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Figure 1 A system with two inputs and two outputs.

1. Introduction

Many systems in industry are multivariable, meaning that they have more
than one input and more than one output. Additionally there exist interactions
between the different inputs and outputs in such way that one input signal
has influence on more than one output signal. A system with two inputs and
two outputs can be described as shown in Figure 1. In Figure 1 we call G13
and G, the main transfer functions, while G5 and (g1 are called interactions
elements.

A control system for controlling y; and y; can be described as shown
in Figure 2. As for single-input-single-output systems there are some system
criteria such as stability, speed and static accuracy that must be satisfied.
Another important criteria is low interaction, which means that we can change
the value of one of the outputs without large influence on the other output.

Poorly tuned control loops represent a large economic cost for industry.
Control parameters are often manually tuned. Most modern multivariable con-
trol design methods require a full model of the system. In many cases such
a model is not available. Then we need to identify the system which usually
takes time and requires very good engineering skills. For SISO systems there
exist simple methods for automatic tuning of SISO control loops [Astrém and
Héigglund, 1984].

In this master’s thesis, we try to extend the SISO tuning technique to mul-
tivariable systems. Tt will be applied to the multivariable laboratory system,
consisting of four interconnected water tanks. The target is to control the level
in the bottom two tanks with the help of two pumps. This laboratory system
will be referred in the following sections as the quad tank system.

The linearized model of the quad tank system has a multivariable zero
which can be located in either the left or the right half plane by simply chang-
ing the positions of the valves, v and <. See Figure 3. The influence of the
location of the multivariable zero on control performance will be also inves-
tigated. This process has been previously studied in [Nunes, 1997] and [Jo-
hansson, 1997]. We will study the control results achieved by extending the
methods used in SISO systems to our multivariable system. This method will
be referred to as “SISO Controller Tuning”.

An extension of the single-loop relay auto-tuner to the MIMO case will
be studied. This method was proposed by Vasnani [Vasnani, 1994] and is a
combination of sequential loop closing and single-loop relay tuning. To tune
each loop a single relay is used to determine the corresponding critical point,
and the Ziegler-Nichols settings with some modifications are then employed,
[Ziegler and Nichols, 1943]. This method will be referred to as “Sequential
Controller Tuning”.
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Figure 2 A multivariable control system.

A modification of the Sequential method is also discussed, [Johansson,
1997]. Tn this method we try to identify a more complex model of the system
and thereby design a better controller. This method will be referred to as
“Extension to Sequential Controller Tuning”.

A complete new method for auto-tuning fully cross-coupled multivariable
PID controllers from decentralized relay feedback will be also studied, [Wang
et al., 1997, First, from the decentralized test, the frequency response-matrix
and steady-state matrix are identified. Then, a new set of design equations are
used to design the controller parameters. This method will be referred to as
“Decentralized Controller Tuning”.

The outline of the thesis is as follows: In Section 2 we describe the quad
tank system and refer to its main characteristics, We derive also the physical
transfer functions from control signals to measurement signals. In this Section
we discuss also the pairing problem, i.e., how the pairing of the manipulated
and controlled variables influences the ability to control the system. The in-
troductory part of Section 3 contains review material about automatic tuning,
which helps the reader to develop an understanding of what automatic tuning
is about. Thereafter we perform the experiments associated with the methods
described above. The experiments are done using two different configurations
of the system, a minimum phase system, where both the systems zeros are
in the LHP, and a non minimum phase system, where one of the systems
zeros is in the RHP. In addition, for the non minimum phase system we per-
form experiments for two various control structures, i.e., the manipulated and
control variables are paired in two possible ways. In Section 4, the design of
a user friendly interface is described. The software used for developing the
graphical interface was InTouch, which is a software used to create PC based
man-machine interfaces.
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Figure 3 The Quad-Tank process.

2. The Quad Tank System

In this Section we derive a mathematical model for the guad tank system,
shown in Figure 3, from physical data. The quad tank system is a non-linear
system., It consists of four interconnected water tanks. The inputs of the system
are u; and uy (the input voltages to the pumps) and the outputs of the system
are y; and g, (the voltages from the measurement devices). There are also two
valves ; and 7a, which influence the balance of the inflows between the upper
and lower tanks. It will be shown later that, by changing the position of the
valves, we also change the properties of the system, i.e., the location of one of
the system zeros can be easily varied to give a system which is more or less
easy to control.

First, we will derive the nonlinear differential equations and then linearize
them around a chosen operating point.

2.1 Derivation and linearization of physical model

A tank with inflow g¢;,, and outflow g, is described with the following relations
(the mass balance law):

dV
E = Gin — GQout (1)

where V is the volume of the tank
gin is the inflow
Jous 18 the outflow



Let A be the eross-section area and b the water level. Then

v dh
=AYy (2)
Equations (1)-{2) give
dh _ @in Qout
d~ A A (3)
The Bernoulli’s law gives us
Gous = A/ 2gh (4)

We assume that the flow generated by the pump is proportional to the applied
voltage, i.e.,

Ipump = din — ku (5)
This is motivated by the fact that the time constant of the pump is small

compared to the tank dynamics. In the same way, assume that the level mea-
surement signal 4 is proportional to the true level h. Thus we write

y=kh (6)
Equations (3)-{5) give the following non-linear equation

@_Eﬁmia\ﬂgh
dt A A

Now that we have derived the non-linear equation for the single tank-process,
we proceed in the same way to derive the equations for the quad tank system
(see Figure 3) and after a little work we arrive at the following equations
[Johansson, 1997]

dh

Ald—tl _= ‘Ylk]_’bh — a1/ 2gh1 -|— a4/ 2gh3
dh

Az”&?z = yokatty — a3/ 2gha + ag+/2ghy

dh
As—dfi = (1 - 72)k2u2 — agy/ 2gh3
dhy

A4g = (1 — y1)kiug — a4/ 2gh4

For a stationary operating point (A9, h3, RS, A, u?, ©3), the non-linear differen-
tial equations gives that

(1— vo)ksul _ agy/29h3
As Az

(1—v)k1ud  as/2gh%
As Aq




and thus

ai\/2gh _ a3 2gh3 N yikgu (1 - ¥2 )kaul 4 yikyul

o 4, Al A
ag\/2gh3 \/2gh° 72k2u2 — 1 g ud . Yokou
Az Az AZ A2

Next step is to linearize the system around a working point. Introducing Ah; =
h; — h? and Au; = u; — u} and doing Taylor expansions of the terms yields
the linearized equations:

A difl = y1k1 Auy — ay \/%Ahq 1 a3 \/%Ahs
Ay dAdf2 = yokaAuy — ay \/;—gh—g—Ahz + as \/%Am
As d"‘;’” = (1 — y3)keAup — \/; Ahy
Aq d‘;:”“ = (1 — 7))k Auy — a4\/;Ah4

A zh,
ai

as z = Ah and u = Aw, respectively. Then

Define the time constants as T; = and rename the states and inputs

-1 Aa k
T 01 ATy f ’Tjhl 1
de _ |0 0w 0w 0 i
dt 0 0 F 0 0 %1:.&
0 =1 gl“”"'fl !ki o
Ty Ay

and
[k 0 00
=10 & 0o

The corresponding transfer function is

e1m1 ci(l—vz
G(S) — 1+sTy (1+sTa (1 +aT1)

ca{l—v1} c2 72
(T+eTs)(1+sT2) 14877
with ¢ = T‘—jﬁ—’fﬁ and ¢ = g%.

