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1. Introduction

The speaker is definitely the weakest link in an audio reproduction chain, and to verify that by
measurements is straightforward. By correcting the amplitude and phase response of the speaker
we should expect some measurable and audible improvements.

The possibility of doing this digitally will give us methods for doing much more accurate
corrections and to make the filters easily changeable. We can also use filter types that were never
possible to realize with analog components. We will in this stady analyze and compare three
different filtering methods and implement these in DSP real-time hardware to verify the results.
Our main purposes for the project have been to investigate and to gain knowledge about all the
parts included in such a correction system, and to draw conclutions on what kind of filtering
should be used. The report concentrates on linear filtering of a loudspeaker considered as a linear
and time-invariant system (LTI-system), through compensation for nonlinear distortion could be
made using nonlinear techniques.

Though the entire path from source to listener is important, we will here concentrate only on
correcting the loudspeaker in a free field situation. The filters are aimed to be the inverse transfer
function of the loudspeaker and could be used in the digital audio-data stream or in the analog
low-level signal path.

The technique is very new to the audio industry, and is so far only implemented in a handful
Ioudspeakers on the hi-fi market, all very expensive, and in some stand-alone boxes on the
professional market. This is though believed to be the future of high quality audio and a widely
expanding field in audio engineering,.

Similar works have been presented in a few papers, like [1], [2], [3] dealing with adaptive
systems, {4] concentrating on warped filters, [5] dealing with recursive filters.

First, we will give an overview of some loudspeaker characteristics and discuss the general
equalization of a loudspeaker. We look at the generating of the loudspeakers response and the
degree and type of correction that should be done.

In chapter 3 we look through some gained knowledge on inverse systems and the inversion of
non-minimurn phase systems.

In chapters 4, 5, and 6 the background to the three filter types is analyzed and the implementation
and results for each method are discussed.

We present a summary and take a look at the future possibilities of the technique in chapter 8.

In Appendix we take a look at the DSP hardware used, and the necessary programming is
presented. We provide some considerations on measurement techniques, and the used Matlab
scripts and assembler programming is listed.




2. Speaker Equalization

We should start with putting up some obvious goals for a system that would equalize the response
of a speaker:

» Obtain flat amplitude and linear phase response from the loudspeaker.

e Increase the degree of freedom in loudspeaker design. When designing a speaker we must
consider many requirements such as the contro! of amplitude frequency characteristics,
directivity, acoustic power output, and nonlinear distortion, The purpose is to free us from at
least the amplitude frequency characteristics.

» Design a system whose frequency characteristics could be changed at will by the listener.

Every speaker can be considered as a multi-mode vibrator, and will have specific points of
resonance and therefor the speaker output will have amplitude and phase variations at these
frequencies. The speaker will also have phase-shifts along with frequency. Tt is virtually
impossible to compose an accurate mathematical model of a speaker from physical principles,
due to the complexity of those principles involved. Therefor the inversion of a loudspeaker mode!
is impossible, and we can only make some general assumptions about the system. We are left
with the possibility to do measurements of the speaker’s performance, and this way try to work
out a way to compensate for its flaws.

To be able to pre-process the signal, we must first have a good view of the speaker’s
characteristics, and different ways of achieving this is presented in the Measurements appendix.
We will use the speaker impulse response and from this analyze its frequency response with the
discrete fourier transform (DFT).

Generation of the impulse and frequency response

We have worked with two different speakers called the small speaker and the big speaker. They
are described in appendix B. The impulse response of the small speaker, measured as described in
appendix A,can be seen below,
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Figure 2.1: Impulse response for small speaker shown with 1024 and 128 samples.

Because of the relatively high noise level in the measurements, long impulse responses are not
particularly useful, and to obtain accurate information about low-frequency response is not
possible. The wavelength of 20Hz is represented by 2200 samples, and it’s obvious we can’t get
frequency resolution in the lower bass region with the shorter impulse responses we’re using.
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The corresponding frequency response is shown in figure 2.2.
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Figure 2.2: Frequency response for small speaker with 4096 point FFT. To the left we have the

unsmoothed response, and to the right with 1/8-octave smoothing.

This impulse response is indeed a near ficld measurement to suppress the acoustical influence of
early room reflections. We see that we have great variations in amplitude over the whole
frequency band, and a couple of sharp notches. The raw frequency response is somewhat difficult

to analyze, and the smoothed one is generally used.
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Figure 2.3: The phase response of the small speaker.
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The phase response of the speaker is showed to the left. It is generally hard to analyze the phase
plot because of noise and delay in the system. An example of a linear phase plot is showed in
figure 2.5.
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The responses of the bigger 3-way speaker are shown below in figure 2.4,
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Figure 2.4: Impulse response, phase response, amplitude response and smoothed amplitude response for
big speaker. 4096 point FFT and 1/8-octave smoothing.

In figure 2.4 we see a more complicated impulse response that could arise from bad alignement of
the drivers and from the complex cross-over filter, among other things.

Degree of equalization

One of the first things we need to consider is the degree to which we need to equalize the system.,
Different types of amplitude variation affects the perceived sound quality to various degrees, and
a perfectly flat amplitude response for a single point in space may not always be the optimal
solution.

It is known from experience that sharp notches in the response introduce less coloration than
peaks do. Consequently the filter should seek to accurately remove peaks, but can be less accurate
about correcting sharp notches without significantly affecting the perceived performance.

Also, if the frequency characteristic of the speaker has sharp dips at certain frequencies, the
amount of compensation becomes very great at these frequencies. This could cause a power
amplifier to saturate, and to avoid this the input signal must be decreased. Then the signal-to-
noise ratio of the system would decrease considerably.

Sharp dips in near-ficld measurements are aiso likely to arise from problems when pressure-
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waves are out of phase and thus extinguish each other. This dip will probably vary both with
distance and angle from speaker, and correction for these deviations could make the result even
worse elsewhere.

As we listen over a wider area in space (or probably in our living room) we should always make a
tradeoff between the accuracy of the correction at one point and the listening area over which it is
valid. Making several measurements in relevant positions and weighting those together would be
a preferable method. In this project though we have several practical problems with such a setup,
and since we are more interested in the comparison of different methods we will only do single
point measurements.

Another aspect is that we hardly have any reliable low-frequency response under 100Hz, since
the dynamic range of the measurement system is poor and we also have to truncate the response
to avoid room-interactions. A 1024 sample response gives us a frequency resolution of 43Hz, and
we would need more than 2200 samples to get 20Hz resolution. Thus we should here limit our
frequency analysis to above 100Hz. Trying to correct the lack of bass extension for a small
speaker could also be a fast way of overheating and damaging the driver.

Since the speakers, at least the small one, have no significant output above 10kHz, and since the
real-time system we have for evaluation is also limited to frequencies below that, we simplify the
system compared to standard digital audio systems and restrict our analysis to below 10kHz.

We could therefor aim our correction towards a target function with flat amplitude response and
linear phase, i.e a bandpass filter which response is shown below in figure 2.5.
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Different Methods

These amplitude and phase variations can be compensated for, and is to some degree being done,
in the analog domain by speaker designers today. There are systems that have a low-level
compensating network, incorporating feedback signals from drivers etc. Often is amplitude and
phase equalizing done in the cross-over network in the speaker.

Far better would be to do it with digital signal processing, which would produce a much more
flexible and accurate result.

Previous work that has been done in the field include [1],where they have been using a
combination of FIR and IIR filters for compensating sepatately for the minimum phase and
excess phase parts. In [2] a frequency inversion technique have been realized, [3] is realizing an
adaptive system witch produces a flat frequency response and linear phase response in the
listening position. [4] does a basic study on warped TIR and FIR filters and [5] is concentrating on
recursive IR filters for amplitude equalizing. All reports, exept [3], are dealing with equalizing of
the Joudspeaker in free field conditions.

An investigation of what seems to be possible solutions gives us three obvious methods to
evaluate:

s Frequency Inversion.
» Least Squares with an offline solution.

e Adaptive LMS algorithm with a possible online adaptation.




3. Design of a Filter

3.1 INVERSE SYSTEMS

The design of a digital filter for correcting a system H(z) is a search for the inverse
characteristics of the system to be corrected. The inverse is then used as a filter cascaded with the
input signal and would theoretically produce a transparent system with a perfect impulse
response. A system with system function H(z) has the corresponding inverse system function
Hi(z) which is defined to be the system with system function such that if it is cascaded with H(z),
the overall system function will be unity:

G(x)=H(2)H,(2) =1 (3.1
1
H/(z)= e (3.2)

In the time domain:

gm)=h(n)*h.(n)=0(n) (3.3)

Any linear time invariant (LTI) system can be written in the following form:

A

(l_ckz_l)
Ty k=0

H@=25
° Tla-dz™)
k=0

3.4

N
[Ha-4,27

b, -
H()=—"8— (3.5)

& —
¢ g(l_ckz 1)

Where the ¢’s are the nonzero zeros and the d’s the nonzero poles of the system. The inverse of
the transfer function H(z) is as the interchanging of the poles with the zeros, and vice versa,

If H(z) is stable and causal, as a loudspeaker is, all of the poles must be 1ocated inside the unit
circle (otherwise the response would not be stable). But there are no such restrictions about the
zeros, which can be located both inside, outside and on the unit circle. Since the inverse system is
an interchanging of the zeros with the poles of the original system, it means the inverse will be
stable and causal only for systems which have all their zeros inside the unit circle. Such systems,
with a stable inverse, are called minimum phase systems.




3.2 MINIMUM PHASE SYSTEMS

A minimum phase system has some properties worth mentioning. For all systerns H(z) with a
causal and stable impulse response that have the same magnitude response as a minimum phase
system H,,;,(z), the partial energy of the impulse response are delayed the least for the minimum
phase system.

IH i (€ jm)] = IH (ejw)l (3.6)

Sl 0 = 3 k)] 67
pary pr

As n reaches infinity all of the systems with the same magnitude response have equal partial
energy.

The minimum phase system also have the minimum group delay for all frequencies.
grd[H . (e')) < grd[H (') (3.8)

Since of all possible pole-zero systems with the same magnitude response, there is only one
minimum phase system it seems reasonable that the phase response of a minimum phase system
can be totally derived from the magnitude response. There is a unique relationship between the
magnitude response and phase response of a minimum phase system that is derived from the
discrete Hilbert transform relationship.

arg[X (e’)] = ——z%pj.lan(efﬂ’)lcot(w;HJdG (3.9)

Where o denotes the Cauchy principal value of the integral that follows.

Obviously, there is no problem to make a causal inverse of a minimum phase system,
unfortunately loudspeakers are normally not minimum phase. The cross-over networks and the
design with multiple drivers positioned at different places on the loudspeaker cabinet generally
results in non-minimum phase systems. Loudspeakers with just a single driver that lack cross-
over networks could more easily be minimum phase system, but doesn’t necessarily have to.

