ISSN 0280-5316
ISRN LUTFD2/TFRT--5588--SE

Modeling and Control of the
Quadruple-Tank Process

José Luis Nunes

Department of Automatic Control
Lund Institute of Technology
March 1998

Department of Automatic Control

Lund Institute of Technology
Box 118
S-221 00 Lund Sweden

Document name

MASTER THESIS

Date of issue

March 1998

Document Number

ISRN LUTFD2/TFRT--5588--SE

Author(s)
José Luis Nunes

Supervisor
Karl Henrik Johansson

Sponsoring organisation

Title and subtitle

Modeling and Control of the Quadruple-Tank Process

Abstract

performed in this master thesis.

In this master thesis a new quadruple-tank process is investigated and a user interface is developed.

The quadruple-tank process is a coupled control system with two inputs and two outputs. It is built in a
way that it is easy to have both a minimum and nonminimum phase system. These two systems settings
are investigated, and the results of the physical modeling, identification and control are presented.

A real-time graphical user interface for the process is developed. It includes a simulation of the real
process, MIMO controllers, and facilities to log data. This interface is extensively used in the experiments

Key words

Multivariable systems; Multivariable zero; Decentralized control; Performance limitations; Laboratory
process; Physical Modeling; Identification; Process control; Real-Time Control Systems; User Interface

Classification system and/or index terms (if any)

Supplementary bibliographical information

Security classification

IS8N and key title ISBN
0280-5316

Language Number of pages Recipient’s notes
English 47

The report may be ordered from the Department of Automatic Control or borrowed through:

University Library 2, Box 3, S-221 00 Lund, Sweden
Fax +46 46 2224422 E-mail ub2@ubZ2.1u.se

Contents

e

Introduction 2
The Quadruple-Tank Process 3
2.1 Imtroduction wwww e sew s o i ow 0w s e 3
2.2 Physical Modeling 3
Derivation e e 4
Linearization cssamsss 5w s v w s 5
System Properties 5
Parameter Values 7
23 Summary G8dGe oy E 6 @5 e 9
System Identification 10
3.1 Imtroduction, 10
3.2 Experiments 12
3.3 Minimum Phase System.. 17
3.4 Nonminimum Phase System 19
3.6 Summary0 . s oE s ey e R B 20
PID Control s civima it sew s 6 anie 6 ss e 21
4.1 Implementation 21
4.2 Minimum Phase System 22
4.3 Nonminimum Phase System 23
4.4 Summary e e e e e 27
The User Interface 27
5.1 Imtroduction 28
5.2 The Environment 29
53 TheMain Screen 30
5.4 The Setup Screen 35
5.5 Internal Implementations 39
Conclusions 41
Bibliography 42
Operation Manual 43
A.1 Machine Specifications 43
A.2 Connecting The Cables 43
A.3 Installing The Program 44
A4 SampleSession 45

1. Introduction

In many industrial processes there are hundreds of control loops, which interact
more or less. The control design has often been performed using single-input
single-output (SISO) methods. However, modern control theory provides de-
sign approaches that take care of the interactions.

In this master thesis project, a coupled control system consisting of two
loops is investigated. A new quadruple-tank process is built and a real-time
control system is developed using the real-time kernel [6] developed at the
department, and the man-machine interface software InTouch. The process
connected with a PC running the graphical user interface is shown in Figure 1.

Figure 1 Photograph of the quadruple-tank process connected with a PC running
the graphical user interface.

The linearized dynamics of the quadruple-tank process contains a zero,
whose location can be easily change. This feature is used to illustrate the dif-
ference in controlling the process when it is minimum and nonminimum phase.
For each system setting a system modeling and identification is performed, and
the performance of the decentralized PID control structure is examined.

This work originated a paper [16] that was submitted to a conference, and
part of it is also found in a doctoral thesis [13].

The outline of the report is as follows. In Section 2 we describe the qua-
druple-tank process and derive a mathematical model of the system, based
on physical data. Some system properties are also investigated, and physical
as well as mathematical interpretations are given. In Section 3 we explain
the procedure on how to identify the system based on experimental data.
In Section 4 we test some controllers on the real process. Decentralized PID
control is used and the results for both system settings are compared. In
Section 5 we describe the user interface and explain how some relevant parts of
it were implemented. In the conclusions, in Section 6, we leave some guidelines

for further developments of the user interface. In Appendix A we include a
simple and short guide on how to setup the process and configure the interface.
A sample session is included in the appendix.

2. The Quadruple-Tank Process

2.1 Introduction

The quadruple-tank process was built in order to study various behaviors in
interacting control systems. The process is a MIMO system with two inputs
and two outputs, consisting of four tanks and two pumps, see Figure 2. The
voltages fed to the pumps correspond to the inputs of the system and the
levels of the lower tanks to the outputs.

Tank 3 Tank 4

@

Tank 1
Pump 1

Figure 2 The quadruple-tank process consists of four tanks, two pumps and two
valves. The inputs are the voltages fed to the pumps and the outputs the levels of
the lower tanks.

By the adjustment of two valves, it is possible to set the relative water flow
in the tubes. As we will see in the next subsection, this will change the position
of the transmission zero of the linearized model of the system, giving a more
or less difficult process to control. The influence of the zero position on the
identification and controller performance is investigated latter in Sections 3
and 4. The derivations seen here are also done in [16] and [13].

2.2 Physical Modeling

Here we derive a mathematical model from physical data. We start by deriving
the nonlinear differential equations that describe the tanks from Bernoulli’s
law. Then we linearize these equations and give the linear input-output map
both in a state-space representation and as a transfer function matrix. Some
properties considering multivariable zeros are derived, and finally the physical
parameter values of the quadruple-tank process are given.

h

Figure 3 A simple tank where h represents the water level, ¢ and A the hole and
tank cross-section, respectively, and gin and g,u: the inflow and the outflow.

Derivation
Assuming mass balance for a tank like the one show in Figure 3, we have

dh

A—:_ou in
7 Qout + ¢

where A denotes the cross-section of the tank, g¢;, and g,y the inflow and
outflow of the tank, respectively, and h the water level. Bernoulli’s law gives
Qout = a+v/2gh where a is the cross-section of the hole and g is the acceleration
of gravity. The flow through each pump is split proportional to how the valves
are adjusted, see Figure 2. If we assume that the flow generated by the each
pump is proportional to the applied voltage, we get

L = 7’“”: qu = (1 - 7)kua 7€ [0: 1]

where gz, is the flow going to the lower tank and gy flow going to the upper
tank. The parameter v is determined from how the valves are set. It follows
that the nonlinear dynamics of the quadruple-tank process is given by

B Ve + 2 gk + i,

Lo ——ng—hﬁ—mQj#W

2 = ——mﬂﬂm 1)
By | o ok,

where subscript ¢ of a;, A; and h; represents Tank i, k; corresponds to Pump 1,
and +v; to the flow through Pump 1.

Linearization

Linearizing around an operating point (h?, h; u?, u3) and introducing Ah; =
hi — k) and Au; = u; — u?, yield the linear equations

dh, ﬂ NS ’71k1 Au
. 250 2h“ 1
dhz 72k2
e I Ahy+ 24 [I _Ap A
7 2h° Az\/ arg et g, B
dhg (1 —-72)k2

ohs I ARy =208 4

dt A3 2h° hy + 4 = Auy

dhy a4 (1 —71)ks
il Q. N L DTN e i)2 N
dt A\t T,

We now assume that the measured signal y; is proportional to the true level
h;, i.e.,

y; = kch;

Let the time constants T; = a—\/ 2:’ and rename states and inputs as ¢ = Ah

and v = Au, respectively. Then we get the following state-space representation

_1%1 0 AfT;; 0 _Ai 0
e _ 0 -4 0 A4 - 0 sk .
di 0 0 -£ 0 0 Gopke
0 0 - ol g
[k. 0 0 0
YT lo ko o]w

which corresponds to the transfer function matrix

G
Gls) = Gi1(s) Gra(s)
(;21(3) (;22(8)
kic 1 k
_ [R mhmhem] @
— 1—v1)k1ca szC2
(1+8T4)(1+8T2 1+3Tg
with
.. _ Tike . _ Tak.
S TR 274

System Properties

We are going to establish relations between some physical settings in the sys-
tem and the properties of the system. In particular we will show the influence
of the valve positions on the stationary point of (1) and on the transmission
zero of (2).

Stationary point For a stationary operating point (A2, h3;u?,ud) with
hs = h} and hy = hY, (1) gives that

1 —v2)k

As As 2
a4 0 _ (1 - 71)k1 0
, | /2ghy = T Uy

and thus

/ 1—)k k
jlll 29&‘1] - (A‘};Z) 2ug * 7:14111‘?
a2 o _ (L=m)k o, 72ka2 ¢
1, V¥h = Tt

it follows that there always exists a unique input (u?, uJ) giving the stationary
point (A, AY) if and only if the matrix

k _
[P Y1ky (1 —y2)ks
(1 —7y1)ks Yok

is non-singular, i.e., k1ka(y1+72—1) # 0. This happens if and only if y; +72 #
1. The singularity is natural. For simplicity assume k; = ks = 1. Then the
flow through Tank 1 is y1¢1 + (1 — 72)g2 and the flow through Tank 2 is
Y2g2+(1—71)a1. f v1+72 = 1, these flows equal 71(g1+¢2) and (1—71)(q1+¢2),
respectively. The flows through Tank 1 and Tank 2 are hence dependent, and
so must then the levels also be.

Zeros Briefly we recall the notion of zeros in SISO and MIMO systems.
For further reference see [1]. The zeros of a SISO system are the roots of
the numerator polynomial of its transfer function. The system has different
properties, depending on the zero locations. We have two types of systems:

minimum phase systems, for which all zeros are located in the left half-plane
(having a negative real part); and

nonminimum phase systems, when at least one zero is in the right half-plane
(having a real part greater than zero).

The location of the zeros influence the difficulty in controlling the system.

There are many ways of defining zeros of MIMO systems. We only need the
simplest one and therefore define a MIMO zero z as a point in the complex
plane for which the rank of G(s) drops below its normal rank (full). These
zeros are often called transmission zeros. It is possible to show that many
of the properties of SISO zeros also hold for transmission zeros, for example,
transmission zeros in the right half-plane impose restrictions on the achievable
control performance.