2.2 Multivariable Zeros

The linearized dynamics of the quad tank system contain a multivariable zero,
whose location can be easily varied to give a system which is more or less easy
to control. Briefly we recall the definition of zeros in SISO and MIMO systems.

The zeros of a SISO system are the roots of the numerator polynomial of
its transfer function. Depending on the zero locations there are two types of
systems:

Minimum phase systems All zeros are located in the left half-plane



Non-minimum phase systems At least one zero is in the right half-plane

There are many ways of defining zeros of MIMO systems. One of the definitions
that can be used to define the MIMO zeros is: MIMO zeros are those values of s
for which the rank of G(s) drops below its nominal rank. These zeros are often
called transmission zeros. In general, the presence of a MIMO zero implies a
transmission blocking property, then they are invariant under feedback control,
and become the poles of the inverse. These properties imply the difficulty of
controlling a system with a MIMO zero.

The MIMO zeros of the quad tank system are equal to the roots of det G(s)
where

€1Co
1172 [Ti=g (1 + 573)

|1+ sTa)(L+ oT) ~ (=)t - 72)]

det G(s) =
© () 1172

71,72 € (0,1)

Hence, the system has two zeros. One of these is always in the left half-plane.
The location of the other zero depends however on the sign of

_ A -m)(t—7)
Y172

It follows that the zero is in the right half-plane if 7 < 0, i.e.,71+72 < 1, which
means that we have more flow going to the upper tanks and less flow going to
the lower tanks. The zero is in the left half-plane if > 0,ie,y1 +72 > 1,
which means that we have more flow going to the lower tanks and less flow
going to the upper tanks. The zero is in the origin if = 0, i.e., y1 + 72 = 1,
which means that the same flow is going to the upper and lower tanks.

2.3 Parameter Values

To determine the values of the physical constants in the derived model, we
have to measure some components of the quad tank system (like the diameter
of the holes and the tanks) and perform some simple experiments in order to
find the values of the pump constants and valve positions.
The four-tank system consists of two types of tanks which have slightly

different dimensions. Tank 1 and Tank 3 have dimensions

A = 28cm?

a = 0.071cm®

The dimensions of Tank 2 and Tank 4 are

A = 32cn?
a = 0.057 cm®

The constant &, used in the level sensors is
ke = 0.50V/em
The value of the constants associated with the pumps are

By = 3.1cm®/s
ky = 3.3 cm®/s



The values for these constants could vary a little if the voltage fed to the
pumps differs much from the ones used for the calculations.

To determine the values of 4; and 7, we need to do the following: We run
the system until the steady state is reached, Thereafter, from the non-linear
equations for the tanks three and four, assuming stationarity, we extract the
values of v; and -,.

2.4 Minimum Phase System

By setting the position of the valves so that we have more flow going to the
lower tanks, i.e., 1 +92 > 1, both system zeros will be located at the LIIP. Af-
ter experimenting with different input voltages, we arrive at the following sta-
tionary values for the system (hY, h3;+%, ud) =~ (12.4 cm, 12.7 em; 3.0V, 3.0 V).
Then using the expressions derived in this Section knowing that the stationary
level of the upper tanks are (h3, hS) = (1.8 cm, 1.4 cm), we obtain the following
values for the time constants, T}, associated with each tank,

T, = 625
Ty = 80s
Ty = 23s
Ty = 30s

and from the measurements we cbtain

k]_ = 3.33 cm3/s

ky, = 3.35cm®/s
y o= 0.70

Knowing these parameters we can derive the physical transfer function matrix
of the system '

2.6 1.5
_ 1162 14235)(1363a
G(s) = v ¢ 2).(3 )
{1+305)(1+90s) 14903
with the transmission zeros in z = —0.018 and z = —0.060.

2.5 Non-Minimum Phase System

If we instead have less flow going to the lower tanks, i.e., ¥ 472 < 1, one of
the zeros will be located at the RHP. Now, we try to find an operating point
close to the one we got for the minimum phase setting, and after experiment-
ing with different input voltages, we arrive at the following stationary values
(RS, h9;w?, ) =~ (12.6 ¢m,13.0 cm;3.15 V,3.15 V). Then using the expres-
sions derived in this Section knowing that the stationary level of the upper
tanks are (hQ,h9) = (4.8 cm, 4.9 cm), we obtain the following values for the
time constants, 7}, associated with each tank,

T, = 63s
T, = 9is
T — 39s
T, = 563



and from the measurements

k1 = 3.14 cm®/s
ks = 3.29 cm®/s
Y = 0.43
Y2 = 0.34

Then the system transfer function matrix derived by means of physical mod-
eling is

1.5 2.5
. 11863 1+80s(1+63
G(s) = vy ( 1.(6 R
(1+568)(1+491s) 1491s
with transmission zeros in z = 0.013 and z = —0.057. Note that now one of

the transmission zeros is located in the right half-plane.

2.8 The Input-Output Pairing Problem

Given a system with two inputs and two outputs it is possible to choose
two different input-output pairing configurations for the controllers in the
corresponding multivariable interacting control systems. Hence any two-input
two-output system generates at most two different systems which are more or
less harder to control.

Thus, before we begin with various methods for designing controllers we
need to investigate how the pairing of the measured values and control vari-
ables should be done in order to have a system which is easier to control. There
is no simple method for doing this, but an indication can be obtained by the
relative gain array (RGA). This can be computed from the static gains in all
loops in a multivariable system. For the quad tank system the RGA is defined

as
2 _ A 1-A
1—-A A

- C'11(0)G22(0)
= G1a(0)G22(0) — G12(0)G21(0)

where

A

The scalar A has the interpretation

Sy
6u1 )D'Pﬂﬂ

- ( gﬁ_i)cloaed

where (g—t”fl—)open represent the steady-state gain with the first loop open and

(g%)do +oq Tepresent the steady-state gain with the second loop perfectly closed,
ie., y2 = 0.

Bristol’s recommendation for controller pairing is that the measured values
and control variables should be paired so that the corresponding relative gains
are positive and as close to one as possible [Bristol, 1966].
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Figure 4 The Figure illustrating the pairing possibilities.

Let the system inputs and outputs be connected as in the left part of
Figure 4. Then the transfer function of the system is

G111 Gz
Ga1 Gaz

G(s) = [

The zeros of the above system are given by
det G(.S) = G11Ga3 — G12G1 =0

We connect the system as shown in the right part of Figure 4. Then the transfer
function of the system is

G12 Gll

G =
(s) Gy Gn1

and the zeros of the system are given by
det G(s) = G12G21 — G11G22 = U

Notice that we will have the same position of the zeros, meaning that in this

case we will not have any control imitations due to the position of the zeros.

