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Abstract

This project is about the analysis and control of a ball bouncing on a controllable
surface. The surface is modelled as a spring with a non-linear, but still continu-
ous, characteristic causing a continuous yet swift deceleration and acceleration
of the ball. The objective of the controller is to either reduce or increase the
bounce-height of a ball dropped from a starting height above the surface. The
motion equations of the ball are modified to generate different versions of the
same basic ball-surface system: dissipation-less surface, two-dimensional and
dissipative variants have been constructed using a Hamiltonian representation
of the motion equations.

The model is initially tested with the surface in a fixed position, to test the
surface model. It has to satisfy energy equations, Newtonian impact equations
and act like a real-world surface in dynamic and equilibrium conditions. Sta-
bility criteria around equilibrium points are also evaluated using a linearized
model.

Four control strategies are devised to control the bounce-height of the ball,
the first being a simple approach and the last a feed-back approach. Stability
criteria and equilibrium points are examined with caleulus and validated by
computer simulations.

The model exhibits properties in line with Newton'’s energy conservation
laws before and after impact. No comparisons are made with test data from
real impacts, but the non-linear spring model is still useful for evaluating control
strategies.

The surface is assumed not to move as a result of the ball impacting it,
corresponding to infinite mass of the surface. All strategies require the velocity
of the ball to be measured. The controllable variable is for the first three
strategies position, velocity or acceleration of the plane, whereas for the fourth
the force from the plane is controlled directly to alter the stiffness of the plane.
The last stratgy can in practice only be realized by mounting a jet engine on
the ball to achieve direct force control.

The basic control principle for the first three is that the plane should recede
while the ball is in downward travel, but for the fourth, the error between the
desired and actual bounce height is used in a feed-back control law for the force
from the plane. Using these strategies it is possible to effect an exponential
decrease of the bounce-height, but not to stop the ball’s motion completely. All
similations are carried out using the MATLAB package.
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Chapter 1

Introduction

A ball bouncing on a movable surface is a simple system, yet it possesses many
interesting properties. It can exhibit chaotic behaviour for deterministic exci-
tation (such as a sine wave motion of the surface) and can also be modelled
as a discrete system through sampling the system at the times of impact. The
standard relationship for a ball driven by gravity bouncing an a surface between
incoming and outgoing velocities is:

Vin(t) — Wsur faceitr) = e(Vout{tr) — Wsur face (k) (1.1)
tr : Time of kth impact
thest : Time of the next impact
Vin : The ball’s velocity just before the impact
Yout : The ball’s velocity just after the impact
Wsurface © Lhe velocity of the surface
e : restitution coefficient

See Beer and Johnston [1] for an introduction to impact mechanics and Vin-
cent [2] for discrete impacts. The ball’s velocity just before an impact equals
minus the velocity of the ball just after the previous impact, Equation (1.2):

Vin (th1) = —Vous(ts) (1.2)
Assuming e = 1 yields:
'Uin(tk+1) = _'Uz'n(tk) + 2'llusurfmmz(t.l.-) (13)

For a fully deterministic system, where wsypface is known (for example periodic)
and no air friction is present, ¢} can be substituted for k in Equation (1.3). Dis-
crete systems of this kind have already been extensively studied by for example
Guckenheimer [3]. A nonlinear control strategy for a system where the surface
has periodic motion, restitution (0 < e < 1, can be found in Vincent [2}.
Impacts have been thoroughly studied from a structural integrity point of
view, see Zukas [4]. Balls bouncing against surfaces are not only encountered



Introduction

in the areas of juggling or walking robots {(a running animal can be modelled
as a bouncing ball), but also in quantum physics, where the chaotic properties
have been subject to much research effort. The ball is then a particle and
the surface truly a potential energy barrier. A bouncing ball can only exhibit
chaotic behaviour if the restitution coefficient is unity through the route of
doubling period, see Luck and Mehta [5].

This project deals with continuous models and methods of controlling the
bounce. The plane is modelled as a nonlinear potential energy barrier that
elastically repounds the ball.

First, the system motion equations of the different versions of the ball-surface
system are outlined. Dissipation-less surface, two-dimensional and dissipative
variants have been constructed using the Hamiltonian representation with the
distance between the ball and the plane and momenturn of the ball as state vari-
ables. For a review of Hamiltonian mechanics see Kilminster [6]. The variants
are examined with calculus and classical theory methods as far as possible, then
the models are implemented in MATLAB.

The control strategies were based on the idea that in the real world, th
method to catch a ball with an elastic surface, such as a tennis racket, is to
try to match the ball’s velocity and then to decelerate the surface. Hence,
the plane should recede while the ball is travelling downwards, thus having a
negative Wsyr face in Equation (1.1).



Chapter 2

The Model

2.1 Introduction

The model was constructed to simulate a rigid ball repeatedly bouncing on a
horizontal elastic' surface due to gravity. A real world impact is not ideal,
but the ball does deform the underlying surface upon impact, its crystal lattice
yields a little (in the case of a rigid ball} and eventually repulses the ball. This
is the action to be emulated by the surface model.

G

. Peo g=-9.8Imss 2
ball

surface

Figure 2.1: The basic system

Position of the ball is denoted by geon, momentum of the ball by pyan.
Positive momentum and displacement of the ball are indicated by the arrows in
Figure 2.1.

The surface is modelled as a potential energy barrier in the shape of a support
function, Equation (2.1). The inequality constraint of Equation (2.1} cancels
spring effect on ball when ball is above the plane, gy > 0.

Irestitution coefficient o =1
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g=-9.81m/s ?

ball

F=fig,)
N

Figure 2.2: The surface as a non-linear spring

The potential energy as a function of distance for the support function is:

0 1 1 Qeatr > 0

_
e bt gpay <0

fsup(qwlf) = { (21)

The advantage of using a function of this kind is that it is continuous through
zero and differentiable with respect to gpair for —o0 < grenr < 00. The potential
energy plotted against displacement, geqn, can be seen in Appendix A.1.1.

The surface can be thought of as a rigid plate suspended on a spring and
piston. The derivative of momentum, , is force and is a function of distance
only in the elastic case and is thus well represented by a spring. The dissipation,
if non-zero, is a function of momentum and is represented by a piston, see
Figure 2.3 for a schematic view of the plate-spring-piston-ball system. The
action of piston and spring is non-linear. Their characteristics are governed by
inequality constraints so the influence on the ball is analogue to encountering
the potential barrier whose envelope is given by Equation (2.1).

An alternative would be to model the ball as an elastic sphere with the a
potential energy function giving a rebound force as a function of radial com-
pression of the ball. That would have prevented the use of a zero-radius ball
and also been less flexible in a planar “pool-table” with multiple surfaces of
nonuniform stiffness and dissipation.

2.2 The Hamiltonian System

The dissipationless system is essentially a spring with a non-linear force-distance
characteristic, see Figure 2.2. No forces other than gravity affects the ball’s
motion when it is not in contact with the plane.

Hamiltonian systems conserve the total energy, given by an energy function
H (oot Poatt)s Gban is the velocity of the ball and peqy is the force on the ball.
Consequently, quen is the distance between the ball and plane and pyoy is the
momentum of the ball.

