wy = ——————
s+ 1000

was tried, but to get better performance it was necessary to use a higher
order weight. After several trials the final weight was chosen as

200(s + 5)(s + 10)
Wy =
(s -+ 1000)2

The bode plots of both weigths are shown in figure 5.2. The response
to a step input of the resulting closed loop system as well as bode plots of
the S, T and K S are shown in figures 5.1 to 5.6. Table 5.1 shows the
data of the comparison between the mixed sensitivity design and the fastest
LQGHI+FF controller. The transfer function of the controller is
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K 0.9052 s (s + 2.656)(s + 1000)%(s? + 2.74s + 390.8)
(s +0.0002)(s + 12.24)(s + 160.6)(s% + 10.65s + 66.49)(s? + 2.6065 + 388)

and can be simplified to

K- 5636 s (s + 2.656)
(54 0.0002)(s + 12.24)(s% + 10.65s + 66.49)

as it is seen in the bode plot of figure 5.3. The controller obtained is very
good in theory, but since the real plant has a dead zone we need to have
integral action in the controller. For our plant, this is not possible with this
technique because it introduces pole-zero cancellations between the plant
and the controller and in particular the controller always has a zero in the
imaginary axis to cancel the integrator of the plant. This zero compensates
with the pole (s + 0.0002) included in the weight wy to introduce integral
action in the controller. For this reason the next step is to try with H,
loop-shaping techniques. These will be treated in Chapter 6.
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Second mass position
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0.2
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Figure 5.1: Mixed sesitivity and LQG+I+FF (b) compared

Controller Overshooting % | Settling time ¢, (sec)
Mixed Sens. 0 1.1
LQG+I1FF (b) 2 1.1

Table 5.1: Mixed sesitivity controller specifications
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Figure 5.3: Simplified controller
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Chapter 6
Hoo loop-shaping design

The loop-shaping design procedure used in this chapter is based on H
robust stabilization combined with classical loop shaping. First, the open-
loop plant is augmented by a pre-compensator to give a desired shape to the
open-loop frequency response . Then the resulting shaped plant is robustly
stabilized with respect to coprime factor uncertainty using H., optimization.
If W, is the pre-compensator then the shaped plant is given by

G, =GW,

The controller K, is synthesized by solving a robust stabilization problem
for the shaped plant G, with a normalized left coprime factorization G, =
M;'N, as explained in [8] or in [10]. The feedback controller for the
plant G is then K = W), K,. One of the advantages of this method is that,
except for special systems with all-pass factors, it doesn’t introduce pole-zero
cancellations between the plant and the controller.

6.1 1 D.O.F controllers

In this section one degree of freedom controllers are developed.First, the
pre-compensator must be chosen. In general it would include integral action
for low frequency performance, phase-advance for reducing roll-off rates at
crossover, and phase-lag to increase the roll-off rates at high frequencies.
The simplest pre-compensator would be of the form

_ Ku(s+a)
- s(s+b)

1
By trial and error, and also looking at the mixed sensitivity controller

developed in Chapter 5, the values K,, = 200, a = 2.656 and b = 12.24 are
chosen. The resulting transfer function is
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~200(s + 2.656)

17T s (s +12.24) (61)

This pre-compensator is very simple, but the roll-off at the crossover
region of GW; is of 40 dB / decade whereas a desirable roll-off rate would
be of 20 dB / decade. For this reason a higher order pre-compensator was
designed

_900(s +1)?

1T s (s +8)?

Both pre-compensators have been tried. The bode plots of the corre-
sponding shaped plants are in figure 6.1.

(6.2)

Shaped plants

|
a
o

=100

-150

Phase (deg); Magnitude (dB)

—200 e

—250} - -
-300
-350
P

—450

Frequency (rad/sec)

Figure 6.1: Shaped plants

The bode plots of the corresponding feedback controllers K = W1 K,
compared to that of the mixed sensitivity controller are in figure 6.3 and
6.4. For implementing the controller the configuration shown in figure 6.2
has been found useful when compared with the conventional set up.
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—_— KS(O)V&;(O) —( )—= W,

Figure 6.2: Implementation of the loop-shaping controller

This is because the references don’t directly excite the dynamics of K,,
which can result in large amounts of overshoot (classical derivative kick).
The constant prefilter ensures a steady-state gain of 1, assuming integral
action in W; or G. The response of the controllers to an input step is shown
in figures 6.5 and 6.6. The values of the overshooting and settling time

Y
Q

|

corresponding to these simulations are in table 6.1,where

1. Controllers (a , a*) have been designed using 6.1, and controllers (b ,

b*) using 6.2.

