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Figure 1 A figure of the inverted pendulum.

1. Introduction

This thesis is about friction on a inverted pendulum and how to compensate
for it., There are several different models that describes how friction work.
In this thesis three of them are considered. Friction is a very complicated,
nonlinear phenomena if you want to describe it accurately. The models are all
in some degree rough simplifications of the real process.

The different friction models will be tested on a inverted pendulum. The
pendulum is used because when you try to control it with a linear feedback
limit cycles appears. These limit cycles arise only because of friction. In Fig-
ure 1 a schematic picture over the inverted pendulum is shown. An arm is
mounted to a center pillar and a pendulum is attached to the arm. Both the
arm and the pendulum can be rotated. The acceleration of the arm is possible
to control. It is possible to measure the position of the arm, the angle the
pendulum is deflected from standing upright and the velocity of the angle. To
get the velocity of the position a observer was used. The inverted pendulum is
also called Furuta pendulum after K. Furuta. He was the first who developed
the inverted pendulum in the form it has in this thesis.

Friction occur in two places. These are where the pendulum is attached to
the arm and where the arm is mounted to the pillar. It is assumed the friction
in the first place is much smaller than the second. Therefore the friction where
the pendulum is attached will be neglected. When the friction models are
introduced in the control algorithm, one can measure how much the behavior
of the pendulum is improved. It is then possible to compare the different
models and see which gives the best result.

To find suitable parameters for the friction models a mathematical model
of the Furuta pendulum is made. In the model the different friction models are
tested. When the mathematical model and the behavior of the real pendulum
match the friction model is transfered to the real process, There it will work
as friction compensation.

In this thesis it is also considered if there always will be limit cycles. De-
pending on which states, i.e the angle, the velocity of the angle, the position
and the velocity of the position, you use as a feedback and what parameters
you choose the pendulum behaves different.

The outline for the rest of the rapport is presented below. In section 2 some
aspects of friction is described. Then in section 3 is the mathematical model
derived and the control law that will be used. If limit cycles always occur are
considered in section 4. In section 5 the behavior of the real pendulum without
friction compensation is shown. In section 6 are the simulations. The result on
the real pendulum with the different friction models are presented in section
7. At last in section 8 are some conclusions.
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Figure 2 The microscopical contact between two surfaces. The contact takes place
at a number of asperities which deform under normal and tangential loads.

2. Friction and friction models

Tn this section there will be a short description on how friction occurs and
some friction models will be described. This section is mainly based on [1].

2.1 Friction

Friction occurs between all surfaces that are in contact with other surfaces. To
understand the mechanism behind friction one has to consider what happens
on a microscopical scale when two surfaces are in contact. All surfaces are
rough and they are often covered with some lubricant. The actual contact
takes place in a number of asperities, which are spread all over the surface.
See Figure 2 a). When a tangential force is applied shearing will occur. This
results in both elastic and plastic deformations, See Figure 2 b}, When motion
between the surfaces occur more of the lubricant will be brought into the
interface.

You can roughly divide the friction mechanism, from rest to motion, into
four regions of behavior, so called lubrication regimes. In Figure 3 a relation
between friction force and relative velocity is shown. The lubrication regimes
are also shown in the figure.

The first region is called the the sticking regime where the velocity be-
tween the surfaces are zero. A good mental picture of the behavior is shown
in Figure 4. The contact can be viewed as formed by a number of springs. As
a force is applied the springs will extend which results in the friction force. If
the force becomes too large the springs will break and sliding occur.

The second regime is called the boundary lubrication regime. In this regime
motion occurs between the surfaces but there are hardly any lubrication in the
interface. The friction force is due to the shearing resistance of the asperity
contacts. Normally the surfaces are covered with oxide or other compounds.
The shearing resistance of these are much lower than for the metal. This makes
the friction force decrease with velocity.

Tn the mized lubrication regime the speed is increased and more lubrication
brought in. This makes the separation of the surfaces larger. The friction force
is partially due to the lubricant and its viscosity and partially due to asperity
contacts.