The total energy is the sum of two elements: the potential and the kinetic
energy. Above the plane, the potential energy is only due to gravity, inside

e
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the surface, guary < 0 the barrier potential energy function (2.1) is added to

the gravitational potential energy. The barrier function is the support function
multiplied with a scalar, Kspring. Thus, the potential energy function is:

mGQpall . 1 Gbatt = 0

V(gsan) = { (2.2)

S -
mygeet + Kspring® Miat gpan < 0

The kinetic energy, expressed as a function of momentum of the ball, pp.u,
is:
i

T(Pba!l) = %Pﬁau (2-3)

which is just another way of writing (mv?)/2, the familiar expression for kinetic
energy. The total energy function for the ball in Figure 2.2 is accordingly:

H(qvatrs Prant) = V(goant) + T (@oatts Poatt) (2.4)

Using the definition of a Hamiltonian system, see Jackson [8}, the motion equa-
tion representation of Equation (2.4) becomes:

afx
[ Gball } _ [ g 1 } dgpant |
Poelt -1 0 8H
Opball
Phall 2.5
[ _?;;lg ] Goatt = 0; (2:5)

Goart < U5

Lhal
m 1
Kapri VY
—myg — 5L “‘““3—2qb2 —e Afan
a

2.3 The Linearized Hamiltonian System

Linearizing the Equation (2.5) around an equilibrium gives information about
changes of system stability, as the ball is pulled into the plane by the force of
gravity.

ABEI 26
[P] [“10] _oH 20

A first-order linearization §, around a point 1, zz of a general function of two
variables y = fgen{z1,2z2) is:

~ Bfgen.-_ afgen~
V= 0 + B2 £ (2.7)

—bh —
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The state variables for the linearized Equation (2.9) are denoted by §pan and
Prayr. Because the matrix in Equation (2.6) is already the first-order deriva-
tive, the linearized equation are second-order derivatives of H(qpair, Poatr). The
displacement and momentum of the ball at the linearization point are g, p.
Equation {2.8} is the generalized expression for Equation (2.6) linearized ac-
cording to the same method as Equation (2.7).

. 82H . 8% H 3

[ Goatt } _ 5P g (@, pr) [ drot ] 28
E ) \ * .
Prail — % (@, p) — % (@, 1) Pball

The expression for gs.n in Equation (2.5) is a function of pu, only, which
leads to that the derivative taken with respect to gu.n leaves zero. The same
reasoning applies t0 Ppeni. The outcome is that the diagonal elements of the
linearized equation are also zero. Also, for g, p; to be an equilibrium point at
rest, pr has to be zero. Hence,

. 0 17
[ bt } - L1 " [ Goatt } 2.9)
Ppail I{spring%e Al (“'39'1_4 + %ql_e) 0 Peall

Depending on the choice of linearization point gy, the system changes between
marginally stable to unstable, see Section 3.2.2.

2.4 The Dissipative System

With no dissipation in the system, a ball dropped from a height above the plane
would bounce indefinitely, which is an unrealistic assumption about a bouncing
ball. The introduction of a piston, see Figure 2.3, represents the dissipation
of energy in the bounce, corresponding to a non-unity restitution coefficient in
Equation (1.1). In a real surface-ball system this would correspond to the plane
and ball heating up due to the impacts deforming the ball and plane.

Though the dissipative plane is a more accurate model of the plane itself,
the idea} assumption of no friction against air was made throughout this project
which for a test-rig would have had to been taken into account. The generalized
energy function for the system shown in Figure 2.3 is:

Hais(gvarts Poatr) = T{@oaits Pratt) + V{@eant) + Ryen (Doant) (2.10)

where R, represents a generalized dissipation function. The function Hgy;;,
is no longer a Hamiltonian since it no longer conserves energy but the state
variable representation is kept. Let the energy dissipation function R(p) be:

0 1qatt = 0

2 2.11
sz‘si!anﬂlzﬂ"L § Gbait < 0 ( )

R(ppan) = {

—_6 —
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g=-9.81mfs 2
Iobnf!‘ *

l Ga=0
F = fG Bt L[J

Figure 2.3: The Dissipative System

Then the derivative of R{pp.n) with respect to ppan is:

OR { 0 i@har 2> 0

= 2.12
OPsait Gpiato-npbaf! s@bant < 0 ( )

C'piston is a scalar to change the size of the dissipation during simulations and
is negative so it counteracts velocity in the motion equations.

The dissipative function also needs to be weighted with the support function,
Equation (2.1), to get a smooth transistion from free-fall info the constrained
motion of the dissipative surface.

ORto _ { 0 .  hait = 0

= e (2.13)
Opvan ChistonPranie “°%att  jgpar < 0

The repelling spring force and dissipation may increase differently as functions
of granz, having two A’s, A, and Ap respectively, allows this to be taken into
consideration. The motion equations become, analoguous to the equations for
the non-dissipative model of Equation (2.5):

Gt | | O 1 0
[ﬁm}“[—l OH%’—}]

" Gbatt = 05

Phell
bt

Gpanr < 05

i 1
—mg — ﬁ,&/\m&!_%e Mebatt + ChistonPhall® Ao diai
(2.14)
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qx

above plane

Figure 2.4: Parameters of the two-dimensional plane

2.5 The Two-Dimensional System

The one-dimensional system in Section 2.2 was expanded to movement in two
dimensions, to simulate the ball lying on a flat table with the planes as vertical
walls.

The plane has been described by two parameters: angle o and scalar offset
b, see Figure 2.4. Two parameters were sufficient to create multiple surfaces
facing different directions. This is further discussed in Section 3.3.3.

The force on the ball, Py, is perpendicular to the plane, ie. it was as-
sumed that the ball slides frictionlessly along the surface upon impact, and its
magnitude is proportional to the perpendicular distance between the ball and
the surface. The perpendicular distance between the ball and the plane was
calculated using the scalar product:

gL = ~Grpalt SINQ + Gy pan COSx — b (2.15)

The previous condition for the presence of an impact, gren < 0, has to be
replaced by g san < 0 in the support function, Equation (2.1). Consequently,
the components of the force became:

F (Qbauapbai'l) = “F(q_j_,ban) sin a (2 16)
Fy{Gpait, Prant) = —mg + Fqu pan) cOsS@ '

where F(gpan, Prann} may include the dissipative factor R(pjan). This system
conserves momentum for the dissipationless case, the only case in two dimen-
sions to be simulated and tested in Section 3.2.4.



Chapter 3

Analysis of Properties

3.1 Introduction

The first part of this chapter outlines examinations of the models in Chapter 2
done with caleulus, the second part outlines simulations to verify the analytic
results.

All simulations have been entirely donte in MATLAB 5.2 on the Imperial Col-
lege Electrical and Electronic Engineering departmental system. The differential
equations have been solved using the MATLAB ode23 solver. The ode23 is a one
step explicit Runge-Kutta solver, that is, it computes Xz as function of X;
only!. The '23’ stands for two or three algorithm evaluations per step.

3.2 Analytic Evaluation

3.2.1 Equilibrium for the Hamiltonian System

Knowing at which point the system in Equation (2.5) is in equilibrium is nec-
essary so the point of linearization can be chosen. The system is in equilibrium
when the momentumn, pyqy, and force, pyay equal zero. For the second condition
to be true, Equation (3.1)

_ -Kspring 2

. 1
Dratl = —TNg 3 e Mon =0 (3.1)

oy
has to be true. The expression for Ppay is taken from Equation (2.5).

