ISSN 0280-5316
ISRN LUTFD2/TFRT--5590--SE

Digital Control of a Gantry Crane
with Unconventional Sampling

Niklas Lagerblad

Department of Automatic Control
Lund Institute of Technology
January 1998

Document name

Department of Automatic Control MASTER THESIS

Lund Institute of Technology Date of issue
P.O. Box 118 January 1998
S-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--5590--SE
Author(s) Supervisors
Niklas Lagerblad Karl Johan Astrém, LTH and Pedro Albertos, Va-
lencia

Sponsoring organisation

Title and subtitle

Digital Control of a Gantry Crane with Unconventional Sampling. (Digital reglering av en traverskran med
okonventionell sampling).

Abstract

The purpose of this project is to control a gantry crane with conventional position measurement and a crudely
quantified angle measurement. The problem formulation is presented together with design of a controller and
a parameter estimator. The closed loop system has been validated by simulation. The control obtained
has good performance, even with large model deviations. Algorithms for parameter estimation with crudely
quantified measurements are also developed and possibilities for adaptive control are discussed.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

Security classification

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient's notes
English 76

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Fax 446 46 110019, Telex: 33248 lubbis lund.

CONTENTS

CONTENTS yisssusonspsconsesioonsnssesesivsisinssssaseosssssosssssts o i o st e o us o Vo e o e R e i 2
INTRODUCTION c.c.cciinisnennsnsesssssserssesssssesasassssssassmssnsssssnnssssssssssssasssssssssnssassstsnssssnssssssssnssens

THE STRUCTURE OF THE PROJECTcccoovemrirsiniereresssssesesesesssesssssesssssesessassensssensssssssssnsassenssens

SNBA N A

MODELING THE SYSTEM: 7

OVERVIEW OF PROCESS usssuansasisssossovissssssisisnsessnsiissssssiesssssnsssississ s s naiis 7
NONLINEAR MODELINGcorrrtrieieueeniennrissesieietsesssiesssssessssssssssssnssesesesesasasensseserssesssensassonsssses 7
PHYSICAL PROPERTIES AND ASSUMPTIONScovoueiiiaiiieveiiireeeeirereessesseresssessssesssesssssssssssssssnnsses 8
LINEARIZATIONocttiiiritiiereenierereretinnest st e e eeassss et as b s s assssssssbasssssnsasesssnsesenssnsnnssons 11
EQUATIONS TO LINEARIZE...........oooveoeeeeetreestteisis e stsssetessssesaess st besastesebsses s eresesssasessasssnen 12
CHOICE OF OPERATING-POINTcc.oerereririeteieirtres et sa et tsss s ssss st ssresensbons 12
JACOBIAN ...ttt sttt st st b ettt b s s b e bt seaes 12

SIMULATION AND ANIMATION: 19

SHORT DESCRIPTION OF SIMULINKcccooiiiviitiinaiisssminrsneinsisssisssssssssenssssesssssessssssssssassesrassessasen 19
MATLAB FUNCTION ..ottt s ass s s s sasasssnes s sassssbassnas o 22
S-FUNCTION. ...ttt vttt as s s s s s s s ssensnas st s ssarassosoas 23

THE CRANE MODELcocuititiiiiiirinrrtrrieeiets e et sas s sttt betssesesesesssssstasssesesesssonenns 25
MODELING THE NONLINEAR SYSTEMccocvovinieirniiaiuisiessisieisssssssssesssessassassassesssssssssessasssssess 29
THE OUTPUTS OF THE “REAL” SYSTEMcoovoemteieereeeeieeeerse e sssessssesssssssesesassasesnesesnnens 25
THE ANIMATION OF THE CRANEcccocosvemrmrnerisnnssssssssssssesssesesssssesssssassassesssssssssenesssssassensses 28

CONTROL w29

LINEAR CONTROL WITH ALL DATA KNOWNcccciiimimrnmnrinrisnisnsssareissssesssssssisssssessssessssssssnsess 30
POSITION CONTROL yysisssyssvonsssnonssisswosasassossss snssiovas s aismsssimssesiedimts st osat st sske s asviitonsdss 30

CONTROL WITH THE SENSORS FOR THE SWINGANGLE......ccccccoiouvieicriiecreieeeencieseaessesseraneseees 38
THE OBSERVER..........oooiiieiisiteceene ettt ettt s st es et an et es s b nnnses 38
TIME VARIABLE KALMAN FILTER..........coovueveetireirrsrsrsresssis e inessesssssssese s ssese s ssasse s senns 41

PROCESS IDENTIFICATION

REFERENCES:..

APPENDIX...

PENDULUM PARAMETER ESTIMATION wissusissisnessivsssssnomniinsisnisisuisiasssatisiorvisssvesiosrsioniissicussiods

52

52
52
56
60
60
61

63

63
63

65

66

66
66
67
67
70
71
72

INTRODUCTION

ABSTRACT

The purpose of this project is to control a gantry crane with conventional position
measurement and a crudely quantified angle measurement. The problem formulation is
presented together with design of a controller and a parameter estimator. The closed
loop system has been validated by simulation. The control obtained has good
performance, even with large model deviations. Algorithms for parameter estimation
with crudely quantified measurements are also developed and possibilities for adaptive
control are discussed.

THE BASIC PROBLEM:

The process is a gantry crane of fairly well known properties. From physical laws the
crane is modeled, and the models behavior combined with measurements form the real

system are used in the control.

Figure 1.4 real world gantry crane in its typical surroundings

The goal is to be able to move the cart of the crane with the load hanging underneath
as fast as possible to a new position minimizing oscillations. Large oscillations with
high acceleration of the cargo may cause great damage both to the cargo and to the
crane, and is therefore highly undesirable. This means that we compromise between
speed, maximum signals to actuators and the maximum swing angle allowed to assure
stability.

Two different variables can be measured. One is the position of the cart, and the
other is the angle between the hanging wire and the vertical. The measurement of the

cart position is continuous, but the angle measurement is discrete. It is obtained from
optical sensors that are positioned on a half-circle as illustrated in fig Figure 2.

Figure 2 The bhalfmoon shaped disc with sensors

This implies that we get a short pulse from one of the sensors when the wire passes
it, the samples may arrive at any instant of time. The sampling is therefore not periodic.
This unconventional sampling leads to interesting theoretical problems. The photo-
sensors are to prefer before continuous sensors because of their much cheaper price, and
better reliability.

To make the control adjust to

possible new parameters the
new parameters of the process
are feedbacked

control
signal,u

System |Parameter
identificatiofEstimation

Since the observer works
with a certain model whenever
there is no measurement, the

estimated parameters of the
s?/stem are fed back into the mo
of the observer substituting the ol
model

Reference » CONTRO

generator
Reference gl
source for the Conventional
position control, PID, State

Feedback or other
type

theta,
distorted Lyp|
real ' .
7| system position

Qbserver,
reconstructior

The crane, either
"real" or non linear
model in SIMULINK

Reconstruction
of missing information
that the control needs

Reconstrocted values of Theta and X (position)

Figure 3 An overview of the control system with system identification and adaptive contro/

A reasonably robust control is made, so that it can handle certain model errors. The

missing data is estimated by an observer for the control. Also, as in figure 3, the goal is
to estimate the system parameters, and finally feed these back into the control and
observer and gradually improve their function.

THE STRUCTURE OF THE PROJECT

The way I have structured the work in the project is as follows, and gives a base for the order in which the
different part appear in this report.

First "attack" :

e Getting started with the functions in MATLAB
e Getting started with the functions of SIMULINK under MATLAB
e Make a functioning animation of the cart-pendulum system

Modeling the system :

Make a working model of the nonlinear system in SIMULINK

Examine the model and prove its correctness

Make a functioning animation for the crane in SIMULINK

Linearize the system around (0,0,0,0) and examine the behaviour of the model.

Control with all measurements :

Find a good working control strategy to work with for the case of full information

Make one control with the measurements available

Make an observer for the two velocity states that cannot be directly measured

Try state feedback with the new knowledge

Make an estimator of the process parameters, and introduce this in the control, making it self
adjusting

Control with the sensors Instead of continuous output :

Model the sensors in a half moon shaped disc

Try the already existing control with the scarce measurements

Try the existing observer policy with the scarce measurements
Introduce model errors to see the effect upon stability

Make a time variant Kalman filter to observe the states

Close the control loop and test the behavior, even with big model errors

Sampling the control and reconstruction devices :

e Sample the control and examine the behaviour
e Sample the observer and possible parameter estimator

Make an adaptive implementation of the system in SIMULINK :
e Make an estimator of the process parameters with the scarse measurements

e Make a self adjusting mechanism to make the control even less sensetive to the model errors
(partly acheived)

MODELING THE
SYSTEM:

The first step towards a functioning controller is to create a model of the system that
is to be controlled. A non linear model is derived from physical principles. It is
linearized and simplified. Control design is then derived from the linear model. Finally
the linear controller is simulated together with the non linear model. The idea of
linearization is shown in Figure 4.

—
¥ Linearization M (N
5 = Model of the f ,Model of the
"Real" system ° tsr;,estse%ne Real" system "
—

Linearized model, this
time with four outputs, now
we can get the velocities directly
from the model, since they
appear as states in the
linearization

non linear model
with the upper output
as Theta, the angle and
the lower output the
position of the cart

Figure 4 Llustration of the relation between systems

OVERVIEW OF PROCESS

First of all we analyze the system to examine its behavior , and find equations that
describes its interesting parts. Our process is the gantry crane moving along a horizontal
beam as illustrated in Figure 5. The moving part consists of a sliding trolley placed on
top of the beam, a wire hanging down from this trolley and in the lower end of the wire
the cargo is placed. Basically we have two parts, one is the trolley, that we move with
the force F. The other is the wire/cargo that together form a pendulum system, The
pendulum is only affected by the trolleys movements.

NONLINEAR MODELING

When taking a first intuitive look at the system we conclude that this is a process of
the 4:th order. This makes sense when we look at the dependencies between our signals.
The input signal will be F, the force that acts on the trolley. This force is

proportional to the acceleration of the cart, according to the law of acceleration of
bodies (eq.1). Derived twice it yields the position of the trolley.

F=m-a (eq. 1)

The acceleration of the cart will be proportional to the applied force. There may be
more terms involved also, but this relationship will have the highest order, that is 2-nd
order, since the acceleration is the second derivative of the displacement of the trolley.

Figure 5 A simple view of the crane

Then we look at the pendulum. A pendulum that is hanging from a fixed point in the
ceiling and that we release from a point (abs@ > 0), will swing freely and always around
its vertical. But, the force that acts inwards on the cargo, towards the vertical, is the
“horizontal” component of the gravitation times the mass, which is F =m- sin(@) .
Thus, a constant acceleration in the opposite direction is the only thing that will give a
constant displacement of the & -angle because of the two forces canceling each other in
equilibrium. So, the angle,8, is approximately proportional to the acceleration of the
cart. We obtain the angle acceleration , 49", when we derive two times more.

We can say that to get the pendulums reaction to the force applied to the cart, we
have to take into account the dynamics of the pendulum, 2:nd order. The “way to get
there” for the force, is to first pass through the dynamics of another 2:nd order system.
As we shall see there are more interactions between the systems, but this simple
explanation gives an intuitive feeling for the relations between the different states of our
process.

PHYSICAL PROPERTIES AND ASSUMPTIONS

To create a model for the system, some assumptions have been made to simplify the
calculations. These makes the calculations easier, and do not impede the function of the
control. However, when simplifications have been introduced in the calculations, the
reasonability must be investigated in each “real-world” case before applying the

results. In this project the following assumptions have been made:

e We can ignore the mass of the wire and take into consideration
only the masses of the cargo and the cart

e There is no drag present, that is, no friction caused by wind

¢ There is no friction in the fixation mechanism of the pendulum wire, it moves
freely

¢ There can be only movement in one plane parallel to the crane, or the
possible movement of the cart

o The actuator is linear in its actions. This means that the force is applied
proportionally to the control signal within the range of control

e The friction of the wheels of the cart is linear

EQUATIONS

First of all we concentrate on the forces of cart. The forces acting horizontally are:
first the force F that is applied as the actuator force, the drag that the friction coefficient
multiplied with the velocity of the cart produces and finally the horizontal component of
the force, T, with which the pendulum (cargo) acts upon the cart. These form the right
side (eq.2) and the left side of the same equation is the mass of the cart multiplied with
its acceleration.

Figure 6 The forces acting upon the cart

Mx=F+Tsin@ —kx (eq. 2)

Now we need to model the relations for the pendulum as well. In the other end of the
wire shown above the force T is acting in the opposite direction seen from the cargo.
Therefore we look at each one of the components of that force and its counterparts.
From the same relation F=m*a we also get the formulas (eq. 3a) and (eq. 3b).The
horizontal force component acts on the left/right acceleration of the cargo and the
vertical component on the correspondent vertical acceleration, naturally.

Figure 7.The acting forces of the pendulum mass

10

mi, =—Tsin@ (eq. 3a.) my, =T cosf —mg (eq. 3b)

x, =x+ Lsin@ (eq. 4a) ¥, =—Lcos@ (eq. 4b)

The two lower relationships (eq. 4a) and (eq. 4b) are the direct relation between the
positions of the cargo and the cart and the angle, . We then use these equations, first
using the equations (eq. 3) to replace the horizontal and vertical accelerations %,,7,,
with the position of the cart, x, so that we are working with the minimal set of variables
in our final equations. As described in Albertos et al (2) we obtain by implicit derivation
the following 2:nd order differential equations from the equations 1 - 4.

. —(F —kx)cos8 — (mLsin® cos6)8” — gMsin6

— .5

¢ ML—-mLcos* 8 (eq-2)
)

M5 = F — kx — (mLcos0)0 + (mLsin8)6* (eq. 6)

where M is the total mass of the system, and ignoring the mass of the wire itself this
gives:

M= M+m (eq. 7)

In the following we will now see how we can use these formulas to linearize the
system around a chosen operating point of x ,0 and their respective derivatives.