2. The (*) indicates the controller is implemented in the conventional
way and ( a, b ) have been implemented using the special setup to

avoid large overshooting.

Controller | Overshooting % | Settling time t, (sec)
a* 43 3
a 2 2.1
b* 15 4.7
b 0 2.7

Table 6.1: 1 D.O.F Loop-shaping controller specifications
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Figure 6.4: 1 D.O.F Loop-shaping controller (b)
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Figure 6.6: 1 D.O.F Loop-shaping controller (b)
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6.2 2 D.O.F controllers

In this section a two degrees of freedom controller is developed. The scheme
used for this purpose is proposed in [10]. The feedback part of the controller
is designed to meet robust stability and disturbance rejection requirements in
a manner similar to the one degree of freedom loop-shaping design procedure.
An additional prefilter part of the controller is then introduced to force the
response of the closed-loop system to follow that of a specified reference
model T,.y. Both parts of the controller are synthesized by solving the
design problem illustrated in figure 6.7.

ref

Figure 6.7: 2 D.O.F H,, loop-shaping design problem

The design problem is to find the stabilizing controller K = [K; K]
for the shaped plant G, = GW; with a normalized coprime factorization
G, = M, 1N, , which minimizes the H,, norm of the transfer function
between the signals [rT ¢T]7 and [ul yT €T]T. The problem can be cast into
the general control configuration and solved suboptimally using standard
methods and -y-iteration. The control signal to the shaped plant u, is given
by

et 51

where K is the prefilter, K, is the feedback controller, 8 is the scaled
reference, and y is the measured output. The purpose of the prefilter is to
ensure that

I(Z = GoK32) ' GoK1 — Treflloo < 7P7°
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6.2.1 Nominal designs

The main steps to synthesize a two degrees-of-freedom H,, loop-shaping
controller are :

1. Design a one degree of freedom controller as in the previous section,
hence W;.

2. Select a desired closed-loop transfer function Tres between the com-
mands and controlled outputs.

3. Set the scalar parameter p to a small value greater than 1; for example
something in the range 1 to 3.

4. Solve the H,, optimization problem to get K = [K; K.

5. To give exact model-matching at steady-state, replace the prefilter K
by K1 W; where

Wi = [(I - G,4(0)K2(0)) 7' G4(0) K1(0)] " Tref(0)

In this section two prefilters, those designed in the previous one, are tried

_200(s + 2.656)

Ly e 12.24)

(a)

and

_900(s +1)?
~ s(s+8)?

The reference model was at first the same as that in section 4.3 with
a =3 and 8 = 6, but it turned out to be too slow so it was changed to

(b)

1

azﬂZ%(s +3)
(s + a)*(s + B)?

where o = 4 and 8 = 6. The response to a step input of both reference
models can be seen in figure 6.8. Finally the scalar parameter p is taken as
p = 3 in both cases. The response to a step input of the 2 D.O.F H, loop-
shaping controllers, compared to that of the “LQG+I+FF” (b), is shown in
figures 6.9 and 6.10.

(6.3)

Tres(s) =
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Reference models

0.012 T Y

0.01

0.008 =+ renetieafionaiioi. . diL,

0.006

0.004

Tref in section 6.2.1 |
Tref (b) in section 4.3

Figure 6.8: Reference models

Controller Settling time ¢, (sec) | Overshooting %
2 d.ofLS (a) 1.2 0
2 d.ofLS (b) 2.0 0
“LQG+I+FF” (b) 1.1 2

Table 6.2: 2 D.O.F Loop shaping controller specifications
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Figure 6.10: 2 D.O.F loop shaping controller (b) and “LQG+I+FF” (b)
compared
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Chapter 7

Robust performance : a
comparison

In previous chapters the design of various controllers has been described, as
well as their performance when simulated with the nominal plant. In this
chapter we show the results of a series of simulations in which the values
of the plant parameters my and ¢y are varied. First the controllers with
similar or comparable nominal performance are grouped. This classification
is shown in table 7.1.

| Controller | Settling time ¢, (sec) | Overshooting % | Group |

| PI 4 0 | 1 ‘

PID 2.4 4 2

1 d.ofLS (b) 2.7 0 g
LQG+I+FF (a) 1.9 1 3
2 d.o.f LS (b) 2 0 »
1dofLS (a) 2.1 2 2
LQGHI+FF (b) 1.1 2 4
Mixed Sens. 1.1 0 z

2 d.ofLS (a) 1.2 0 ”

Table 7.1: Controller classification

7.1 Simulations

In this section the results for the different groups mentioned above are
shown. In the tables the settling time (¢,) in seconds and the overshoot-
ing (os) in % are given for five different experiments :
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[y

. (nominal) simulations with the nominal plant .