Let us see how the pairing influences the minimum phase system.
Computation of A for two different control structures:

G11(0)G22(0) 14

A= B (0)C0(0) — Cas(0)Cm (0]

G12(0)G2(0)

= Eal0)Cn(0) ~ Cua(0)Go(0) ~

Az

for G11(0) = 2.6, G12(0) = 1.5, G (0) = 1.4 and G»(0) = 2.8.
The relative gain array gives us an indication that the measured values
and control variables of the minimum phase system should be paired as in the

first control structure.
We do the same computation for the non minimum phase system. Compu-

tation of A for two different control structures:

B C11(0)G2(0) ~
= G (0)Cn(0) — Cua(0)Cm(0) ¥

A

G12(0)G21(0)

= Gra(0)G21(0) = Ga1(0)Cma(0)

Az

10



for Gll(O) = 1.5, Glg(O) = 2.5, Gzl(O) = 2.b and Ggg(G) = 1.6.

The relative gain array gives us an indication that the measured values
and control variables of the non minimum phase system should be paired as
in the second control structure.

In the future, for the minimum phase system we will perform tuning exper-
iments only for the plant coupled as in the first control structure. For the non
minimum phase system we will perform tuning experiments for both control
structures.

2.7 Comparison of Experimental Results with Simulations

In this Section we compare the results achieved from the experiments on the
real system with the results achieved from the simulation of the physical lin-
ear model. The purpose of this is to show the good agreement between the
results achieved from the experiments with the results achieved from the sim-
ulations. This comparison will be shown only for the non minimum phase
system, control structure two, and only for the so called method “SISO Con-
troller Tuning” (see Section 3.2).

The physical transfer function matrix of the non minimum phase system,
control structure two, is

2.5 1.5

_ 14+394)(1-+63s 1635
Gs) = | 1.(6 ) 2.5
14+91s (1+564)(1-+914)

This transfer function matrix is used as a simulation model. For the simulated
relay experiments we have used exactly the same relay parameters as we have
used for the real system (see Section 3.2). The same is also valid for the design
of the controller parameters, where we have used the same design equations
(Section 3.2).

A1l simulations are performed in Simulink,

SISO Controller Tuning The results of relay experiments are shown in
Figure 5 and Figure 6. In Figure 7, the responses of the simulated and real
system, controlled by a decentralized PI controller (see Section 3), are given
for a step change of the reference one.

11
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Figure 5 First loop under relay feedback.

model(dashed) and the experiments (solid).
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Figure 6 TFirst loop under relay feedback, The simulated physical linear
model(dashed) and the experiments (solid).

Summary As can be seen, the results from the simulation are very similar
to the results from the experiments. The slightly difference can be explained by
the fact that the simulated model is just a physical. Furthermore, the changing

12
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Figure 7 The results of the non minimum phase system controlled by twe diagonal
PT controllers. Same variables shown as in Figure 5.

of the configuration of the system, i.e., from the minimum phase system o non
minimum phase system and vice versa, has been done a couple of times during
the experiments. This was done by changing the position of the valves. Once
we did that, it was very difficult to go back to the same old valve settings.
All this implies that, the identified physical model may differ slightly from the
teal system.

It must be pointed out that, all the methods have been simulated and
compared with the experiments and the results are of the same nature as the
results shown above, meaning that there is a very good agreement between
the simulations and experiments.

13
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3. Automatic Tuning of Controllers

3.1 Introduction

We start with a brief review of the relay-based auto-tuner for SISO systems.
This method is based on a simple characterization of the system dynamics. The
design is based on knowledge of the point on the Nyquist curve of the system
transfer function (/(s) where the Nyquist curve intersects the negative real
axis. This point is characterized by the parameters k. and ., which are called
the critical gain and the critical period. These parameters can be determined
as in the original Ziegler-Nichols scheme {Ziegler and Nichols, 1943] or as in
the method proposed by Astrém and Higglund [Astrom and Hagglund, 1984].

Their method is based on the observation that a system with a phase lag of
at least 7 at high frequencies may oscillate with period ¢, under relay control.
To determine the critical gain and the critical period, the system is connected
in a feedback loop with a relay as is shown in Figure 8. The error e is then a
periodic signal with the period £.. If d is the relay amplitude, it follows from
2 Fourier series expansion that the first harmonic of the relay output has the
amplitude ‘ir—d. If the system output is a, the critical gain is thus approximately
given by

_4d
—‘JTCI

ke

This result also follows from the describing function N(a)

_ 1

Ta

N{a)

A point on the Nyquist.curve which is different from the critical point is
obtained when the relay has hysteresis (¢). Then, the negative reciprocal of
the describing function of such a relay is given by

JTE
_ et et

N{a) ~ 4d 4d

This function is a straight line parallel to the real axis in the complex plane.
See Figure 9. By choosing the relation between ¢ and d it is possible to de-
termine a point on the Nyquist curve with a specified imaginary part. Several
points on the Nyquist curve are easily obtained by repeating the experiment
with different relations between ¢ and d.

A simple relay control experiment thus gives the information about the
system which is needed in order to apply the design methods. This method

14
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Figure 9 The negative reciprocal of the describing function and the Nyquist curve
of G(s).

has the advantage that it is easy to control the amplitude of the limit cycle
by an appropriate choice of the relay amplitude. Another advantage is that
the tuning experiment is executed under tight feedback control and that the
experiment generates an input signal that is close to optimal for determining
the critical point on the Nyquist curve.

To complete the description of the estimation method it is also necessary to
give methods for automatic determination of the frequency and the amplitude
of the oscillation.

The period of an oscillation can easily be determined by measuring the
times between zero-crossings and the amplifude may be determined by mea-
suring the peak-to-peak values.

There are some practical problems which must be solved before starting
the tuning procedure, as for example we need to take care of the measurement
noise because this can give errors in detection of peaks and zero-crossings.
This can been done by introducing hysteresis in the relay.

When we had gone through the procedure above, it is straightforward to
apply the classical Ziegler-Nichols tuning rules or some other tuning rules.

We will proceed and extend the SISO-relay feedback method to our multi-
variable system. In MIMO systems, the tuning problem is more complicated
because of the interactions between loops. We will use a couple of various
methods for relay tuning and compare the results.

3.2 SISO Controller Tuning

In the first method, relay experiment similar to the scalar experiment are
applied: one loop is put under relay feedback while the second loop is kept
open. Then, the second loop is put under relay feedback while the first loop
is kept open. Trom the experiments above the controller parameters are then
adjusted. See Figure 10,

Relay experiments

The tuning experiment is done in two phases, The first phase is an initial phase
where we use a PID controller to move the system to the working point or we
move it manually. When we reach the desired level we switch on the relay and
begin our estimation procedure,

We have chosen the relay amplitude d = 2.0[V} and relay hysteresis ¢ =
0.3[V].

Control design

Now, given the information about the critical point on the Nyquist curve
G(jw), it's possible to design the controller in such a way that we can move

15
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Figure 10 The algorithin for SISO controller tunirng.

the Nyquist curve of the compensated system GC to a desired location at the
frequency w.