In the full fluid lubrication regime the surfaces are completely separated
by the lubricant. The friction force depends only on the hydrodynamics of the
lubricant. The behavior in this regime is almost linear and is called viscous
friction.
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Figure 3 The Stribeck relation show a typical relation between velocity and fric-
tion force, The relation can be divided into four so called lubrication regimes, The
different regions are due to the velocity dependent causes of friction,

Naturally, dynamics are involved in all the mechanisms above and therefore
the complete behavior of friction is very complicated.

2.2 Friction models

There are several different friction models but they can all be divided into two
categories, static- and dynamic models. In this thesis three different models
will be considered, two static {Coulomb friction and Coulomb friction with
stiction) and one dynamic (The LuGre model).

Coulomb friction  This is the most simple friction model and the main
idea is that friction opposes motion and that the friction force is independent
of velocity and contact area. It can be described as

F = F.sgn(v)

See Figure 5 a). Note that the model is not defined when the velocity is zero. To
get a smoother transition from the two states, F, and —F;, another Coulomb
friction model will be used, It can be described by

Fe if v< —e
F=q —Fgx? if |v|<e (1)
—Fg ifv>e

where ¢ is a small number. Figure 5 b) shows the friction force as a function
of velocity.

Figure 4 In the sticking regime the friction contact can be viewed as consisting
of small springs which give rise to the friction force as they are extended. If the
displacement becomes too lazge the springs snap and sliding occur.
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Figure 5 Examples of static friction models. The friction force is given by a
static function. Figure a) shows ordinary Coulomb friction and Figure b) shows
the Coulomb friction model that is used in this thesis, Coulomb friction plus stiction
is shown in Figuze c).

Coulomb frietion with stiction  Friction force when the object is at rest
is included in this model. This is called stiction. Stiction is short for static
friction. When the object moves it’s affected by Coulomb friction. The friction
model is described as

Fosgn(v) ifv#0
F={ F, ifv=0and |F,| < F, (2)
Fgsgn(F.) otherwise

where F. is the external force and F, denotes the stiction friction force. Fig-
ure b b) shows the friction force as a function of velocity.

The LuGre model This friction model is dynamic and was introduced
by Canudas de Wit ef al. Friction occurs between two surfaces in contact.
Since the surfaces always are irregular the contact will take place at a numnber
of asperities. These can be modeled as elastic bristles. In the LuGre model
all bristles are replaced by a single one. The state z is the deflection of the
bristle. The model consist of a first-order differential equation, an equation for
the friction force and one equation that describes how the average deflection

depends on the relative velocity between the moving surfaces. The model is
described by

¢ dz v
at = v - g—l(;!jz

4 g('[}) = Ela(Fﬂ 4 (F.s — Fc)e—(vl‘b‘a)z) (3)
F:0’02+01%§+Fuv

\

Where o denotes the stiffness of the material and oy is a damping coefficient.
F.,, F, and F, denotes the friction forces for the Coulomb-, stiction- and viscous
friction. The parameter v, is the Stribeck velocity and affects the location of
the minimum of the Stribeck curve, see Figure 3

3. The Inverted Pendulum

The inverted pendulum is an unstiable process, but it’s still fairly easy to build
and to model. In this thesis a pendulum built at the Department of Automatic
Control at Lund Institute of Technology, Sweden, will be used.
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Figure 6 Views of the pendulum from the coordinate systems, Figure a) shows
the pendulum from the side and Figure b) from above.

The inverted pendulum consist of an arm, a pendulum and a center pillar
(See figure 6}, The arm can be rotated in the horizontal plane and the pendu-
lum that is attached to the arm can be rotated in the vertical plane. At the
end of the pendulum a small is mass attached.

3.1 Mathematical Model

Tn this section a mathematical model of the inverted pendulum will be derived.
Notice that friction and damping is neglected, The derivation is based [2]. A
schematic diagram of the Furuta pendulum is shown in Figure 6.