N

. (Mg + 1.5) second mass is increased with 1.5 Kg .
3. (m3 — 1.5) second mass is decreased by 1.5 Kg .
4. (ca + 3) second damping coefficient is increased by 3 N/ms .

5. (cz — 3) second damping coefficient is decreased by 3 N/ms .

The experiments varying the mass would correspond with adding three
brass weights to the second mass carriage or leaving it empty. As for the
variations in ¢y, similar ones may be achieved in the real plant manipulating
the screw in the damper.

7.1.1 First group of controllers

This group only contains the PI, which is noticeably slower than the others.
The following graphics show the behaviour of the perturbed closed loop
system compared to the nominal one. The results are summarized in table
7.2.We can see the variations that more noticeably affect the behaviour of
the system are those in ¢s.

experiments | Settling time t, (sec) | Overshooting %
nominal 4.0 0
ma+1.5 3.7 3
my -1.5 4.2 2
c2+3 6.8 6
c2 -3 4.3 0

Table 7.2: PI simulations
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7.1.2 Second group of controllers

In the second group, the controllers to be compared are the PID and the one
degree-of-freedom loop-shaping controller designed with higher order weight
(b). The following graphics show, for each experiment, the behaviour of the
closed loop system for both controllers. The results are summarized in table
7.3. We can see that in general the loop shaping controller is better than
the PID, except for the last case.

nominal | my+1.5 | ma-1.5 | ¢c3+3 c9-3
PID t,=2.4 |t,=3.6 |t,=2.5 |¢t,=4.4]|1,=2.3
os=4 0s=06 os=4 os=T7 os=1
1d.ofLS (b) | t,=2.7 t,=1.8 |t,=2.9 |¢t,=2.6 | {,=3.8
0s=0 os=0 0os=0 [os=1 [ o0s=(0)

Table 7.3: Second group of controllers
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Figure 7.5: (2). Simulation with nominal plant
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7.1.3 Third group of controllers

In the third group, the controllers to be compared are the first “LQG+I+FF”
with @ = 1007, the 2 D.O.F loop-shaping controller designed with the higher
order weight (b), and the 1 D.O.F loop-shaping controller (a). Note the first
two controllers in the list have two degrees of freedom. As can be seen in
figures 7.11 to 7.14 and in table 7.4, their performance is equivalent. With
the 2 D.O.F loop-shaping controller there is in all cases less overshooting
but the settling time may be slightly bigger, except in the last case in which
is clearly better than the “LQG+I+FF”. As for the 1 D.O.F loop-shaping
controller (figures 7.15 to 7.18), we can see in some cases its performance is
comparable to that of its two degree-of-freedom counterparts but in general

the behaviour of the perturbed closed loop system is worse.

nominal | mg+1.5 | mg-1.5 | ¢3+3 c2-3
LQG+I+FF (a) | t,=1.9 t,=1.6 | t,=2.0 | t,=1.9 | {,=2.1
os=1 0s=3 08=2 os=4 os=0
2 d.ofLS (b) t,=2.0 t,=1.8 | t,=2.4 | t,=2.3 | t,=1.7
os=0 os=1 os=0 0s=2 0s=0
1d.ofLS (a) t,=2.1 t,=3.2 | t,=2.4 | t,=4.1 |t,=3.5
0s=2 0s=8 0s=2 | 0os=6 | os=(0)

Table 7.4: Third group of controllers
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Figure 7.18: (3). Varying damping : c3-3

7.1.4 Fourth group of controllers

The controllers to be compared in this subsection are the second “LQG+I+FF”
with Q=750I, the 2 D.O.F loop-shaping controller designed with the low or-
der weight (a) and the mixed sensitivity controller. The latter gives very
good results in the simulations, but it doesn’t have integral action so it is not
useful for the real plant as it was explained in section 5.2. In figures 7.19 to
7.23 the “LQG+I4FF” is compared with the mixed sensitivity controller,
and in figures 7.24 to 7.28 with the 2 D.O.F loop-shaping controller. In
this last comparison we can see both controllers give similar results.