From the transfer function matrix (2) we get,

kikseicy

(1_|_ ST3)(]. +ST4) _ (1 _71)(1 - 72)

det G(s) = —p 222
T, (1 + sT)) 172

Hence, the system has two zeros. One of these is always in the left half-plane.
The location of the other zero depends however on the sign of

(=)t =)
Y172

‘]7:

It follows that the zero is in the right half-plane if 7 < 0, in the left half-plane
if n > 0, and in the origin if = 0. Then the system is nonminimum phase for

0<7m+72<1
and minimum phase for
1<7+72<2

Note that the zero in the origin corresponds to y; + 43 = 1, which equals the
singularity discussed when deriving the stationary point.

Parameter Values

To determine the values of the physical constants in the derived model, we
have to measure some components of the real process (like the diameter of the
holes and the tanks) and perform some simple experiments in order to find
the values of the pump constants and valve positions.

The quadruple-tank process consists of two types of tanks which have
slightly different dimensions. Tank 1 and Tank 3 have dimensions

A = 28cm?
a = 0.071 cm?

The dimensions of Tank 2 and Tank 4 are

A = 32cm?
a = 0.057 cm?

The constant k. used in the level sensors is
k. = 0.50 V/cm

To determine the constants associated with the pumps, we check the time it
takes to fill a tank when the input voltage fed to the pump is constant and
known, and the outlet of the tank is stopped. The values we get are

ki = 3.1cm®/s
k2 = 3.3cm®/s

The values for the these constants could vary a little if the voltage fed to the
pumps differs much from the ones used for the calculations. For that, to get a
physical model that behaves as much as possible as the real one, it necessary
to do some other experiments to calibrate these constants and to determine
the two parameters y; and 7. The procedure used to determine and fine tune
these parameters is explained next.

If we are interested in finding a particular setting for the valves all that
has to be done is to run the process until the steady-state is reached, and then
from the nonlinear equations for Tank 3 and Tank 4 extract the values of v;
and ;. For that we need to know the stationary level of the upper tanks —
(h3,h2). Since v; and 7 are derived from hJ and hS, it is almost certain that
the level of the lower tanks extracted from the model (1) doesn’t exactly match
the experimental values. To overcome this and because these levels correspond
to the model outputs, we have to do some adjustments to have approximately
the same stationary levels. For this, small changes is the model parameters
are done while checking the model outputs for the best match.

Minimum phase system By setting the position of the valves so that we
have more flow going to the lower tanks, i.e., y1 + 2 > 1, we reach an oper-
ating point of (h?, hY; ud, u3) ~ (12.4,12.7;3.0,3.0). And using the expressions
derived in this section knowing that the stationary level of the upper tanks
are (h3, h)) ~ (1.8,1.4), we obtain the following values for the time constants,
T;, associated with each tank,

T1 = 62s
Tz = 90s
T3 = 23s
Ts = 30s
and for the other parameters
ki = 3.3 cm®/s
k2 = 3.3cm3/s
71 = 0.70
v2 = 0.60

With these parameters we can compute the transfer function matrix of the
system

2.6 1.5
_ 1+62 1+23s)(1+62s
G(s) = iy o 2).(8)
(14305)(14+904) 1490s
and the transmission zeros z = —0.018 and z = —0.060. A plot showing

the output of the real process and the output of this model can be seen in
Figure 4. The data used for the comparison is the MIMO data that we collect
in Section 3.2 for the minimum phase system setting.

Nonminimum phase system If we instead have less flow going to the
lower tanks, by setting the valves position so that ¥, 472 < 1 but trying to keep
the operating point close to the one we got for the minimum phase setting,
we come to an operating point of (h?, Ad; u, u3) ~ (12.6,13.0;3.15,3.15) and
an upper tanks stationary level of (h3, h9) ~ (4.8,4.9). For this setting the
system time constants have the following values

T, = 63s
Ty = 91s
Ty = 39s
T, = b6s

Output y1 Output y2

1 1
0.5
0
g 5
> 2
~0.5
-1
) .) -1.5 \ ,
0 500 1000 1500 0 500 1000 1500
Time [s] Time (8]

Figure 4 Measured (solid) and simulated (dotted) outputs for the physical model
(minimum phase setting).

and the other parameters

By = 3.1cm?®/s
k2 = 3.2cm?/s
71 = 0.43
72 = 0.34

Then the system transfer function matrix derived by means of physical mod-
eling is

1.5 2.5
_ 1+63 1+395)(1+63
G(s) = Pl A
(1+564)(1+912) 1+91s
with transmission zeros in z = 0.013 and z = -0.057. Note the positive

transmission zero for this setting. The output of this model and the real output
of the process are shown in Figure 5. The data used is the MIMO data that
we collect in Section 3.2 for the nonminimum phase system setting.

2.3 Summary

The output of the models we derived by means of physical modeling, both for
the minimum and nonminimum phase system settings, agree very well with
the output of the real process (see Figures 4 and 5). In these figures we can
see a disparity between the model and the process outputs, more noticeable
for the nonminimum phase setting, in the initial phase. This is due to the fact
that when we start the simulations we don’t take in consideration the state of
the process.

These models are compared with the models we get from the experimental
data, in the Section 3. From now on, every time we mention the minimum and
nonminimum phase systems we are referring to these particular settings.

Output y1 Outpul y2

15 1.5
1
05 \/\d/\/
3 Vo
3 0
-0.5
-1
-1.5 -1.5
0 500 1000 1500 0 500 1000 1500

Time [s] Time [s]

Figure 5 Measured (solid) and simulated (dotted) outputs for the physical model
(nonminimum phase setting).

3. System Identification

3.1 Introduction

The goal of system identification consists in finding a description of the system
from the observed data. Model complexity will depend on the purpose of the
identification. In our case the aim is to find a model well suited for simulation
of the real process and for control design. Model categories used were ARX
and ARMAX as well as state-space structures.

The class of ARMAX models are given by difference equations on the form

Az Ny, = 274B(z7 ug + C(z7 1wy,

where d is a time delay, A, B and C are polynomials with unknown parameters,
and wy, is white noise. A special case of this type of models is the ARX models,
where C' is equal to 1. To estimate these models we use the ARX and ARMAX
functions from the System Identification Toolbox [14] included in Matlab.

For state-space subspace identification the estimated models are of the
form

Try1 = Azkp+ Bup + wg
Yo = Cer+ Dup +ep

where A, B, C, D and K are matrices to be identified, and wy and e, are
white noise. To estimate these models we use a function called N4SID from
the System Identification Toolbox, which implements Van Overschee’s and De
Moor’s method [8] [14].

The use of state-space models was motivated by the fact that for multivari-
able system identification we could experience some difficulties when applying
ARMAX models.

As it was said when we derived the physical model of the process, we have
a two-input two-output process, so what will be done with the identification is
to get a transfer function matrix that relates all the system inputs with all the

10

outputs. This matrix, G(s) will be a 2-by-2 matrix, were the element G;;(s)
correspond to the transfer function between input j and output 3.

G(s) _ Gll(s) Glz(s)
Ga1(s) Gaz(s)

To get these transfer functions, we can either use SIMO data and identify each

of them individually, or we can use MIMO data and perform a multivariable

system identification. The different types of data used in the identification,

and the experiments done in order to collect it are presented in Section 3.2. A

block diagram showing the interactions in the process is shown in Figure 6.

Uy G,\(s) & Y1
—1 G 4’
— Gau(s) —I

2 G2a(s) ® £

Figure 6 System’s block diagram where G;; represents the transfer function be-
tween the input %; and the output y;.

The procedure used to find a model that corresponds to a map between
an input-output pair, was to divide each data set in two parts, one for the
identification and the other for the validation of the model. In SISO identifi-
cation we use the data collected in the first two experiments, so the transfer
functions derived from each of these data sets are G11(s) and Gg;(s) from
the first experiment, and G13(s) and G22(s) from the second. Concerning the
MISO and MIMO identification, the data collected in the third experiment is
used.

To test the validity of the models we use residual analysis, and cross-
validation with the real data. In the residual analysis we take in consideration
that if the model structure represents the data adequately, the residuals will
be uncorrelated with each other. Also, the inputs and the residuals will be
uncorrelated, indicating that the model extracted all the useful information
from the data. With respect to the cross-validation, we test the models using
the second half of the data set, which we also use for the identification. Latter,
in order to compare the overall model derived using SISO methods with the
MIMO model, we use the validation part of the MIMO data. In this way we
can compare the ability of different models to track the outputs of the real
process when we have two input signals acting on the system which are not
constant all the time, even if some of the models (SISO) were not derived from
such type of data.

The results of the identification are presented in Sections 3.3 and 3.4, where
only the best model is presented. For further information on these and other
models derived using different identification methods, specially the state-space
subspace method, refer to [12].

11

To perform the identification we use extensively Matlab and the System
Identification Toolbox, and latter Simulink for validation and test of the mod-
els.

3.2 Experiments

To have a good enough data to perform the identification we have to do some
preliminary experiments, in order to get a first knowledge of the process. These
are simple experiments, most of them consist on see how the process behaves
to a determined input without collecting any data, and some other ones, like
step responses or more generally, the system’s response when the input has
the form of a square wave, will let us prepare the continued experiments where
we collect the data for the identification. Being in the presence of a MIMO
system, more precisely a two-input two-output system, and as we wish to try
different methods of perform the identification, we decide to do three contin-
ued experiments. These experiments will consist, basically, in feed a pseudo-
random binary sequence (PRBS) through one input, while holding the other
one constant (SIMO experiments), or through both of the inputs simultane-
ously (MIMO experiments). The data collected allow us to identify the four
transfer functions that describe the dynamics of the quadruple-tank process
using SISO, SIMO and MIMO identification methods. To do the first stage
experiments and latter the continued experiments, we use a graphical user
interface built for this specific process (see Section 5), that let us follow the
evolution of the experiments and at the same time, collect the data we need.

Prior to the use of data for identification of the system transfer functions,
we should concern about the quality of the data for identification purposes.
At this stage, artifacts like outliers, aliasing or lost signals should be detected.
Another valuable test is the coherence spectrum, as it serves as a measure
of dependency between two signals. An important use is its application as a
test of signal-to-noise ratio and linearity between two variables. The estimated
coherence function is

| Say(2w)]|
\/Smm(iw)syy(iw)

A value of coherence close to one indicates the frequency range where we can
expect a good approximation with a linear model. It also tells that a successful
identification can be expected. The coherence function estimate plot of an
input-output pair is presented whenever applicable to the data in question.
For each SISO data set only two plots are presented, showing the dependency
between the two system outputs and the input in question. For the MIMO
data four plots are presented as both inputs are relevant.