Introduce a coordinate system with the z- and y-axes in the horizontal
plane and a vertical z-axis. Let the arm which carries the pivot be of length »
and let its angle with the z-axis be ¢. The length of the pendulum is denoted
[ and let the angle with the z-axis be #. The mass at the end of the pendulum
has the coordinates:

Tem = T COsp — £sinfsin g
Yern = r5inp + £sinfcos @

Zon = L cos
Taking derivatives we get
Be = —T@sing — fpcospsind — £6sinpcosf

Yom = PP COS — Lpsingsind + £6 cos p cos 8
'S:’cm - '—39 sin#

The velocity for the small mass is thus
vi= /a2y a2 = 7'2552 + Ezg'oz sin® 9 + 21’2(,?:9 cos @ + £242
The kinetic energy T of the whole inverted pendulum is thus given by
T = Mv® + J@p? + J,0° + J*¢?
= Mv? + J$* + J8% + (mr? 4 Jpsin? )

=(J + Mr® 4+ mr? + (Jp+ M) sin? §)*
+ Mreph cos 8 + (J, + ME2)4?



Where M is the mass of the weight on the end of the pendulum, J is the
moment of inertia for the arm, J, is the moment of inertia for the pendulum,
seen from the pivot and m it’s mass. J* is the moment of inertia for the
pendulum seen from the center of rotation. J* is calculated in appendix A.
The potential energy is

V = gf(M + m/2) cos b

The Lagrangian is L = T — V. Its partial derivatives are given by

g—g = Mrfg'aé sin@ 4+ (J, + Mﬂg)gbz sin # cos 8
+ g€(M + m/2)sind
% =(Jp + M£%)d + Mripcost
8L
5_50 =0
L ; 2 2 2y 12 A s
0 =Mredcos@ + (J 4 Mr* 4+ mr® 4 (Jp + M£%)sin® 0)¢
@

Let u be the external forces. Euler-Lagrange’s equations states that

d,8L, 8L
atlop) "0
d 8L, 8L
a3 BT

and this gives the following equations of motion

(Jp + ME)(6 — 2 sin 8 cos 8)
+ Mripcosf — gb(M + m/2)sind =0
Mrtfcos 8 — mred? sin @ + 2(J, + mf*)fpsin 0 cos
+ (I + mr? - (Jp + me)sin® 6) = u.
Tntroducing

a:Jp+M»€2 ﬁ:J+M1’2+mT2
¥ = Mrl e=Ilg(M + m/2)

the equations of motion can be written as

de dipy2 | d%p
aﬁ—a(g{) schos@Jr';(—g{z—cos@
—esinf =0
d20 done dede | (4)
7&—?c059—7(a) sm9)+2aaﬁsm9cosﬂ

) d?
+ (8 + asm28)—c—l§; =u

This is the model that will be used for simulations in section 6.



3.2 The control law

To control the inverted pendulum a linear state feedback will be used because
it's simple and we can place the poles where we want to. The control law is:

u= Lz (5)
where
L:[AQ@Q]

To be able to use the control law we must linearize the model described by
equation 4, Introduce the state vector

g
8
®
4

T
and linearize around ¢ = [ 0000 ] , i.e. the upright position. This gives
the system:

0 1 0 0 0
_._& it A
de = | ef—? 200 et | BT |y (6)
dt 0 001 0
—YE [
af—y? 0 00 af—°

If we insert the control Iaw 5 into the system 6 and examine where the poles
are we get:

4 —aly + ‘)'14 3 —Be+ als — "}’11 9 ely el
R e T of 7

We want to place the poles in:
(8% + 201wy + wi)(s® + 20ws + W)

We determine L in equation b by identifying the coeflicients of the same powers
of equal degree in the two expressions above. The result is

= Lo BT o 40 + 4 Croren)

I, = aﬁ—;j—i(%@(}mwg + 26wiwe) + 2Ciwy + 2(aws) -
= LT )

ly= aﬁ—:j—zmﬁww% + 2(swiws)



O

Figure T The low-pass filter that were made for noise reduction.

3.3 The real Furuta pendulum

In the real Furuta pendulum it is possible o measure the angles § and ¢.
When measuring the signals it was found that the #-signal was very noisy but
the @-signal was quite good. Because of this a linear observer was used to
estimate ¢. To get a better §-signal a low-pass filter was built, see Figure 7.
8oy 15 the low-passed signal. The filter can be used to estimate 8. This is shown
by investigate the relation between 8,,; and 2 in Figure 7.