Calculating the turning point of the ball

The Figure 3.1 depicts the potential energy well due to gravity and the surface
constraining the ball’s motion. The negative g-axis is “inside” the surface and
the system is energy-conserving?. The ball accelerating from the upper turning

! According to the MATLAB online Help Desk or Bogacki and Shampine [9]
2No friction against air and elastic impact is assumed
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Potential
Encrgy

support
Junction
+mgq

kmpact furnin
qlow@[ point €
fuming
poink

Figure 3.1: Qualitative outline of potential energy well

point towards g = —oo will upon hitting the surface convert its accumulated
kinetic energy from the fall, T'(¢impace = 0, Pimpact) = MGGupper iNt0 a potential
energy at the lower turning point, V(giower), which is due to both gravity and
the surface potential. The position of the plane is assumed to be fixed. The
expressions for T' and ¥ are from Equations (2.2) and (2.3).

.1
mgGupper = MGQower + I{springe Miower (32)

Unfortunately, Equation (3.2) is not analytically solvable, because grower ap-
peats in both the mg term and in the exponent.

3.2.2 Stability of the Linearized Hamiltonian System

This section is to prove under which conditions the system is unstable, marginally
stable or unstable.

Since the ball is influenced by gravity® the force equilibriumn is at a point
where the gravity downwards is equal in size to the rebound from the surface
upwards.

In Figure 3.2, the myg forces of two balls of differing masses are represented
by the two dashed lines, the lower the mass of the ball, the closer its line is to
the x-axis. The ball is in equilibrium when its location with zero momentum
coincides with an intersection between a dashed line and the solid line.

Henceforth the ball will be so light that the spring force is significantly
higher than the gravity force on the ball generating a situation equivalent to
only having the lower dashed line in Figure 3.2.

The region where the dashed line is under the solid line is where the force
from the spring is stronger than gravity, thus the net force on the ball is upwards.
Should its momentum be high enough to carry it across the force maximum,
the top of the solid curve, its rate of deceleration will decrease. However, the

31n the case of no gravity, no equilibrium exists and the ball will always rebound eventually.

10—
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gmax ~0.2582 Mass=10 Kspring=37,8394 lambda=10

L e e S TT I T

Spring Force and m*g — {constant)

. . " H i
0 0.1 0.2 03 04 05 06 0.7
Displacement(q)

Figure 3.2: Equilibrium point locations

behaviour expected from a spring is that the force is strictly increasing as a

function of displacement.
The model is thus reasonable only for displacements guqy smaller than the

one giving the maximum force.

Point of Maximum Oppaosing Force

The point of maximum was found through deriving pp.y in Equation (2.5) with

respect tO gpalr.
The Equation (3.3} is the expression for p in Equation (2.5).

d 2 a3 2 1 4 2
'&E (mg — Kspring Xq 3¢ % ) = -Kspringxe ra (_3‘1 * 4+ Xq 6) =0
(3.3)

The exponential of the above expression is never zero, so that leaves the poly-
nomial. This gives

i 3_2)_ . 2 ]2
. (3+Ag —05 @ ==y (34)

But the spring force is equal to zero when oy > 0 which leaves the negative
solution:

2

Jmaz = — E3Y (3.5)

Eigenvalues of the Linearized System Matrix
For the linearization point ¢ = geay to be an equilibrium point, mg has to

be equal to the spring force and psoy = 0. The linearization point is thus

— 11—
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3.2 Analytic Evaluation

a 0 Ny i Ny
sign (—3 + %qt_z) - - 0 +
roots imaginary | imaginary =0 real
stability neutral neutral | neutral | unstable

Table 3.1: Eigenvalue sign-changes as a function of linearization point

the intersection between the dashed line and the solid line in Figure 3.2. For
the intersection to move towards —oo, the mass of the ball has at first to be
increased until the intersection reaches the top of the solid curve of Figure 3.2.
Thereafter the mass is decreased again to effect the movement of the intersection
downwards, but this time the linearization point is taken to the right of the
maximum of the curve.

The characteristic equation of the dissipation-less system Equation (2.9)
linearized avound the point ¢ is:

1 2 -y 4 2
det(s] — A) = s — —Kopring y € Aaj (_3% Ly N "’) (3.6)
The roots of Equation (3.6) are thus
/ 1 2 1 2 _
Sp,1 = + Ej{springie xa? ay 4 (—3+ XQI 2) (37)

and we get that for g = —/2/3) the roots become zero. In order to see for
which values the system becomes unstable the sign-changes of the polynomial
factor in Equation (3.6) had to be examined for g; € }0,—oo|. The arrows in
Table 3.1 indicates ¢; strictly decreasing towards the next value in the table, in
the case of the last column g tends towards minus infinity.

To steadily decrease g is equivalent to the mass of the ball continuously
increasing. Also, after having passed ¢ = —/ 2/3) it also implies that the ball
has passed the point of maximum opposing force.

For 0 > q > —+/2/3X the system has got complex roots le. a natural
frequency of:

1 2 1 _ 2 _
Uoge = \/Elfsp-ring Xe mgl ! (“‘3 + 'XQI 2) (38)

— 12 —
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and that the Equation 3.7 is marginally stable for ¢ = —+/2/3\ and unstable
(one positive real root and one negative real root) for g < —/2/3A.

3.2.3 Spring force as a function of A

Equation (2.5) incorporates A in two places while also being composed of a
polynomial and an exponential function, The influence of A on the interaction
between the two is important as this forms the shape of the Equation (2.5).

. 2(143 _ 1

Dot = —T2g — KspringTe Mian (3.9)

Differentiating the force with respect to distance and substituting geeu for g =
-/ 5%\- yielded the maximum force as a function of A:

ap

Frooz = F(Qmaz) = 5& = I(‘gpring2_%3%A%67% — const )\%eﬁ%

(3.10)

The next step was to take the derivative with respective to A. The maximum
is when the derivative is equal to zero.

4 (i) = (1 _ g) % (3.11)

The exponential and A# factors in the right-hand side of Equation (3.11) are
# 0 for all A, Hence,
1—%:0:>/\:2 {3.12)
For a plot of the function {3.10) as a function of A, see Appendix Al2,

3.2.4 Conservation of Momentum

The Hamiltonian system in Equation {2.5) without dissipation should ideally
preserve momentum. Two dimensions, no gravity and a horizontal plane were
assumed for the following equations similar to a ball on a pool table bouncing
against a vertical wall. The onedimensional case in Equation (2.5) is a special
case. The change of momentum, when the ball is not interacting with any
surface, is equal to zero.

Poatt =0 (3.13)
Along the vertical axis, assuming a horizontal surface, the change of momentum
is given by:
0 gy >0

Py = ., (3.14)
_I(;)\E:ng zqgge K;z qy < 0

— 13—
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P
ball trajectory /

Figure 3.3: One bounce in a Two-Dimensional System

The total change of momentum along the vertical axis, can be expressed as the
difference in momentum immediately after impact , ti., minus the momentum
immediately before the impact, t_:

dp, = v Kspring 5 ~3,7 %7 gy 3.15
py= [ o e (3.15)

Using the variable substitution:

= tag= Ty (3.16)

dt ==
g0 g Py

in Equation (3.15) gives Equation (3.17).