3.3 NoN-MINIMUM PHASE SYSTEMS

A non-minimum phase system with no zeros located on the unit circle can always be expressed as
a minimum phase system cascaded by an allpass system with constant amplitude response:

H(z)=H 4, (2)-H ,(2) (3.10)

The minimum phase part is obtained by reflecting all zeros that is located outside the unit circle
as their conjugate reciprocals inside the unit circle.




If zeros of H(z) which is located outside the unit circle is denoted cj, to oy the minimum phase
part and the allpass part will be as follows:

-1

H(1 €,z

A
H(l_ Ckzq)

dy k=0 J+ =
H(z)—b—0 = LA G.11)
1 ~I
’ [Ta-dz" I1¢
. E=0) , k=l41 Cp
Hm-:(z) Ha;((?-}

By inverting the minimum phase part H,,;,(z), the result will be an inverse I/H,..{z) that cascaded
with the system F(z) have a flat magnitude spectrum but with a phase response as Hep(z):

G(z)=H_, () H,(z)=1H_,(z) (3.12)

—,,...----—1 .
H_ . (@)

min

This method to derive a filter is used in our Inverse Minimum phase filter described in chapter
4.3,

Another way to express a non-minimum phase system is to split it in a maximum phase part and a
minimum phase part. A maximum phase system has all its zeros located outside the unit circle.

H(z)=H _;,(2)- H (2 (3.13)

If zeros of H(z) that are located outside the unit circle are denoted ¢y, to ¢y the minimum phase
part and the maximum phase part will be as follows:

g
[[a-¢z

a, &
H(z):b—“‘N H(1 ¢z ™) (3.14)
(1) H(l dkz‘l) k=T+1 -
k=0 mas
Hoio

We can now make a separate inversion of the minimum phase part H,,(z) and one of the
maximum phase part Hafz). Himay is the inverse of H,,;,(z) and is causal and stable. The inverse
of H,,.{z) results in a noncausal stable inverse Hna(z).

H...ax can be expressed by being expanded in power of 7 using long division:
1 _ I
H o _
mnx(z) H(l_ckz 1)

k=J+1

H, . ()= =a,z+a; 2’ +a,2’ ... (3.15)

The expanded serie will have infinite length which means we have to truncate the sequence to
wanted length L to be able to introduce a delay that will make this filter causal. The result is an

estimate of H; . called H 1—mex With finite length L:
H _ (D=az+az +..+a_ 2" (3.16)

By multiplying this estimate with a pure delay with L. sample, 7" the inverse is made causal and
the resulting filter will be:

Hz)=z" H, .(2) a._. (2 (3.17)

This is a causal estimate to an inverse of the system H(z). The distortion compared to a perfect




inverse, comes from the introduced delay and the truncating of the infinite sequence, In chapter
4.2 we have derived a filter, called Inverse Filter, using this method

A question may arise; What if the system, we are trying to find the inverse of, contains zeros
located on the unit circle? This is not an uncommon fact, as example most common digital filters
have zeros located exactly on the unit circle, In that case a stable inverse can not be made, neither
causal nor non-causal, cause the inverse would then include poles on the unit circle. This can
easily be understood by the fact that a zero on the unit circle means a dip to zero in the magnitude
response at the corresponding frequency. The magnitude of the inverse have at that frequency a
magnitude that multiplied to zero should be one, and no such number exists. A loudspeaker have
dips close to zero in the magnitude response at very low frequencies and very high frequencies.
Since we are using a bandpass targetfunction, we overcome that problem.

3.4 CONCLUSIONS

We have seen that it is not possible to design an exact stable and causal inverse of a non-
minimum phase system, but by accepting some distortion of the equalized system G(z) a filter can
be designed. Two ways of doing this were described, basically to introduce a delay (and some
smaller artifacts due to the truncating of an infinite sequence) or by accepting a nonlinear phase
response of the equalized system.

Both of the above listed options should be considered. A slight delay of the system is normally
not a problem, if not the delay is so long that it will be noticeable in systems when, for example,
picture and sound is synchronized. A nonlinear phase is much less audible than a distorted
magnintude response.

10



4. Frequency inversion

With frequency inversion we mean methods to find the inverse characteristics of a system in the
frequency domain by use of the discrete fourier transform (DFT) and its inverse (IDFT).

This is as close as we get to analytically find the inverse with the z-transform, which would be to
hard because of the problem to factorize a 1023:th-order polynomial, which corresponds to the
1024 samples long FIR system we estimate the speaker with.

The DFT corresponds to the Fourier transform by samples, equally spaced in frequency, of the
continuous Fourier transform.

Fourier transform:

H(e®Y=H(z7)= N Lpim 4.1
(e’) (jz) _Zm',x(n) e (4.1)

Discrete Fourier transform:

N-1
X(ky= Y x(k)-e " k=012,.N~1 (42)
n=0

Inverse Discrete Fourier transform:

N-1
x(n) = %ZX(IC) LN =012, N 1 (4.3)
k=0

As already mentioned we use a target function instead of making a real inverse, because of the
limited bandwidth of the speaker.

There is two obvious ways to design a target function to the frequency inversion methods. Doing
it in the time domain and then take the DFT of that or directly in the frequency domain, We have
used a linear phased bandpass FIR filter designed in the time domain, because it was easy to
design and the same filter can be used for all equalization method we have used in this report. We
did some tests with bandpass filters designed in the frequency domain, but no good results were
obtained, because it’s hard to just design a response in the frequency domain “by hand”, it will
give “discontinues” in the amplitude response.

The bandpass filter were designed in the time domain as a Hanning windowed, linear phase FIR
filter with cutfrequencies at 100 Hz and 9 kHz. The response of the filter can be seen in figare 2.5

By taking the Fourier transform of the speakers impulse response x(r} and the defined target
function dfn), the Fourier transform of the filter f{n) is:

oy D)
Hpg (e )= m (4.4)
4.2 INVERSE FILTER

A nice property of the IDFT is that it will not produce an unstable sequence if not the DFT have
some infinity elements i.c not any poles located on the unit circle, as can be seen from the
formula of the IDFT which is a sum over a finite number of elements.

Any noncausal part will be wrapped around in the timewindow that is defined by the IDFT,
n=[0...N-1} to the end of the sequence. Since the IDFT produces a periodic sequence of length N,
the sequence can be rotated which is equal to a shift in time (pure delay). Because of this we

I



don’t have to care about splitting the system in a maximum phase and a minimum phase part. The
inverse of the maximum phase part will be non causal and wrapped around the time window.

Problems arise because the inverse of a FIR system is always a IR system. By taking the DFT of
a sequence x(n) we automatically estimate the system as a FIR system or a “periodic FIR
system”, because the DFT is taken during a finite time.

When calculating the inverse in the frequency domain and then take the IDFT of the inverse, the
result is a new FIR system. The length of this system will have N samples i.e. just as many
samples as the DFT had. The TIR system, which arise from the inverse of a FIR system (which
was an estimation of IIR in the first place!), will beacause of the DFT be estimated as a FIR
system. This can be choosen to have arbitrarily length by padding the original sequence with
Zer1os.

The estimation of a IIR system as a FIR system is not a problem if the number of samples of the
FIR system is so that the infinite response have declined close to zero. For our small speaker the
impulse response has declined after 1024 sample (see figure 2.1} .

Figure 4.1 and 4.2 is an example of the inversion with DFT/IDFT of some simple signals, one
minimum phase, one maximum phase and one mixed phase. As can be guessed from the figure,
the mixed phase signal in figure 4.2 is a convolution of the minimum phase signal and the
maximum phase signal in figure 4.1. The minimum and maximum phase signal is only two
samples long but needs at least 10 sample to estimate its inverse because of the IIR structure of
the inverse.

1 . : r : . T : 7 1.2 T T T T . 5 T
1 4 1
el i ash
asl - 0.}
0.4 1 G4
0.2 T R 0.2
0 o o & o 0o o a © g 9 4 ? l o l ? N ® ¢ © p ®» 0o 6 O
a2 o2
a4t E 04t
1 1. 1 1 L J L 1 0.4 1 1 1 1 1 1 1

[ 2 4 6 ] 10 iz 14 16 1] 2 4 3 8 10 12 14

Fignre 4.1: A maximum (left) (0.5 1] and a minimum phase (right} [1 0.5] FIR systems inverse by IDFT
{1/DFT),
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Figure 4.2: A mixed phase FIR system [0.5 1.25 0.5] inverted to the left and then rotated to obtain the best
result (right).

Our method of designing this kind of filter, which we call “inverse filter”, is shown as a flowchart
in figure 4.3 there x(n) is the loudspeaker estimated as a FIR system. dfn) is the desired response
and f{n) the ready to use filter. The rotation of the result should be done so the amplitude in the
beginning and in the end of the time window have declined and is close to zero, as seen in figure
4.2,

We can design a filter with arbitrarily length by either taking the discrete fourier transform of
exactly as many sample of x(#), as we want our resulting FIR filter to be. Or take many (more)
samples padded with zeros and then window the long resulting filter to wanted length. Trying
both methods, the conclusion was made that the second alternative is generally the best and gives
more control about what is happening.

IDET

—_——p DFT | %{[k] m L Rotate |

x(n) X[k] fi(m) f(m)

DFT

dn] T

Figure 4.3: Flowchart to our inverse filter design
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4.3 INVERSE MINIMUM PHASE FILTER

To design a filter that is the inverse of the minimuim phase part with the same magnitude function
as the FIR-system we have estimated the loudspeaker with, we must somehow derive the
minimum phase part of the signal. This can be done with homomorphic filtering [6].

Transformation of a signal into its cepstrum is called homomorphic transformation. The cepstrum
corresponding to a sequence x{n) is the sequence J'C'(n) whose z-transform is the logarithm of the
z-transform of x(n). If using the more practical fourier transform, the cepstrum of afn) is:

)= ?1”* J:: [logiX (e jo )l + jarg(X (ej”’ ))]ef‘”"d(o (4.5)

However to derive the minimum phase part we just need the real cepstrum of the sequence, which
is calculated as the inverse fourier transform of the magnitude response only:

c, (n) Zifﬂ long (ej’”Xej“’”da) 4.6)

The complex cepstrum of the minimum phase part of x(n) is calculated as seen in figure 4.4.

Fourier Inverse
————p{ Transform |—p{ In(}) —————  Fourier P)’Emin (n)
. ~ : Transf
x(1m) X (&) R @ e ()

lmim (n)

Figure 4.4 : Minimum phase complex cepstrum

and from the minimum phase complex cepstrum, the searched mimimum phase part of x(n) can
be found:

Fourier Inverse
——p{ Transform ———P exp(:) — —9 Fourier [—P
A 5 ; ; Transform
X (1) X_. (™) X . e X, (1)

Figure 4.5 : Minimum phase part of x(n).