Voy(w) =

Minimum phase system As we want to control the level of the lower
tanks around 13 centimeters high, we start by setting the mean of the input
signal so that the these tanks have a little bit more water than half of their
capacity. By setting the mean to 3 volts we reach an operation point of ap-
proximately (hq, ho, uq,up) = (12.4,12.7;3.0,3.0). To adjust the amplitude of
the signal we had to make a compromise between the signal-to-noise ratio and
the system nonlinearities. After looking at the system’s response to a square
wave of different amplitudes, an amplitude of 0.15 volts proved to be a good
choice as it enable us to position the lower tank levels between 10 and 16 cen-
timeters high while maintaining a certain level of linearity. For the sampling

12

period, and based on a rule of thumb that says for control purposes it should
be chosen such that w.h = 0.2 — 0.6 [4], we thought that a value ten times
smaller would be well suited for the identification experiments. So a sampling
time of 1s is chosen. Concerning the PRBS period, we thought of a 60s period
since we are dealing with a system with time constants that vary between 20
and 80 seconds.

To be able to identify the system using SISO methods we performed two
experiments (SIMO experiments) where we excited the system by sending to
the inputs, one at a time, a PRBS wave with the characteristics stated before.
The amount of data collected was 3600 points, and is used both for model
identification and validation. Two plots showing the data collected can be
seen in Figures 7 and 8.

Output y1 Oulput y2
7 7
6.5 6.5
= g
2 6 =
5.5 55
0 1000 2000 3000 0 1000 2000 3000
Time [s] Time [s]
Input ut Input u2
3.4 34
3.2 3.2
R s ®
2.8 28
2.6 26
0 1000 2000 3000 0 1000 2000 3000
Time [s) Time [s]

Figure 7 SIMO experiment using a PRBS signal on input u; while input uz is
kept constant (minimum phase setting).

In the MIMO experiments we excited the system with two uncorrelated
PRBS signals with the same characteristics of the ones used in the previous
experiments. This data is used for two purposes, first to perform MISO and
MIMO identification using ARMAX and state-space models, and second to
compare the ability of the different models we’ve got in predicting the system’s
response. The data is shown in Figure 9.

Concerning the quality of the data collected in these three experiments, the
coherence function estimates for the SIMO and MIMO data are presented, see
Figures 10 and 11. From the upper plots in Figure 10 (coherence function
estimates for the data collected in the first experiment) we notice a more
stronger dependency between input u; and output y; than with output y,.
This result is not surprising as for this specific setting, we have values of v,
and <y, greater than 0.5, meaning that more than half of the water pulled by
each pump goes to the lower tanks. Thus, influencing more the level of the
lower tank with which the pump is connected (y;), than the other one (y;).
The same result can be seen in the lower plots in the same figure, but this
time the influence is bigger in output y,; rather than in y;, as in this case input
Uy is considered. The coherence function estimates for the data collected in

13

Output y1 Output y2
7 7
=65 =6.5
(=] o
2 =
] 6
5.5 55
0 1000 2000 3000 0 1000 2000 3000
Time [s] Time [s]
Input u1 Input u2
3.4 3.4
3.2 32
g 3 £ 3
2.8 28
2.6 26
0 1000 2000 3000 0 1000 2000 3000
Time {s] Time [s]

Figure 8 SIMO experiment using a PRBS signal on input u; while input u; is
kept constant (minimum phase setting).

Output y1 Output y2
75 7.5
7 7
_85 _65
% 3
2 6 =
5.5 55
5 5
[1] 1000 2000 3000 0 1000 2000 3000
Time [s] Time [s]
Input u1 Input u2
3.4 3.4 "
a2 3.2
g g
L s 3
28 2.8
2.6 28
] 1000 2000 3000 0 1000 2000 3000
Time [s} Time [s)

Figure 9 MIMO experiment using two uncorrelated PRBS signals as inputs (min-
imum phase setting).’

the third experiment is shown in Figure 11. Here we notice that the coherence
function estimate for the cross-couplings, u;/y, and ua/y;, are much worse
for the MIMO data. This result is not surprising since when we excite both
system inputs at the same time, there will be loss of information respecting
the dependency between each input and output. What can be said from the
analysis of these plots is that a linear model extracted from this data sets
is able to well approximate the real system for frequencies between 0Hz and
0.1Hz.

14

ul/y1 ul/y2

1 1
0.8 0.8
0.6 0.6
04 0.4
0.2 0.2
0 0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency [Hz] Frequency [Hz]
u2/yt u2/y2
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 o
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency [Hz] Frequency [Hz]

Figure 10 Coherence function estimates for the SIMO data (minimum phase set-
ting). The upper graphs are related with the first SIMO data set, and the lower with
the second.

ut/yl ut/y2
1 i
0.8 08
0.6 0.6
0.4 0.4
0.2 02
u 0 .
0 0.1 0.2 0.3 0.4 0.5 o] 0.1 0.2 0.3 0.4 0.5
Frequency [Hz] Frequency [Hz)
u2/yi u2/y2
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0 0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Frequency [Hz] Frequency [Hz]

Figure 11 Coherence function estimates for the MIMO data (minimum phase
setting).

Nonminimum phase system For this system setting we tried to have an
operating point as close as possible to the one we got in the previous setting.
After changing the position of the valves in order to have less flow going to
the lower tanks and thus a nonminimum phase system, we adjust the mean of
the input signal to 3.15 volts and get an operating point of (hi1, ha, u1, uz) =
(12.6,13.0;3.15,3.15). The amplitude of the wave is set to 0.3 volts so the
changes in the level of the lower tanks be more or less 6 centimeters. The
sampling period as well as the PRBS period used are the same as the ones

15

used for the minimum phase setting, 1s and 60s, respectively.

The SIMO experiments are similar to the experiments done for the mini-
mum phase setting with the exception of the input signal, which has different
characteristics. The amount of data collected is also 3600 points, and is shown

in Figures 12 and 13.

Output y1
7
=65
o
=3
6
5.5
0 1000 2000 3000
Time [s]
Input ut
3.5
3.4
3.3
=3.2
o
234
3
2.9
2.8
0 1000 2000 3000
Time [s]

Output y2
7
=65
©°
2
6
55
0 1000 2000 3000

Time [s]

Input u2
3.5
34
3.3
=32
2.3
3
2,9
2.8

] 1000 2000 3000
Time [s]

Figure 12 SIMO experiment using a PRBS signal on input %; while input u; is

kept constant (nonminimum phase setting).

Output y1
7
6.5
5
= 6
5.5
0 1000 2000 3000
Tirme [s]
Input u1
3.5
34
3.3
%‘ 3.2
231
3
29
2.8
0 1000 2000 3000
Time [s]

Oulput y2
7
6.5
3
2 g
55
0 1000 2000 3000
Time [s]
Input u2
3.5
3.4
33
=32
(=]
=31
3
29
2.8
0 1000 2000 3000
Time [s]

Figure 13 SIMO experiment using a PRBS signal on input uz while input u; is

kept constant (nonminimum phase setting).

With respect to the MIMO experiment, it is also similar to the experiment
done for the minimum phase setting. The data collected is shown in Figure 14.

16

Output y1 Output y2

8 8
7.5 7.5
7 7
§6 5 § 6.5
6]
5.5 55
5 5
0 1000 2000 3000 0 1000 2000 3000

Time [s] Time [s]

Input u1 Input u2
3.5 35
3.4 34
33 3.3
=32 =32
23,4 2 3.1
3 3
29 29
28 28

0 1000 2000 3000 0 1000 2000 3000
Time [s] Time [s]

Figure 14 MIMO experiment using two uncorrelated PRBS signals as inputs
(nonminimum phase setting).

Concerning the quality of the data it seems that there are no anomalies.
From the coherence function plots for these data set, shown in Figures 15
and 16, we can say that the data is good enough to identify a linear model that
can well approximate the real system for frequencies between 0Hz and 0.05Hz.
In the MIMO data coherence estimate we notice the same effect for the cross-
coupling pairs that was seen in the MIMO data collected from the minimum
phase system. Comparing the minimum phase setting results with these, we
notice that a model derived from those data sets is able to approximate the
real system in a broader frequency range than one derived from these data
sets.

3.3 Minimum Phase System

Before attempting to identify the system using parametric models (ARMAX
and state-space), we used spectral estimation based on Fourier transform op-
erations to get an estimated frequency response of the system. We used the
SIMO data to do the spectral analysis and obtain the estimated frequency
responses for each of the four transfer function involved. The length of the
Hamming window used was 720 points. These responses were used to have an
idea of the models frequency response derived from the data sets, and also to
check the SISO parametric models.

In the ARMAX models category we started by identify some ARX models
from the different types of data collected. We used three methods based on
SISO, MISO and MIMO identification. For the models with an ARX structure
the SISO identification method proved to be the best one. The influence of
the delays in these models is minimal, and all of them have a delay of zero.
These models extract the process dynamics but they are generally worse than
the models with an ARMAX structure.

For the ARMAX structure models we are limited by the Matlab’s function
used, to two identification methods: SISO and MISO. The responses of these
models are better than the ARX models. The match between the measured

17

ul/yi ul/y2

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
0 0.1 0.2 0.3 0.4 0.5 0 041 0.2 0.3 0.4 0.5
Frequency [Hz] Frequency [Hz]
u2/yi u2/y2
1 1
0.8 0.8
0.6 0.6
0.4 0.4
" WWMMJ -
0 0
0 0.1 0.2 0.3 0.4 05 0 0.1 0.2 0.3 0.4 0.5
Frequency [Hz] Frequency [Hz]

Figure 15 Coherence function estimates for the SIMO data (nonminimum phase
setting). The upper graphs are related with the first SIMO data set, and the lower
with the second.

utl/yi ut/y2
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 02 0.3 0.4 0.5
Frequency [Hz] Frequency [Hz]
u2/y1 u2/y2
: | 1
0.8 0.8
0.6 0.6
0.4 0.4
0 0
0 01 0.2 0.3 0.4 0.5 Q 0.1 0.2 0.3 0.4 0.5
Frequency [Hz] Frequency [Hz]

Figure 16 Coherence function estimates for the MIMO data (nonminimum phase
setting).

and the model output is almost perfect for the SISO model, and a little bit
worse for the MISO model. As the ARMAX model identified using the SISO
data is the best of all the models, including the state-space subspace models,
we present this model by showing the model transfer function matrix and some
plots of its outputs. Some properties of the model are also stated and whenever
possible the order of the model is reduced and the new transfer function matrix
shown.