We will use a decentralized PID controller, which is one of the most com-
mon control schemes for interacting multiple-input multiple-output systems.
The main reason for this is its relatively simple structure, which is easy to
implement and to understand. The number of tuning parameters is 3n, where
n is the number of inputs and outputs, while in a full matrix there are 3n’
parameters. The decentralized controller C' is block diagonal

Cl(s) G
0 Cg(s)

C(s) = [

with C;(s) and Cy(s) parameterized as

1
Trs

Kpi(1l+ + Tp;s)

Our system, as we will see later in the performed experiments, behaves fike a
first order system. As a result of this we can solve the control problem with P1
controllers. Derivative action is of little use for these problems. Furthermore,
the noise will be amplified by the derivative term [Hagglund and Astrom,
1991]. The parameters of the PI controllers are chosen as

Kpi = 0.5a1kc

4&2
Tr=-—-
734
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where

L 4d
" r/(a® - €t)

and aj,as € [—1,1] are constants.

The proposed approach is conceptually the same as Niederlinski’s method
[Niederlinski, 1971], which is based on the generalization of the classical ideas
first presented by Ziegler and Nichols. This approach concentrates on getting
a good design rather than the optimum one.

For the minimum phase system the parameters a; and ay are set equal
to one. This means that, after computing the critical points, it is straightfor-
ward to compute the control parameters according to the suggestion given in
[Hagglund and Astrém, 1991].

For the non minimum phase system, control structure two, to be able to
stabilize the system and achieve a reasonable settling fime for a step response,
we need to reduce the gain and have a larger integration time. After experi-
menting little with the constants a; and az, we arrive at the following values,
a; = 0.6 and as = 2, which give reasonable closed-loop performance.

When it comes to design the controller for the non minimum phase system,
control structure one, then it’s very hard to find good controller parameters.
Moreover, because the det G(0) < 0, it can be shown that the system is not
DIC {Decentralized Integral Controllable), see Theorem 14.3-1 in [Morari and
Zafirou, 1989]. This means that the closed loop system is not stable. Therefore,
there exists no multi-loop PI controller with Kpy = Kps > 0 that stabilizes
the system.

In the same way as before, after little of experimenting with the constants
a1 and az, we arrive at the following values, @; = 0.2 and a3 = 7.5 in the
first loop and a1 = —0.015 and ay = 10 in the second loop. The chosen values
stabilize the system and gives reasonable settling times.

The period of the oscillation is determined by measuring the time between
zero-crossings and the amplitude by measuring the peak-to-peak values of the
output.

Validation

Minimum Phase System  The results of relay experiments for the mini-
mum phase system are shown in Figure 11 and Figure 12.

The system behaves like a first order system which can be seen from the
relay experiment plots. The output of the system switches direction just after
it passes the hysteresis, As a result of this, the experiment depends very much
from the choice of the value of the hysteresis. This means that, depending on
the value of relay hysteresis we choose, we will have different critical points
which in turn lead to different settings, and hence different performance.

From the relay plots we can also see that the interaction is not so large
which means that it shouldn’t be so difficult to control this system by two
diagonal PID controllers.

The controller parameters found for the minimum phase system are
(Kp1, Tr1) = (7.7, 13.4) and (Kpa, T12) = (4.0, 12.7). They give quite good
performance as shown in Figure 13, where the responses are given for a step
change of the reference one. The system is well damped, with an overshoot of
output y; approximately just below 12% and settling time of about 55 seconds.
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Figure 11 First loop under relay feedback {minimum phase system).
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Figure 12 Second loop under relay feedback (minimum phase system).

We can also see that output y, remained almost unchanged when we made a
step response for output .

Non-Minimum Phase System, control structure one  The results of
relay experiments for the non minimum phase system paired as in the first
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Figure 13 The results of the minimum phase system controlled by two diagonal
P1 controllers.

control structure (see Section 2.6) are shown in Figure 14 and Figure 15.
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Figure 14 First loop under relay feedback (non minimum phase system, control
structure one).

The controller parameters found for the non minimum phase system (con-
trol structure one) are (Kp1, Tr1) = (1.4,120.4) and (K p2, Tr2) = (-0.14, 195.6).
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Figure 15 Second loop under relay feedback (non minimum phase system, control
structure two).

The controller performance is shown in Figure 16, where the responses are
given for a step change of the reference one, The system is stabilized, but it
is very much slower compared to the minimum phase system. Notice that the
settling time is approximately ten times longer. In addition to that a reference
change in one loop affects the output in the other loop a great deal.

Non-Minimum Phase System, control structure two  The results of
relay experiments for the non minimum phase system paired as in the second
control structure are shown in Figure 17 and Figure 18.
The controller parameters found are (Kp1, T11) = (0.66 160.3) and

(Kpa, Trz) = (0.75 145.2). The controller performance is shown in Figure 19,
where the responses are given for a step change of the reference one. A reference
change in one loop doesn’t affect the output in the other loop in the same way
as it did in control structure one.

3.3 Sequential Controller Tuning

The main idea of sequential relay tuning is to tune the multivariable system
loop by loop, closing each loop once it is tuned, until all the loops are tuned
[Vasnani, 1994). To tune each loop, a relay feedback configuration is set up to
determine the critical gain and frequency of the corresponding loop.

The sequence of loop closing is important since it affects the amount of
interaction entering the first tuned loop and therefore limits the quality of the
set point responses for those loops.

Relay experiments

Relay experiments similar to the method presented in Section 4.2 are applied:
one loop is put under relay feedback and it’s controller parameters are ad-
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Figure 16 The results of the non minimum phase system {control structure one}
controlled by two diagonal PI controllers.
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Figure 17 First loop under relay feedback (non minimum phase system, control
structure two).

justed, then another loop is put under relay feedback while the first loop is
controlled by a PID controller. The second loop parameters are then adjusted.
See Figure 20.
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Figure 18 Second loop under relay feedback (non minimum phase system, control
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Figure 19 The results of the non minimum phase system (control structure two)
controlled by two diagonal PI controllers.

The tuning experiment is done in two phases as before. The first phase
is an initial phase where we use a PID controller to move the system to the
working point or we do it manually. When we reach the desired level we switch
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Figure 20 The algorithm for Sequential controller tuning.

on the relay and begin our estimation procedure.
The relay parameters have been chosen as in Section 4.2.

Control design

Civen the information about the critical point on the Nyquist curve G(jw),
we design a decentralized controller, with the control parameters chosen in the
same way as proposed in Section 4.2,

Validation

Minimum Phase Systern.  Theresult of relay experiment for the minimum
phase system is shown in Figure 21 (only for the second loop, because the first
loop experiment is the same as in the SISO Tuning).

Notice now that the input u1 is no longer constant. Instead the input «l
tries to make output y1 follow the reference signal, meaning that it minimizes
the effect of the interaction. But, because the interaction is not so large, the
benefits with the method will be negligible.

The controller parameters found for the minimum phase system are
(Kp1,Tn) = (7.7,13.4) and (Kpa,Trs) = (5.8,14.6). They give slightly better
result compared to the SISO method as shown in Figure 22. The system is
well damped, with an overshoot of output 7 approximately just below 10%
and settling time of about 50 seconds.

Non-Minimum Phase System, control structure one The result of
relay experiment for the non minimum phase system, control structure one, is
shown in Figure 23.

The controller parameters found are (Kpy, Tr) = (1.4,120.4) and
(Kp2,Tr2) = (—-0.14,226.6). They give slightly better result compared to the
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Figure 21 First loop controlled by a PI controller and the second loop under relay
feedback {minimum phase system).
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Figure 22 The results of the minimum phase system controlled by two diagonal
PI controllers. The four plots show the experimental results.