LINEARIZATION

To linearize the equations given above we first of all have to determine what type of
system we are working with. This is a fourth order system with one input and two
outputs. We therefore conclude that the state-space representation will have four states,
two outputs and one single input according to the model. Further we choose the states to
be such that they all have physical interpretations, that is, we let the states be the
position x, the angle theta and their derivatives, respectively. Then we can from the
equations (eq. 5) and (eq. 6) derive the following expressions for each one of the states.

11

EQUATIONS TO LINEARIZE

ox, _ kxy cos x, —ml(sinx, cos x,)x,” — gMsinx, __ Fcosx, _ P (6. 88)
ot Ml - mlicos® x, Ml —mlcos® x,

ox,

2 —x =0 (eq. 8b)
a i
ox, —kx, —mlx, cos x, + mix’sinx, F

—2 = — + == xpm (eq. 8¢)
ot M M

ox,

_a_t_ = x3 = xpox (eq 8d)

where : x={06 X pos X pos ' and M=M+m

Remark : In the third equation the double derivative of the angle theta, as X, , appears, but to save room I
let the reader imagine the third equation in its full length.

CHOICE OF OPERATING-POINT

Now, we choose linearize our system to be true in and around x, = {0 00 O}T.

This choice is the most logical because it correspond to the pendulum hanging down
still, without moving. The initial value of the position does not matter due to the pure
integrator. However, choosing it to be 0 simplifies the linearization considerably. The
velocity of the cart, we linearize around zero as well, because of the equal chances for
the cart to begin moving in each direction.

JACOBIAN

One way to linearize a system is to take the partial derivatives of the system
functions with respect to each state variable. The linearization simply is the making a
plane in n-space with the gradients of the non linear functions in the operating point.
This is the same as a Taylor expansion where the second and higher order terms are
omitted. The result is a matrix that is the so called Jacobian that we use together with
the working point values to form the matrix A. This will be used in our simulations as

the internal behavior of the system.

12

CE A R
ox, odx, Ox, Ox, 3F
% %h & % o,
A dx, dx, Ox, Ox, B oF
9 % o o /A
dx, ox, oOx, Ox, oF
S S A U Y
|ox, ox, ox, ox, | | JF

After a rather boring line of paperwork, these partial derivatives falls out as
functions of the other state variables, we substitute our operating point into the
equations:

[1]
0 -, M k] ML
‘ML ML 0 [0 1 0o o] [o o]
me _ Lo 1 lo o o 1] |o o
M M M
) 1 0]
. 0]
@=Ax+Bu ; y=Cx+Du whete uis the input, F (eq. 10)

dt

The two matrices C and D in equations 9 and 10 describes the connection between
the internal dynamics of the system and the outputs. Since the position and angle are
states internally represented, we measure these through the second and fourth states.
The matrix C lets us configure the outputs of a system.

As long as we don’t introduce disturbances in the system this simple model (eq.10)
serves us well. From this linear state-space model we then derive the two transfer
functions, one for each of the two outputs, since we only have one input. This gives us
the transfer functions in equation 11. The pole in zero comes from the pure integrating
characteristics of the x-position state, and is canceled by the double derivative zeroes of
the theta-output. (This means that the cart-position state is unobservable from the theta
output).

6(s) 1 —s’
Y(s)= = 2 3 2 7 F(s) (eq. 11)
X(s)| MLs" +kLs” +Mgs” +kgs|Ls* + g

13

SIMPLIFIED MODEL

Until now we have been working with a “full model” of the system. The model will
now be simplified by neglecting the Tsin® term of equation 2. This implies that there is
no coupling back from the wire to the cart. So, taking away this term, which can be done
if M » m, leaves us with the linear differential equation:

Mx+ki=F (eq. 12)

which after Laplace transformation gives the transfer function

X(s) 1 g 13)
F(s) Ms?+ks 7

After this simplification, let us see if we can do the same with the pendulum part.
Putting cos@ =1 ;sinf=6 and #*= 0 and substituting F —kt = Mx into the equation
(eq.5) simplifies it considerably (eq.16).

—(F —kx)cos @ — (mLsin6 cos0)0* — gMsin§ —Mx—gM6 _—
= = eq.
ML —-mLcos* 8 ML !

g

- s’ +g/L Lt

AT o2 o2 o2

9+—%0——£:>0(s): s/{i-= s{M>>m}z————s /L) 1 =s 5 (eq.15)
L X(s) S2+gM

LM

What we have achieved here is to de-couple the system and part it into smaller parts.
From the earlier and more complex model a much easier handled model is derived
(Figure 8 The new simplified model). This will be the model we use to build the control.

F(s) 1 X(s) -5 | O(s)

1
Ms? + s L st + 42

Figure 8 The new simplified model

If we compare the newly found transfer functions with the ones we had before, we
find these to be closely related. The position output will not be the same of course, since
we have taken away the feedback link that it had from the pendulum, but if we join the

transfer functions in the figure above we get this result :

14

0(s) X(s) 1 -+ 1 1 - 1 —s?

-7 2 2 2 1. 1 . oM sz = keM
X(s) F(s) Ls*+a® Ms +ks Lsz+% Ms® +ks MLs4+kLs3+ng2+ki7S

(eq. 16)

This is almost the same as in equation 11, except for the last term in the
denominator. However, this will be approximately k*g, since (M+m)/M is close to 1 for
reasonably small m. The new matrix A also get a slightly different shape (eq. 17):

S
r M k] T ML
ML ML 0 [o0 1 0 o] [o o
i 0 0 0 | | | |
A= & B= C= D= (eq. 17)
0 0 - 0 1 Lo 0 0 1J [o 0_|
0 0 1 0 M
| 0 |

As we see, there is only one change in the matrix above, and that is in the element
A,, which is the position that let the angle affect the position equations. We will use
this approximation in the chapter of the control. First, however, we need to discretize
the system in order to get a base to work with later on when we implement the discrete
control.

ACCURACY OF LINEARIZATION AND SIMPLIFICATIONS

But, when we make and use a linear approximations of our system, and
simplifications like the one above, what do we loose ? When making model
simplifications the loss of accuracy has to be weighed carefully before using them.

Linearization implies that the Taylor approximations first term is taken and used
instead of the non linear behavior. Since we use only this term, the error will be that of
the second and higher order terms.

Generally when we simplify, the error depends on what and where we simplify.
When we simplified our crane model, we concentrated on the upper part of the crane
and forgot about the pendulum for a while.

15

Skipping the Tsin@ term in eq.2 means that we approximate it with 0. Linearizing
instead replaces the term with TO. How much can we simplify the calculations and still
have a useful model? T will depend on m, sinf = 6 and the whole term will be divided
by M. Under the assumptions that M » m and the angle theta is very small, the term is
small, and our new model will behave rather well.

_ —(F —kx)cos8 — (mLsinf cos 6)8* — gMsin0
ML —-mLcos* 8

g (eq. 18)

Now we see from the equation above (also eq. 5) that the rest of the system offers a
far more complex group of internal connections. If we examine the way the Taylor
expansions affects the terms of the formula, we see that the first term in the numerator is
directly depending on the acceleration of the cart (F-k*dx/dt) times a cos term. Quitting
the higher order terms of the Taylor expansion, the approximation will be good only
close to the linearization point. F will be affecting the linearized model more than the
non-linear model since the maximum value of the cosine is 1. This means that a control
made for the linear model, will not go unstable because of this. To do a really thorough
stability analysis of the losses by linearization we need to apply some more elaborate
mathematics and calculations, and I prefer to leave the discussion at this.

16

SAMPLING

Basically, when we sample a system we “discretize” it. This is equal to find the
discrete model that corresponds to a continuous system that is sampled with zero order
hold circuits (normal D-A and A-D converters with sample and hold function). See
figure 10 for the function of sample and hold circuits.

{u(k)} u(t : t {y(k)}
inp Y EUN Xyi”é’)‘(:%‘fj YO ao [—fou
digital input D-A - A-D digital output
from computer converter Continous model converter to computer

State-Space

We find the corresponding model in the
discrete timespace, so the models above and
below are identical seen from the in- and outputs

u(n n
ol fu p| x(n+1)=Adiscx(n)+Bdiscu(n)n v} »l out
P. y(n)=Cx(n)+Du(n)
digital input digital output
from computer Discrete model to computer

State-Space

Figure 9 The relation between a discretized model and the corresponding sampled continnous system

How can we do this ? In the literature we find various ways. For the theory one may
consult the textbook of Computer Controlled Systems, Astrdm and Wittenmark (6)
chapter 3. What we want to find are the two matrices ® and I that are the discrete
versions of our old matrices A and B. The relation between these matrices can be

expressed as

_ _ _Ah
Adisc =b=e

.19
Bdisc == J.:eAhdSB (eq)

And to find these there are various ways, see Computer Controlled Systems. Since
MATLAB offers the function c2d (continuous to discrete) the easiest way is to take real
values of the coefficients of the system, M, m, L and k, put them into the continuous
matrix given in equations 9. I have chosen to put this discretization into a MATLAB

17

function, since I want to use the discrete matrices in many places in the calculations.

function [A,B,C,D] = makedisc(M,m,L,k,Ts)
$ [(A,B,C,D]l=makedisc(M,m,L,k} takes the parameter values of

%

% M = mass of cart

% m = mass of pendulum

% L = length of pendulum

% k = friction coefficient of cart
% Ts = Sample Time

%

%as arguments and produces a zero order hold discrete state space
$model of the linearized model of the cart-pendulum system.
%$A,B,C,D are the matrices that represents the

f¥system:

% x{n+1l)=Ax(n) +Bu(n)

% yv(n)=Cx{n)+Du{n)

%

A=(0 -9.82* (M+m) / (M*L) k/(M*L) 0;
il 0 0 0;
0 m*9.82/M -k/M 0;
0 0 1 01;

B=[(-1/(M*L) O (1/(M+m))*(l+m/M) 01';
C=[0 10 0;0001];

D=[0 0]";

[A,B]=c2d(A,B,Ts);

end

The matrices C and D are the same for the two representations. This says that the
states still have the same physical interpretations, position, angle and velocities. The
only difference is that we will now obtain the same values in the sampling instants, and
in between these we will have the last calculated value (in the last sampling instant) as

output value (figure 10).

Figure 10 The principles of sampling. Comparison between the continnons signal and its sampled version

18

SIMULATION AND
ANIMATION:

In this project simulation was a very important part of the work. To give the reader
an insight into the methods used, I now want to give a small introduction to the
simulation package SIMULINK. This and MATLAB have been the cornerstones of all
the work. All the results that can be read in this report, figures and curves, come from
simulation with these program packages. However, I presume that the reader already
have some knowledge about MATLAB, so I restrict myself to a short overview of
SIMULINK. For a more thorough description, see the SIMULINK-manual (1).

SHORT DESCRIPTION OF SIMULINK

SIMULINK is a program simulating dynamic systems as an extension to MATLAB.
It makes use of the already existing MATLAB functions and procedures, and provides
the user with a graphical user interface. The user enters the entire system in the form of
a block diagram, and is therefore rather simple and intuitive to use for the first time user.
It also has the advantage that the images from SIMULINK can be easily exported for
presentations and paper (like this).

SIMULINK has two phases of use. First one defines the model to SIMULINK so
that every syntactic detail of every partial system. Then these are connected as lines
between boxes in the SIMULINK screen. One also has the possibility of creating
subsystems that are transparent to the user of the top layer. This makes it possible to
build and test small parts at the time, and the later connect these to test the system in its

entirety.

The second phase is then the simulation and analysis of the system that has been
entered. If we are dealing with more complex systems these two phases are often carried
out in an iterative mode. And also, often in small pieces, as a consequence of parting
the problem, and the system into subsystems, each one tested alone before connecting
the whole system.

To start the SIMULINK application we first start MATLAB and from the command
prompt we start SIMULINK, as seen in figure 11.

19

| / MATLAB Command Window

File Edit Options Windows Help il
(Commands to get started: intro, demo, help help .—:I
|MATLAB LOCAL. Tienes también disponible el de la red. |
|
» simulink
;})

i |
I

‘ T I ot

Figure 11 The MATLAB window from where we start SIMULINK

Then MATLAB opens this window, where we can first create a new file, an empty
window, where we start to create our system from the block library with the built-in
blocks that SIMULINK offers (Figure 12 The SIMULINK startup window.).

M T B T I B S S

l
i
|Sources Sinks Discrete Linear Naonlinear Connections Extras
|
|
|
1]

SIMULINK Block Library (Version 1.3c)

Figure 12 The SIMULINK startup window.

In the normal case we can build our system upon the multitude of already existing
building blocks, and construct linear systems, non-linear systems, discrete systems etc.
etc. A simple example of the typical use of the very intuitive methods that SIMULINK
offers we see in figure 13. Here we are using the existing building blocks of continuous
transfer function, PID regulator (which can be unmasked to see all its parts) sum, signal
generator and graph drawing of the output signal.

20

Llntitled
File Clpbosrd Edit Dptions Simulation Style

oooa

: ol L =

. 3 = o
JGeSr:gerr];lor UM PID Contraller prgcess transfer fen. Auéor-a%%ale >

Figure 13 The SIMULINK window of a simple control system mode.

w

g MATLAB
’| Function

S-Function MATLAB Fen

Figure 14 The symbols for the MATLAB- and S-function blocks

In some occasions one finds oneself short of tools even in SIMULINK. In our
specific case this happens when we want to implement the non regularities with the
sampling periods and the parameter estimation. For this SIMULINK and MATLAB
offers two tools. One can call two types of functions from a SIMULINK scheme,
MATLAB-functions and S-functions (figure 14). These we find as building blocks
under the “Nonlinear” box in the opening window.