18

The identified transfer function matrix for the ARMAX model is

3.3(1+1.0s 2.0(0.885°41.45-1)

G(s) = 14935 (1-!-43!2(14—533)
—1.6(1+41.85)(1—4.15)(0.274*~0.16a+1) 3.1(0.884%+1.55+1)
(1+438)(1+86s)(0.155240.02555+1) (1+4.25)(1+89s)

The correlation functions of the residuals and the cross correlation functions
between the residuals and inputs have almost every point inside the 99% con-
fidence interval. The loss function and Akaike’s FPE are always less than
1.0E — 5. As there is a considerable difference in the time constants of some of
these transfer functions, is reasonable to look for a reduced order model that
doesn’t affect seriously the input-output behavior. Because some of the heuris-
tic model reduction methods have serious shortcomings, the method used is
based on the Grammian-based balanced realization. The reduced order model
transfer function matrix is

3.3(1+4-0.21s) 2.0(30s°—2.85+1)
_ 1491 1+262)(1+77s
G(s) —1.0(1(—143)?1 +40s) (—3.1(%(—3.033)
(500042 +1225+1) (1+883)
with transmission zeros in z = 0.3240.70: and z = —0.038. Note that we have

a pair of complex conjugate transmission zeros with positive real parts. The
response of this model is shown in Figure 17.

Output y1 Output y2
i . v § : :
0.5
0
= |
o
2.
-0.5
-1
-1.5 " . -15 " . ;
0 500 1000 1500 0 500 1000 1500

Time [s] Time [s]

Figure 17 Measured (solid) and simulated (dotted) outputs for the ARMAX re-
duced order model (minimum phase setting).

For the state-space models the identification was done using subspace
methods, using the matlab function N4SID. Because the function doesn’t take
in consideration the delays, we had to write some code in order to include
them. Generally no improvements were obtained by including delays in the
models. The best model identified using this method has a degree of three and
is almost as good as the ARMAX model. The cross-validation with the real
data was the only criteria used to select the best model of this type. For further
information on the state-space subspace model and its response see [12].

3.4 Nonminimum Phase System

For this system setting, we also used spectral analysis to have and idea of the
frequency response of each transfer function. The Hamming window used had
the same size of the one used for the other setting, 720 points.

19

For ARX models we notice that they roughly capture the dynamics of
the system, and when compared to the models we identified for the minimum
phase setting they are much worse. Again, the MIMO models tend to be worse
than the SISO models.

The ARMAX models identified are much better than the ARX models,
and a little bit better than the state-space subspace models. For the ARMAX
model presented the correlation functions of the residuals and the cross cor-
relation functions between the inputs and residuals are very good. Most of
the points from these curves are inside the 99% confidence interval. The value
of the loss function and Akaike’s FPE is always lower than 1.0F — 5. The
identified transfer function matrix is

1.9(141.0s) 4.5(s%+1.45+1)
G(s) — [14-88s) 14-36s)(1-+138a) J
2.9(1+0.0725)(1+41.08)(0.426%4-0.46541) 2.0(1+0.99s)
(1+40s)(1+1675)(0.145740.021s+1) (1+1324)

By calculating a Grammian-based realization and then reducing the model,
we got the model shown below, with transmission zeros in z = —0.52, z = 0.12
and z = 0.013. This system has two zeros located in the right half-plane.

~1.9(1—1.3s) —3.5(1-9.05)(1+185)
&(s) = [e]
(14385)(1+2635) (1+1282)

The response of the model is shown in Figure 18.

Output y1 Oulput y2
1.5
1 ,"’\
0.5
g 0
2
-0.5
-1
-1.5
0 500 1000 1500 0 500 1000 1500
Time [s] Time [s]

Figure 18 Measured (solid) and simulated (dotted) outputs for the ARMAX re-
duced order model (nonminimum phase setting).

For the state-space subspace identification different order models with dif-
ferent delays were tried. Using the cross-validation with the real data as the
criteria for choosing the best one, we come up with a fourth order model with
a delay of two. The output of this model is similar to the ARMAX model
presented. The model and its response can be seen in [12].

3.5 Summary

In general, we notice when identifying the system using an ARMAX structure
that the models derived from SISO data are often a better representation of the
input-output behavior than the ones derived from MIMO data. This could have

20

to do with the quality of the MIMO data and probably with interferences when
we excite both of the inputs at the same time. For the MIMO identification
using subspace methods the results were almost the same as the ones we got
for the ARMAX models, which were very good.

Comparing the ARMAX models identified with the physical models derived
in Section 2 we notice, has expected, that the identified models are better. But
the difference between them is small.

About the two different system settings, for which we performed two system
identifications, it was noted that in the nonminimum phase case the approxi-
mation of the model output to the output of the real system was always worse
than for the other case. This result is not surprising since from the analysis of
the coherence spectrum we were expecting a less accurate model in a narrow
frequency range.

4. PID Control

4.1 Implementation

Decentralized PID control is one of the most common control schemes for
interacting MIMO plants. The main reason for this is its relatively simple
structure, which is easy to implement. For these type of controllers the number
of tuning parameters is 3n, where n is the number of inputs and outputs.
Despite the wide popularity of decentralized PID control the number of tuning
methods is limited.

G (s)
Y2

T - uy Yi
o— Ppt_—

Figure 19 Block diagram of the decentralized PI control system.

In the quadruple-tank process we are about to use decentralized PI control
in order to control the level of the lower tanks for the two different system
settings we have. The scheme used is depicted in Figure 19, and as we can see
the pattern used on how the signals should be paired is 1 — 1, 2 — 2.

y

4T_r C(s) G(s) T

Figure 20 Compact block diagram of the control system, in matrix form. C(s) is
a diagonal matrix.

It is clearly seen that the control signal u; (¢ = 1,2) depends only on the
error e¢; which is the characteristic of decentralized control. If we instead use
the matrix form shown in Figure 20, the control matrix C(s) is a diagonal

21

matrix given by,

_ C’l(s) 0
C(s)_[0 C(s)

where C4(s) and C,(s) are PI controllers parameterized as

1

KP(]‘ + TZS)

The number of controller parameters is four, two for each PI controller. The
manual tuning method we use is basically pole placement followed by some
refinements in the parameter values as we test the controller against the sim-
ulations. Before testing the controllers on the real system, we test them using
the nonlinear and the ARMAX models derived in Sections 2 and 3, respec-
tively. The close-loop response and the control signals of these models are
shown together in order to compare the similarity between them.

4.2 Minimum Phase System

For the minimum phase system we notice, by analyzing its open loop step

response, that the interactions between the signals are significant and that the

pattern we are using for the pairing of the signals is probably the best one.
The controller parameters we get for the PI controller in the first control

loop (u1 — y1) are,

K, = 3.0
T; = 30
and for the second control loop (uz — y2),
K, = 271
T, = 40

The step responses of the closed-loop system and the control signals, using
the nonlinear and linear ARMAX models for this matrix controller, are shown
in Figure 21 for a step in reference signal one, and in Figure 22 for a step in
reference signal two. The amplitude of these steps is 1 volt, which represents
a change of approximately 2 cm in the tanks level.

From these plots we see that there is always a small disturbance in output
signal y, for a step change in reference one, and in output signal y; for a step
change in reference two. The performance of this controller is very good. The
system is well damped, with an overshoot less than 10%, and a settling time
of about 60 seconds.

When we test the controller on the real system, applying again a step with
the same amplitude (1 volt), we get the results depicted in Figures 23 and 24.

Comparing the results obtained using the real system with the ones we got

for the models, we notice a great similarity between them. Apart from a small
increase in the overshoot we can say that the responses are identical.

22

Output y1 Output y2

7.2 7.2
7 ¥
= 6.8 6.8
3 : 3
.66} .66
6.4 6.4
6.2 621 /T
6 6
100 200 300 j00 200 300
Time [s] Time [s]
Input u1 Inpul u2
611 6
5 5
24 24
3 G o W
2 2
100 200 300 100 200 300
Time [s) Time [s]

Figure 21 Closed-loop response for a step change of amplitude 1 volt in reference
signal r1, using the nonlinear (dashed line) and the linear ARMAX (solid line) models
as a representation of the real process (minimum phase setting).

Culput y1 Output y2
72
7
- 6.8
°
=.,6.6
6.4
82T TN
6 6
100 200 300 100 200 300
Time [s] Time [s]
Input ui Input u2
6 [}
5 5
X 24
3 -\/_ 3
2 2
100 200 300 100 200 300
Time [s] Time [s]

Figure 22 Closed-loop response for a step change of amplitude 1 volt in reference
signal 72, using the nonlinear (dashed line) and the linear ARMAX (solid line) models
as a representation of the real process (minimum phase setting).

4.3 Nonminimum Phase System

By doing some simple experiments with the nonminimum phase system and
analyzing its open loop step response, we can notice a even bigger interaction
between the signals than for minimum phase system. If we look at the pattern
we are about to use for pairing the signals, we could say that probably this
is not the best choice. We reach this conclusion because the influence of a
step change in control signal u; is more noticeable in output y, rather than in

23

Outpul yi Output y2

72 7.2
Tt 7
B8 .68
K 5
2.6.6 .66
6.4} 6.4
62 6.2 P i bR
6 6
100 200 300 100 200 300
Time [s] Time {s]
Input ut Input u2
6 6
5 5
S S

3 T L e

100 200 300 100 200 300
Time [s] Time [s}

Figure 23 Closed-loop response for a step change of amplitude 1 volt in reference
signal 71, using the real process (minimum phase setting).

Output y1 Output y2
7.2
7
= 6.8
K}
266
6.4
6.2 Ml
;]
100 200 300 100 200 300
Time [s] Time [s]
Input ut Input u2
6 L]
5 -]
S4 S4
WA A el
I, 3
2 2
100 200 300 100 200 300
Time [s] Time [s]

Figure 24 Closed-loop response for a step change of amplitude 1 volt in reference
signal r2, using the real process (minimum phase setting).

output y; (the correlation between u; and y, is higher than between u; and
Y1), and vice-versa for control signal us.
The controller parameters we get for the PI controller in the first loop

(u1 — y1) are,

K, = 15
T; = 110

24

and for the second loop (us — ¥2),

K, = —0.12
T, = 220

The step responses of the closed-loop system and the control signals, using
the nonlinear and linear ARMAX models for this matrix controller, are shown
in Figure 25 for a step in reference signal one, and in Figure 26 for a step in
reference signal two. Again, the amplitude of the steps is equal to 1 volt (=~ 2
cm). Note that the time scale in the nonminimum phase system plots is 10
times bigger than the one used in the minimum phase system plots.