Py+ a9+ m 3 _m%
/ pydpyﬂf *I(springrzq e Mt dq (317)
Dy— - &
"2 n2 ) _ ] B N
% — B,‘;L = _I{Spriilgiﬁ (e (A_{;{) — e (quz)) (3.}.8)
k&

The exponential expressions tends to zero as g4,g- —» 0, so the difference on
the right hand side tends to zero as well. That is, the momentum after the
impact equals the momentum prior to impact.

3.3 Analysis using Simulations

Al simulations were made using MATLAB 5.2 on Unix work stations. The dif-
ferent models outlined in Chapter 2 will be presented in that same order in the
sections Implementation followed by Simulation for each model. The ball is as-
sumed to be a dot and in most cases its mass has been set to m = 1. Non-unity
masses were only used to test the programmes themselves rather than model]
properties. That is, one simulation session was made with double the mass to
check if the ball’s trajectory changed when the mass of the ball changed.The
simulations were conducted in order to confirm the findings in Section 3.2.
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novdlambdavar: q Paramaters: mass=1 Kspring=200
or e e e -

Penetration (gball)

-0 iy 0
logflambdatest)

Figure 3.4: Penetration as function of Ay

3.3.1 The One-Dimensional System Without Dissipation
Implementation

The model in Equation (2.5) was programmed into a MATLAB ode file. The
spring parameters Ap and Kguring had to be declared as global variables to-
gether with environmental and test parameters such as mass of ball, magnitude
of gravity, if any. The inequality conditions on the spring was modelled using
an if-statement:

%x=[q p] position, momentum
function xdot=novdcorrfunc(t,x)
global Kspring lambda m
£=9.81;
xdot=[0 ;0];

xdot (1)=x(2) /m;

if x(1)>=0
xdot (2) =—m*g;

else
xdot (2)=-mxg —1/lambda*Kspring*(2%x(1)"-3)*
#exp(-1/(lambda*x(1)"2)};

end

Effect of changing A, and Ky,

First of all the model should make sense. If the ball is too heavy or has too
much momentum, it will fall through the surface. The ball does enter the
surface upon impact, so one simulation to examine behaviour for different Ay
and Kprings was carried out, see Figures 3.4 and 3.5. We know already from
previous chapters that the optimum value for A is 2. However, o gain a quicker
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response, i.e. a steeper curve on a Force-q plot, another A could be chosen but
then Kpring has to be chosen larger. Only increasing Kpring without changing
Az was far less effective to achieve a small penetration of the plane than changing
both. Moreover, for very large values MATLAB gets problems with integrating
the system. The penetration decreases strictly as a function of Kspring.

novdkspringvar: Param: mass=1 Kspring=2621440 lambda=1
2 . R .

—i0

Penetration(gball
El

8

"

&

o

A R L
log{Kspring)

Figure 3.5: Penetration as function of Kpping

Energy Conservation

Energy conservation of the system was also evaluated in the simulations. The
energies involved are the potential energy, kinetic energy and the energy barrier
function. Simulating one bounce with the ball gyos = 10 yields the following
plots:

novBnvg: g Param: m=1 Kspring=200 lambda=200 Penétr=—0.084236

5 -

EI:

a |

N

E

2 _|; : ; . ; ; ‘ H

14 141 142 143 144 145 146 147

100 = H E 3
B | :
2 :
o BOE . 4
H] :
2 R B . .

. h4 14t 142 143 144 145 146 147
gzss! T : T : : Y T
3 |

§100f - 1
2 [
g oi H N . i i H
& a4 141 142 143 144 145 146 147

% 10*

Figure 3.6: Energy conservation plot

The following program was used to examine the energy exchanges during
one bounce in Figure 3.6.
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xio? m=10 Kspring=20000 lambda=2000 Peneir—0.0062768
o ; T i T
o :
B _gl... e
o :
8 i i i i
0 02 0.4 0.6 08 i
Time
- 2 ]
8
[=3 |
Eo
=
[
E-1f-
(=]
= o i i i i
o 02 0.4 08 08 1
Tima

Figure 3.7: Ball position and momentum, oscillating rest

g=x(:,1); %distance
p=x(:,2); Ymomentum
Penetration=min(q}; YFinds the trajectory turning point

potentialnrgl = m¥g*q;
kineticnrg= 1/(2xm)*p ."2;
potentialnrg2=100-(potentialnrgl+kineticnrg);

Resting Properties

The model should also be able to keep the ball stable in the case it is just resting
on the table. The figure below is a simulation of a test with the initial conditions
gstart = 0, Pstart = 0 The reason for the oscillation seen in Figure 3.7 is that
exactly at ¢ = 0 the only force interacting with the ball is the gravity. Also,
it can be seen from Table 3.1 on page 12 that for ¢ < @mazopposingforees S€€
Section 3.2.2, the system has imaginary poles.

3.3.2 The One-Dimensional System With Dissipation
Implementation
The implementation of Equation (2.14) in MATLAB looks like this:

function xdot=dissipmodel(t,x)
% VARIABLE DECLARATION
global Kspring lambdaK lambdaC m Cpiston g
xdot=[0 ;0];
YFor ease of reading equation
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Jhasespace.m Parameters: m=1 'ambdaC=20 lambda=F max force=200000x mg Cpist
iL] T Y T 3 T

Momantum ; p{t}
@

[
Position : g{t}

Figure 3.8: Phase space diagram of asingle bounce of Dissipative System.

g=x(1);
p=x(2);
qdot=0;
pdot=0;
%FUNCTION DECLARATION
gdot=p/m;
if x(1)>=0
pdot=-m*g;
else

pdot=-mg +(-1/lambdaK+Kspring)*(2%q~-3)*exp(-1/ (lambdaK*q~2))
+Cpiston*prexp(~1/(lambdaC*q~2));
end

Cpiston is the only variable that needs to be declared. Cpiston has to be negative,
to counteract direction of travel. The lower term of pdot is the implementation
of the piston shown in Figure 2.3 on page 7.

Simulations

The same stability cases hold true for the dissipative (or damped system) so
simulations only verified that the model actually behaved as expected. See
Figures 3.8 and 3.9.

