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identification of respiratory mechanics during mechanical ventitation

1 Preface

This report is the result of a master thesis work made during the spring of1999 at the
department of Automatic Control at Lund University in co-operation with the
department of Clinical Physiology at Lund University hospital. It deals with the subject
of modelling the human respiratory system under mechanical ventilation.

It should be pointed out that a report of this kind is supposed to be readable for a
last year engineering student. Some of the medical facts and terminology are
therefore simplified which might disturb a reader with solid medical background.
Despite this, | hope that the methods and results are interesting enough to make the
report useful for the more qualified readers as well.

Chapter 2 contains some background information, including a brief introduction to
the human lung physiology, an explanation of the forces acting on the human
respiratory system and a description of the uses and risks with mechanical
ventilation. In Chapter 3 the objectives of the work are found and Chapter 4 contains
the mathematical modelling, the equipment used and the experiments that was
carried out. Chapter 5 contains the results and discussions and conclusions are
found in Chapters 6 and 7. Finaily, some suggestions of further work are found in
Chapter 8.

| am very grateful to my supervisor at the department of Clinical Physiology,
Professor Bjérn Jonson, for giving me the opportunity to work with such an
interesting and for me completely new subject and also for his help and support. |
would also like to thank my two supervisors from the department of Automatic
Control, Professor Rolf Johansson and Professor Per Hagander, for great support
and feedback.

Leif Uttman and Bjorn Drefeldt at the department of Clinical Physiology have also
helped me a lot in understanding the mysteries of the respiratory system, the
previous work in the area and the technology behind mechanical ventilation. Last but
definitely not least | want to thank Anna Blomberg for all her encouragement and for
useful help with the structure and language of the report.
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2 Background

Mechanical ventilation is a necessary, life-supporting aid in modern intensive care.
The human body might in certain situations, due to diseases as well as accidents, be
unable to utilise the lungs to such an extent that life can be sustained. The
mechanical ventilator is then used to inflate the lungs with external aid so that the
normal gas exchange between alveolar and blood in the lungs can occur as usual.

The drawback with mechanical ventilation is that it is difficult to adapt the settings to
individual needs and the goal of the treatment since the characteristics of the lungs
are very individual. A bad choice of settings might cause permanent damage to the
respiratory system and the settings are therefore often made based on rules of
thumb which ensure the safety but does not necessarily improve the health of the
patient.

The development in the computer area has made it possible to perform fast and
accurate simulations of complex physical systems. This suggests that it should be
possible not only to model the respiratory system of each individual based on
sampled data from the ventilator, but also to simulate changed ventilator settings in
the computer before applying them. A physician should, based on knowledge and
experience, be able to state goals with the treatment as well as constraints in the
ventilator settings. Optimisation algorithms could then be used to find the best
possible ventilator settings. If the physician finds the suggested settings reasonable
they can then be implemented on the actual ventilator.

For such a system to be accepted by medical professionals, working under great
pressure in intensive care, it is important that it is easy to use and able to model and
simulate in close to real-time. From a technical point of view there is an obvious
possibility to create a complete control system. The computer could then be
connected directly to the ventilator and impiement the settings at once. Even the use
of direct feedback to reach the wanted goals stepwise is possible. This is probably
not a wise approach if clinical acceptance is expected.

2.1 The respiratory system

This section is intended to give a very brief overview of the properties of the human
respiratory system. A more thorough exposition on the subject can be found in [1] or

[2].

2.1.1 Introduction and definitions

Each litre of air that is inhaled and exhaled can provide the blood with 40-45 ml
oxygen and eliminate the same amount of carbon dioxide. If the metabolism of the
body is changed the ventilation must be changed proportionally so that the new
requirements are met. This is normally controlled through changing the tida/ volume
(volume per breath) or changing the frequency.

The human respiratory system basically consists of the trachea (air passage) and
the lungs. Air is moved in and out of the lungs by interaction between the opposite
elastic forces of the lung and the thorax (chest). The difference in pressure that is
induced between lung and thorax is called pleural pressure, Py.

In the lungs, the trachea passes into the main bronchi, one for each lung. The
bronchi are divided into smaller and smaller branches and finally end in the alveoli
where the actual gas exchange between the air and the blood occurs. Gas is
exchanged by diffusion through the alveolar wall so that oxygen is added to the blood
and carbon dioxide is removed.

2.1.2 Elastic properties of the respiratory mechanics

The term respiratory mechanics usually refers to the interactions between lungs and
thorax during breathing and the forces involved are mainly elastic and resistive.
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The elastic properties of the respiratory mechanics depend on the elasticity of the
lungs and chest and are crucial for the functionality of the lung, in health as well as in
disease. There is a difference in pressure between the inside and the outside of the
lung. This is due to the fact that the pressure in the alveolar is higher than the pleural
pressure. This difference in pressure is called elastic pressure, P, and is volume
dependent. The properties of the elastic pressure can be described in a
pressure/volume-curve (P/V-curve), such as the one, showing one complete breath,
found in Figure 1.
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Figure 1. Volume as a funclion of efastic pressure (Pe). The lower limb shows the inspiration and the upper part the
expiration.

This figure indicates a small hysteresis between inspiration and expiration. For
normal breaths this effect is usually found to be very small and it has been slightly
exaggerated here for illustration. The reason for the hysteresis is simply that the
elastic forces in the lung are larger during inspiration than during expiration [1, Ch. 2].
This effect is enlarged for deeper breaths.

The slope of the non-linear function is referred to as compliance, C, and shows the
volume change of the lung per unit of pressure change. This is measured as fem
H,0, which equals 0.0102 m%(N/m?) in Sl units. A person’s age as well as various
diseases affect the elasticity of the lung and consequently the shape of the Pe/V-
curve,

2.1.3 Resistive propetties

Airway resistance dominates the resistive properties of the respiratory system. The
pressure drop in the airways is called resistive pressure, Pres, and is defined as

P =RV (1.1)
where R is the resistance, often measured as cm H.0/(l/s) which in Sl units equals 98
(N/m2)/(m’s).