The /,,, () sequence is coming from the following relationship between the real and complex
cepstrum:
X))+ X(-—n
¢, ()= ‘-“(')—Zu 4.7

if X(n)is causal, then:

#y=c (Wi, ) if L, ) =2u(m)- om=[122..] (4.8)
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Calculating this is an easy task in Matlab, using the DFT. Since we calculating the filter in the

frequency domain we directly use X, (¢’*) as:

_DE™) 4.9

joy _
Hﬁ.’t (e )— ijn (eja))

15



4.4 RESULTS

We have constructed filters with the two methods just described for two different speakers, see
Appendix B. The first one, which the filters will be evaluated on, is the smatll speaker with a
single driver upit and without cross-over networks. FIR filters with lengths of 256 and 1024 tap
have been the main case, even though both shorter and longer filters have been tried.

Both the minimum and maximum phase filters were designed with 4096 points for later being
truncated down to the wanted size.

As can be seen in figure 4.6 both of the filters end up with the most energy in the end of the time
window. This shouldn’t happen to the mininum phase inverse, if it weren’t because of the
targetfunction we have used.

0.25 T T T T T T T T 0.25 T T T T T T T T
a2r 1 0.2t
(R 1 .15
0.3F 0.1k
0.05[ 0.05F
0 st O prrdemnt it
-0.05[ .05}
£ 04k
0.15F 016+
-0.2 t ! ! ! : - * . 0.2 L y . v t . L .
¢ 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2800 3000 3500 4000

Figure 4.6: To the left is the inverse filter and to the right the inverse minimum phase filter for the small
speaker.

So both filters have to be rotated, which is possible because of the circular properties of the
discrete fonrier transform, We also truncate them to 1024 samples, which is the longest filter we
will evaluate

0.25 T T T 3 T T T T T T 0.25 T T T r T T T T T
0.2 b 0.2
0.15}) R 0.15
o1r o1%

0.05r 0.05F

.05} .05
04k 010
0151 0150
43'20 pres 260 200 460 500 660 7;30 560 960 1ol00 0'20 100 2f’)0 %0 400 5;)0 soo 760 sao 900 1000

Figure 4.7: Here are the filters rotated and truncated to 1024 samples.
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There is no big difference to window this 1024 taps filters (figure 4.7) with anything else than a
rectangular window. This is because the amplitude of the filters in the end of the timewindow is
already close to the background noise in our equipment, so there will not be any abrupt ending in
the convoluted signal.

The shorter 256 tap filter, will of course end with larger amplitude and could thus be a more
interesting case for windowing. We have tried some different windows, mainly Bartlett,
exponential, and Hanning. The results for the different filters were similar. To use an asymmetric
exponential or asymmetric Hanning window seemed to give slightly better result than the
triangular bartlett window and definitely better results than just truncating, i.e. using a rectangular
window. Here is asymmetric Hanning window used shown in figure 4.9.

0.25 . ; . 0.25 r ; y r
0z ozf i
0.15F . 0.15F
01F a1}
0.05} 0,05 E
0 c,\,\
.05} Q051
041 o1
0.15 -0.15
02 50 100 160 200 250 0Z 50 100 150 200 250

Figure 4.8: The shorter 256 tap filters have a higher amplitude in the end which encourage the use of other
windows than rectangular shown here.

0.25 T T T T T Q.25 T T T

0.2

Q.15
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Figure 4.9: The filters windowed with an asymmetric Hanning window (dotted).

The filters and the magnitude function of the small speaker, should be mirrors of each other. This
can be seen in figure 4.10 there the 1024 tap filter is compared with the speaker. Observe that the
inverse filter and the inverse minimum phase filter have the same magnitude function.
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Fignre 4.10: The speaker and the 1024 tap filters magnitude frequency. (Filters dotted) Inverse filter to the
left and inverse minimum phase filter to the right.

By numerical convolution of the constructed filter and the sampled impulse response of the
speaker we can see how good the filter will work theoretically. By measuring the response from
the speaker fed with the filter we get the practical result. To be able to make real listening tests
with music we have to sample some music and convolve the music signal with the filter. This can
be done on-line in a signal processor, or off-line numerically (Matlab).

Figure 4.11 and 4.12 shows the inverse filters theoretical and practical result, As can be seen in
the graphs the theoretical and practical result differs very little. The main difference comes from
the noise in the practical measuring. This result shows that the speaker could be successfully
estimated as a linear time invariant FIR system. Had the practical and theoretical results showed
big difference, the speaker had been non linear and much harder to deal with.
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Figure 4.11: The impulse response, a and ¢, and the magnitude response, b and d of the small loudspeaker
equalized with the 1024 tap Inverse filter. Simulated, {(a) and (b), and measured, (c) and (d).

Also the results for the minimum phase inverse are very good. It is also very easy to see the
ability of the minimum phase filter to correct the magnitude function just as well as the inverse
filter (or even slightly better). But the response viewed in the time domain, shows big difference
from the optimal bandpass respons we aim at. Still the response is much better than the original
(see fig 2.1) which had much wider response with high amplitude.
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Figure 4.12: The impulse response, (a} and {c), and the magnitude response, (b) and (d} of the small
loudspeaker equalized with the 1024 tap Inverse minimum phase filter. Simulated, (a} and (b), and
measured, (c) and (d).
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The phase response from the two different equalized systems can bee seen in figure 4.13, even
though it is hard to plot an accurate phase response it is fairly easy to see the bigger difference
from the optimal phase response of the inverse minimum phase filter. Especially in the lower
frequencies 100 to 500 Hz,

The phase response from the two different equalized systems can bee seen in figure 4.13, even
though it is hard to plot an accurate phase response it is fairly easy to see the bigger difference
from the optimal phase response of the inverse minimum phase filter. Especially in the lower
frequencies 100 to 500 Hz.

1024 tap filters is rather long, even though it is not at all impossible to implement with a decent
signal processor. A shorter filter is however always preferred to be able to use cheaper computer
power. The results we got with the 256 tap filters show that it is too short to handle the job well.
In figure 4.14 the response of the equalized speaker is shown with filters windowed with
rectangular window. The length of the filter can easily be spotted in these time domain plots. The
signal seems pretty good until it abruptly increases in amplitude.

In figure 4.15 the corresponding plots for the assymetric hanning windowed filters are shown.
These lack the abrupt amplitude increase after the filters length. Instead they show a general
higher amplitude level in time. However the magnitude functions plots in figure 4.16 shows that
the hanning windowed filters have a slightly better magnitude function. They do have a dip
around 1 kHz, but less ripple than the rectangular windowed filters.

It is also shown that the inverse minimum phase filter give better results. The inverse filter lack
some of the bass that is preset in the inverse minimum phase function and in our target function.
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Figure 4.14 Response of 256 tap filters, inverse filter to the left and inverse niinimum phase filter to the

right.
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Figure 4.16 Magnitude function of the equalized speaker. 256 tap filters used and inverse filters to the left
and inverse minimum phase filters to the right. Hanning windowed filters dotted.

For the large speaker, that have not been tested as thorough as the small one, we here show and
evaluate the results of using 1024 tap filters designed as described in chapter 4.1 and 4.2. The
constructed filters is shown in figure 4.17
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Figure 4.17: The 1024 tap filters consiructed to the large speaker. Inverse filter to the left and inverse
nrinimum phase filter to the right.

We can see that the inverse filter have a rather high amplitude in the end. This is because of the
more complex impulse response of the big speaker (compared to the small one). The use of
multiple drivers positioned on different places and cross-over networks introduce delays and
phase distortion between the different frequencies that gives the speaker a more complex
response and “less minimum phase structure”. Since the inverse minimum phase filter only
corrects the magnitude function and “assume” that the phase response is minimum phase, we
expect a better filter from this method given the same inverse filter have a rather high amplitude
in the end. This is because of the more complex length (1024 tap).

1t is clearly seen in figure 4.17 that the inverse minimum phase filters amplitude has declined
more than the inverse filter,
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Figure 4.18 The magnitude function of the speaker and the two filters {dotted). Inverse filter to the left and
inverse minimum phase filter to the right.

In figure 4.18 the magnitude function of the two filters is plotted together with the
magnitudefunction of the speaker. Both filters seems to do well, but the inverse filter have
slightly better magnitue function. Why is unclear.
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Figure 4.19: The impulse response, (a) and (c), and the magnitude response, (b) and (d} of the large
loudspeaker equalized with the 1024 tap Inverse filter. Simulated, (a) and (b), and measured, (c) and (d).

In figure 4.19 the simulated and practical measured impulse reponse and magnitude frequency of
the equalized system is plotted. The simulated and measured response is rather different and this
is probably caused by that the speaker does not behave as we assume, i.e. the speaker is not well
estimated with a linear system. This combined with the to short filter is our explanation of the

poor result.
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Figure 4.20 The impulse response, (a) and (c), and the magnitude response, (b} and (d) of the large
loudspeaker equalized with the 1024 tap Inverse minimum phase filter. Simulated, (a) and (b), and
measured, (c) and (d).

Figure 4.20 shows the results from the inverse minimum phase filter shows some strange
irregular peaks and dips. Again this is probably because non linear properties of the speaker.

4.6 CONCLUSIONS OF FREQUENCY INVERSE METHODS

The frequency inversion methods were succesfully used to equalize the speakers. The results of
equalizing the small speaker was really good. The measurements show a great improvement in
the magnitude response and for the inverse filter a nearly perfect impulse response as expected.
The difference between the inverse minimum phase filter and the inverse filter with 1024 taps
could not be heard in our listening condition, The shorter filters, 256 taps, did not sound equaily
good. We liked the shorter inverse minimum phase filter better than the inverse filter, because of
its better low frequency characteristics,

The improvement of the large speaker did not sound or measure as good as the small speaker,
probably because it have non-linear properties.
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S. Least Squares

5.1 LEAST SQUARES BACKGROUND

The Least Squares method has achieved widespread applications and is applied on common LTI
systems. We will develop the concepts of least squares minimization with a view to our
application of loudspeaker equalization. The majority of the work presented in this chapter is
modified from the explanation provided in {7].

The intention with the Least Square design is to design a filter that is optimally close to the ideal
result in some sense. The input signal to the filter is to be filtered by a linear filter with impulse
response f{n) and produce an output as close as possible to the desired one. The performance of
the filter is observed through the error e(r).

din)

x(n) 7 ¥(n) en)

Figure 5.1: The LS filter model.

For random input signals we can define an error-function J=E(e*(n)), where E is the ensemble
expectation value. The goal will be to minimize J, the mean squared error, over all n.

Now referring to figure 5.1,
emy=dm)—1, -x, (5.1
where £, is the filter vector and x, is the input vector of samples.