3.3.3 The Two-Dimensional System Without Dissipation
Implementation of a multi-surface system

Implementing Equations (2.15) and (2.16) into MATLAB code yielded the fol-
lowing program. New global parameters are alfa and b. A two-dimensional
problem with several surfaces meant that the system’s odefile had to be de-
clared in two layers. The upper level was called from the simulation file and its

— 18 —



Analysis of Properties 3.3 Analysis using Simulations

dec3 plotting p and q as always:
10 : 15
8 10}--
a
o I
[ 5
g §
=4 E ox
¥
o £
a 2 5 -5
= : :
] 15
[ 1 2 a 1 2 3
q slartvalue=10 p startvalue=0
net force components: m*g ~barer force & ¢ Forces: mg,barrier force
8000 : T x 2 . T
B i o
8
6000 815
o
4000 i
a I
o 1
2000} - 2
: ]
o % 0s
: o : > :
-2000 i 0 . i
] 1 2 3 é 0 100 200 300 400 500

qmax —0.57735

Figure 3.9: Single bounce of Dissipative System

function was to calculate the force resulting from each plane. When the ball
enters the areas marked with “s” in Figure 3.10 it is only influenced by one
force perpendicular to the plane, whereas in the areas marked “d” the ball is
influenced by two forces, one from each plane and its amplitude decided by the
perpendicular distance from the plane of influence. The separate surfaces are
declared with two numbers: angle «, alfa®. in the program, and scalar product
offset b (b). A 2 x N matrix, shape, containing the desired specification for the
N surfaces was then declared as a global variable in the main program. In the

AThe author is aware of that the proper spelling of o is *alpha”, but did not consider this
while writing his MATLAB code thinking in Swedish.

d s d
% ay

s 4 9% 5

d s d

Figure 3.10: Outline of force influence areas
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simulated case, N =4 and
shape=[pi/2 -2; 0 -1, pi ~1; -pi/2 -2];
The function shapemodel was the MATLAB odefile.

function xdot=shapemodel(t,x)
global shape
xdot = [0;0;0;0];

for i=1:length(shape)
xdot = xdot + feb2model (t,x,shape(i,:));
end

The function febZmodel is listed in Appendix B.2.1 and is the implementa-
tion of Equation {2.16).

Alternatively, the two-dimensional plane could have been implemented using
start and end points of lines ereating a polygon. This solution would have meant
five parameters for each side of the polygon: one x-y pair for each end of the
line, and one parameter to designate which way it is facing, moreover it was less
cortvenient for modelling movements around intersections® between two planes.
The areas marked "d” in Figure 3.10 on page 19 would have lacked surface
potential functions, or required extra consideration.

Simulations

The purpose of the simulations was to verify that the two-dimensional model
obeyed the law of Newton. Ingress angle and egress angle should be equal,
which according to the lower right-hand graph of Figure 3.11 also seems to be
the case with the exceptions of the two spikes which are due to uwsing arctan
when the ball is momentarily travelling vertically due to hitting the short end
of the rectangle. The multi-surface model was only tested without gravity, the
so-called pool-table case. Figure 3.11 below shows the first few bounces of one
simulation. The “+” sign indicates the start of the ball’s trajectory.

3.3.4 Outline of a Typical Simulation Program

The MATLAB simulations were all carried out in a similar fashion, a model
implementation program qas called from a master program. The latter specified
test parameters and calculated other parameters from desived properties of the
function. For instance the desired final bounce-height in Section 4.3.1 is best
calculated outside the implementation program, so it need not be calculated
with each iteration step.

Not only test parameters were calculated in the master program but also
calculations performed on the test data to display it in a desired way, be it as a

Stwo intersecting planes create a corner
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m=1 lambhdakK=2 max force=2000000x mg Cpiston=0 y phasespace
. P 2 e i H
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Figure 3.11: x-y graph, phase space plot, angle of travel

phase space representation or as momentum and displacement plotted against
time on the x-axis.

The ode23 golver properties were also specified in the main program when
calling the solver function with the implementation program file as one of the
arguments for the solver,

options = odeset(’RelTol’,le-8,’AbsTol’,1e~10, ‘MaxStep’,. 1};
[t,x] = 0de23(’mar3modeld’ ,Tspan,xStartvalue,options);

Especially the parameter MaxStep was critical since a too large value would
make the curved jagged rather than parabolic, and the solver might step “past”
an upper turning point at which a condition might change the behaviour of
the system controller. On the other hand a small value would result in longer
simulation times. With four state variables, a simulation of five bounces could
then take several minutes to run through. Tspan is the desired simulation time.
This can either be specified as a vector containing two values, start and end
point or a vector specifying every point in time at which we want the state

variables calculated.
The latter method was wholly inefficient as a fixed step-length, such as below,

Simulationtime={0:0.001:10]

would often be too large when the ball was influenced by the plane while at the
same time providing unnecessary accuracy while the ball was in the trajectory
part above the plane. Letting the solver adapt step length according to need
but limiting the maximum length was the best method.

When plotting for instance the displacement vector, this resulted in a warped
graph as the simple plot (gvector) command just plots all values on the y-axis.
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Tnstead the time had to be taken into account using plot(t,qvector). An
entire master program can be seen in Appendix B.1.
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Chapter 4

Controlling the Bounce

Controlling the impact or bounce is a problem encountered in many areas: a
robot gripping an object, space craft docking to each other, or the feet of a
walking robot hitting the ground. The problem of controlling the impact is
difficult because the system changes dynamics rapidly, from the simple dynamics
of a ball in free fall to a strictly constrained motion as it is inflienced by the
surface. Previous work has centred around the need to milder the strain in
industrial robots at impact.

The aim of the following controllers is to control the bounce height of the
ball via diminishing the resultant force on the ball through receding the plane.
Thus, the controller fries to nearly match the velocity of the ball as long as the
ball is influenced by the plane while travelling downwards.

Measuring the velocity of the ball, a necessity for strategies 2,3 and 4 is
difficult or impractical. A possible solution would be electro-optical imaging or
radar, though they are expensive.

4.1 Control Strategy 1

4.1.1 Implementation

The purpose of the controller is to avoid that the ball bounces indefinitely.
From real-world experience we know that the way to catch a ball with a springy
surface, such as a tennis racket, surface is to try to match the velocity of the ball
and to decelerate the surface. This is what a tennis player does when catching
a ball with his/her racket rather than striking the ball.

The first criterion for catching the ball by reducing the bounce is that the
surface should recede when the ball impacts it. This strategy was designed to
keep the plane moving downwards as long as the ball was in contact with it.
When the ball leaves the surface, it resets upwards so it can move downwards
as the ball is falling. The surface will describe a saw-tooth curve along the time
axis.
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q
(qba!l,ma:( t bai?,nm)

Tpant

o qbc!!],nmr
i\

t, ] d
Empact
qpkmg

Figure 4.1: Schematic view of Strategy 1

The upper turning-point is measured, the system is deterministic, therefore
time of impact can be calculated exactly and the plane set at a point and
downward travel that enables it to meet the ball at precisely ¢ = 0. The position
and time at the upper turning-point, guen, mez, tmez, are calculated according to

Equation (4.1).
/2
ti ot Qtnaz,ball ( E.l)

timpact 1S then used to calculate a suitable downward rate of descent, which is
dplane according to Equation (4.2)

(jpi'ane _ _ﬁQmam,ball =8 { §9maz,ball (4.2)
tz’mpact 2

Substituting Wsur face = fplane and because the system is deterministic , ¢maz bart
completely determines v;, and
. Ui
Gplane — ﬁ";_n (43)
in Equation(1.1), how § translates into e can be calculated.. This is equal
to replacing the control action with an immobile surface (Wsurface = 0) and
calculating its restitution coefficient. The Equation(l.1) then becomes

1
Vipn = — 77— 57 Yout (44)

(1-58)
and thus

(4.5)
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This solution is somewhat crude but was mainly implemented to see the
interaction between ball and plane, i.e. that the ball was really damped by a
downward-moving plane. This proved to be the case but this strategy was not
pursued beyond that because it lacked a direct coupling between energies or
velocities in relation to the ball-plane system and also because of the need to
know #;mpacs in advance.