Resistance occurs due to internal friction in the trachea and depends mainly on the
length and radius of the airways. An individual’s tracheal length is constant whereas
the radius may vary and thus affect the resistance. Turbulence may occur and
increase the resistance if the flow is large compared to the radius.
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The resistive properties vary for different individuals and also for a single individual
in health and disease. Especially due to certain obstructive diseases such as asthma,
inspiratory and expiratory resistance may differ a lot and be very volume dependent.
Without resistance the total, tracheal pressure would follow the elastic
pressure/volume-curve exactly. The resistance causes the tracheal pressure to make
a larger loop, where the distance to the elastic curve depends on the resistance. This
can be seen in Figure 2 where the inner loop is the same as in Figure 1 and the outer
loop is the volume behaviour for the total pressure.
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Figure 2. Volume as a funclion of elastic (inner foop) and total tracheal ({outer loop) pressure.

2.1.4 Gas exchange and COz-level

The purpose of the lungs is to provide enough oxygen to the body while maintaining
a specific pH value by keeping a certain partial pressure of COin arterial blood
(P.CO;). The pH value of the body is determined by the amount of dissolved CO5 in
the blood since the main buffers for pH control, carbon acid (H-COs) and bicarbonate
(HCO,) are created according to [1, p. 55]

CO, +H,0 <> H,CO, < H" + HCO; . (1.2)
2 2 -l 3

The vaiue of P,CO, is thus vital for the body to function correctly. Two factors,
namely ventilation and metabolism, determine P,CO.. Thus, an increased production
of CO, in the body is normally compensated automatically by increasing the
elimination through changed ventilation. When using mechanical ventilation, the
normal ventilation is externally overtaken and it is therefore of extreme importance
that the P,CO is monitored when changing the settings of the ventilator.

Normally there is diffusion equilibrium between air and blood in the alveolar. The
partial pressure of oxygen in arterial blood (P,O,) therefore mainly depends on the
oxygen pressure in the air, Under normal air pressure, with P,CO; kept at normal
levels, the alveolar oxygen pressure is high enough to provide necessary amounts of
oxygen to the body. The body does therefore not need a control system for the
oxygen levels, like the one controlling P.CO,. Since it is not harmful for the body with
a modest change of the oxygen level, there is consequently no particular need to
model P,O, when simulating the respiratory system during mechanical ventilation.
This work will thus not deal with oxygen modelling.

4
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2.2 Mechanical ventilation

The Servo Ventilator 900C (Siemens-Elema AB, Soina, Sweden) is a widespread
ventilator used in intensive care all around the world and referred to in this study. The
ventilator has a number of user choices that can be set to adjust it to the patient’s
condition and needs:
s Pressure or volume control:
The ventilator can be set to either keep a certain pressure during inspiration
or to inspire a certain amount of air each minute. Depending on the choice
made a desired pressure or a desired minute volume is also set.
¢ Breathing frequency:
The number of breaths per minute.
» Inspiratory time:
The duration (in % of the total breath) of the inspiration.
» Pause time:
The duration (in % of the total breath) of a post-inspiratory time. Using this
setting produces a pause between inspiration and expiration,
e Positive end expiratory pressure (PEEP):
The pressure that should be reached at the end of the expiration.

2.2.1 Risks with mechanical ventilation

Mechanical ventilation is as mentioned often a necessary, life-supporting action that
is used with rules of thumb that are known to work but not necessarily prevent
permanent damage to the patients’ respiratory system. A reason for this might be
that it is considered better if a person survives with some permanent damages than
not at all. The main problem of risk is that the peak pressure is too high, causing
serious injury to the respiratory system. Another problem is that a too low pressure
can collapse the lung, which can cause the lungs to stick together. Large shear
forces will then act on the lung walls when trying to inflate the lungs again. This can
also cause severe injuries.
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3 Objectives

The objective of this master thesis is to identify the human respiratory mechanics

under mechanical ventilation and thus to obtain a model that can predict the

behaviour when changing the ventilator settings. For the identification and the not yet

implemented simulation of changed settings to be accepted in clinical use it is

important that it is fast, easy and safe. One important goal of the work must therefore

be to make it possible to identify relevant models from normal breaths, thus avoiding

the use of a special sequence that might interfere with the ventilator settings chosen

by the medical professionals. It is also preferable if the parameters of the model can

be determined in a short time and that the process is easy to use and requires none

or only very limited knowledge of the underlying mathematics.

The goal in the long run, although beyond the aim of this thesis, is to use the

obtained mode! for simulation and optimisation as a tool in intensive care. Using

simulation is a good way of testing changed ventilator settings in the computer before

applying them to the actual ventifator. Thus it is possible to find settings where, for

instance, the peak pressure is less harmful without changing the P,CO, too much

and with a reduced number of experiments on the actual ventilator and patient.

The work can be defined as consisting of the following parts.

« Study of literature on the medical background and previous work in the field.

+ Adoption of the available data to a format that can be used in Matlab.

+ Trying out different identification methods to find a suitable one for the purpose of
this thesis.

« Development of a complete modelling and verification environment in Matlab.

» Verification of the model with as much data as possible.

» Analysis of the result and error estimation to be able to draw conclusions.
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4 Materials and methods
4.1 Mathematical modelling

4.1.1 Model of the respiratory mechanics

According to the background in Chapter 2, the tracheal pressure (Py) can be
described as consisting of one resistive (P.s) and one elastic part (Pg). The elastic
part is dependent of the volume of the lungs, but since it is the flow that is
measurable from the ventilator it is better to model the elastic pressure as a function
of flow rather than volume. Since the volume is the integral of the flow this is an
equivalent representation. Assuming that a 1* order model is sufficient a differential
equation for the elastic pressure is

dP, ,
£ +wP, =5V 3.1
dt ef 5 ( )

where o is assumed to be the damping that causes the hysteresis in the elastic
pressure/volume curve in Section 2.1.2. & is the flow equivalence of the compliance.
Using Laplace transformation, the transfer function from flow to pressure becomes

G, =-Ij?l-=i. (3.2)
V s+

The resistive pressure, Py, is direct proportional to the flow, according to Equation
1.1, The actual resistance, R, is a non-linear and volume-dependent parameter that
often is different for inspiration and expiration. It can be modelled as a polynomial of
a certain degree and based on previous work [3] the degrees where chosen so that

R e t1;,V (3.3)

insp =
and

R _=r,+r,V+r,V? (3.4)

exp

for inspiration and expiration respectively.
To summarise, the tracheal pressure, Ptr, is

