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Chapter 1

Introduction

This project is about a ball on a plate, which is slanted in such a way
that the ball follows a predefined trajectory. Among the numerous available
sensor and actor systems, a video camera was chosen as the sole input device
and an industrial robot to handle the plate in two degrees of freedom. A
standard Personal Computer served as a platform for the implementation of
the controller.

Outline of the Thesis

Chapter 2 presents the acquisition of the image and the analysis of the visual
information.

Chapter 3 describes the plant itself. A linearized model is derived from the
exact physical model.

Chapter 4 is about the controller. Design aspects are discussed as well as
the implementation.

Chapter 5 introduces the robot, how it is programmed and how it is excited
by the controller.

Chapter 6 concludes the report and shows possible improvements for future
development.

Appendix A contains the derivation of the moment of inertia for both a solid
sphere and a spherical shell.

Appendix B defines the unary cross product operator, which allows conve-
nient handling of vector cross products. :

Appendix C discusses various smoothened step functions with a steady
derivative.

Appendix D is a collection of MATLAB files written at various stages of the
project.

Bibliography and Index sections are provided for quick reference.



Chapter 2

Image Processing

2.1 Image Acquisition Equipment

A standard VHS video camera is used to acquire pictures to the host, which
is a Personal Computer running the Microsoft Windows NT operating sys-
tem. It is equipped with a Frame Grabber Interface Card [5]. A device-
independent software library [6] makes the features of the dedicated hard-
ware available to the C programming language environment.

An algorithm to find the ball on the plate was developed off-line using
MATLAB before it was implemented in C for on-line usage.

2,2 Off-Line Image Analysis

Two fundamentally different approaches have been made to compute the
location of the ball on the plate:

Line Search: Based on the knowledge about the position of the ball on pre-
vious images, we draw a line in the direction where we assume the ball
to be on the current image. An exceptional change in colour along this
line indicates the edge of the ball,

Global Search: Provided the colours of the ball and the plate are sufficiently
different, we can classify the pixels with regard to their colour. The
colour determines whether a particular pixel belongs to the ball or to
the plate.

Line Search

An earlier project has dealt with the one-dimensional version of the Ball
and Plate system, namely the Ball and Beam system [7]. The Computer
Vision methods developed therein have been extended in such a way that
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they could be applied to a ball with two degrees of freedom instead of just
one.

The underlying mathematical algorithm is only briefly summarized here,
see [3] for an in-depth discussion. A general reference about Image Process-
ing is [9].

Along a line in the picture, an abrupt change in colour is sought, math-
ematically speaking, the edge of the ball is at the point of the maximum
derivative of the colour along the line. The following operations are applied
to the real signal:

s The optical system of the camera blurs the image. It is additionally
perturbed by noise.

s In order to be stored in a computer, the continuous signal has to be
sampled.

¢ The now discrete signal is interpolated to produce a continuous func-
tion.

¢ As a preparation for the next step, the function is smoothed, i.e. it is
convoluted with a Gaussian function (nonlinear low-pass filter). De-
pending on the grade of smoothing, more or less computation time
is needed. Some tuning is required to determine a suitable grade of
smoothing: noise peaks must be removed whereas the actual step of
the original signal must be preserved.

s The maximum derivative of the above function indicates the edge of
the ball. Higher order derivatives are computed to find this maximum
iteratively using the Newton-Raphsen method.

s The results allow an estimation of the accuracy of the edge location.

Figure 2.1 shows an example of such an edge detection.

Thanks to the above algorithm, the accuracy with which the location of
the ball can be specified is, in fact, higher than the resolution of the image!
The key to this result is interpolation.

Our line intersects the circle twice to deliver a chord. The bisector of
the latter is a superset of a diameter. The computation of the center of the
circle is then straightforward.

Initially, the ball can be anywhere on the plate. Starting in the center
of the image, we draw horizontal lines until we hit the ball. On subsequent
images, we can reduce the search area to a single line, set by the two previous
positions of the ball. Figures 2.2 and 2.3 illustrate the concept. A red ball
on a white background was used.

See Appendix D for the MATLAB files. Note that the camera is assumed
to focus solely on the plate and not the surroundings, i.e. the algorithm does
not attempt to detect the border of the plate.
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Figure 2.1: Tllustration of one-dimensional sub-pixel edge detection using
scale-space smoothing. (a) The ideal step edge. (b) The discretized ‘image’
without noise (o) and with noise (+). (¢) The scale-space interpolations. The
deterministic signal is shown as a solid line, whereas the perturbed signal is
shown as a dashed line. (d—f) The first three derivatives. The sub-pixel edge
position is defined as the position of the maximum of the first derivative.

Figure 2.2: Finding the ball on Figure 2.3: Tracking the ball on
the plate using Line Search. the plate using Line Search.
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Figure 2.4: An image before the Figure 2.5: Finding the ball on
colour thresholding. the plate using Global Search.

Global Search

A threshold is chosen experimentally to divide the pixels of the images into
two groups: foreground and background, i.e. ball and plate. Taking into
account all the pixels which belong to the ball, the following equation yields

the center of mass.
1 N
o = = D
N i=1

Figures 2.4 and 2.5 show an example for a red ball on a white background.
Later, a white ball on a black plate was chosen to eliminate visible shadows.
While the accuracy of this algorithm is strictly limited to the resclution
of the image, it is significantly faster than the Line Search variant.
See Appendix D for the MAaTLAB file.

2.3 On-Line Image Analysis

The sampling rate is a critical issue in real-time systems. It is evident
that the sophisticated Line Search algorithm is more time-consuming than
Global Search. Moreover, Line Search is slowed down by poor image guality.
Unfortunately, our images are so blurred that its application is out of the
question. The computation time could be cut down by improving the image
quality using other hardware devices, but for the time being, we decided to
confine ourselves to Global Search.

The images from the video camera consist of three Layers: red, green
and blue. Figure 2.6 shows how the data is stored. For the image analysis,
one layer is sufficient. The choice is made depending on the colours of the
ball and the plate.

Figure 2.7 shows an extract of the corresponding C code.
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Figure 2.6: The data representation of an image.

const int indentrow=12, indentcol=16;
// The image is slightly reduced due to a hardware defect.

layer=(reen;

xsum=ysum=N=0;

data=hpAcquireBuf; // pointer to the buffer
datat=indentrowtwidth*4;

tor( row=indentrow; row<height; rowtt )

{
datat+=indentcol*4;
for( col=indentcol; col<width; col++ )
{
if{ #(datatlayer) < threshold }
{
xsum+=cel; ysumt=row; ++H;
}
datat=4;
}
3
assert (M) ;
x={float)xsum/H-indentcol; // coordinates of the center of gravity ...
y={float)ysum/N-indentrew; // ... of the ball in the reduced image

Figure 2.7: Extract of the C code to compute the center of the ball .
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Figure 2.8: Synchronous (left) and asynchronous (right) sampling. An ac-
quired picture is denoted by p, the position of the center of mass by c.

Synchronous versus Asynchronous Acquisition

The task for each sampling period can be roughly divided into two parts:
the acquisition of the image and the computation of the center of mass of the
ball. The average time for a single image acquisition is 180 ms. The com-
putation of the center takes about 70 ms. Synchronous acquisition means
that the location of the center is computed immediately after the picture
was acquired. This results in a total sampling period of 2560 ms or a sam-
pling frequency of 4 Hz. With asynchronous acquisition, on the other hand,
the two jobs are handled concurrently: thanks to the dedicated micropro-
cessor on the Frame Grabber Card and Direct Memory Access (DMA), we
can acquire the picture and compute the center at the same time. After
the computation of the center, the program waits for the acquisition of the
image to complete. The two processes synchronize every 200 ms, which cor-
responds to a sampling frequency of 5 Hz. The 20 ms the sampling period
is longer than the time for the image acquisition alone is needed by the op-
erating system for the management of the concurrent processes. Naturally,
we can only compute the center of the ball on the previous image during
each sampling period. This results in a time delay of approximately 70 ms
with regard to the sampling times kT, where T, is the sampling period.

For open-loop experiments, where we only need to record the trajectory
of the ball, the asynchronous method benefits from a higher sampling rate
with no drawbacks. In the closed-loop case, however, the time delay will
result in a state increase of the discrete model (one extra state).



Chapter 3

Model of the Plant

In order to gain some fundamental information about the behaviour of the
Ball and Plate system, the simpler case of a Ball and Beam system is intro-
duced first. While the ball has two degrees of freedom on a plate, it only
has one degree of freedom on a beam.

3.1 The Ball and Beam System

Consider the experiment depicted in Figure 3.1. The beam is made to rotate
in a vertical plane and the ball is free to roll along the beam without rolling
friction or air resistance. We require that the ball remain in contact with the
beam and that the rolling occur without slipping, which imposes a constraint
on the rotational acceleration of the beam.

Tt is assumed that the actuators are strong enough to apply any allowable
torque to the beam and that the motion of the ball has no effect on the beam.

The position of the ball’s center of mass ¢ can be expressed in global
coordinates {z,y}, but the ball has only one degree of freedom, so the local

=

Figure 3.1: The Ball and Beam system.
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coordinate {u} will be used for the equation of motion. The radius of the
ball is denoted by 7.

T =ucosa — rsine

¥ = using + rcosa

The first and second derivatives of the position represent the velocity and
acceleration, respectively.

T = Ucosa — Uxsing — P cos

7 = tsina + udcosa — rasina (3.1)

2
2

F —dcosa — 2uasine — udsina - ud

cosa — récosa + ralsine (3.2)
§ = dhsin e + 22 cos @ + ud cos o — uox '

sing — résin e — ré? cos o

The equation of motion can be derived in different ways: using the
Newton-BEuler or the Lagrange formalism. Both methods ought to even-
tually yield the same results.