4.1.2 Simulation

The program in the form of an odefile requires a global variable that re-
members the gplanedot between ode23 iterations. There is probably a more
elegant solution than to use global variables, but this was the one that worked
instantly. The new value of gplanedot is calculated at

|pan] < 0.1, gpant > 0 (4.6)

and is then used with the aid of a line equation to set the plane at the correct
position for each iteration. The points fulfilling the criterion of Equation (4.6)

%Plane motion
if and(abs(pball<=0.1),qball>0)
gballmax = gball;
qprlane = gballmax*alfa;
tballmax = t;
gplanedot = -alfaxgballmax/sqrt{gballmax*2/g);

else
gplane = alfa*qgballmax + gplanedot#*(t-tballmax) ;
end;

The above program is designed to create the movement of the plane described
on Figure 4.1. The entire function file is listed in Section B.2.2. The vertical
force from the surface is calculated as before, with the exception that the ball’s
absolute position, gball, has been substituted for qdist = gball - qplane.
MATLAB Simulations

The simulation showed that the program worked as predicted.

4.2 Control Strategy 2

4.2.1 Implementation

The second strategy assumes that gyane is controllable. As before, catching the
ball necessitates a downward movement of the surface as the ball impacts the
plane. The plane should hold still after the ball has passed the lower turning
point of its trajectory, and go back to zero after the ball has left the plane
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as quickly as possible. The conditions for the different parts of the trajectory
become:

—ki1gplane  Gplone > 0, 'reset

Gplane <06, (47)
OPpall Poall <0 'cateh’
0 Poat >0 'hold’

‘jplane =

Figure 4.3 illustrates the control action law in Equation {4.7) a displacement-
momentum phase space representation. The controller decreases the egress ve-
locity by the factor a (not to be confused with angle « of the two-dimensional
system). Factor k; controls the speed at which the plane resets. The height of
the following bounce will be decreased by the factor (1 —«)? since at the upper
turning point, the total energy of the system is purely potential, and the total
energy of the system immediately after leaving the plane is:

m{{1 — a)v)?
H(Qbm‘lspbalh timpa,ct) = —((“2—")"")7 (48)

The above conditions specified in Equation (4.7) is translated into MATLAB code:

%Plane motion
if gball>=0
gplanedot=-1000xgplane; % plane resets, k1=1000

else
if pball<=0
gplanedot=alfa*pball/m;
else
gplanedot=0;
end;
end;

tebi18 Parameters: m=1 lambdaC=2 lamboak=200 max force=2000000x mg Cpiston=
! T T T H T T T

= I °
z 5 =
. T

q Position ball and plana

©
&

o5 3 T 25 3 as .
t:tme bounca fac: 0.9

Figure 4.2: Ball trajectory for Control Strategy 1
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Figure 4.3: Control action for Strategy 2 for each quadrant in a paair, goen phase
space

b18(3} Parameters: m=1 lambdaC=2 lambdak=2 max force=2.000000g+18x mg Cpistt
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Figure 4.4: Close-up of one bounce with Control Strategy 2

The complete model implementation can be found in Section B.2.3.

4.2.2 Simulation

The figure shows the behaviour of the plane during one bounce. While the
ball travels downwards, the plane follows it at a slower velocity, it holds still
while the ball ascends but still in the plane and staris resetting as the ball
has left the plane entirely (geanr > 0). See Figure 4.4. The strategy has a
drawback. When the momentum of the ball is reduced to the point at which
it no longer fully leaves the plane, the plane will never start moving upwards
again, and diverges towards geqn —+ —oco. The resulting trajectory can be seen
in Figure 4.5. The plane in Figure 4.5 has been made deliberately soft to better
display the trajectory of the plane. The bounce occurs well inside the plane,
this is due to a “lag” in the spring action as visible in Figure 3.2 on page 11.
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b18{3) Paremeters: m=1 lambdaC=2 lambdaK=2 max force=2.0000008+16x mg Cpisk
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Figure 4.5: Whole plot, one bounce with Control Strategy 2

4.3 Control Strategy 3

4.3.1 Implementation

The assumption behind this controller is that duane is the control variable, as
opposed to ¢ for Strategy 2. This demands a second-degree controller. The
motion equations for the controller becomes, with the same control strategy as
in Equation (4.7)

f .
‘_ki‘zQpIﬂne - leqp.lane dplone > 0, ‘reset’

I < O
Gplane = 4 ) Oplane = , (4.9)
kz (a !;;u - qPi'ane) Poatt <0 catch’

\ mloaq'plane Praty > 0 'hold

The entire MATLAB function can be seen in Appendix B.2.4. Equation (4.9)
implemented into MATLAB code looks like this:

%Plane motion
if (gball>=0}(gball <= dfac & pball<=0))
gplanedotdot=-kixkil*gplane-2+ki*qplanedot;
% plane resets

else
if pball<=0
gplanedotdot= (alfa*pball/m-gplanedot)*k2;
else
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Figure 4.6: Close-up of one bounce with Control Strategy 3

gplanedotdot=-1000000*gplanedot;
end;
end;

The controller for the reset action is a second-degree critically damped con-
troller with the double root at s;2 = ki. The parameter ko sets the speed of
the controller in the catch mode.

4.3.2 Simulation

The controller worked as predicted. See Figure 4.6 and 4.7. The dotted line
in Figure 4.6 18 gpiane. THe rapid dip in the curve thus represents a rapid
acceleration downwards due to the ball hitting the plane and the controller
trying to partially match the velocity of the ball. The catching speed parameter
ks has for the shown simulation been set to 10° , and k; to 100. The latter
influences how quickly the plane resets after the ball has passed ¢ = 0 on its
way up. As for Strategy 2, Figure 4.5, this strategy has the same problem of the
controller not being able to reset due to the ball’s rebound not reaching above

Ghorr = 0.

Remedy to Strategy 2 & 3 problem

The problem in Section 4.2.2, that the plane will diverge towards —o0, can be
solved for the case that the system is deterministic after leaving the plane. The
upper turning point, geurn, can be determined from the momentum at impact,
Dimpact if the weight of the ball is known to the controller. A momentum is
translated into turning point height via Equation (4.10):

1
maGturn = '2_‘17; p?mpact = Pimpact =M 29Gturn (4-10)

s



Controlling the Bounce 4.4 Control Strategy 4
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Figure 4.7: Full plot of one bounce with Control Strategy 3
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Figure 4.8: Plane with acceleration of plane controllable

The Equation (4.10) is used to create a stopping condition for the controller.
The objective is to stop the system from entering the state when the ball is no
longer reaching above the plane. This is accomplished by setting a condition that
if the momentum at impact corresponds to a specified desired bounce height,
the plane will stop draining the ball of momentum and just He still at gprane = 0-
This was never implemented due to the fact that it is not a general solution to
the problem, as it demands deterministic out-of-plane behaviour.