£ (1}0+1}1V+—§—-]V V=0
P, =RV+—2 V= ”‘”5 (3.5)
Stw (r‘eo+relV+re2V2 + )V V <0.
S+

The elastic part can be modelled with a larger model order but it is always possible
to separate the two parts since it is only the resistive one that is direct proportional to
the flow.
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4.1.2 Model of alveolar CO,-pressure

It is important to have a good model of the arterial CO,-pressure, P,CO,, to be able
to determine what happens to the CO, elimination when the tidal volume is changed..
Since the arterial blood is in diffusion equilibrium with the alveolar air the alveolar
COs-pressure (PaCO,) and the arterial COx-pressure (P,CO.) the two pressures can
be assumed to be equal. It is therefore reasonable to model PACO, instead since this
Information is available from the ventilator.
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0.03

=]
[=]
[
o
I
|

fraction CO2 (PCC2/Pbarom)

-0.005 ' i ; 1
o 0.1 02 a3 04 - 05 0.6 0.7
explred volume (I}

Figure 3. Tha fraction of COZ2 of the total alveolar pressure as a function of expired volume.

Figure 3 shows the fraction CO;, Feog, (PaCO2/Poarom) @s @ function of expired
volume in one breath so that the volume at the right endpoint of the curve equals the
tidal volume. If this curve is integrated the volume CO; per breath is found. To be
able to evaluate how this volume is changed when the tidal volume is raised or
lowered, the upper part of the curve must be parameterised. One possible
parameterisation is [3]

Fgo, =b+mm(y,, ). (3.6)

[

4.2 Equipment and data gathering

All data was collected from patients ventilated with the Servo Ventilator 900C
(Siemens-Elema AB, Solna, Sweden). This ventilator allows external control which
can override the settings made on the front panel for some of the parameters, e.g.
breathing frequency, minute volume, and level of positive end-expiratory pressure
(PEEP). A personal computer was connected to the ventilator via AD/DA-converters
for external control and data acquisition. Data was gathered with a constant sampling
period of 0.02 seconds.

Muscle forces acting on the respiratory system affect pressures measured at the
airway openings and therefore disturb a good determination of the respiratory
mechanics. Muscle relaxation was used in all cases to avoid this kind of
disturbances.
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4.3 Experiments

A data sequence consisting of a number of normal breaths, typically three to five,
from a patient ventilated with known settings, is constructed. The total length of the
sequence depends on the number of breaths and the breathing frequency but a
typical size would be approximately 1000 samples. Available signals are time (1), flow
(V) and pressure (Py) in the ventilator and the alveolar COp-pressure (PaCO,).
Because of tube resistance and compliance this is not the actual flow and pressure in
the trachea. The parameters of the tube are measured in vitro and the real input and
output signals to be used in the identification are calculated as [4]

. . dP,
Vrr (t ) = Vror (t)_ Cmbe dl:f (37)

P, ()= B, ()- (&Y, ()+ K.V ()

where Cype is the tube compliance and K; and K; describes the resistance of the
tube, corresponding to the polynomial representation of the tracheal resistance in
Equations 3.3 and 3.4.

For example, due to small differences in the flow transducers and different
composition of the air during inspiration and expiration the given measurements of
inspiratory and expiratory flow are not comparable. It is therefore necessary to
calculate a correction factor that can be multiplied with either of the flows. The
inspired and expired volume of one breath is obtained from integrating the inspiratory
and expiratory flows. For a normal breath these volumes should be equal. By dividing
the volumes a correction factor is obtained. The first breath in the series should not
be used since the starting point does not necessarily occur at the exact beginning of
a breath and the inspired volume would then not be a full breath. Instead the
difference between the first inspiration and the first expiration is used to calculate the
initial volume of the lung. This information is important when the coefficients of the
resistance polynomials of Equations 3.3 and 3.4 should be decided.

The model described in Section 4.1 is continuous but most identification tools are
designed for discrete modelling. Since the data is sampled it is reasonable to design
a discrete time model and try to convert the parameters o continuous time
afterwards. A prerequisite for the discrete representation is that the flow is piecewise
constant, i.e. does not change between the sampling points.

A 1% order discrete transfer function

H()=P A 58

zta,

between tracheal flow and pressure is determined with Matlab and the SMI toolbox
[5]. A 1% order model has proven adequate in all subjects tested.

To isolate the elastic part of the transfer function a polynomial division is performed,
resulting in the transfer function

bO
z+a,

H(z)=R+ (3.9)

The problem with the obtained model is that it is very sensitive to linear trends in the
data. If data contains linear trends the model output becomes unstable. This problem
can be solved if both flow and pressure data are detrended before used in the
identification. Detrending calculates the mean value of all data points and subtracis
this from each data point. This removes linear trends and places the data
symmetrically around zero.
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Using detrended data with the same identification method as above, a stable model
can be obtained but the hysteresis effect discussed in Section 2.1.2 is amplified to a
degree that had no biological explanation. It was found that it is the direct term of the
transfer function (R) that is affected most by the linear trends, whilst the elastic
parameters are almost equal for detrended and normal data series. To avoid the
hysteresis problem a combined approach can be used. Two identifications are
performed, one without and one with detrending of data. The elastic parameters (a;
and by) are taken from the first model and the resistive parameter (R) from the
second, detrended model.

Typical combined model output (tracheal pressure) and actual output in response to
flow are found in Figure 4. Note that the mean value of the original actual pressure
has been added to both series to return to original values.

30 T T T

tracheal pressure {cm H2G)

[ 5 10 13 20 25

Figure 4. Actual (solid) and mode! (dotled) outpuf from data Bf. The parameters of this data set is found Table 4.

The resistive part of the obtained model is just a constant, which is not sufficient
since inspiratory and expiratory resistances usually differ, especially in certain
diseases. This is for instance the case in some obstructive diseases where the
inspiratory resistance is large but the expiratory resistance even larger.

Using the transfer function in Equation 3.9 it is easily seen that the resistive pressure
can be obtained by subtracting the model elastic pressure from the actual tracheal
pressure. If the elastic parameters are correct the remaining part can be assumed to
be the actual resistive pressure. The coefficients in the expressions for Rins; and Rexp
from Equations 3.3 and 3.4 can then be determined by minimising the difference
between the functions and the actual resistive pressure in a least-square sense. This
is done with a non-linear curve fiiting routine in Matlab. A typical resistance function
is found in Figure 5.