Newton-Euler Formalism

The conservation law for momentum is valid for both directions = and 3.
The mass of the ball is denoted by m.

me = Fceosa—- Nsina

my = Fsina+ Ncosa -G (33)
In Equations 3.3, the normal force N can be eliminated.
mécosa+ misina = F — Gsina (3.4)
From Equations 3.2 we gather
| #cosa+ fsina =i — ud® — réa. (3.5)
The conservation of angular momentum is
—Jw =1rF, (3.6)

where » denotes the radius of the ball and w its angular velocity in the
inertial system {z,y}. See Appendix A for the moment of inertia J with
respect to a rotational axis through the center of the ball.

The fact that the ball does not slide, but roll on the beam, is expressed
in a constraint equation, which relates the angular velocity w with the ve-
locity %. If we denote by wyq the angular velocity of the ball relative to the
beam, the velocity of the ball’s center of mass €' can be expressed in two
ways to find an expression for w.

VO = Wrell U
o } = Wpel = — (3.7)
ve = U r
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The orientation of angles in Figure 3.1 gives rise to the relation between the
absolute angular velocity w and the relative angular velocity wye.

W= W — & (3.8)
We get the constraint equation of the ball on the beam by substituting
Equation 3.7 into Equation 3.8.
LI
w=_—-a (3.9)
Substitution of Equation 3.9 into Equation 3.6 gives
J . .
F= *ﬁ(uwra) (3.10)
and the gravitational force G can be expanded to

G = my. (3.11)

Factoring out m in Equation 3.4 and substituting Equations 3.5, 3.10
and 3.11 yields an equation that only contains the coordinate u.

2

J
—rd) = —— (i —rda) — mgsina

m(i — ud 2

After a division by m, we have the desired equation of motion for a ball on
& beam.

N . .2 -
(1 + W) (it — rd) — u@” + gsina =0 (3.12)

For the design of a controller, the differential equation is linearized.

J . .
(l-l-W) (t—rd)+ga=20

Solving for ii, we see that for sufficiently small radii r, angles a, angular
velocities & and angular accelerations &, the plant is in principle a double

integrator.

TRTZ

Lagrange Formalism

The so-called Lagrangian is the difference between the kinetic and the po-
tential energy of a rigid body.

L = Eyin — Fpot {3.14)
The kinetic energy is the sum of translational and rotational energy.

Ekin = Firans + Erot
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With the magnitude of the velocity of the center of mass denoted by v, the
translational energy is defined as

m
_ 2
EBirans = 5 v,

where we make use of Equation 3.1 to compute »2,

()

With the magnitude of the angular velocity denoted by w, the rotational
energy is defined as

2
=2+ 4 = (& - r&)? + u?a?

J
Erot = szz
where J is the moment of inertia. See Appendix A for the definition of J.

For w? we use Equation 3.9.

U.Jz = ;E(u — T‘d!)z I

The potential energy of the ball is
Fpot = mgy = mg(usina + rcos a).

Inserting everything into Equation 3.14 yields an expression for L that
only contains the coordinate u.
1

L = 5 (m + iz) (0 — -rc'x)z + T—;L-u2d2 — mg({usina + rcosa)
7

The condition
d 0L 8L
dt 84 Ou
produces the desired equation of motion for a ball on a beam.

J
1+ “m—;*z‘)(u —rd) —ua® 4+ gsina =0 (3.15)

Note that Equation 3.12 is the same as Equation 3.15.
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3.2 Full Model of the Ball and Plate System

The assumptions made for the Ball and Beam system—the ball does not
take off, it does not slip and rolling occurs with neither friction nor air
resistance—equivalently hold for the Ball and Plate system.

The derivation of the reduced model presented in Section 3.3 is not
directly based on the full model. Apart from the definition of the transfor-
mation between the frames of reference, the two sections are independent.

Transformation between the Frames of Reference

Figure 3.2 illustrates the motion of the plate. Our first goal is to find the
transformation between the two frames of reference {z,y, 2z} and {u,v,w}.
This is accomplished in two consecutive steps: the rotation by « and the
rotation by 8, which can be described individually. Note, however, that the
two operations do not commute.

H the construction of the system should ever be changed, i.e. if the plate
is handled in a different way, only the transformation must be adopted and
all other derivations can be reused.

In Figure 3.3, the global frame of reference {z,y, z}, which is presumed
to be inertial, is mapped onto the auxiliary frame of reference {u”,v™, w*}.

7 1 0 0 U™ 0
7 | = |0 cosa —sina v |+ | cosa |d (3.16)
z 0 sina cosa ur sina

Ta Qe

In Figure 3.4, the auxiliary frame of reference {u”,v™, w™} is mapped onto
the local frame of reference {u,v,w}, which is attached to the plate.

w cosf} 0 sing u
vt | = 0 1 0 v (3.17)
w* —~sinf 0 cosf w

Tg

Substitute Equation 3.17 into Equation 3.16 to get the direct transforma-
tion from the local frame of reference {u, v, w} to the global frame of refer-
ence {z,y, z}.

[y 2] =TaTpluvw +q.d

z cosf3 0 sin 8 u 0
y | = sinasinf cosa —sinacosf v |+ | cosa | d
z ~cosasingd sina cosacosf w sin
R —
TC!,H 9a

(3.18)
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Figure 3.2: The plate and its descriptive coordinates.
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Figure 3.4: Rotate the plate by 3

Figure 3.3: Rotate the plate by a.
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Figure 3.5: Momentary view of the ball on the plate.

Definitions

The distance d in Figure 3.2 is set to zero since its value does not change
the dynamic properties of the model.

Figure 3.5 shows a momentary view of the ball on the plate. F is the
force of adhesive friction, ¥ is the normal force and G the gravitational
force. Motion parameters and frames of reference are defined as follows:

Q angular velocity of the plate (excitation)
w angular velocity of the ball
s position vector

ez, ey, €, unit vectors of the inertial frame of reference
€y, €y, €y 1mit vectors of the plate’s frame of reference

Indices 7 and p on the lower left-hand side of a variable indicate whether
the variable is expressed in coordinates of the inertial frame of reference or
the plate’s frame of reference, respectively. Take the position vector » as
an example.

z(t)

r(t) = y(t) | = z(t) iec + y(t) ey + 2(1) e,
z(t)

u(t)

(1) = | u(t) | = ut)peu +v(t) pes + w(t) peuw

w(t)

Define the reference motion T'(¢), such that

cen(t) = T'(t);er where k € {u,v,w}and € {2,y, 2}.
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T is the transformation matrix T g defined in Equation 3.18.

cos 3 0 sin 3
T = sinasinf cosa —sinacosf (3.19)
—cosasinf sina  cosacosf

It can easily be verified that T is orthogonal.
T transforms any vector from the plate’s frame of reference to the inertial
frame of reference.

Q=T ,0
iw =T w
T = TP'P

Angular Velocity of the Plate
Consider the velocity of an arbitrary point A on the plate.
A= X gy (3.20)

With the unary cross product operator (-)” defined in Appendix B, Equa-
tion 3.20 becomes

A= i$hira, (3.21)

where ;{1 is a skew-symmetric matrix.
Alternatively, ;74 can be written as

A= %(Tpm) =T pra+Tpra.
Since ,7y4 is constant, we have pry =0 and therefore
a=T oy =TT 4. (3.22)
Comparing Equations 3.21 and 3.22 we gather
Q=TT
Lemma Let T an arbitrary orthogonal matrix and a, b vectors. Then
T(a x b) = (Ta) x (Th).
Multiply Equation 3.20 with 77! and use Lemma to expand.
Tl =T QX ra)= (T X (T irs) = pX pra = ps(”zpu)
3.23

Now, if we multiply Equation 3.22 with T “1 and compare with Equa-

tion 3.23, we gather .
=TT
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When computing the inverse of T , remember that 77! = T’ because
T is orthogonal.! :

cosfB  sinasinf —cosasinf
/A 0 cos o sin a
sinfi —sinacosf cosacosf
~@sinf 0 Beosp
T =1 acosasinf@ + fBsinacosf —asina —acosacosf 4+ Fsinasing
asinasinff — fcosacosf  dcosa —asinacosf — Feosasing
0 —asing -8
pf2 = | asinf 0 —ccos 3 (3.24)
-8 & cos 3 0

Since the transformation denoted by the operator (-} is a linear isomor-
phism, the vector ,§2, such that X ;7 = ,Q,r, is unique. See Theorem
in Appendix B for a proof.

dcosf ] cosf3 0 .
Q= 4 |=| 0o 1 [ p ] (3.25)
asinfl | sinf8 0 s
cosf 0] r . —sinf
A= 0 1 [ p ] o |ap (3.26)
sin 0 p cos 3

Preliminary Computations

We aim at equations of motion expressed in coordinates which are local to
the plate. Hence it is necessary to transform all relevant variables from the
inertial frame of reference to the plate’s frame of reference, namely position
re, velocity o and acceleration #¢ of the center of mass C as well as
angular velocity w and angular acceleration w of the ball.

-1
T o = pT0

T e = TTI%(TP'P(;-) = T”l(TPTc + Tp'f'c) = TMITP'PC + pTc
= pQprg+ pPc = X pPc t+ 70
(3.27)
This is the sum of the velocity caused by the reference motion and the
velocity relative to the plate.

! ranspesition of a matrix will be denoted by a prime.
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T e = T_I%,"f'c = T—I-C%(TT—I 51"(;')
= T_I%(T(pﬁprc + p7c)) )
= T_l(T(pQPTC + p7c) + T(pﬁprc + pﬂpf’c + pic))
= pf}zp"c + 2,857 + pﬂp”C + e
= X pro+ 00X (pQ X p'i‘c)+ oTC + 2,80 X pPg
(3.28)
We recognize the acceleration caused by the reference motion in the direction
of the momentary orbit, pﬂ X prc, and towards the momentary center of
rotation, ,§ X {(p$2 X pr¢). Furthermore, the acceleration relative to the
plate, ,#¢ , and the Coriolis acceleration, 2,02 x ,7¢.