- nominal | my+1.5 | ma-1.5 | ca+3 c2-3

LQGHI+FF (b) | t,=1.1 t,=1.9 |t,=14 |t,=2.3 ]| t,=2.1
0s=2 os=12 os=2 0s=6 | os=(0)
Mixed Sens. t,=1.1 t,=2.0 |t,=1.8|t,=2.0|¢,=1.9
os=0 os=6 o0s=0 os=0 0s=13
2 d.o.fLS (a) t,=1.2 t,=2.2 |t,=1.8 | t,=1.5|t,=2.8
0s=0 0s=8 0s=2 |os=b | os=(4)

Table 7.5: Fourth group of controllers
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Figure 7.19: (4). Simulation with nominal plant
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Figure 7.20: (4). Varying mass : my+1.5
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Figure 7.21: (4). Varying mass : my-1.5
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Figure 7.23: (4). Varying damping : cp-3
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Figure 7.24: (4). Simulations with nominal plant
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Figure 7.25: (4). Varying mass : my+1.5
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Figure 7.26: (4). Varying mass : mjy-1.5
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Figure 7.27: (4). Varying damping : ¢3+3
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Figure 7.28: (4). Varying damping : ¢-3

56

30



7.2 Experiments

In this section, the tests with the experimental set up for the flexible servo
are described. In all cases the plant parameter values are the nominal ones.
Two controllers have been tried : the LQG+I4+FF (b) and th 2 degrees-of-
freedom loop-shaping controller (a). The reference input is not identical for
all the tests, but we can consider they are qualitatively equivalent. They
consist of a series of steps with different amplitudes and sign. The results
of the tests are presented in figures 7.29 to 7.32. Looking at the graphs of
the second mass position we can see that

- in some transients the mass sticks and slips giving the plot of the
position the appearance of a “staircase”.

- there are constant errors for long periods of time despite the presence
of integral action in the controllers.

- there are “jumps” of the mass position.

These peculiarities are due to friction phenomena. When the masses
draw close to the reference, they slow down. For low speeds friction may
be bigger. In addition if the masses stop the control action must overcome
the oposition of static friction which is always bigger than dynamic friction.
Once there is enough energy to counteract this oposition, the masses may
speed up too much producing the above mentioned “jumps”. In industry
this problem is sometimes called “hunting”.

As for the control action, there is not a clear pattern. Working with
the plant , one can notice it may be harder to move the masses in the
positive direction than in the negative one. This may explain why most of
the “jumps” occur for positive reference. Possible solutions may be

- to introduce a dead-zone before the integrator of the controller. With
this solution there always will be steady-state error but we may avoid
those “jumps”.

- to get a better model of the process including all these friction phe-
nomena and redesign the control.
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Figure 7.29: Test with LQG+I+FF (b)
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Figure 7.30: Test with 2 D.O.F Loop-shaping controller (a)
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Figure 7.32: Test with 2 D.0O.F Loop-shaping controller (a)
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Chapter 8

Robust controller design
based on linear programming

This chapter presents the calculations for a particular controller design prob-
lem to which the algorithm explained in [5] can be applied. Both unstruc-
tured and parametric uncertainty are dealt with, using the parametric co-
prime factor descriptions shown in section 3.2 . These plant descriptions are
of the form

B N(s)+ 6N5s(s) + A(s)Na(s)
§,A

o= o)+ 0N _ (8.1)
M(s) + 6M5(s) + A(s)Ma(s)

where

- M~1N is the coprime factorization of a nominal transfer function. In
our case this nominal transfer function corresponds, as in the previous
Hoo loop-shaping designs, to a weighted plant.

- Mg,M A,ﬁg, N4 are all fixed known transfer matrices with elements in
RH.

-6 e R™ and A € RH, are uncertain but bounded in norm.

In our particular case we use the representation derived from the block
diagram shown in figure 3.3. In that case

I (s) + 65(s) + An(s)

58 7 M(s) + 6 M5(s) + Anr(s) (82)

and consequently, in the more general form A = [AN Ap] with
Na(s)T =[1 0] and Ma(s)T =[0 1].
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Then, following [9] as explained in Appendix C, the condition used for
controller design is

[1+[6 A] [__JJ\\,’Z ﬁﬂ BVJ ;;] [Cf”_l € RH,, (8.3)

and the controller is
K=(-MQ)X-NQ)'=(X-QN){(Y-QM) Qe RH,
As mentioned above, a shaped plant