All parts of the tracheal pressure from Equation 3.5 are now known and the elastic
and resistive parts of the pressure can be calculated separately. A plot showing
actual and model tracheal pressure and model elastic pressure is found in Figure 6.

10
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Figure 5. Inspiratory (lower) and expiratory {upper) resistance as a function of volume for data Bf.
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Figure 6. Tracheal pressure (solid) and elastic pressure (dashed) for data BY. The tracheal pressure is plotted boih as
model and aclual output but the model follows the actual outpul so welf that it is difficult to separate them.

For the physician to be able to draw conclusions about the patients’ condition this
model must be presented in a familiar form. This can be done with for instance a P/V-
curve, like the one in Figure 7. This curve shows all breaths in the identification data
but it is of course possible to select just one breath and present this.

11
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Figure 7. Total model tracheal pressure (outer loop) and elastic pressure (inner loop) of dala Bf. The dotted loop s
actual lracheal prassure.

To estimate the parameters in the alveolar CO,-pressure the volume of the first
expiration in the data series is found through integration of the flow. The fraction CO;
is obtained by simply dividing the given CO.-pressure by the normal air pressure
{Puarom). A curve-fitting routine is then used to fit the function in Equation 3.6 to the
upper part of the curve. The curve from Figure 1 with the mentioned function included
is found in Figure 8.

0.045 T T T T T T
0.04}- #id
0035
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0.01
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Figure 8. Fraction CO; as a function of expired volume (sofid) and the mathematical model from Equation 3.6 (stars).
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4.4 Continuous representation

So far, all the modelling has been performed in discrete time. At this stage it is
possible to convert the transfer function to continuous time since no more
identification is necessary. It is difficult to perform a correct transformation between
discrete and continuous time but it is done to be able to represent the model as a
differential equation, which is much more intuitive to understand than a discrete
transfer function.

The total continuous transfer function from flow to tracheal pressure is

G, ()=t gy & (3.10)
st+w s+

To obtain a relation between the continuous parameter vector d=[w v v1] and its
discrete equivalence 6=[a; f}, B1] a few calculations are required. These can be found
in Appendix A. Comparing the state-space realisations from Appendix A with the
transfer function in 3.8 and 3.10 results in a relationship between the continuous and
discrete parameters

1
@ Z—ﬁalp[] - P
3(6): Yo=F (3.11)
1 1
n= __p1ﬁ0 +_Peﬁl
h h

where p, and p; are derived in Appendix A.
A relationship between the divided parameter set A=[o R £] and the original
continuous parameters d=[w yo v1] is easily established as

w=w o=
Y.=R & R=y, (3.12)
7’1:Rw+§ fzyl_yow

or in matrix form

@ 1 0 0|w
Rl=[0 1 Oyl (3.13)
£ 0 —w 1|y

Please note that the resistive part is equal in discrete and continuous representation,
This is the reason for the using the letter R in both cases.

4.5 Errors in the estimated parameters

To be able to evaluate the correctness of the model it is important to have some kind
of measurement of the errors in the estimated parameters. This section deals with
the variance of the parameters from the identification, i.e. not the resistance
parameters found with curve fitting.

A more detailed description of the expressions in this section can be found in [6],
from which most of the material is taken.

13
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4.5.1 Variance in the discrete representations
The original model from Equation 3.8 describes the time series

@
Vk Vk—l] By l+ve =0 0+v, (3.14)
B

Rfk = _al})frk—l + IBOV]( +ﬁ]Vk_1 +1’k = [_ P

.-

where vy is the error between observation at time k and the model output at time k. ¢k
is referred to as the regressor vector.

In matrix notation the total vector of observations can be described as

=l " (3.15)
PIJ’N

if N is the total number of observations. The total regressor matrix and total error
vector is

P, B, —p0
P -0

¢N — §oz i 8(9): ir qDZ - P,,-N _¢N9' (316, 317)
G;ON PIrN _‘pNg

The sum of the squared error between observations and mode! output can now be
described as

1 1
vO)=¢"e=2 B, ~0,0F (B, ~0,0). (3.18)
If & is an unbiased estimation of 9, its covariance matrix is

S, =0 (ghey )’ (3.19)

An unbiased estimate of ¢° in Equation 3.19 is

&2 ENL—p (é) (3.20)

where p is the number of parameters, in this case p=3.

An estimation of the covariance matrix of 8=[a; o p1]" is thus

2 A 1
T ©0) Gro) (3.21)

14
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and the variances of the three parameters as, 5o and B are the diagonatl elements of
this matrix.

To estimate the variances of the three discrete parameters R, a, and by it is
assumed that the covariance of a general vector function of variables with known
variance can be calculated as

a T

The relation between the original parameter vector, 8=[a; o 1", and the divided set,
n=fa; R bo]" is

a, =q a, =a
By=R &4 R=pf (3.23)
B, =Ra, +b, by = B, — By

or in matrix form

o] [1 0 0fq

Ri=[0 1 0|2, (3.24)
b, 0 —a 1]5

where it can be assumed that

1 0 0 of

0 1 0f==. .
0 (3.25)

0 —q 1

so that, using Equation 3.22, the variance of the new discrete parameter vector
n=[a; R bo]" can be determined as the diagonal elements of the covariance matrix

T

1 0 0 1 0 O
=2.=0 1 0[,0 1 0 (3.26)
0 —g 1 0 —-a 1

with X from Equation 3.21.

4.5.2 Variance in the continuous representations

The variance of the continuous parameter vector 8=[w v, v1]” is also estimated using
Equation 3.22. Differentiating Equation 3.11 gives, with p, and p4 from Appendix A,

lpo 0 0

dg ho 1 0

Y o i (3.27)
i h P h pOH

which inserted to Equation 3.22 gives
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T

1 1
7P 0 0 P 0 0
;=1 0 1 0 [, O i 0 (3.28)
o -1, 1 o -1 1
5 P ) Do I Iz h Po

with X, from Equation 3.21 and p, and p, from Equation A.7. The diagonal elements
of Zsare now the variances of the parameter vector 8=fo v, 71]".