-1
T "= pw

T = THEH(Tw) =TT pw + T )

. . 3.29
— pﬂpw+pw:pﬂ><pw+pw ( )

We have the sum of the angular acceleration caused by the reference motion
and the angular acceleration relative to the plate.

Newton-Euler Equations

The conservation law of momentum is
miio = iG + R, (3.30)

where m denotes the mass of the ball and r¢ the position of the center of
mass. (G is the gravitational force and R the reaction force.

F and N are adhesive friction and normal forces, respectively, as depicted

in Figure 3.5.
Transform Equation 3.30 to the p frame and substitute Equation 3.28.

mT e =Tt ié +7! gé

M X pre+ p2X (pRX pre)+ pPe+2,0% prg) =mT 1| 0 |+ ,8

The conservation law of angular momentum is

T+ jw X Jw = (CB) x iR (3.32)
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For symmetry reasons, we have the tensor
J=JIs,

where J is the scalar moment of inertia defined in Appendix A and I the
3 x 3 identity matrix. Consequently,

sw X Jw = Jw X jw=10.

With 7 denoting the radius of the ball,? the vector from the center of
mass {' to the point of contact B is
;(@ ) = —Ti€y.
Equation 3.32 can thus be written as

Juw = —r;e, X ;R (3.33)

Transform Equation 3.33 to the p frame, substitute Equation 3.29 and
use Lemnma to expand the right-hand side of the equation.

JT Y0 = —TT—l(,;ew X ,j?i)

J(p X pw + @) = —7( pey X pK) (3.34)
FEquation 3.34 expands to
: T =
W = #j(pew X pR) — s X pw

Wy - Fy Qpwy — Qywy

Wy = j —Fy + Quwy — Qywy

u'Jw 0 Quwu - Quwu

and in particular

Wy = Dty ~ Dpy. (3.35)

We go one step further and substitute Equation 3.25 into Equation 3.35.
Wy = By — écos By (3.36)

Equation 3.36 clearly shows that the ball has a spin normal to the plate.
For convenient further manipulations, we replace the binary cross prod-
uct operator (-) x (-) by the unary cross product operator (-)” in Equa-
tions 3.31 and 3.34.
. - ) 0
Soro + o pre + pic + 2, Qe =T 0 |+ 2,R (3.37)
-9
pilpw + pw = %("""péw)pR

Mind the difference hetween the radius r and the position ».
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We combine Equations 3.37 to a single equation in block matrix form
while at the same time making use of the identity — ,&,, = p&l,, which holds
for all skew-symrnetric matrices. Og is the 3 x 3 zero matrix and I3 the
3 x 3 identity matrix.

[piﬁc}+{pﬁ+pfz2 2,0 03} p"C

. TC

pw 04 0s L0 ’;w
|z 8 + mls s Is | B (3.38
o 03 03 - %Ia ?’péiu e ’ )

Constraint Equations

Fundamental to the Ball and Plate experiment is the provision that the ball
rermains in contact with the plate at all times. This imposes three scalar
constraint equations, one for each degree of freedom of a rigid bedy in space.

Consider the point of contact B. Its velocity 7 p can be expressed in two
different ways.

iig = g+ iw X (CB) = io —riw X iey
g — X yrp = A X (irc—-r;ew): X re -1 X ey

With the identity @ X ¢ +b X ¢ = (a + b) X ¢, where a, b and ¢ are vectors,
it follows immediately that

ite — X gre = riw — Q) X e (3.39)

Transform Equation 3.39 to the p frame, substitute Equation 3.27 and
use Lemma to expand the cross products.

-1 o — T_l(,'ﬂ X i’r'c) = TT_I(( W — iﬂ) X ;ew)
pre =T1(pw — p1) X peu (3.40)

Equation 3.40 expands to

iﬁC Wy — Qv
T.JC =T Wy — Qu
Wer 1;
and in particular
we =0, (3.41)

which is exactly as expected, since we requested that the ball should never
loose contact with the plate.
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Using the unary cross product operator {-)7, we can write Equation 3.40
in block matrix form. 0 denotes the 3 x 1 zero vector.

pP0 = Tpey X (pQ — pw) = 758, p8 — 7,8y pw

Iy 1yéy | [ prC l = Iy rpéy { %} (3.42)

f2d p

Combining Newton-Euler and Counstraint Equations

In order to gain equations of motion with the only time-varying variables
»TC, pw, p§8 and their derivatives, we must find an explicit solution for R

in Equation 3.38.
To make handling of equations easier, we introduce a few shortceut nota-

tions. o s )

S5 — 24 00 2,0 03
03 0 02

- -1 !

9= 0

R (3.43)
. | mIg 03
M = 0; JI3 ]

E=|Is 8, |

From now on, all differential equations will be expressed in coordinates
of the plate’s frame of reference and » will always denote the position vector
of the ball’s center of mass, so that we can henceforth leave aside the indices

pand C.

T = LP0
W = pw
RS (3.44)
E= R

Substitute Equations 3.43 and 3.44 into Equations 3.38 and 3.42 to write
them in a more compact way.

=g+ M'E'R (3.45)

R s
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Equation 3.45 cannot be solved for B by itself because M~1E’ is not
square. The key to the solution is as follows: Multiply Equation 3.45 by E
and differentiate Equation 3.46 with respect to time.

. T
T . _ -1 5
E{d’:l—}-ES :; =Eg+EM " E'R (3.47)
G

RO

Substitute Equation 3.48 into Equation 3.47 and solve for R. This is possible
because & is nonsingular.

r
R=G'E { 3 } +GTES| ¢ | -G 'Eg (3.49)
w

Equation 3.49 is now substituted into Equation 3.45 to produce the com-
plete equations of motion in a compact form.

l:; ] = (IG—M”lE’G‘lE)(g—S : )+M-1E'G-1E [ g }
[

(3.50)

Explicit Equations of Motion

The matrices that constitute Equation 3.50 remain to be evaluated for a
formulation of the equations of motion in terms of the position of the center
of mass 7, the angular velocity w and the inclination angles a and 8. The
results of these evaluations were verified in MAPLE.

Remember pﬂ from Equation 3.26 with @ = £ from Equation 3.44.

crcos 3 —"c'xB sin 3

U Wy
r=| v w= | wy Q= Jé;
w Wy asinf + afcos

We start with the matrices defined in Equation 3.43. Recall pfl from
Fquation 3.24 and T from Equation 3.19.

S11 S 03}

5 =
0z 03 Sus

—&2sin? w—ﬁg —&sinfB  &%sinf cosﬁ—l—é
S11=| dsinB+2&Bcosf  —&*  —dGceosf+ 248 sin
&?sinflcosB— 3 acosp ~&cos B - B2
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0 —2sin 3 28
Sip= | 2a4 sil}ﬁ 0 ~2acos
~20 2¢cos 3 4]
0 —asing 8
Sea = | asing 0 —acos 3
-0 ! 0
gcosasin
—~gsino
—gco
g= gc 500: cos 3
0
L 0 |
m 6 0 0 0 07
0 m 0 0 0 O
0 0 m 0 0 O
M = 0 0 0 J 00
0 0 0 0 J O
Lo 0 0 0 0 J |
1600 — 0
E=(0¢10¢ 0 0
0010 0 0

G was defined in Equation 3.47.

I
J .

=

o o +

2

G=EM'E = s

1
m

o4+ o

0
0
1
m
The distance w from the center of mass ' to the point of contact B in

Figure 3.5 is constant and equal to the radius of the ball ».

w=r
This is in accordance with Equation 3.41.

W =0
It turns out that the third line of Equations 3.50 is

w=0

and clearly, these trivial differential equations are of no interest for the
description of the two-dimensional motion of the ball on the plate.
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If we introduce the state vector
— N !
z = [uv e v w, Wy Wy,

Equations 3.50 can be written in the standard form

z(t) = A{t)e(t) + b(t), (3.51)
where
Ay A
=ty dn] vewen
and
0 0 1 0
A mr? 0 _ 0 0 1
[ &®sin g + 6 &sin B 0 2¢sin B
~asimf — 2af cos 8 & —2asinf 4]
0 0 0
Ay Jr 0 4] 0
2= r24 J | —asinf 0 dcos 3
0 —gsin B 3
- asind + QdB cos3 —a&?  2asing 0
Ay = o S a?sin® g + B2 ¢k sin 3 0 2a sin 3
0 0 0 0
7 0 drsin 3 o
Ay = - —asin g 0 acos 3
T e (1 PP )acosp 0
, 0 -
0 ar
—rf
by = | racosp
0
0
o]
- 0 |
0
1 mr2(—~ré? sinf cos § + g cos asin f}
by = ——— | mr?(-2rafsing — gsina) —~ Jrafsinp
mr? +J :
mr(r&fsinf + gsin a)
mr(—rd&? sinf cos 3 + g cos asin B)
0
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If we set 8 = 0, the fourth line of Equation 3.51 reduces to
J . . .2 .
(1-}—@) (4 — ré&) — va® + gsina = 0. (3.52)

FExcept for the name of the position variable, this differential equation is
identical to Equation 3.12, the equation of the Ball and Beam system.
Likewise, if we set @ = 0, the third line of Equation 3.51 reduces to

(1—}— mm%) (4 -+ Tﬁ)—uﬁ'z-—gsin,@ = {,

Due to the definition of 8 in Fig 3.2, the sign changes in all but the quadratic
terms of 8 compared to Equation 3.52.

For small angles o and 3, the approximations sin = £ and cos€ ~ 1 for
¢ € {a, B} may be substituted into the matrices 4 and b in Equation 3.51.