To minimize the error we differentiate the error-function J with respect to each coefficient f; and
equate the results to zero;

%:%ﬁl)}zll?{e(n)%:ﬂ} (5.2)

And since
5 S(dn)~ Y, F()-x(n— )
gg) _ i 5 = —x(n—i) (5.3)
This gives us
%z2-[2R(n--i,n—j)-f(i)—g(n—-j,n)) 5.4
i i /

Here R is the auto-correlation matrix of the input signal and g is the cross-correlation vector
between the input x(r) and the desired signal d{n), defined as follows:
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Autocorrelation:

R(n—i,n— j) = E{x(n—1),x(n— N} (5.5
Crosscorrelation:
gn—j,n)y= E{x(n -7 -d(n)} (5.6)

This gives us a set of linear algebraic equations known as the normal equations, which can be
written as

Y R(—i,n=f@)=gw-Jjn) (5.7)

Here we can set some constraints on the equations based on the physical properties of the system;
For this case the signals involved are deterministic, i.e. the speakers impulse response, and this
gives us a slightly simpler autocorrelation and crosscorrelation function. The filter is also
bounded o be causal and of finite length, which means the solution cannot be obtained by simple
spectral division, and will generally only allow us to find an approximate solution to the filter.
The normal equations becomes

-1
SNr(j-df@=g() 0<j<L-1 (5.8)
i=0

where L is the length of the filter. The solution of these equations gives us the optimal filter, or
the least squares filter, and can be simpler written in vector form as

R f= g 5.9)
or better
f=R"'.g (5.10)

where R is the autocorrelation matrix of the input signal, g is the crosscorrelation vector and fis
the filter vector,

Inverse filtering

Concentrating on the less general case of inverse filtering, we get a slightly different model and
equations:

&n)

é(n) .Dj h{n) o 7 é(n) + » en)

Figure 5.2: The LS filter model for inverse filtering.

Suppose that the loudspeaker in figure above is exited with unit impulse &n), then the filter will
have an input that is the impulse response of the loudspeaker, and the desired signal will be the
unit impulse.
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We can simplify the autocorrelation to

r()=2" _ h(m)-h(n+I) (5.11)

And the crosscorrelation becomes

g(h)= icﬁ(n)-h(n—l) = h{-1) (5.12)

n=—co
The finite causal filter will give the normal equations of the form
f=R" ‘g (5.13)
In this case the autocorrelation matrix R will be built upon the impulse response and

the crosscorrelation g simply becomes the impulse response shifted backwards into the first
elements of the correlation matrix.

Using delay

The use of delay to compensate for the time the signal takes through the system will greatly
irnprove the inversion of this kind of non-minimum phase system. The modified least squares
model will be to delay the desired signal d(n) with an arbitrary delay m. The model will look like:

é(n-m)

oin) l:[ i hin) f d(n—m) __I_ P efn)

Figure 5.3: The LS filter model for inverse filtering with infroduced delay.

The autocorrelation r(l) will be unchanged, but the crosscorrelation will look like

g(h)= iﬁ(n—m)-h(n—l):h(m——l), (5.14)

n=-u

which means it has the speaker impulse response shifted the necessary amount of delay into the
vector, Finally, the normal equations become

R-f=g=[hm) hm-1) ... BO) 0 O .. 0] (5.15)

The delay in the system is in this particular case somewhat 2ms, and the best way to determine
the delay is to calculate filters with different delays and chose the one with the smallest error.

This type of delay is no problem in a home audio playback system, but a long delay could be a
problem if used for /ive performance situations.

Computation

There are two stages in the computation of the filter £, the computation of the autocorrelation of
the input samples and the solution of the normal equations, which contains a computationally
heavy matrix inversion. The computational load of the inversion of the autocorrelation matrix is
with the Levinson-Durbin algorithm proportional to L%, with L being the length of the impulse
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response. For off-line filter design an adequate length of the impulse response could typically be a
thousand samples, and the autocorrelation matrix will then be a 1000 * 1000 Toeplitz matrix. The
complexity of this is far too much for any real time system to update and invert on a sample by
sample basis and is for that reason suited for offline processing. To design a 1024 tap least
squares filter on a Pentium 200Mhz would take an hour of processing.

The finite least squares inverse filter will be minimum phase, independent of the phase structure
of the input. Consequently, the inversion is most effective when the input sequence is minimum
phase.

A nonminimum phase system can not be completely deconvolved using a stable causal inverse
filter. Such a filter can effectively flatten the spectrum, but will leave a residual phase distortion,
the all pass component. But by introducing delay in the system we can produce a flat spectrum
and a linear phase curve.

Analysis of the least squares algorithm

The least squares as it is presented here has some obvious advantages over the inversion
algorithm presented earlier:

A feedback loop is integrated to the technique, which compares the input and output of the
system and drives the coefficients in such a direction as to minimize the resultant error.

A performance measure may be calculated in the form of the least squares error, This may be
used to judge (and hopefully improve) the performance of the algorithm.

The derivation of the filter is based on sound mathematical theory, and is open to systematic
development of the algorithm using recognized mathematical and scientific techniques.

Some obvious drawbacks though are evident:
The computational complexity of the algorithm shown is very high.

Whilst the algorithm here is reasonably simple, the filter is based in the time domain and as such
it is very difficult to se how this system operates in the frequency domain, which is where we
would like to analyze our speaker characteristic.
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5.2 RESULTS

In figure 5.4 to 5.6 we see some of the filters that has been derived for the small speaker, the
simulated results and measured system responses from the whole setup.
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Figure 5.4: (a) 1024 tap filter, (b) simulated frequency response for filter (solid} and loudspeaker response
(dotted), (c) simulated impulse response, (d) simulated frequency response.

As we see in figure 5.4 we have a long filter that in the simulations corrects the amplitude
perfectly, except for some low frequency level. The simulated impulse response is very close to a
perfect low-pass filter response. The system should definitely be able to improve the speaker
performance under normal listening conditions.
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The measured response also has some obvious
deviations from flat magnitude for the low
frequencies, and some difficulties can also be
seen in the phase response. Probably a big part
of the deviatons is due to complicated
measurement conditions. The responses are
clearly improved compared with the original
though.
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Figure 5.5: The 1024 tap filter: (a) measured impulse response, (b} measured frequency response, (c)

measured phase response.
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Tn figure 5.6 below we sce the small speakers 256 tap response.

i

08¢

B6F

0.4}

0.2F

[t

.21

0.4 1 .
o 50 100 180

(a)

As we see, the 256 tap filter in this case
equalizes the speaker as good as the 1024 tap
filter do, and the magnitude is mostly within
5dB. The sharp dip in the 256 tap filter is a
result of reflections in the measurement setup.
A good impulse response is an obvious result.
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Figure 5.6: The 256 tap filter for the small speaker: {a) measured impulse response, (b) measured
freguency response(truncated filter dotted), (c) measured phase response.
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In figure 5.7 below we have the measurements of the big speaker.
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Figure 5.7: Big speaker measurements with 1024 tap filter: (a) loudspeaker impulse response, (b) filter, (c)
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The responses in figure 5.8 for the both filter
lengths are clearly improvements of the
original response. The magnitude response is 2
equalized to within half the previous deviation
on the dB scale. The two filter lengths are quite
similar in magnitude response, but the impulse
response is better for the longer filter.
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Figure 5.8: Big speaker: 1024 tap filter: (a) system fmpulse response, (b) system frequency response
(dotted curve truncated) (c) system phase response. 256 tap filter: (d) system impulse response, {e} system
frequency response (dotted curve truncated).
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5.3 CONCLUSIONS OF THE LEAST SQUARES METHOD

We have seen that an inverse could be calculated oft-line using the time-domain based Least
Squares method, also shown in Appendix D. The method is quite heavy computationally due to
the inversion of the auto-correlation matrix and is in this case only possible off-line. The use of
delay is important to be able to equalize a non-minimuem phase system, and the delay time is
decided by “trial and error”. It is also quite complicated to se how the method works in the
frequency-domain due to its time-domain base. We can clearly improve the loudspeaker response
with this method, though we get some obvious problems with the bigger speaker and its non-
minimum phase properties. The method seems to not be as accurate as the inverse method,
though.
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6. LMS

6.1 LMS BACKGROUND

Since the transfer characteristics of a loudspeaker will change very little with time, the ability of
the filter to adapt to changes in the characteristics might seem somewhat unnecessary. The
previous systems, in chapter 4 and 5, with predetermined filter coefficients though have some
shortcomings. They require both very careful measurements of the speaker characteristics, and we
also have to do the calculations of the coefficient from these measurements. The labor cost for
this could seem somewhat high and also a lack of versatility could call for an adaptive solution.

With an adaptive system we could compensate not only for changes in the speaker itself, but also
for changes in the sound path between speaker and the microphone. For example, after installing
the sound system in a completely new environment the system can be made to automatically
adapt itself to an optimal response.

Therefor the design of such a smars loudspeaker seems to be a tempting idea for designers recent
years. Some work, mainly research studies, has been done on this topic, such as[3].

A very important issue here, however, will be to chose the right reference point, the point in
which we are supposed to listen to the sound and where we place our microphone. It could be a
single spot or maybe an average over several spots in the listening area. Averaging is quite a hard
topic in this case since we are both working in real-time and the time domain. We can only try to
choose the right reference point, and try choosing it away from any obvious flaws that appear in
just one spot.

An adaptive system is not necessarily bounded to the restriction of linear systems as with Least
Squares and should be able to produce a result that is closer to flat amplitude and linear phase
response compared with the original.

Various computational methods exist for getting closer to the optimal filter. They can be carried
out on a sample by sample basis or by analyzing blocks of data, and either in the time or
frequency domains. Also any of the usual digital filter structures can be implemented in adaptive
form, but for ease of implementation and analyzing we will use a simple FIR filter and implement
the well-known LMS-algorithm [3][7][8].

Adaptive LMS algorithms

The real-time adaptive system will look like the setup below:

/

Music X
—— »| Filter |——| Speaker —uPp Acoustical ] Mic

channel

Figure 6.1: The adaptive filter arrangement as implemented in a real environment.

The listener

While this is an illustrative model of the system we shall redefine the model somewhat to be able
to give a more theoretical background of the adaptive algorithm.
In the design of Least Squares FIR of the previous chapter the inverse filter was designed on the

basis of a known speaker character h{n). The filter coefficients were determined off-line, and
once the filter is determined they remain fixed. Adaptive filters working in real-time on the other
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hand are time-varying, and they have filter coefficients whose values are adjusted for each
incoming sample to minimize the measure of an error-signal, e(n). Thus, the algorithm will adapt
the coefficients towards a filter that generates the least possible error. The main benefit of this
technique is that such a filter is able to change along with the statistical properties of the channel
or the signal.

We will for our model see the path through the speaker, acoustical channel and microphone as
one single channel and call its impulse response fifn). This is the system we want to equalize.

We redraw the system and introduce some more definitions:

din)

win) ; x{n} 5 ¥(n) P_W > ()

Figure 6.2: The equalization model of the LMS system.

Here we have w(n) as the input to the filter, x(n) is the input signal filtered through the inverse
filter, and y(n} is the estimate of the input signal. d(n} is the desired signal, in this case the
delayed input signal filtered through the target function. If the input is white noise, this signal
should have the desired band-pass characteristics suitable for the speaker.

1t should be obvious how the model is supposed to work. We will have the input filtered through
the filter f and again through the speaker system /, and the output y(n) will be compared with the
delayed desired signal d(n). The error-signal e(n) will be used by the algorithm to update the filter
coefficients. The filter thus consists of two parts, the FIR filter that processes the stream of data,
and the algorithm that adjust the coefficients.