4.4 Control Strategy 4

4.4.1 Implementation

This strategy is designed to make the ball bounce at a preset bounce height.
The control force adds a control force component to the rebound of the surface.
the derivative of the force is proportional to the error in bounce-height. The
present bounce-height is calculated from the momentum at impact according to
Equation (4.10). Figure 4.9 is the block diagram for the force controller.
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qmaxref 1 Econtrol

=

gmaxt

Figure 4.9: Block diagram of Strategy 4

gmaxref : desired bounce height
gmaxref : height of the preceding bounce
ki : feedback gain variable

fcontrol : control force on ball

After having reached the desired bounce, extra force input is no longer needed
since the system is energy conserving, Cpiston = 0. Thus if the error is zero, the
control force should reset to zero as quick as possible. The MATLAB program
for the intended controller looks as follows:

% CONTROLLER VARIABLE CALCULATION
if (gball>Q & abs(pball)<=(.01)
gmaxt = gball
end;
if aba(gmaxref-qmaxt)<.1
fcontroldot=-100*fcontrol;
else
fcontroldot= kl*(gmaxref-qmaxt);
end;
#PLANE MODEL
if gball >= 0

gplanedot = ~kixqplane;
pplanedot = 0;
else
gplane=gball;
gplanedot = pplane;
pplanedot = fcontrol+(-1i/lambdaK*Kspring)+(2*qplane”-3)*
*exp(-1/ (lambdaK*qplane~2))+Cpiston*pballx*
xexp(-1/(lambdaCxgplane”2));
end;

%BALL MOTION
gballdot=pball/m;
pballdot=pplanedot-m*g;

The motion of the plane is designed to keep the plane ’solid’ from the ball’s
point of view, that is the surface recedes with the ball’s position if gsenr < 0.
The entire program listing can be found in Section B.2.5.
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Figure 4.10: Full plot of one bounce with Strategy 4
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Figure 4.11: Close-up of one bounce with Strategy 4

4.4.2 Simulation

Simulating this strategy demanded too much of the memory capacity of the
computer becanse of the 5 state variables necessary:

gball ; position of ball
pball : momentum of plane
gplane : position of plane
pplane : momentum of plane

fcontrol : control force

Also, the simulation time was very long, 3 hours for one bounce. The plane
tries to match the position of the ball, but does not succeed entirely as the
plane overshoots zero in the upswing, see Figure 4.11.
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Figure 4.12: Long simulation of Strategy 4b

4.4.3 Control Strategy 4b

Because of prohibitive simulation time a simplified strategy that did not make
any attempt to control the position of the plane was devised in order to eliminate
two state variables, gplane and pplane as they do not directly influence the
ball. The maximum simulation step length had to be kept low so the upper
turning point would not be stepped past. That point is where the control force
is recalculated for the next bounce.

A new problem surfaced: even though simulation went much quicker, the
control force increases so rapidly that the limit of the MATLAB precision is
reached. The program is unable to meet the specified integration tolerances
without reducing the minimum allowable step size. See Figure 4.12 for a long
simulation session.

_ 83—



Chapter 5

Conclusion

In this report, a model of a ball bouncing on a plane have been studied. The
model has been examined using stability theory and simulations in MATLAB.
The surface was modelled as a non-linear spring yielding smooth impacts. The
system was shown to exhibit properties similar to those of a Newtonian, discon-
tinnous impact.

Control strategies for controlling the bounce were also proposed and simu-
lated, all of but one requiring the measuring of the ball’s velocity before impact.
The strategies employing the movement of the plane to augment or diminish the
bounce are easier to implement in practice than those using the force conting
from the plane to be as control variable.

A decrease of the rebound was achieved in the simulations, but not total
cancellation of the bouncing motion. A real world system would not exhibit a
unity restitution coefficient, so controllers taking advantage of that would the
next natural step towards an algorithm for a juggling robot.
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Appendix A

MATLAB Plots

A.1 TFunction Envelopes
A.1.1 The Support Function

Note the orientation of the g-axis. The negative part is always assumed to be
inside the surface.

The Support Function
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Figure A.1: The Support Function’s envelope around zero
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MATLABR Plots A.1 Function Envelopes

A.1.2 Envelope of Maximum Force as Function of A

As caleulated in Section 3.2.3 the force has its maximum with respect to A at
A=2

Fmax as a function of lamoda
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Appendix B

Program Listings

B.1 A maTLAB Master Program

This is the master program for the Control Strategy 3, Section 4.3.1. Its ac-
companying model implementation program can be found in Appendix B.2.4.

% feb2bcatchballld.m :

¥ Plane is movable, movement law incorporated in feb2bmodel.

¥ See feb25a for details behind the idea.

h

Y% System with an energy dissipation implemented, but set to zero.
%

Y alfa is elimination factor , qplane position of plane

A

clear

global Kspring m lambdaK lambdaC g Cpiston
global alfa ki k2

WINIT

m=1;

g=9.81; %

lambdaK=2000;

lambdaC=2;

Tapan = [0 1];

Cpiston = 0; % Cpiston should be negative
Forcefactor=2E16; % to oppose the direction of travel
xStartvalue=[1 0 ¢ 0];

% Simulation Spec

alfa = .5;
k1 = 100;
k2 = 100000;
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Program Listings B.1 A maTLAB Master Program

% Test Parameter Calculation

gmax=-sqrt (2/lambdak/3)
Kspring=Forcefactor*m*9.81/(-1/lambdaKx (2*gmax"~3)*
xexp (~1/(lambdaK*qmax~2)));

% Simulation
options = odeset{’RelTol’,1le-8, 'AbsTol’,1e-10, *MaxStep’, . 1};
%options = odeset(’RelTol’,le-8,’AbsTol’,1e-10);

% [t,x] = ode23(’feblilmodel’,Tspan, [xStartvaluel);

[t,x] = ode23(’feb2bmodel3’, Tspan,xStartvalue , options);

gball=x(:,1); % position

pball=x(:,2); % momenbum

gplane=x(:,3); % plane position

gplanedot=x(:,4);

%GRAPHICS PRESENTATION

figure(l)

clf

Ysubplot (211)

plot{t,gball)

hold on

plot(t(i),qball(1),?*%)

hold eon

xlabel([’t : time bounce fac: ’,num2str{alfall)
yiabel{[’Position gball and gplane and gplanedot(--)’1)
title([’feb25(3) Parameters: m=’,int2str{m),

> 1ambdaC=’,num2str (lambdaC),’ lambdaX=’,int2str{(lambdak},
’ max force=’,num2str(Forcefactor),’x mg Cpiston=’,
int2str(Cpiston)]);

plot(t,qplane)

Zoom on

grid on

hold on
plot{t,gplanedot,’--")

% Printfiles

% a Tspan 0..3
% alfa = .5;

% ki = 100000;
Y k2 = 100000,
%



Program Listings B.2 Model Implementations

B.2 Model Implementations

B.2.1 febZmodel.m

This is the model implementation program for the two-dimesional model ont-
lined in section 2.5.