Output y1 Qutput y2

7.5

[Voit]
[Volt]

6.5

B
1000 2000 3000 1000 2000 3000
Time [s] Time [s]
Inpul ul Input u2
5 5

45

S

[Volt]

25 25

1000 2000 3000 1000 2000 3000
Time [s] Time [s]

€

Figure 25 Closed-loop response for a step change of amplitude 1 volt in reference
signal r1, using the nonlinear (dashed line) and the linear ARMAX (solid line) models
as a representation of the real process (nonminimum phase setting).

We experience a great difficulty to control the nonminimum phase system.
Difficulty which was even higher than we were expecting due to the nonmin-
imum phase properties. The stability margin for the controller parameters is
narrow and, in order to have a stable closed-loop system, we had to use a
negative gain for the PI controller in the second loop. Looking at Figure 25 we
notice a big disturbance in output y; when there is a step change in reference
one, as opposed to the relatively small overshoot in output y;, about 15%. For
a step change in reference two, we notice a disturbance on the form of an un-
dershoot in output y;, which is much small in magnitude than the disturbance
in y for a the step change in reference one. We also notice an inverse response
(y2) to a step input in the initial phase due to the PI controller negative gain in
the second loop. The response of the closed-loop system is very slow, it takes
about 800 seconds to reach the steady-state. One other thing that is evidenced
by the plots is the disparity between the two models closed-loop response for
output y,.

If instead of using the process models we use the real system, the closed-
loop response will look like the one shown in Figures 27 and 28. Comparing
these plots with the models response, we notice that the real system closed-
loop response is very similar to the ARMAX model response. As a mater of

25

Output y1
8
75
5
27
6.5
1000 2000 3000
Time [s)
Inpul ui
5
45
. 4
S | isiestesesswessiesess
23_5 f
3
25
1000 2000 3000
Time [s]

Oulpul y2

[Volt]

1000 2000 3000
Time [s]
Input u2
5
45
_ 4
3
= 35
3 _k,__._
25
1000 2000 3000
Time [s]

Figure 26 Closed-loop response for a step change of amplitude 1 volt in reference
signal rz, using the nonlinear (dashed line) and the linear ARMAX (solid line) models
as a representation of the real process (nonminimum phase setting).

fact, they are equal except for the disturbance in output y, when we add a
step change in reference one, which is bigger in the real system closed-loop
response. With respect to the nonlinear model, the overall results are worse
than for the ARMAX model and for the real system. Again, it is more noticed

in output ys.

Outpul y1 Output y2
8
5
2
6
1000 2000 3000 1000 2000 3000
Time [s] Time [s]
Input ul Input u2
5 5
4.5 4.5
= 4 _ 4
3 3
= a5 = 15 /\/—v;
3 3
25 25
1000 2000 3000 1000 2000 3000
Time (s] Time [s]

Figure 27 Closed-loop response for a step change of amplitude 1 volt in reference
signal 71, using the real process (nonminimum phase setting).

The not so good step responses for this controller were not surprising at
all as we are in presence of a MIMO system with a RHPT zero located in

26

Output y1 Output y2

75

[Volt]

~J
[Volt]

6.5

-
3]
1000 2000 3000 1000 2000 3000
Time [s] Time [s]
Input ut input u2
5 5
4.5 4.5
g %
= 3.5 /' e = 3.5
3 3l
25 25
1000 2000 3000 1000 2000 3000
Time [g] Time [s]

Figure 28 Closed-loop response for a step change of amplitude 1 volt in reference
signal 72, using the real process (nonminimum phase setting).

0.0133. With a RHPT zero so close to the origin the difficulty to control the
system is much higher. As we only used decentralized PI control assuming
that the two system loops don’t interact, we could expect better results if we
take advantage of interactive type control using for the effect a full matrix
controller.

4.4 Summary

In this section, using decentralized PI control in the two different system set-
tings, the minimum and the nonminimum phase, we experienced as expected
much more difficulties in controlling the second system. These difficulties were
even bigger than expected at the beginning as our nonminimum phase system
has a RHPT zero very close to the origin, and the interaction between the
two system loops are much bigger in the nonminimum phase system. As only
decentralized PI control was tried, and knowing the effects of the RHPT zeros
and the interaction between loops in such closed-loop systems, we could expect
an improvement in controller performance if we instead take advantage of a
full matrix controller that could handle more properly the interactions present
in the system. The controllers used are by no means the best or the optimal
controllers, as our main goal was to prove the difficulties in controlling the
process when in presence of a nonminimum phase system.

5. The User Interface

In order to simplify the interaction between the user and the real process
a graphical user-friendly interface was developed. As we were looking for a
powerful but at the same time easy to use tool, we think that the right thing
to do is to spend the most part of this section explaining the possibilities
of the interface and the way to do things, instead of trying to explain all
the in-depth technical aspects. Of course, we will mention how things are

27

implemented internally, whenever we think that is important for the user to
know.

This section starts with a brief introduction to some of the tools used in the
building of the user interface and the major goals we had prior to its building.
The following three subsections explain what the user can and can not do with
the interface, and the way to do it. There, we introduce the user with the basics
of using the graphical interface and then we describe the operations the user
can perform in the Main and Setup windows. By the end of the section, we
refer some technical aspects of the implementation that could be relevant for
the user. As there were some ideas for the interface that were not implemented,
in the final section of this report — Section 6, we state some developments that,
in the future, could be made to the interface.

5.1 Introduction

The user interface was developed using an Intel P C platform running Microsoft
Windows NT 4.0 operating system (see Appendix A.1 for hardware and soft-
ware requirements). The machine was connected with the real plant by means
of an AD/DA converter local to the machine, with four inputs and two out-
puts. A scheme on how to connect the cables can be seen in Appendix A.2.
The software tools used were a Modula2 compiler and a common used tool
to monitor and control industrial processes - InTouch 6.0, from Wonderware
corporation.

The interface is composed of two separate parts: a Modula2 program that
runs over the real-time kernel [6] developed at the department and which
implements all the algorithms used (the process mathematical model, con-
trollers, etc.), and an InTouch program used in the design of the graphical
user interface. These two programs take advantage of the Dynamic Data Ex-
change (DDE) communication protocol to interact with each other. In order
to synchronize and enable the effective communication a protocol was defined,
but it’s specifications are beyond the scope of this report.

We could not finish this introduction without mention the initial goals we
wanted to address when we start to build this man-machine interface. Among
other things that we were discovering over its development, the main goals
were:

o the design of an intuitive and easy to use interface;

e the use of a modular structure in a way that further developments and
the add of new features could be done with simplicity;

e let the user act on the real plant or on a simulation;
e allow the use of manual and automatic control; and

e add the possibility of collecting data for identification purposes and to
analyze the controllers performance and the process behavior.

In the first two no big things changed as we were concerned with the simplicity
for both the end user and the people who will add new features to the interface.
On the other hand, in its functionality some other features were added. For
example, the possibility to exchange data with Matlab 5.0 (both process data
and controller information), the possibility to simulate some real disturbances
when running against the simulation of the process (add water to the tanks,
change the cross-section of the tanks by introducing objects in them, etc.).

28

5.2 The Environment

When the user starts up the application by selecting the Tank application from
the windows Start button, or by running the batch file tank.bat from the
application directory, two main action take place. First the Modula2 program
(Tank) is started in background, as you can notice by the icon in Windows NT
taskbar, and then the InTouch run-time viewer (View) follows which runs the
code that enables the graphical interface. After this initial startup phase the
user is automatically dropped into one of the two application windows, in this
case the Main window.

The user interface is composed by two windows: the Main window and the
Setup window. The first is used more often as it allows the user to perform
the basic functionalities included in the interface. As opposed to this one,
the Setup window is used only to set parameters that the user doesn’t need
to change every time, like the sampling time. To improve the functionality,
some parameters can be set in both of the windows, as it is the case of some
controller parameters.

To improve even more the functionality, the user is also provided with the
ability of moving back and forth by means of scheme where the confirmation,
setting and restore of the default values is possible in all occasions. Because
of that, some assumption were made about closing windows, which follows:

e almost every window that opens by clicking in an object, usually a but-
ton, can be closed by clicking in the same object for a second time;

e when clicking in the popup window title, that window is automatically
closed; and

e in some windows the use of a button that usually means accepting the
values just set, automatically closes it.

These methods are common to all windows, with the exception of the Exit win-
dow due to consistency reasons. This scheme lets the user cancel the changes
made by closing the window using one of the first two methods described
above, or to actually confirm them by using another button, usually a Set
button, that automatically closes the window in question (third method).

Another thing that worth to be mention is the use of default values for
all the parameters that can be changed by the user, and the possibility to
return to these values every time the user wishes to. This can be achieved in
two different ways: globally, for all the interface parameters by rereading the
default.par file; and locally, for the parameters of a controller, input signal
wave, etc., using the Default button. In order to know when the parameter
values are the default ones, they are shown in two different colors. For default
values the color used is black, while for the values that the user changed and
that differ from the default ones, the color is gray.

The default values mentioned are the values with which the interface is
initialized. Which could be the values included in the Modula2 code , referred
as preset values, or the values contained in the default.par file. The appli-
cation will always use the values from this file as default, except when the file
doesn’t exist.

As a final remark, an advise on how to close the application. The user
should not use the Windows NT close application method in the InTouch
View program, as using it the Modula2 program that runs in background isn’t
stopped and has to be stopped manually by the user. The appropriate way to

29

close the application is to used the Exit button, present in both the Main and
Setup windows.

5.3 The Main Screen

The Main window will be for sure the screen with which the user will interact
more often. In this window the user is presented with different types of objects,
some of them are merely to show information (status) about the real /simulated
process, while others allow the user to act directly or indirectly on it. In the
first group we include the two plots and the interactive image that represents
the process, located respectively in the lower-left and upper-right regions of
the window. In the other group we have the mode selection buttons and the
controller setting in the upper-left region, and finally the input signal setting
in the lower-right region of the window. A captured image of the Main window
can be seen in Figure 29. For a better understanding of the possible actions
that can be performed within this window, a short description of each object
will be made and the procedure to do some usual actions is referred.