_LOZ_ - _ eout
Ry

1
Cos
Solving for &, gives

Oy = —RpaCas0out = —RpaChbous

One advantage with using filters is that the §;-signal is bandpass filtered. This
is showed in appendix B where the whole filter design is done.

In order to get the model described in equation 4 as correct as possible
we must defermine some physical properties of the penduium. We have to
determine L, r, M, J, J, and m. This is done in appendix C, The result is

L=0413m r=0.23bm
M =0.01kg J = 0.05 kgm?
Jp = 0.0009 kgm? m = 0.02 Kg

4. Limit cycles

When trying to control the pendulum in the upright position the friction force
makes the pendulum oscillate around the unstable equilibrium point. This is
called limit cycles. A mathematical method to investigate if limit cycles appear
is the describing function method. It can be described in the following way.
You feedback your system through the nonlinearity that causes limit cycles.
Initially you feed the nonlinearity with a sinus signal with amplitude C. If the
amplitude of the signal is equal to C' when the signal comes back, after going
through the nonlinearity and the system, there probably are limit cycles. In

10
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Figure 8 Feedback for limit cycles

our case the friction model is the nonlinearity, see Figure 8. The describing
function method that states that limit cycles occur if

1

M )

where Y3(C') is the describing function for the nonlinearity and € is the am-
plitude of the initial sinus signal. Let the friction force be Coulomb friction,
ie.

F = Fesgn(p)
If F. = 1.0 the describing function will be given by

4
o =_4
From the equation above we see that _T’;%'C—} is the negative real axis. If G(s)

crosses this axis there will be limit cycles. Now we want to determine G(s).
Since the friction force F' depends of velocity ¢ we want to have the system
in the following form

¢ = G(s)}F

To get G(s) we rewrite the linearized system. From equation 6 we had that

8= Pey_ T
( ¢
dg ve  « (8)
E “‘? + Eu
where
¢=ap -~

G(s) will depend on how we choose the control signal u.

4.1 Feedback from 4, §, p and ¢

We add friction to the control law , ie. u = L + I8 + Izp + lyp + F, where
F is the Coulomb friction force. Solving for ¢ in equation 8 gives

s% (o 82 —¢)

F
(st (yla—alg)s® + (vl —alz — eB)sx 2+ elys + €l

¢ = G(s)F =

11
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a) Control law: u=60"th+20*dth+10*fi+4"dfii b} Controf law: U=60"th+20"dih
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Figure 8 Nyquist plots for different feedback. Figure a) shows when the feedback
u = 60x0+20+0+10%p 4% ¢ is used. In Figure b) is the feedback u = 60*9+20*9
and in Figure ¢) and d) « = 608+ 20 + 6 + ¢ Tespectively « = 600+ 206+ T+ .

A Nyquist plot is shown in Figure 9 a). The parameters I, I3, I3 and l4 is
chosen to 60, 20, 10 respectively 4. The plot crosses the negative real axis and
this predicts limit cycles. But will this occur for every choose of Iy, Iy, I3 and [47
As shown below this is not true for example when I3 = 0 and I, = 0. Will there
always be limit cycles for the control law 5 with the coefficient as equation 77
To be able to determine this we must investigate where the imaginary part of
G(s) is zero and see if this gives that the real part is less than zero. Inserting

s = wi in G{s) gives

wi* (—aw? — €)
Cwt — (vl — al)wd x i — (vl — ods — ef)w? + elqwi + €l3

The imaginary part of G(wz) is zero when

1 \/“ 2791y + 203 +2¢8 — 2K

Y173 s
wy = Hl\/_ —29l; + 2alg + 2¢f - 2K
2 s
wg = 1 \/_ —291 + 2als + 2¢6 + 2K
2 s
s _l\ﬁ‘zﬁi + 2al3 + 2¢8 + 2K
2 5

where

K= \/721’% — yalll3 — 2veBll + o212 + 2aePls + €252 — 4(els

12
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Figure 10 The figure shows that there will always be limit cycles when using the
control law found in section 3.2,

The real part of G(wi) is

~w*{aw? 4+ e)((als — vl)w? + ely)
(Cw* + (als — 7l + eB)w? + elg)® + ((ady — 7h)w® + eldw)?