The variance of the divided set A=[m R £]" is calculated from the variance of

8=[m vo v]' in the same way as for the discrete equivalents. From Equation 3.13 it
can be assumed that

1 0 0 5f
0 0= 55 (3.29)
0 —-w 1

so that, using Equation 3.22, the variance of A=[w R £]" can be determined as the
diagonal elements of the covariance matrix

T

1 0 o]t 0 0O
z,={0 1 ofgj0 1 0 (3.30)
0 —w 1| |0 —& 1

with 25 from Equation 3.28.
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5 Resulis

5.1 Model of respiratory mechanics

The model has been used and validated in two different ways, with a large material
(12 patients) and with a small material where data has been recorded both before
and after a known change in ventilator settings. With the second data set it is
possible to test if the model can handle changes in tidal volumes and breath
frequencies. This is of course very important since it indicates if the model can be
used for simulating changed settings and still be valid.

Note that the mean value of the actual pressure, i.e. what is subtracted when
detrending, is added to the model pressures of all plots in this section to obtain
figures as close to reality as possible.

5.1.1 Validation with large material

Models have been identified using data from 12 patients with different lung diseases.
The parameters are found in Table 1, 2 and 3. The names of the sets are the initials
of the patients and used just for convenient labelling. In all cases models were
determined with one data set and verified with another. Table 1 contains the values
of the discrete elastic pressure parameters with variance. The last column in the
table describes a simple visual characterisation of the fitting between model and
data. In case the fitting between model identification data and verification data
respectively differed much this is also mentioned, as well as when the curve fitting to
resistance polynomials has affected the result noticeable. The corresponding
continuous time parameters are found in Table 2. Table 3 contains the original,
constant value of R with variance as well as the parameters of the resistance
polynomials found with curve fitting.

Data | a; Var(a;) by Var(h,) | Characterisation

Al -0.9994 | 9.19x10° | 0.3702 | 5.19x10° | Good agreement with data

Be -0.9999 | 3.03x10° | 0.6045 | 1.31x10° | OK agreement with data

Cc -0.9998 | 9.45x10” | 0.9076 7.58x10% | OK agreement with data

Di -0.9986 | 3.20x107 [ 0.,7046 | 1.35x10"' | Bad agreement with data

Fd -0.9992 | 6.07x10° | 0.6301 1.58x10 | Good data fit, OK verification

Go |-1.0001 [3.86x10° | 0.6344 | 1.50x10° | OK agreement with data

Gv -0.9993 | 8.27x10° [ 0.4656 | 1.12x10° | Good agreement with data

Je -0.9994 | 4.96x10° | 0.5058 9.99x10° | Good agreement with data

Jm -0.9996 | 1.02x10° [ 0.4058 | 1.17x10® | OK agreement with data

Jm76 | -0.9991 | 3.76x10" | 0.9296 3.94x107 | Very good after R-fitting, bad
original identification

Ma -0.0994 | 4.98x107° | 0.6070 2.06x10” | Very good

Pv -0.9987 | 2.01x10™ | 0.8240 1.18x10" | Good after R-fitting, OK
original identification

Table 1. Discrete elastic parameters with variance and characterisation of the identification and verification.
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Data | o Var(w) | & Var(£)

Al 0.0296 3.68x10" | 18.517 32.932

Be 0.0048 1.21x10° | 30.228 27.498

Cc 0.0100 3.78x10° | 45.386 189.60

Di 0.0704 1.28x10” | 35.254 336.69

Fd 0.0382 2.43x10” | 31.517 39.652

Go -0.0066 | 1.54x10” | 31.720 37.464

Gv 0.0363 3.31x10° | 23.289 28.004

Je 0.0326 1.98x10° | 25.297 | 25.012

Jm 0.0189 4.10x10° | 20.294 42.942

Jm76 | 0.0450 1.51x10” | 46.501 085.27

Ma 0.0299 1.99x10" | 30.359 51.765

Pv 0.0639 8.06x10° | 41.226 297.01

Table 2. Continuous elastic parameters with variance.

Data R Va r(R) o Ty Fen Fa1 Te2

Al 5,901 0.817 7.520 -0.833 5.591 4.851 2.817

Be 10.027 | 0.518 0.958 -1.088 7.534 1.130 8.397

Cc 17.331 3.317 24,598 |-17.210 | 9.432 -9.063 4.640

Di 8.459 5.208 23.207 |-13.277 |8.378 -38.115 | 74.610

Fd 4.088 0.519 1.454 6.286 0.947 26.940 | -29.616

Go 5.8159 | 0.863 3.946 -1.788 6.420 -5.159 13.225

Gv 2.866 0.855 2.244 2.163 1.640 7.999 1.332

Je 3.801 0.687 3.461 0.263 2,772 5.778 3.959

Jm 5.756 1.047 3.682 7.462 4.770 10.226 | -6.158

Jm76 | 24,950 | 12.231 34.988 |-23.834 | 44.203 |-121.48 | 194.17

Ma 11.513 | 1.007 11.668 | 2.503 13.473 | -0.086 5.114

Pv 11.870 | 4.377 21.026 | -29.032 | 28.641 -70.446 | 87.415

Table 3. Constant resistive parameter with variance and cosfficients of the resistance polynomials.

In almost all cases a model with close matching to the actual data was obtained and
also verified with new data sets with good resulis.

Even if the parameters exhibit large individual variations two main groups can be
identified, the ones with large resistance, i.e. obstructive cases, and those with
smaller, more normal, values of the resistances. P/V curves showing typical
behaviour of the two cases are found in Figure 9. Note that there is a small
hysteresis in the elastic pressure. To some extent this can be explained by the
detrending of data. A linear increase in volume occurs in the right end of the curve. In
the original data set there is a post-inspiratory pause that should have caused a
vertical pressure drop under constant volume at the end of the inspiration. The
detrending has lifted the actual zero-flow to a positive value, which naturaily
increases the volume. The actual respiratory system does of course not exhibit this
behaviour.
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Figure 9. P/V-plots of typical obstructive data (leff) and lass resistive data (right). The inner foop of each plot Is the
model elastic pressure and the outer Is the model tracheal pressure.