.. I e ;d-mmmg f‘ * | Pio i
: i | 2
[20]

[Coe | | mn_n] l."m'_[Lﬂ] L@

-

w0y

Pump 2
1o

. & i & ::m: T .
|| — 2 | 28 5 Uy

nn
.5
. e “_w UL it Wave i B s
e |y 1 or = 2 Do o
i Y Tl % ot S

Figure 29 The Main window can be used to act on either the real plant or the
simulation.

Modes In the interface we have three different mode types: the mode that
the user specifies inside the Mode box, allowing him to choose whether he
wants to act on the real process or on a simulation of it, which we call operation
mode; the state mode that corresponds to the actual state of the application,
either running or stopped; and the control mode.

To change the operation mode the user just has to click in the Mode box
which will present a pulldown menu with three different operation modes,
instead of two as it was mentioned.n This is because there was the need to
add a Setup window where the user could set some parameters that are not
changed so frequently. But truly, when the user selects the Setup mode, he
is still acting in the same “process” as he was before, whether it is the real
process or the simulation. So, this Setup mode only presents the user with
another window without actually changing anything else. The three options
for the operation mode are:

30

Simul, which stands for simulation mode and specifies that the user is acting
on a simulation of the process;

Active, this mode specifies that the user is acting on the real process; and

Setup, shows the Setup window without changing the previous operation
mode.

Another mode type is what we call the state mode which has three possible
states: Run, Pause and Reset. The Run state means than any changes made in
the interface parameters will have immediate repercussion on the real process
or the simulation. The Pause state have different meanings depending in which
operation mode is the user running. When in Active mode it just keeps the
value of the input signals, while in Simul mode the simulation is paused which
means that all the simulation states (input signals and tank levels) are kept.
The Reset state just reset all the states and then enters the Pause state. To
select the different states the user just has to click in the appropriate button,
located above the plots.

The last mode type used is designated by control mode and can be set to
one of two possible choices: Manual or Automatic. In Manual mode the input
signal specified by the user (see Input Signals in this subsection) corresponds to
the control signal — u, while in Automatic mode it corresponds to the reference
signal — ref. A scheme for bumpless changes between Manual and Automatic
modes is implemented. For more information see Internal Implementations
subsection.

The default values for the operation, state and control modes are respec-
tively: Simul, Pause and Manual. These are the modes in which the interface
is started.

Input signals The signals fed to the process, directly or indirectly through
the controller, can be specified in the lower-right region of the window. The
labels that the user sees vary according to the selected control mode. In Manual
mode the signals specified are the control signals, u; and uy (the process
inputs), while in Automatic mode they are the reference signals, ref; and
refy (the controller references). In the Main window the user can only specify
the wave parameters but can not change the wave type. See The Setup Screen
subsection for the different wave types and how to switch between them.

The parameters that define the input signal wave are: amplitude, period
and mean. The last one can be set using either the slide bar or the text box,
depending on whether the user wants to progressively or abruptly change (step
change) between the initial and the final value. The other two parameters,
and the mean also, can be set in a popup window that is shown by clicking in
the wave type. This window is shown in Figure 30. The period has different
meanings according to the selected wave type, see Reference Configuration in
the next subsection.

For simplicity, the user is allowed to turn the wave on and off by clicking
in the appropriate button. This way he can switch between a constant input
signal equal to the mean, or the wave itself. The input signal waves one and
two are completely independent, thus allowing the user to use different wave
types on each of them.

Sometimes the input signal means are changed automatically. This hap-
pens when the user changes the control mode and is due to the scheme used
to implement the bumpless changes between Manual and Automatic modes,
already mentioned.

31

Reference 1

Amplitude: 0.03

Poriod:

Mean: | 030

|O=fault] l Cet :;|

Figure 30 The Reference 1 parameters window.

Controllers 1In a box designated by Controller, located in the upper region
of the Main window, the user can define the controller he wants to use. The
controller in represented by a 2-by-2 matrix where the element zj represents
the SISO controller between input j and output i. This notation is the same
that has been used across this report. This matrix changes with the selected
controller type and is used to change the parameters of each controller. There
is also a Reset button, whose purpose is to reset the internal states of all the
four controllers, and a Type button that allows the user to select the controller
type.

The controller types implemented are decentralized and full-matrix PID
controllers, and the same for general transfer function controllers (designated
by General controllers). The selection of the controller type is done using the
Type button that shows a popup window from where the user can select the
appropriate one, see Figure 31. One assumption that was taken related with the
switch between different controller types is that, the controller internal states
are only kept when changing between decentralized and full-matrix controllers
of the same type, otherwise all the internal states are reset.

Controller Type

o W e pol] fFo, Cur Cigf
roff loorel] L celf [lemcs

Figure 31 The Controller Type window.

To set the parameters of each SISO controller the user just has to click in
that particular controller, located inside the controller matrix. By doing this,
he is presented with a popup window that varies depending on the controller
type, PID or General. The two possible windows are shown in Figure 32. For
a PID controller the parameters are the usual ones for this type of controller:
K, T; and Ty. Other parameters like maximum derivative and integral reset
time, can only be set in Setup window. The check boxes are used to activate
or deactivate the controller integral and derivative parts. The Reset button as
a similar effect to the Reset button mentioned above, but the scope of this one
is different as it only resets the internal states of this particular controller and
not all the four controllers. For a General controller the parameters are the
coeflicients of the transfer function involved plus the degree of the controller,

32

General Controller PID Controller

Degres [R]: so ® Integral K-
. . Derivative ..
.) 31 i e
Fat $y° Td:
: | Default]_' ST sel | , | Detauit| | Reset | Set |

Figure 32 The General (left) and PID (right) Controller windows in Main window.
The parameter values written in black are default ones while the others, in gray, were
modified.

which can vary between 0 and 4. When the controller parameters change on-
line an algorithm for bumpless parameter changes is responsible for providing
a smooth transition. The algorithms implemented for the PID and General
controllers are discussed in Internal Implementations subsection.

Process monitoring Some objects — an image of the process and two plots
— were included in the interface to monitor the process state.

The process image is a thrust representation of the real process, and has
some particularities that allow the user to see how the process state evolves.
The image is composed of four tanks, two pumps and the tubes that represent
the water path. The tanks are used to show, graphically, the amount of water
in each of them and can be used to display some additional information by only
clicking on them. The information provided, as it can be seen in Figure 33, is
the operating point, the tank diameter, the time constant associated with the
tank and the height (level). The height field in this popup window is also used,
when running in Simul mode, to simulate disturbances equivalent to the act
of adding water to the tanks on the real process. The value introduced in this
field corresponds to the amount of water the user wishes to add. The size of
the tanks shown in this image are proportional to their size, specified by the
diameter value in Setup window. The size of the tanks only has implications
on the simulation of the process. The pumps are used in the same way as the
tanks to show the value of its input, see Figure 34. Finally, the tubes are used
to provide information on whether there is or there is not water flowing in
them, and to show the water path from each pump.

Tank 1

Op. Point: 062
Diameter: 593
Time Const.: 6216
Height: .69

Figure 33 The Tank 1 information window (Main window).

33

Pump 1

tnput: 0.30

Figure 34 The Pump 1 information window.

The plots serve as a way of following the evolution of some process vari-
ables. The variables displayed in each of these plots can be selected by a plot
type from the list of predefined ones. To change the plot the user only has
to click on the variable label box, located on the right of the plot displaying
area, and then select one of the plot types shown, see Figure 35. The current
selection for the plot type is represented by a shaded box, while the other plot
shown is written in gray, which also means that this isn’t a valid option. The
default plots used are uju; and y;yayiresyares for the upper and lower plots,
respectively. The sampling time (refresh rate) used is 50ms and is not affected
by any changes in the sampling time value, in the Setup window.

Y12 Yiref Yoret
Y1 ¥z Y3 ¥4

Figure 35 The Plot type window. The plot uiuz is selected and the plot y2yzres
is being shown on the other graph image.

Logging In the interface we included some data logging facilities so the
user can collect whatever process data he needs. All the parameters related
with the logging are specified in the Logging window, shown in Figure 36, that
can be seen by clicking in the Log button. Prior to the logging of data, some
parameter values must be set. These include: the number of points to collect,
with a maximum of 5000; the name of the file to write data to, which will have
the extension .log and the variables the user wishes to log, that are specified
by enabling the set boxes for those variables. By default, the logged variables
are the inputs and the outputs of the process.

To start and stop the logging process the user uses the buttons designated
by LogOn and LogOff, respectively. The state of the logging is shown by means
of a status bar, in which a percentage is also shown. After the logging is
finished, either by user will or because all data points were collected, the data
can be saved to a file using the Save button. The file is of ASCII type and
besides the data itself, it includes an header that gives some information about
the meaning of the numbers stored in it. This file can be loaded into Matlab
using the function load4t .m, included with the interface, or by using the load
command, but this is not recommended since, for versions of Matlab under
5.0, an error occurs due to the presence of the header. A simple way to solve
the problem, in case the user doesn’t want to use the load/t function, is to
remove the header using a text editor. Included with the interface there are

34

lLogging
: ' = i e y‘g u"l El
Nr. Paints: m i vapd Us B3
Filename [.log]: ‘33 "ezﬂfg
N G i S i 4 i raz
B = =

' , Iuogu.r.’ ” | Logo“ ”] [I]""‘“-

Figure 36 The Logging window is used to monitor the state of the logging and
to set some parameters associated with it.

also other Matlab functions that simplify the treatment of this type of data.
A sample of a log file is show below.

% TANK LOG-file
% Created on: Jun 20 00:30:50 1997
% Logged variables: yl1 y2 ul u2 TSamp: 1s

0.622070 0.623535 0.300000 0.300000
0.625000 0.623047 0.300000 0.300000
0.623535 0.626465 0.300000 0.300000
0.620117 0.628418 0.300000 0.300000
0.623535 0.628906 0.300000 0.300000
0.619629 0.627930 0.300000 0.300000
0.619629 0.627930 0.300000 0.300000
0.621094 0.624023 0.330000 0.300000
0.620117 0.626465 0.330000 0.300000
0.623535 0.626465 0.330000 0.300000
0.625488 0.628906 0.330000 0.300000
0.628418 0.628418 0.330000 0.300000
0.625977 0.630371 0.330000 0.300000
0.625488 0.624512 0.330000 0.300000
0.626465 0.631348 0.330000 0.300000
0.627930 0.630371 0.330000 0.300000

5.4 The Setup Screen

In the Setup window it is possible to set parameters that don’t need to be
changed so often, as it is the case of the sampling time. With a brief look at
this window, shown in Figure 37, it’s noticeable the division into small regions.
It’s these different parts that compose the Setup window that will be describe
further on. But before that, it should be born in mind that by changing to
this window the interface will still be running in either Simul or Active mode
and that any changes will take effect immediately as if they were made in the
Main window.