SISO method as shown in Figure 24.
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Figure 23 First loop controlled by a P1 controller and the second loop under relay
feedback {non minimum phase system, control structure one).
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Figure 24 The results of the non minimum phase system (control structure one)
controlled by two diagonal PI controllers,

Non-Minimum Phase System, control structure two  The result of
relay experiment for the non minimum phase system, control structure two, is
shown in Figure 25.
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Figure 25 First loop controlled by a PI controller and the second loop under relay
feedback (non minimum phase system, control structuze two).

The controller parameters found for the non minimum phase system are
(Kp1,Tn) = (0.66,160.3) and (Kp3,Tr2) = (0.61,150.1). In this case too,
the results are slightly better compared to the SISO methods, as shown in
Figure 26.

3.4 Extension to Sequential Controller Tuning

A drawback with the original relay feedback experiment is its lack of excita-
tion. Because only a square-wave of a single frequency enters the system, only
models such as

K eésL
1+ 57T

G(s) =

can be estimated. If we are interested in more complex models we can do
a modification of the standard relay experiment, by simply estimating three
points on the Nyquist curve [Johansson, 1997].

The method is based on the observation that, a system with a relay in a
series with a filter, will give any point on the Nyquist curve. Three crucial
points are marked with crosses in Figure 27. Point 1 is determined by a stan-
dard relay experiment, point 0 is determined from a step-response experiment
and point 2 is determined from an experiment with a relay and an integrator
in series.

The aim of this tuning method is to improve the performance of one loop
by adjusting appropriate elements of the controller matrix. For doing that we
need at least the knowledge of the STMO transfer matrix from the input signal
of the badly tuned loop to the outputs of the system.

The system outputs can be described by the following equations:

1 = Giiug + Giaue
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Figure 26 The results of the non minirum phase system {control struciure two)
controlled by two diagonal PI controllers.
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Figure 27 Three important points on the Nyquist curve.

= Goiur + Gasttz
where

u = —C1n

ug = —Ca¥2

If we insert u; in g1 we will have

_— G1a w
1T1+GnG 2
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Figure 28 Extended relay experiment.

Tet H; then be defined as

G12

H=—
YT 14 GG

In the same way as before, we insert «; and the derived equation for y1 in ya,
and after some calculations we have

G12Ga101
_ (et
vz (1 + G110y 22)uz
Let H, then be defined as
G12G2:Ch
H -G
2714 GulG 2

Relay experiments

Figure 28 shows the extended relay experiment applied to the MIMO system.

The algorithm for identifying the three points is as follows:

1. Set W = 1 and wait for a stationary oscillation. Measure the frequency
wy and derive the response of H; and Hj.

2. Set W = % and wait for a stationary oscillation. Measure the frequency
wy and derive the response of H{ and Hy.

3. Freeze the relay output and wait for steady-state and derive the steady-
state gains for Hy and H,.

4, Fstimate H as

- bgs + by
T 5% 4 a8+ ass + ay

G(s)
based on the responses and the corresponding frequencies wq and ws.

Control design

For our quad tank system, as we will see later from the results, despite that
we have estimated a more complex model, we can’t expect to design a better
controller than in the previous methods. The reason is that the two identified
points (point 1 and point 2} are very close to each other. The identified model
in this way is not so much better than the model identified before, and thus we
can design the controller in the same way as we did in the previous methods.
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Figure 20 Extended relay experiment for the minimum phase system. The error
signal e;(dashed) is negligible compared to ez(sclid).

Validation

Minimum Phase System  Figure 29 shows the response of the extended
relay experiment for the minimum phase system. As can be seen, the response
of e is small compared to es.

The identified frequency points for H, from the experiment are shown in
Figure 30. The result coincides very good with the expected ones. We also
compute manually the phase difference so that we may double check the re-
sults. The phase difference for point 1 is approximately —3.0518 and the phase
difference for point 2 is approximately —1.9539, which seem to be quite rea-
sonable. This information we use then to estimate a third-order model of H.

Figure 30 Frequency points for H. Point 1 is marked 4, point 2 is marked A and
point 0 is marked +,

The result of this estimation is presented in Figure 31, where we have drawn
the Nyquist curve of the estimate of Hy.
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Figure 31 Nyquist curve of estimated H for the minimum phase system.

The result from the extended relay experiment indicates that we can ne-
glect the influence of H; and simply re-tune the controller K.

Non-Minimum Phase System  The same procedure as above is done for
the non minimum phase system, control structure one and control structure
two.

Figure 32 shows the response of the extended relay experiment.

9 S0 W00 1500 W00 200 0 WD
Timg (5)

uz

M 0 =00 W H0 1000 150 200 60 M0 =0
Tima[3] Tewa )

Figure 32 FExtended relay experiment for the non minimum phase system (control
structure one on the left and control structure two on the right). The error signal
e:(dashed) and ez(solid).

This information we use then to estimate a third-order model of Hy and
H;. The result of this estimation is presented in Figure 33, were we have drawn
the Nyquist curve of the estimate of Ha(solid) and H 1{dashed).

Note that, for control structure two, the estimated point 0 from the ex-
periment is insignificant. Hence the Nyquist diagram of estimated curve Hy is
negligible compared to the estimated curve Ha, and that is the reason for not
seeing the Hy curve,

The result from the extended relay experiment indicates that the interac-
tion is significant compared with the minimum phase system, so it’s probably
not enough to re tune only the second loop K3.
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Figure 33 Nyquist curve of estimated Ha(solid) and H;{dashed) for the non min-
imum phase system {control structure one on the left and control structure two on

the right).
wedl +‘ <l - vl ] 51
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Figure 34 Decentralized relay test.

3.5 Decentralized Controller Tuning

This is a method for automatically tuning fully cross-coupled multivariable
PID controllers from decentralized relay feedback [Wang et al., 1997].
Auto-tuning of controllers requires knowledge of the desired critical point,
which consists of the critical gain and the critical frequency. For this purpose
introduce a nonlinear feedback of the relay type in order to generate a limit
cycle oscillation. Relay feedback is a simple and reliable test that keeps the
system output under closed-loop control and makes it close to the operating
point. This tuning device has one parameter that must be specified in ad-
vance, namely, the initial amplitude of the relay. It is also useful to introduce
hysteresis in the relay. This reduces the effects of measurement noise and also
increases the period of the oscillation. With hysteresis there is one more pa-
rameter which can be set based on a determination of the measurement noise
level, A bias is also introduced into the relay to additionally obtain the system
steady-state matrix. Then the controller is designed, where a new set of design

equations are derived.