0 0 1 0
mr? 0 1] 0 1
An=onTT ] a2 a8 00 24P
—&8—248 & -2a8 O
0 0 0
L 0 0 0
BTz J | —af 0 &
0 -af B
a8+ 2a8 —&* 2a8 0
Ap= TE— | @F L 6 0 2B
mr 0 0 0 0
7 0 af -8
A22:mT2+J _ﬁz 0 2
(1+2-)8 ~(1+™-)a O
S
0
—rfl
b = &
0
0
L. O .
] . )
0
1 mrz(wirc'tzﬁ +g8)
by = o mr?{—2raBp ~ ga)— JrafBp
mr(raff + ga)
mr(—'rc'xgﬁ + g8)
0
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As a last step, we linearize Equations 3.51.

T

= mTZ-I-Jgﬁ#T'é (3.53)
i o= w%ga+'r& (3.54)
by = %ga (3.55)
G = b (3.56)
Gy = 0 (3.57)

Equations 3.53 and 3.54 constitute the linearized equations of motion
for a ball on a plate. Since they do not depend on w, Equations 3.55-3.57
are not necessary for a linear controller design. It will be sufficient to design
a controller for either dimension and then take two of these to control the
motion in both dimensions. We have seen in Equation 3.36 that the normal
spin &, is non-zero, but there is no linear term and hence the linearization
yields Equation 3.57.

3.3 Reduced Model of the Ball and Plate System

Assumptions

The transformation between the two frames of reference depicted in Fig-
ure 3.2 is the same as in the full model. Since the ball is required to remain
in contact with the plate at all times, centrifugal forces normal to the plate
are of no interest. Thus, the distance from the origin to the ball’s center
of mass can safely be approximated by the distance from the origin to the
point of contact of the ball and the plate. This means that we can use the
same position vector » for the center of mass and the point of contact.

Pao = TR (358)
Consequently, w remains zero in Equation 3.18.
2 — ucosf
y =usinasinf + (v + d)cosa
z=—ucosasinf + (v + d) sinc

The first and second derivatives of the position represent the velocity and
acceleration, respectively.

2 =mncosf — uﬁ’sinﬁ
y = usinasinf + vacosasinf + uﬁsinacosﬁ

+dcosa — (v + d)asina (3.59)
2= —ucosasinf + udsinasinF — uf cos a cos

+dsina + (v + d)acosa
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3 :ﬁcos,ﬁ—QﬁBsinﬁ—uﬁsinﬁ—uﬁzcosﬁ
y—usmasmﬁ—l—2uacosasmﬁ+uacosasmﬁ~ua
+2u,6 smacosﬂ-l—uﬁ suucxcosﬁﬁuﬁ2 smasmﬁ+2ua,8 cos @ cos 3
+ $cos @ — 20ésing — (v d)dsina ~ (v + d)é® cos o
Iz:—ucosasmﬁ'—1—2uasmasmﬁ+uasmasmﬁ+uazcosasmﬁ
— 248 cos crcos § — uf cos ar cos B + uf? cos asind + 2udf sin a cos B
+ dsina + 20&cosa+ (v+ d)acosa—(v+d)a sin e

Ysina smﬁ

(3.60)

As a further simplification, we disregard the coupling between the three
components of the angular velocity w. This is equivalent to neglecting the

spin normal to the plate.
Wy ~ 0 (3.61)

Approximation 3.61 allows us to apply the conservation law for angular mo-
mentum in the moving frame of reference, although it actually only holds
in the inertial frame of reference. The Lagrange equations only hold for
holonomic constraints.® The ball on the plate is subject to a non-holonomic
constraint because the rotation around the axis normal to the plate is inde-
pendent of the position parameters, Le. the location of the center of mass.
Hence we should actually use the Boltzmann-Hamel equations instead of the
Lagrange equations. However, Approximation 3.61 permits to nevertheless
use the Lagrange equations.

Newton-Euler Formalism

The unit vectors of the local frame of reference can be expressed in global
coordinates as follows:

1 [ cosp
e, =Top 0| = sinasing
0] | —cosasinf
o] [ o
ey =Top |1] = |cosx
0] | sin o
0] [ sing
ey =Tap |0| = | —sinccos 3
|1 | cosacosf

*Holonomic constraints are expressed in position parameters, i.e. f(z) = 0. Differenti-
ation with respect to time leads to constraints that are expressed in position and velocity
parameters: Df{z)-& = 0. Non-holonomic constraints are of the form g(=, &) = 0, where
no f exists, such that g = Df.
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Figure 3.6: Top view of the plate.

The conservation law for momentum is valid in all three directions in
space. Forces and local coordinates are defined according to Figure 3.6 and
rm denotes the mass of the ball.

3
m| 4 | = Fe,+ Fe, +Ney
Z

méE = Fycosf + Nsinf
mij = Fysinasing + F,cosa — N sinacos (3.62)
mé=—F,cosasinf + Fysina+ Ncosacosf— G

If we assume w,, = 0, the conservation of angular momentum holds for
both degrees of freedom of the ball. We denote by J the moment of inertia
of the ball which is derived in Appendix A and by » the radius of the ball.

~Juy =1 F,

—~Ju, =1 F, (3.63)

In analogy to Equation 3.7 we have the following relations between angular
velocities and velocities.

(3.64)

RICE I

Substitute Equations 3.64 into Equations 3.63 and solve for F, and F,.

I .
Pz U

(3.65)

Fy
Fy
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Combining the second and third of Equations 3.62, either F, or F, can
be eliminated.

mysina —micasa = Fysinff -~ Ncosf 4+ Geosa

mijcos o +misina = F, — Gsina (3.66)

Then, combine the first lines of Equations 3.62 and Equations 3.66, respec-
tively, to eliminate N in Equations 3.66.

m# cos 8 + (mysina — mZcosa)sinB = F, + G cosasin§

mijcosa +mising = F, — Gsina (3.67)

Next, substitute Equations 3.11 and 3.65 into Equations 3.67 and divide
by m.

:Ecosﬁ+§sinasinﬁ—écosasinﬁ:—mf_gib+gcosasinﬁ ( )
3.68
" s R .
yeosa + Zsina = ——5U — gsing

Finally, Eguations 3.60 are substituted into Equations 3.68 to produce the
desired equations of motion for the reduced model of a ball on a plate.

(1+-L5)ii — uf? — gcos asin B — ué? sin®f — (v+d)dsin f - 20asing = 0

T.l'!,’.'l‘2
(1+ L)t — (v+d)a? + gsina + udsin 8 + 2udf cos § + 2udsing = 0
(3.69)
Keeping « zero in the first line of Equations 3.69 and 8 in the secend
results in two differential equations of equal structure.*

(I—I——%)ﬂ—uﬁz—gsinﬂ:O
mr

J . 2 :
(1—{——7};—3)1)—(1)—}—(1)& +gsina =0 (3.70)

When Equations 3.69 are linearized for small values of o and 3, they are
at the same time decoupled.
(14 )i — g8 =0

mr?

(1+=55)0 f ga=0

er

Solving for il we get two separate double integrators.

o mgr?
U= 50
mri4+J (3?1)
. mgr?
v= mr2+.fa

*The minus sign in —gsin 3 is due to the definition of # in Fig 3.2.
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Lagrange Formalism

Apgain, we assume w,, = 0. Recall that the Lagrangian is the difference
between kinetic and potential energy of a rigid body.

L = Bgn — Epot (3.72)
The kinetic energy is the sum of translational and rotational energy.
m J
Frin = Birans + Erot = 5"’”2 + 'é“wz

We denote by » the magnitude of the velocity of the center of mass and
make use of Equations 3.59 to compute v,
2

ve = y — 2-32 + 92 + 2‘;2
Z
32+ 9% + 2% = @ + w¥&Psin® B 4 u26% + 0% + (v + d)%?
— 2u(v + d)asinf + 2uvasin — 2ufv -+ d)af cos B
We denote by w the magnitude of the angular velocity of the body and
substitute Equations 3.64 into the definition.

2
w

w? = b
Wy

1., .
=w, o) = (@ +9°)
Because we approximate the distance from the origin of the {z,y, z}
frame to the ball’s center of mass by the distance to the point where the
ball touches the plate, the potential energy of the ball becomes

Epot = gz = —mgucosasinf + mg(v + d)sina.

Inserting everything into Equation 3.72 yields an expression for L that

only contains the coordinates v and v.
L= 242 4 Bulalsin® B + 2u?f? + 2% + B(v + d)%&’
— ma{v+ d)asin f 4+ mudésin 8 — mu(v + d)af cos B
+ STu? + 5‘;%1’:2 + mgucosasinf — mg(v+ d) sina
The conditions
d8L _ 8Lt g

di du Bu
daL _ 8L g
dt 9% By T

lead to the desired equations of motion for the reduced model of a ball on a
plate.

(1+ S )it — u@3? — geosasinf — ud?sin®g — (v+d)asin - 20ésing =0

mr?
(1+-25)5 — (v+d)a® + gsin e + udsin g + 2udf cos 8 + 2asing = 0
(3.73)

Note that Equation 3.69 is the same as Equation 3.73.
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3.4 Comments on the Results

From the non-linear models of the Ball and Plate system derived in Sec-
tions 3.2 and 3.3, we know that the plant is not symmetric with respect to
the inputs. The reason for this lies in the set-up of the experiment depicted
in Figure 3.2. While the first rotational axis (the #-axis) is motionless, the
second rotational axis (the v-axis) is rotated around the first one. Conse-
quently, there is no duality between the two non-linear equations of motion.
However, when we linearize these equations for small inclination angles o
and 8, they become mathematically equivalent.

It is interesting to see how the assumptions which the reduced model is
based on, effect the resulting differential equations.

Compare FEquation 3.52 to Equation 3.70 with 4 = 0.
J

(1+L)i}—vd2—|—gsina—réi— ard =0

mre

(1+ ;‘%)i}—vd2+gsina:0

Approximation 3.58 is responsible for the absence of the term —r& and
Approximation 3.61 for the absence of the term —;{Tr& in the reduced
equation of motion.