Sampling time The value of the sampling time is set in a text box in the
top-left corner of the window. The lower bound for this parameter is 50ms

35

Wondormaie InTpieh Pomstionsl Cope Mt D Riesahi

MODE: Sumpling Time Rofardnce Cotfiguration

‘ l“\tﬂ‘ 100 }enil ::I Squnre ;(Nr. [I Sine .wmm .[

[Ei E :.IEmiM:I r i I]Pﬁl-ll-&fﬁm.l Fﬂ:ﬁnm‘...l

Controlior Configuration

N ty i

Pl N
- 4 O B i PROGCESS
rels ::‘— . Cay Ca il

Solvct Controlor Type:

Fd B3R

r. Cnv} S
KU fl!q_vfanll\mﬂnl_“ [m f: &

Figure 37 The Setup window is used to perform tasks that aren’t done very often.

while the upper bound can be a few seconds. As it was mention, the value
of this parameter doesn’t affect the sampling time (refresh rate) used in the
plots in the Main window.

Reference configuration The reference is specified by a wave type and its
parameters, that include: the amplitude, period and mean. The wave type is
selected using a pull down box, and the parameters are specified in a window
presented when the user clicks in the Parameters button. The wave type can
be set to one of the following values:

Square wave;
Sine wave; and
PRBS wave.

This is achieved by first clicking in the wave type box in order to view the
pulldown menu, and then by selecting the appropriate wave from this menu.
The parameters that specify the wave are set in a popup window that is pre-
sented when the user clicks in the Parameters button. This window is similar
to the one used in the Main window for the same purpose, see Input Signals
in the previous subsection. The meaning of the period parameter is different
for a PRBS wave than it is for the Square and Sine waves. For the PRBS
wave it represents the minimum number of samples between changes, while
for the other wave types it represents the period of the wave as it is known, i.e.
the time after which the signal will repeat itself. The user should have special
attention to the value of this parameter because it should be at least twice as
large as the sampling time, otherwise the wave generated will be a constant
signal.

Controller configuration To select the controller type and set its pa-
rameters the procedure is identical to the one explained for doing it in the
Main window, see Controllers in the previous subsection. The only difference
is that, in Setup window it is also possible to set other parameters for the PID
controllers. These parameters are: N (maximum derivative gain), T'r (inte-
gral reset time), a (setpoint weighting for the derivative part) and b (setpoint

36

weighting for the proportional part). The range for a and b parameters is be-
tween 0 and 1. The popup window for a PID controller is shown in Figure 38.
This window is similar to the PID window shown in Figure 32 with the excep-
tions mentioned. With respect to the General controller window, it is equal to
the one already shown in Figure 32.

PID Controller

@ Integral K: |
MO DeevaiiveigiSr s

Tr:
i |
a: b:
_IDefazzll | Reset Sel

Figure 38 The PID Controller window (Setup window). The parameter values
written in black are the default ones while the others, in gray, were modified.

Process configuration To set some parameters related with the simula-
tion a representation of the process, identical graphically but not functionally
to the one shown in the Main window, is also included in Setup window. As
opposed to the image described in The Main Screen subsection, in this one the
tubes represent only the water path, and the water in the tanks show the op-
erating point specified by the user for that particular tank. Another difference
comes from the actions that can be performed in the image, as clicking in a
tank will open a popup window with additional information on that tank, but
the same is not true for the pumps. The window shown, which can be seen in
Figure 39, differ from the one shown in Figure 33 in the parameters presented
and in that it’s possible to set their values. The valve position parameter (7;)
is only included in the lower tanks popup window, because we assume that
the process simulation only has two valves. The values introduced in this field
range between 0 and 1, and represent the amount of water that goes to the
lower tank, while the amount of water going to the upper tank connected to
the same pump is given by 1 — ;. The meaning of the valve position parame-
ter is the same we used in the beginning of this report. The other parameters
included in this window are the same presented when performing the same ac-
tion in the Main window process image, but now it’s possible to change their
values. There is only one thing left that should be mentioned, when the user
change the value of one of these parameters some of the others will change
automatically. This happens because of the relations between them, that were
introduced in Section 2.

The buttons included in the bottom of the process image are used to reload
the default values and to confirm the values just set. The actions performed by
these buttons influence all the parameters that can be changed in the image.

37

Tank 1

Op. Point: 062
Diameter: 593
Time Const.: 62.16
Valve Pos. (%) 0.70

Figure 39 The Tank 1 information window (Setup window).

Parameter values The possibility of saving all parameters values for lat-
ter use or to be used by other programs like Matlab, is included in Setup
window. The scheme used also allow the user to load parameter values previ-
ously stored in a file, and to reload the default or the preset parameter values.
The meaning of these two types was introduced in The Environment in the
previous subsection.

Paramété;s = aan v
Filename [par]: [defautt |
s

Figure 40 The Parameters window is used to load/save the interface parameters
in a file.

To save or load all the interface parameters to or from a file, the user just as
to open the popup window shown in Figure 40, by clicking in the Par button.
In this window the user has to specify the name of the file, and then press the
appropriate button. There are two names that cannot be used when saving
the interface parameters to a file, which are the default and preset reserved
names. These are used to reload the default and the preset parameter values.
Al the files are loaded from and written to the application directory:in ASCII
format. Some parts of a sample parameter file are shown below.

% TANK PAR-file
% Created on: Aug 05 14:01:47 1997
g

SAMPLING TIME
TSamp 100.0000

REFERENCE ONE

Mean 0.300000
Period 6.000000
Amplitude 0.150000

LOGGING

Points 120
LogFile data

38

SIMULATION
Diameterl 5.930000
OpPointl 0.620000
Valvel 0.700000
Valve2 0.600000

CONTROLLER ONE

K 3.000000
Ti 30.00000
Td 0.000000
Tr 1.000000
rl 1.000000
s0 1.000000

The intention to not allow the user to override the file that contains the de-
fault parameter values using the method described, was to protect the common
user from accidently override it. However, it is possible to change the interface
default values by renaming any other parameter file as default.par. There
was an idea on how to implement this function inside the interface by asking
the user to login the interface, and having different privileges for distinct users.

5.5 Internal Implementations

During the interface development, decisions related with the implementation
of some features were made. Because of that, an explanation on how some of
them were implemented is imposed. We only mention the ones that the user
should be aware of to understand what happens in certain situations. Among
these we have the structure of the Modula2 and InTouch programs, the process
simulation and the controllers.

Modula2 The program is structured in modules following some ideas intro-
duced in the Real-Time Control Systems course [9]. It’s divided in modules,
some of them having an associated process, as it is the case of OpCom, RefGen
and Regul, while other don’t, like Simul and Control modules. The application
is composed of four processes: OpCom, which handles the communication with
the InTouch program and of course the interaction with the user; RefGen, that
generates the reference signal waves; Regul, which communicates with the real
process and uses other module functions to implement the features presented
in the previous subsections; and Main, responsible for the launching and termi-
nation of all the other processes. In Figure 41, we can see the different modules
in a graph that shows the dependency between them.

By using a structure like this it’s possible to add new features to the
interface, like other controller types, simple by adding modules similar to the
Simul and Control.

Simulation The process simulation is done by means of the nonlinear equa-
tions that correspond to the process dynamics (physical model). The equations
used (1) were discretized using the forward differences approximation with a
sampling time defined by the user, that can vary between 50ms and a few
seconds.

39

Tank

/

CpCom
w
0]
(=]
RelGen
= 9]
Regul @
e O
o]
o
a
‘/
Simul
Caontrol

Figure 41 The modules dependency graph, in which the communication with
InTouch and the real process is also shown.

Controllers The PID controllers implemented are described by the algo-
rithm

U(s) = Ko |bYp(s) - Y(s) +

m(ayap@) —Y(s))

These controllers include setpoint weighting for both the proportional and
the derivative parts, plus a limitation in the derivative gain. An anti-windup
method to avoid integrator windup (reset windup) was implemented using
the back-calculation, also called tracking method. We decide to implement
this scheme only on the main diagonal PID controllers. Also implemented
are methods for bumpless transfer between manual and automatic modes and
bumpless parameter changes, in order to provide smooth transitions between
manual and automatic modes and in cases where the controller parameters
change. Concerning the discretization, the methods used were the forward
and backward differences to approximate the derivative and the integral parts,
respectively. The PID controller algorithm used and the way to implement the
features mentioned, are described in [5].

The syntax of the general transfer-function controller implemented is given

40

below.

5054 + 5153 + .9252 + 838 4 84
st 4 1183 +ras? 4 r3s 1y

U(s) = E(s)

These controllers have a maximum degree of 4 and the discretization method
used was the Tustin approximation.
For both controller types, the sampling time used is always equal to the

simulation sampling time, which has a minimum value of 50ms and a maximum
of a few seconds.

InTouch Because the InTouch programs need much system resources when
they use plots (real-time trends), it was necessary to made a compromise
between faster plot refresh rates and adequate response times to user actions.
For that, the plots sampling time was set to a constant value of 50ms. This
value doesn’t have any relation with the simulation/controller sampling time
beyond the fact that it equals its lower bound.

6. Conclusions

In this project we studied a quadruple-tank laboratory process with an ad-
justable zero, built at the department by Rolf Braun. This study followed two
parallel paths, one for the minimum phase case and the other for the non-
minimum phase case. We did the physical modeling of the process, and the
experimental identification using black box models for simulation and control
purposes. This study was finished with the implementation and analysis of
a control scheme where decentralized PID control was used and where the
expected properties of the two system settings were evidenced.