The denominator is always greater than zero if w > 0 and in the numerator
is —w?{aw? + ¢) always less than zero if w > 0. So we want to determine if
(aly — 712)&)2 + €l4 always are greater than zero for one of the solutions to the
imaginary part of G(w?) . If this is true there will be limit cycles. There are
two positive solution and inserting wa from above in (aly — yl)w® + ¢ly gives

—2711 + 2al; + 26,6 + K
4¢

We insert in this equation the expression of i, I3, I3 and {; from equation 7
and numerical values of the parameters v , 3, 7y, € and { based on the values of
the physical parameters found in section 3.3. We also let {3 = 0.7 and {5 = 0.7.
The result is an expression with two parameters wy and wy. Note that wy and
wy are not the same as above, they are here parameters that determine where
the poles are placed. The expression are quite messy and it is not obvious that
it is always greater than zero if wy > 0 and wy > 0. A 3-D plot with wy = 0..10
and wy = 0..10 indicates that this is the case, see Figure 10. This implicates
that there will always be limit cycles for the control law derived in section 3.2.

Re(G(wi)) =

((114 — ‘}'lg) + 614

4.2 Feedback from 6 and §

It can be interesting to investigate if limit cycles occur for other kinds of
feedbacks. In this case we have u = ;0 + [0 + F. Solving for ¢ in equation 8

13
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Figure 11 Simulations for different feedbacks. In Figure 2) and b) is # and ¢
shown when the control law % = 60 % # + 20 * ¢ is used. In Figure ¢} and d) is # and
w shown when the control law ¢ = 60+ 8 4 20 é+  is used. Finally in Figure ¢)
and ) is # and  shown when the control law « = 60 %8 + 20 + 64+7+ ¢ is used.

gives

als? — af + v ()
(233 + yClos® + ((vh — €B)s

A Nyquist plot is shown i Figure 9 b). The parameters §; and I, is chosen to 60
respectively 20. The plot never crosses the negative real axis and this predicts
that there are no limit cycles. In Figure 11 a,b) is a simulation, There are no
limit cycles because the pendulum arm rotate in the same direction the whole
time.

In order to see that no limit cycles occur independently of the physical
parameters for the system and how you choose {; and I we examine G(s) in
equation 9 further. Inserting s = wi in G(s) and examine the real part we get
that

¢ =G(8)F =

e(Glwi)) = —’YClgw(725 — aef — anz)
Re(G(wi)) = (7Cw?) + (C(vh — eB)w — Cuwd)?

The denominator is always real and greater than or equal to zero. In the
numerator —y(low is less than or equal to zero and y% — aef — alw? =
—(aB — ¥ (e + aw?), since { = af} — 72, The expression € + aw? is always
greater than zero. To get the numerator greater than or equal to zero aff —v*
must be greater than or equal to zero.

af — 4% = (Jp + mIB)(J + mr? + mpr®) — m* 2% =
= Jpd + mr? T, + mpr?Jy + mi2J + mmyr?l® > 0

For the control law = = Lif# + lzé with Coulomb friction limit cycles never
occur irrespectively of physical parameters and how you choose {; and /5.

14



4.3 Feedback from 6, § and ¢

Another possible feedback is u = L6+ [0+ I3+ F. Solving for ¢ in equation 8
gives
as® — ¢

F 10
(s34 (7l — alz)s® + (vl — €fs + ela) (9)

p=G(s)F =

A Nyquist plot is shown i Figure 9 ¢). The parameters l; I and I3 is chosen
to 60, 20 and 1. The plot never crosses the negative real axis and this predicts
that there are no limit cycles.

In order to see that if there can be limit cycles depending on how you
choose Iy , Iy and I3 we examine equation 10 further. Inserting s = wi in G(s)
and examining the imaginary part we get that

wlow? + e} —Cw? + vl — €f)

Im(Glwi)) =ty T)w? T elo)? + (—C0® 1 (7l = B)w)?

