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1. Introduction

Tuning of PID controllers is an extensively explored area within the control community.
Many tuning methods have been suggested throughout the years and new methods arrive
frequently. The purpose with a specific tuning method differs. Some are simple heuristic
rules intended for practical use on real plants, while others are highly theoretical methods
applying to mathematical models. A practical tuning method for PID controllers is a
manual adjustment by observations and simple engineering rules, and this possibility is
an often heard argument for the use of PID control. For the practical use however,
automatic tuning procedures are used to a large extent. With an automatic tuning we
mean an adaptive tuning mechanism, ordered by an operator, that is made under a limited
period of time and gives the controller parameters as result. Automatic tuning facilities
exist in almost all commercial PID controllers today. The arguments for a manual tuning
possibility still hold though, since it can be used to refine the results from the auto-tuner.

All automatic tuners have to be based on some fundamental controller design method.
For an auto-tuner to be successful it is not enough with a good design method. Other
aspects have to be considered as well. The automatic tuning also involves an
identification part of equal importance. Many aspects of more practical nature also exist.
One example is the amount of prior, or user supplied, information that an auto-tuner
requires. This should be kept at a minimum to suit operators without advanced knowledge
in control. Another practical issue is how long time an auto-tuning takes. During the
tuning experiment the process must be kept undisturbed and this can be hard to achieve in
many applications. Therefore it is important that a tuning experiment can be done under a
short period of time.

In this report the efforts of developing a new auto-tuning procedure is presented. It
will be based on a relay based automatic tuning, and it can be seen as an extension of this
method. In our new auto-tuner the controller design part will be different, and the
development of the design method is also presented in the report. This design, or equally,
tuning method is an old idea of extending a Ziegler-Nichols type of tuning with an
additional process parameter. This parameter kappa, has properties that makes it
appealing for tuning, and we will investigate it closely in the report. The process
information needed will be gained from a relay experiment, and in addition a simple step
experiment to gain kappa. We will refer to the total procedure; tuning a controller from
the relay experiment data and the kappa parameter, as kappa-tuning. The notation of auto-
tuning will not be used very much in the sequel, although the kappa-tuning indeed can be
seen as an auto-tuning procedure. The report will mainly be focused on the controller
design part of the tuning. As discussed above there are other aspects as well, but they will
only be treated shortly in the last subsection of chapter five.

The identification experiment that has to be done except for the relay experiment will
be treated in a separate chapter. We will use a closed loop step experiment to estimate the
kappa parameter. We will also show how this experiment can be used to extract some
extra process information. This information will be used to give guidance of the dead
time properties in the process, and if large dead times occur a special dead time
compensating controller will be suggested. The estimated parameters can in these cases
be used to tune this controller, called a PPI controller.

Integrating processes are often treated separately in tuning methods, and this will be
done here as well. The difficulty with the integrating processes is that they all have kappa
equal zero, and thereby we lose one tuning parameter. However, it is possible to use a
different definition of kappa for integrating processes, to still be able to tune them with
three parameters. We will in this report suggest a new definition of kappa that has good
properties for tuning controller for integrating processes.



The thesis outline will be as follows: In chapter one we will recapitulate some general
control theory. Most importantly, we will here take a closer look at the relay auto-tuner.
In chapter three we treat the main subject in the report, the kappa-tuning. In this chapter
we define kappa, derive the design rules and describe the tuning procedure. We also treat
integrating processes here. In chapter four we compare the kappa-tuning to three other
tuning methods. One of them is the relay auto-tuner. In chapter five we treat the
additional identification experiment in detail. After this chapter we are also ready to
describe a total auto-tuning procedure using the kappa-tuning, and the last subsection in
chapter five is devoted to this. The last chapter contains some conclusions and further
improvements.



2. General principles

This chapter will mainly be concerned with control theory adequate for this thesis, and it
is all somewhat related to control within the processing industry. Nothing new is
presented and with good control knowledge a skim through might be enough. The first
topic is the process dynamics found in the area of processing and the question of how to
model it. Next the PID controller’s basic structure is presented along with some
extensions of the schoolbook algorithm. The PPI controller, a controller suitable when
long dead times are present, is also described. The chapter also includes a look at
automatic tuning using a relay experiment, a method used today in many commercial
products. This method is also a main component of the kappa-tuning, and is therefore of
interest for this work.

2.1 Process models and plant dynamics

From the control engineering’s point of view a mathematical model of the system to be
controlled is very interesting. Many design methods for controllers are model based, and
a good model is often required for good control. The work presented here is not
concerned with good modelling of single plants, but too some extent a more general
process model is used.

Before moving on we must specify the class of systems that will be our objective. In
the processing industry many types of control problems can arise but typical examples are
temperature-, concentration-, pressure-, level- or flow-control. This type of dynamic can
mostly be described as having low pass character and being well damped. Oscillatory
systems are uncommon, but can occur for example in mechanical parts. Those will not be
dealt with in this work. Another property sometimes heard is “S-shaped” step response.
For the present this vague description will define the processes encountered.

With the type of processes mentioned above a common model used is

X
G(s)=-———e"" o
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The three parameters are static gain K, time constant T, and dead time L. Another useful
parameter is the average residence time T,, and for the model above T,,=L + T. From a
step response the three parameters can be identified with various methods. Despite its
simplicity this model can capture much of process behaviour quite well. A step response
can be seen in Figure 1.
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Figure 1: Step responses of model (1) to the left, and the integrating process models (2) (dashed)
and (3} to the right.



The model above is not well suited for integrating processes and for these, other
models should be used. Two often suggested models are
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The step response of model (2) is simply a delay L, and a velocity gain a/L’. The model
(3) has a final velocity gain K,, and the tangent with slope K, intersects the time axis at
=L +T. See Figure 1. Approximating model (3) with (2) would then give

a=K,I'=K,(L+T)
I'=L+T

In section 3.5 we will use these simple relations.
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2.2 The PID controller

The PID controller has shown to be a very useful structure of a controller for many
applications, not due to a superior control action, but rather to its simplicity and user-
friendliness. This is of course the reason why many manufactures of control systems
mainly supply PID controllers, and also why researchers world over still are concerned
with this old idea. The basic structure is often formulated as

1 de
u=K(e+?je-dz‘+Td-E (5)

i
or Laplace transformed

o1
U=K(l+—+sT,)-E
( Sl’; Sd)

where u is the control signal and e is the feedback control error, i.e. the difference
between the setpoint and the measured output. This form is known as.noninteracting
form, where the first term is referred to as proportional part (P-part), the second term as
the integral part (I-part) and the last term as the derivative part (D-part). The three
parameters are called proportional gain X, integral time T; and derivative time Ty. Care
must be taken though since some other forms are common in literature on PID
controllers. One of them is the interacting form, which looks like

1
U:K’(1+S—ﬂ;)(1+STd')-E

and here the three parameters have a slightly different interpretation. What they all have
in common though is that the parameters have the same qualitative meaning, and it is
known among users of PID controllers how changes in the three parameters affects the
control behaviour. Herein lies much of the strength in the PID controller.

When implementing a PID controller some modifications of the above algorithms are
often made. First, a pure derivative part is not realistic since it gives very high gain to
rapid signal changes, i.e. high frequency signal. That would amplify high frequency noise
significantly, and the derivative part is therefore filtered with a low pass filter. The filter
time constant Tf, is often expressed as a fraction of the derivative time Ty, like Ty = T¢/N.
Further it is desirable to act not only on the error, but the setpoint signal and the measured
output scparately. This two-degree of freedom is used to weight the response to the
setpoint signal since changes here can be very drastic. The control law now looks like



U=K-(bY, -Y+3—E—LY) ()
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Here the setpoint weighting on the proportional part is called b, and on the derivative part
it is set to zero, which is a common choice. b is normally restricted between zero and one.

As almost all controllers today are implemented digitally the control law must be
discrete, and continuous time controllers, like the PID controller, must be approximated.
This is often done by replacing a derivation with a difference quotient. Taking the
difference one sample ahead is called a forward difference while taking it between
previous and present sampled data is called a backward difference. More sophisticated
derivative approximations exist, but for the PID controller a simple but common choice is
to approximate the integral part with a forward difference and the derivative part with a
backward difference. The discrete version of the control law (6) then becomes

u(k) = P(k) + 1(k) + D(k)
P(k) = K- (by,, (k) — y(k))

Kh
(k)= I(k—1) + (k=) 7

T KT,N
DY =73 Dk =1) - m(y("> ~y(k = 1)

where k is the time expressed in number of samples, and h the sampling period.

2.3 The PPI controller

When the process contains a long dead time the control performance obtained with a PID
controller is limited. A predictive controller must be used for improved control action.
They are often referred to as dead time compensating controllers, and a common type is
the Smith predictor. Here the controller contains an internal model of the process, and to
the feedback signal the output from the model is subtracted and the output from the model
without dead time is added. The feedback signal can then be interpreted as a prediction of
the process output one dead time ahead. Ideally, in the situation of perfect modelling, the
controller will act on a simulated process that behaves as the real process without dead
time. In Figure 2 a Smith predictor using the internal model (1) combined with a PI
controller is shown. It is called a PPI controller (Predictive PI controller).
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Figure 2: The PPI controller. A Smith predictor with PI control and internal model (1).



The PPI controller contains the five parameters K, T;, K,, T and L. This can be
reduced to three by expressing the PI parameters K and T; in the parameters of the model.
This was done in [2], and it is suggested here that a reasonable choice is

K=K,
T,=T

(8)

This lead to a control law (in the time domain with derivative operator p)

u(t) = K(l + pL) e(t) — (u(t) —u(t - L)) (9

where e is the control error e(t) = y(t) — y(t). With the parameter choice (8) this can be
rewritten as

u(t) = K(I + L) - (e(r) - wjffm(u(r) —uft — L))J
rT; L+ pT
and the relation to Figure 2 is easier seen. The last parenthesis correspond to the error
feedback in Figure 2 and it is a prediction of the control error at time t + L, The control
law can thus be interpreted as a Pl controller acting on the control error &t + L).

Another type of dead time compensating controller is obtained with the method called
A-tuning, see [1]. It is interesting to compare the A-tuning to the PPI controller above, and
it can be evidenced from [1] pp. 157, that we obtain the same control law as (9) for A = 1.

To compare different controllers the integrated absolute error, IAE, under a step load
is a sometimes used quantity. A low value indicates fast rejection of load disturbances.
The unit step load is applied to the input of the process, and if simple error feedback is
used the transfer function and error is

G G 1
G, =—"— = E(s)=—2L—.~
1+ GG, ) 14G,G, s
Assuming that the controller funing is such that the closed loop system is critically
damped, the integrated absolute error IAE, equals the integrated error IE. Using the final
value theorem we find

JAE = lim [ dt = lim —E() T/ S G
;EE € =jms- s 51—1331+GG s S—)OSG

where we assumed that s/Gy(s) goes to zero as s goes to zero. With this relation we can
calculate the IAE for a PID and a PPI controller. With the transfer functions obtained
from (6) and (9) we get

T

4 2
IAE,D]D —LI_I;HS . +K ) +(K+KT) +_I£_E (10)
(R +=y)s TN T
1 1-e LrsT T +1L
I4E ,p =lim— = (11)

=0 KTs* + Ks K
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In the last equality we have used that (1-¢™")/s goes to L. as s goes to zero. These relations
will be used later in chapter 3.7 to determine if a PPI controller is expected to give better
performance than a PID controller,

To be implemented digitally, the control law (9) must be approximated. This can be
done in much the same way as the PID controller, by approximating derivatives with
difference quotients. In the PPI algorithm though, the control signal u{t — L) will appear,
and some kind of buffer must be used to store all value of u between t - L and t. The
discrete form also lead to that the dead time L, used in the controller, only is allowed to
be a multiple of the sampling period.

2.4 The relay auto-funer

The key idea behind the relay auto-tuning is relay feedback. By connecting a process with
a relay in a simple feedback loop, oscillations can occur. From these limit cycles, process
information can be extracted and used for tuning. A relay experiment identifies the point
on the Nyquist curve with phase lag 180°, i.e. the ultimate point. The frequency at this
point, called the ultimate frequency, corresponds to the frequency of the limit cycles.
Further, the process gain at this frequency is proportional to the ratio between the limit
cycles amplitude and the relay amplitude. This only holds approximately but ideally the
parameters ultimate gain, K, and ultimate period time, T, are gained. Ultimate gain is
defined as the inverse of the process gain at the ultimate point. Not all processes will
exhibit limit cycles, but most of the processes we are dealing with do. Based on the
ultimate point, a reasonable design of a PID controller can be made. Below a design
procedure found in for example [2], is presented. This special method will also be the one
that is used in the kappa-tuning, and it is referred to as “the relay auto-tuner”.

From a practical point of view, to avoid random relay switching on noisy signals, the
relay must have hysteresis. This will move the point that is identified towards a lower
frequency. From describing function analyses (see [10]) we can predict the limit cycle to
a point on the Nyquist curve where it intersects —1/N{a). N{a) is the describing function,
and for the relay with hysteresis it is a complex valued function of the oscillation
amplitude a, see Figure 3. The identified point can now be characterised by its length
I/K,, its frequency ®, and its phase o (see Figure 3). This with some abuse of the
notation of “ultimate”, since it is no longer the ultimate point. From the expression for
the describing function (relay amplitude d, and relay hysteresis €)

1 T zE
——=—+a —& —-i—
N(a) ~ 4d 4d
it is found that
|G(ia;)—i—E a—arcsin(f] (12) ab
ATK T 4d - a &

u

and the frequency ®, is gained directly from the frequency of the limit cycles.
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Figure 3: The Nyquist curve of the process intersecting the describing function for a relay with
hysteresis.

The design procedure in the relay auto-tuner is to move the identified point to a point
with length 0.5 and phase -135°, and this can be viewed as giving the closed loop system
a certain amplitude- and phase-margin. It is accomplished by adjusting the PID
parameters K, T; and Ty, but since the criterion only specify two parameters, it is further
required that T; = 6.25T,.