During adaptation this system is preferably excited by a broadband signal w(n), such as white

noise, or could even be exited with a music signal. If such a music signal is "white enough” we
will have a fairly even adaptation rate at all frequencies.

Analyzing the LLMS algorithm

Since the adaptive filter is based on the Least Squares algorithm, the optimal filter coefficients
could of course be calculated directly from

f=R".g, (6.1)

where we still have R as the input auto-correlation matrix and g as the crosscorrelation vector
between the desired signal and the input. But since this is a too big computational load to do in
real time, especially if the filter length is large, we have to consider an iterative solution. The goal
is still to minimize the error-function,

J=Efm?}, (6.2)

the least squares minimization of the error e(n). This could be accomplished by starting with an
initial guess of fo, and from there, with every iteration, getting better estimates of f,. The iterative
approach could even be useful in obtaining the fixed least squares solution since the matrix R
could be singular.
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The iterative update of the filter coefficients has the form:
a
fn+1 = fn + E : pn ’ (63)

where p, is a vector which defines the search direction. As we may have noted, the quadratic
function J can be thought of as an L-dimensional bowl-shaped surface with one single minimum

describing the optimal value of f. And since J, is a function of fo, J., = J(£,,), the

interpretation of p, is the negative gradient of J, VJ,=d / of . At each iteration we move in the

direction opposite to the gradient of J, and by a distant proportional to magnitude that gradient,
hence the name of the method, steepest descent.

A
J

Figure 6.3: The quadratic performance surface of errror-function J in the two-dimensional case, with the

nwo filter coefficients f{0) and f{1).
The theory , see [7], tells us that

V/J.=2-R-f,—¢g (6.4)

Our iteration formula becomes

f

1+l

=fn+%(—VJ,,)=fn—a(R-fn—g) 6.5)

The equation above works only for a stationary input, that is when R and g don’t change with
time. We could calculate the values of R and g and use this equation as it is, but we still want to
find the optimal solution when the parameters of the input signal change with time. The equation

fnﬂ = fn —o (Ru ) fn - gn ) (66)
would do the job, but the computational load is still very high. We could instead replace V.J_ by

an estimate VJ .
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_ & _ ('}
VJ,= R 6.7

n

Vi = ey 2
& S

n

(6.8)

We have now replaced the mean-square-error J = E{e(u)z} with the momentary squared ercor
J= e(n)2 in the steepest descent algorithm. We now have an approximate steepest descent
algorithm, called the LMS algorithm:

f..=1, —% &7, (6.10)

n

The signal y(n) in figure 6.2 is the convolution x(n) ® f{#n), which in vector form can be written
y(m)=f, ®x, . Here X, is an L element vector with the L most recent sample values of x(n):
X,=(x(n}, x(n-1), ..., x(n-L+1)).

vJ (n) could be found through:

e(ny=d(n)—-y@m=dn)—-£, -x, 61D
de(n)y & (d (n)—1f, x, )
= =— 6.12
a, , o
- e(n)
VJ,=2-e(n) =-2-e(n)-x, (6.13)

L

Equation 6.13 thus can be written as:
o 2 o
f,=f —E- VJ, =1, —E- (—2-e(n)-x,)=f +o-e(n)-x, (6.14)
This is the final Least-Mean-Square update algorithm.

The choice of fy and «
Since J can be seen as a surface with only one single minimum, the choice of f, is not a big issue,
We could without problem set fy to zero. The choice of the adaptation constant o is far more
important. ¢ determines the step size within each iteration, and thus the speed of which f,
approaches fo,.. If o is chosen small, the convergence towards f, will be slow, and if 0. is chosen
bigger the filter coefficients will be more dependant of the input samples in x,, that is, will vary
more with the stochastic input x{n). The filter vector will be fairly noisy around f,,. And a too big
o will result in an unstable algorithm, which doesn’t converge towards fop.

Types of adaptive filters
We have several different methods of making the filter update with time. The most natural way
would be to let the recursive filter be adjusted with every new sample value coming into the
system. This would cause no abrupt changes to the output signal and the processing load is
constant. This is the fastest and most accurate method of adapting the filter, but is sometimes
discarded in real-time systems because of the heavy processing involved.

With less processing power available, we could instead be taking time windows of the input and
output signals, performing calculations to create a new set of coefficients, and update according
to the window length. This will introduce a time lag between signal changes and filter changes,
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give abrupt changes in the output signal and the processing load will come in bursts. It can
however lower the total processing load or more advanced algorithms could be used.

For our purposes of off-line processing the processing time is not crucial, so we’ve only used
updating with every sample.

Music vs. white noise
Music is correlated and thus not contains all frequencies, while white noise by definition is flat
through out the spectrum. White noise is the best signal for adapting, and gives the fastest rate of
adaptation. If any spectral component is missing, these frequencies will be heavily affected by
noise. The adaptation speed of the LMS algorithm also depends on the input power and the
constant of adaptation.

Proceedings

We have now seen how the adaptive filter can be nsed and how the LMS algorithm is derived. In
the adaptive calculations of the filter coefficients we have not, though, been able to work in an
on-line situation, since the hardware (as described in chapter 8) does not allow two inputs
working at the same time, It is a one-channel input/ontput system and for the adaptive system we
would need one input for the signal x(n) and one for desired signal d(#).

The adaptation is however perfectly possible to do in an off-line mode. If the signal that we use
for adapting, whether it is white noise or music, is stored on the computer hard-drive, we can
calculate the coefficients in a program such as Matlab (see Aappendix C).

ﬁ win-1)*d(n)

win) |, b win)*h{n) P y(n) F\_U e(n)

/

Figure 6.4; An off-line model of the used adaptive system.

With adapting with white noise, we should generate as long sequence of noise as we think would
be sufficient for precise adaptation, in our case 40 seconds seemed to be both realizable and
sufficient for both speakers. Convolving the noise sequence with the impulse response of the
speaker gives us the input to the filter. Delaying and filtering the noise with our target function
gives us the desired signal. The adaptation would take a few minutes on a PentiumH 233Mhz
compuier.

In our application, for filter f to be realizable, the target response filter d must be at least an ali-
pass with pure delay equal to the acoustic propagation delay between the loudspeaker and the
measurement microphone.

Possible limiting factors
The ability to generate an inverse with low mean squared error is somewhat limited by some
factors of the inverting system.

The noise in the system to invert, in this off-line case in measurements of the impulse response,
causes the filter coefficient to be “noisy” and not completely accurate. An excellent inverse can
be realized with precise adaptation in a less noisy system.

We also here have to introduce the delay to compensate for the sound-path delay, and for the non-
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minimum part of the system which would otherwise demand a non-causal filter. The choice of
delay time is not critical and 100 samples, about 2.3ms, seems like a good general delay time for
our setup and speakers. And we can of course only approximate an infinite impulse response
system with our limited FIR filter.
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6.2 RESULTS

To the right is an illustration of how the filter
coefficients approach their final values during
the adaptation. At the end there should be little
variation in the coefficients, and this would
mainly be due to noise in the measurements.
We deliberately choose the adaptation constant
o, to a low 0.0001 to have very stable
coefficients in the end.

Here we see how the 1024 tap filter adapts the
small speaker’s frequency response into a very
much better amplitude response. The curves are
shown for 0, 1, 5, 20 and 40 seconds of
adaptation and plotted without smoothing of
the frequency curve. It’s worth to notice how
fast the convergence is within the first second,
the first 44100 samples. Still we use 40 seconds
of adaptation, since it is quite obvious that the
coefficients are still not settled earlier.

There could be some obvious advantages with
truncating the filters in that you might get rid of
some beginning and end problems if the filter
coefficients doesn’t begin and end close to

zero. The truncating functions shown for the
256 and 1024 tap filter will decrease the end
taps of the two filters and remove some
distractions in the output.

It is obvious that there are no significant
benefits for the longer filter, but for the 256 tap
filter it gives slightly less interruptions in the
impulse response and reduces some frequency
irregularities,
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Figure6.5: The 1024 tap filter for the small speaker: (a) the filter, (b} the filter truncated and the corresponding
truncating function, {c} simulated impulse response, (d} simulated frequency response.
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Resuits for the small speaker with 256 tap filter is shown in figure 6.7 below,
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The 256 tap filter shown could benefit from
truncation, as shown by the time and frequency
plots. The longer filter however gives a slightly
better amplitude response. Phase response is
almost as good as for the longer filter.

Figure 6.7: Tthe 256 tap filter for the small
speaker: (a) the filter, (b) the filter truncated and
the corresponding truncating function, (c)
measured impulse response, (d) measured
frequency response{truncated filter dotted}), (e)
measured phase resporise.
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The resulting filters and responses for the big speaker is shown in figure 6.8 below.
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Figure 6.8: The big speaker: (a) the 1024 tap filter, (b) the frequency response of speaker and 1024 tap
filter(dotted), (c) 1024 tap simulated impulise response, (d) 1024 tap simulated frequency response.
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The 1024 tap filter seems fairly long for, and in
simulated plots do the job very well. In the
corrected response we see some disturbance
with the start of the filter and it is obviously
more complicated to correct amplitude and
phase in a multi driver system.,

The shorter filter is somewhat less accurate,
and strangely enough truncating here introduce
some frequency dips.

Figure 6.9: The big speaker system response;
{a}1024 tap impulse response, (b) 1024 tap
Sfrequency response(truncated filter dotted), (c) 256
tap measured impulse response, (d) 256 tap
measured frequency response(truncated filter
dotted), (e) 1024 tap measured phase response.
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6.3 CONCLUTIONS OF THE LMS METHOD

We have seen that the equalizing filter could also be calculated off-line using the adaptive
algorithm, shown in Appendix D. This method even shows a better result in equalizing than the
Least Squares method, and is after 40 seconds of adaptation converging to a pretty stable
solution. Though this method should have some obvious advantages and possibilities if beeing
processed in an on line situation, it works fine off-line too. We clearly have some more
difficulties with the bigger 3-way speaker and its possible non-linearities and non-minimum
phase properties.
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8. Summary

Great improvements in the loudspeaker response can be achieved with FIR-filters designed with
any of our three methods tried. Especially when used under free-field conditions and for on-axis
equalization, It is possible to compensate for both amplitude and phase errors with the methods
we have used: Frequency Inverse, Least Squares method and Adaptive Least Mean Squares.

The Frequency Inversion method gave us the best results both with measurements and listening
and our conclusion is that this could be the prefered method. Using this method we get a more
intuitive understanding of how the filter works, because it is designed in the frequency domain.

The Least Squares method showed ease of use, though becomes computationally very heavy for
longer filter lengths, It didn’t really equalize as well as the other methods.

The Adaptive Least Mean Squares method showed good results, particularly with a single driver
system. It has the obvious advantage of being able to adjust the filter parameters along with time
if we have any change in our system. This could be practical if we want an easy set up that is able
to also equalize the path from the loudspeaker to the listener, and can adjust itself to fit different
environments.