21

MATLAB FUNCTION

The MATLAB-function is the usual function that we use when working with
MATLAB. For instance, all the normal functions that we can use in MATLAB are
MATLAB-functions, such as sin, cos, type, why, c2d etc. We can also define our own
functions. For the simulation of the sensors in our model I found it to be easiest to
model with a MATLAB-function. See “Modeling the sensors”. Here is an example of
this type of functions.

function [outl,out2] = myfunc{inputl, input2)

example of how a MATLAB function looks. In the function header
all the in- and output variables are given, this is the

“normal” programming mode that we can use. From SIMULINK we can
call “homemade” functions as well as already existing functions
In this case we have two inputs and two outputs. Note that it is
important to give the number of outputs to SIMULINK in the dialog
box of “MATLAB function”

de 9P P 0P 9@ O o

outl=(inputl+input2)/2; %outl is the arithmetic mean value of the two inputs
out2=inputl*input2; gout2 is the product of the two inputs

end $When we reach “end” the results are returned to the outputs

And to call this function from SIMULINK the only thing we do is to place a
MATLAB-function symbol in our model, double click on it and fill in the dialog box as
below. The file containing the function must be in the same directory or in the
MATLAB-root-directory.

MATLAB Fcn %
Block name: MATLAB Fcn i 0K
Block type: MATLAB Fcn
Evaluates input with MATLAB sangel
function. Example: sin

Help

MATLAB function:
myfunc(u[1).u(2]]
Output width [-1 matches input]:
2

Figure 15 The dialog box of the MATIL.AB-function block

22

S-FUNCTION

The S-function is the type of functions that SIMULINK uses for all the construction
blocks that already exists. It is a type of MATLAB-function that is used by SIMULINK
in a more direct manner as callback function. In every iteration step, SIMULINK calls
the function to ask for the different characteristics of the function. With the call,
SIMULINK sends a flag that defines what it is that it wants to know. There are 7
different flags that can be sent. Below I have put the example given in the MATLAB file
“dsfunc.m”. Here we see how the S-function works when we use it to implement a
discrete system. We have all the parts of the function that must be present for
SIMULINK, and also we pass one parameter more into the structure. Since we want to
be able to change the sample period from the SIMULINK model, we pass Ts, into our
function.

The function is only called once with flag=0, the initialization flag, so in the case 0
we handle all the initialization code. Then in the continuation it is called with mainly
flag=1 (or flag=2 for the discrete case) and flag=3. Flag=1 means that SIMULINK wants
to know the new values of the states in the model. This code may be called many times
during an iteration when the system is continuous. At the end of each iteration the
function is called with the flag=3. SIMULINK then wants to know the system output.

function [sys, x0] = dsfunc(t,x,u, flag,Ts)

%DSFUNCAn example M-file for defining a discrete system.

[SYS,X0] = DSFUNC(T,X,U,FLAG) returns depending on FLAG certain system
values SYS, given time point, T, current state vector, X, and

current input vector, U. FLAG is used to indicate the type of output
to be returned in SYS:

FLAG SYS DESCRIPTION

1 DX state derivatives, dX/dT (empty matrix for discrete).

2 DS discrete states, X{(n+l).

3 Y system outputs.

4 TNEXT next time interval for update (only discrete systems).
5 R return the values of its root-functions.

To find out system characteristics the DSFUNC can be called with no
right hand arguments (or a FLAG value of zero). DSFUNC then returns
a vector of system sizes, SIZES=DSFUNC, which

contains the sizes of the state vector and other parameters:

SIZES(1l) number of continuous states

SIZES(2) number of discrete states.

SIZES(3) number of outputs

SIZES(4) number of inputs

SIZES(5) number of roots that the system has.

SIZES(6) set to 1 if the system has direct feed-through of
its inputs (used for systems within systems).

OF 0P ¢ OP O JP P dP IP P I° OF IP I IP dP OF JP O d° IP IR OP IP o°

% Copyright (c) 1990-94 by The MathWorks, Inc.

% Andrew Grace 11-12-90.

% Here is an example of how to create a set of discrete equations:
% x{n+l) = Ax(n) + Bu(n)

% vi{n) = Cx(n) + Du(n)

% Generate a discrete linear system:

A=[-1.3839 -0.5097 ; 1.0000 01;

B=[-2.5559 0; 0 4.2382]);

Cc=[0 2.0761 ; O 7.7891];

D=[-0.8141 -2.9334 ; 1.242¢ 01;

sample = Ts; % Sample time

ns = 0; % Number of continuous states

nd = length(A); % Number of discrete states

[no,ni] = size(D); % Number of inputs and outputs.

23

% Linear Systems Description

if

abs (flag)==2
sample_hit = (abs(rem(t,sample)) < sample/leé6);

if sample_hit
xn=A*x(1l:nd)+B*u;
y=C*x(1:nd)+D*u;
sys=[xn;y];

else
85ys = X;

end

elseif flag == 3

dx=x;
sys=dx (nd+1:nd+no) ;

elseif flag ==4,

sys=ceil (t/sample+sample/le8) *sample;

elseif flag == 0,

end

sys=[ns,nd+no,no,ni,0,1]; x0 = ones(nd+no,1l);

$calculate the new states
%$if there is a sample-hit

%tells the output this period

$next sample

$¥initialization

To use this procedure, we simply put the symbol of a S-function in our model, and

fill its dialog box (figure 16) with the data needed. This is the name of the function-file
and the user-defined in-parameters, in our case only the parameter Ts. The other in-
parameters, t, X, u..... are always present in an S-function. For further information see
the SIMULINK manuals. Below we see how the dialog box looks like in our case

(Ts=0.05s).

5-Funchion

Block name: S-Function

Block type: S-Function

oK

Subsystem:
sys=funft.x,u,flag.param1...]

. Cancel

ir“ _-, H_e’_lp': .

Subsystem function name:

dsfunc

Function parameters:

0.05

Figure 16 The S-function dialog bosx in SIMULINK

24

THE CRANE MODEL

We first model the given parts of the crane. In SIMULINK this looks like the
diagram in Figure 17 What we would have in a Black Box model systems’ given parts.
If there were a real crane to investigate, these are the parts the user and the control
would “see”. The mathematical model in the “Real System” box, the sensor-block, that
gives the control the discrete output of the crane, and an animation block that enables
the viewer to see the system behavior.

These parts are those that the
user would see if the model were Animation Block

to be implemented as a real process, Input 1= xpos
with a real crane either in a laboratory m;?ut 2 = theta
or a harbour.

4

Animation

. The real continuous

theta angle [_’-
[F > Real System » Sensor

+3
theta
Force The sensor- sensor

inpUt The nonlinear ~ The xposition output simulator output

model of the from the nonlinear model
system ={ ;_)asition |

X_pos
output

Figure 17 What we wonld have in a Black Box model systems’ given parts

MODELING THE NONLINEAR SYSTEM

The nonlinear system in this mode was made by the already existing elements of
SIMULINK using the derivation, integration and MATLAB-function elements. As we
can see in figure 17 the entrance, “control signal”, goes into the two multiplexers
together with the feedback loops from the different “states”.

The upper part, with its MATLAB-function and its multiplexer models the
differential equation 5 that we found when modeling the crane. It is from this equation
we get the values of the angles THETA and THETADOT. The lower part corresponds
to the other differential equation 6, which deals mainly with the cart variables.

THE OUTPUTS OF THE “REAL” SYSTEM

However, in our dream world of the model above where we have access to all the
state variables directly does not exactly correspond to the assumptions that we have
made in our model. We cannot measure the velocities directly, nor can we measure the
angle THETA continuously. The only variable that we have assumed full knowledge of

K"

at any instant is “x”.

25

Mux

P

sign.

multiplexer

double derivative

thet
ea. lhetado. _

pendulum| integrator | integrator.

diff. eq.

L 1]

theta

Is the contents of the

"Real System" in

u(1

u(2)

(1]

control
signal

u(4) |

u(s

signal
muliti
plexer

double derivative

pos. xdot
U[Sr Mux

the position integrator
diff. equation

the models

[rd——»{2]

integrator position

system that ocurrs as | Real System

b

b

model of the non linear
system built with various
basic SIMULINK functions

(all the u(x) corresponds to the numbers of the inputs to the multiplexer)

position diff. equation = (u[4] - k*u[5] - m*L*(cos(u[1])*u[3] - sin(u[1])*(u[2]"2)))/(M+m)

pendulum diff. equation = (-(u[1]-k*u[4])*cos(u[2]) - m*L*sin{u[2]}*cos(u[2])*(u[3]*2)

- 9.82*(M+m)*sin(u[2])) / (M+m)*L - m*L*(cos(u[2]))2)

Figure 18. The internal representation of the non linear system

Modeling the angle-sensors

To model the output behavior of 6 we have to do this in a separate MATLAB
function. This we have to do because the assumed sample time of all the discrete parts
of the system is Ts and we want to model events that occur in and during only split parts
of a whole sampling period.

In our case the events that may occur are the trigging of the sensors that we have
placed along the rim of a half-moon shaped piece next to the wire on the bottom side of
the trolley. These may fire at any instant, when passed by the wire. Therefore we
introduce the block “sensor”, and in that block we introduce the MATLAB function
“MakeOut3” that takes the two latest 6-outputs (these will come much more often than
the sampling period, Ts) from the continuous non-linear process described above and
compares them with the set of sensors that we have entered in the form of a vector.

26

These “spikes” N
0.15 are the outpul
from the
0.1 “MakeOut” -
function
0.05 -
0
0.05 |- -
-0.1 =
-0.15 | 7
0.2 f]

Figure 19 The function of the Sensor Block in the SIMULINK model.

For instance, {-10 -6 -2 2 6 10} means that we have placed the sensors at -10, -
6......etc. degrees from the vertical. The algorithm goes through the list of sensors, the
vector, and checks to see if the wire has passed any of them. That is, it checks to see if
the two successive values are on different sides of the “sensor-value”.

The output of the algorithm is zero if no sensor has been passed. If one has been
passed, then the output will be the corresponding value of that sensor. The two inputs
thnew and thold are the values of 0, the actual value and the one that was actual 1/10 Ts
ago. That is we have two inputs where the only difference is that one comes with a short
time delay. In figure 19 we see how the output of the sensor block looks like. The sinus-
shaped curve is the continuous angle measurement.

MAKEOUT, to simulate the Sensors from the continuous input.

function [out]=makeout(thnew,thold,angles);
%Makeout3 makes the calculation for
%the output Theta. Interrupted.
salange=0;
for I=1:max(size(angles)),
if((salange==0)&(((thnew-angles(I))*(angles(I)-thold)) >0))
salange= angles(I);
end
end
out=salange;
end

27

THE ANIMATION OF THE CRANE

To make the animation of the crane I have also used the earlier described S-
functions. As we have seen these are normally used for implementing blocks of run time
functions of MATLAB in SIMULINK. Here the initialization case (flag=0) is used to
call a function that draws a picture. During the simulation, the call of (flag=2) another
routine that erases the old picture and paints a new one is employed. When the whole
simulation has been carried out we can choose to get the whole sequence played again in
a much faster pace. This requires that there are variables created in the MATLAB
workspace that contains the necessary data, time and output values.

Eli'iglm‘e No. 1: Crane Visualization
File Edit Windows Help

Figure 20 The typical view of the Animation Block

28

CONTROL

Now we have a model of the crane. Next step is to construct a good control
according to the demand of small swing-angle and fast operation.

First we assume full access to both outputs as continuous signals. For the control
there are different possibilities. Any type of control that leaves us with asymptothic
stability would work because sooner or later we would reach the reference positions.
However, we do want the crane to be fast, and only swing moderately.

Once established a control, the case with the missing or scarce data on the outputs is
handled. Then we continue with adding the difficulties one after another as we go for the
final goal, to have the tools for an adaptive control handling the crane with the scarce
measurements of the swing angle.

The steps to reach this will be the following :

eLinear Continuous Control with access to both output signal continuously.
eLinear Continuous Control with the scarce measurements of theta
eDiscretization of the Linear Control w/ scarce measurement

e Estimating parameters of the system.

eUpdating the dynamics of the observers and control by feedback of parameters.

elnvestigating the possibility of reference signal shaping for optimization

29

LINEAR CONTROL WITH ALL DATA KNOWN

The basic control problem has been solved with good performance of the crane by a
Korean team Lee, Cho and Cho (4), by employing a similar model to the simplified
model presented in the end of the modeling chapter, and a sort of double loop PID
control. Their control bases itself upon the continuous availability of theta and x, and
also on an already existing velocity servo of which they have determined the
characteristics, and that they later in the paper use to form their control. I have decided
to follow their guidelines and build my control from their findings. For the basic theory
the reader may consult either Astrém and Wittenmark (6) or D’ Azzo and Houpis (7).

POSITION CONTROL

We part the design into two parts, first of all we make a position control. Later this
will be a “black box” for the second part of the system, the anti swing control. Figure 21
shows how the inner control loop looks.

e(t) u(t) 1 x(t)

PID P
Ms”2 + ks .
ref(t) Sum pip Controller X ggtsgl'ft’”
Position
Transfer
Function

Figure 21 The position control loop structnre

I use the simplified model that separates the crane into two systems. We use the
modeled behavior of the upper part of the system as described before to design the
position control. We have the cart with the mass M, the applied force F and finally the
friction coefficient k.

X(s) _ 1

= .20
F(s) Ms*+ks (¢a.20)

Together with a normal PID control with the control law :

Gy (5) = (P+ L4 Ds) (eq. 21)
N

30

The transfer function for the cart (m<<M) becomes :

P+1/s+ Ds
Xy (8) _ Ms®+ks _ Ds*+Ps+1 -
X(s) |, PHI/s+Ds) Ms’ +(k+D)s"+Ps+I

Ms* + ks

As we can see here, with this control (eq.21) and a second order system (eq.20), we
can place poles exactly the way we want since the terms in the denominator contain
enough values of P,I or D. In our case the control can be considered as a pole placement
problem (eq.23).

The pure integrating part of the models denominator (eq.20) comes from the
physical fact that the cart stays in the place where it stopped. If we push in one direction
it will never come back, unless pushing equally in the other direction that is. The other
pole situated in -k/M is always very slow and proceeds from the inertia of the moving
cart. As we see, with reasonable masses of more than one or two kilograms the pole will
be placed in -0.5 < -k/M < 0.