In equation (12) b it is seen that the identified point change between o = 0 - 90°,
depending on the ratio relay hysteresis to oscillation amplitude. In the relay, auto-tuner the
hysteresis is fix but the amplitude of the relay is adjusted during the experiment to give
suitable amplitude of the oscillation. The oscillation amplitude should be kept at a
minimum but distinguished from noise. Therefore the noise level is detected, a hysteresis
is chosen well above this level, and then the desired oscitlation amplitude is set as twice
the hysteresis. This will, according to (12) b, give a nominal angle ctyem = 30°,

For further use in chapter 3 we shall derive how the controller parameters are
calculated from the identified parameters, K,, and Ty.. The notation uct indicates that it is
not the ultimate point, but a point at angle «. We assume that the identification is made at
Olnor = 30°. Using the basic form (5), of PID structure we find

2
vio T,)= K{i N i((w”“T") ” 0'16D

a)ua Ta‘

GPID (ia)ucz) = K(l +

ua i

where the last equality follows from T; = 6.25T;. Moving the identified point to the
specified location implies

Gp (iwua )GPID (imua) =0.5- eﬂ5135°
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This means that the controller must phase advance 15° and amplify 0.5K,, at the
identified point, giving the two equations

(0,,7,) 016 _
@, Ty

na

K41 +tan’15° =0.5K,,

By using ty, = 27/Ty, and solving the equations we get

tanl5°

K =0.48

Kua

T
=i =0.55 13
THCZ ( )
—4_=0.088

If instead assuming that the real ultimate point is identified, i.e. o = 0°, the controller
must phase advance 45° and as above we get

£ o035

KH

T

~L=1.13 14
T, (14)
La_g13

TH

13
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3. Kappa-tuning

In this chapter we treat the main objective of the report. After a definition and some
properties of the kappa parameter, subsection two deals with how kappa can be used for
tuning. In section three the derivation of the tuning rules is made, and section four
describes the tuning procedure. Integrating processes has to be treated separately, and
section five is about tuning them with a modified method. A similar tuning method using
another process parameter tau, is presented next in section six. In the last section some
extra tuning possibilities are discussed e.g. the choice of a PI controller instead of PID.

3.1 Kappa, a process parameter

For a process with transfer function Gy(s) the parameter kappa, or the gain ratio, is
defined as

|Gl 1 as)

G,0) | KK,

i.e. the ratio of the gain at phase —180° and the static gain. For the specified type of
processes, see 2.1, having low pass character etc, kappa lies in the interval 0 to 1. Kappa
was introduced in [4] and has shown to be a good measurement of process-behaviour
from the controller’s point of view. In some sense kappa indicates the difficulty to control
the process, and a kappa value closer to one means a more difficult process to control.
One way to see this is by adding dead time to the process, thereby making it harder to
control. This will widen the Nyquist curve towards a circle, and kappa will increase (see
Figure 4). By increasing the system order we can also get a more difficult process, and for
linear systems, without dead time, kappa is
related to the system order. For a first- or
second-order system kappa is zero, and in
most cases kappa increases with increasing
system order. For example, the systems with
transfer functions G(s) = 1/(s+1)" have k =
0.125forn=3,x =025 forn=4 and x =
0.53 for n = 8. The exact meaning above of a
process being “difficult to control” is hard to
give, but it refers to the control performance
that can be achieved. For example, a difficult
process might have to be controlled with a
slower controller giving the closed loop
Figure 4: The Nyquist curve of a process system a larger time constant than a easy

and the corresponding kappa. If dead process although they have the same open

time is added (dashed) kappa grows. loop time constant.

Y

3.2 Using kappa for tuning

Since the gain ratio reveals interesting properties of a process, it seems to be useful for
tuning controllers. For PID controllers, one way would be to use a Ziegler-Nichols type
of tuning and to use kappa as an additional tuning parameter. This is an idea presented in
[5] and the material here is a continuation of that work.

Ziegler-Nichols frequency method (found in for example [1] pp. 136) is based on the
ultimate point with parameters K, and T,. The PID parameters are then chosen as K=

15



0.6Ku, T;= 0.5Tu and T¢= 0.125T,, i.e. constant values of the quotients K/K,, T¢/T, and
T4/ T,. The relay auto-tuner, as shown in section 2.4, results in the same design procedure
with constant values of the quotients K/Ky,, Ti/T,e and Ty/Tu, (equation (13)). This
approach have shown to give quite good tuning for most processes, but in some cases
these methods give poor tuning. A process with long dead time for example, can be
significantly better tuned. The conclusion is that constant values of the quotients K/K,,
T/T, and T¢/T, should not be used for all processes. It seems likely from the discussion
above that kappa captures this behaviour, and the idea behind the kappa-tuning is to
replace those constant values with functions of kappa.

A natural way would be to find suitable kappa functions empirically, just like Ziegler
and Nichols found their constant values from extensive simulations. We should then find
a large number of process models that represent the systems typically encountered, and
build up a test batch. With this test batch as basis we could now design a in some sense
optimal PID controller for each process. Then, by looking at the quotients K/K,, T/T, and
T4/T, for all designs, it would be possible to find relations with kappa, being just the
kappa functions mentioned above. If we find that there is a correlation between the kappa
value and how the values of the above quotients should be chosen, we can construct a
tuning method for any process just by using its kappa value and a procedure similar to
Ziegler-Nichols or the relay auto-tuner.

3.3 Deriving the tuning method

The procedure we use here is the same used in [5] and the starting point is a large test
batch of simple process models. The batch is

-5

GI(S)=m T=0l,...,10
GO =G5 n=348
(16)
1
= = .2 . 0.
G = (T a) s arats O 0H007
i—as
G =y o7 o =01,02,05,10,2.0

making totally 23 process models. They are chosen to be representative for systems found
in the processing industry, according to the discussion in 2.1. The four types represent
different dynamic behaviour and each type consists of processes over the whole kappa
range. The first type is a second order system with a double pole and dead time. The
systems G, span from dead time dominant with large kappa (small T:s), to lag dominant
with small kappa (large T:s). They are very alike the process model (1), and the reason
for not using the type (1) in the test batch is that it do not represent typical dynamical
behaviour. The step response of (1), seen in Figure 1, has a fast transient response seldom
found, while systems like Gi(s) has a more S-shaped step response. The second ftype,
Gy(s), has a multiple pole of different order, where a higher order gives larger kappa.
Type three are systems with more or less spread out poles, and these represent processes
that have dynamics with different time constants. The more the poles are spread, the
smaller is kappa. From the aspect that kappa measures difficulty to control, this can be
interpreted as that fast dynamics has no influence, making the system easier to control.

16



The last type has an unstable zero, resulting in a non minimum phase system. This will
affect the transient behaviour in the way that it starts-off in the wrong direction, and as
the zero gets closer to the origin (growing o) this effect gets stronger. This will make the
system harder to control, and as expected this also implies an increasing kappa.

Next step is to design an optimal PID controller to each process. A special design
method presented in [7] is used, and a short summary of this method is presented here. As
seen from equation (10) the integrated error under a step load for a system controlled with
a P or PID controller equals the inverse of the integral gain K; = K/T;, Since attenuation
of load disturbances is the main objective in most control problems within the processing
industry, it is desirable to use as high value of K; as possible in a PI or PID controller,
The conflicting goal is the robustness of the controller. In [6] it is shown that an efficient
design method for PI controllers is to maximise K; with the requirement that the
maximum sensitivity M, is less than a specified value. M; is defined as

| 1 |
M, = T+ G, (10)Gyyp (100)|

(17

The value 1/M; can be interpreted as the shortest distance from the critical point —1, to
the Nyquist curve of the loop transfer function Gy(s)Gpm(s). The design method can
thereby be viewed as moving the Nyquist curve for the loop transfer function by varying
controller parameters without intersecting the M; circle, and then choose the parameters
giving highest K;. A skeleton sketch is shown in Figure 5. The M; value is a good design
parameter, determining performance of the closed loop system, where higher values of M;
give faster and less damped systems. At the same time it is directly related to the
robustness and stability. Reasonable values is in the range, M; = 1,2 — 2, The method
requires that a process model exists, preferably as a transfer function. Implementing this
design procedure requires solving a quite complex optimisation problem, but it is shown
in [6] that the problem can be reduced to solving a set of nonlinear algebraic equations. In
most cases it is even enough to solve a single algebraic equation for the tangent
frequency, and then calculate the controller parameters K and T; from simple relations.
This makes the PI design method reliable and deterministic and it can thereby be made
autonomous. In {7] a similar approach is made for the design of PID controllers. Here it is
shown that the PI design method can not be extended directly to a PID design. Although
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Figure 5: The Nyquist curve of the loop transfer function and the M circle.



the optimisation procedure, maximise K; under the M; constraint, is solvable, but now
with an additional variable Ty, other problems arise. The solutions found are often very
narrow, meaning that small changes in the parameters give large changes in the K value.
This gives a sensitive controller, which is undesirable. These problems exist in the PI case
as well, but are here very rare. It is indicated in [7] that the cases with narrow optimum
imply that more than one point on the Nyquist curve touches the M; circle. Despite the
fact that these solutions give a higher K; value, no significant improvement of the control
performance is made. Therefore, two additional constrains are added to the optimisation
to prevent this type of solution. The first is to require negative curvature of the Nyquist
curve in an interval round the touching point, and the second is decreasing phase in this
interval, With these extra constraints a in a new sense optimal PID controller can be
designed. In [7] the design is made with the Optimisation Toolbox in Matlab 5.2. The
Matlab routines written for this have also been used in our work.

As an extra feature in both the PI and PID design the setpoint weighting factor b, see
equation (6), can be designed. The purpose is to prevent overshoot at setpoint changes
that can occur since the procedure above only considers attenuation of load disturbances,
disregarding setpoint response. The design is done by calculating the transfer function
from setpoint to process output Gy(s), after the controller parameters K, T; and T, are
found. The b factor is then chosen so that the maximum gain of Gy, is below a specified
value. In [7] it is chosen so that | Gsp(a))l < 1 for all . Knowing that Gy, (s) equals the
complementary sensitivity function T(s) when no setpoint weighting is used (meaning
derivative action on setpoint as well), a good approximation is that the maximum gain of
G, occurs at the frequency that maximise | T() . As this frequency can be found from
the design, b can be found from setting | G (@) { =1 at that frequency. The b factor is in
the design limited to positive values, and for those cases where b=0 is not enough to
damp the overshoot, a setpoint filter is designed in [7]. This will not be used in this work.

The last part in developing the kappa-tuning rules consists of looking at the quotients
K/K,, TyT, and T4/T, versus kappa to determine an eventual correlation, being the kappa
functions. We start with the PI design. For all the 23 models in the batch (16) a PI design,
giving parameters X, T; and b, is made in Matlab. The ultimate point, with parameters K,
and T,, is also obtained in Matlab, and since all processes in the batch has unit static gain
kappa is simply 1/K,. Some of the Matlab routines used can be found in Appendix C. The
results are presented in diagrams with logarithmic vertical axis with the quotients K/K,,
T,/T, plotted against kappa, and the b factor plotted against kappa. See Figure 6, left. For
the PID design the same procedure is used, and it is presented in a similar way, now with
the additional diagram T/T,, versus kappa. The PID design is seen in Figure 6, right. Both
the PI and PID design has been made with two M values. M=1.4 marked with o and
M=2.0 marked with x.
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Figure 6: Tuning diagram for PI (left) and PID (right) controllers. The standardised controller
parameters K/K,, T/T,, T#/T, and the setpoint weighting factor b are plotted versus kappa. Two
M, values is shown. M,=1.4 marked with o and M,=2.0 marked with x. Each cross and circle
represent a process from the batch (16). The horizontal dash-dotted lines correspond to the
values obtained with the relay auto-tuner.

Looking at the PI design to the left above, a correlation between kappa and the optimal
parameter choice can clearly be evidenced. It is also evidenced that constant values of the
quotients K/K, and Ty/T, is not optimal for the whole kappa range. In the upper lefimost
figure above for example we see that the choice of K/K, vary a factor 2.5 when going
from low to high kappa values. Looking at T/T, for the PI design we see an even larger
range of the quotient from 0.2 — 1.4, i.e. a factor 7. It is also interesting to note that the
optimal choice of Ti/T, do not differ much between the two M values. For K/K,, on the
other hand, the two M values seems to differ only by a scale factor. This agrees well with
the statement M, being a god design parameter. Examining the PID design to right in
Figure 6, the same nice behaviour is not seen. The three quotient seems to behave
irregularly for small kappa values, but forgetting this for a moment, even the PID design
show a clear correlation between optimal choice of K/K,,, Ty/T,, T¢/T, and the kappa value
of the process. The resemblance with the PI design is notable, particularly for the quotient
T/T,. Just as T/T, the quotient Ty/T, does not seem to differ for the two M; values, and
further more, T/T, and T4T, behaves in the same way with decreasing values for
increasing kappa. This is interesting since Ty often is chosen as a fraction of T;, e.g. the
relay auto-tuner where it is chosen T; = 6.25Ty. Plotting Ti/Ty versus kappa (not shown)
reviles that it is rather constant, approximately 2.5.