It remains to be checked whether the assumptions which led to the re-
duction, are permissible. The smaller the ball, the better the approximation
re =~ rg and the approximation w, = 0 is justified by Equation 3.57.
The exact value of —# depends on the ball, but is significantly smaller
than 1. Both approximations naturally rely on relatively small angular ac-
celerations &.



Chapter 4

Controller Design

Because of the duality between the two differential equations that describe
the linearized Ball and Plate system, we can start by designing a controller
for the Ball and Beam system and then apply two of these controllers to the
Ball and Plate system.

4.1 Time Response of the Plant

Before we can design a controller, we need to understand the behaviour of
the plant itself. In our case, analysis of the time response is more apprepriate
than the frequency response because the latter is only applicable to linear
systems.

Comparison of the Non-Linear and the Linearized System

Since our techniques for regulator design rely on linear models, comparing
the non-linear and the linear model of the plant is of particular interest.

With the infroduction of the constant
mr?
mr? +.J

e =

we can write the equations of motion 3.12 and 3.13 for the non-linear and
the linearized model, respectively, in a more convenient way.

= c(ud® - gsina) +ra (4.1
= —cga+ra (4.2)
For the following simulations with the plant alone, we assume a hollow ball
of radius 7 = 2 cm and mass m = 10 g, which leads to the constant ¢ = 0.6.

Note that ¢ only depends on whether the ball is solid or hollow. The initial
velocity of the ball will always be zero.

31
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Figure 4.1 shows a SIMULINK representation of both the non-linear and
the linearized system. Because the inclination angle «a is differentiated; we
cannot excite the system with an ordinary step function. Tnstead we take
the smoothened step function depicted in Figure 4.2, which has a steady
first derivative and a bounded second derivative. T is the rise time.

0 (¢t <0)
u(t) =< 3(1—cosZt) (0<t<T)
1 (t>T)

ﬁ

2ipha Degreeste
Radians

iniial velodity nitial paskion

i G

positon (En)

Figure 4.1: The non-linear and the linearized plant.

The exact differentiation was approximated by a high-pass filter.

Ns

ST with & =50...100

If the initial position of the ball is non-zero, there is a considerable dif-
ference between the response of the non-linear and the linearized system.
In Figure 4.5, we recognize the effect of the centrifugal term ud? in Equa-
tion 4.1, which has vanished in Equation 4.2.

Next, we excite the plant with the smoothened pulse shown in Figure 4.3.
Unlike in the previous case, the inclination angle is reset to zero, so that the
ball is not accelerated further. Figure 4.6 shows the response.

Qur last excitation function is one period of a smoothened square wave,
depicted in Figure 4.4, Since the plant is time-invariant, all the energy which
is transferred to the linear system by the positive pulse, is removed again by
its negative counterpart, so that the position u remains constant after the
transient phase. In teality, in the non-linear system, the ball keeps rolling
beyond the end of the excitation. Figure 4.7 illustrates this difference.

A MAaTLAB script for the above simulations can be found in Appendix D.
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Figure 4.2: Smoothened step.
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Figure 4.3: Smoothened square pulse.
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Figure 4.4: Smoothened two-pulse square wave.
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Figure 4.5: Step responses of the non-linear and the linearized system.
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Figure 4.6: Pulse responses of the non-linear and the linearized system.
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Figure 4.7: Wave responses of the non-linear and the linearized system.
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Comparing wave responses which result from different simulation pa-
rameters gives additional insight into the non-linear nature of the plant. We
reduce the amplitude of the inclination angle from 20° to 10°. The results
are depicted in Figure 4.8.

An interesting effect can be cbserved in Figure 4.9, where the initial
position of the ball was decreased from 60 cm fo 40 cm: the ball will roll in
the opposite direction after the transient phase.

12 1

— alpha =20 deg
i --- alghazwdeg

posltion i)
voloclty [m/s]

—— alpha=20deg

--- alpha=10deg

05 1 15 2 25 3 % 05 1 5 2 25 3
tima [s} tims {s]

Figure 4.8: Wave response of the nonlinear system for & = 20° and & = 10°.

position [m)

IIEEEER 1 Vo= ]
: 2

05 1 25 a 0 05 1 15 2 25 3
tma [s]

15
tma [5)
Figure 4.9: Wave response of the nonlinear system for #(0) = 60 cm and
u(0) = 40 cm.

Remember that the primary cause for non-linear effects are centrifugal
forces. Neglecting them is equivalent to considering a system with very
limited angular velocities &. The approximation sin o = « is less ticklish for
small values of a.
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4.2 Design of a Continuous-Time Controller

In Section 3.4 the differences between the full and the reduced model of the
Ball and Beam system were discussed. We shall base the design of all our
regulators on the reduced linearized model, i.e. we neglect the term ré in
Equation 4.2. Hence, the transfer function of our plant becomes a pure
double integrator.

P(s) = ~eg5 (4.3)

If we ran the simulations in Section 4.1 again with the reduced model, we
would indeed notice merely minor differences in the transient responses.

P Controller

The root locus curve with positive feedback in Figure 4,10 shows that it is
impossible to stabilize the plant with a proportional controller.

15

1

035

0

—0.5,

-1

45 ,
= -05 (1] 05 1

Figure 4.10: Root locus curve for the linearized plant.

PD Controller

With the PD controller in the feedback path depicted in Figure 4.11, the
two pole locations of the closed-loop system can be selected arbitrarily by
choosing the proper values of kp and kp.

Y(s) —cgh B —cg

R(s) 14 (kp+kps)(—cgk) &*—kpegs—kpeg

(4.4)

State Feedback

When all the elements of the state vector are at our disposal, the poles can
be set likewise by the state feedback controller in Figure 4.12.

Y(s) _ —cg B —cg
R(8) 14 (—kocgl) + (~kicgl) 82— kacgs — kicg

(4.5)

1Equation 4.2 describes a non-minimum-phase system with a zero at cg/r. This
right-half plane zero causes the small under- and overshoots in the velocity responses of
the linear system on page 34.
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Figure 4.11: The non-linear and the linearized process with a PD controller.
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Figure 4.12: The non-linear and the linearized process with state feedback.
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Comparison of Equations 4.4 and 4.5 shows that PD control and state
feedback are equivalent for our system.

ki = kp
ky = kp

Both gains must be negative for stability in the closed-loop system.

Since the velocity of the ball is not sensed directly, we will have to use
an estimator for the state vector. The estimator can be designed separately,
though, and we continue with the contrel law design for full state feedback.

By defining the two states

Ty =¥y
. ' 4.6
Ty =Y (46)

we gather a state-space representation of the transfer function in Equa-

tion 4.3.
2(t) = Aw(t) + Bu(t)

4.7
y(t) = Ca(t) (4.7)
01 0
A_[O 0} B#[——cg] C:[IO] (4'8)
With the control law
u=—Kz 4 kor (4.9)

the closed-loop system becomes
& = (A~ BK)z + Bkgr.

The static prefilter kg is computed so that the static gain of the closed-loop
system becomes 1.

Y(s)
E(s)

—~C(sI - A+ BEK) 'Bkg —>1 (s 0)

. 1

" C(BK - A)'B

The first step is to find the feedback vector K in Equation 4.9. Different
design methods exist for this problem. Some of them are discussed below.

(4.10)

Time-Domain Specifications

The operating range of actuators is often limited. It is thus possible to iterate
the design of K until we have satisfactory response behaviour without the
actuators going into saturation. In our case, the inclination angle, which is
the input value of the plant, is not a priori limited. This method is therefore
not particularly advantageous.
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A more expressive quantity is the rise time of the output value in re-
sponse to a step excitation of the system. A difficulty is imposed by the
differentiations in the non-linear model in Figure 4.1 which will be used for
the simulations.? They prevent us from applying an unsteady function like
a step. Smoother excitation functions circumvent the problem of infinite
derivatives. Such functions are exhaustively covered in Appendix C. We
choose as our excitation function the step response of a second-order system
with damping ¢, = 0.9 and rise time T}, = 0.1 5, where 7}, is the time when
the tangent through the inflection point reaches the step height. See Fig-
ure 4.13 for the looks of it. The reason why we chose a reference step from
40 to 50 cm rather than from 0 to 10 cm is the distance d in Figure 3.2,
which has a value of 23 cm, and the desire for a worst-case analysis with
regard to non-linear effects, which are greater far away from the rotation
center.

ruleranca [omj
I
=

[X)
&

a 05 1 is 2
tirma fs]

Figure 4.13: Smooth step-like excitation function.

For the closed-loop system, we specify the rise time T and the damping
ratio ¢ and select the natural frequency wy, accordingly using Equation C.13.

1(;: 8?5} —> wy, = brad/s

The closed-loop characteristic polynomial s* + 2(w,s + w? has the roots
—3.52 1 3.597. We use Ackermann’s formula to compute the corresponding
state feedback gains &y = —4.29 and k; = —1.20, and Equation 4.10 to com-
pute the static prefilter kg = —4.29. The resulting bandwidth is 5.1 rad/s.
Figure 4.14 shows the transient response of the closed-loop system.

2The differentiations in the linear model were discarded when we formulated the trans-
fer function P(s) in Equation 4.3,
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Prototype Design

For a given system, a step response can be worked out to minimize the
integral of the time multiplied by the absolute value of the error (ITAE
criterion).

J= /oot|e(t)| at

Depending on the order of the system, a set of pole locations is evaluated
such that the loss function J is minimized. For a second-order system, the

poles must be placed at
Wo Wo

“BEA

where wq is the desired cut-off frequency. We choose

+

wg = 4 rad/s.

Then the state feedback gains are k; = —2.72 and k; = —0.96, the static
prefilter kg = —2.72 and the bandwidth 4.0 rad/s. When we compare the
transient responses of this system in Figure 4,15 with the responses in Fig-
ure 4.14, we see that there is significantly less overshoot and a much better
matching of the behaviour of the linearized model with the non-linear model.
On the other hand, the settling time is prolonged.