In the design of the control we want to get good tracking of the reference signal in
the low frequency region , and that in the higher frequency regions we oppress possible
modeling errors and sensor noise. Choosing the parameters to be P=930, =450, D=60
when we have the parameters M=2 and k=.5 the transfer function becomes :

Xy(8) _ 60s”+930s+450 30(s+0.5)(s+15)
X(s) 25 +60,55> +930s+450 (s+0.499)(s> +29.75s + 450.13)

(eq. 23)

Which gives us poles in -15+15i , -15-15i and -0.499 and zeros in -15 and -0.5. This
follows more or less the pole placements of the Korean team and I decided to go with
these numbers. As we can see in the bode plot below, we obtain good suppression of
eventual errors in the high frequency region, and very nice model-following in the low
frequency region, and thus we achieve the goals that we put on the control.

31

20
G ain dB

0
-20 \

-40 -2 -1 0 1 2
10 10 10 10 10
Frequency (rad/sec)

30
Phase deg

I

-30
-60 |
-90 | 2 mon = 2N ¥

107 107" 10° 10’ 10?2 10

Figure 22 Bode diagrams for closed loop of the position contro/

ANTI SWING CONTROL

Now, the next step is to make the control for the pendulum. We take our functioning
position control system and put it into an other PID control loop. We consider both the
closed loop position control system and the transfer function of the pendulum part of the
system, and try to find a functioning control for this part as well. When we look at the
model in figure 23 we may find it a bit odd that our control is situated on the feedback
loop of the pendulum loop control. Why?

u(t) 1 x(t)
: PID |
: MsA2 + ks X position
Sumi | Sum PID — gutput
: Controller Position
position Transfer
Function
1 theta(t) -gA2
PID [—— -----=----- | -emmmmmmmmmem oo ——
TS D1sr2+P1s+It Ls”2 + 9.82
Controller Cancellation of Pendulum
angle zeros from first Transfer
PID-controller Function

Figure 23 The SIMULINK mode with the anti-swing control addition.

We have to think a bit about what objectives that we have with our control. First of
all we want to affect the position of the cart, this objective then competes with the
demand for a small swing angle. Or rather, the acceleration of the cart will directly relate

32

to the swing angle.

As we can se in the figure the two inputs to the adder “Sum1” are just these goals for
the position control. This is where we have a conflict. Both we and the anti-swing
control put up rules for the position control to follow. Sometimes we contradict each
other with loss of efficiency as result.

Would the goal-angle have been other than zero, this would be done with another
adder in between the theta-output of the crane and the control. Just like we use the error
of the position (y(t)-ref(t)) to control the position, we would control the swing-angle.
The theta angle output is the error in our case. The transfer function from position to
swing angle is :

O(s) 1 —s’

X(s) L 2,8

(eq. 24)

and therefore, together with eq. 23 we get the open loop transfer function from the
position reference to the theta output. Now we take this transfer function and combine it
with a PID control and decide the value of our proportional feedback of the error, given
the relation between the P and D,I terms in the controller. We decide the value with the
root locus method since MATLAB offers excellent tools for this.

6(s) _ X(s) 6(s) 1 -5 30(s +0.5)(s +15) _
X () X, () X(8) L o, 8 (s+0.499)(s”+29.755+450.13)
L

(eq. 25)
B —30s%(s+0.5)(s +15)
L(s* + ®*)(s +0.499)(s* + 29.75s +450.1)

When we design the control, we introduce one part that simply cancel the zeros of
the transfer function above that comes from the inner loop PID control. Then we
introduce one PID controller more in the chain. The complete open loop transfer
function becomes eq.26.

What we do is to introduce one integrator in the complete open loop, cancel the
zeros that came from the control of the inner loop, and replace these with one or two
new ones. I have tried with various variants of placement of the zeros, to get various
results. We could leave the control with just one integrator and a constant gain, leaving
the zeros in -15 and -.5, but these will change with the characteristics of the position
transfer function if we introduce an adaptive control in the inner loop. This dependency I
want to avoid.

33

O(s G(s D.s’+Ps+1
Ga—apen (S) = () * M o—control = () ’ : 2 2 =
loop Xref (S) Xref (S) S
—30s*(s+0.5)(s +15) D,s>+P,s+1, .
— . — eq.
L(s* + ®*)(s +0.499)(s* +29.755 +450.1) s(s+0.5)(s +15) L

P I
) D,(s* +-2s+-2)
—30s D, D,

N L(s* + @*)(s +0.499)(s* +29.75s + 450.1) ' s

We can also place only one zero, if we try with a zero in -20 together with the results
from a root locus diagram to determine the derivative constant, D, we see that we obtain
good results. This means that we leave the integrator term in the PID controller to 0 and
use a pure PD-controller.

Imag Axis / rma% Axis

] ;/ ' r]
i 3
15 : i

(8
Y

-15 : 4
\ 2

25 20 -15 10 -5 0 -3 2 E
Real Axis £ Real Axis

ok

Figure 24 The results from the root locusprocedure. The diagram to the right is a
goom-in of the center of the image to the left.

In the figure to the right (figure 24 b) I have marked the place where we get a
relative damping 0.7 in the root locus diagram (D > 0). This occurs with the D=3.1 for
L=1m. The parameter L affects the function in two ways. First we can say that it is a
constant amplification of 1/L, the optimal value of k varies with L directly. L also
affects the behavior in the sense that with a smaller L the half circle in the root locus
diagram to the right will become smaller, and so the optimal value of D. The model
never will be unstable, for any value of D. However, very large values model errors
might cause instability. The new and final open loop transfer function will have the
following look :

34

P
D, (s+—*~
A Dz)

G, (s)=- —30s” (s +0.5)(s +15) - _
ooy L(s* + ®*)(s +0.499)(s* +29.75s +450.1) (s+0.5)(s +15) (eq. 27)
B ~30s-3.1- (s +20)
CL(s* +0?)(s +0.499)(s? +29.755 +450.1)

And with this result, the total transfer functions will be examined for stability from
input to each one of the two outputs. We derive these as follows in equations 28-30:

X(s) _ 30(s +9.82)(s +0.5)(s +15) B
X, () (s*+9.82/1)(s+0.499)(s® +29.755 +450.1) +30s” -3.1- (s + 20) -
eq. 28
B 30(s* +9.82)(s +0.5)(s +15)
(s +0.6965)(s? +25.365 + 433.71)(s* +4.1857s + 7.3145)
9(s —30s%(s+0.5)(s +15
(s) _ (X) (0,29

X, (5 " (s+0.6965)(s* +25.365 +433.71)(s* +4.18575 +7.3145)

_ Xref (s) - 0.5
Gsmoothing (S) == =
Tilter X ref (s) s+0.5

step

(eq. 30)

I have in my design used a filter to smoothen the input signal. The resulting block
diagram for the finished control then looks like the finished control in figure 26 . I have
chosen to use the slightly modified PID-controller that we see in equation 31. With this
control we avoid deriving the reference signal. This helps us getting a smother control
signal. The new control law does not affect stability of our system, but it helps using this
form of the derivative part of the PID control when we later want to discretize the
system. The discrete approximation of a derivative could give us problems otherwise.
The PID now gives us the control :

U(5) = (P+)(X (9)= X(5) = DsX () (eq. 31)

35

Gain dB

60 -2 . ~ I-1 ‘0) 1
10 10 10 10 10
Frequency (rad/sec)

Figure 25 The Bode plot of the transfer function X(s)/ Xref(s) (with the filter)

The Bode plot from position reference (unfiltered) Xref(s) to actual position X(s) is
shown in figure 25. As we can see in the plot, we get an excellent command tracking in
the low frequency region, and sufficient suppression of the high frequency regions. This
assures a smooth control that helps the anti swing loop in its work. I have chosen to use
a ramp-step signal as reference. This equals giving the crane a reference velocity during
its displacement trajectory. The position follows the ramp part, that we choose to have
an inclination of 1 m/s which has to be considered a rather high velocity for crane.

Xref(t)
ramp-ste filtered b
inpp ut P 5| _‘ u(t) angle output
signal Xref(t) s+.5 .| PID | Real System !
ram filter sum il -
) PID Controller pgjtlgg?
Crane Model |
3.1s+62
s24+15.55+7.5 |
Anti Swing
Control
Proportional
- | B+ The complete control (above).
| - Lt B+ and the PID controller that |
Ref Sum1 = g u(t) have used (left)
Inp Integral Sum
D> du/dt
Pos D Derivative
Inp

Figure 26 The finished control system for the continnons case.

36

position output and Xref {max=3) angle outpul

35 4
3 2r
0
25 2
3 .
i 0 5 10 15 20
control signal, Force
151 2 T
1 1
0.5 4 0
0 -1
1] 5 10 15 20 0 5 10 15 20

Figure 27 Signals for the control with a relatively small displacement, 3meters

As we see in figure 27 and 28 we get a maximum swing angle of approximately 2
degrees. The middle part of the position curve follows the ramp, that is the velocity is
the same. The delay that the curve has compared to the ramp step are the acceleration
and deceleration phases of the cart, in order to minimize the angle deviations from zero.

angle output

position output and Xref (max=12)

=
-

5 0 5 10 15 20
control signal, Force
2
4
1
2 4
0
O L i 1 L i i
0 5 10 15 20 [6 10 16 20

Figure 28 The same signals as in figure 27 for a larger displacement, 12 meters

We can say that the bigger the initial acceleration that we ask from the system, the
faster we will get to the goal, but at the cost of a bigger swing angle. In figure 30 the
following that the position control performs shows even clearer. As we see, the swing
angle depends only on the initial acceleration and the final deceleration. As we
remember from the modeling chapter the only outer force that affects the pendulum
angle is the acceleration of the “hinge” point of the pendulum.

37

CONTROL WITH THE SENSORS FOR THE SWINGANGLE

To achieve the other objective of the control of the crane, the control with only the
sensor swing angle output, we need to add one part to the block diagram in figure 29, an
observer. Since we have no access to continuous measurements of the swing angle of
the pendulum, and since the control that we just completed demands just this, we have
to invent good guesses of the missing values when there are none present. The ordinary
use that we have for an observer in control systems is to reconstruct the states that we
can’t measure, normally for a state feedback control.

4 <| s I Observer P theta
3 ensor serv
a p| Real System | _’Ix'posl angle
s MATLAB L) — estimation
Force en?or ! Observer Position
Crane model unction structure estimation

Figure 29 The structure that replaces the Crane Model with both ontputs known

THE OBSERVER

What is it that we have done in our control above ? Because of the derivative terms
in our PID and PD controls respectively, we have already “reconstructed” the derivative
states and performed state feedback with the coefficients of each one of the P,I and D
terms. Now, we take away one state output more, and replace it with sporadic
measurements. Can we reconstruct the three missing states from the position output?
There are many places in the literature of basic automatic control where we can find the
answer, in Astrom and Wittenmark (6) we find the criterion in the observability matrix :

C
CA

Wo = CA2 (eq. 32)
CA®

If and only if Rank(Wo)=n where n is the size of A we can find a vector K for our
observer, so that the system in the observer is stable. In our case we do have Wo with
the full rank, 4, and therefore we can observe the system from the position output. With
access to both outputs the system is of course also observable, but in that case we
wouldn’t need an observer.

38

THE STRUCTURE

The observer is copy of the real system, in which we compare the “outputs” of the
model and the real measurements of the process. The typical structure of a simple
observer, that we are going to use is :

{theta, position}

The simple observer input

structure
K(y-Cxhat) » y'thatt
K outpu
estimates
Feedback sum
Output
C | Matrix
+ 1 A
B -
— g :Hﬂ dexchaty/dt®] 5 [hat
input IVIGa;irK(S Integrator — ;;h?t
ate
Axhat | — output
System
Matrix

ax = A%(t) + Bu(t)+ K(y(t) — C®) = (A— KC)2(t) + Bu(t) + Ky(¢)
dt (eq. 33)

y=Cx

Figure 30 The structure of a “normal” observer and its equations

If we look closer at the structure, in the first representation, we see how the error
between the existing outputs and the estimated value of the outputs is feed-backed into
the system. But, this affects the dynamics of the system as well, as we see on the right
side of the equality. So how do we choose the K to get a stable system, where the error
of the estimation is stable and goes to zero? This is a classical problem in control theory,
and the golden rule is to choose the observer dynamics so that it is faster than the
observed system.

I have made slightly modified observers for the crane system, with good results as
long as the model that we put into the observer is more or less correct, with reasonable
values of K. In figures 31 and 32 we can se some of the results, first without model
error, and then with model errors.

39

- N w & (3]
T T T T

' ' }) 1
o L w [\ - o

Figure 31 Good following of our observer, no model error

In our case the observer becomes a bit more complicated than in figure 30 since we
deal with measurements that come every now and then. The observer works like this.
The only signal that always is present is the in-signal to the system, so when there is no
measurement available, we let our linear model A,B,C,D act in parallel with the real
process. Whenever there is a measurement, we use this to correct the states in the
observer. The code in our S-function looks like this (flag=1). K has been chosen to give
a system slightly faster than the nominal model.

if u(2) ~= 0, %if insignal ;

dx= A*X+B*u(l)+Kmatrix* (y-C*x) ;
else

dx= A*x+B*u(l);
end;

Now, what happens with our model when there are no measurements? It continues
calculating new guesses all the time to feed the control. When the model follows the

process well, there are no problems as we see in figure 31, but if we introduce a model
error we get results like in the following figures.

5 12
4 10}

3 8

2 6

i 4

0 st

4 0

-2 -2} §

3 -4}

-4} 6

) 5 10 15 R 5 10 15

Figure 32 Here we see the same observer but with model errors, in the figure to the left the model has the values
M=2,m=0.2,L.=0.5and £=0.5 and in the figure to the right, M=1, m=0.2, L=0.5 and £=0.5.

40

Of course, with better choices of K we might get better results, but it is important to
remember that our K is “penalizing” the errors that might occur, and the “penalty”
always is the same. The problem is that the K is fixed, because of that the various model
errors demand different settings of K. If we use a slightly distorted signal, from the
observer outputs, we might get an augmented error in from the control loop as well. The
two examples below in figure 33 show how the control becomes jumpy even with a
rather small model error. Further down we will see what we can do about this.