For the PID design it is obvious that something happens for kappa values below 0.2.
The quotient Ty¢/T, for example, do not show any correlation with kappa and K/K,
suddenly drops a factor 3 at k = 0.13, If this behaviour really was the optimal choice the
kappa-tuning would be of no use, but actually it is not. Investigating the results for small
kappa values show that these correspond to the PI design. The explanation is that the
optimisation routines for the PID design described above starts with the optimal PI
solution, and from this the routine searches an optimal PID solution by adding derivative
action. What happens for small kappa values is that no clear optimum can be found, and
the design “get caught” in the initial PI design, It is not surprising that this happens for
processes with low kappa values. As mentioned, a low kappa value can be interpreted as
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processes that are easy to control, low or approximately low model order or non-
dominating dead time. These are all factors that indicate that for small kappa values a PI
controller is sufficient. This is well known, and from a pole placement point of view it
can be thought of as the PI controller being able to place all the closed loop poles, which
is true for a pure first or second order system. Trying to determine a PID controller for
such processes gives an over determined system. Knowing this it is comprehensible that
an optimisation routine has trouble designing PID controllers to processes being almost
second or first order systems. The solutions found by the routine might indeed be optimal
but only locally. Further, there probably exist solutions to some processes with very
extreme PID parameters, indeed giving optimal response to load disturbances, but having
other undesirable properties like e.g. high frequency gain. The true optimal solution is
hard to find, but at least we can conclude that the results shown in Figure 6, right for
small kappa values originates from an inherent problem when designing PID controllers.
This matter will be discussed further in chapter 3.7.

Yet not mentioned is the kappa function for the b parameter shown in Figure 6 both
for PI and PID design. In the PI design the choice would be constant b=1 for My=1.4 and
a decreasing function to b=0 for M=2.0. The fact that the b factor is set to zero implies
that the design of the b factor might not be enough to guarantee well damped setpoint
response. For the PID case the b factor is less well-determined, but disregarding small
kappa values a trend of increasing b values for increasing kappa can be seen for M~=1.4
and for M=2.0 most the designs have given k=0. A question that might be asked though,
is whether there really exists a good correlation between the optimal choice of b factor
and the kappa value for the process, as it does for K/K,, Ty/T, and T¢/T,. From results
presented it is not obvious that there do, neither proven that there do not. A contradictory
fact, for example, is that for the PID design between k = 0.2 — 0.3 there exists two groups
of solutions, at b=0 and b=0.3 for the same M, value. We will later, in chapter 4, see
results from other design methods that however indicates that design of the b factor could
be done from the kappa value. In [5] the design of the b factor is also made based on a
kappa function.

As seen in Figure 6, curve fits have been made to generate the four kappa functions

Jx(%), fri(x), fra(rg and fi(x). The functions fx(x), fn(x) and fra(x} have the form

f(K) — ao . e(a1x+a2K2+a3x3) .

In a logarithmic scale this will simply be a cubic polynomial. For the b factor a simple
polynomial {it is made as

fb(K)=a0+a1K+a2K2+a3K3 (19)

20



The development of kappa functions is made for totally four M; values namely: 1.2, 1.3,
1.4 and 2.0. The diagrams for My=1.2 and 1.3 are shown in Appendix A, Figure A.1 and
A.2. The coefficients in (18) and (19) for all M; values, PI and PID design, are presented
in Appendix B, Table B.1. The choice (18) might seem odd but it gives good fit to data
with few parameters. A drawback with the choice (18) is that the approximation is
difficult to perform. A least squares approximation is for example not possible. However,
a least squares approximation would not be useful since so many data points for the PID
design is scattered. Further, the method of least squares would be unfair since there are so
few data points at larger kappa values. The curve fit has therefore been done in a more
visual fashion, giving trends that seem reasonable. For some trends however, there are no
strict motivation, like for example the PID design in Figure 6 for ¥ < 0.13 (dashed lines).
By taking the logarithm of the data for K/K,, T/T, and Ty/T, it can be fitted to a cubic
polynomial in kappa with an ordinary least squares method. Observe that this will not
give a least squares solution for the approximation (18) to data. End constrains have been
added at kappa 0 and 1 to give reasonable extrapolation outside the data material.

3.4 The tuning procedure

The procedure for tuning a controller with the method above will now be quite simple.
First a relay auto-tuning experiment will be run, giving the parameters K, and T,. An
additional experiment will then be run, where the static gain K, is found. This additional
experiment will be treated in detail in chapter 5. With K, and X, kappa is calculated as
x=1/K,K,, and the kappa value is inserted in the four kappa functions fe(%), fr(K), fra(k)
and fi(%). Since the kappa functions give values of the quotients K/Ky, Ti/T, , Ta/T., the
parameters K, T; and Ty are simply found by multiplying the kappa function with K, or
T,. The b factor is gained directly from its kappa function.

A problem with the described procedure is that it is not the real ultimate point that is
identified in the relay auto-tuner, but rather a point at angle «, see Figure 3. Using the
values at the real point, K, and Ty, can not be justified by neglecting the angle o as
small. As seen in section 2.4 the nominal angle is Gm = 30°. If assuming small variations
in o however, the design above can still be used. This will only mean that we do a
systematic error that to some extent can be compensated for by trimming design
parameters. The real identified point will always have a smaller value of K, and a larger
value of T,. This will result in a controller with less gain and less integral action being
more conservative. The kappa parameter will be estimated systematically to large.

The problems with identifying the wrong point on the Nyquist curve might not be
severe, but there is a solution to the problem. The design procedure above could be
developed in exactly the same manner but instead using a kappa defined as the gain ratio
at the nominal angle, i.e. kK = |Re(-150°)/Re(0) . Of course we must standardise the
controller parameters with Ky, and T, when deriving the kappa-tuning rules now. This
suggestion would eliminate the problem as long as we have a known, constant
identification angle c.. However, the angle o is not constant. In the relay auto-tuner, after
the noise level has been estimated, a desired oscillation amplitude is calculated. The relay
amplitude is then adjusted to roughly achieve this oscillation amplitude. To obtain stable
limit cycles fast, only a few adjustments is allowed. This means that the oscillation
amplitude can differ a lot from the desired and this will, according to equation (12)b, alter
the angle .. No quantitative value of the variations in o has been looked at, but angles
between 10 - 60° are not uncommon when running the relay auto-tuner. This fact will
make the above suggestion questionable. A design procedure developed at nominal angle
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30°, would give less conservative control for cases where identification is made at o <
30°. This is undesirable, and it might be preferred having a design procedure sometimes
giving a too conservative control instead.

3.5 Integrating processes

Calculating the kappa value for an integrating process gives k=0, since such process has

infinite static gain. Tuning PI or PID controllers for integrating processes with the kappa-

tuning above would thereby always result in a design with the same values of the

quotients K/K,, T/T,, T4/T, and the same b factor. This would probably work fine and

give reasonable controller parameter. However, this will mean that we lose one tuning

parameter, and we have Ziegler-Nichols type of tuning procedure in these cases. Since the

idea with the kappa-tuning was to extend the

L Ziegler-Nichols type of tuning from two to three

<> dimensions, it would be natural to have three

/_ ) tuning parameters even when tuning controllers for

> integrating processes. We can not use kappa
though, since we lost the resolution here, kappa

(15) is that we divide with G,(0). Since we will

have data for the ultimate point for integrating

processes as well, it would be attractive to keep the

definition (15) but instead standardise with a

quantity other than G,(0). A suggestion proposed

/K, 4

RelG(0)] here is.
Figure 7: The Nyquist curve of lRe[GP (imu)]. 1
an integrating process and o K= 1= (20),
suggested kappa definition ’ RB[G » (0)} | IRe[G P (0)]‘ -K,

This definition could actually be seen as a more general definition of kappa, since it gives
the same result as (15) for non-integrating processes. The definition requires that a limit
value of Re[G,(im)] exists as ® goes to zero, see Figure 7. If we assume a transfer
function for the integrating process as

G 1 G 1 B(s) 1 bs"+.... +b,5% +bs+b, o
p($)= s ot (8) = s A(s) s a,s"+..+a,s’ +asta, @l
it follows that
1 .
RA[G, ()] =— 1[Gy, ()] @)

For this expression to have a limit value when @ goes to zero, Im[{Gygn(i®)] must be of
O(w). With * meaning complex conjugation it holds that

B4’ 1 .
AA‘}:HIH]{BA ]

Im[ GNoIm ] =1
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For small o this will give, with ordo notation O

44" =0(ay)
Im[ BA" | = O(@(ayb, — a,b,))

This leads to
limRe[G, (i0)|=—(a,b, ~ a,b,) / &} (23)

From (23) it is clear that a limit value of Re[Gy{i®)] often exist, but it is still hard to
motivate that (20) is a good definition of kappa when the process is integrating. Actually,
a proper investigation of (20) is rather difficult to perform, and it will not be done in this
thesis. We will only show that for the integrating processes we have encountered, the
choice (20) seems to be good. The problem of showing that (20) is a sensible definition
goes back to defining the class of integrating processes for which it shall be used. This
problem exists for the definition (15) as well, but here we defined a subclass of systems
for which the kappa definition (15) made sense. In this work we will only think of
integrating processes as the ordinary processes, low pass character etc., where we added
an integrator.

Now, with the believes that (20) is a good tuning parameter, the same procedure as
above for developing kappa-tuning rules can be applied to integrating processes. We will
look at the same quotients K/K,, Ti#/Ty, To/T, and the b factor versus the kappa value
obtained from (20). The same design procedures for PI and PID controliers will also be
used, although the PID design is a slight modified variant to be able to handle integrating
processes. The baich of integrating processes that we used is simply the batch (16) where
we added an integrator to each process. The results are presented below in the same way
as before with PI to the left and PID to the right, see Figure 8. Before discussing the
resulfs it is interesting to look at the kappa interval. In Figure 6 the kappa range was 0 — 1,
while all kappa values lie between 0.2 — 0.7 now. What can not be seen from the figures
is that the processes in the batch lie approximately in the same order, e.g. process number
16 is the one with smallest kappa both in Figure 6 and Figure 8, and the same holds for
number I being the one with highest kappa value.

If we start by looking at the PI design, we find a clear correlation between kappa and
quotients K/K,, TyT,, T#/T, and b. This can actually be taken as an indication of (20)
being a reasonable choice of kappa for integrating processes. Unlike the design for non-
integrating processes, the quotient Ty/T, is chosen different for different M, values
(compare with Figure 6). As for the non-integrating processes the PI design is much more
deterministic than the PID design. As seen below the quotient T/T, in the PID design is
well scattered, Surely, this is not the optimal choice of T¢/Ty, and it is probably due to
problems in the design method. If we look at the quotient Ty/T4 (not shown) we find it
larger than 30 for most PID designs below. For the non-integrating processes the same
quotient was 2.5, and it is clear that vary liftle derivative action is proposed by the design
method. Three different explanations can be thought of: One, it really is optimal with
such small derivative action, Two, the design method “get caught” in its initial PI design
or three, a PI controller is the optimal solution. It is tempting to use explanation two since
the diagrams for K/K, and Ty/T, is so alike in the PI and PID design. However, looking
closer at the values, it shows that in the PID design, both K/K, and T/T, is chosen a
factor 1.3-1.4 higher as compared to the PI design, so this explanation is not all true. We
leave this issue but later in chapter 4, we will compare this with another design method.
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Figure 8: Tuning diagram for integrating processes.(PI left and PID right). The standardised
controller parameters K/K,, T/T, T/T, and the setpoint weighting factor b are ploited versus
kappa. Two M, values is shown. My=1.4 marked with o and M;=2.0 marked with x. Each cross
and circle represent a process from the batch (16) where an integrator has been added. The
horizontal dashed lines correspond to the values obtained if k=0 is inserted in the kappa
functions for non-integrating processes (see Figure 6) .

It is interesting to compare the kappa functions gained below with the constant values
that had been given K/K,, Ty/Ty, To/T, and b if k=0 had been used in the kappa functions
for non-integrating processes. This is marked with dash-dotted lines in Figure 8. For the
PI design the k=0 value would give a quite low value of K/K, giving more conservative
control. The T/ T, value would be the same for all M values since this is the case for non-
integrating processes. The conclusion would be that we can expect much improved tuning
of integrating processes by using the third tuning parameter defined by (20), at least for
the PI design. For the PID design the k=0 values is uncertain since the kappa functions
for the non-integrating processes only are extrapolations for kappa values below 0.13 (see
Figure 6). The same result as in Figure 8 for the M; values 1.2 and 1.3 is found in
Appendix A, Figure A.3 and Figure A.4. The coefficients for the kappa functions for all
four M; values are found in Table B.2.

To illustrate the consequence of choosing a kappa definition other than (20) for
integrating processes, we have made diagrams identical to Figure 8 but with a different
kappa definition. Two alternatives are shown, and the results can be found in Appendix
A, Figure A.5, A.6 and A.7. Only the PI design is shown, and it should be compared to
the PI diagram above (Figure 8), which also is the one shown in Figure A.7. The first
alternative shown in Figure A.5 is a kappa definition similar to (15) where we instead
divide with the static gain of the process without integrator. This gain could be interpreted
as a velocity gain for the integrating process. As seen in Figure A.5 this kappa definition
is not well suited as tuning parameter. No distinct kappa functions can be matched to
data. The second alternative is simply the kappa value for the process without integrator
gained from (15). This result is shown in Figure A.6, and as can be seen, this alternative
would work fine. A problem with the last alternative, though, is that this kappa value is
very hard to find from simple experiments on the process. As the idea with the kappa-
tuning is to use data from a relay experiment, this alternative is not possible. The
alternative one, using the static gain for the process without integrator, was actually the
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original idea for integrating processes. The velocity gain could be found from quite
simple experiments, but from Figure A.5 it is evidenced that this choice is uscless. The
proposed alternative (20) looks dubious since the quantity Re[Gy(0)] is hard to estimate
from simple experiments. By using a model though, we are able to estimate this quantity,
and from the experiment made to find the static gain, Re[Gy(0)] can be calculated. This
will be discussed in chapter 5, but before moving on we will make a small contemplation.
The model used to estimate Re[Gy(0)] is modei (3} and we find

. , : 1 Kp —iwl
L%RG[G<@]-£%R{?;1+,-0,T6 }

2]

I il L-—2 nal|= K, (T4 L
iy — a7 Cos @ —m+T2w35ma) =—K,(T+1L)

It is also interesting to derive Re[G,(0)] for the alternative integrating model (2)

. S T LA AN BERTON N ]
l}i%Re[G(zw)]_LxggRe[iwL|e ]-3}1{3( lesmmL)- a (25)

From equation (4) it is seen that a = K (T+L), so both models give the same result. The
result (24) will be used later in chapter 5. With the model (3) an analytical expression for
kappa according to (20) can be derived. The same can be done for the model (1).
(Remember that the definition (20) gives the same result as (15) for non-integrating
processes). It can be shown that

1 K sinm L 1
G T =-——2"—  wh 7=
w9 =7 Coaen T % Thane,l o6
G(s) Ky = smo, Ly e tma.L
= e K= cre [12) = — o
T o,T v .

From (26) we see that the choice (20) gives a similar expression for the integrating
process mode! (3) and the non-integrating process model (1). For the model (1) we see
that kappa will always be in the range 0—1 (using the equation for the ultimate point we
get x=-cos®,L and n/2<o,L<n). For the model (3) it can be shown that kappa always lies
in the interval 0 — 2/t = 0.64. This explains that the kappa range gets much smaller for
integrating processes (see Figure 6 and Figure 8).