G, =GW,

is used in order to “introduce” performance specifications.The weights
used for the weighted plant are those already presented in chapter 6 :

_200(s + 2.656)

W = s (s 12.24) (2)
and
~900(s + 1)?
Wi = s (s + 8)? (b)

In order to get N, M, N, X, Y, we can use the method shown in
Appendix B. In the SISO case N = N, M = M, ... To get the other entries
in (8.2) it is necessary to know first the transfer function of the perturbed

plant with [my , ¢z as uncertain parameters

k
(9192 — k2) + 819182 + 2915

Gs

where g1 = mys% + ¢35 + k and ga = mys? + cas + k. The perturbed
plant when weighted becomes

~ Wik
* 7 (9192 — k%) + b1915% + b2g1 8

Gs
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If for the nominal weighted plant

G,=M™N

then we can define a factor % such that

N M 1
Wik (9192 — k%) P

and consequently it may be assumed that

_ with§ =[§; §,]. Since parameter k has been considered to be certain,
Ns = 0. As for the unstructured uncertainty A = [Ay Apg), it is possible
to include the factor % in a new unstructured A’ where

An
Ay ==X
MTp
A
Ay ==X

p
Finally, we have Na(s)T =[1 0] and Ma(s)T =[0 1].
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Chapter 9

Conclusions

Within robust control there is a distinction between :

Robust stability The system is stable for all perturbed plants about the
nominal model up to the worst-case model uncertainty.

Robust performance The system satisfies the performance specifications
for all perturbed plants about the nominal model up to the worst-case
model uncertainty.

In this thesis special attention has been payed to the second concept. Around
it two parallel tasks have been developed. On one hand a series of control
design techniques have been applied to an example of a flexible servo and
finally compared. On the other hand two methods to represent parametric
uncertainty have been analyzed, subject to a particular condition in order
to be able to apply convex optimization. This analysis led to the choice of
the second mass m, and damping ¢, as the only parameters to be regarded
as uncertain. Turning back to the control techniques, these can be divided
in two groups

- PI, PID and “LQG+I+FF” which have provided a reference for the
performance to be expected from subsequent controllers.

- Hoo techniques, specifically mixed sensitivity and Ho, loop-shaping.

All controllers have been ranked according to their nominal performance. As
the specifications become more demanding only the two degrees-of-freedom
controllers are able to meet them. An exception is the mixed sensitivity
design which nevertheless is not useful in practice, since the presence of a
dead-zone in the plant makes necessary to have integral action in the con-
troller. The two last two degrees-of-freedom controllers have been tried with
the real plant. Their performance is very similar and in both cases the prob-
lems with friction are patent. A study of these problems and their possible
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solutions could be an interesting topic for future work. Other interesting
topic may be a more in-depth and analytical study of robustness.
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Appendix A

Plant identification

Since the model of the plant is given, it is only necessary to identify the
parameters. To do so a series of open loop experiments has been carried
out. In order to get the parameters corresponding to one mass , the other
one is blocked so the resulting system follows the differential equation

mij+cy+ky=0 (A.1)

with characteristic equation

mA +ed+ k=0 (A.2)
c c? k
A=—— — = — A

2m N 4m2 m (A-3)
if ¢ < 4mk then we have complex roots —a 4 i3 where a = 3, and

8= % - 4f:2. The solution of the differential equation is of the form
y = Are"* cos Bt + Ase”* sin Gt (A.4)

or

y = Ae *sin(Bt +§) A, § const (A.5)

Equation (A.1) can be written as

5+ 2¢wny + Wiy =0 (A.6)
SO

a = (wy (A.7)
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B =wny/1— (2 (A.8)

In the experiments the mass is displaced a distance A from the origin
and let free. So we have § =0 and t = Z’rT" The initial position of the mass
Yo = A and after n periods

Yn = Ae~%n = Ae" B2 (A.9)
with
a ¢
- = —— A.10
i e (A.10)
Taking logarithm of y,,
¢
Iny,=InA - ——=2mn A1l
' Vi@ -
1 . % ¢
— In= = —— A.12
TR (812)

With (A.8) and (A.12), and measuring experimentally yo , ¥» and 8 =
t12.+7:o’ the parameters ( and w,, are calculated. Knowing each brass weight
has a mass of 500 & 5g we can do several experiments with different number
of masses in the carriage. Calling the combined mass of the weights in the
carriage m,,, we can solve for the unloaded carriage mass m. and spring

constant k :

k 2
= Wn1
My + M (A.13)
k 2
= Wn2
me

The damping coeflicient is found equating the first order terms in the
equation forms