T S - RS U N S

h b o

10 15 0o 2 4 6 8 10 12

o
o

Figure 33 Examples of the observer outputs used for the control. In the first figure without errors, but in the second
I have introdnced an error M=1 instead of M=2 and here we see how the distortion makes the signals

look very uneven.

In this observer we haven’t made use of the fact that we actually know the value of
the position all the time, and this is of course the next step that we would use in the
design of the observer. The new code we can see below. We have to understand that the
K is different for the two different cases. In the first, when there are two input values,
theta and x, the K matrix has to be a 4x2 matrix, as well as the C matrix is a 2x4. In the
other case, they are 4 element vectors, since we only have one measurement available.
Then we change the C for what C would have been if we only had one output from the
process, that is a vector [0 0 0 1], the lower row of C.

if u(2) ~= 0, %if insignal ;

dx= A*x+B*u(l)+Kmatrix* ([theta position]’-C*x);
else

dx= A*x+B*u(l)+Kvector* (position-[0 0 0 1]*x);
end;

Now we only have to choose good values for the two different K How do we get
them to play well together, and how do we get them to change with the frequency of the
incoming sensor signals?

TIME VARIABLE KALMAN FILTER
To determine an optimal estimator, observer, of the states in our model, we can

make use of the Kalman filter. The observer has the same structure as in our earlier
model, but we determine the K from a dynamic model that tries to minimize the

41

variance of the error of the estimates. See Astrom, Wittenmark (6) chapter 11.1-3 for the
theory behind our estimator. The dynamics of such an observer becomes :

% = Ax(t)+ Bu(t)+ K(y(t) — C%)

‘ji_I; =AP+PA" +R, - PC"R]'CP (eq. 34a-d)
K =PC'R;
9=C%

What has to be done here is to choose wisely values of the two matrices Rx and Re.
But in our case, since we still have the two possible cases, we make two parallel editions
of the Kalman filter above. What the two branches will have in common is the P-matrix,
and when there comes a measurement of the angle we let this affect the values of this
matrix. Since there is less certainty in the system when there is no measurement
available, the P-matrix is growing until the next measurement, when it jumps down to
the lower level that the upper branch provides.

THE MATLAB SOLUTION

The MATLAB/SIMULINK code (S-function) for the Kalman filter-observer is
shown below. Here we see in the case of flag==1 that we have two branches, either with
or without the angle measurement. The values of Rx and Re are our possibilities to
change the dynamics of the P-matrix. Re can be said to represent the built in uncertainty
of the system, modeling errors, noise from within the process etc. while the Rx is the
uncertainty of the measurements. In the Re elements we try to estimate how much model
errors affect the model output. The other matrix Rx we put lower, whenever there comes
a measurement, we let it affect the system much, since the uncertainty for the moment
“has gone away”.

In the flag==3 case, we give the function output to the rest of SIMULINK. In this
case I have chosen to let the state vector be the output for the rest of our system. We
may also just lave the two interesting states, theta and position, X, as outputs. Here we
also calculate and save the new values of the two K-matrices in global variables.

We want to do this only once every iteration. If we had the K calculation in the same
branch as the state and P-matrix iterations we would have the risk of inaccuracy in the
state variable calculations. This because the K would change at the same time as the P,
in every iteration step.
function [sys, x0] = sfunobserv(t,x,u,flag,nstates,A,B,C,Ktest)

global Kmatrix Kmatcont Re Ry
%u(l)=forceinput,u(2)=thetaout,u(3)=xposition

if abs(flag) == 1,
% If FLAG==1, then SIMULINK is looking for the next state derivative, dx

P=zeros(nstates) ;
P({:)=x(nstates+l:nstates+nstates*nstates);

if u(2) ~= 0, %the case where there is a measurement available

42

dx= A*x(l:nstates)+B*u(l)+Kmatrix*([u(2);u(3)]-C*x(l:nstates));
dP= A*P+P*A’+Re-P*C’*inv(Ry) *C*P;

else %the case where we only know the position of the trolley
dx= A*x(l:nstates)+B*u(l)+Kmatcont*(u(3)-[0 0 0 1]*x(1l:nstates));
dP= A*P + P*A’ + Re - P*[0 0 0 1] *inv(Ry(2,2))*[0 0 0 1]*P;

end;

sys = [dx;dP(:)]; %returning the new state vector and the P-matrix

elseif flag == 3,
% If FLAG==3, then SIMULINK wants to know what the next output is.
P=zeros (nstates);

P({:)=x(nstates+l:nstates+nstates*nstates);

sys =x(1:4); %here we leave the state vector as output from the S-
function

Kmatrix = P*C’*inv(Ry); %Calculate the new values of the K-matrices

RKmatcont=P*[0 0 0 1]’/Ry(2,2);

elseif flag == 0, %initialization loop, where all initial values are given

The result that we obtain from this observer with the reasonable choices of Rx and
Re, shows to be more stable than was the case with the ordinary fixed K observing
policy. In the figures 39 and 40 we can see how our observer behaves in the control loop
without and with various model errors.

P -m atrix (2 ,2) tor lhe three cases

3000 [(a) -1

Figure 34 The P-matrix behavior for the three cases a) no values of theta at all ¢) full
information, continuons measurement and b) ounr case with measurements every now
and then

Sensor oultp uis

I“ll y]

B
©
a
w
s
@

s & o o
© © o o

M - D @ AN S N A

0

o
~
~
»
Y

Figure 35 The corresponding angle sensor outputs for the figure 34 above

43

One important remark is that the P-matrix, and therefore also the K-matrices are not
affected by the inputs to the system. In the equations 34a-d , the P-matrix system is a
linear system where we put a certain initial value, and coefficients that tells the system
(through the eigenvalues) how fast it will go to a certain position. However, in our case
we are calculating the system matrix, P, with two different formulas, depending on the
input signal. So, basically we are letting the system “uncertainty” depend on the time
between two incoming measurements. In the two extremes, where we have either
measurements all the time, continuously, or where we have no measurements at all, we
obtain the values towards which the P-matrix elements would go in each case. In figure
34 and 35 our more realistic case makes these values “ping pong” between these two
lines. The speed with which this happens, and also the final values are given by the
choices of Rx and Re.

Note how the different cases correspond to the uncertainty of the angle
measurement, as we have in figure 34 case “(a)”, only position measurements. This case
always follows the P matrix corresponding to the lower branch in the S-function. In the
case “(c)” we have full, continuous information. This means that we always enter the
upper branch, and calculate the P-matrix value of less uncertainty. This corresponds to
lower values of its elements. Our “real” case we find in “(b)”. Here we find that in the
beginning of the control cycle, where we obtain many measurements, the P(2,2) follows
the lower curve of figure 34 and after 5,8 seconds we clearly see how it takes off
towards the upper curve. At 6,5 seconds however the last measurement comes in and
forces down the P-matrix value towards the lower curve again. Then after this, when
there are none, it finally goes up to the upper curve and rests up there. The other
elements of matrix P behaves in very similar ways.

4 P (1,1 P (2,2
4yal0 ! 15000]
3
10000]
2
: 5000]
0 0 NPT o | ORI, |
0 10 20 0 10 20
P(3.3) P(4,4)
10000 10000
5000 5000
0 == 0
0 10 20 0 10 20

Figure 36 The diagonal elements of the P-matrisc with a correct model. The resulting P values for
P(3,3) and P(4,4) will always follow the lowest possible P-values since we assume
continnons measurements from the position ountpul.

44

COMBINING OBSERVER AND CONTROL

Reference
signal

The new structure of the controller with observer and PIDs will be the one of figure
37. Inside the Observer block I have put a S-function in which the new observer
function reveals itself for the one who unmasks the block. Here I have made the P-
matrix a part of the output as well, so we can have a look at how the curves changes

E pReal System|

Sensor

Observer L]

S-function I De-MUX

ey

Subsystem

—
PID Control ~ Subsystem2

Figure 37 The new control siructure with the Kalman Filter-Observer

when there are few measurements available.

IS

o

o

»

FS

NN oie the Il Jump the
obaeyver doen to fitinla
~value

the “real” values

0.5

Figure 38 Excamples of the function of the new observer. Only angle diagram, since we
already may “trust” the position measurements.

With a considerable model error, we still get good control. If we try with the same
errors as in the earlier example with the new observer policy we find the behavior to be

much nicer.

Figure 39 The observer-control with L=0,5 (normally 1)

45

As we can see in the figures 39 and 40, the behavior is much nicer of our new
system, put together with the control from the beginning of this chapter. Depending on
how we choose the Rx and Re matrices our P will have different final values, and
therefore different behaviors regarding the different coefficients of our system, M, m, L
and k. The figures above should be compared with the figure 32 where the same model
error is introduced and makes the system unstable, with the earlier observer.

i
|

LIRS Iy

“real® ouipul

0 2 4 6 8 10

Figure 40 The observer-control system with M=1 (normally 2) and L=0,5 (normally 1)

SAMPLING

Now we consider ourselves ready for the discretization, sampling of the system that
we have built so far. Our system consist of the position control loop, the outer swing-
damping loop and the observer. We begin with the position control. Then we continue
with the anti-swing control and finally we sample the observer.

CONTROL

In the inner loop we have a PID controller, and this includes a pure derivative action
and since we cannot find a direct z-transform of a derivative we have to approximate.
The outer loop we just find the corresponding discrete system, and replace the old one.
First we have to decide what sampling frequency we are going to use in order to get the
rest of our functions right.

Sampling frequency, 1/Ts

What we have to think about when we choose Ts is of course the dynamics of the
system that we wish to control. A higher sampling rate means safer control, but in a

46

real time application the risk of overloading the computer. Every sampling period we
have to calculate the outputs of the system. The own frequency of the pendulum is about

_[e/ _ _ d
o = 4 =9.82 =31337744/| _ . _ o o7 (eq. 35)

thumbrule w,h=0,2—0,6rad

However, the fastest oscillating poles in the closed loop system are faster, and
therefore I chose to go down to Ts=0,01 to be able to control for model errors and other
higher frequency components. The poles of the control are situated in -15+151 so ® will
give Ts=0,01s and we go with this :

w, =~15% +15% =15./2 =21,21 A s b .0lis (6q. 36)
thumbrule w,h=0,2-0,6rad

Position Control Loop

So, here we start from the PID-control given in equation 21 and find an appropriate
discrete approximation of the transfer function for each one of the parts. Starting with
the simplest, the proportional part we just leave it as it is since it is just a static gain.
Then for the integral and derivative parts we make approximations according to the
following model

z-0.995 _ The discrete PID control

refsig z-1
Integral and
proportional part

cqntrol
20z-20 S|gnal

= 20"15.5"Ts+1z-1
position inverter

input derivative part

Figure 41 The discrete PID controller in the position control loop

Here we make use of a variation of the original PID control that we used before.
First of all, when we approximate the derivative of our signal, we are not interested in
the derivative of the reference signal, only that of the position of the cart, so we take the
derivative of only this input. Furthermore we build in the filter function :

47

sTd
Td - s = .
5 Td (eq- 37)
l4+—

N

Where the N marks the cutoff frequency of the filter, or rather N/Td. We choose N
to be 20 and use the built in function for discretization of SIMULINK for the integral-
proportional part and backward difference for the derivative part. Backward difference
is when we replace all “s” in a continuous transfer function with the backward
difference (z-1)/(z*Ts) The equations the we use then becomes :

sTd
14574 o (eq. 38)
e €q.
N q

1
U(s)=P 1+ E)(Xref (5) - X () -

where Ti =§ 1d =

And with the given values and backward difference on the derivative part the final
equation 1s:

Ti N(z-1)

U(z)=P T (X, (Z)—X(Z))“(W—'X(Z) (eq. 39)
1+—)z—1

The first term within the parenthesis is the integral-proportional part, that I have
transformed directly with the z-transform, and the second is the derivative term. The
final result is what we saw above in figure 41.

Anti Swing Control Loop

The anti swing control then becomes much simpler to discretize since the expression
of the control here can be transformed directly by using tables. The function that we
used before as anti swing control, and its z-transform are :

3.1s+62 SR 0.0317z-0.026
Gan iswin, s)= — >Han iswin Z)= - 40
miovne () = 2 s 55475 aiowns (=7 36,0861 4

Here I have transformed the function with Ts=0,01 seconds. This shows itself to be
sufficiently short sampling period for our control. Of course this number changes with

48

the characteristics of the system, i.e. with a larger crane, and lower own frequencies, we
could do with a lower sampling rate. We see the finished discrete control in figure 42.

This controller manages the complete control
in the discretized system.

. p| 0.00598

z-0.994
reference
reference -+ .
A Discrete
SmD R Sum soe]
| 2 I control

Discrete PID signal

0.03172-0.026 position position control

o 2%1.862+0.861

Figure 42 The new discrete contro/ as described in the text. Note the filter on the input
that is the s-transformed version of the filter G(s)=0,5/ (s+0,5) that we had
before. Ts=0,07.

DISCRETE TIME VARIABLE KALMAN FILTER

The final part of out discretization is then the observer that we made in a continuous
variant before. The “z-transformation” of this is very easy. We have to introduce some
modifications of the S-function that we had before. We are now in the discrete domain,
so therefore we have to use the discrete cases of flags in the function. That is, we catch
calls to flag=2 instead of flag=1 and give an output value as before on flag=3. The
equations 34a-d change a bit as well, and the new system equations are described by
equations 41 :

2(k +1) = (k) + Tu(k) + K (y(k) — Cx(k))
P(k+1)=®P(k)®" +R,-K,,,, (k+1)CP®"
K(k+1)=®PC"(CPC" +R))™
9(k) = Cx(k)

(eq. 41)

I have introduced the Greek letters above for the system matrices according to the
discrete part of the modeling chapter. We note that the calculation of K now helps us in
the P matrix, so I have moved it up to the flag=2 call, and make sure that it is not called

49

unnecessarily many times every sampling interval. The new state-calculation part looks
like this :

if abs(flag) == 2,
$ If FLAG==2, then SIMULINK is looking for the next state derivative, dx

Rmatrix = A*P*C’/*inv(C*P*C’+RyY):;

Kmatcont=A*P*[0 0 0 1]’/*inv([0 0 O 1]1*P*[0 O 0 1]’'+Ry(2,2));

if u(2) ~= 0,
dx= A*x(l:nstates)+B*u(l)+EKmatrix*([u(2);u(3)]-C*x(l:nstates));
dP= A*P*A’+Re~Kmatrix*C*P*A’;

else
dx= A*x(l:nstates)+B*u(l)+Kmatcont*(u(3)-[0 0 0 1l]l*x(l:nstates));
dP= A*P*A’ + Re - Kmatcont*[0 0 0 1]*P*A’;

end

sys = [dx;dP(:)];

elseif flag == 3,

% If FLAG==3, then SIMULINK wants to know what the next output is.
sys =[x(2),x(4)]’; %we return the outputs to SIMULINK
CONTROL W/ OBSERVER

Finally we put the pieces together as before to prove the function of our finished
system. The total system as we have constructed it now looks like in figure 43. Compare
the curves with the corresponding curves in continuous time.