In this section we have proposed the kappa definition (20). Although looking strange
at first we have shown appealing properties in a few aspects. A conclusion drawn is that
this kappa definition is very useful for integrating processes and has much in common
with the traditional kappa definition for non-integrating processes.

3.6 A similar approach using tau

This section will treat an alternative approach to the tuning procedure above. Just like the
kappa-tuning was an extension of the Ziegler-Nichols frequency response method, the
method presented now is an extension of the Ziegler-Nichols step response method. In the
Ziegler-Nichols step response method the basis is a step response from which two
parameters are obtained. By finding the tangent with maximum slope on the step
response, the first parameter L is found from the intersection with the time axis. The
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second parameter, a, is found from the intersection of the tangent with the y-axis. PID
parameters are then found from the simple relations K=1.2/a, T=2*L and T4&=0.5*L, i.e.
constant value of aK, T/L and T4/L. The extension of this tuning method will be to
replace those constant values with some function of an additional tuning parameter. The
additional tuning parameter will be the relative dead time, tau. The derivation of this
tuning method will only be stated shortly, but for further notice consult [1] and [5]. We
will refer to the procedure as tau-tuning.

As the ultimate point and the static gain were used to characterise process dynamics in
the kappa-tuning, we will now use the three parameters: the apparent time constant T, the
apparent dead time L and the static gain K, They can be seen as estimates of the
parameters in the model (1). Numerous ways to estimate them exist, but here we will use
a simple step response consideration. For stable systems we take the tangent with
maximum slope and find L and T according to Figure 9. The static gain is found from the
final value. We now define parameter a as

L
a=K, T 27
Note that this parameter is similar, but not identical to parameter a, as defined o
riginally by Ziegler-Nichols. The a parameter will be used to standardise the controller
gain as aK. The definition of tau is

T= =— (28)

With this definition we find that processes with dominating dead times has tau values
close to one. For processes with dominating time constant we have tau close to zero. The
parameter tau has much in common with kappa. Both range between zero and one and
heuristically we could say ©=~ k. It seems likely that tau would be a suitable tuning
parameter to use for extending the Ziegler-Nichols step response method. In analogy with
the kappa-tuning, we will derive functions of tau that describe 2K, T/L, T4/L and the b
factor. These are the quantities considered in Ziegler-Nichols, but in addition to this we
will now also look at the quotients Ty T, T/T versus tau, as a complement to the quotient
T/L, T4L.

The procedure for developing the tau-tuning rules is actually identical to the one used
for the kappa-tuning. The basis is the batch (16) of processes and the design procedures
giving a PI or PID design is the same. Matlab has been used to calculate the step response
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Figure 9: Graphical determination of the three parameters used in the tau-tuning
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data to each process, see Appendix C.3. The result is presented in logarithmic vertical
axis with aK, T/L, T#/T, T#/L, T4T plotted versus tau. The b factor is plotted in a linear
vertical axis versus tau. See Figure 10. As for the kappa diagrams, two M; values are
shown, M=1.4 marked with o and M=2.0 marked with x.

By looking at the diagrams it can be evidenced that also for the step response method
we can expect improved tuning with the use of an additional tuning parameter. The aK
value varies approximately a factor 5 in the PI design and a factor 4 in the PID design.
This is even more than the variation of K/K, in the kappa-tuning. The variations of T/L is
bigger than in Ty/T and this indicates that the Ziegler-Nichols step response method
would do better if it instead had used T for determining T;. This is most visible in the PI
design. As mentioned, the PID design procedure has problems for small kappa and tau
values, which means that the design get caught in its initial PI design. This can be seen
from Figure 10 where, for tau values below 0.25, the data points are well scattered.

No curve fits representing “tau functions” has been made since the tau-tuning is not
the focus of this thesis. This can of cause be done. Even though we do not use the tau-
tuning, it is useful for comparing. Further, we will also use the results found here in next
section when comparing the PID controller to a PPI controller,
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Figure 10: Tuning diagrams for PI and PID controllers using a step response method. The
standardised controller parameters aK, T/L, T/T, T/L, T/T and the b factor are plotted versus
the relative dead time tau. Two M, values is shown for each process. My=1.4 marked with o
and M,=2.0 marked with x. Note that two alternatives exists for standardising T, and Ty Either
with T or L.
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The procedure for tuning a controller with the tau-tuning method would be as follows:
Make a step experiment with the process in open loop and determine the parameters K, T
and L as shown in Figure 9. Calculate the parameter tau from equation (28), an use it to
determine values for aK, Ty/L, T/T, T#/L, T#T and b, either by looking in diagrams like
Figure 10 or by inserting in tau functions fitted to data. The controller gain K is then
found from dividing the value for aK by a, where a is calculated from (27). The integral
time T; could be calculated either by multiplying T/L with L or T/T with T, of course
giving the same result. If we have chosen to tune a PID controller, the derivative time Ty
is calculated in the same way as T;. The b factor is gained directly from the diagram (or
tau function).

For integrating processes the tau value will be zero, which can be seen by letting the
time constant T go to infinity in equation (28). The parameters a and L can still be
defined for integrating processes, while the time constant T is infinite. To have three
tuning parameters even in the case of integrating processes we have to use another tau
definition here. We will not treat this matter here but in [1] further information can be
found.

3.7 Additional tuning information

So far we have only been concerned with tuning the four parameters X, T;, Tg and b. In
this last section will discuss two more tuning features that can be extracted from the
process information gained. The first one, already mentioned, is the desire to choose a PI
controller for low order processes. The second is the choice of a PPI controller where the
dead time is sufficiently large.

The kappa-tuning procedure has the possibility to tune both PI and PID controllers. It
is intended as a possibility for the operator to choose either PI or PID design. It is
important to have this option since in many applications derivative action is not wanted. It
would then be a bad idea to design a PID controller and set T4 zero, since this in most
cases would give a PI control with less stability margin. However, there exist cases when
the operator has chosen PID control, but the process is such that PI control would actually
be preferred. From earlier discussions we can conclude that those cases can be described
as processes having small kappa values. We would now like to find a limit value of kappa
under which a PI design is chosen, Since the kappa value is calculated before the tuning,
this choice could be integrated in the kappa-tuning. Either it could be automatically done
our alternatively just notifying the operator that a PI design is proposed. The problem of
finding a suitable limit value is rather difficult. The PID design might indeed be better
from the specific design objective point of view, but now other factors like high
frequency gain, the magnitude or “smoothness” of the control signal, or the like, will be
crucial for the design. This qualitative reasoning is however very hard to use for
determining a quantitative limit between the PI and PID design. In this thesis we shall
make quite a heuristic approach. By looking at the optimisation routine used for
designing the PID controllers, we find that it has problems finding an optimal solution for
processes in the batch (16) with kappa values below 0.13 (see Figure 6). Now, as
discussed before, this problem really originates in the same problem as the choice
whether PI control is sufficient. Therefore a suggested limit between PI and PID control

is this kappa value, x = 0.13.
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The background to the other tuning feature, the choice of PPI controller, is that
processes with long dead times are difficult to control with a PID controller (see chapter
2.3). It would be desirable that the tuning procedure gave guidance for this choice as well.
It can be questioned if the choice of a PPI controller should be made automatically from a
PID tuning procedure, so this feature will more be thought of as an alert to the operator.
Knowing that kappa increase for increasing dead time, it would be possible to use an
upper limit value on kappa above which a PPI controller is suggested. The parameter tau
seems to be more suited for the decision though, since it involves the dead time more
explicitly. As presented yet the kappa-tuning do not include determining tau, but as will
be shown in chapter 5 we will estimate some extra process parameters in the experiment
made to find the static gain, making it possible to calculate tau. We will now try to find a
boundary for the PPI controller expressed as a limit value on tau. The basis will be the
equations for the integrated absolute error under a step load found in (10) and (11). We
will assume that the PID controller is tuned with the tau-tuning procedure described
above, and that the PPI controller is tuned according to (8). Further, we will refer to the
tau functions for aK=fx(7) and Ty T=fna(7), although no explicit expressions for them has
been derived.

I T
IAE, =L
PID K
1 1 T S (7) 29
K== fo(t) === f, (z) = I4E,, =K L. 221~ 29)
P K KPL kK PID r fx(r)
Y}:T'fTiIT(T)
( T +L
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Jk=-- = B, =K,T+L) =~ GO
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L=T
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By looking at the ratio IAEpp to IAEp; we can compare the PID and PPI controller
regarding the integrated absolute error. We expect the ratio to increase if the controllers
are tuned for processes with larger tau, since the PPI controller is supposed to perform
well for dead time dominant processes. Therefore we plot IAEpp/IAErp; versus tau and
investigate when the quotient gets larger than one. From (29) and (30) we find

{AE _ L .fﬂlT(T) =TﬁfTHT(T)
AE,, L+T  fi(7) Je (@)

Here we have used the definition (28) of tau.
The expression (31) can now be plotted as a function of tau if we use the data points from

Figure 10 for aK=f(7) and Ty/T=fp+{7}. This has been done in Figure 11.
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Figure 11: The quotient IAEp, 7 IAEpp; plotted versus tau. Two different PID designs are shown,
while the PPI design is the same. The ¢ marks the PID design with M=1.4 und the x marks
M=2.0. The PID controller gives a larger integrated error when the guotient is above one
{dash-dotted line).

Looking at the PID design with M=1.4 (circles) we find that the PPI controller will give
smaller IEA for © > 0.5. Only considering this case, we would conclude that the PPL
controller would give better rejection of load disturbances for processes where L > T.
This is interesting since this is a conclusion drawn in {2] where the PPI controlier is
compared with a PI controller tuned with a completely different strategy, Now, instead
looking at the PID design for M=2.0 in Figure 11, we get a different picture. As the
M=2.0 gives a faster PID controller, we can expect it to give slightly smaller IEA than
the My=1.4 design. As compared to the IAE for the PPI controller though, there is a very
big difference between the two PID designs. From the M.=2.0 design we would,
according to Figure 11, actually conclude that the PID controller always gives smaller
IEA than the PPI controller. Of course such conclusion can not be justified based on so
little data. As seen in Figure 11 we only have two data point above 1 = 0.6, and the final
trend of the curves is rather ambiguous. It should also be pointed out that it is actually the
IE that we calculate (se section 2.3) with the motivation that for critically damped
systems IAE equals IE. This is not all true in the PID case with M=2.0, since this design
gives closed loop systems that are not completely damped. This design would therefore
give slightly higher values on IAE, and the quotient marked with x in Figure 11 would be
larger. Nevertheless another conclusion can be drawn. The fact that the ratio IAEpp /
IAEypp is so sensitive to modest variations in the design criteria, makes it a bad idea to use
the IAE as basis for the choice, PID or PPI control. It is not reasonable that this choice is
so strongly dependent on tuning adjustments, Now this argument is a bit dubious since
we only consider one PPI design, but there exists no similar design parameter for the PPI
controller. Even though the IAE do not seems to be a good quantity for comparing PID
and PPI control, we still believe that tau could be used for the choice. For the time being
no other suggestions determining a suitable limit tau value can be thought of.

However, the amount of dead time (tau) might not be the only factor determining
weather a PPI controller is desired. It is also a question of e.g. robustness, desired control
performance or setpoint following being important. We will not discuss the matter
further, but it is yet another argument for not letting a tuning procedure for PID
confrollers automatically choose a PPI structure.
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4. Kappa-tuning compared with other methods

In this chapter we will take a look at three other tuning methods for PID controllers and
compare them to the kappa-tuning described in the previous chapter. We will begin with
the relay auto-tuner, and add some comments to those already mentioned. In section two
we describe a method proposed by people from Chalmers, Control Engineering Lab. This
method is very similar to the kappa-tuning presented here, and we will concentrate on the
results just making a short summary of the ideas presented. The last section contains an
investigation of an industrial product that is a software package for tuning PI or PID
controliers. The comparison with the kappa-tuning is here not really fair since we only
consider the design part of the program, and not the complete tuning procedure. The
program makes a very sophisticated process identification that we unfortunately not have
been able to test. The identification part in the other three tuning methods, including the
kappa-tuning, are all based on a relay identification, and are therefore more fair to
compare.

4.1 The relay auto-tuner

The principles for the relay auto-tuner has already been discussed in chapter 2.4. As was
shown here, the tuning procedure emerge in constant values of the quotients K/K,, T/T,
and T¢/T,. We have not mentioned how the relay auto-tuner makes a PI design, but it is
found from {6} that here K=0.5¥K, and T;=0.64*T, is the design rules. This choice is
independent of the identification angle . The constant values of the quotients for PI and
PID tuning is shown in Figure 6 as horizontal lines together with the kappa functions for
M,=1.4 and 2.0. For the PI design it is notable that the relay auto-tuner gives a larger
value of K/K, than the kappa function fx(x). The value of T/T, is for x > 0.15 chosen
smaller in the kappa-tuning. The conclusion is that the kappa-tuning gives a smaller
proportional gain, but compensate that with a larger integral action. Remember that
rejection of load disturbances is determined by X/T;. The conclusion is not true for small
kappa values. Here the kappa-tuning uses less gain and less integral action as compared to
the relay auto-tuner, leading to a more conservative control. Now, we must keep in mind
that the design criteria used in the generation of the kappa functions guaranties a certain
robustness via the M, constraint, while optimising K/T;. Thereby the relay auto-tuning,
giving higher gain and more integral action, must imply a less robust controller, at least
for the processes in our batch. For larger kappa values we will have the opposite situation.
If we investigate the results in Figure 6 closer we find that K/T; gets bigger for the kappa-
tuning when kappa is sufficiently large. This despite the fact that we always use less gain.