Our results must be considered satisfactory, even though we encountered some practical problems
along the way, The main goal of improving the performance of the loudspeakers has been met,
though the results have shown some minor problems with the response details, especially for
more complex loudspeaker systems. The impulse, magnitude and phase responses are
significantly improved with all three methods, and the filters should be possible to implement
practically with common DSP techniques.

The problems encountered can mostly be associated with non-linearitics and poor measurement
equipment.

FUTURE POSSIBILITIES

Other types of filters
Numerous other filter types not tried here could perform amplitude and phase corrections of a
loudspeaker. An approach with IIR filters have been tried on many occasions, especially for bass
equalization where FIR filters become of very high order. Warped filters (WFIR and WIIR) have
recently been tried and found to give shorter filters lengths for the same degree of correction [4].

Convolving in hardware
The possibilities of designing an Application Specific Integrated Circuit (ASIC) for audio use
would make very long filters possible. Other features like sample converting, manual equalizing
could also be implemented,

Digital Cross-overs
The use of digital cross-over filters could offers further improvements. At cross-over frequencies
the sound is radiated from two separate sources and preassure waves will be added in or out of
phase as a function of off-axis position. Digital filters can be designed to have very steep cut-off
slopes, and thus limif this problem. We can also limit resonances and break-up’s just outside the
drivers working range, wich has to be well attenuated. Previous works on digital cross-overs have
been presented in [15].

A “completely” digital reproduction chain
Great improvements can be expected when we apply digital filtering to an existing design, but
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even greater possibilities arise if we include digital filters in the initial design of the speaker
system. We could use DSP for correction and cross-overs in each frequency band in a 3-way
system, using dedicated sampling frequencies.

With the newly developed “all digital” power amplifiers, witch takes a digital signal as input and
uses a switching (PWM) output with very good results, we could keep the signal path in the
digital domain all the way to the speaker drivers. The switching electronics are far more efficient,
doesn’t need heatsinks, and could be made far smaller and lighter than the usnal amplifier. In this
way it should be possible to reduce costs significantly since we could integrate the entire signal
processing and amplification into the speaker system, all with dedicated electronics. A figure of a
possible “all digital” reproduction system is shown in figure 7.1.

Anti-aliasing Phase PWM-
filters Decimators Fir-filters alignment Amplifier Drivers
FIR
High-pass Delay +30dB P
1.3-20kHz
Digital input FIR
fi=44. IKHz f=1.5kHz 112 Mid-pass Delay I‘
f=3675Hz 150-1300Hz
| FIR
f.=200Hz 1/96 Low-pass +30dB
f=459.4Hz
20-150Hz

Figure 7.1: An example of a possible “all digital” reproduction system.
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APPENDIX

APPENDIX A - HARDWARE

Signal processors are specifically designed for repetitive, heavy load calculation purposes. Well
suited for real-time processing, these processors are popular for instance for collecting and
analysis of analog signals, and are nowadays very common among audio and video processing.

Signal processors come in two basic types: programmable or “hardware coded”. The difference is
that the programmable are completely software controlled, and the programmer has control over
its function, The “hardware coded” are designed for its specific purposes, and you can’t change
its function with programming.

‘We have only been involved with the programmable processors.

The signal processor has much less instructions available compared to a general type processor,
and it’s instead optimized for doing the important instructions very fast. For example the MAC-
instruction, Multiply And aCcumulate, computes fwo instructions in the same clock-cycle. That’s
an essential part of a convolution algorithm, a typical task for the signal processor.

Floating-point or fixed-point
There are two different types of programmable signal processors, floating-point and fixed-point
processors, and they differ in their arithmetics:

In fixed-point processors the numbers are represented as real numbers with a fixed precision. It’s
important to know the size of the numbers so we don’t compute into overflow or scale down the
number to a poor precision,

In the floating-point processors the numbers are represented as a mantissa and an exponent, With
this type of processor we work with maximum precision in the number all of the time, thus we
don’t have to be that concerned about size of the numbers.

Generally, the floating-point processor is easier to work with. It also offers better dynamic range
and precision. For fast development and small series this processor is usually the most convenient
type. The fixed-point processor on the other hand is simpler built, takes up less silicone space,
consumes less power and is generally cheaper.

Development tools
Earlier the designers of DSP systems were forced to program their chip at an assembler level, but
nowadays there are numerous different tools to use during the development phase. There are
software tools from programming and debugging at a very low level, to pure DSP operative
systems on a very high level to make the programming of the chip as easy as possible.

On the lowest level there are simple tools as assemblers, linkers and debuggers. With knowledge
and skills you could get the best performance from your chips on this level.

Next level involves programming the chips in a high level language as C and use compilers fo
generate the code. The code won’t he as efficient as on the lower level, but on the other hand,
high level development is usualty much faster.

Fven easier is it on the next level when using libraries with existing code for special purposes as
EFFT and filters.

You could also choose to develop in a “block diagram environment”. The building blocks could
be existing functions that only have to be graphically connected on the screen.
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The Texas TMS320 processor family

Tn the project we’ve been using a DSP evaluation kit from Texas Instruments. It uses the Texas
Instruments TMS320C31 signal processor, which is a general-purpose floating-point processor.
The chip is guite “hardware intense”, and implements many functions in hardware that otherwise
would have had to be implemented in software. This makes the processor quite powerful, and the
processing performance is maximum 50 MFLOPS.

The processor is actually capable of 25 MIPS, but since we have the possibility to do only double
instructions like the MAC-instruction, we can ideally still do 50 MFLOPS.

The processor has several good features to increase performance:
¢ The CPU has independent multiplier and ALU and many flexible registers.

s Good memory handling, where four memory positions, including on chip or off-chip
memory, could be accessed on the same clock cycle.

e 7 internal buses to fetch and store instructions and data efficiently.

s  Two DMA controllers, Direct Memory Access, lets the processor access memory without the
CPU being involved.

e Flexible ports that let you communicate easily with the surroundings.

Just like many other modern processors, the TMS320C3x family processors are also pipelined. It
has five pipeline steps, and the throughput could ideally be increased by five times.

Circular buffer
Circular buffer is a frequently used method when calculating correlations and convolutions. It’s a
memory area where you access the memory positions in order, and incrementing the last
reference will set the pointer to the first position again. When convolving it can bee seenas a
“sliding window” which shows the last samples of in-data, When the new one is written in the
buffer, the oldest one is written over, and you atways have the most resent samples in the buffer.

Assembler
The programming of the processor for the real-time evaluation is all done in assembler-code. This
involves some extensive initializing of the peripheral circuits on the DSP board and the processor
jtself before we can start processing the incoming samples. We need to arrange the memory
locations and locate code, initializee the serial port, set up timers and registers. The
sampling/reconstruction circuit also needs to be initialized to sample at its maximum precision,
14bits and 20kHz, and do the correct tramsmissions of data.

During processing the program recieves the incoming sample and converts it into floating point
data. The sample is then put in the circular buffer in the “oldest” position. We have pointers to the
circular buffer with samples and to the list of coefficiens, and we apply the MAC(mutiply-and-
accumulate) instruction on the whole set of coefficients. We then convert the output sample back
to integer and send it to the D/A converter and wait for another interrupt from a new sample.

The DSP evaluation kit also provide the useful and simple DSK Assembler and the DSK
Debugger that we have been using for generating and fixing the code.

The fact that the real-time system only allows for sampling at a maximum of 20kHz sampling
means that all the filters created for the common CD Audio standard of 44100kHz sampling
frequency has to be downsapled to 20 Khz filters. This is the major reason for limiting all signals
involved to 10 kHz. There is also less precision in the sampling with the 14 bits resolution, but
this still altows for 84 dB SNR and is well within the SNR of the signals wich the filters were
based upon, and should not affect the correction.
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APPENDIX B - MEASUREMENTS

The most common measurements that are done on speakers by designers and independent testers,
mostly hi-fi magazines, covers sensitivity, distortion, impedance, magnitude and phase response
at various points (on-axis and different degrees off-axis). It is also common to show the impulse
and square wave response of the speaker in the time domain.

We want to correct the magnitude and phase response of the speaker and must therefore be able
to measure these variables of the speaker in a simple and correct way. There are a several
methods to choose from. Sine sweep, white noise, step response, maximum length sequence, and
impulse response are some common methods.

Objective measurement alone is insufficient to fully describe the sound guality. Subjective
evaluation is definitely essential before making to many sound quality conclusions. But
measuring is indeed an very important and essential part in high quality speaker designing, not
least cause it gives easily comparable results.

The measuring system

To measure the magnitude and phase response of a loudspeakers, you need a signal generator, an
amplifier, the loudspeaker, a microphone and a microphone amplifier and some kind of recorder.
Some online realtime processing of the measured signal is also often directly included in the
recording environment. Today it is most common with totally digital measuring system which
obtain a great flexibility, cause of easily stored and processed data etc

This is a hard part and there is many different approaches about how a speaker should be
measured.

The measuring must also be made in some kind of environment, usually some kind of room, but
is sometimes carried out outdoors. It is common to do the measurements in an anechoic chamber,
which means a room that is totally free from echoes, optimally for all frequencies, but
realistically down to about 100 - 200 Hz.

A question is if it right to measure and evaluate a speaker in an anechoic chamber, when the real
listening will take place in a normal room with some colouring of the room (resonance and
reflections). At least the lower frequencies can in some ways be determined how they will be
affected of a normal room and should therefore be included in the design.

This is anyway a never ending discussion and we will not discuss it further here, but instead
define that we want a speaker to have a flat magnitude and linear phase response when measured
in an anechoic chamber down to about 200 Hz. We also believe that it is more accurate to
evaluate the speaker from some different positions than just on-axis. This is because the
magnitude response can be very different measured from slight different positions on and off-
axis. Sharp dips can arise because pressure waves are out of phase in exactly the measured
position, Trying to correct for this dips could results in a very bad sounding system. Some kind of
averaging could be made between the different positions. However, since it is much easier to
make the measurements in only one point and we have to do a lot of measurements and
evaluation that should be repeatable we have made all the measurements in only one position.

Since we didn’t have access to an anechoich chamber we had to use other methods to obtain a
good measurernent in a normal room. There are ways to measure a good estimate of a
Joudspeakers response in an anechoich chamber in a normal room The most common method to
do this is to use an impulse response as the measuring signal, more about this later.
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Industry Standard
The industry standard measuring system is defmitely MLSSA (pronounced "Melissa") by DRA
Laboratories. MLSSA, an acronym of Maximum-Length Sequence System Analyzer, pioneered
the MLS (Maximum-Length Sequence) measurement method, which offers a good combination
of speed, noise immunity and time-bandwidth product. The MLSSA system is a complete signal
generating, recording and processing system containing both software and hardware. The
hardware and software is to be used in an ordinary PC. The solution is really state of the art and
offers incredibly many different features and a huge number of ways to show and evaluate
measured data.