Reference » > Observer
signal p{ Discrete »| Real System Sensor P! S-function
L Control = P
a4 sensor ,
Control system Subsystem2 _I function Subsystem
Figure 43 The complete discrete control system of the Gantry Crane
3.5 -
3
2.5 | =
2 F -
1.5 -1
LI - -
0.5 -
& [2 4‘ 1] a 10

Figure 44 The model following characteristics are the same as in the continnons control

As we can see, the control is functioning very well with the new discrete version,

50

and if we compare with our results from the continuous control the curves here around
look very much the same.

Fignre 45And so are the anti swing capabilities of the contro/

I would like to make a little remark about the P-matrix however. In the continuous
case, we understand that the longer time one sensor is giving a signal, two or three
iterations in the SIMULINK model, the more is the P-matrix going to be affected by the
lower P-matrix value-curve. In the discrete case, however, the probability that the sensor
will give signal more than one sample period is very small, and therefore the reaction
that we get from our observers P-matrix in the figure 46 is much sharper in the discrete
case. In real life the first example should be the most common, since a normal wire may
be likely to take more time in passing one sensor than one sample period.

bk 10° The P-matrix diagonal elements
4 , .
: M
O L A i L
JE 10 2 4 6 8 10
| /]/\/\/J
o = a./MM/’L el o Wt .
5{!(10 2 4 6 8 10
0 L A
1000 2 4 6 8 10
500]
O A
0 2 4 6 8 10

Figure 46 The P-matrix diagonal elements behave very similarly to those of the continnous case as well

51

PROCESS
IDENTIFICATION

One way of making the control more robust to model errors is to make it self
adjusting, or adaptive. This can be made in many different ways. The simplest is just to
estimate the most important parameters of the system, recalculate the control design and
start controlling with the new figures. First we treat the estimation, and then we look
into the adaptation.

ESTIMATION

The different types of parameter estimation are mainly variations on the same theme.
For different system behaviors we lay out a model, the systems most probable structure,
and then fit the model into a series of measurements from the real system. Then we use
different laws to penalize deviations from the model, to get the best model fit.

ESTIMATING THE POSITION CONTROL PARAMETERS

We are going to split the problem into the two simplified halves that we were
dealing with in the other chapters, Cart and Pendulum. First we start with the estimation
of the trolley process from the transfer function in (eq. 20).

To do this we employ an algorithm that minimizes the squared errors in our model
with respect to the obtained measurements from the process. This is exactly the same
thing as a least square fit to a curve in statistics that most people have done one time or
another. The LS-approximation can be made recursive, which is perfect for our
purposes.

The regular RLS estimator

The RLS (Recursive Least Square) estimator has a simple structure very similar to
the Kalman filter/observer that we used for the reconstruction of the missing data in the
earlier chapter. For deeper understanding of the mechanisms look in Jerry M.Mendel,
“Lessons in Digital Estimation Theory” (8) where the subject is explained further. In
short we can say that if we have a model of a system, we know of which degree it is but
not the coefficients of the polynomial of the numerator and denominator of the transfer
function, then we can write the function like this :

52

y(k)+aly(k-1)+a2y(k-2) amy(k-m)=bOu(k)+blu(k-1)+b2u(k-2) bnu(k-n)

y(k)=-aly(k-1)-a2y(k-2)cc..ce -amy(k-m)+bOu(k)+bluk-1) ... bnu(k-n)
(eq.42)

Then making a least square fit with each element corresponding to its element in y
or u and like this gradually improving the guesses of the coefficient vector [A B] gives
us an estimate of this vector that we later can use for various purposes. The recursive
equations that we use are the following

0=, b b, a af e={uk) wk-1) uk-2) -yk-1) -yk-2)}
(k) =0k 1)+ K(k)- (y(k)— 9" ()8(k - D))

K(k) = P(k)p(k) = Pk —Dt) (AL +¢" Pk~ (k)

P(k)=(I -K(k)¢" (k))P(k 1)/ A

(eq.43a-d)

The notation above is that of Astrom Wittenmark, Adaptive Control p.53 (5) and
includes exponential forgetting, that we set with the factor4. Normal values are
0,9< 4 <1,0. Also we play with the formulas by giving the theta vector, the coefficient
vector, good initial guesses, and by setting the P-matrix to high initial values for fast
adjustment. If we look at the second line where our parameter vector is formed, we se
that this is formed by the last value of the vector plus a factor K multiplied with the
difference between the last real output value and the value that our latest estimated
model gives. Compare this with the observer that we constructed in the former chapter
and see the possibility of using this estimator to estimate the states and the parameters in
the same algorithm. Like in the observer, the K matrix is what decides the importance
that we give to the error to change the parameters. Therefore we start with big values in
matrix P that gives a big K. The program listing is also very similar to that of the
discrete Kalman filter/observer and can be read in appendix.

53

force unknowned position
process >
parameters

process to y(K)
The RLS estimator be measured

structure. The .
estimator code | |

in appendix

State
Generator

Y
A 4

(phi-vector) {u(k) u(k-1) u(k-2) -y(k-1) -y(k-2)}

(theta-vector)
{a0 a1 a2 b1 b2} RLS

&1 Estimator

e

Recursive least squares
Parameter Estimator

Figure 47 The RLS estimator structure in SIMULINK

The “state generator” is what I use to save the past values of u and y to form the phi
vector. Then this, as well as the “fresh” value of y is fed into the parameter estimator.
See the code in appendix, for further information. Below we can see the results. We
obtain a very fast estimation of the right values with this estimator for this specific
process. The true values of the parameter are given with dotted lines.

1 _r

o I

-1k -

i) SR
0 1 2 3 4 5 6 7
x 107°

- |

O -

-2-" L L 1 i 1 1]
0 1 2 3 4 5 6 7

Figure 48 The parameter estimation results with the RLS estimator,

54

With the parameter values M=2, k=0,5 in the model from before 1/(Ms"2+ks) with
the sampling period Ts = 0,01 , we get the parameters A =[-1.0000 -1.9975 0.9975]
and B = le-4*[0.0000 0.2498 0.2496] and in a model H(z)=B(z)/A(z) as we
discretize the model directly in MATLAB with the c2dm command. The zero in the
numerator means that there is no second degree term in the numerator, bO = 0. The latest
input value, u(k), does not affect the output y(k).

We see after some experimentation that the constant before the numerator
polynomial depends mainly on the M, and one possibility for making the control
adaptive for the position control would be to just feedback this constant into an
amplifier on the input to the system, and make the control for a double integrator, which
is the case when we have a very big M and a small k.

55

ESTIMATING THE PENDULUM PROCESS PARAMETERS

When we want to estimate the second half of the process, we are dealing with
another second order system, and from the estimation point of view there is no big
difference between the two processes. However it may look a bit odd in the schematics
in figure 49 that we are only using the outputs to estimate our system. We have to
remember that in our simplified model, the position of the cart is the input to the
pendulum process, that we are about to estimate now.

theta theta output,
F The "real” = » Sensor Sensors
0S
>» system p | »] {th(t) pos(t) t} | Pendulum

l Mux P parameter >
system D position output [_; estimator {b1p b2p a0p a1p a2p}
model O Mux2 (parameters of pendulum

Clock SIMULINK-time MATLAB process)

functions

Figure 49 The structure of our pendulum parameter estimator

Discretizing our pendulum system model from before, G(s) = -s"2/(s"2+g/L), with
L=1,0 and Ts=0,01 in MATLAB to see what we can expect from our estimator, gives B
=[-1.0000 1.9995 -0.9995]and A =[1.0000 -1.9990 1.0000]. This means that
now we are going to have to estimate the b0 term too. See the program listings for
further information of how the RLS estimators function.

A modified semi on-line strategy

However, our biggest problem here is not how many parameters we will need to
estimate, but rather how to gather sufficient information to be able to do the estimation.
This problem has been tackled by P.Albertos, R.Sanchis and A.Sala at Universidad
Politecnica de Valencia,Spain (2). They present an estimation strategy that mainly
suggests that when there are no available data, the output of an adaptive observer is
taken instead and being fed into the estimator, via well formed filters. To deal with data
that occur in between two samples they propose to interpolate the measurement between
the last sample and the coming sample to proportion the values that are fed to the
estimator. Then the estimation can work fully on-line, and always with the freshest
possible values to use for a control.

Now, considering a rather low data availability rate, given the sensors and
continuous position measurements, I have chosen to use a modified version of their
strategy. We will use a semi on-line strategy that provides us with as correct parameters
as possible, but with the delay of one measurement. We assume that at time k we have
earlier estimations of the parameters & , P, K stored, the last 5 values of the angle-

56

sensors and a vector of timestamps, when they occured. Also, we need a vector that
contains all the position output samples measured from the time for the first angle/time
vector value. Parameters € , P and K are the vectors/matrix that our normal RLS
estimator uses, and remembers between the samples. So, whenever a sensor is passed by
the wire, the algorithm is activated.

1.

Recall the values of parameters 8 , P and K, the position measurement vector
and finally the angle-time vector and the position output vector saved from the
last calculation.

Add the last measurement, th(k) to the angle-timestamp vector. We now have the
vector with the last 5 measurements {th(k-4) th(k-3) th(k)} , where k is
the time for the last measurement.

With the vectors, perform the best possible interpolation of the angle as a
function of time. In this case I have chosen to use the spline-function of
MATLAB to mimic the behavior of the real system.

Now, sample the obtained function with the actual sample time and form a
vector the is matched with the position output vector.

Run the RLS-algorithm described in the previous section from where it was
stopped the last time, time(k-2), to time(k-1). Since spline approximates the
derivatives and second derivatives in the end point with pure guesses, it is not
advisable to use the approximation from time(k-1) to time(k).

Store the new values of parameters 6 , P and K. Take away the values from
time(k-4) to time(k-3) in the vectors and store theses as well.

When a new measurement comes start from position 1 with the new parameters
6 , P and K, and the stored vectors.

As we see we still have a recursive strategy, so the calculations will always take a
finite time. However it does demand rather much computational time since it is saving
the work in batches for when a new measurement occurs. In semi code the function will
have the following aspect. It always provides the latest calculated set of parameters and
needs to be called every sample period.

Function [A,B]=CalculateParameters(y,x,time) ;

begin

static var theta, K, P , x, yvector(vector of 5), timestamp(vector of 5)
static var xvector (unlimited list), timevector(unlimited list) ;

Fill the xvector and timevector with the latest values
if vy == 0

Make a 1 step shift in yvector and timestamp to make room for the latest sample
Fill the last position of yvector and timestamp
splineresult:=spline interpolation of yvector/timestamp over the timevectoxr

abscissa.
For i := TimeLastCalculation : sampletime :timestamp(size-1)
[Theta,K,P]=RLSestimation (Theta,K,P,splineresult{i-2:1i),xvector(i-2:1);
end

57

end
B=theta(l:NumeratorTerms) ;
A=theta (NumeratorTerms:size(theta)) ;
end

Worth mentioning is that the problem that the data from the sensors might come
between two samples, or cover two or more sample periods is ignored in this algorithm.
In the first case, where the sample comes between two samples we make sure that the
value is put into the position of the next sample position. If many samples are covered
when the wire passes, we can take the value of the middle sample position and use this.
The most important thing about this in the algorithm is that the sample vector does not
get filled by values from the same sensor at the same occation.

Results of pendulum process estimation

First of all we take a look at how good the approximation with spline functions is.
As we see in figure 53, the approximation is very good. I refer to mathematical literature
(10) in numerical methods for further explanation of the cubic spline-functions.

The dotted line is
the “real” output

-6 and the whole our .
estimation
-8t i
10} .
_1 2 L 1 1 L L 1
0 1 2 3 4 5 6 7

Fignre 50 The spline approximation of our sensor-outputs, the circles are the sensor values

When we use the algorithm described above our estimator has an impossible task to
perform when we have few measurements to estimate from. Therefore I have chosen

58

to use a good guess during the first four or five measurements, while the vectors are
getting filled with meaningful information.

0 20 40 60 80 100 120 140 160
Sample Periods

3
2
L d
0 e eSS -
\
-1
2k -
2 100 200 300 200 500 600 700

Sample Periods

Figure 51 Estimation Result for a system with L=1 (upper image), and for
L=5 (lower image), the horizontal lines are the precalulated
“orrect” values

An important observation that I made is in its place to mention. To get results from
the pendulum parameter estimation, we have to make sure we get sufficient exitation of
the system. In the examples above the old control from before was employed, but fed
with a pure step input instead of the ramp-step that we used before to smoothen the
control. This I had to do to get a signal sufficiently abrupt from the angle output. Our
control from before is simply too smooth and nice to estimate the parameters well.

59

ADAPTATION, POSSIBILITIES

So, for what should we now use our estimated parameters? There may be many
answers to this, ours could be to improve the control that we have made. As we saw in
the control chapter the control works well with all the correct process parameters. That
is, when the control is tuned after the true parameters of the system. As we recall there
are four physical parameters of our system, the mass of the cart, M, the mass of the
cargo, m, the friction coefficient of the cart against its rail, k, and the length of the wire,
L.