(11)

Equation 11 is zero when w? = @ The real part of G(wi) is

~(aw? + €)((ads — yla)w? + els)
(@l — 1)@ 1 ela)? + (~CwP + (vls — D))

The denominator is always greater than zero if w > 0. In the numerator
—{ow?+¢€) is less than zero if w > 0. Limit cycles occur if {als—yl)w?+ely > 0
when inserting w? = 113-3759 into the equation, Doing this gives that

(als — yla)w? + ely = %(azlz3 — ylyly + €Bly — eyls)

This expression can be both positive and negative depending on how you
choose Iy, I, and I3. For example using I, = 60, Iz = 20 and }; = 1 gives that
the expression above has the value —9.78 if we use the physical parameters
found in 3.3. This implicates that there will be no limit cycles. As we saw in
Figure 9 ¢) the Nyquist plot never crosses the negative real axis. A simulation
of the linearized model shows what happens, see Figure 11 ¢,d). The pendulum
arm rotates in the same direction the whole time with a constant velocity.
The pendulum stands still in angle slightly more than zero. There are no limit
cycles.

If we instead use I; = 60, Iz = 20 and I3 = 7 the expression above has
the value 7.04. This implicates that there will be limit cycles. By looking at
a Nyquist plot, see Figure 9, we see that the curve crosses the negative real
axis, A simulation of the linearized model shows what happens, see Figure 11
e,f). The pendulum arm is either still or moves in the same direction and the
pendulum oscillates around the equilibrium point. There are limit cycles.

5. The real Furuta pendulum with no friction
compensation

We want to see how the Furuta pendulum behaves when there are no fric-
tion compensation, That is because when simulating the model described in

15
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Figure 12 Hesult from measurement of the real pendulum. 8, fp,é,(,b is plotted in
Figure a), b), ¢) respectively d)

equation 4 with different friction models we wanft the simulation to behave as
similar as possible to the real pendulum. Then we can take the friction model
from the simulations and use it as friction compensation at the real pendu-
lum. In Figure 12 are measurements of the four different states 8, 8, ¢ and ¢
plotted when controlling the real pendulum. The control law § was used with
w1 = 3.0 and wy = 7.0. The dampening coefficients {; and {, were both set
to 0.7. By locking at the ¢-plot one can see that ¢ is almost never zero, so
there are probably no stiction. An attempt to increase the friction and thereby
also the stiction regime was made but this damaged the pendulum. The 6-plot
was found to have the standard deviation 0.055 radians. For the ¢-plot the
standard deviation 1.49 radians. The control signal has a standard deviation
of 0.72 radians.

6. Simulations

Simulation is done for the three different friction models that were described
in section 2.2. Because the friction force in the real model didn’t have much
stiction the three models look almost the same. Therefore we only describe in
detail what happens when we have Coulomb friction with stiction.

6.1 Coulomb friction with stiction

The friction model described in equation 2 is used. In our case v = ¢’ and
we set @' equal to zero if |p’| < 0.02. If we choose a smaller value to get
less stiction the friction model starts to behave strange. It starts to oscillate
very fast between the states when ¢ is small. The result is that the pendulum
behaves as if there were stiction.

We simulate the model described in equation 4 with the control law as in
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Figure 13 Pendulum with coulomb friction. In Figure a} is & and f shown and in
Figure b} » and ¢. In Figure ¢) the control signal « and the resulting control signal
#, = u — F 13 shown.

equation b with the parameter as in equation 7. We choose w; = 3.0, wy = 7.0
and {; = {3 = 0.7. The arm of the pendulum is affected by the friction force
described in equation 2. The result is shown in Figure 13. U, is the resulting
forcei.e. ur = u— F, We investigate the different sections fo see what happens.

1 Stiction occurs because ¢ < 0.02, Gravitation makes the pendulum deac-
celerate,

2 There is still stiction, but 8 changes sign so the pendulum starts to fall.

3 The control signal has become so large that = > F, which means that
stiction stops and the pendulum arm starts to move. ¢ increases and
become larger than 0.02. This makes the friction force equal to F, and
the resulting control force increases very rapidly. The pendulum arm
chases the pendulum so it won’t fall. @ starts to decrease.