When overshoot must be avoided altogether, we can choose the charac-
teristic closed-loop polynomial to be equal to the nth-degree Bessel polyno-
mial. For a second-order system, the roots of the polynomial are

(—0.8660 % 0.50007 Jwo.

For the cut-off frequency wp = 4 rad/s we get the state feedback gains
By = —2.72 and ky = —1.18, and the static prefilter kg = —2.72. The
bandwidth of this system is only 3.1 rad/s, whereas it was 4.0 rad/s in the
ITAE criterion design. This means that, given the same value of wp, the
ITAE prototype has a higher bandwidth for the same attenuation at higher
frequencies. Therefore, by selecting wp to give the same bandwidths, we
achieve reduced sensitivity to sensor noise at high frequencies with the ITAT
prototype. Notice in Figure 4.16 that, as requested, there is no overshoot in
the output signal, and that the settling time is reduced.

Frequency-Domain Specifications

We could also specify the parameters of the characteristic polynomial di-
rectly. We would e.g. specify the damping ratio and vary the natural fre-
quency in order to achieve a certain bandwidth.



CHAPTER 4. CONTROLLER DESIGN 41

52
50
487
Eas g
S oA
£ 2
3
g =
a2¢
-/ reference
40 — non-finear ' ~—  non-linear
--- linearized v --- finearized
1 - . \
5 0.5 1 15 2 e 05 ! [ 2
tims [s] trma [s)

Figure 4.14: Tnput and output signals of the regulated plant with specified
rise time T' = 0.5 5 and damping ratic ( = 0.7.
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Figure 4.15: Input and output signals of the regulated plant with cut-off
frequency wp = 4 rad/s and ITAE criterion.
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Figure 4.16: Input and output signals of the regulated plant with cut-off
frequency wp = 4 rad/s and Bessel polynomial design.
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Optimal Linear Quadratic Regulator
The LQR problem is to find the state feedback vector K such that

J= / #()Qu(t) + u(t)Rult)) &t (4.11)

is minimized for the system in Equation 4.7. Q and R are matrices which
weight the tracking error  with respect to the control effort u. To reduce
the number of design parameters, we choose

Q=C'C
In the single-input single-output case, this choice of @ together with
R=1

turns Equation 4.11 into

J = /Om (@v2(e) +*(2)) at

where the scalar @ is the only design parameter. We wish to find a compro-
mise between a fast response (small values of @ for a zero reference) and a
low control effort (small values of u}. The larger @, the faster the system
and the higher the bandwidth. Consider

Q=10

and solve the LQR problem. The resulting state feedback gains are k; =
-3.16 and k9 = —1.04. The static prefilter is by = —3.16 and the bandwidth
becomes 4.3 rad/s. See Figure 4.17 for the transient responses of the system.
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Figure 4.17: Input and output signals of the regulated plant with output
weighting factor Q=10 and LQR design in response to a step excitation.
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Instead of a step-like excitation, we might as well have a sinusoid in-
put. indexexcitation function!sinusoid We take a magnitude of 10 cm and a
frequency of 0.5 Hz. The position response in Figure 4.18 has a phase lag
and an attenuated amplitude of 8.8 cm, which corresponds directly to the
magnitude gain of 0.88 at the frequency 7 rad/s.
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Figure 4.18: Input and output signals of the regulated plant with ontput
weighting factor Q=10 and LQR design in response to a sinusoidal excitation
of 0.5 Hz.

Choosing @ = 5 in the LQR design reduces the bandwidth of the closed-
loop system to 3.6 rad/s.
Appendix D contains a MATLAB script for all the simulations.

State Feedback with Additional Integrator and Feedforward

Consider the perturbed plant in Figure 4.19. There are three disturbance
inputs of different nature:

Load disturbance d: Within this category fall rolling friction and external
disturbances such as somebody blowing at the ball.

Actuator error v: Although the actuator is calibrated, a minor error will
always remain. Typically, this error is constant.

Measurement noise w: The optical system of the camera as well as the
transmission link add noise to the actual signal.

We investigate the transfer functions from the disturbances to the ball po-
sition. For a principal result, it is sufficient to use
1. 1
P(s) = = instead of the true —cg—3.
$ s

In reality, the compensator in Figure 4.19 is either a PD controller with a
low-pass prefilter for the D part or a state estimator with state feedback, but
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we assurne that the plant is regulated by a full state feedback or, equivalently,
a PD controller.

C(s) =1+ sTp
(NN S S S
D(s) ~ 1+ P(s)C(s) 1+ %(1+sTp) 52+ sTp+1
Y(s) . _P(s) _ i _ 1 1 (s 0)
V(s) 1+ P(s)C{s) 1+ 5(1+sTp) s*+sTp+1
Y(s) _ P(sYO(s) _ (i+4sTp) _ 14sTp (s 2 0)

Wi(s) 1+P(s)C(s) 1+ 5(1+sTp) s*+sTp+1

We observe that, due to the integral character of the plant, we need not
be concerned about tracking errors resulting from a constant output disfur-
bance, but the typical constant input disturbance on the actuator causes a
steady-state regulation error. This error can be compensated by an addi-
tional integrator.

1
Cls)y=14 ——+sTp
sS4y

T
Y(s) 1 _ 1
D(s) — 1+ P(s)C(s) 1+ (14 55 + 1)
BST]
T ST+ s T T+ sTr+ 1 — 0 (S - 0)
Y(s) _ Pls)  _ P
V(s) — L+P(s)C(s) 14 H(+ o +sTD)
STI
T ST 4+ st Tp +sTr 4+ 1 0 (S - O)
Y(s) _ _P(s)C(s) _ #(1+ 77 + sTp)
W(s) 1+ P(s)C(s) ~ 1+ x(1+ g7 +sTp)

2T Tp +sTr +1

— 1 -0
3T+ s*TfTp + sTr+ 1 (s )

Clonstant measurement offset is still not compensated, but this should not be
a problem because the sensor noise w typically consists of higher frequencies.
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Figure 4.19: The perturbed non-linear process with a compensator.
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In addition to the compensator, the system in Figure 4.20 contains a
feedback loop for the tracking error. Instead of a PD controller, we use the
notation for full state feedback, although the velocity of the ball cannot be
measured directly.

2 — Az + Bu
ey = y—r = Ce—7
w = —Kao— ket kor (4.12)

The integrator adds another state to the plant. The state-space description
of the open-loop system is written with an extended state vector.

[;J:Eﬂ[zyr@u (4.13)
=[e 0] ]

The closed-loop system becomes

@ | | A-BK -Bkg z Bk
o || c 0 P I A
A pole-placement function in MATLAB such as acker will return the
feedback vector [K krl.
The feedforward from the reference to the process input improves the
tracking performance: the direct influence of the reference is much faster

than the reaction of the integrator to the tracking error. The static prefilter
kg is the same as in Equation 4.10.

State Feedback with Additional PI Controller

Faster response to the tracking error is achieved by adding a proportional
part as in Figure 4.21.

z = Azt Bu

27 = ygy—r = Ce—7r

U = —Kﬂ}—kl'ml—kp(Cﬂ:—T) (4.14)
The state-space representation of the open-loop system remains the same as

in Equation 4.13, only the feedback law changes. Compare Equations 4.12
and 4.14. The closed-loop system becomes

BEEEIREET
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where

K:K-I-kpc.

Note that pole-placement functions return the vector K when passed Ay
and By as arguments. We choose kp to be similar to kg in Equation 4.10

1
kp = -
C(BK - A)'B

and compute K from K and kp.

K =K - kpC

4.3 The Discretized Plant

State-Space Description

The controller for our process will be implemented on a computer system.
While it would be possible to derive a digital controller from a continuous
controller by emulation (e.g. Euler or Tustin approximation), we expect
better results from a direct digital design based on a discrete model of the
plant. By a rule of thumb [8], emulation design yields reasonable results
at sample rates on the order of 20 times the bandwidth of the plant. Our
plant was defined in Equation 4.3 and has a bandwidth of about 3 rad/s.
The sample rate is limited to 25 rad/s (4 Hz) by the image processing
architecture. Hence the extra effort to design a discrete-time controller
from scratch is justified. The results from Section 4.2 will still be helpful to
choose the parameters of the discrete-time controller.

The digital controller holds the analog output signal (inclination angle)
uniil a new value is commanded. This is called zero-erder-hold. It is then
natural to choose the sampling instants of the analog signal (the position
of the ball) at the times when the control changes. We introduce the zero-
order-hold equivalent of Equation 4.7.

2k +1) = (k) + Tulk)

y(k) = Cu(k) (4.15)

T
B = AT P:/emB& c=[1 0] (4.16)
0

The evaluation of a matrix exponential can be done in different ways,
for instance by defining the function

¢(t) = e,
which is subject to the differential equation

(1) = Ap(t) with H(0)= L. (4.17)
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Compute the Laplace transform of the equation with initial condition 4.17,
sB(s) - $(0) = AB(s)

solve for ®(s
) B(s) =(sI - A)™*

and find the corresponding time function.

$(0) = L7 (sT - A)7"}

For the parameters in Equations 4.8, we get the following results.
®(s) =

qs(t):[é H

Note that ¢(T) = ® and evaluate Equations 4.16.

(I):[lT] I'=—¢yg

Dt e

Y F

- T;/z c=[10] (4.18)

Transfer Function

For a plant described by P(s) and preceded by a zero-order-hold, the discrete
transfer function is

P() = (1 =) ¢ 2y,

where ({ F(s) } is the z-transform of the sampled time series whose Laplace
transform is F(s). Extensive tables (1] exist for ¢-transforms.

We define the transfer functions P; and P, from the inpuf to the first
and the second state, respectively. Recall from Equations 4.6 that =, is the
position and =z, the velocity of the ball.