THE ADAPTIVE POSITION CONTROL SYSTEM

We saw in the chapter before that we are now able to estimate the complete discrete
transfer functions of our system. Some questions remains though. What happened to the
parameter m in our model ? It just disappeared from our functions.

The truth is that that parameter plays a small role in the position transfer function
part. With our assumption that the middle term of equation 2 can be eliminated if m is
relatively small it will not appear at all in the transfer function. When we estimate the
parameters of this part, we assume a second order system, and this proves to cover the
possible deviations caused by the m. Since the estimates are stable and do not move
hardly anything from the “model” estimates, we can conclude that this part is not very
much affected by variations of m. Maybe we could add it to M as a sort of total mass of
the system, but provided that m << M, it does not make a big difference.

If we want to improve the function of the position control, we have to do something.
We want it to have a fixed behavior so that the anti swing control can act normally even
when M, m or k changes. The first thing to try would be to make the control for the case
of a pure double integrator, that means that k=0, and then try to estimate the M, that
would be reduced to a constant in front of the position transfer function. This M would
then be fed back as a multiplying factor on the input to the system.

The estimation of only one parameter can be done with Reduced Parameter RLS,
that allows us to do just that. With a model of the continuous system and sampled data,
we can isolate one or more parameters of the continuous system and estimate them.

A question that arises is if we really need to estimate and change the control for the
mass M. I would say that very rarely the mass of the cart above, that is a part of the
crane, and that will not change, need to be estimated. However, two other parameters, k
and m, may change and since our parameter estimation from before gives us the whole
truth about the system it may be useful to do the parameter estimation. Then pole-
placement techniques or other methods can be used to make the control. The need for
adaptive control has to be examined thoroughly. Maybe a control robust enough can
handle the possible deviations in k and m.

60

- t u pos
Controller = @ Pos.proc.
M
Mass-
estimator

Figure 52 A simple possibility of adaptive control of onr position control

THE ADAPTIVE ANTI SWING CONTROL SYSTEM

Now we look at the function of the anti-swing control. Here we have the case where
a possible robust control could save us the trouble of the rather time consuming, but
possible estimation and adaptation algorithm. We saw before that the adjustment and
convergence of the estimator might be too slow for the control.

With more reasonable initial guesses of the process parameters from the beginning a
better result is reached for control purposes. In the examples I used [0 0 O O O] as the
initial values for the RLS algorithm, to show convergence. This can of course be
improved with more realistic guesses. It seems to be more difficult for the control to
handle shorter pendulum lengths, whereas longer pendulums does not cause as much
problems. Therefore it is recommendable to start with initial guesses of too short
pendulums.

This once again bring up the question of the necessity of adaptive control. We may
experience problems caused by the parameter m. In the physical world, the mass of the
cargo will affect the swing characteristics of the system. Imagine that in the moment of
passing the vertical line where the swing angle is zero, here the mass has a velocity, and
therefore contains a certain amount of movement energy (m*v*v)/2. Now, when the
pendulum reaches the end position the potential energy that it contains now has to be the
same. The height, alternatively swing angle, will always depend on the existing energy
in the system. When we add energy from outside the system the m affects the height the
mass will reach and therefore also the swing-angle. The most probable effect that it will
have is as a constant in front of the transfer function, with little effect on the dynamics,
the swing frequency characteristics.

The parameter L will have this effect as well, but it affects also very much the own
frequency of the system. As we remember, the square root of the gravitation divided

61

by the square root of L is the own frequency of the undamped system that we have. I
have tested the swing control with various values and found the control to be rather
robust and indifferent for different values of L. However, the estimation of the system
constant, the coefficient of the first term in the numerator of the transfer function, could
be used to feed back an amplifier factor as in the case with M in the position control to
help the anti swing control somewhat.

As we remember from the control chapter, when we made the pole placement of the
anti swing control with the root locus method, that all values of P, the proportional feed
back were stable. This means that our system will be stable for all lengths of the
pendulum, but we also said that for higher frequencies we may have problems caused by
model errors and lack of model following of the position control in the higher
frequencies.

My suggestion is to improve the robustness of the control to avoid the necessity of
adaptive strategies in the system. First when this shows to be difficult, the adaptive
control should be contemplated. Our parameter estimations may however be useful for
other things. As in the Albertos, Sanchis, Sala paper, a similar strategy is used for fault
detection. The small mass m, of the cargo is continuously detected to discover fast
changes at an early stage. A fast drop in the mass would mean a load drop, and is of
course of great interest for the owner of the load if no one else.

Other uses of the parameter estimation would be similar applications where it is
needed an adaptive algorithm and it is dealt with scarce measurements like in our
application with the crane. Then the semi on-line algorithm described earlier may be
employed as well if the real time demand is not to hard.

62

CONCLUSIONS

SUMMARY

In this project I have made the control of a gantry crane. First I modeled the crane
and verified the model. Then I made a control of it assuming full knowledge of its
variables. A discrete signal was introduced instead of the continuous outputs from the
crane. This brought up the need for an observer. The observer was implemented in the
model with a time variable Kalman filter. Good results were achieved with the original
control and the new observer.

The system was sampled and the new discrete system verified. Finally tests were
made with estimation of the system variables for possible adaptation algorithms in the
control. The trolley part of the system, gives continuous measurement and is easy to
estimate with a 2 degree polynomial function. The discrete output signal of the
pendulum/wire was treated with a semi on-line estimation algorithm and is also
estimated with a 2:nd order function.

CONCLUSIONS

The control shows a simple and understandable solution to the pendulum
stabilization problem. It shows how ordinary PID control can be succesfully employed
in such problems. The characteristics of the control are very good, and with the control
simulated in this paper the cargo swings to a maximum of 2,5 degrees and moves with a
speed of approximately 1 m/s for a crane model with wire-length 1 meter, cart weight 2
kilograms and cargo weight 0,2 kilograms.

A very important relation in the physical process is that the swing-angle and swing
acceleration are directly proportional to the acceleration of the cart. The maximum
speed of the crane is not that interesting in these aspects, only the acceleration. We have
to take into account how the reference signal affects the control when it is designed. A
ramp position reference causes static error of the signal.

The variables that we want to minimize are the acceleration of the cargo, the
maximum swing angle and the time demand to reach goal position. During the control
design, the physical properties were the main factors that I worked with. With the
demonstrated control, the acceleration of the cart is made very smooth to minimize
swing.

In the control the variables used are only the position and swing angle of the system.
Velocities and accelerations are not directly used. However, in the PID loops we see that
the signals are derived and integrated, and fed back. This means that we really are
“observing” these states in the PID.

63

The missing data case, where we get information from sensors was solved with two
parts, one ordinary least square parameter estimator and another with a modified
algorithm. In this project the main and most interesting problem has been to solve the
problem with the missing data control.

The developed algorithm for parameter estimation seems to work well, and can be
generalized to transfer to other similar problems. In this case the cubic spline function
approximated the swing behavior very well. Depending on the demand for low noise
and correct model in the estimation approximations of varying degree may be employed.
For other applications other approximating functions may need to be used with the same
algorithm.

Before using these results and applying them to a real world situation, the validity of
the assumptions made and necessity of adaptive control have to be carefully
investigated.

64

8.
9.

REFERENCES:

The MATHWORKS Inc SIMULINK- Dynamic System Simulation Software. Handbook of
SIMULINK with examples

P.Albertos, R.Sanchis and A.Sala (1995) Digital model parameter estimation with missing data,
Departamento de Sistemas, Computadores y Automatica, Universidad Politecnica de Valencia
Albertos, R. Sanchis and A. Sala (1994) Fault-detection via parameter estimation in continuous-time
systems with random sampling (scarce measurements), Departamento de Sistemas, Computadores y
Automatica, Universidad Politecnica de Valencia, Proc. Of 4t Symposium Low Cost Control Sept.
1995 Buenos Aires, Argentina

Ho-Hoon Lee, Sung-Kun Cho, Jae-Sung Cho,(1997), A new Anti Swing Control Of Overhead
Cranes, The proc. of ASI 97 Kyongju, Korea

Karl Johan Astrém Bjorn Wittenmark. Adaptive Control, 2" edition. Addison-Wesley Publishing
Company Inc. (1995)

Karl Johan Astrom, Bjorn Wittenmark, Computer controlled systems, theory and design. 2" edition.
Prentice Hall international Inc.(1990)

John J. D’ Azzo & Constantine H. Houpis, Linear control system analysis and design, Conventional
and modern. McGraw Hill Book Company. (1975)

Jerry M.Mendel Lessons in Digital Estimation Theory. Prentice Hall, Inc. (1987)

Johan Eker, Karl Johan Astrém, A nonlinear Observer for the Inverted Pendulum

10. Angel Valera, Master CAD/CAM, funciones spline (Spanish textbook) (1990)

65

APPENDIX

INITIALIZATION FILES :

The initialization file that were used before every simulation to set the important
parameters of the system:

tid=[0.49 49101111 12 28 28 30]’;
T=[0.12.1207;
Inp=[00 10 10]’;

M=2;m=.2;

L=1;

k=.5;

K=k;

£=9.82;

sat=50;
wo=sqrt(g/L);
Tperiod=2*pi/wo
Ts=.01

SYSTEM TRANSFORMATION FILES

System transformations were used to make the matrices and other parameters for the
block diagrams in SIMULINK. Makecont and Makedisc were often used from the
initialization file, to provide the SIMULINK models with data.

function [A,B,C,D] = makecont(M,m,L,k)

% [A,B,C,D]=makecont(M,m,L,k) takes the parameter
%values of

% M=mass of cart

% m=mass of pendulum

% L=length of pendulum

% k= frictioncoefficient of cart

%

%as arguments and produces the state space model
A=[0-9.82*¥(M+m)/(M*L) k/(M*L) 0;

1 0 0 0
0 m*9.82/M -(k/M) O;
0 O 1 0]

B=[-1/(M*L) 0 1/M 0]’;
C=[0100;0001];
D=[00r;

end

66

MAKEDISC, to make the discrete version

function [A,B,C,D] = makedisc(M,m,L,k,Ts)
% [A,B,C,D]=makedisc(M,m,L k) takes the parameter
%values of
%
% M=mass of cart
% m=mass of pendulum
% L=length of pendulum
% k= frictioncoefficient of cart
% Ts=SampleTime
%
A=[0-9.82*(M+m)/(M*L) k/(M*L) 0O,
1 0 0 O
0 m*9.82/M -(k/(m+M))*(1+m/M) 0;
0 0 1 O0f
B=[-1/(M*L) 0 (/(M+m))*(1+m/M) 0]’;
C=[0100;0001];
D=[00T’;
[A,B]=c2d(A,B,Ts);
end

SENSOR SIMULATION

This little simple program takes the new value and the last value of theta and checks
if a “sensor” has been passed. It gives no output if that is not the case. The last input (k-
1) I provide through a delay of one time unit. In the simulation this has been set to Ts/10
to pretend a continuous time-space.

MAKEOUT, to simulate the Sensors from the continuous input.

function [out]=makeout(thnew,thold,angles);
%Makeout3 makes the calculation for
%the output Theta. Interrupted.
salange=0;
for I=1:max(size(angles)),
if((salange==0)&(((thnew-angles(I))*(angles(I)-thold)) >0))
salange= angles(I);
end
end
out=salange;
end

ANIMATION FUNCTIONS

The animation consists of three functions. The main function is called anim is a S-
function where we use that the flag=0 is only called once, and therefore the intialization
is performed then. In anim.m we see that in case of flag=0 the initialization procedure
animQ is called. Then on any flag call the function animast is called. Animast erases the
old picture and draws the new picture in the same window. The programs are

67

modifications of MathWorks own demonstration files for animation with MATLAB.

function [ret,x0] = anim(t,x,u,flag,offon)
if flag==0,
if offon==1; animO;end;
x0=[];ret=[000200];
elseif (flag==2)
[flag.fig] = figflag(’Crane Visualization’,1);
if offon==1,
if flag,
ud = get(fig,’UserData’);
animast(t,ud,u);
end;
end;
ret =[];
else
ret =[];
end;
% end anima

function animO

CurrentBlock = get_param,;
sys = get_param(CurrentBlock, Parent’);

TimeClock = 0;

%RefSignal = str2num(get_param([sys ’/* RefBlock],"Value’));
XCart = 0; %u(2);

theta = 0; %u(1);

XDelta=0.3;

PDelta=0.1;

FigureName = ’Crane Visualization’;

XPendTop = XCart; % + 10*sin(Theta); % Will be
YPendTop = 0; %10*cos(Theta); % Will be 10
XPendBottom = XCart- 5*sin(theta);

YPendBottom = -1*cos(theta);

PDcosT = PDelta*cos(theta); % Will be 0.2

PDsinT = -PDelta*sin(theta); % Will be zero

Figures = get(0,”Chil’);
for INDEX=1:length(Figures),
if stremp(get(Figures(INDEX), Type’), figure’),
if stremp(get(Figures(INDEX),’ Name’),FigureName),
Fig = Figures(INDEX),
set(0,”CurrentF”’ Fig);
FigUD = get(Fig,’UserData’);
%Cart = FigUD(1);
%Pend = FigUD(2);
%TimeField = FigUD(3);
%set(TimeField,”String’ ,num2str(TimeClock));

% Time to exit the routine
return
end % if right name
end % if ifigure
end % for INDEX

68

%o %0 % To Fo %o Yo %o Yo %o %o Yo Yo To Yo Yo Yo To %o Yo To Yo Yo Yo To To o To To Fo o To To Fo To o To To Fo To o To Fo Yo o Fo o To Fo Fo Fo
% Due to *return* above, rest of code only executed if creating animation
Yo% % Yo %o To Yo To o %o %o Jo To Yo To %o Yo Yo Jo Yo To To To To To Fo To To To Fo Fo Fo To Yo To Fo To Yo Fo Yo Yo Fo o Fo To Yo %o Yo Fo To Fo

Fig = figure(’Unit’,’pixel’,”Pos’,[100 100 800 450],"Name’ ,FigureName);
axes(’Unit’,”pixel’,’Pos’,[50 100 700 300],’CLim’,[1 64], ...
"Xlim’,[-3 13],”Ylim’,[-4 2],’Vis’, on’);%,’ off’);
Cart = surface(’ XData’ ,ones(2,1)*[XCart-XDelta XCart+XDelta], ...
*YData’,[.3 .3 ; 0 0],"ZData’,zeros(2),’CData’ ,ones(2), Erase’,’xor’);
Pend = surface(’XData’,[XPendTop-PDcosT XPendTop+PDcosT; ...
XPendBottom-PDcosT XPendBottom+PDcosT], ...
"YData’,[YPendTop-PDsinT YPendTop+PDsinT; YPendBottom-PDsinT YPendBottom+PDsinT], ...
"ZData’ zeros(2),’CData’,11*ones(2),’Erase’,’xor’);
uicontrol(Fig,’Style’, text’,”Unit’,’pixel’,’ Pos’,[300 35 100 25], ...
"Horiz’,’right’,’String’,’ Time:);
TimeField = uicontrol(Fig,’Style’,’text’,”Unit’,’pixel’, ...
*Pos’,[400 35 100 25],"Horiz’,’left’,’ String’ ,num2str(TimeClock));

uicontrol(Fig,’Style’,’push’,’Pos’,[40 40 70 20],’String’,’Playback’, ...
*Call’, ...
['ud = get(gct,”’UserData’*);’ ...
“if exist(’t’)==1," ...
* for i=1:length(t),” ...
» testast(t(i),ud,y(i,2)); ...
> end,” ...
‘else,’ ...
> disp(’’Must run simulation first.””),” ...
“end’]);
set(Fig,”UserData’,[Cart Pend TimeField],’NextPlot’, replace’);
drawnow
% end anim0

function animast(time,ud,u)

%PENDSETS Animation for the inverted pendulum demo.