Some of the identified parameters have very bad variance, especially in the &-
parameter. All those cases also exhibit bad model behaviour even if the curve fitting
of the resistance polynomials of Equations 3.3 and 3.4 sometimes improves the
result. Figure 10 and 11 illustrates the identification data for Cc and Jm76 before and
after the polynomial fitting. It is clearly seen that the original identification can not
handle the last part of the expiration very well but that the final model of Jm76 is
good despite this.
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Figure 10. Identification data for Cc before (left) and after (right} the fitling of the resistance polynomiafs. The solid
line is mode! oulput and the dashed line is aclual oulputl.
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Figure 11. Identification data for Jm76 before (left) and after (right} the fitting of the resistance polynomials. The solfd
line is model oulput and the dashed line is actual oulput,
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5.1.2 Validation with known changes in ventilator settings

There were a number of data sets available where recordings had been made both
before and after some known change in the ventilator settings, for example increased
inspiratory time or frequency. Models were first determined with data from the original
settings. Those models could then be verified by comparing model output and actual

output from data series recorded during or after the parameter change. The
parameters are found in Table 4 to 6.

Data | a; Var(a,) bp Var(bg)

Np -0.0008 | 2.53x107 | 0.3600 | 6.42x10%

Bf -0.9999 | 1.18x1071]0.3405 | 5.51x10*

Tm -0.9999 | 7.22x10° | 0.6131 8.22x10™

Table 4. Discrete elastic parameters with variance.

Data | @ Var(w) | & Var(£)

Np 0.0083 | 1.02x10” | 18.001 160.68

Bf 0.0080 |4.74x10° | 17.027 |137.73

Tm 0.0063 | 2.89x10° | 30.656 | 205.58

Table 5. Continuous elastic paramelers with variance,

Data | R Var(R) | ro Fit feo Toi Fez
Np 11.855 |0.888 13.235 |3.780 5.864 48.809 | -71.184
Bf 17.883 | 0.480 15.141 | 5.500 25197 |-2.788 |-10.340
Tm 27.308 | 1.022 25.604 |-5.065 |44.656 |-75.025 | 94.344

Table 6. Constan! resistive parameter with variance and coefficients of the resistance polynomials.

As can be seen from the plots in Figures 12 to 14 the model can handle changes in
ventilator settings quite well. A slight exception can be seen for the changed settings
of data tm where it seems as though the model cannot handle the last part of the
expiration as well as in the other cases.
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Figure 12. Data Np before (left} and during (right) a change in inspiratory time from 33% to 25%.
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Figure 14. Dala im before (left) and during (right) & 25% increase in frequency.

5.1.3 Parameter errors

The parameters with standard deviations are visualised in the left diagram of Figure
15 1o 19. The numbers on the x-axis corresponds to the data sets according to Table
7. The right diagram in Figure 15 to 19 is a cumulative plot of each parameter.
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Figure 15. Discrete time parameter a; with standard deviations (left) and as cumulative plot (right) for all data sefs.
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Figure 18. Discrete time parameter b, with standard deviations {left} and as cumulative plot {right) for all data sets.
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Figure 19, Parameter R with standard deviations (left} and as cumulative plot {right) for all data sets.
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5.1.4 Residual tests

The residuals of a model can be calculated as the difference between model output
and actual output in each point. If the model is sufficient there should be no structure
in a sequence of residuals. Uncorrelated residuals indicate that the error is white
noise, independent of previous inputs. There are thus no remaining dependencies in
the error of the model. By the central limit theorem, such residual sequences are
asymptotically normally distributed,

Autocorrelation and cross-correlation are two ways to test the residuals of a model.
The first test calculates the correlation between the residual at time zero and
residuals at later times. If the correlation is kept within a 99%-confidence interval for
a normal distribution it can be concluded that the residuals are normal distributed
white noise. The cross-correlation test is similar but test the independence between
the input at a certain time and the residuals of earlier and later samples.

Due to lack of time it has not been possible to perform these tests on the complex
model with resistance polynomials, since this would have required changes in the
available Matlab-routines. The tests were instead performed on the model with
constant resistance, acquired for detrended data. This could at least be an indication
of the reliability of the model. A typical result from the test is found in Figure 18 and
alt data sets exhibit similar results.

Correfalion function of residuals. Output # 1
1 T T T T

a5k

_05 3 L 1 1
0 5 alH 15 20 25

lag

Cross corr. function between input 4 and residuals frem output
0.1 T T T T T T T T T

0 \ -
"0.1 1 1 L] 1 1 1 1 1 1
-25 -2 -15 -1 -5 I+ 5 10 15 20 25

Figura 20. Autocorrelation (upper) and cross-correlation (lower) tests for data Ma.

Two simple possibilities to test the residuals of the total model with resistance
polynomials are to calculate VAF {variance accounted for) and NQ (the quote
between the norm of the difference between model and actual output and the norm of
the actual output),

arlP -P
VAF ={1_ Y ( tr actual trymodel )JHIOO% (51)

Var(I)Ir,an'lmI )

troacival - Pn-,mode!

NQ = £100% . (5.2)

! tr actiual

VAF shouid be as large as possible, VAF is 100% for two equal signals, and NQ
should be as low as possible. Both VAF and NQ have meaningful ranges of 0-100%.
Table 8 contains VAF and NQ for all data sets tested.
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Data VAF (%) | NQ (%)
Al 98.4 5.78
Be 98.88 | 5.81
Co 98.64 | 6.83
Di 95.64 | 12.51
Fd 97.65 | 9.71
Go 98.05 | 8.21
Gv 98.36 | 6.47
Je 98.86 | 5.61
Jm 96.35__ | 9.75
Jm76 | 9851 [7.34
Ma 98.57 | 6.73
Pv 98.72 | 6.51
Np 95.36 | 7.52
Bf 97.18 | 7.01
Tm 97.56 | 8.70

Tabla 8 VAF and NQ for ail data sels.

5.2 Model of alveolar COs-pressure

The parameters b and m in Equation 3.6 were determined for all available data sets.
The values are found in Table 9.

Data b m

Al 0.042 0.007
Be 0.053 0.012
Cc 0.045 0.004
Di 0.078 0.017
Fd 0.066 0.008
Go 0.055 0.013
Gv 0.044 0.009
Je 0.049 0.012
Jm 0.038 0.010
Jm76 0.057 0.016
Ma 0.059 0.018
Pv 0.055 0.011
Np 0.075 0.027
Bf 0.047 0.014
Tm 0.047 0.013

Table 9 Parameters b and m from all data sels.