Our test environment didn’t include the MLSSA system that had been preferred. Instead we used
software called SpectraPlus for signal generating and recording . Matlab was used for
postprocessing of the measurements and construction of the signals. A normal PC with a simple
sound card called ESS 1868 were used as hardware.

Even though the Spectra Plus program did include some of the realtime and post processing
methods of the measurements like MLSSA, we didn’t use them for others than some fast online
conclusions. The measurements was saved as wav-files with 16 bit resolution and 44.1 kHz
sample frequence i.c. the common digital audio format. Wav-files can be easily converted to
matlab-files and vice versa so all processing could be done in Matlab which give full control of
what is happening.

Signal Generator
The signal generator should correctly produce the different signals needed for measuring, By
using a digital signal generator in form of a PC with soundcard and software Spectra Plus some
we obtained good flexibility. An important thing to remember is that the signals produced by any
kind of digital signal generator will be band limited according to the Nyqvist theorem i.e. half the
sample frequency.

All test signals were made in Matlab and saved as wav-file which is the format that Specfra Plus
handle. This seemed, by some reason, to give better results then compared to use the built in
signals in SpectraPlus. All signals were made with 16 bit resolution and 44,1 kHz sample
frequency.

Amplifier
To drive the loudspeakers with the test signals we have to use an amplifier. The requirements of
the amplifier is that it should be as transparent as possible, i.e. have a flat magnitude response and
a linear phase. No amplifier is perfect, but compared with other parts like the soundcard and the
microphone the amp can often be assumed {ransparent.

We used a regular hi-fi amplifier, Sony TA-F170, which were set into *signal direct”, which
disconnect the bass and treble controls and should be the most transparent setting.

Microphone
The microphone sense the sound pressure produced by the loudspeaker. This is definitely the
most critical component in the measuring chain. The microphone should preferably have linear
phase and amplitude response and a trustworthy calibration protocol. With a catibration protocol
the distortion from the microphone could be excluded from the measured signal.

Since the microphone delivers very low amplitude signals, they need to be amplified to line level
voltage (about 1V amplitude) before fed to an a/d converter that converts the signal so itcan be
dealt with digitally. The amplifier is called a microphone amplifier and are because of the low
level signals that it deals with much more sensitive fore noise and distortion than the amplifier
feeding the loudspeaker. '

In our test environment we had a Shure SM-58 microphone, which is a well known rather high

56



quality singing microphone. However, it is not as good to use as a test microphone because it
doesn’t have a totally flat magnitude and linear phase response. We didn’t have a calibration
protocol of this particular microphone either. This means that we have to be aware of the fact that
rather than just measuring the loudspeakers the response from the microphone will be included as
well.

As long as only the evaluations of the measurements are concerned this is not really a big
problem. But doing useable listen tests is harder because the equalizing of the filters we design
will correct the whole system, rather than only the loudspeaker as attended.

The microphone amplifier that we used was included in the soundcard ESS 1868. This had a very
bad signal to noise ratio, which was the source of the most noise in our measurements.

Recorder
A recording system that can obtain the signal from the microphone and store it for later use is
required for being able to postprocess the measurements. A digital recorder is preferred because
of the possibility to easy store the results digitally and process the measurements with digital
signal processing.
We used the PC and the soundcard ESS 1868 as a recorder. Spectra Plus was used as recording
software. We always used standard CD sample frequency 44.1 kHz and 16 bit resolution as
mentioned before. Which give a high frequency limit of 22 kHz and a digital signal to noise ratio
of around 96 dB which (from the rule of thumb 6 dB S/N ratio per bit) is much more than the rest
of the system. In figure A.7 the magnitude function of the background noise is plotted vs the
magnitude function of the single driver speaker with our two most used measuring signals
impulse and white noise. We can see that the signal to noise ratio, if using an impulse as input
signal is between 25 and 40 dB.

The Measuring Room
As already discussed it is common and good to use an anechoich chamber for measuring. But
since this wasn’t available we had to use an ordinary room. This room was not especiaily well
suited for loudspeaker measurements. It had rather high background noise and a lot of surfaces,
because of lab bench etc. which could cause reflections and resonance, We made the best about it
by doing the measurements rather high, to decrease floor reflections. By position the microphone
close to the speaker and use an impulse as the main test source we did our best to avoid the room
reflections and resonance.

There was no other way to come away from the high background noise in the room, but to use as
loud test signals as possible. But not as loud as the speaker will be close to close to its dynamic
limit.

Different measuring signals

Sine Sweep
Is a rather common method for measuring in anechoich chambers, and can be made with
analogue equipment. A sinc wave generator is set up to sweep the frequency range of interest
(usually increasing logarithmically) and the signal from a microphone is fed into a chart recorder
which measures the signal level in time. Of course a digital recorder could be used instead and
processing of the measured data after the measuring is done. The time axis on the recording is
then given as the frequency axis. There are, however, many shortfalls with this method. It doesn’t
give you any phase information, there are big problems with room resonance and room
reflections since the test signal last during a long time. Making measurements close to the
loudspeaker and/or, of course, make the measurements in an anechoic chamber can minimize this
problem. Distortion can mean that the magnitude measured at one point in time consists of more
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than one frequency thus giving false results. Practice has also showed that there are significant
variations in the result based purely on changes in sweep speed and pen response of chart
recorder.

With gated sine wave excitation which simultaneously samples and stores the peak amplitude of
the received output long enough for a continuos response trace to be recorded will result in
elimination of the local wall reflections and the need for an anechoic chamber is removed. Gated
sine wave excitation is well described in {1].

We haven’t at all used sine sweep as a test signal because of the shortfalls. It does not provide
phase information, is not suited to measuring in normal rooms, and requires a special (more
complex) processing to give the frequency response if not using an analogue chart recorder,

Impulse
The most straightforward way at least if thinking in signal processing terms is to generate an
impulse and measure the response of the system. It’s easy to see in the time domain how the
speaker’s response differs from a perfect impulse. The impulse has some nice advantages than it
comes to use it as a test signal for speaker measurements. It is easy to derive the amplitude and
phase response by taking the DFT of the sampled speaker response. It makes sense to look at the
speaker’s response not only in the frequency domain but also in the time domain. In the time
domain it’s rather easy to see if where is some big room reflections, that can be excluded by
windowing the speakers response to an adequate number of samples (length) of the response. If
using for example 512 points of the measured response corresponds to a length in time of
approximately 12 ms (given a sample frequency of 44.1 kHz). During that time sound travels
around 4 metres in air, which means that possible included reflections must come from surfaces
not more than 2 metres from the speaker.

One disadvantage of using the impulse as a test source, is that the power that is delivered to a
speaker is low. This gives a bad signal to noise ratio. Another is that in typical rooms, such
windowed impulse measurements will not give accurate data for lower frequency than about 100-
200 Hz [3]. To get accurate information further down in the frequency spectra some kind of other
methods have to be used.

The impulse has been used for all of our equalization methods, except the adaptive one. The main
reasons why we choose this method is because of the ability to get phase information and the
possibility to avoid most of the room interaction. To be able to just look at the response of the
speaker directly in the time domain and make some conclusions is also appreciated.

White Noise
Random noise excitation is another common method, White noise has a power density spectrum
which is constant over all frequencies, The output sound level can be much larger than the
background noise level which in a good way overcomes signal to room noise ratio. With digital
recording the amplitude response is obtained from the sampled test signal by taking the DFT of
the samples.

From a philosophical point of view, noise more closely resembles music in transient content than
for sine waves, and therefor could be considered more relevant as a test source. Because of the
method’s random nature, there is a need for smoothing of the (with DFT) calculated amplitude
response. Even if using extremely long sequences, like 200000 samples the variance of white
noise is still quite high at around and this is reflected in the resultant spectrum as random
perturbations about the true characteristics. We have used 1/8 octave smoothing and a sample
length of 16384 samples. A shortfall is that this method doesn’t give any phase information.

We used white noise for measuring in some cases, mainly to check that measuring with impulse
and noise gave similar results. The sampled test signal of the noise was windowed with a
rectangular window to 16384 samples and taken the discrete fourier transform of to obtain the
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dB

amplitude response. Smoothing of the amplitude response is definitely required.

Figure show that the impulse and the white noise measuring gives similar results. The big benefit
with using white noise is the improved signal/noise ratio as clearly showed in the figure. Around
20 dB in signal to noise ratio is gained using noise instead of impulse as input signal.
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Figure Al: White Noise vs Impulse as input signal. Background Noise is measured with no input signal. All
curves is smoothed 1/8 octave.

Maximum-Length Sequence
Probably one of the best test signal to use for obtaining the amplitude and phase response in an
anechoic chamber. The maximum-length sequence is a kind of pseudo random noise, that has all
the advantages that measuring with white noise has, but also gives phase information. This
method is highly used in the MLSSA system.

Since our test environment didn’t include this advanced measuring method and since it is best
used in an anechoic chamber, we haven’t used it.

Smoothing
There is strong evidence that the ear tends to average short-term irregularitics and is rather
sensitive to broader trends in energy over third-octaves or octave bandwidths.
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APPENDIX C - SPEAKERS AND MEASUREMENT SETUP

Measurement equipment used:

Microphone: Shure SM-58. A very common dynamic, cardoid pattern, microphone designed for
singing, and thus can deal with high pressure and rough handling. On the other hand, this
microphone is not made for acoustical measurements, and has neither a flat nor a wide frequency
response. With typical values the microphone is within 5dB from 100 to 10kHz.

Power amplifier: Soiy TA-F170, 60 Watt hi-fi amplifier, measures flat throughout the audio band.

Signal generating, sampling and recording: ESS 1869 soundcard, very simple full-duplex PC
soundcard capable of 44100kHz sampling and recording to harddisk. Specifications were not
available, but probably not a very good performer, and obviously got SNR of approx. 50dB.

Software: SpectraPlus v.4, shareware program that incorporates a lot of good analysis functions,
such as time and frequency domain analysis, distortion measurement, spectral decay plots etc.

Measurement signals: Made in Matlab, converted to sound format and played back via ESS 1869.

The measurements were made in a “live” environment, in a fairly big electronics laboratory, but
not very far from walls producing early reflections, With somewhat 3 meters path for the early
reflections, with a near-field (10cm) measurement we would have our first room-interactions in
about 9ms, or 385 samples, after the impulse. Because of this we have in some cases been
truncating the impulse response to get a “free-field” like measurement, but this will in turn give
us less resolution in the lower frequencies.

For the bigger speaker the measurements were carried out at 60cm because of the multiple driver
design, and the measurements were even more disturbed by the room response.

Although the measurement conditions have been far from ideal, the aim has been to keep the
conditions around the measurements as stable as possible. We have of course in this arrangement
not only been measuring the speaker, but the whole measurement chain of components, and
hopefully been able to arrange exactly the same conditions at the time for evaluation. After all it’s
been the method that’s been of interest, not the performance of this particular speaker.
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APPENDIX D - MATLAB SCRIPTS

Inverse Filtering

function filt=inversfilter (x,size of inverse)

% function filt=inversfilter(x,size_of inverse)
% Target function is included, can be redesigned by

% editing this function.