1 T2 241

Pl(S) = —{‘,gs—z— -~C-+ P]_(Z) = ﬁcg?m (419)
1 T

Pys) = —cg~ <, Py(z) = —eg— (4.20)

P(z) = Pi(z) can also be expressed by the parameters in Equation 4.18.
P(z) = C(zI — ®)7'T

Compare Equations 4.19 and 4.20 with the discrete-time model in Fig-
ure 4.22. When the two models are excited with the wave in Figure 4.23,
they produce the responses in Figure 4.24. The initial position is 60 cm, the
initial velocity 0 m/s.
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Figure 4.22: Linearized continuous- and discrete-time models of the plant.
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Figure 4.24: The wave responses illustrate the effect of the zero-order-hold.
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4.4 Design of a Discrete-Time Controller

The computation of the feedback gain K is the same as in continuous time.
An additional strategy for discrete-time systems is deadbeat control: the
desired poles are all chosen to be at the origin. After an impulse disturbance,
all states will be driven to zero in at most n steps, where n is the order of
the systemn. There is no corresponding feature for continuous-time systems.

Time-Shift Operator

For convenient manipulation of linear difference equations with constant
coefficients, we define the forward-shift operator g. It hast the property

g f(k)= f(k+1),

where f is a doubly infinite sequence. The inverse of the forward-shift
operator is called backward-shift operator and is denoted by ¢71.

g7t f(k) = f(k 1)

State Feedback with Integrator

The integrator in Figure 4.20 was introduced to compensate for an actuator
error.® This concept works just as well in a discrete-time system, where the
integrator is replaced by its zero-order-hold equivalent. Notice that we do
not sample the system in Equation 4.13 because the integrator contained
therein is discretized separately. Distinguish between the digitally imple-
mented integrator and the continuous physical process.

ge = Pz +Tu
qger = 2+ T(y—7) = ey +TCe - Tr
v = —Kao— krep+ kor (4.21)

The integrator adds another state to the plant. The state-space descrip-
tion of the open-loop system is written with an extended state vector.

o=l ][ 2] [3]:

Py Iy

atullt)

Cr

*The direct path from y to u in Figure 4.21 implies that u(k) depends on y(k), which
would request that the time it takes to measure y and compute u is very small compared
to the sampling interval. This is not the case with our process, where the measurement of
4 by means of Computer Vision actually takes up most of the time in a sampling period.
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The control law in Equation 4.21 is the same as the continuous-time control
law in Equation 4.12 and the closed-loop system becomes

[a)- [ ] )

A pole-placement function in MATLAB such as acker will return the
feedback vector [K kj].

The static prefilter kg is computed so that the static gain of the closed-
loop system becomes 1. We take the case where z7 = 0.

Y(s)
R(s)

I}

C(gI - & + TK) 'Tky 21 (g2 = =)

1
CI-%+TK) T

Estimator

Since the velocity of the ball is unavailable for measurement, we have to
estimate the states of the plant in order to be able to use full state feedback.
The notation £(k -+ 1]k} is used to indicate that the estimate of 2(k+ 1) is
based on measurements up to time &, that is, a one-step prediction.

Bkt 1lk) = @a(klk—1)+Tu(k)+ L{y(k) -~ Ca(klk—1))
= (& - LO)a(klk — 1) + Tu(k) + Ly(k) (4.23)

To determine I we introduce the reconstruction error
ey — & — L.
Subtraction of Equation 4.23 from the first line of Equations 4.15 gives

eolk +1[k) = B(a(k) - a(klk-1)) - £C (k) - &(k|k - 1))
= (& LC)ey(klk—1). (4.24)

Hence if I is chosen so that the system in Equation 4.24 is asymptotically
stable, the error e, will always converge to zero.

The determination of the estimator gain L is the same mathematical
problem as determining the feedback gain K. If the estimator gain is chosen
so that all eigenvalues of the matrix & — LC are zero, we get a deadbeat
observer and the estimation error goes to zero in at most n steps after an
impulse disturbance.

Notice that we do not need to estimate the state z; of the additional
integrator because it is part of the controller and therefore well-known.
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Compensator: Combined Control Law and Estimator

When using an estimator, we replace the true state @ in the control law
given by Equation 4.21 with the estimates 2.

qge = P4+ Tu

gz = ®2+Tut Liy-—7)

qgey = zy+T{y—r) = er+TCe-Tr
u = —K&—krzr+ kor

The closed-loop system has order five.

z ¢ -T'K TK —Tkr z Tk
g| ex | = 0 & - LC 0 en | + 0o |r
Ty TC 0 1 @y =T

The compensator can be viewed as a black box that generates the control
signal u from the process output y. It is an nth-order system.

L[ e )

¥, T.
——u:[K k[}[ @ }
. LI
C.

Notice that the estimator contains a model of the process internally. This
is a special case of the internal-model principle, which says that a good
controller contains a model of the controlled system.

The transfer function of the compensator is

C(z) = Cf=I - @c)"ll‘c.
The transfer function of the plant is
P(z) = C(2I - ®)"'T.

Besides the analysis of time responses we investigate frequency responses
in order to ensure good performance with respect to both disturbance rejec-
tion and sensor noise alleviation. The frequency response of a discrete-time
system is given by the map

w
- =

. 1
FwTy f, < —
Fe?¥* ) for 0 < 5 = o

that is, up to the Nyquist frequency.
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We define the transfer functions from the disturbance 4 and the sensor
noise w to the output y in Figure 4.19.
Y (2) 1
S = -
&) = D) = T PCE)
Y{z) _ _P(z)C(2)
Wi(z) 14 P(2)C(z)
S(z) is the sensitivity and T(z) the complementary sensitivity. From the
definition of S(z) and T'(z) it follows that

S{z)+T(z)=1.

T(z) =

S is the primary measure of performance as far as it relates to disturbance
rejection. Thus it is important $o make the value of § small. For physically
realizable systems, the loop gain |PC| becomes small for high frequencies
and § approaches unity. Therefore, it is only possible to make the sensitivity
function small over low and midrange frequencies. At the same time, we wish
to make T' small to minimize the impact of measurement noise. This brings
ont a trade-off between disturbance rejection (S small) and attenuation of
the effects of sensor noise (T small).
The transfer function of the closed-loop system is

_ Pz
14 P(2)C(=)
If we denote by Py(#) the nominal plant and by AP(z) the plant uncertainty,

we can define a corresponding nominal closed-loop transfer function Go{z)
and an uncertainty AG{z).

G(z)

G = Gp+ AG
From
P0+AP P[l

AG=CG-Co=1p = "AF0 " 1+ BC

if follows that
AG 1 AP

Go 1+BRC+APC PR

and AG/G
0
VAN TN (4.25)
Equation 4.25 gives a new interpretation to the sensitivity function 5t it
describes how relative changes in the plant P affect the reference tracking G.
Typically, | P| is large for low frequencies and small for high frequencies,
which leads to the following approximations.

PC = S (wsmall)
PC = T {w large)
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Pole Selection

The magnitude of the control signal increases with increasing natural fre-
quency of the closed-loop system. Hence, an increase in the speed of the
response of the system will require an increase in the control signals. A
consequence of large control signals are noticeable non-linear effects and un-
modelled dynamics, which affect stability robustness. In other words, model
uncertainty dictates an upper bound on the feedback gain. The sample rate
imposes another limitation on the speed of the system.

The selection of the estimator poles is a compromise between sensitivity
to measurement errors and rapid recovery from estimation errors. A fast
estimator will converge quickly, but it will also be sensitive to measurement
errors. The important consequence of increasing the speed of response of
an estimator is that the bandwidth of the estimator becomes higher, thus
causing more sensor noise to pass on to the control actuator.

The Pole placement was based on the results of Section 4.2; the poles
were selected in the s-plane and mapped to the z-plane. In particular, the
left-half plane is mapped to the unit circle.

Z =8

Different methods were used to specify the pole locations. One sef of
parameters that yielded particularly good results not only in simulations
but also when applied to the real plant, is presented in the following. For
the state feedback, apart from the two poles of the plant, the pole of the
additional integrator had to be chosen adequately. Moving a mode a long
distance results in excessive control signals, which is not desirable. But since
the integrator was only introduced to compensate for a constant actuator
error, a slow integrator gain suffices. This is achieved by moving the third
pole only slightly from its initial position into the left-half plane.

w, = d4rad/fs
{ = 0.8
integrator pole = —0.2rad/s

For the full state estimator, the natural frequency was increased to make
the recovery from an estimation error faster than the dynamics of the plant.

w, = 6rad/s
¢{ = 08

Figures 4.25 throngh 4.27 present simulated time and frequency re-
sponses, and Figures 4.28 and 4.29 are made from experimental data. A
billiard ball was chosen because of its weight and smooth surface. Other
experiments with e.g. a table tennis ball were less successful in the sense
that the reference tracking was inferior.
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Figure 4.25: Step respomses with full state estimator, state feedback and
additional integrator.
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Figure 4.26: Step responses with position measurement noise (normal dis-
tribution, 2 mm standard deviation).
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Figure 4.27: Sensitivity and complementary sensitivity.

See Appendix D for a MATLAB script of the simulations.
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Pigure 4.28: Attempt to folow a circle trajectory.
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Figure 4.29: Experimental data from a Ball and Plate experiment with a
circular reference trajectory. The two columns contain the data for the two
degrees of freedom of the ball. 1st row: reference trajectory (dashed line)
and measured position (solid line). 2nd row: inclination angle. 3rd row: es-
timated (solid line) and measured (dashed line} position. 4th row: estimated
velocity. 5th row: additional integrator.
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Implementation

The implementation of an observer-based controller with state feedback is
straightforward. Figure 4.30 shows a pseudo code example. F stands for &,
G for I' and x for 2. The mathematical operators -+, —, ¥, = are overloaded
for matrix and vector arguments.

initialization of x[0], u and r

i=1

loop

{
wait for trigger
AnalogQut{u)
Anafogin(y)
x[1}=(F-L*CY*x[0]+G*u+L*y
u=—K*x[1]+k0*r[i}
x[0]=x[1]
i=i+1

Figure 4.30: Pseudo code for a controller with an estimator z(k + 1|k).