Comparing the PID designs we find much the same relations as when comparing the
PI designs concerning K/K, and Ty/T,. For T4/T, it is interesting to see that the kappa-
tuning vse the derivative action to increase the gain (compare PI and PID plot in Figure 6)
while approximately using the same integral action as for PI control (remember that
derivative action has an “stabilising” effect). The relay auto-tuner rather increase the
integral action and use the same gain. We mentioned before that the ratio Ty/Ty is set
constant to 6.25 in the relay auto-tuner, while the kappa-tuning leads to a ratio
approximately 2.5 (for k > 0.2, see Figare 6), This is accomplished mostly by a smaller T;
but even a higher Ty, in the kappa-tuning compared to the relay auto-tuner.

We believe that the above comparison is fair since we use the same identification
method to estimate K, and T, in both the kappa-tuning and the relay auto-tuner.
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4.2 An idea from Chalmers

We will now look at a tuning procedure suggested in [9]. The objective here is really not
the design of PID controllers but rather a method for fair evaluation of different controller
structures and controller tunings. The evaluation procedure was presented earlier in [8].
The key idea here is to treat low, high and mid-frequency properties separately in the
evaluation of the closed loop performance and robustness. In [9] the evaluation procedure
is applied to PID controllers, and as an outcome of this some design strategies are
presented. Even rules for automatic tuning are presented, and it is actually those rules that
we will concentrate on.

We will start by giving a short summary of the evaluation procedure, and how the
three frequency ranges are characterised. For the low frequency properties of the closed
loop system the integral gain K/T; can be chosen. As mentioned this quantity should be
large for good load disturbance rejection. The high frequency properties are described by
the high frequency gain of the controller. This comes natural from the fact that the
transfer function from measurement noise to control signal can be approximated with the
high frequency gain of the controller for large ® (assuming low pass character of the
process). It should be said that in [8] and [9] the low- and high frequency criteria are
actually chosen a bit more complex, but the simplifications above will be sufficient for
our discussion. The mid-frequency range, characterising stability and robustness, is
captured by a generalised maximum sensitivity GM,, that is an extended version of the
maximum sensitivity defined by (17). The GM,; is defined so that, except from specifying
a maximum sensitivity, also specifying a maximum of the complementary sensitivity and
as a third restriction even the amplitude margin. This extension is made to be able to
improve phase- and amplitude margin without reducing M; too much. Now with these
three quantities specifying the different frequency ranges, evaluation is done by looking
at one frequency range at a time, while keeping the properties in the other two constant
and equal. Controller design can be made in the same way as the evaluation, by
optimising the quantity in one frequency range, while keeping the other two fixed.

We will now look at the result from applying these ideas to PID design. To see the
coupling to the high- and low frequency properties, in [9], the PID structure

Gop () =K-(1+ ! +—-ﬂ:‘—) (32)
()= KAt TN
is reparameterised as
1 s+0
G, =ky =+ k, s (33)

s Cs+(1+N)E
where we have

k, m%, k,=K(N+1),

1 (34

0= ——
,+7T,/N

Here the low frequency properties is directly seen from ko = K/T; and the high frequency
properties from k..
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The evaluation and design procedure is in [9] now made with an optimisation of the
low frequency performance under the constraints of constant mid- and high frequency
properties. The optimisation has been done both by varying all four controller parameters
K, Ti, Ty and N, and by varying only three with a fixed value of T/Ty. Some general, very
interesting, conclusions are drawn. For example that N, the filter time factor in the
derivative part, should mostly be chosen much lower than often suggested N=8-10, to be
optimal. It is however not optimal to choose a constant value of N for all types of
processes. The choice is of course strongly related to how the limit of the high frequency
gain is chosen. Another conclusion drawn is that Ty/T, can be chosen constant for most
processes, but a rather small value, T//T; = 2.5 — 3.0, is proposed.

In [9], the kappa value is also mentioned in the discussion, and it is said that
investigations have been made for processes with kappa values from 0.05 to 0.82. It is
also said that during the attempts to optimise PID controllers, regularities were found
making it possible to formulate simple tuning rules. After a short discussion the following
rules are then presented as being based on experience:

k. =(30x* ~ 35« +12) /|G(0)|
k, = (Ldx? - 2« + 0.95)w, /|G(0)|
T (35)

I

?d:
N=25k,|G(w,)

It is interesting to note that, just like the kappa-tuning, these rules are based on kappa. We
will now take a closer look at the rules given by (35), and mostly how they relate to the
rules found for the kappa-tuning. The rules (35) gives a simple way to decide the
parameters to the controiler (33), but from our point of view it would be better with rules
giving parameters to (32). This can be done simply with the use of (34), but it would be
even more interesting if we could rewrite (35) with the use of (34) so that K/K,, Ty/T,,
To/Ty and N could be expressed only as functions of kappa. It would then be very easy to
compare the suggested rules with the kappa-tuning. This can indeed be done, and it is not
difficult show that the following holds

K x-(30c? —35¢ +12)

K, 1+25k-(30k*-35¢+12)

) (36)
T (30x? - 35¢ +12)
T, 27 (14c? - 2k + 0.95)- (1+ 2.5¢ - (30x? — 35« + 12))
7, 1 (30x? —35x +12) 36
T, 3 2z-(14x? =2k +095) - (1+2.5¢ - (30x? — 35¢ +12)) (36)

N =25c-(30c” - 35k +12)

These expressions could be interpreted as kappa functions in the same way as we have
used the term kappa functions in the kappa-tuning method. It is straight-forward to plot
them in the same way as we have plotted kappa functions before. The result can be seen
in Figure 12 to the left. Note that the N factor is plotted where we have plotted b in
previous diagrams. If we begin with K/K, we see that this quotient goes to zero as kappa
goes to zero. This will however not mean that the controller gain K goes to zero since we
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divide with K, that goes to infinity (remember x=1/K,K,). From (36) it is found that a
process having k=0 and K,= 1 will get a K=12. This strange looking behaviour is
therefore only a consequence of the standardisation K/K, and the logarithmic scale.
Looking at the N factor we see that it is chosen as low as 3 for kappa in the range 0.1 -
0.6 and even lower for «<0.1. The reason for using lower values of N for small kappa is
that we increase the controller gain K here and in order to maintain a small high
frequency gain K(N+1), we must reduce N. The curves for Ty/T, and T¢T, only differ by
a scaling factor since Ty/T; =3 (see (35)).

To the right in Figure 12 we have added the data points from the kappa-tuning
diagram for PID design Ms=1.4 (found in Figure 6). It is surprising how well the two
methods match. If we disregard kappa values below 0,15 we find much the same trends.
However, there are a little divergence between the methods for higher kappa values. T/T,
and Ty/T, decreases for k>0.7 in the curves given by (36) while K/K, increase. These
trends is hard to see in the kappa-tuning data but in Ty/T, it would indeed be an acceptable
approximation. In our kappa functions presented in Figure 6 we do not have these “tails”
but as pointed out before, the approximations in both the end points is quite ambiguous in
the kappa functions. Considering the choice TyTy= 3 in (35), and the fact that both T/T,
and Ty/T, seems to agree between the methods, indicates that a constant choice of the
ratio Ty/Ty might be close to optimal. In the kappa-tuning it is found to be slightly lower,
Ti/T4=2.5. Both values can be considered as lower than normally suggested.

The above comparison can be considered quite fair. The parameters needed for tuning
is in the presented method the same as for the kappa-tuning, and similar identification
experiment can therefore be used. Comparing the different tunings more closely must of
course also involve the tuning of the N and b factors, but this will not be done here.
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Figure 12: Lefi: The kappa functions in equation (36) plotted in logarithmic vertical axis. Observe
that the top left diagram now show the N factor, and not the b factor as before. Right:
Equation (36) together with data from the design procedure for the kappa-tuning development
with M=1.4 (circles). The stars only mark kappa values for the processes used in previous
chapter, to make it simpler to compare.
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4.3 The AdvaControf® Loop Tuner from ABB'

In this section we will compare the kappa-tuning with a tuning procedure used in a
commercial product. The background for this is that both methods eventually will be
implemented in products from the same company, namely ABB Automation. The section
will differ from the previous in the way that it contains less control-theoretical
considerations. Partly since this is beyond the scope of the comparison and partly since
the manuals for the product do not contain details of the theoretical origin.

ABB Automation is a large manufacture of control systems and supplies many
products for automation and control. The one we will look at, the AdvaControl Loop
Tuner, is a stand-alone software package for process identification and tuning of PID
controllers. It also supports process analysis and both open- and closed loop simulations.
It runs on PC under Windows. For data acquisition a serial communication with the ABB
Master system is used, but there is also a possibility for DDE communication with other
programs. This gives an ability to use the AdvaControl Loop Tuner without having a
control system from ABB.

The process identification is a least-squares method based on a discrete process model.
Process dead time is estimated and a suitable model order is chosen automatically. There
are however possibilities to interfere with the procedure and specify desired properties of
the estimated model., This can be done also in continuos time by specifying a transfer
function and a dead time. The continuous process model must be of order five or lower.
This model is then sampled, since the identification always is made on the discrete model.
A sampling period must be chosen by the user, and it is restricted to a multiple of the
dead time and larger than 50 ms. The identification can be based on either historical data
or on-line data. After the identification a process model validation is also made.

The controller design part is a dominant pole placement giving parameters to a PID
structure like the one in (6). The four parameters K, T;, T4 and b are designed while no
design of the N factor is made (the N factor can be chosen by the user), The pole
placement is made for the discrete model. A design parameter is the damping of the
closed loop poles. Four alterative are suggested: {=0.6 (“fast”), {=0.8 (“normal”),
¢=12 (“damped”) and £=1.6 (“extra damped”), but the parameter { can be chosen
continuously. We will not go into the other features available in the AdvaControl Loop
Tuner, but it ought to be mentioned that quite an extensive data analysis like FFT,
statistical data and correlation analysis can be made. There are also possibilities to make
closed loop simulations to evaluate the achieved controller, look at a bode diagram and
even a pole-zero map. Of this we have only used the simulation in the time domain,
which is a closed loop step followed by a load disturbance.

! AdvaControl is a registered trademark of ABB Process Automatic Corp.
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Figure 13: A PI and a PID design made with the AdvaControl Loop Tuner for the processes in the
batch (16). Four different values of the design parameter { are shown: (=0.6 (“fast”) [x],
£=0.8 (“normal”) [o], (=12 (“damped”){+] and {=1.6 (“extra damped”) [e]. The
diagrams are made in a similar way as the previous.

Now, to compare the AdvaControl Loop Tuner to the kappa-tuning it would be
desirable to do full-scale experiment with both identification and controller design, It
could be done on either simulated processes or real processes. This would have been
possible but has not been done, most due to lack of time. Instead we have made another
approach. We have taken all the 23 process models in the batch (16), put each one of
them in the AdvaControl Loop Tuner, and then run the tuning part of the program. Then
we have plotted the results, with the same standardisation i.e. K/K,, T/Ty, To¢/T, and b,
versus the kappa value of the process, thereby making it comparable to the kappa
functions as presented previously. This is of course nothing but a simple replacement of
the earlier optimisation routine by this pole placement design, and it can thereby not be
claimed to be a comparison between the kappa-tuning and the AdvaControl Loop Tuner.
Therefore we will rather look on it as a way to gain further insight in the choice of
suitable kappa functions.

Since we specify our models in continuous time, but the design is made for the
sampled model, we have to be careful with the choice of sampling period. To not be
influence by the choice of sampling period, we could always use a very high sampling
rate as compared to the time constant of the closed loop system, and thereby neglecting
sampling effects. Unfortunately this was not possible since the sampling period could not
be chosen below 50 ms, and some of our processes had time constants in the region 200
ms. Therefore we had to use a more moderate sampling, adjusted to each process so that
they all were affected equally by the sampling. For this we have tried to achieve
approximately ten samples per rise time of the closed loop system.
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Figure 14: The AdvaControl Loop Tuner design [ V], compared to kappa-tuning [e], Jfor PI and
PID controllers. The AdvaControl Loop Tuner design is shown for {=0.8 (“normal”} marked
with V. The kappa-tuning data is shown for M;=1.4 and it is marked with e.

The results are shown in Figure 13. Four value of the design parameter { are shown.
£=0.6 (x), ¢=0.8 (0), {=1.2 (+) and £=1.6 (»). The first reflection that can be made is that
even the pole placement design has a clear correlation to the kappa value of the process.
We would also with this design method be able to find suitable kappa functions that could
be used for tuning. Regarding the b factor, for which we hesitated in drawing conclusions
about earlier, we now find data that would be easier approximated with a kappa function.
However, the design procedure for the b factor in the AdvaControl Loop Tuner has not
been revealed. For Ty/T, in the PI design, and T/ T, and T/T, in the PID design we do not
have much divergence between the different design parameters. We can also note that the
ratio Ty T4 (not shown) seems to be rather constant even in this design method, but that
the value is higher. We estimate it to Ty/T;=4. Looking at the PID design in Figure 13 for
kappa values below 0.3 we find that some data points for K/K, lies much lower. These
are not PID designs that has degenerated to PI designs, as happen for some designs in the
kappa-tuning, and it is only the K/K, that deviates. We have simulated these designs both
as they are suggested by the design, but also with a higher gain as suggested by the trends
of the others. We can not find any reason for using this much lower gain in these specific
cases.