% PENDSETS(TIME,UD,U) uses set to position the graphic objects
% for the inverted pendulum demo. UD contains a vector

% of handles [Cart Pend TimeField SlideControl RefMark].

% Copyright (c) 1990-94 by The MathWorks, Inc.

XDelta = .3;

PDelta=0.1;

XPendTop = u(1); % + 10*sin(u(2));

YPendTop =0 ; %10*cos(u(2));

XPendBottom = u(1)+ 5*sin(u(2));

YPendBottom = -1*cos(u(2));

PDcosT = PDelta*cos(u(2));

PDsinT = -PDelta*sin(u(2));

set(ud(1),”XData’,ones(2,1)*[u(1)-XDelta u(1)+XDelta]);

% get(ud(1),’XData’)

%set(ud(1),’XData’,[u(1) u(1)*2)),

set(ud(2),’XData’, ...
[XPendTop-PDcosT XPendTop+PDcosT; XPendBottom-PDcosT XPendBottom+PDcosT], ...
"YData’,[YPendTop+PDsinT YPendTop-PDsinT;YPendBottom+PDsinT YPendBottom-PDsinT]);

set(ud(3),” String’ ,num2str(time));

% Force plot to be drawn

pause(0)

drawnow

% end animast

69

OBSERVER FUNCTIONS

In the control two unconventional observers were used, one continuous, and later the
discrete version of this. Below we can see how the continuous version works.

OBSERVER CONTINUOQUS
function [sys, x0] = sfunobserv(t,x,u,flag,nstates,A,B,C,Ktest)
global Kmatrix Kmatcont Re Ry

%u(1)=forceinput,u(2)=thetaout,u(3)=xposition

if abs(flag) == 1, % If FLAG==1, then SIMULINK is looking for the next state derivative, dx

P=zeros(nstates);

P(:)=x(nstates+1:nstates+nstates*nstates);

ifu(2) ~=0,
dx= A*x(1:nstates)+B*u(1)+Kmatrix*([u(2);u(3)]-C*x(1:nstates));
dP= A*P+P*A’+Re-P*C’ *inv(Ry)*C*P;

else
dx= A*x(1:nstates)+B*u(1)+Kmatcont*(u(3)-[0 0 0 1]*x(1:nstates));
dP= A*P + P*A’ + Re - P*[0 0 0 1] *inv(Ry(2,2))*[0 0 O 1]*P;

end;

sys = [dx;dP(:)];

elseif flag == 3, % If FLAG==3, then SIMULINK wants to know what the next output is.
P=zeros(nstates);
P(:)=x(nstates+1:nstates+nstates*nstates);
sys = [x(2),x(4)]’;

Kmatrix = P*C’*inv(Ry);
Kmatcont=P*[0 0 0 1]’/Ry(2,2);

elseif flag == 0, % sizes(1) = number of continuous states
sizes(1) = nstates+nstates*nstates; % sizes(2)=discrete states
sizes(2)=0; % sizes(3) = number of system outputs (length of output y)
sizes(3) =20; % sizes(4) = number of system inputs (length of input u)
sizes(4) = 3;
sizes(5) = 0;
sizes(6) = 0;

Kmatrix=[0 0;0 0;0 0;0 0];
Re=[20000 0 0 0;0 200 0 0,0 0 1000 0;0 0 0 100];

Ry=[100;
01];
P=[2.5¢4 0 0 O;
0 25000 0O,
0 0 100 O
0 0 0 100];
x0 = [zeros(nstates,1);P(})];
sys = sizes’;
else
sys=[l;

end % if abs(flag) == ...

70

In the discrete version the only part that I changed was the case of flag=1 that was
changed to the corresponding discrete flag=2 call. In the code the following changes
were made.

if abs(flag) == 2, % If FLAG==2, then SIMULINK is looking for the next state derivative, dx

P=zeros(nstates);
P(:)=x(nstates+1:nstates+nstates*nstates),

Kmatrix = A*P*C’*inv(C*P*C’+Ry);
Kmatcont=A*P*[0 0 0 17’ *inv([0 0 0 11*P*[0 0 0 1]"+Ry(2,2));

ifu(2) ~=0,
dx= A*x(1:nstates)+B*u(1)+Kmatrix*([u(2);u(3)]-C*x(1:nstates));
dP= A*P*A’+Re-Kmatrix*C*P*A’;

else
dx= A*x(1:nstates)+B*u(1)+Kmatcont*(u(3)-[0 0 0 1]*x(1:nstates));
dP= A*P*A’ + Re - Kmatcont*{0 0 0 1]*P*A’;

end

sys = [dx;dP(2)];

POSITION SYSTEM RLS-ESTIMATOR

In the system an ordinary RLS estimator was used. This I employed to find out the
true characteristics of the cart system. This algorithm is discrete and was therefore used
with the sampled system. It can however be used together with any system

function [sys, x0, str, ts] = rlsests(t,x,u,flag,nstates,lambda,dt)
%RLSESTS S-Function to perform system identification.

% This function performs parameter estimation using the Recursive Least Squares
% Parameter Estimation Algorithm with Exponential Data Weighting

%

% The input arguments are

%

% nstates: the number of states in the states vector
% lambda: the exponential data weighting factor

% dt: how often to sample points (secs)

%

% The RLS estimator is defined by the following equations:

%

% 1 P(k-2) * phi(k-1) * [y(k) - phi(k-1)’theta(k-1)]
%o theta[k] = theta[k-1] + o

% lambda lambda + phi(k-1)’ * P(k-2) * phi(k-1)
%

% 1 P(k-2) * phi(k-1) * phi(k-1)" * P(k-2)

% Pk-1) = N

% lambda lambda + phi(k-1)’ * P(k-2) * phi(k-1)

%

% where:

%

% theta: the parameter estimates

% phi: the state vector

% P: the covariance matrix

71

% lambda: the exponential data weighting factor
%

if abs(flag) ==2 % flag = 2 --> real time hit
% sample hit, return the next discrete states, which are the
% next parameter estimates

theta = x(1:nstates); % parameter estimates
P = zeros(nstates,nstates); % get covariance matrix
P(:) = x(nstates+1:nstates+nstates*nstates);

yk = u(nstates + 1); % system output

phi = u(1:nstates); % state vector

est_err = yk - phi’ * theta; % estimation error

den = lambda + phi’ * P * phi; % lambda + phi’ * P * phi
theta_new = theta + P * phi * (est_err / den); % new parameter estimates
Pnew = (P - P * phi * phi’ * P/den) / lambda; % new covariance

sys = [theta_new’, Pnew(:)’]’; % return them

elseif flag ==4 % flag = 4 --> Return next sample hit
sys = [I;

elseif flag==0 % flag = 0 --> Return sizes of parameters and initial conditions
sys(1) =0; % 0 continuous states

sys(2) = nstates+nstates*nstates; % enough discrete states to hold the estimates
% and the covariance matrix

sys(3) = nstates; % nstate estimate outputs

sys(4) = nstates+1; % nstate+1 (regression vector + system output)
% inputs

sys(5) = 0; % 0 roots

sys(6) =0; % no direct feedthrough

sys(7)=1; % 1 sample time

% initialize the covariance matrix and initial estimates

P = eye(nstates, nstates) * 1e6;

x0=[[.1.100],PC)T; %initial guess for a too light system,
%so that the first control signals
%will not be too big

ts = [dt, 0];

elseif flag == % flag = 3 --> Return outputs, only at sample hits
sys(:) = x(1:nstates);

else
sys = [I;

end

PENDULUM PARAMETER ESTIMATION

In the estimation of the pendulum parameters a semi on-line recursive algorithm was
employed. The code is divided into two parts. In the function recest the collection of
data is performed. When there is a measurement, the vectors are prepared and sent to the
other part which is the RLS estimator that takes care of the batch-process of estimating

recursively all the approximated data inbetween two measurements.

72

PENDULUM ESTIMATION SEMI RECURSIVE ALGORITHM
function [thetaut]=recest(yin,uin, Ts, t,LengthGuess)

global maxtime numeratoren denominatoren tidsraknare yvector

global posvector timevector minsens lasttimevalue thetatheta postimevect

Yocollect all values of x in one vector
%and all the values of theta=/=0
if(t==0)

maxtime=0;

timevector=[0];

posvector=[];

yvector=[0];

lasttimevalue=0;

minsens=110;

postimevect=[];

thetatheta=[0 0 0 0 07’;
tidsraknare=0;

[numeratoren, denominatoren] = c2dm([-1 0 0],[LengthGuess 0 9.82],Ts,’zoh’);

end
nuevovalor=0;

%make sure SIMULINK is not jumping backwards when we calculate
maxtime=max(maxtime,t);
% to get the last possible value of the sensors

if(yin~=0)&(minsens>abs(yin))
minsens=abs(yin);
end

%create the value-time vector ,nyvekt, fill with zero if zero is passed

lastsensout= yvector(max(size(yvector)));
lasttime= timevector(max(size(timevector)));

if (maxtime==t) & (yin ~= 0) & ((yin ~= lastsensout)l(abs(lasttimevalue-t) > 2*Ts))

if (abs(yin)==minsens) & (abs(yvector(max(size(yvector))))==minsens)
fyllvarde=(yin+lastsensout)/2;
yvector=[yvector; fyllvarde];
timevector=[timevector;(t+lasttime)/2];
if fyllvarde ~= 0 %if we are only "touching" the "0" fill one more position

yvector=[yvector; fyllvarde];
timevector=[timevector;t-.1*(t-lasttime)];

end
yvector=[yvector; yin];
timevector=[timevector;t];
nuevovalor=1;
lasttimevalue=t;

else
yvector=[yvector; yin];
timevector=[timevector;t];
nuevovalor=1;
lasttimevalue=t;

end

end

73

%if there are no new values coming in assume angle = 0;

if(yin==0)&((t-lasttimevalue)>=1.0)&(abs(yvector(max(size(yvector))))==minsens)
yvector=[yvector; 0];
timevector=[timevector;t];
nuevovalor=1;
lasttimevalue=t;
end

%make the time-vector against the position inputs

if (t>=tidsraknare)&(t==maxtime)
posvector=[posvector uin];
postimevect=[postimevect t];
tidsraknare=tidsraknare+Ts;

end

%spline part to approximate curves and fake a regular sampling
if (nuevovalor ==1)& (rem(max(size(yvector)),4)==0) %Make estimation every 4:th input
xi=0:Ts:t;
yi = spline(timevector,yvector,xi);
yi(1)=0;yi(2)=0;yi(3)=0;
posi = spline(postimevect,posvector,xi);
%%plot(timevector,yvector*180/pi,”o’,xi,yi*180/pi)
%uncomment to see the spline approximation
if(size(yi)==size(posi))
thetatheta=estpen(yi’,posi’,LengthGuess,Ts); %RLS-estimation of the vector.
end
elseif<=4 %give an initial guess to system
thetatheta=[-denominatoren(2:3) numeratoren]’;
end

thetaut=thetatheta;

74

The second part is mainly the same as the ordinary RLS algorithm that we used in
the S-function before. Now we cannot make use of such a function, since we only want
to calculate the new estimations in case of new data. This takes the last data points and
uses them for the estimation.

PENDULUM RLS-ESTIMATION ALGORITHM

function [thetaut]=estpen(yin,uin,Lguess,Ts)
%flopcount=flops;

lambda=.999;

P =eye(5, 5) * 1e6;
theta=[00000]’;
nstates=2;

[num, den] = c2dm([-1 O O],[Lguess 0 9.82],Ts,’zoh’);
theta2guess=[-den(2:3) num]’;
thetaguess=theta2guess;

thetavekt=[];

yin = [0; 0; yin];
uin = [0; 0; uin];

for r= 3:max(size(yin))

vk = yin(r);
phi = [yin(r-1) yin(r-2) uin(r) uin(r-1) uin(r-2)]’;

est_err = yk - phi’ * theta;

den = lambda + phi’ * P * phi;
theta = theta + P * phi * (est_err / den);
P=(P- P * phi * phi’ * P/den) / lambda;
thetavekt=[thetavekt theta];
end

%flopcount=flops-flopcount

hold off;

figure;plot(thetavekt’);hold on;

plot([1 max(size(thetavekt))],[theta2guess theta2guess]);
axis([0 max(size(thetavekt)) -3 3])

thetaut=theta;

75