% This one is called by shapemodel.m

% febZmodel.m

% Model which includes energy dissipation as opposed to earlier versions
% alfa is inclination of plane,

% b is elevation of plane

function xdot=feb2model (t,x,shape)

% VARIABLE DECLARATION

global Kspring lambdaK lambdaC m Cpiston g alfa

xdot=[0 ;0;0;0];

YFor ease of reading equation

qx=x(1); gxdot=0;

qy=x(2); qydot=0;

px=x(3); pxdot=0;

py=x(4); pydot=0;

alfa = shape(1);

b = ghape(2);

% FUNCTION DECLARATION

qxdot=px/m;

qydot=py/m;

if (-gx*sin(alfa)+qy*cos(alfa))>=b %
% see feb2a
pydot=-m*g;

else

YCalculation of penetration orthogonal to the plane
gortho= -gx*sin(alfa)+qy*cos(alfa);
%Calculation of forces

pxdot= -sin(alfa)#({-1/lambdaK+Kspring)*(2*qortho™-3)*
*exp{(-1/ (lambdaK* (qortho~2)3))
+Cpiston*px*exp(~1/(lambdaC+(qx"2)));

pydot=—m*g + cos(alfa)*((-1/lambdak*Kspring)*{2*qortho"-3)*
xexp(-1/(lambdaKx{(gortho"2))))
+Cpiston*py*exp(-1/(lambdaCxqy~2)});
end
xdot (1)=qxdot;
xdot (2)=qydot;
xdot{3)=pxdot;
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xdot (4)=pydot;

B.2.2 febl8model.m

This is the implementation program for Control Strategy 1, Section 4.1.1.

% feblBmodel.m

¥ Same as febl8 but only in one dimension. On top of that this model
% needs to have a variable-position plane.

% Cpiston should be negative to oppose the direction of travel

¥ Position and velocity in vector as shown

% alfa is feedback constant , gplane position of plane

function xdot=febl8model (t,x)

% VARIABLE DECLARATION

global Kspring lambdaK lambdaC m Cpiston g

global alfa gplanedot gplane tballmax gplanes gballmax
xdot=[0 ;01;

YFor ease of reading equation

gball=x{1}; gballdot=0;
pball=x(2); pballdot=0;

% FUNCTION DECLARATION

%Plane motion
if and(abs(pball<=0.1),qball>()
gballmax = gball;
gplane = gballmax*alfa;
tballmax = t;
gplanedot = ~alfaxqballmax/sqrt(gballmax*2/g);

else
gplane = alfaxgballmax + gplanedot=(t-tballmax);
end;
Yqplanes=[gplanes gqplane];
¥Ball motion
gballdot=pball/m;
gdist=gball-gplane;

if gdist>=0
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pballdot=-m*g;
else
pballdot=-m*g +(-1/1ambdaK*Kspring) *(2*qdist -3} *
*exp (-1/ (lambdaK*qdist~2))+Cpiston¥pball#*
*exp(-1/(lambdaC*qdist™2));
end

xdot (1)=qballdot;
xdot (2)=pballdot;

B.2.3 febiBmodel3d.m

This is the implementation of the model described in section Control Strategy
2, Section 4.2.1.

¥ alfa is feedback constant , gplane position of plane
function xdot=feblB8model (t,x)

% VARIABLE DECLARATION

global Kspring lambdaK lambdaC m Cpiston g

global alfa gplanedot gplane tballmax gplanes gballmax
xdot=[0 ;0];

YFor ease of reading equation

gball=x(1); gballdot=0;

pball=x(2); pballdot=0;

gplane=x(3); gplanedot=0;

% FUNCTION DECLARATION

%Plane motion

if qball>=0

gplanedot=-1000%gplane; % plane settles back
else

if pball<=0

gplanedot=alfa*pball/m;

else

gplanedot=0;

end;

end;

%Ball motion
gballdot=pball/m;
gdist=gball-gplane;

if qdist>=0

pballdot=-m*g;
else
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pballdot=-m#*g +(-1/1ambdaK*Kspring}*(2%qdist™-3)*
sexp(-1/(lambdaK*qdist"~2))+Cpiston#pball*
*exp(-1/(lambdaCxqdist™2));
end
xdot (1)=gballdot;
xdot (2)=pballdot;
xdot (3)=gplanedot;

B.2.4 feb2bmodeld.m
This is the the implementation of Control Strategy 3, Section 4.3.1.

Y acceleration of plane is controllabe
¥ x=[q p] postion, momentum
Y Model which includes energy dissipation as opposed to earlier versions
% Cpiston should be negative to oppose the direction of travel
¥ alfa is feedback constant , gplane position of plane
function xdot=feb25medel3(t,x)
% VARIABLE DECLARATION
global Kspring lambdaK lambdaC m Cpiston g
global ki1 k2 alfa
xdot=[0;0;0;0];
Y For ease of reading equation
gball=x(1}; gballdot=0;
pball=x(2); pballdot=0;
gplane=x(3);
gplanedot=x{4);
Y% FUNCTION PECLARATION

%Plane motion
if gball>=0
qplanedotdot=—k1*k1*qplane—Q*ki*qplanedot;
% plane settles back to zero

else
if pball<=0
gplanedotdot= (alfa*pball/m-qplanedot)*k2;
¥ braking while ball is descending
else
gplanedotdot=-1000000*gplanedot;
% holding plane while ball is rebounding
end;

end;

%Ball motion
gballdot=pball/m;
gdist=gball-gplane;
if qdist>=0

pballdot=-m*g;
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else
pballdot=—m+g +(~1/lambdaK*Kspring)+

#{2xqdist~-3)*exp(-1/(lambdaK*qdist~2))+

+Cpistonspball*exp(-1/(lambdaC*qdist~2));
end

xdot (1)=gballdot;

xdot (2)=pballdot;

xdot (3)=qplanedot;

xdot (4)=qplanedotdot;

B.2.5 mariZmodell.m
This is the implementation of Control Strategy 4, Section 4.4.1.

% Modelling the plane instead of the ball. See marlZa
% % Writing mariZmodell.m
Y% Model which includes energy dissipation as opposed to earlier versioms
% Cpiston should be negative to oppose the direction of travel
function xdot=mariZmodell{t,x)
% VARIABLE DECLARATION
global Kspring lambdaK lambdaC m Cpiston g
global k1 gmaxref gmaxt
xdot=[0;0;0;0;0];
aplanedotdot=0;
% For ease of reading equation

qball=x(1); gballdot=0;
pball=x(2); pballdot=0;
gqplane=x(3}; gplanedot=0;
pplane=x(4); pplanedot=0;

fcontrol=x(5); fcontroldot=0;
% FUNCTION DECLARATICN
% controller variable calculation
if {gball>0 & abs(pball)<=0.01)
gmaxt = gball
end;
if abs{qmaxref-gmaxt)<.1
fecontroldot=-100*%fcontrol;
else
fecontroldot= ki*{gmaxref-gmaxt);
end;
%Plane model
if gball >= 0
gplanedot = -kixqplane;
pprlanedot = 0;

else
qplane=qgball;
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gplanedot = pplane;
pplanedot = feontrol+{-1/lambdak+Kspring)*
*(2+qplane”-3)*exp(-1/(lambdaK*gplane~2))+
+Cpiston*pball*exp(-1/(lambdaCxgplane™2));
end;
%Ball motion
gballdot=pball/m;
phalldot=pplanedot-m*g;
xdot (1)=gballdot;
xdot (2)=pballdot;
xdot (3)=qplanedot;
xdot (4)=pplanedot;
xdot (5)=fcontroldot;
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