82+ 2wns + a.:,z1 =82+ i.‘s + i (A.14)
m m

The main results of the parameter identification are in section 2.1 “De-
scription of the plant”.
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Appendix B

Coprime factor descriptions

In this appendix, the method to get the coprime factorizations of G(s) is

outlined. The main references are [4] and [8].
For each proper real-rational matrix G there exist eight RH,-matrices

satisfying
G=NM"'=M"1N
which are the right and left-coprime factorizations of G, and
X -Y][M Y] _ I
-N M||N X]|~
The method starts with a minimal state-space realization of G, with [A,B,C,D]

real matrices and (A,B) stabilizable, (C,A) detectable:

¢ = Az 4+ Bu
y=Cz+ Du

A real matrix F is chosen such that Ap = A + BF is stable, and the
vector v = u — Fz and the matrix Cp = C + DF are defined. Then

z = Apz + Bv
u=Fz+v
y=CFpzx + Dv

The transfer matrix from v to u is
M(s)=I+ F(s— Ap)™'B
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and that from v to y

N(s)= D+ Cr(s— Ar)"'B

therefore

u=Mv,y=Nv
so that y = NMlu = Gu.

Factors M and N are built similarly choosing a real matrix H such that
Ay = A+ HC is stable and defining By = B + HD. The state-space
representations of M and N are [Ag, H,C,I] and [Ag, By, C, D] respec-
tively. Matrices F and H can be chosen placing the poles of Ar and Agy
arbitrarily whithin the complex left-half plane, but can also be built solving
the Generalized Control Algebraic Riccati Equation given by

(A-— BS™'D*C)*X + X(A— BS™'D*C) - XBS™'B*X + C*R™'C =0
and the Generalized Filtering Algebraic Riccali Equation given by

(A— BS™'D*C)Z + Z(A - BS™'D*C)* - ZC*R™'CZ + BS™'B* =0
with R = I+ DD* and § = I+ D*D.The, so called, control gain F and

filter gain H are

F=_-5YD*C+ B*X
H = —(BD* + ZC*)R™!

Formulas for X,Y,X,Y can be found in [4].
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Appendix C

Youla parameterization

Many synthesis problems can be formulated in the following way: given G,
design K so that the feedback system

- is internally stable.

- acquires some additional desired property, for example, robust stabil-
ity.

A method to solve these problems is to parametrize all K's for which (1)

is true, and then to see if there exists a parameter for which (2) holds. In

our case, as explained in [9], using the Youla parameterization of internally

stabilizing controllers we may assume that the admissible transfer functions
from w to z in figure 3.1 are given on the form

Ty + T2Q

where Ty € RH”X! and T, € RHTX" are fixed and @ is any transfer
matrix in RH?X!. If the uncertainty loop w = 6z is closed,the system
becomes robustly stable if and only if

[1-6(Ty +TeQ)] ' € RH,, for |6 <1

If the parametric coprime factor description is used, the condition for
robust stability can be rewritten as

AT Y s

Robust performance problems can be rewritten as robust stability prob-
lems in a standard way, but the approach in [9] will apply only if they
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have the form of an H,, bound on the response to a disturbance that enters
additively to the signal w.

A brief account of the Youla parameterization is given in the following
lines. First it is useful to look at the standard set-up shown in figure C.1.

w zZ
———

Figure C.1: Standard block diagram

In this figure w is the exogenous input, tipically consisting of command
signals, disturbances, and sensor noises;u is the control signal; z is the out-
put to be controlled,tipically consisting of tracking errors, filtered actuator
signals,etc.;y is the measured output. G represents a generalized plant that
can be partitioned as

G111 Glz}
G =
[Gzl G2z

so we have the algebraic equations

z= an + G12u
Yy = Gaw + Gau
u= Ky

To define internal stability two additional inputs are introduced as in
figure C.2.

If the nine transfer matrices from w,vy,vs to z,u,y are stable, then we
say K stabilizes G. (To simplify the theory is usually assumed G is strictly
proper so the nine transfer matrices mentioned above are proper).

In [4] it is proved that K stabilizes G if and only if K stabilizes G3. To
get a parameterization of all K's which stabilize Ggg, first a doubly-coprime
factorization of (G55 is obtained and then

K=Y -MQ)(X-NQ)'=(X-QN)Y(Y -QM) Q€ RH,
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w z
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G
v u
K
y )

Figure C.2: Diagram for stability definition
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