To compare the pole placement design by the AdvaControl Loop Tuner with our
results from developing kappa functions we have plotted them together in Figure 14. We
have chosen the M=1.4 design (marked #) from the kappa-tuning, and the {=0.8 (marked
V) from AdvaControl Loop Tuner. Looking at the PI designs we find that both methods
assign similar Ty/T,. For K/K, the pole placement has a faster decay as kappa decrease. In
the PID design we do not find this discrepancy in K/K,. We might also point out that the
process with highest value of kappa gave a PID design with T¢=0 in the AdvaControl
Loop Tuner.
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Figure 15: A PI and a PID design for integrating processes made with the AdvaControl Loop
Tuner. Four different values of the design parameter { are shown: {=0.6 (“fast”) fx], £=0.8
(“normal”) [o], {=1.2 (“damped”)[+] and {=1.6 (“extra damped”) [#]. Note that the x-axis
only range from 0.1 to 0.7,

The AdvaControl Loop Tuner also has the ability to tune PI and PID controllers for
integrating processes. For this matter we have done the same procedure as above for all
the processes in the batch (16) where we added an integrator to each process. This was
done in the development of the kappa-tuning as well, and here we used another kappa
definition (20). This definition has now been used when presenting the result from
AdvaControl Loop Tuner, and it can be seen in Figure 15. We will not comment the
results much. It must be noted though, that the interval of kappa is much smaller now and
only range from 0.2 to 0.7. -

For comparison with the kappa-tuning we have also plotted both design methods
together in Figure 16. As before it is the M;=1.4 design (marked ) from the kappa-
tuning, and the {=0.8 (marked V) from AdvaControl Loop Tuner. The PI design needs no
further comments, but in the PID design some notable facts must be pointed out. When
we compare the tuning suggested by the pole placement design with the one suggested by
our kappa-tuning we find rather large differences. Such large differences were not found
between the methods for the non-integrating processes (see Figure 14). The kappa-tuning
gives smaller gain, less integral action and less derivative action. As we have mentioned
before the ration Ty/T; is 30 and even larger in same cases. When this strange behaviour
of the optimisation routine was discussed earlier some possible explanations were found.
We found for example that the PID solutions is similar to the PI solutions, but that this is
not all the truth, The suggestion that the result is truly an optimal solution might still be
possible, considering the constraints, but it seems strange that the design gives so
conservative control as compared to the pole placement. Yet another explanation would
be that the solutions are optimal as the optimisation problem is formulated, but that this
formulation gives undesirable results. We will have to leave these questions unanswered.
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marked with V. The kappa-tuning data is shown for My=1.4 and it is marked with e,
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5. The additional identification experiment

As mentioned in the introduction we refer to the kappa-tuning as the procedure of tuning
a controller from relay experiment data and the kappa parameter. We have yet only
described the relay identification and assumed that we have the kappa parameter, but for
the determining of kappa we must also know the static gain of the process. This chapter
will deal with the experiment that we use to estimate the static gain. We will also show
how the experiment can be used to estimate some extra parameters that can be used to
tune a PPI controller. The identification will be based on a closed loop step. For this to be
possible we must have an initial controller for the plant. The thought is that we shall use
the relay auto-tuner for this, thereby using the relay experiments both for identifying the
ultimate point and give initial controller parameters. In section one we will define the
parameters that we would like to estimate. In section two we will describe the procedure
for estimating parameters with methods of moments. Next in section three we describe
how the experiment will be done. Since we now have all components in an auto-tuning
procedure, the last section will be devoted to a discussion about the kappa-tuning as a
complete automatic tuning.

5.1 Additional parameters needed

First of all we need the static gain K, for the process. With this parameter and the data
from the relay experiment we have Ky, T, and x=1/K;K,, which is sufficient for the
kappa-tuning, For determining K, we only need two equilibrium points where the static
gain could be found from simply dividing the difference in output signal with the
difference in input signal between the two states (we assume linear systems). Such
experiment is easy to perform and what first comes to mind is of course a simple step
signal on the process input. This experiment has the drawback that we do not know how
large the response in the process output will be, and it can be hard to automate without
prior information of the process. It would be safer to make an experiment in closed loop
with a reasonable controller. For these reasons we have chosen a, simple setpoint step
from one equilibrium point to another, and the static gain can be found from just
recording the changes in control signal and process output. One advantage now is that we
always know how large the process output will be, and we can fix it to say, five percent
of the process span.

From chapter three we know that the dead time L, and the time constant T, of the
process would be very useful parameters. They would give the ability to tune a PPI
controller for cases when such controller would be needed, and that decision could be
based on the parameter tau, also available now. Since we now make a setpoint step, it
seems reasonable that these two parameters could be estimated as well. We could express
this as that we from the closed loop step want to estimate the three parameters K,, T and
Lin

G _ KP —sL
(s)= 1+sT ¢ G7)

In section 3.6 we dealt with integrating processes and found a suitable kappa
definition according to (20). We also looked at the integrating process model

1 K
G =—— P2 g 38
INT (s) s 14sT (38)

and it was shown that
lim Re[G, (im)] = —K (T + L) (39)
@->

With the definition (20) we find that kappa for the process model (38) would be
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Figure 17: Left: The step response of the integrating process model (38). a = K,(T+L). Right: The
step response of a non-integrating process and an area A, to estimate the time constant 1. T,
=T+L,

1 |
K= lRe[Gp (O)}‘ K, (T+D)K,K,

(note that this quantity is dimensionless since KK, has the dimension s™)

Now, even for integrating processes we have the parameter K, from the relay experiment,
and to calculate a kappa value according to (40) we would need the quantity K (T+L) as
an estimate to model (38). In Figure 17 to the left the step response of model (38) and the
quantity a = K (T+L) is shown.

(40)

5.2 Area methods and methods of moments

In this section we will show that a technique called methods of moments (for further
information confer [1]) can be used to estimate T and L in the process model (37) and the
quantity K,(L+T) in (38). The technique is based on integrals, or “arcas” under the
signals in a step response. For the completeness of the presentation we will briefly
describe the theoretical background.

We begin with a simple way of estimating T in the model (37). For this model we
have earlier defined the average residence time T, = T+L. It can be shown that the
integral from t=0 to =T of the step response for the model (37) is

= -t ed,
A = [s(di=K,Te = T="1 @1
[} KP
An estimation of the time constant T can thereby be found from the area A, if the average
residence time T, is known. See Figure 17 to the right. This can be seen as an alternative
estimation of T to the 63 % level as we used earlier, see Figure 9.

The method with area determining above has the advantage that it is not so sensitive to
noise as for example the determining of the 63 % level. We will therefore now in this
spirit try to use area calculations in a closed loop step as well. We will be guided by the
methods of moments. Here the key idea is to estimate the quantities G(0) and G’(0) where
G(s) is the transfer function of the process, and the differentiation is made in s. By using

that
G(0)=K,
—sL =

F_e
1+sT

we can for our purpose calculate T,, as

G'(0)=-K,(T+L)=-K,T,

ar
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GO

Tar - G(O) (42)

Generally the method of moments can be used to estimate other quantities that can be
expressed in G(0), G°(0), G*’(0) etc, but we will only use it for determining Ta.. To gain
G(0) and G*(0) we use the following, where Y(s) and U(s) is the Laplace transformed
process value and control signal

{Y(s) = G(s)U(s) {Y(O) = G(O)U(0)

¥'(s)= G (S)U(s) + Gs)U'(s) Y(O)=GOUO)+GOU©O

Further the following holds from the definition of the Laplace transform where small
letters u(t) and y(t), are the corresponding time signals

u,=U(0)= uj‘u(t)a’z‘

U 0y=(-1" mfr”u(t)dt u, =U'(0)= ‘]‘t ~u(t)dt

k o K (44)
Y@ (0) = (-1)" [#"y(t)dt Yo =Y(0) = [y(r)dr

0 L}

2 =Y = [ty

Now it is easily shown from (42), (43) and (44) that

_ Vi T Yol

Yolly

T

ar

(45)

With this expression and the four integrals in (44) we can estimate the parameter Ty, for
arbitrary signals, but for this to be true the integrals in (44} must converge. If we make a
closed loop step this will not really be the case, since we then will reach stationary values
on both u and y, but a simple trick solves this problem. To derive the final expression for
T, we will start with the derivatives of the signals u(t) and y(t), with the notation uy(t)
and yq(t). Equation (43) and (44) still holds if we just replace y and u with y, and uq, and
for the four integrals in (44) we use the notation ug, ta1, Yao and yq. As in equation (45)
we now simply find

Uy — Vaolt
T _ Yaitao = Yagkar (46)
Yaolttag
To calculate the four integrals in (44) we will use the notations introduced in Figure 18,

which shows the closed loop step. The final values of the process output and the control
signal are referred to as yrand uy.
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Figure 18: A closed loop step. The uppermos!t curve is the process output, and the lower is the
control signal. Af ty we are back at steady state now with new stationary values yy and uz We
assume that we start from zero. The areas A; and A; are indicated in the figure.

We now find

(uda = Dj.u L(Odt = a]u‘(z‘)dt = u(o0) —u(0) =u,
0 0

y = Tz‘ cu, (H)dr = ]-t <, (B)df = [I . u(r)];’r - :r[u(t)dt = j(z:f —u(t))ydt = 4,
0 o 0 0 . (CY))

<

it

Yo = [4(O)dt = [y (Dt = y() =~ 9 (0) =y,
0 0

© U3 J )
Yo = [toya@ar= [t-y,(de =[O = [y)dt= [, -yt = 4,
L 0 o 2 0
With (46) we can now calculate an estimate of Ty, and this only from simple “areas” in
the closed loop step and the final values yrand uy.

We will now look at the integrating processes for which we want to estimate K (T+L).
The basis will be a similar closed loop step. The behaviour of the process output will be
the same if we have a reasonable controller, but the controf signal will go back to its
original value since the process is integrating. See Figure 19. We will now show that even
K (T+L) can be estimated from simple area calculations. The trick is to rewrite (43) with

1
¥(s)= Gy (S)U(S) = ; G yopn (YU (5) = Gy (S)Up (s)
so that the model (38) can be expressed as model (37) and the integrated control signal u,.

For model (37) we know that
G' Nolnt (O) _

K(T+L)=-K, - =-G' .. (0)
F ) k GNofm (O) ol
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With the same trick as above we introduce the derivatives of y(t) and up(t) as yq(t) and
t,a(t). Further we use the notations Upde, Upat, Yao and ya for the integrals in equation (44)
and can then similar to (46) write

Yartlpao = Yaol pat

K(T+L)= 0 (48)

pd
To evaluate this expression we use the notations in Figure 19 below. The integrals that we
must calculate will now be

Uiy = Tupd (Hydt = u]up' (Hdt = uj‘u(z‘)a’r = 4,
0 0 5
Upgy = u]t U ()t = ’f[t ‘u,()dt = {t 'up(t)];f —rjup(t)dt = l]'(upf —u, (1)}t = 4;
9 0 0 0 (49)

Y = [pa0)dt = [yt = p(=) - () =y,
i3 0

Yar = ft’yd (t)dt = ff'yd(t)dt =[r-y0]; - Iy(t)dr = [, ~y()de = 4,
. [ 0 h pt

y(
A

¥e 5

~Y

o

(t)
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~¥

uy(t)
A

t

113

Figure 19: The closed loop step for an integrating process. The uppermost curve is the process
output, and the middle is the control signal. The lowest curve is the integrated control signal.
We assume that we start from zero. The areas A; Ay and As are indicated in the figure.
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5.3 The experiment

We shall now describe the total experiment that we will make to estimate K;, T and L for
non-integrating processes and K (T+L) for integrating processes. The experiment is
shown in Figure 20 for a non-integrating process. The experiment starts with a setpoint
step. This size of the step should be chosen small enough to keep the process close to the
working point but large enough to be well distinguished from noise. During the closed
loop step we integrate the process output y(t), and the control signal u(t) to gain the areas
A, and A, shown in Figure 20. When we have reached steady state we note the final
values of y(t) and u(t) (we assume y(0)=u(0)=0) and can according to (46) and (47)
calculate Ty as

Au, — Ayy
= e L (50)
YUy
The static gain is simply found from
Y
K, ==t (s1)
U,

Now we make an open loop step back by setting the control signal to the value it had
before the setpoint step (u(t)=0 as we assumed u(0)=0). As earlier in Figure 17 we can
now estimate the time constant T by integrating the process output until time t=T.. See
Figure 20. By using equation (41) standardised with the size of the open loop step we find

ed, 1 U, 1 ed,

Tt —=ed -— —=—"t (52)
K, u; Ly oup vy
And at finally L is found from
L=T_-T (53)

Closed loop ; Open loop

3 < >

¥r

u(t)

~¥

t
Figure 20: The total step experiment. The figure shows a non-integrating process. The experiment

staris with a sefpoint step. At time 1, steady state is reached and an open loop step is made.
Areas A;, A; and A; that is determined are indicated in the figure.
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If the process is integrating we detect this by finding the same value of the control signal
at the new steady state point. Then no open loop experiment will be necessary. The
situation will be like the one in Figure 19. The area A, is the same as for non-integrating,
but the areas Ay and As will only be used if the process is integrating, Since we do not
know if the process is integrating before the experiment, we must always integrate A4 and
As. If the process is found to be integrating we only calculate the parameter K (T+L) and
from equation (48) and (49) it is found that

A =y, 4

K,(T+L)= 2

(9

5.4 The auto-tuning procedure

At this point we have all components of an automatic tuning procedure, and this last
section will be a survey of the total procedure. We will start from the beginning and
assume that we have no prior information of the process. First a relay auto-tuning will be
made as described in chapter 2.4. This will give us the process parameters Ky, and Ty,
but the design procedure in the relay auto-tuner will also give us an initial controiler.
With this controller we can make the closed loop step as described in this chapter and
identify, most importantly, the static gain K. With Ky, Tue and K, we apply the design
procedure as described in chapter three. This will also include the automatic choice of a
PI controller for small values of kappa. The estimates of L and T will be used to calculate
the relative dead time, tau. For large values of tau the operator can be notified and a PPI
controller suggested. If the PPI controller is chosen, it can be automatically tuned
according to (8) with the estimates of L and T.