A curve fit similar to the one in Figure 8 was obtained for all data tested, indicating
that the proposed modelling is good enough.
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6 Discussion

6.1 Model of respiratory mechanics

The results show that a good discrete model can be obtained from a data series of
just three to five normal breaths. The model is not perfect in all cases but it should be
good enough for the purpose of simulation. This section focuses on some of the
important features and limitations of the proposed model structure and determination
procedure.

6.1.1 Elastic properties

It seems as though the elastic properties of the respiratory system are well modelied
with the suggested method, even if the results might differ slightly from previous
work, especially concerning hysteresis. This is treated more in detail below.
Otherwise it is always possible to obtain parameters that seem reasonable and none
of the tested data exhibits unexpected behaviour. There are ways to measure the
elastic pressure but such information was not available for the data used in this work.
It is therefore difficult to claim that the elastic pressure from the model is the actual
elastic pressure. Since the total model pressure follows the total actual pressure well
in most cases it is reasonable to believe that all parts of the original identified model
are correct.

6.1.2 Resistive properties

As mentioned above it is not sufficient to model the resistive properties as a simple
constant, equal for inspiration and expiration. This is the reason for modelling it as a
volume-dependent polynomial. The resulis of this are unfortunately not always that
good. For some cases the original identification does not work as well as expected
but the curve fitting finds good resistance parameters leading to a total model output
that follows the actual output well. There are however aiso cases where a relatively
good original identification is practically unchanged or even a bit worse after the
curve fitting. This and the large variation in resistance parameters might indicate that
either the resistive modelling chosen or the numerical method used is not optimal.
Another problem with the proposed resistance modelling is that it seems as though
the curve fitting is dependent on the data series starting at full inspiratory flow and
not at zero for a good result. This makes it important not to make the cut too early in
the original data sets. In this work this problem have been solved by calculating the -
initial volume and adding this to the integrated volume wherever it is necessary. It is
nevertheless important to keep this in mind.

6.1.3 Detrending

The detrending of data is necessary to get a correct model of the resistive properties.
The drawback is that it places the data points symmetrically around zero, raising an
actual zero flow (i.e. during a pause) above zero, causing an increase in volume that
has no physical relevance. This should not be a problem as long as detrending is
used consistently for a particular patient since all data then will be treated in the
same way.

6.1.4 Hysteresis

Previous work [7} has shown a non significant hysteresis in the elastic pressure
during normal breaths and therefore used the same elastic pressure model for
inspiration and expiration, That model was determined by using a long sinusoidally
modulated inspiratory flow to which a model with three linear segments was fitted.
Using the simpler model of this work a small but yet relevant hysteresis is found. By
using identification methods it is quite simple to get a model that is equal for
inspiration and expiration but still recognises the differences. The suggested
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modelling method is can also be used with data from normal breaths. [t is worth
mentioning that the hysteresis effect in the P-V curves is amplified because of
detrending since, as mentioned above, an actual zero flow is lifted above zero
causing an increase in volume that is not physically relevant.

6.1.5 Continuous parameters

Equation 3.11 is a linear approximation that describes the relationship between
continuous and discrete parameters. This is the normal way to transform discrete
models to continuos time and it usually works fine. The problem with the parameters
estimated in this work is that a; is very close to 1. This causes the denominator in the
expressions for pp and p4 in Equation A.7 to be almost zero since A, in that equation
equals 1 and A,=-a;. Both p0 and p1 then becomes very large and since both are
used in Equation 3.1 it can be concluded that this linear approximation is not valid for
the identified model.

There are a number of solutions to the problem of obtaining correct continuous
parameters, a problem that is important since, as mentioned earlier, it is easier to
understand a continuous expression. Unfortunately it has not been possible to
examine those options within the time available for this master thesis but some
suggestions are presented here. One solution is cbviously to identify a continuous
model initially. This can be done using other identification methods and might require
faster sampling so that the data series can be assumed to be continuous. Another
solution might be to just change the sample rate and thus avoiding the dangerous
value of a1. A third possibility is to use other, more advanced, conversions from
discrete to continuous time.

A simple solution is of course never o present the actual parameter values, neither
in discrete nor continuous time. It might be enough for the physician to just see a
graphical representation of the model.

6.1.6 Parameter errors

The parameter variance is not too good, especially in continuous time. This might of
course suggest that the chosen identification method or model structure is not
suitable for the respiratory system.

The variance of by, the nominator of the discrete elastic model, is rather bad. One
possible reason might be that the assumption of a constant flow between the sample
points is not valid. This can be solved by using a faster sampling rate or using a
continuous time model where it is not necessary.io make such assumptions. Another
problem is that the calculation of the covariance matrix in Equation 3.19 assumes
that the estimated parameters are unbiased estimations of the actual parameters.
This might not be the case.

The variance of the continuous parameters is not reliable since it is calculated using
approximations that are not valid according 1o the discussion on continucus
parameters above.

Despite the bad variance a good model is found in most cases and it can also be
verified using other data sets. This indicates that the model is acceptable after all, at
least for the purpose of predicting the behaviour for smali changes in the ventilator
settings. The residual tests performed supports this.

The values of VAF and NQ are very good, showing that the estimated model agrees
well with actual data. The autocorrelation and cross-correlation tests are not quite
satisfactory since the curves do not stay within the confidence intervals for all values.
It should be remembered that those tests where performed on the model with
constant parameters. This and the good results on the other test suggest that the
results of the autocorrelation and cross-correlation tests are acceptable.

All tested data sets where the original identification produces poor result also
exhibits larger variance even for the discrete parameters. It can therefore be
concluded that the discrete variance is a good measurement of how well the
identification has worked. For some of these sets the fitting to resistive polynomials
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has produced a final result that is really good or at least better than originally. This is
one more indication that it is not sufficient to model the resistance with just one
constant parameter.