Relay experiments

It is found that for typical coupled multivariable systems, m outputs normally
have the same oscillation frequencies. We want here to estimate the system
frequency response G{jw) at the critical oscillation frequency w, for controller
tuning. To identify the steady-state gain matrix of the system additionally,
a biased relay is used in the dominant loop to make the system inputs and
outputs have non-zero means. Then one waits for the system to reach station-
arity. The system stationary inputs u1(t), uz(t) and outputs (%), y2(f) are
all periodic and they can be expanded in Fourier series. If the oscillations in
two loops have a common frequency w, then the direct-current components
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and the first harmonics of these periodic waves are extracted as

Teny — ch uy (t)dt
U0y = { ﬁrc uz(t)dt]

vy | fo m(t)de
Y(0) = l: 1. yz(t)dt}

T —Fug
i) = | Jo, 1aDeT e
° f:‘ uy(t)eIetdl

Y () = [ i m(pyeivetat ]

e ya(t)eIwetdt
Then we have
Y1(0) = G(O)U(0)
Y (jwe) = G(iwe)U (jwe)

Since the above equations are vector equations, they are not sufficient to de-
termine G(jw.) and G(0) from Y and U only. So, we need to do another
experiment where we increase the relay amplitude of the dominant loop or
decrease that of the another loop.

270 _ foTc uq(t)di
U*0) = [ 17 ug(t)dt ji

20y foTc yi(t)dt
Y (O)_ [ f(?‘yz(t)dt ]

U2 (jee) = [ S5 w(g)eortde ]

IOT° g (t)e~Iwetdt

Y3(jwe) = { foT ys {t)e~ et dt ]

e yy(t)eFoetdt
We have obtained
[¥*(0)Y2(0)] = G(0)[U(0)U*(0)]
[Yl(jwv:)yz(jwc)] = G(jWC)[Ul(jWC)Uz(jwr:)]

From the above equations follows that the steady-state gain matrix G{0) and
frequency-response matrix G(jw,) are determined as

G(0) = [Y )Y * ()T (0)T*(0)] ™
Gjwe) = [V (jwe) Y * (we)l[U (fwe) U (jwe)] ™

From the above we can say that our tuning experiment consist of two de-
centralized relay tests. For the first test, the relay amplitude for each loop is
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Figure 35 Multivariable control system,

set as in the single-variable case. For the second test, either the amplitude in
the dominant loop is increased or the amplitude in other loop is decreased by
5-20%.

It is important that the system outputs oscillates with the same frequency.
Furthermore, the system outputs must be asymmetric, because otherwise U*(0),
U?(0), Y*(0) and Y?(0) are all equal to zero.

Control design

Having the frequency response available at two points, namely, w = 0 and w,,
we can consider a multivariable control system as shown in Figure 35. The
objectives of control design are to make the closed-loop control system decou-
pled and the resultant independent loops have good transient and accuracy
in the usual sense of single variable systems. For the system in Figure 35 to
be decoupled, it is shown by {Wang, 1992] that the open-loop transfer matrix
Q = GC must be diagonal and nonsingular. For each column of GC we have

G11C11 + Gi2C21 = @11 (7)
GnCiz + G220 = Q22 (8)

G91Ci1 + G209 =0
G11C12 + G12C22 =0

Introduce fi; and fio

_ Gn
fn = =g
_ G
fia = Gt

then we can obtain Cy and Cq3 in terms of Cy; and Chy as

Co1 = fa1Cn1
Cis = f12C%2

Equation 7 and equation 8 then becomes

G11C11 = Quu (9)
G33C23 = Qa2 (10)

where

G = G + Gizfn
Gay = Gag + Ga1 f1a
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One notes that equation 9 and equation 10 are independent of the controller
off-diagonal elements, but contains only the controller diagonal elements C11
and Cy. This can be designed for the equivalent single-variable plant Gq; and
G4 with a single-variable design method.

Qiven the information on the system as G11(0), Ga3(0) , G11(jw.) and
@22( jw,) there are many SISO methods available to tune ki1 and kg of PID
type. Tt turns out that the gain and phase margin rule is most suitable for
our application, since performance and robustness of the system thus tuned is
very promising for most cases.

With the method in [Ho et. al, 1995, the poinis G11(0), G22(0) and G11(jwe),
(l93(jw.) are fitted to a first-order plus dead-time model

Cii
1+ s

Cals) = Iyl

Let us derive the equations for Ly, Ci; and 7.
Let s = 0, then

Gis(0) = Ci
Let s = jw,, then
. C.. L.
e — v —jweli;
Gu(ch) [1 _I_jwci._ﬁ €
- Gy
Gu(jwe) 1= |77 =~
| Gulion) 1= (5]
and we get
.1 C2

-1

Tii = —

we'\ | Gia(jwe) |”
Tn the same way we derive the following result
bit = —(~arglGution) - tan” (@)
The controllers diagonal elements Cj; are taken as
Cisls) = Kpis(L+ 1/Tris())

and its parameters are given by

dwhi Ly 1
Tpi; = (Qwpy — —o— 4+ —)7"
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where
Apr®pr + 050 Ap(Anr — 1)
(43~ 1)Ly

Wpii =

and Aps, @31 are the specified gain and phase margins respectively.
For the off-diagonal elements we choose Cj; of PID type as

Cij(s) = Kpij(1+ 1/Tris(s) + Tni;(s))
such that the following is satisfied at w = 0 and w = w,, 1.e.,

lim 5C;5(s) = lim 5£;5(s)Cj;(s)

We give a derivation of the controller parameters

. . Kpj;

lim 5C;(s) = lim 5 fi;(s)Ci5(s) = £15(0) TP”

a— Br Iij
. . Kpi
hr% Cis(s) = hl’r(lJ sKpi;(1+ I/Tlij(s) + Tpii(s)) — T
g s—+ iF

From the above equations we have that

K Pi .TI s
Tpij = ig4 L5
Kpj; fi3(0)

Next we let s = jw,. Then

Ciilgwe) = fij(jwe)Ci;(Fwe) =: 115679 = Kpij(1+ 1/Trij(s) + Tpij(s))

vi5{cosps; + jsingi;) = Kp(1+ 1/Tr;(3) + Tpij(s))

Identification of the left hand side with the right hand side gives us the fol-
lowing

Kpij = yi5c080;;

)

1 1
Tpi; = —{lanp;;
Dij Wc( Pij + TI{jwc

Validation

Now, we try to identify the system as proposed in the theory, but with a
significant change in the identification procedure.

Tor the identification of the stationary values it was proposed in the theory
that we should have a biased relay in the second loop. This is not possible for
our quad tank system because the system behaves as a first order system.
In general, for identifying the steady-state matrix we introduce a bias in the
relay outputs and then we expect that the process’ outputs are also of non-
zero mean. This is not the case with our system and thus the method fail to
identify the steady-state matrix.Therefore, we identify the stationary values
of the system using another method, see item 4. This means that we still have
to do two experiments for the identification as proposed in the theory, but the
identification takes longer time to complete.
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Minimum Phase System  The algorithm for identifying the steady-state
gain matrix G(0) and the frequency response matrix G(jw,) is as follows.
The first test:

1. The relay in loop 1 is set as an ideal symmetric relay with switching
levels 0.2 and —0.2,

2. The relay in loop 2 is set in the same way as in loop 1.
3. Wait for a stationary oscillation.

4. Freeze the relay output in loop 1 and wait for steady-state and derive
the steady-state gains for Gy and Gas.

The second test:
1. The relay in loop 1 is set as before with switching levels 0.2 and —0.2.