46 changes sign and the pendulum doesn’t fall anymore. It’s on its way to
stand up,

5 The pendulum passes zenith but the speed is too large so it passes right
by and starts to fall. The control signal changes sign to stop the arm
and ¢ decreases and this leads to that also 0 decrease. This happens
because the velocity at the top of the pendulum, i.e. where the mass is
attached, is greater than velocity at the end of the pendulum arm, when
 decreases.

6 6 changes sign and the pendulum starts to stand up.
7 Stiction occurs once again and we are back to where we started.

In figure 13 it is hard to compare how much alike the simulation is with the
real model. Therefore we compare 6 and ¢ for the simulation above and the
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Figure 14 Comparison between the real pendulum and the simulation. In Figure
a) and ¢} is ¢ shown for measurement from the real pendulum respectively from
simulations, In Figure b) and d} is ¢ shown for measurement from the real pendulum
and from simulations.

real Furuta pendulum without friction compensation when we have the same
scale on the axes. See Figure 14. The simulation behaves almost exactly as the
real process, except that the pendulum arm stops when stiction occurs in the
simulation.

7. The real Furuta pendulum with friction
compensation

The three different friction models in section 2.2 are used. The parameters for
the models were chosen so that the simulation behaved as the real pendulum
as much as possible.

7.1 Coulomb friction compensation

In Figure 15 a,b) is 4 and ¢ plotted. The result is very good. The standard
deviation for the 6-plot and the -plot is 0.044 radians respectively 0.05 radians
compared to 0.055 radians and 1.49 radians with no friction compensation,
This is a factor 10 better for  and almost a factor 30 for . For the control
law the standard deviation is 0.46 radians compared to 0.72 radians, Tt is
natural that the standard deviation for the control signal doesn’t change so
must, because with no friction compensation the control law is u = L8 +
[10 + lap + L1p. With friction compensation we have the following control law
u=lL#+ 126"+13cp+l4¢+F. The friction force F' makes the standard deviation
become larger.

7.2 Coulomb friction with stiction compensation

In Figure 15 ¢,d} is # and ¢ plotted. The standard deviation for # and ¢ is
0.0045 radians respectively 0,05 radians. This result is almost the same as for
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Figure 15 Hesult of the different friction models on the real pendulum. In Figure
a) and b) is # and ¢ shown when Coulomb friction compensation is used. In Figure
c) and d) is 6 and p shown when stiction compensation is used. In Figure a) and b)
is @ and ¢ shown when LuGre compensation is used.

Coulomb friction. This once again implicates that there are no stiction. The
standard deviation is 0.49 radians for the control signal.

7.3 LuGre friction compensation

In Figure 15 is # and ¢ and plotted. The standard deviation for € and ¢
is 0.0033 radians respectively 0.07 radians compared to 0.055 radians and
1.49 radians with no friction compensation. This is almost a factor 20 better
for 6 and a factor 20 for . If you measure several times you find that the
standard deviation for 8 is half of what you get if you use Coulomb friction
and Coulomb friction with stiction compensation. The standard deviation for
o is approximately the same for the different models. The LuGre model is
probably better because it is a dynamic model so it is smoother than the
other models. The standard deviation for the control signal is 0.052 radians.
When you are lucky and the different factors, that you haven'’t taken into
account, that affects the pendulum are minimal, you can get extremely good
results with the LuGre friction model. In Figure 16 is a plot when the pendu-
lum actually stands still in the upright position. Why can the LuGre model
give that much better result than the other two models? IF there are no stiction
all the models should be equally good. The Coulomb friction model doesn’t
take the external forces into account when ¢ is zero. Therefore it can never
make the pendulum to stand still if the friction force isn’t exactly the same
as the one the model predict and if there are no bias to the signals used in
the feedback. The Coulomb friction with stiction take the external forces into
account so it is possible to get the pendulum to stand still, but the model
is static and has discontinuities which makes it difficult. The LuGre model is
a dynamic model and that means that the transitions between the different
states are smooth. This is probably why the LuGre model works so good.
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Figure 16 The pendulum stands still with LuGre friction compensation. In Figure
a)is @ plotted and in Figure b) ¢.