8.1.6 Limitations

The proposed model has been tested on 15 subjects. This is of course a too small
population for statistically satisfactory conclusions to be drawn from the results.
Nevertheless there are certain trends that could explain why the identification and the
curve fitting works more or less well for different data. Almost all data where the
model is not reasonably good seems to have been recorded with a rather large
maximum flow, typically more than 0.5-0.6 I/s, indicating that it is goed if the flow can
be kept below 0.5 I/s to ensure a good identification. Comparing the flow from two
data sets with very similar ventilator seitings and identiified parameters but with
different results confirms this. This is a mode! limitation that needs to be examined
thoroughly and must be considered when using the modsl.

Anocther limitation seems to be that the identification cannot handie obstructive cases
as well as other cases. This is sometimes handled by resistance polynomiais bui
more examination of this is necessary.

There is no guarantee that the model used is globally valid, which the experiments
with changed settings could be an evidence of. Some of those sets might have had
too large changes for the model to be valid. Examples of this can be found in Figure
12 where the model does not foliow the data for the changed settings particularly
well, especially at the end of the expiration. The change in this case is a 25%
increase in frequency and this is obviously a very large step. There might of course
be other explanations such as bad choice of starting point for the validation series but
validity in a larger area is a limitation of this model. When using the model for
simulation purposes this must be kept in mind, avoiding large changes in ventilator
settings.

6.2 Model of alveolar CO.-pressure

It is possible to modei the alveolar CO.-pressure very well with the simple function in
Equation 3.6. Of course curve fitting is not a complete way to model a physical
behaviour but the purpose of this model is to be able to track relative changes from
the original value rather than determine an absolute correct new pressure.

To illustrate the purpose of finding a model for the upper part of the alveolar CO,-
pressure curve, it is-here shown how the partial pressure for a new tidal volume or a
new breathing frequency can be calculated, using the two parameters b and m.

The volume CO, exhaled during each breath (V,CO,) equals, as mentioned above,
the area under the curve in Figure 3. If the tidal volume is changed, the end point of
the curve is moved either to the left or to the right, changing the total area. The new
ViCO; is calculated as

e

V,COM =V.COM + 'j(b+mln(v))dv (6.1)
Vo!d

old new

where V" is the original tidat volume and V¢"" is the wanied tidal volume. This is
correct if the upper part of the curve indeed can be described by Equation 3.6. The
new alveolar CO2-pressure can now be calculated as

Ozo.ld VICO;MRRGM

new new (62)
V,CO™ RR

P,COM =P,C

where RR™ and RR"™" are the old and new breathing frequencies respectively and
V{CO.*" is the original volume CO; per breath.
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if the two parameters b and m are correct, it is possible to keep good track of
changes in the aiveolar CO.-pressure. As mentioned in Section 4.1.2 this pressure is
equal to the arterial CO,-pressure. According to Section 2.1.4, information about
changes in the arterial CO,-pressure is very important for the physician.
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7 Conclusions

It is obvious that identification methods are very valuable to create simple yet useful
discrete models of the human respiratory system with data sets of just a few ordinary
breaths and with a rather small amount of time and computer work needed. It should
aiso be possible to obtain correct continuous time models as well even if this is not
shown in this thesis.

The major drawbacks seem to originate from the fact that curve fitting must be used
at one stage since iwo different models should be applied for inspiration and
expiration to model the physical behaviour correctly. This can probably be solved by
using another parameterisation of the respiratory forces or by using different
numerical methods.

The model is developed for a certain tidal volume, breathing frequency and minute
volume and there is no guarantee that it is globally valid since the lung physiology is
very dependent on those parameters. Changed settings should therefore be handled
with care so that the changes are kept relatively small. it is probably better to make a
model for a certain setting, find a new but similar setting, implement this and then
make a new model rather than trying to reach a goal far away in just one step.
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8 Suggestions for further work

In this work one step towards an increased use of computers in ventilator care has
been taken. This section contains some suggestions for improvements of the
proposed model as well as further work towards good simulation and optimisation
tools.

A better model! for resistance, more based on physical principles of, for instance,
turbulence and flow, would make an improvement of this model that could perhaps
give really good results in more cases than in the present one. An example of such
resistance modelling can be found in [8].

A method for standardisation of extraction of suitable data from the recorded series
could be a possible solution to the problem of finding a good starting point.

The best use of the proposed model is probably to create a user-friendly simulation
and optimisation tool that can be used in a clinical situation where medical
professionals can state therapeutic goals and limits with the treatment and the best
possible settings can be found. The optimisation and graphical user-interface
routines in Matlab can be used for this work as well.
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Appendix A. State-space realisation and the inverse of
sampling.

The subspace identification method used in this thesis produces a model in state-
space realisation. A brief introduction to this format is given in this section and itis
also shown how it relates to the transfer function. To perform a correct conversion
between discrete and continuous time, the inverse of sampling, the state-space
realisation is necessary and how the conversion can be done using the Caley-
Hamilton theorem is also presented.

A state-space realisation for a continuous system is given as

dx
‘;;“:A"(‘)*B“(t) & G6()=X=c(s1-A)'B+D (A1)
y t)= Cx(t)+ Du (t) v
and for a discrete system
x(k +1)= Ox(k )+ Tulk) Y
{ (k) () Du(e) H(z)—EHC(zI ®)'T+D (A.2)

where C and D are equal for the two systems. According to the theory of zero-order
hold sampling [9, Ch. 3.2] the paramsters of the discrete system are given in matrix
form by (h is the sampling period)

a2}

This expression can be reversed to obtain a possible conversion from discrete to
continuous time as

A B| 1. T
==In . (A4)
O 0f n (O I
If it is assumed that A, B, @ and I are all of size 1x1, the Caley-Hamilton theorem [9,

App. B] can be used to evaluate the matrix logarithm function. According to the
theorem a matrix satisfies its own characteristic equation so that

lanm@r“@r ; A
HOI—pOI—pGOIerI (A.5)

where /is the identity matrix and p satisfies

p)=InA,
{p(ﬂz)ﬂnﬂz A9

if A, and A, are the eigenvalues of the matrix. In this case, A,=® and A,=1. The values
of po and py are obtained by solving equation 6 so that
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p _Ind,-InA
N
“In, - ﬂ]zln A, —Ind, A7)
p} ;{2_‘2’1

Now A and B can be determined from equation 4 as

1
A=E(p0q)+pl)

B=ipDI‘.
h

(A.8)

33