9. The switching levels of the relay in loop 2 are changed to 0.205 and
—0.205.

3. Wait for a stationary oscillation.,

4. Freeze the relay output in loop 2 and wait for steady-state and derive
the steady-state gains for Gy and G1a.

In the first test the system exhibits limit-cycle oscillations of common fre-
quency with frequency wl = 0.366.

n the second test it exhibits a limit-cycle oscillations of common frequency,
with w? = 0.375.

The steady-state gain matrix G'(O) and the frequency-tesponse matrix
G(jw,) are then computed. The results are

2.66 1.46
1.37 2.87

G(0) = {

0.1075e=+7% 00040282
0.0107e=3137  0.0830e 174

Cliws) = [

where w, = 0.5(w! + w?} = 0.37. They are quite accurate compared with their

“trae” values:
Go) = 2.6 1.5
114 28

Gliwe) 0.0038¢~30%  0.084¢™ 154

[ 011152 0.0076¢ 2%/ ]

The interaction in the minimum-phase system is not so large, thus the outputs

don’t have the exact same oscillations frequencies. Our integral computations

are very dependent on the fact that we have the same oscillations frequencies

on the system outputs, thus the results differ slightly from the “true” ones.
Now we use the information that we have from the identification o design

the controller derived before.
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The gain margin and phase margin are chosen as A, = Ams = 3 and
@m1 = ¢Pmz = 5. Then yield the following controller

ol - 0.73(1 + z552) ~0.005(1 + 555, — 235)
~9.3206e~4(1 + 53, — 30s) 0.98(1 + gi55)

The tuning processes and the resulting performance are shown in Figure 36,
Figure 37 and Figure 38.

y1 y2
9 ¢]
=8 :'8
= ©
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0 100 200 300 0 100 200 300
ut uz2
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2 2
0 0 .
0 100 200 300 0 100 200 300
Seconds Seconds

Figure 36 The first test applied to the minimum phase system.

Non-Minimum Phase System, control structure one  We perform the
same procedure as above for the non minimum phase system, control siructure

one.
The relay switching levels in both tests have been chosen as in the tests

performed for the minimum phase system.,
In the first test the system exhibits limit-cycle oscillations of common fre-

quency with frequency w!l =0.207.

In the second test it exhibits a limit-cycle oscillations of common frequency,
with w? = 0.209.

The steady-state gain matrix G(0) and the frequency-response matrix
G’(jwc) for the this system are then computed. The results are

1.56 3.21
2.93 1.62

G() = [

0.107e™16%  0.0097e™%2
0.0085¢™3%%7  0.096¢~ 1717

Cior) [
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Figure 37 The second test applied to the minimum phase system.
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Figure 38 The results of the minimum phase system controlled by the proposed
method.

where w, = 0.5{w! +w?) = 0.208. They are quite accurate compared with their
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“true” values:

Gliwe) = {0.011e—3-913' 0.085¢15%

0.11e~1:52j 0.024e—2-96f]

Unlike the minimum phase system, the cutputs have the same oscillation fre-
guencies. This is so because the interaction is larger in this case.

The simple identified model is used to design the controller in the same
way as before.

The gain margin and phase margin are chosen as A,,1 = Apa = 3 and
$m1 = Pm2 = 5. Then yield the following controller

Clo) = ~0.43(1+ g:) ~0.019(1 — 52 — 0.44s)
—0.0119(1 — iz — 1.195) —~0.48(1 + =)

The tuning processes and the performance of the controller are not shown, but
instead a closed loop stability analysis has been done.

In general a MIMO system is stable if all its poles are strictly inside the
stability region (the LHP for continuous time system, and the unit disk for
discrete time systems).

The closed loop control design is shown in Figure 35. The transfer function
is given by

y = (I+G(s)C(s)) " G(s)C(s)R(S)

where 7 is the identity mairix.
Then, the poles of the closed loop system are

P = det (I + G(s)C(s))

The Figure 39 shows the poles and zeros of the closed-loop system. The pole-
zero plot shows that this new controller design method doesn't work for our
system, We see that we have poles in the RHP, i.e., the closed loop system is
unstable.

Non-Minimum Phase System, control structure two  We proceed in
the same way as before and perform the experiments for the non minimum
phase system, control structure two.

The relay in loop 2 is an ideal one with switching levels 0.2 and —0.2, and
switching levels of the relay in loop 1 are 0.26 and —0.20 in the first test, and
are then changed to 0.29 and —0.22 in the second.

In the first test the systemn exhibits limit-cycle oscillations of common fre-
quency with frequency w! = 0.0217.

In the second test it exhibits a limit-cycle oscillations of common frequency,
with w? = 0.0215.
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Figure 38 The poles and zeros of the closed loop system.

The steady-state gain matrix @(0) and the frequency-response matrix
G(jw.) for the this system are then computed. The results are

o - [1 ]

é(jw,:) = [

1.33e~2:01F g gQe—1-31J
0.78¢ 1307 (0,90e~2-174

where w, = 0.5(w} + w2} = 0.0216. They are quite accurate compared with
their “true” values:

25 1.5
1.6 2.5

G(0) = {

0.72¢~ 1105 (. 72¢~1-987

_ 1.12¢716%4  (.89¢™ 094
Gljw.) = [

We use the information that we have from the identification to design the
controller.

The gain margin and phase margin are chosen as Api = Aps = 2 and
$m1 = Pma = 5. Then yield the following controller

C(s) = |:

0.03(1+ 57, —0.06(1 + 7i5; + 33.29)
—0.05(1 + z35; +22.95) 0.07(1+ zz73)

The tuning processes are shown in Figure 40 and Figure 41. The performance
of the controller is shown in Figure 42.

3.6 Summary

In this Section we presented a detailed study of various methods for automatic
tuning of PID controllers for MIMO-systems.
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Figure 41 The second test applied to the non minimum phase system, control
structure two. i

With the help of Figure 43, Figure 44 and Figure 45 we give a summary of
the elosed-loop performance cfor the various methods. Note that the number
of the collected points is not the same for all the experiments. The reason for
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Figure 42 The results of the non minimum phase system, control structure two,
controlled by the proposed method.

this is that for some method, the settling time was shorter and we stopped
the experiment when the system was stabilized. For some other method the
settling time was longer and thus the number of the collected points is larger.
This is the reason for the existing gap on some of the plots.

The experiments show that the SISO-method compares favorably with the
Sequential-method. The settling times for set point responses are significantly
better for the SISO- and Sequential-method than for the decentralized-method.

Tt must be noted that the settling time is approximately ten times longer
for the non minimum phase system. In Figure 45, the level of the interactions is
lower in the decentralized-method than that achieved in the previous methods,
but the settling time is significantly slower for this method.
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Figure 43 The results of the minimum phase system. The system was controlled
by a controller designed as in the SISO-method (solid line), as in the Sequen-
tial-method (doted) and as in the decentralized-method (colons).
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Figure 44 The results of the non minimum phase system, control structure one.
The system was controlled by a controller designed as in the SISO-method (solid

line), as in the Sequential-method (doted).

Moreover, the controller parameters designed according to the new derived
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Figure 45 The results of the non minimum phase system, control structure
two. The system was controlled by a controller designed as in the SISO-method
(solid line), as in the Sequential-method (doted) and as in the decentralized-method
(colons).

equations, gave reasonable results only in two cases, for the minimum phase
system and for the non minimum phase system, control structure two. For
the non minimum phase system, control structure one, the derived design
equations didn’t manage to stabilize the system at all.