As part of this project too, and as one of the main goals, we developed
a graphical user interface for the real process which also includes a nonlinear
simulation of the process. This interface was used in the study of the process
and will be used, in the future, for further investigations on it. The interface,
which from the begin was intended to have an open structure in order to be
possible to, in an easy way, add new features, includes a considerable number
of functionalities. As there were some other functionalities that we thought of
but, because of the prototype characteristics of the process and time constrains
we couldn’t address, we finish leaving some guidelines for further developments
of the user interface:

e implementation of other controller types and other anti-windup schemes;
e include the possibility to control the physical valves by software;

e development of other Matlab functions to treat the data created by the
interface, as is the case of controllers data, so the user can take advantage
of the advanced functions one can find in Matlab’s environment;

e include the possibility of a user to login, in order to allow different priv-
ileges for distinct users (administrator and common user).

41

7. Bibliography

(1] Bradley R. Holt and Manfred Morari. Design of Resilient Processing
Plants-VI. The Effect of Right-Half-Plane Zeros on Dynamic Resilience,
Chemical Engineering Science, Vol 40, No. 1, pp. 59-74, 1985.

(2] Eric Astor. Fran Pascal till Modula-2, Studentlitteratur, 1986.

(3] L. Ljung System Identification-Theory for the User, Prentice Hall,
Englewood Cliffs, NJ, 1987.

[4] Karl J. Astrém and Bjorn Wittenmark. Computer-Controlled Systems,
Prentice Hall, 1990.

[6] Karl Johan Astrém and Tore Hagglund. PID Control: Theory, Design,
and Tuning, Prentice Hall, 1990.

[6] L. Andersson and A. Blomdell. A Real-Time Programming Environment
and a Real-Time Kernel, Technical Report No 30 1991-06-21, Dept. of
Computer Systems, Uppsala University, Uppsala, Sweden, 1991.

[7] Rolf Johansson. System Modeling & Identification, Prentice Hall, 1993.

[8] P. Van Overschee and B. De Moor. N{SID: Subspace Algorithms for the
Identification of Combined Deterministic-Stochastic Systems, Automat-
ica, 30:1, pp. 75-93, 1994,

[9] Karl-Erik Arzen. Real-Time Control Systems, Department of Automatic
Control, 1996.

[10] Youbin Peng, Damir Vrancic and Raymond Hanus. A Review of Anti-
Windup, Bumpless and Conditioned Tranfer, 13th Triennial World
Congress, San Francisco, USA, 1996.

[11] Intouch Manuals, Wonderware Corporation, 1996.

[12] José Luis Nunes. Quadruple-Tank Process Identification, System Iden-
tification Report, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden, 1997.

[13] K. H. Johansson. Relay Feedback and Multivariable Control, PhD Thesis
ISRN LUTFD2/TFRT-1048-SE, Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden, 1997.

[14] L. Ljung System Identification Toolboz, Version 4.0.3, The Mathworks,
Inc, 1997.

(15] Karl Henrik Johansson. Identification of a Double Fan and Plate Process
Using Subspace Methods, System Identification Report, Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden.

[16] K. H. Johansson and J. L. R. Nunes. A Multivariable Laboratory Process
with an Adjustable Zero, Submitted to 17th American Control Conference.

[17] L. Andersson, U. Jonsson, and K. H. Johansson. A Manual For System
Identification, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

42

A. Operation Manual

A.1 Machine Specifications

Hardware The user interface was developed for PC machines running Win-
dows NT 4.0 operating system. We could think that the hardware specifica-
tions for running Windows NT 4.0 should be enough, but this is not com-
pletely true, as we use another application to create man-machine interfaces —
InTouch 6.0, that in certain situations needs much system resources. Because
of that, we think that the best suited machine to run the interface has the
following specifications:

¢ a Pentium processor;
e at least 16Mb of RAM; and
e an AD/DA converter.

The interface was developed using a PC with a Pentium processor running
at 133Mhz, with 24Mb of RAM.

Software The only software package needed to run the interface is the
InTouch 6.0 View program, for Windows NT 4.0. This program is a run-time
viewer for man-machine interfaces created with InTouch 6.0, and is distributed
with it. The user only has to be sure that it is installed in the machine, because
the Tank program starts it automatically at the beginning.

A.2 Connecting The Cables

To communicate with the process the user interface uses an AD /DA converter,
located in the back of the machine. The map between the inputs/outputs of
the AD/DA converter and the process inputs/outputs is shown in Table 1. In
Figure 42 a representation of the connections present in the back of the real
process is shown. This figure is included because the names (numbers) given
to the tanks and pumps in the real process differ from the ones we used in this
report.

Converter Process

in0 tank 1 (tank 1b)
in1 tank 2 (tank 2b)
in 2 tank 3 (tank la)
in 3 tank 4 (tank 2a)
out 0 pump 1 (pump 2)
out 1 pump 2 (pump 1)
ground ground

Table 1 Map between AD/DA converter inputs/outputs and the process in-
puts/outputs. In the right column we have the names we gave to the tanks (left
side), and the ones we find in the real process (right side).

43

TANK 1A TANK 2A

) -

TANK 1B TANK 2B
PUMP 1 <0>

o

Figure 42 Image with the connections in the back panel of the quadruple-tank
process.

A.3 Installing The Program

The procedure to install the interface application is very simple an it only
requires that you have already installed InTouch 6.0 in your machine. The
interface application is distributed in two 3.5” HD disks. To install it just
run setup.exe and follow the instructions that are presented. During the
installation procedure you will be asked to select among three different types of
installations: Typical, Compact and Custom. The typical installation installs
everything (application files and Matlab files), the compact installation only
installs the application files, and the custom let you select the packages that
you want to install. After the installation is finished, in the directory where you
decided to install the application and in a subdirectory intouch you will find
the executable files, the parameter files and the intouch files. Inside matlab
subdirectory you will find some Matlab function to handle the data logged by
the application.

Because the interface has to run the InTouch 6.0 View program, the di-
rectory were it is installed must be provided. It’s assumed that InTouch is
installed in c:\programs\intouch. If this is the case, the interface is properly
installed and you can start it by selecting the Tank application from the Start
button, or by executing the batch file tank.bat. If not, an error message is
shown and you will have to edit this file using a text editor and change the
last line so it matches the directory where you have installed InTouch. As an
example, if you have InTouch installed in directory d:\apps\intouch then
the last line of tank.bat should be changed to

start d:\apps\intouch\view intouch

To uninstall the application you have to go to the Control Panel and select
icon Add/Remove Programs. This way all the components of the application
will be deleted from the machine.

44

A.4 Sample Session

We'll go through a session using the interface, where the most commonly
used features are introduced. Here we assume that the process setting is the
minimum phase, and that we are acting on the real plant. All the parameters
used are the same that were used to test the controller performance for the
minimum phase setting, in Section 4. Thus this session is identical to the ones
we performed in order to test the controllers presented in that section.

1. First of all we need to start the Tank application, after what we are
dropped in the Main window. In here, select the ACTIVE mode, so the
interface acts on the real plant rather than on the simulation, and switch
to MANUAL control mode.

MODE |-| = ———

| L :[]*—* 21 | j e .

ijﬁﬂ%Fﬂ |

L
10100 AFi M

Figure 43 Interface image with the Controller Type window enabled. The con-
troller type selected is decentralized PID, the leftmost.

2. The next step is to set the controller we want to test on the plant. We
start by selecting decentralized PID control scheme in the Controller
Type window, which is opened using the Type button (see Figure 43).
As you can see, the controller matrix change so that it represents the
selected controller type. Then we open the parameters window for each
PID controller by clicking on it, see Figure 44. Choose a PI controllers
by activating only the integral part, and set the parameters to: K = 3.0
and T; = 30, for the upper-left controller; and K = 2.7 and T; = 40, for
the lower-right. Always press the Set button to confirm the values just
entered.

3. After the controller parameters have been specified, set the control signal
to a constant value of 0.3 (3 volts) for both process inputs and start
running the interface against the real process using the Run button.
When finally the process reaches the steady-state, after a few minutes, we
decide to collect some data for latter analysis on controller performance.
For that, we open the Logging window (see Figure 45) in order to set
the parameters related with the logging. The amount of data that we
are about to log is 10min (600 points with a sampling time of 1 second),

45

e (T l.-[m]ﬂw s I
2, -2y | PID Contoltar -
EmEE e — o
o) [[L] Lo . o
= .
1]I Y
T ——y
L 41:00 ‘Jhl‘?
- i 1
-t o8 :: i = R
: :’:m : ._;: Frunte Wave :; Squmn Wave
o T PRt | | o, EE
05D EEiT] Gl Y
Figure 44 Interface image with the PID Controller window enabled. The con-

troller specified is a PIL.

and it will be saved in a file named data.par. The logging is started
using the LogOn button, and then we close the Logging window.

. mobE |-| St et " |
! Metive I |:£@ "o [mn] e Logging :
| . Le 4 S . ; Yol uy X
= ol w8 L
T Tleset [Type_ 0 1 Yaidl el
| 1l Pmaa | | moser | |—J Filgnamo flogh | data | Ve 'ﬂﬂ;[:l-
! | 12% l
- [(ogin] [Ltagor] [- |
- Uy - i
: ST e
1
=)y i
= : — TR |- Y'Pﬁ:l o 3 g .
| ! S 4= :'__ _ A2 sqmme e 10 s
3 : i e, i tT o0 (8] 5] .T i '| '
3epa i i i - L 2 o
Figure 45 Interface image with the Logging window enabled.

. Now that we are collecting data, we can test the controller we specified,
by switching to AUTOMATIC control mode and adding a step change
of amplitude 0.1 (& 2 cm) in reference one. When the control mode is
changed the controls used to set the control signals (u; and up) will
change so the reference signals (ref; and ref;) can now be set. To add a
step in reference one we set its value to the actual value plus 0.1, using
the text box for the effect. The process evolution can be followed in the
plots and the process image (see Figure 46).

46

(o] (]
e e

| w— Ly

s Mo =
#ID

EETEL

-

=i gy

-

f — !’jw I\

—

i 18150

':\,.. : ﬂnwm
iflicr ..

¥l

Figure 46

Interface image showing the process to a step change of amplitude 0.1
(~ 2 cm) in reference one.

5. We let the process run until all the data is collected. In order to check
the logging state we reopen the Logging window and, after all the data
had been logged, we save it to the specified file, using the Save button.

6. Now that we have ran the process in Manual mode, tested the controller
(Automatic mode) and collected some data, we close the interface using

the Exit button.

If you wish, you can start Matlab and take a look at the data we have just
collected. To load it into Matlab’s workspace use the Matlab function load{t.

See Matlab’s help on that function to know how to use it.

47