As we discussed in the introduction there are some practical aspects of an auto-tuning
that has to be considered. One aspect mentioned was the amount of prior information that
has to be supplied by the user. In our tuning procedure no prior process information is
needed. For the controller design a simple choice of performance like: fast, normal or
slow, can be offered by the choice of M value in the tuning. Another property of the
auto-tuner was the time it requires. If we want to estimate the time requirements of our
procedure we must look at both the relay- and step experiment. We could roughly
approximate the relay experiment to take a few periods of the limit cycles, and a period is
approximately equal to a time constant of the process. For the step experiment there are
two parts. The first is the closed loop step, and this will be the most time consuming since
we must await steady state. After five time constants of the closed loop system we are 1%
from steady state so this could be a rough estimate of the first part. The second part is the
open loop step, and here we integrate under a time T, Which we can be approximated to
one time constant of the open loop. The total time for the step experiment would therefore
be a few time constants of the process, say 6-8 time constants, if we assume
approximately the same time constant for the open and closed loop. Now, this would give
us a total time for the whole tuning in the region teen time constants of the process. This
is actually quite long. However, an advantage of the above procedure is that it does not
need to be done sequentially. After the relay experiment we might wait with next phase if
we wish.
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6. Conclusions

In the report we have presented a new auto-tuning procedure for PID controllers. Both the
design- and identification part is based on old ideas. The identification is a well-known
relay experiment plus a simple closed loop step. The controiler design is a method
presented in [5] that has been reconstructed with different conditions in this work. As an
extra feature in the auto-tuning, large dead times are detected, and in occurring cases a
dead time compensating controller can be automatically tuned.

6.1 The controfler design part

The controller design is a set of empirical tuning rules based on the three process
parameters K,, T, and k. The rules have been developed by designing optimal controllers
to a large set of representative process models. From the data material, general tuning
strategies has been extracted. The optimal controfler designs have been made with
methods presented in [6] and [7] (PI and PID controllers respectively). These designs are
based on constrained optimisation, where load disturbance rejection is optimised with
constraints on robustness/stability margin.

Our conclusion of the design part would be that we can expect good tuning for the
type of processes in our test batch (16), since these designs has been verified during the
development of the rules. For process types other then the types found in the batch no
tests have been made. However we do not claim the rules for general processes, but a
rather restricted class of systems. Oscillatory systems for example are not included, and
we do not expect good tuning for them. With the assumption that the batch has covered
most of the process types in this class, our at least enough of various process behaviour
here, we expect reasonable funing for all those.

6.2 The identification part

Identification experiments for K,, T, and K, have been suggested in the report. A specific
relay experiment has been proposed for identifying the ultimate point. The specific
implementation of this relay experiment leads to that a point other then the ultimate point
is identified, and we show that it is rather a point 30° from the ultimate point, i.e. at phase
-150°. We have concluded that this fact will affect or controller design, but in a way that
gives more conservative control. It has also been pointed out that the calculations of
ultimate point data from the relay experiment data only are approximations.

For identifying the static gain K,, a simple closed loop step is proposed. The static
gain is found simply from the final values of the control signal and process output. We
also show how this step experiment can be used to estimate the apparent dead time L, and
the apparent lag T. These parameters are calculated only from areas (zero order moments)
and final values in the closed loop step response. Our conclusions from the step
experiment are that we get a reliable estimate of K. For the estimates of T and L we can
conclude that they are noise insensitive. However, as approximations to the model (37),
they should be discussed further.

6.3 The auto-tuning procedure

The total result, automatic tuning, has been proposed by simply putting the identification
and controller design together. In the procedure we use the relay auto-tuning as an
intermediate result, making it possible to do closed loop identification. As presented the
auto-tuning requires no prior process knowledge. A good tuning parameter, reflecting
closed loop performance, is also provided the method via the M; value in the design part.
We have found that the time requirement for the auto-tuning we be in the region ten time
constants of the process.
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6.4 Future work

The most important thing that must be done is verifying the results with extensive tests
and simulations. The design part should maybe verified in simulations for some other
types of processes than those in the batch (16). It should also be interesting to examine
the result for systems not claimed by the rules, e.g. oscillatory systems. Next step would
be to test the total auto-tuning, including the both identification experiments. The tuning
should be verified for as many different types of systems as possible. This can preferably
be done in simulations first, and a good starting point would be some of the systems in
our batch (16). These tests would revile effects of the approximations made in the
describing function analysis, which is the basis for calculating ultimate point parameters.
They would also show the effects of not identifying the true ultimate point, due to
hysteresis in the relay. The last part in testing should of course also include some
verification on real plants.
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Appendix

Appendix A — More diagrams of kappa functions

A1)
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Figure A.1: Tuning diagram for a PI design with M,=1.2 marked with o, and M,=1.3 marked with
x. Note the similarity with Figure 6 (left) on page 19, that shows M,=1.4 and 2.0. The function
1% is identical for all four M; values. The function fx(x) differ approximately only with a
scaling factor. The b factor can be set to one for most designs except for M;=2.0 where b
decreases with increasing kappa (see Figure 6).
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Figure A.2: The results from a PID design with M;=1.2 marked with o, and M;=1.3 marked with x.
Please compare it with Figure 6 (right) on page 19, that shows M;=1.4 and 2.0. The functions
(%) and fra(x) is identical for all four M; values. The behaviour of the b factor above is hard
to approximate, but some trends can be found for larger kappa. In appendix B, Table B.1, the
kappa functions in this figure and Figure A.1 above can be found explicitly.



A.3)

Ki/Ku vs. kappa b vs. kappa
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Figure A.3: Tuning diagram, PI design, for integrating processes with M=1.2 marked with o, and
M.=1.3 marked with x. The M, values 1.4 and 2.0 is found on page 24 in Figure 8 (lefi). The
Sunction fr(x) is not identical for all four M, values as it is for non-integrating processes. Note
that the kappa range is much smaller now as compared to non-integrating processes.
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KiKu vs. kappa b vs. kappa
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Figure A.4: Tuning diagram, PID design, for integrating processes with M;=1.2 marked with o,
and M,=1.3 marked with x. The M, values 1.4 and 2.0 is found on page 24 in Figure 8 (right).

The function fr(x} is not identical for all four M; values as it is for non-integrating processes.
Just like the design with M,=1.4 and 2.0, the quotient Ty/T, is very scattered. The kappa

Sfunction fra(x) is the same as for M;=1.4 and 2.0.
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Figure A.5: The kappa functions for integrating processes, Pl design. This diagram shows an
alternative kappa definition where the gain at the ultimate point is divided with the static gain

of the process without integrator. For comparison the real kappa definition we have used is
shown in Figure A.7. Note that the range of kappa is 0 — 6.
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Figure A.6: The kappa functions for integrating processes, PI design. This diagram shows an
alternative kappa definition where we used the kappa value for the process without integraftor.
For comparison the real kappa definition we have used is shown in Figure A.7. Note that the
range of kappa is now 0 — 1.
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Figure A.7: The kappa functions for integrating processes, PI design. This diagram shows the real
kappa definition used in this report. It is the same diagram as Figure &8 (lefi) on page 24. It
should be compared to Figure A.5 and Figure A.6 above.
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Appendix B — Kappa function tables

fK,ﬁ,Td (K.') =a, ,e(aw+azx1+a;x3) f:r:.(K) =a, + a,x + a2K2 + G3K3
PI PID
8y I ay | 4 l 23 il | ar | a | a3
M,=12 [0.0255 |[5.24 -6.53  |2.67 0.119  |1.25 -1.52  10.580
Fe(x) [M=L3 [0.0368 |5.02 -6.29 257 0.166 (0918 [-0.961 [0.324
K/K, IM~l4 100510 |4.43 -5.59  {2.33 0.169 [2.32 -3.30 1.48
M=2.0 [0.108 {3.43 -4.16 1.66 0.283 [1.91 234 [0.938
M=12 |1.00 0.00 0.00 0.00 0459 10426 |[-0,182 |-0.0164
[y () [M=1.3 [ 1.00 0.00 0.00 0.00 0459  j0.426 |-0.182 |-0.0164
X M=1.4 |1.00 0.00 0.00 0.00 0.123  [0.256 |1.24 -0.932
M=2.0 [0.641 |-247 [3.14 -1.31 0.00 0.00 0.00 0.00
M=1.2 |1.50 -7.36 8.95 -3.60 1.17 -5.89  [6.87 -2.57
Frlx) IM=13 150 -1.36 8.95 -3.60 1.17 -5.89  [6.87 -2.57
r/r IM=14 1150 736 |8.95 -3.60 1.17 -5.89  [6.87 -2.57
Y IM=2.0 [1.50 -7.36  18.95 -3.60 1.17 -5.89  {6.87 2.57
M=12 - - - - 0499 |-6.12 }7.64 -3.15
fr() [M=1.3 - - - - 0499 |-6.12 [7.64 -3.15
7,/7, |M=L4 - - - - 0499 |-6.12 |7.64 -3.15
M,=2.0 - - - - 0499 [-612 [7.64 -3.15

Table B.1: Tuning formulas for PI and PID controllers. The parameters for the kappa functions are presented at
Jour different M, values. Note that in some cases only one kappa function is used for many M; values. See
corresponding kappa plots for further insight.

fK,Ti,Td (K)=a,- plewsen’ +eu’) LHxK)=a, +ax+ szz + a3K3

PI PID

a | a | a | a5 % | a | @ | a

M=1.2 |0.0168 [4.94 397 [1.17 0.0246 [3.87 135 [-0.717

felxy [M=13 [0.0247 [4.88 416 |138 0.0355 |4.80 394 [1.08
k/k IM=t4 100344 [4.43 358 |[1.14 0.0383 [5.75 -5.33 1.44
" IM=2.0 [0.0759 |4.12 -4.07 |1.68 0.0773 [4.29 -1.97  |-0572
M=12 |0.65f |-0.311 ]0.0238 [0.137 0.693 ]0.484 |-0.609 [0.229

£ (&) [M=13 |0.651 ]-0.311 [0.0238 [0.137 0.693 [0.484 |[-0609 [0.229
b M=14 |0.691 ]-0.605 |0.540 [-0.225 0.595 [0.835 [-1.04 [0410
M=2.0 [0547 [-0324 |-0.152 [0.0788 0247 |1.34 -1.32 (0430
M=1.2 |5.74 213 1213 -0.713 6.46 2102 [1.93 -0.985
falx) IM=13 1415 212 1205 -0.654 4.65 -0.790 |1.48 -0.759
/7 [MsL4 1399 3.18  [4.00 -1.74 3.90 -1.65  |3.99 279
Y OIME=2.0 (230 3.17 [3.72 -1.49 1.95 265 |6.64 -4.26
M=1.2 - - - - 0.0995 [-2.17 [-3.02 12.90
Fu®) [M=13 - - - - 0.0995 [-2.17 [-3.02 [2.90
T,/T, |[Ms=14 - - - - 0.0995 |-2.17 |-3.02 |2.90
M,=2.0 - - - - 0.0995 |[-2.17 [-3.02 [2.90

Table B.2; Tuning formulas for PI and PID controllers for integrating processes.
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Appendix C — Some of the Matlab routines used

C.1)

function [Procvect,ProcvectInt] = precgen

% Genererar processerna och lagger dem i vektorer (med och utan integratorer}
% [(procvect,procvectInt] = procgen;

Procvect = {};
$Type 1
T=[0,10,30.50,71.01.31.52 4 5% 8 10);
for i = 1:12,
G = tf£({1], [T{i)~2,2*T(1),1],'Td",1);
Procvect = {Procvect{:},G}:
end
%Type 2
Gn=tf([1],[1 1]};
G3=Gn*Gn*Gn;
G4=Gn*Gn*Gn*Gn;
GE=Gn*Gn*Gn*Gn*Gn*Gn*Gn*Gn;
Procvect = {Procvect{:},G3};
Procvect = {Procvect{:},G4};
Procvect = {Procvect{:},G8};

$Type 3
alfa = [0.2 0.5 0.7];
for i=1:3,

G = tf([1]),conviconv ([l 1], [alfa{i) 1]),conv{{alfa(i)"2 1), [alfa(i)"3 11))):
Procvect = {Procvect{:},G};

end
%Type 4
alfa = [0.1 0.2 0.5 1 2});
for i=1:5,
G = tf([-alfa{i) 1l],convi{conv ([l 1},(1 1]},{1 13)};:
Procvect = {Procvect{:},G};
end
Fmrw e med integratorer----------- .

ProcvectInt = {};
$Type 1
T = [0.10.30.50.71.01.31.52 4 ¢ 8 10];
for i = 1:12,
G = tf{{1],conv([1l O], [T(i)"2,2*T(i),1]),'Td’,1};
ProcvectInt = {(ProcvectInt{:},G};
end
%Type 2
Gn=tf([L1]), (1 11}:
Int=tf([1],[1 0]};
G3I=Int*Gn*Gn*Gn;
G4=Int*Gn*Gn*Gn*Ga;
G8=Int*Gn*Gn*Gn*Gn*Gn*Gn*Gn*Gn;
ProcvectInt = {ProcvectInt{:},G3};
ProcvectInt {ProcvectInt{:},G4};
ProcvectInt = {ProcvectInt{:},G8};

$Type 3
alfa = (0.2 0.5 0.7];
for i=1:3,

G = t£([1]),conv([1l O],convi{conv{[1l 13}, [alfa(i) 1]),conv{[alfa(i)"2
1], [alfa(i}”*3 11)))):
ProcvectInt = {ProcvectInt{:},G}:

end

3Type 4
alfa = [0.1 0.2 0.5 1 2);
for i=1:5,

G = tf{(-alfa{i} 1l],convi{[l 0},conv(conv({l 1],{1 11),(1 13))):
ProcvectInt = {ProcvectInt{:},G};
end

C.2)

function [Ku, Tu, kappal=calcFreqbata(Gp}
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% Frekvenssvars data
% [Ku,Tu, kappal=calcFreqgbata(Gp}:
% Parametrar enligt def. artikel "New tuning methods.......,

% wu ungefarligt lage

wapprox = 0:0.1:20;

[Magn, Phase]=bode (Gp, wapprox} ;

wuapprox = wapprox(min{find(Phase(:}<=-180})); %Phase ar en 3-dim matris

% Storre precision

wstart = wuapprox -0.1;

wstop = wuapprox;

w = wstart:0.00001:wstop;

[Magn, Phase] =bode (Gp, w) ;

index = min(find{(Phase({:}<=-180));
wu = wi{index);

% Parametrar enligt def.