FDe

sign of target function:

lowpassorder = 33;

cutfrequencylL = 9000;
fs = 44100;

highpassorder = 1024;
cutfrequencyH = 100;

lowpassfilt = firl{lowpassorder,cutfreguencyL/(£fs8/2});
highpassfilt = firl(highpassorder, cutfregquencyl/ {£s/2), "high”);

tar

getfunc = conv(highpassfilt,lowpassfilt);

targetfft = fft{targetfunc’,size_ of_inverse};

%ta
=

H

h =
f£il

plo

rgetfft (1) = 0.0001;
fft{x,size_of_inverse);
targetfft’./X;
real (1£ft(H)};

t = rotatevect (h,delay};

t(filtsvar)

Inverse Minimum Phase Filter

function h = minfasfilter(x,size_of_inverse);

% function h = minfasfilter{x,size_of_inverse);

pad = zeros(i,size_of inverse-length(x));

[y ym) = rceps([x pad]);
$real cepstrum with matlabfunction rceps.

h =

inversfiltervhigh (ym,size_of inverse);

Least-Squares

fun
%D
% 1
%t

rp=
Rp=
Rpi
g=2z
gl(l

ction fopt=lsfilter(p,l,t)
= impulse response

= used length of impulse response
= delay in desired response

conv(p{l:1),p(l:-1:1)};
toeplitz(rp(l:2*1-1)});
nv=Rp”™{-1);

eros(l,1};
tib)=p(t:-1:1);

fopt=Rpinv*g’;

figure

subplot(3,1,1); plot{p);
title(’'Impulse response p,
ylabel{'p’);

plot(3,1,2); plot{fopt);

yvlabel{’fopt”’};

sub

%
%
%
%
%
%

inverse filter fopt,

atto-correlation vector, length 2*1-1
auto-correlation matrix, size 1*¥1

size 1*1

cross-correlaticon vector, length 1
imp. res, shifted backwards into ¢
optimal filter, length 1

subplot(3,1,3); plot(coenvi{p,fopt)}:

¥label {’sample nr’); ylabel({’convip,fopt}’);

and their convolution’);
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LMS

% Adapts towards the inverse of impulse response p for 40 sec.

% We must have p as variable.

% d=wavread(’e:\projectilms\music’);

d=randn(1800000,1);

fprintf{’'Neoise generated!\n’);

x=conv(d,p) ;

% if adapted with music
% white noise input

% input to filter

fprintf(‘Neise convolved with impulse response!\n’);

d=[zeros(100,1); a4l;
lowpass=£firl(31,10000/22050};
d=conv(d, lowpass) ;

1=1024;
k=0.0001;
f=zeros(l,1};
L=length(d) ;

for n=1: (L-1*2)
y=F'*x(n:-1:n-1+1};
e(n)=d(n)-y;
f=f+k*x{n:~1l:n-1+1) *e(n);

end
plot(f, ‘black’);

fprintf(‘Finished!\n’};

% delayed reference
% low-pass filter
% desired signal, delayed low-pass filtered music

% filter length
% adaptation constant

% LMS updating algorithm
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APPENDIX E - ASSEMBLERCODE

’

; The file programs the Analog IC to sample at 20KHz. *7
; A serial port Receive-INTerrupt takes the values in */
; the serial port receive-registers and applies the FIR */
; filter before writing the result to the serial port transmit-register, */

- ii*i*‘k*****ﬁ*i*i**iii*i*****i*ii*******i‘**‘ki******i*i***t**i**ii**i*i**i*****/
.start ".text®,0x8093802 ; Locate code at beginning of on-chip memory
.start ".servect®”,0xB09FCS5 ; Locate serial port interrupt vectors
.entry start

; Memory map register locations

SGCRO .set  0x808040 ; Serial pert 0 global control register
SPCX0 .set 0xBOBO42 ;i Serial port O FS8X/DX/CLKX control reg.
SPCRO .set 0x808043 ; Serial port 0 FSR/DR/CLKR control reg.
DTX0 .set  (x808048 ; Serial port 0 data transmit register
DRXO0 .set 0x80804c ; Serial port 0 data receive register
TGCRO .set. 0xBOBC20 ; Timer 0 global contrel regigster
TCHTO .set 0xB0O8024 ; Timer 0 counter register
TPRO 8ot 0Ox808028 7 Timer 0 period register
; AIC (Analog/digital Integrated circuit Chip-set} parameters
TIMERPER .set 1 ; C31 Timer period register for 50/ (8*TIMERPER)MHz
TA .set 4 ; TA value for 20KHz sample rate
TB .saet 39 ; TB value
RA .set 4 ; RA value
RB .set 389 ; RB value
PRIMARY .set 1lb ; Primary Communications indicating Secondary
; Communications follows
A_REG .set  {TA<<9)+{RA<<2}+0 ; Secondary Communication for Setting TA and RA
B_REG .set  {TB<<9)+(RB<<2}+2 ; Secondary Communication for Setting TB and RRB
C_REG .set ((101000b)<<2}+3 ; Control word
text

start 1¢i  2h, T0F ; Pull AIC into reset

1di Oh,R4 ; Clear R4

1ldp SGCRO

Reset serial port

Load initislization value 1 into R7
Initialize FSX/DX/CLKX control reg.
Initialize FSR/DR/CLKR control req.
Load initialization wvalue 0 into R7
Enable RINT & 16-bit transfers
Transmit 0

Reset timer 0

sti R4,@SGCRO
1di @SINIT1,R7
sti R7,@SPCX0
sti R7,8SPCRO
1di @SINITO,R7
sti R7,8SGCRO
sti R4,@DTX0
sti R4,@TGCRO
1di TIMERPER,R7
sti R7,@TPRO
sti R4,Q@TCNTO
1di @TIMVAL,R7
sti R7,E@TCECRO
1di 6h, IOF

e me ma oy e e e oy

; Store timer 0 period

; Reset timer 0 counter

; Load timer control value

; Start timer O

: Pull AIC out of reset

or 2000h, 5T ; Global interrupt enable

1di PRIMARY,R3 ; Primary comm value

1di B_REG,RO : Secondary comm value
i

call XMIT Set TB & RB

1di A_REG,R0 Secondary comm value

call XMIT Set TA & RA

1di C_REG,ROD Secondary comm value

call XMIT Send control word

1di @SIGNMSK, AR2 ; Put the SIGN MaSK into ARZ

1di @BFRPTR,AR1 ; Put 1lst location of circ, data (x} buffer in AR1

or 20h, TE ; Enable RINT interrupts
LCOP idle ; Wait while sampling pericd passes

b LOCP ; Interrupts will trigger execution at RINT
XMIT

ox 10h, IR

idle

sti R3,BDTX0 : Start control instruction

idle

sti RO,2DTX0 ; Secondary transmit

idle

sti R4,@DTX0 ; Transmit a 0

xor 10h,IE

rets
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SINITO .word Oxce%70300 ; Enable RINT & 16-bit transfers
SINIT1 .word Ox111 ; Configure as serial port pins
TIMVAL, .word 0x3cl ; Timer global contreol register value
SIGNMSK .word 0x80000000 ; SIGN MasK for manipulating MSB before outputting
HPTR .word FIRSEQ ; Location of filter seguence
BFRPTR .word DTABFR ; Location of circ. data buffer
Convolution Equation: vy(n)= h(0)*x{(n) + h(l)*x{n-1} +
. + hi(N-1)*x{n-{8-1))
where h{i}= hBP (i) *w{i} {Filter and Window)

Calling Sequence:

’

’

;  LOAD ARO ; ADDRESS OF hii}

;  LOAD AR1 ; ADDRESS OF x(n-(1i))
; LOAD RC ; LENGTH OF FILTER MINUS 1, i.e. (N-1)
; LOAD BK ; LENGTH OF FILTER, i.e. N

r

;

r

REGISTERS USED FOR ACCESSING x({): ARO, AR1, RC, BK
REGISTERS MODIFIED BY RINT: RO, R2Z, ARO, AR1, AR2Z, RC, BK
REGISTER CONTATNING RESULTING y(}: RO

N .set 32 ; Order of the FIR filter
RINT 1di N,BK ; Set BK (Block) for this interrupt routine
1di N-2,RC ; Set RC (Repeabt Counter)
1di @DRX0,R0 ; Get received data inte 32-bit R0O. 1l4-bit data,
; trailed by 2 "zero® bits, is in lower 16 bits
ash 16,R0 ; Shift left so sign bit is in MSB
ash -16,R0 ; Shift right again to get 2‘s-compliment
float RO,R2 ; Convert the newest digital sample to Floating
Point
stf R2,*AR1++(1)% ; Store data (x) in circ. buffer of size BX
1di @HPTR,ARD ; Reset coef. (h) table address register to hi{()
1df 0.0,R2 ; Initialize R2 for accumulation of terms
mpyf3 *ARQ++{1), *AR1++(1}%,R0O ; h{0}*x[n-(0)) ->RO
; Next, repesat multiplication and accumulate
; for each term in cenveclution ecuation
rpts RC ; Repeats parallel instruction (RC+1) times
; T<=1i<=(N~-1}
mpyL3 *ARO++ (1}, *AR1++(1)%, R0 ; h(i)*x{n-{i)) ->RO
|| addf3 RO,RZ,R2 ; Parallel Multiply and Add Operation
addf RO,R2 ; Add last term + others already accumulated
fix R2,RO ; Change floating point to integer
and3 ARZ,R0,R2 ; Use a 32-bit mask to recover the sign bit
1sh -16,R2 ; Shift the sign bit down into the lower 16-bits
and 0x00007f£fc,RO ; Use a mask tec recover the relevant 14-bits of data
or RZ,R0 : Overlay the recovered sign and data bits
sti RCG,@DTX0 ; Send result to D/A for ocutput
reti
r
.brstart "fircoef",32 ; Create coef at 32 word boundary (16 if N=16, 64 if
N=64)
; Coefficients for filter sequence, hi{i)
H O<=i<=(N-1)
FIRSEQ .fleat 0.0, 0.0, 0.0, 0.C
.fleat 0.0, 0.0, 0.0, 0.0
.float 0.0, 0.0, CG.0, 0.0
.float 0.0, 0.0, 0.0, 0.0
.float 0.0, 0.0, 0.0, 0.0
.float C¢.0, 0.0, 0.0, 0.0
.float 0.0, 0.0, 0.0, 0.0
.float 0.0, 0.0, 0.0, 0.0

.brstart "circbuf®,32 Initiate cire. data buffer at 32 word boundary

DTABFR H (16 if N=16, B4 if N=64}
Jloop N 5 x{n-(1)) O<=1i<={N-1)
.float 0.0 ; Have the Assembler place "N" 0's at locations
.endloop ; following x, as initial data buffer values
.sect ".servect”
reti ; XINTO
b RINT i RINTD
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