So, the benefits of the decentralized method, which is a method much more
complex than the previous methods, are negligible.
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4. Implementation

4,1 Introduction

The complete system, including both the hardware and software is shown in
Figure 46.

Figure 46 The quad tank labozatory system shown together with the controller
interface running on a Pentium PC.

This Section starts with a short introduction to the software used for
adding new features to the graphical interface built by another graduate stu-
dent [Nunes, 1997].

The software used for developing the graphical interface was InTouch,
which is a software package used to create PC based man-machine inter-
faces. The package consists of two major elements: WindowMaker and Win-
dowViewer.

WindowMaker is the development environment, where object oriented gra-
phics are used to create animated touch-sensitive display windows.

WindowViewer is the runtime environment used to display the graphic win-
dows created in WindowMaker.

An InTouch application is built up interactively by drawing an interface, filling
in forms and writing scripts. We are given the possibility to bring life to a
graphic object or symbol by attaching Animation Links to it, which makes
the object to change appearance, to reflect changes in the value of a variable
or an expression, In WindowMaker the Tagname Data Dictionary is available.
This is a runtime database containing the current value of all the variables
used. In order to create the runtime database, InTouch requires information
about all the variables being created [Arzén, 1996].
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Interprocess communication in Windows is handled by DDE, which is the
acronym for Dynamic Data Exchange. DDE is a message based protocol that
implements a client-server relationship between two applications.

All the algorithms are implemented in ModulaZ2, which runs over the Real-
Time Kernel. The program is structured in modules. There are four processes:

1. OpCom which handles the communication with the InTouch program.
2. RefGen that generates the reference signal waves.
3. Regul which communicates with the real process.

4. Main which takes care of starting and terminating the processes

4,2 User’s Guide

In this Section we explain how to use the interface (only the parts that we
have added), for more details see [Nunes, 1997].

The machine was connected with the quad tank system through an AD/DA
converter with four inputs and two outputs.

The interface consists of two screens, Main Screen and Setup Screen. In
Main Screen we have different types of modes. Here follows a very short de-
scription:

Simul Simulations on the non-linear model.
Active Runs on the real system.
Setup Change parameters that are not changed so often.

Man Produces a control signal to the system by increasing or decreasing the
voltages to the pumps manually.

Controller Controlling the system by different controllers

Tuning Different relay experiments. This mode together with what belongs
to it is completely new.

A more detailed explanation of what we can do in Tuning Mode follows here.
When we click on the Tuning button we get the Relay box-window. Inside
it we see the type of the relay experiment that have been chosen. Note that,
the first time we click on the Tuning button we see the defanlt type with its
default parameters. Then, if we decide to do another relay experiment, we can
click on the Type button and choose one of the alternatives. See Figure 47,

If we want to change the relay parameters we just have to click in that
particular Relay in the Relay matrix, and then automatically appears a small
window. See Figure 48. Then its possible to change the parameters. All pa-
rameters are changed by using numerical inputs. By clicking at the check box
we will activate an integrator in series with the relay. The relay parameters
are:

o d the relay amplitude.
"€ the hysteresis.

In the Relay Controller box there is also an extra feature that we mentioned
before and that is the integrator. If we activate it, it means that we have an
integrator in series with the relay.
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Figure 47 The relay box.

Figure 48 The relay parameters.

When we did our relay experiment for the identification of simple models,
we moved the system manually to a steady state around a working point. Then
we switched to the tuning mode. See Figure 49.

In the Setup Mode the user can change parameters that are not changed so
often, as for example the sampling time, simulations parameters etc. Here you
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Figure 49 A SISO-relay experiment.

can also see a block diagram of the system, i.e., how the system inputs and
outputs are connected to each other, what kind of controller we have (relay,
PID or we control it manually). See Figure 50.

48



PROCESS

Figure 50 ‘The Setup Mode.
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5. Conclusions

In this thesis a multivariable laboratory control system has been described.
The derived physical linear model of the system has a multivariable zero, the
position of which could be varied by changing the position of two valves. So
by doing that our system was easier or harder to control.

Auto-tuning of controller requires some information on the process dynam-
ics, and this may be obtained by injecting a test signal into the process. Astrém
and Higglund proposed a relay feedback auto-tuning technique that can ap-
proximately determine the critical gain and critical frequency of the process
[Astrém and Higglund, 1984]. This has been shown to be very efficient for
SISO-systems.

In this thesis, this idea is extended to our multivariable system. This ex-
tension has been investigated using various methods. These are:

SISO Controller Tuning Only one loop at at a time is subjected to relay
feedback, while the second loop is kept open. The controller for the first
loop is designed. Then, the second loop is subjected to relay feedback
while the first loop is kept open. The controller for the second loop is
designed.

Sequential Controller Tuning A loop is closed with a simple controller
once a relay test had been done to that loop. The first controller is
constructed based on one sub-process while all the other sub-processes
remain on open loop. The next controller is constructed with the previous
designed loop closed.

Extension to Sequential Controller Tuning The sequential method is ex-
tended to identify a more accurate model and in that way to design a
more efficient controller. This method is based on the observation that,
a system with a relay in a series with a filter, will give any point on the
Nyquist curve,

Decentralized Controller Tuning This is a new method for auto-tuning of
decentralized PID controllers [Wang et al., 1997]. In the tuning mode all
the controllers were replaced by relays, and a critical point was identified
from the limit cycles reached in the two loops via the derived relations.
An algorithm to obtain the response at the desired critical point was
presented, Steady-state gains were identified from open-loop step tests
which is different from the method in [Wang et al., 1997]. This was still
achieved within the two performed experiments, but it took longer time
to complete the identification.

The sequential method is often better than the SISO method. It offers several
advantages. It is very simple and stability is ensured at every stage of the
design through sequential loop closing. Moreover, the sequence of loop closing
is important since it affects the amount of interaction entering all the previ-
ously tuned loops and therefore limits the quality of the set point responses for
those loops. It is generally expected that when the faster loop is tuned first,
it has the advantage that it is less affected by interactions, More importantly,
it allows the slower loop to be tuned last and hence be able to account for
the interactions resulting from the closure of the faster loop [Vasnani, 1994].
But for our plant, where the critical frequencies of the diagonal elements are
similar, it has been shown through experiments that the sequence of tuning is
not so significant.
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The extended sequential method doesn’t manage to design a better con-
troller than the SISO-, or sequential method. This is so, because the two iden-
tified points (point 1 and point 2) are very close to each other. Thus the model
achieved in this way is not much more complex than the model identified in
the previcus methods.

The decentralized method doesn’t work when the interaction is large or
when the relay experiments give oscillations with different frequencies.

The controller parameters designed according to the new derived equations,
gave reasonable results in two cases. It seems that, the derived design equa-
tions, don’t manage to design a controller for a system with large interactions.
Furthermore, when the interactions were small, the identification procedure
didn’t manage to give a model with good accuracy.

All the experiments in this thesis have been performed using a PC interface
that has been developed in the man-machine interface generator InTouch.
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