Ku = 1l/Magn{index);

Tu (2*pi} fwu;

kappa = 1/Ku; % Statisk forstarkning = ett

C.3)

function [L,T,tauw,al=calcStepData (Gp)

% Stegsvars data
% [L,T,tau,al=calcStepData(Gp)
% Parametrar enligt def. artikel "New tuning methods........

% Hitta ungefarligt lage pa maxder forst
tapprox = 0:0.1:50;

yimp = impulse (Gp, tapprox);
[raxder,index] = max(yimp);

tstart = tapprox(index)-0.1;

tstop = tapprox{index}+0.1;

% Laget med battre precision

t = tstart:0.0001:tstop;

yimp = impulse{Gp,t);

ystep = step(Gp,t); .
[maxder,index} = max(yimp};
L = t{index) - ystep(index)/maxder; $Tangentens skarning med x-axel

% Ungefarligt lage 63%-niva
ystep = step(Gp,tapprox):

T63 = tapprox{min{find(ystep>=(l-exp(-1})}));: $Tid da stegsvar 63%
tstart = T63-0.1;
tstop = T63;

% Battre precision
t = tstart:0.00Cl:tstop;
ystep = step(Gp,t):;

T63 = t{min(find({ystep>={l-exp(-1}))}); %Tid da stegsvar 63%

% Berakna parametrar

T = T63-L;

tau = L/ (L+T);

a = 1*L/T; %Statisk forstarkning = ett

C.4)

function [datavect}=datagen(procvect,Msl, Ms2)
% Obs! Specialfall prccesser 8,15,19,2 (se kod)
% Genererar strukturerad datavektor med data for tva olika Ms-varde
% [datavect]=datagen(procvect,Msl,tsZ)
datavect = {}; 3Tom cellarray
for 1 = l:size(procvect,2),
Gp = procvect{i};

% Process data
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[L,T,tau,al=calcStepData(Gp);
[Ku, Tu, kappal=calcFregData (Gp) ;
process = struet('L',L,'T',T,'tau’,tau,'a’,a, 'Ku',Ku, 'Tu’',Tu, 'kappa', kappa};

% Regulator parametrar for forsta Ms-vardet
[K,Ti,b,wMs]=optpi (Gp.mum{1l},Gp.den{l},Gp.Td, Msl);
piMsl = struct('K',K,'Ti',Ti, 'h',b);
PIpar,K=K;PIpar.Ti=Ti;PIpar.wMs=whls;

% Special

% 1if i == 8, (PIpar.K,PIpar.Ti,PIlpar.b,PIpar.whkis] =
optpi (Gp.num{l},Gp.den{l},Gp.Td, 1.3} ;end,

% 1if i == 15, [PIpar.K,PIpar.Ti,PIpar.b,PIpar.whs] =
optpi (Gp.num{l},Gp.den{l},Gp.7d,2.2) ;end,

% if i == 19, [PIpar.K,PIpar.Ti,PIpar.b,PIpar.wMs] =
optpi (Gp.num{l},Gp.den{i},Gp.Td,2.75) end,

% if i == 9, [PIpar.X,PIpar.Ti,PIpar.b,PIpar.wts] =

optpi{Gp.num{l},Gp.den{l},Gp.Td,1.9) ;end,

(K, Ti, Td, b, wMs)=optpid (Gp.num({1l},Gp.den{l),Gp.Td, Msl, PIpar);
pidMsl = struct('K',X,'Ti’,Ti,'Td',Td,'b',b);

% Med det andra Ms-vardet
(X, Ti,b,wMs]l=optpi (Gp.num{l},Gp.den{1},Gp.Td, Ms2};
piMs2 = struct('K',K,'Ti',Ti,’'b',b);
PIpar.K=K;PIpar.Ti=Ti;PIpar.wMs=wMs;

% Special

% if i == 10, [PIpar.K,PIpar.Ti,PIpar.b,PIpar.wdMs] =
optpi{Gp.num{1l},Gp.den(1l},Gp.Td,1.9) ;end,

% if i == 11, [PIpar.K,PIpar.Ti,PIpar.b,PIpar.wMs] =
optpi(Gp.num{l},Gp.den{l},Gp.Td, 1.9} rend,

% if i == 12, [PIpar.X,PIpar.Ti,PIpar.b,PIpar.uMs] =

optpi (Gp.num{1l},Gp.den{1l},Gp.Td, 1.9} ;end,

[K,Ti,Td, b, wMs=optpid(Gp.num{1},Gp.den{l},Gp.Td, Ms2, PIpar};
pidMs2 = struct{'K',K,'Ti',Ti,'7?d',Td,'b',b);

% Lagg in allt i en record

Data =
struct {'process',process, 'piMsl’,piMsl, 'pidMsl’, pidisl, 'piMs2',pikis2, 'pidMs2 ', pidy
82);

% Lagg in i datavektoxrn
datavect = {datavect{:},Data};
end

C.5)

function {datavectInt]=datagenInt (procvect,procvectInt,Msl,Ms2}

% Generxerar strukturerad datavektor med data for tva clika Ms-varde
% {datavectInt]=datagenInt (procvect,procvectInt,Msl, Ms2)

datavectInt = {}: %Tom cellarray
for i = l:size(procvectInt,2),
% Prim betyder storheter for processen utan integrator

% Process data
(Lprim, Tprim, tauprim, aprim}=calcStepData(procvect{i});
L = Lprim + Tprim; % se def. sid 205
%7 existerar ej for Int. prec. % PID - boken
tau = tauprim;
a = 1* (Lprim + Tprim};
[Ku, Tu, kappal=calcFreqgbata {procvectInt{i)); % Samma som icke
Int.proc.
process = struct('L’',L, 'tau',tau,'a’,a,'Ku’',Ku, *Tu’,Tu, 'kappa’', kappa);

% Regulator parametrar for forsta Ms-vardet
(X, Ti,b,wMs,Go,Gc]l=optimalpi (procvectInt{i}, Msl};
piMsl = struct('K',X,'Ti',Ti,'hb",b);
[X,Ti,Td,b,wMs,Go,Gec)=optimalpid2 (procvectInt{i}, Ms1};
pidMsl = struct(*K',K,'Ti',Ti,'Td',Td, 'b',Db);

% Med det andra Ms-vardet
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[K, Ti, b, wMs, Go, Ge]=optimalpi (procvectInt{i}, Ms2);
piMs2 = struct('K',K,'Ti',Ti,'b',b):
[K,Ti,Td,b,wMs,Go,Gcl=optimalpid?2 {precvectInt{i}, Ms2);
pidMs2 = struct{'X',%,'Ti',Ti, 'Td*,Td, 'b",b);

% Lagg in allt i en record

Data =
struct ('process’,process, 'piMsl?,piksl, 'pidisl’, pidisl, 'piMs2’,piMs2, 'pidMs2’, pidM
52);

% Lagg in i datavektorn
datavectInt = {datavectInt{:},Data};
end

C.6)

function [(PIvstau,PIDvstau,PIvskappa,PIDvskappal = plotdata{datavect)

% Genererar plotdata.I utdata matriserna ar varje rad en kurva
% [PIvstau,PIDvstau,PIvskappa,PIDvskappa] = plotdata(datavect);

PIvstau = [1;
PIDvstaun = []:
Pivskappa = []:
PIDvskappa = []:

for 1 = l:size{datavect,2)

D=datavect{i};
a=D.process.a; L=D,process.L; T=D.process.T; tau-D.process.tau;

PI-regulator vs. tau

pivect = [a*D.piMsl.K a*D.piMs2.K D.piMsl.b D.piMsZ.b D.piMsl,Ti/L
D.piMs2.Ti/L D.piMsl.Ti/T D.piMs2.Ti/T taul’;

PIvstau = [PIvstau pivect];

oo

oae

PID-regulator vs. tau

pidvect = {a*D.pidMsl.K a*D.pidMs2.K D,pidMsl.b D.pidMs2.b D.pidMsi.Ti/L
D.pidMs2.Ti/L D.pidMsl.Ti/T D,pidds2.Ti/T D.pidMsl.Td/L ©D.pidMs2.Td/TL
D.pidMsl.Td/T D.pidMs2.Td/T taul';

PIDvstau = [PIDvstau pidvect]; : .

Ku=D.process.Ku; Tu=D.process.Tu; kappa=D.process.kappa;
% PI-regulator vs. kappa

pivect = [D.piMsl.X/Ku D.piMsZ.K/Ku D.piMsl.b D.piMs2.b D.piMsl.Ti/Tu
D.piMs2.Ti/Tu kappal ';

Plvskappa = [PIvskappa pivect];
% PID-regulater vs. kappa

pidvect = [D.pidMsl.K/XKu D.pidMsZ.K/Ku D.pidMsl.b D,pidMs2.b D.pidMsl.Ti/Tu
D.pidMs2.Ti/Tu DP.pidMsl.Td/Tu D.pidMs2.Td/Tu Kkappa]':

PIDvskappa = (PIDvskappa pidvect];

end

C.7)

function [PIvstau,PIDvstau,PIvskappa,PIDvskappal = plotdatalnt{datavect)

% Genererar plotdata.I utdata matriserna ar varje rad en kurva

% [PIvstauInt,PIDvstaulnt,PIvskappalnt,PIDvskappalnt] = plotdatalnt (datavectInt);
PIvstau = [];

PIDvstau = [];

PIvskappa = [1:

PIDvskappa = [1;§

for i = l:size(datavect,?2)

D=datavect{i};
a=D.process.a; L=D.process.L; tau=D.process.tau;

% PI-regulator vs. tau
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pivect = [a*D.piMsl.K a*D.piMs2.X D.piMsi.b D.piMs2.h D.piMsl.Ti/L
D.piMs2,Ti/L taul';
PIvstau = [PIvstau pivect]:

% PID-regulator vs. tau

pidvect = [a*D.pidMsl.K a*D.pidMs2.K D.pidMsl.b D.pidMs2.b D.pidMsl.Ti/L
D.pidMs2,Ti/L D.pidMsl.Td/L D.pidMs2.Td/L tau]';

PIDvstau = [PIDvstau pidvect]:

Ku=D,process.Ku; Tu=D,process.Tu; kappa=D.process.kappa;

% PI-regulator vs. kappa

pivect = [D.piMsl.K/Ku D.piMs2.K/Ku D.piMsl.b D.piMs2Z.b D.piMsl.Ti/Tu
D.piMs2.Ti/Tu kappal':

PIvskappa = [PIvskappa pivect]:

% PID-regulator vs. kappa

pidvect = [D.pidMsl.K/Ku D.pidMsZ.K/Ku D.pidMsl.b D,pidMs2.b D.pidMsl.Ti/Tu
D.pidMs2.Ti/Tu D,pidMsl.Td/Tu D,.pidHs2,Td/Tu kappal’;

PIDvskappa = [PIDvskappa pidvect]:

end

C.8)

function {A}=showplotline{Matrix,LineMatrix)

% Plottar data matrisen, Matrix, genererad av plotdata
% Kurvanpassning till data i matrisen LineMatrix
% [A]=showpletLine{Matrix,LineMatrix):

Lastrow = size{Matrix,1);

NbrOfFig = 0.5 * (size(Matrix,1) - 1);
clf;

figure{l)

x1=[0:0.001:0.13];

%x2=[0.13:0.001:13};

A=zeros (2*NbrOfFig, 4);

for i = 1:NbrOfrig
if i == 2 $ b plott
subplot (ceil (0.5*NbrOfFig) ,2,1); *
plot (Matrix (Lastrow, ), Matrix(2*i-1,:),'ko'); hold on;
A{2*%i-1,:)=polyfit(LineMatrix (Lastrow, :},bineMatrix(2*i-1,:),3);
plot{xl,pclyval{A{2*i-1,:),x1), " 'k:");
plot{x2,polyval {A{2*i-1,:),x2),'k");
plot (Matrix (Lastrow,:) ,Matrix (2*i,:), "kx");
A(2*%i,:)=polyfit(LineMatrix(Lastrow,:),LineMatrix{2*i,:),3);
plot(xl,polyval (A(2*i,:),x1),'k:");
plot (%2, polyval (A(2*1,:),x2),'k');hold off;
else % resterande i log skala
subplot (ceil (0.5*NbxrOfFig) ,2,1)
semilegy (Matrix(Lastrow,:),Matrix(2*i-1,:),'ko'): hold on;
A(2*i-1,:)=polyfit(LineMatrix(Lastrow,:),log(LineMatrix(2*i-1,:}),3};
semilogy (%1, exp (polyval (A{2*%i-1,:)},x1)}, "k:'):
semilogy (%2, exp(polyval (A{2*i-1,:),x2)),'k");
semilogy{Matrix (Lastrow, :} Matrix{2*i,:}, 'kx");
A{2%i,:)=polyfit(LineMatrix{Lastrow, :},log{LineMatrix{2*i,:)),3);
semilogy (x1l,exp{polyval (A{2*i,:},x1)), 'k:"};
semilogy (X2, exp{polyval (A(2*i,:),x2)),'k") ;hold off;
end;
end
A(:,4)=exp(A(:,4)):A(3,4)=1log({A(3,4));A(4,4)=1og(A(4,4));
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