8. Conclusions

In this thesis has friction on the inverted pendulum been studied. An accurate
model for the pendulum has been made, so you can simulate your friction
models before you use them on the real pendulum. The pendulum has been
controlled with linear feedback.

Three different friction models has been used, two static and one dynamic,
The pendulum has almost no stiction. Therefore all three models give good
results, but the best result is given with the dynamic model. This probably
depends on that there are smooth transitions between the states in this model.
It has also been showed that the pendulum behaves very different depending
on what kind of feedback you use.

In this thesis has only the improvement for one set of parameters in the
control law been considered. The control law was chosen to be quite slow.
It would be interesting to see how friction compensation works with a faster
control loop and different control strategies. The pendulum didn’t have much
stiction so even a simple model as the Coulomb friction model give good
results. Since this model only has one parameter, F,, it would interesting to
have some kind of adaptation for this parameter.
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Figure 17 Figure a) shows the pendulum from above and Figure b) from the side.

A. Moment of inertia for the pendulum, seen from
center of rotation

From the definition of moment of inertia we have that

J* = fwzdm

where the integral is performed over the whole body. Here is & the perpen-
dicular distance from the axis of rotation to the small mass element dm on
the pendulum. Tn our case is (See Figure 17) 2% = 7 + ¢ and dm = Fopdy.
Where m is the total mass of the pendulum. This gives

J’*

il

Isinf
2, .2 ™ _
/0 (7)o
2
r’m + EI—sinzf?

If we calculate the moment of inertia for the pendulum with the center of
rotation at the pivot the result is

$0 we can write

J* =rim+ J,sin® @
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B. Filter design

From experiment it was found that the noise had frequency above w = 15 radi-
ans/s. A second order Bessel-filter is used, see Figure 7. The relation between
Bout 3 92 and 63 is

1
_R2F02392
_ 1 I/

RizCis °

03 = Rgbsn + Ro03 —

Bout =

#y =

Ryt
Iy

9out

where

_ Ry+ Hy RiRg
- Ri R4Rq + R3Eq + RaR4
Ry — Ry + Ry R3Rg
Ry R4RQ + RaRg + Ra Ry
Ry Ry,
Ry + Raq

Rg

RZtot =

This gives that

Rg
RipRopCi1C28® | RyRopCas + B_}z{:&
- R2F02Re
RipRppC1Cys? + ReRopChs + T3

B’ﬁ'n

gout -

in

6, =

It is clearly seen that 8,,; is the low-pass signal of §;, and & is the derivate
of the low-passed signal. It is also possible to see that 8 is band-pass filtered.
By choosing the resistance right it is possible to get the break frequency and
amplifying we wanted. This is done with a computer program.
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C. Data for the pendulum

The length of the arm and the pendulum were measured to be 0,235 m re-
spectively 0.413 m. The mass of weight at the end of the pendulum was easily
measured with a scale. It was found to be 10 g, The mass of the pendulum
was 20 g.

There are two ways to determine the moment of inertia for the pendulum.
One mathematical and one experimental. If everything is correct they will give
approximately the same result.

The mathematical method uses the definition of moment of inerfia, which
states that

Jpsz'?*dm.;

where r; is the perpendicular distance from the axis of rotation to the small
mass element dm;. The pendulums total moment of inertia is found by inte-
grating over the whole body. Doing this gives

1
—mL?

o=

Where mm is the mass of the pendulum. Inserting the values from above gives
that

J, = 0.0011 kgm?

The experimental method uses that for a pendulum is

T = o1 |22
mygd

where T' is the period time, J, the moment of inertia and mm the mass, The
parameter d is the distance from the axis of rotation to the center of gravity
on the pendulum. Solving for J, gives

_ T*mgd
o= T

Experiment gives that T = 1.12 s, m = 20 g and d = 15.3 em. The result is
Jp = 0.0009 kgm®

The mathematical and the experimental method match quite good, but the
experimental is most likely to have given the most exact value.

The moment of inertia for the pendulum arm was more difficult to find
because it’s not possible to remove the pendulum arm from the experimental
setup. It was estimated from simulations. The result was

J = 0.05 Kgm?*
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