4.5 Alternative Discrete-Time Controller

The controller designed in Section 4.4 uses the measured variables read at
time kT to compute the control signal applied at time (k + 1)T. Another
possibility is to read the measured variables at time kT and to apply the
new control signal as soon as possible. Figure 4.31 illustrates the difference.

yik) yik+1) ¥{k) y(k+1)
Measurement Measurement
: ulk+1) utk+2) wk) u(k+1)
Contro! Signal — ¥ — X Contrel Signal — >
+ =t + t t
k k+1 k+2 k k+l k+2
250 ms 250 ms

Figure 4.31: Two different ways to synchronize inputs and outputs.

The computational delay may be neglected if it is sufliciently small com-
pared to the sample period. We can then design a controller that uses the
variables measured at time &' to compute the control signal to be applied
at time &T. In our case it is however necessary to take the computational
delay into account. The control signal due at time kT will in fact only reach
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the plant at time &7 + 7, where 7 is the computational delay. The trick is
to pretend the plant has an input delay 7 and not the controller. The effect
will be the same.

Discretized Plant with Input Time Delay

A continuous-time system with a time delay is described as follows.

o(t) = A=(t) + Bu(t — 1)
y(t) = Ca(t)

Tt is assumed that the time delay is less than the sample period.

(4.26)

T<T

Then we compute the zero-order-hold equivalent of Equation 4.26. Notice
the introduction of the new state variable u(k — 1).

] [ 8]0 [ e
B, Ly

w={o o] %, ]
o]

[ ——
Cga g

T—-r T
=e¢T Ty= f edBdt Ty =T / eAtBdt (4.28)
0 t]

Evaluation of Equations 4.28 for the parameters in Equations 4.8 leads
to the matrices which make up the state-space model with delay 7.

1 T —egr(T—3% —Leg(T - 1)*
@d = 0 1 —CgT Fd = 4cg(T - T)
0 0 ] 1

Ca=[1 0 0]

State Feedback with Integrator and Direct Output Feedback

Since we explicitly take the computational delay into account, we can allow
the input of the process to depend directly on its output and use the control
structure in Figure 4.21.

geg = Pymg+ Tqu
gey = er+T(y—r) = 2y +TCuzg—Tr
u = —Kdmd—k1m14kp(cd£cdﬁf‘) (4.29)
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Compare the control laws in Equations 4.29 and 4.21.
The integrator adds another state to the plant. The state-space deserip-
tion of the open-loop system is written with an extended state vector.

£ - 'i’d 0 T4 I'd
R
®ra Tra
i=[ea 0] %]

\._\,_/
Cra

The closed-loop system becomes

&, -TyK; —Tyk
q[zj]: d diL d dl’}[de_}_

TC,; 1
Note that pole-placement functions return the vector K 4. We choose kp to
be similar to &y in Equation 4.22

Tyk,
-7

T

where )
Kg=Kg g+ kpCy.

1

kp = - .
Cua(l —~ &4+ T3K4) 1Ty

and compute K4 from Rd and kp.

Ky=Ki—kpCy

Estimator without Delay

The estimator in Equation 4.23 has a delay, because &(k|k — 1) depends
on measurements up to time k& — 1. The following estimator can be used
to avoid the delay. Note the y(k) is a vector that contains all measured or
otherwise known* states.

#(klk) = ® &(k— 1k — 1)+ Tu(k ~ 1) + L(y(k) — 5(klk - 1))  (4.30)
y(k|k — 1} is the output of an auxiliary estimator.

E(klk—1) = ®a&(k—1k—1)+ Tulk—1)
glhlk—1) = C.@(hlk~1)

il

Substitution of the auxiliary estimator into Equation 4.30 yields

&(k|k) = (I - LC.)(®&(k — 1k — 1)+ Tu(k — 1)) + Ly(k).

10Otherwise known states are e.g. earlier output values, in case the model has a delay.



CHAPTER 4. CONTROLLER DESIGN 60

We define the state estimation error
en(k|k) = 2(k) — &(k|lk)= (I — LC)® eu(k — Lk - 1) (4.31)
and the output estimation error
ey(klk) = y(k) - y(klk) = Ceex(klk)
= C{I-LC,)Pegx(k-1]k—-1)

= (C.— C.LC)®en(k -1}k 1)
= (I-C.L)C.®eu(k -1k —1).

If we choose L such that
C.L =1, (1.32)
which is possible if rank(C) equals the number of outputs p, then
ey(klk) =0. (4.33)

This means that the outputs of the system is estimated without error; in
fact they need not be estimated at all. Hence it is possible to reduce the
estimator by p states. Estimation is only implemented for the states that
are not measured.

The system in Equation 4.27 has the states z;(k), 2z2(k) and u(k — 1).
Since we wish to make use of all measurable and otherwise known states, we
define the input of the estimator (%) to contain the states 2, (k) and u(k—1).

100
Ce_[ﬂ 0 1}

Conseqguently, the estimator gain is a 3 X 2 matrix.

111 112
L= 121 122
131 132

The Condition in Equation 4.32 is

. 111 112 L 1 90
CeL_[lsi 132]_[0 1}’

so that the number of parameters in L is reduced to two.

1 0
L=l In
8 1
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We denote by @;; an element of the matrix 4 and evaluate (I — LC)® in
Equation 4.31.

0 0 0
—ly1o11 + @21 — leapsr —laiw1a + wer — lypas  —lnp1s + Yoz — laapas
0 0 0

According to Equation 4.33, the outputs are estimated without error, Ii
follows immediately that

ear (BlR) = (—la1ip12 + 22 — laaas) g, (B — 1)k — 1). (4.34)

With the definition
b=1y

Equation 4.34 evaluates to

eay (k1E) = (1 = 1T ey (k — 1]k — 1).

Compensator with Reduced Estimator

The reduced estimator provides an estimate of the unsensed velocity z,.
qgeg = Pgzg+Tgu
ges, = (1—1T)eg
qTr er+T(y—r) = ey + TCumg — Tr
u = —kyz — kadqy - kgq—lu — krey — kp(Cda:d — 'I‘)

Although the position 21 is not estimated any more, the closed-loop system
has the same order as with a full estimator because the input delay adds
another state.

T4 @d - I‘df{d Pdk2 —dej L4 I‘dkp
qg| ez | = 0 1-1IT 0 €ry | + ] 7
Ty TC, 0 1 T -T

Pole Selection

The pole specifications were chosen to be the same as in Section 4.4, where
applicable. The additional pole for the input delay  of the plant was left
at the origin of the z-plane.

State feedback:

wn, = 4rad/s
{ = 038
integrator pole = —0.2rad/s
discrete-time pole = 0

Reduced estimator:
~ —6rad/s
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See Figures 4.32 and 4.33 for the simulated time responses if a reduced
estimator is used. A comparison with the simulations in Section 4.4 shows
only minor differences between the controlers based on the full and the
reduced estimator. This is because of the relatively long computational
delay 7.

L= TS LI
i

anglo [deg)
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=] ]
tme [s] tms 5]

Figure 4.32: Step responses with reduced estimator, state feedback and
additional PI controller,
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Figure 4,33: Step responses with position measurement noise (normal dis-
tribution, 2 mm standard deviation).

Implementation

For the implementation, it is essential to keep the delay between the mea-
surement of the ontput y and the application of the new control signal u as
short as possible. If part of the the new signal is precomputed before the
output is read, some time can be saved. Figure 4.34 illustrates the concept.

In our Ball and Plate process, the measurement of the output signal is
very time-consuming and the model is rather simple, so that the improve-
ments are hardly relevant.
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initialization of xpre, upre and r

i=1

loop

{
wait for trigger
Analogin(y)
u=upre—K*L*y
AnalogOut{u)
x=xpre-L*y
xpre={I-L*CY*(F*x4G*u}
upre=—IK*xpre+k0*r[il
i=i+1

Figure 4.34: Pseudo code for a controller with an estimator z(k|k}).

4.6 Identification

System identification deals with the problem of building mathematical mod-
els of dynamical systems, based on observed system data. The two degrees
of freedorm of the Ball and Plate system were considered separately, i.e. fwo
Ball and Beam systems were identified. One of them is presented here.
Since our plant is known to be roughly a double integrator, only the gain

was estimated. )

P(s) = ;‘2—% )
gain

Because the plant is unstable, merely very short input-output sequences
can be recorded when the system is operating in open-loop. Therefore, the
data was collected in a closed-loop experiment.

To ensure a persistent excitation, the parameters of the controller were
set such that the input signal oscillated. The amplitude should not be too
large since the linearized model is only valid for small inclination angles.
On the other hand, one can expect a higher accuracy of the estimation for
increased input amplitudes because the signal-to-noise ratio will increase
and disturbances will play a less important role. See Figure 4.35 for an
extract of the input signal.

Unfortunately, analog anti-aliasing filters cannot be applied to the video
signal before it is sampled, but a simple open-loop experiment with a fixed
white object instead of the ball showed that the noise amplitudes are so
small that they are hardly relevant. See Figure 4.37 for a noise sequence

and its specirum.
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Figure 4.37: Position noise and its spectrum.

As a precomputation it is common practice to filter the recorded data
with a discrete-time filter. This is done to narrow the frequency band in
which the model should be a good approximation of the plant. Both the
input and the output data are low-pass filtered with a cut-off frequency of
half the Nyquist frequency.

One way of fixing parameters in a model structure is filtering the input-
output data appropriately before the identification. A naive approach to
estimate the gain would be to run the measured input through a process
model, i.e. a predictor, and then compare the result with the measured
output. In the case of a double integrator, the predictor would however be
unstable and produce unusable results.

Recall the transfer function of the discrete-time model in Equation 4.19.

With Pi{z) = %((3 Equation 4.19 can be written as

(z = 1)Y(z) = —cg%(z + 1)U (z). (4.35)
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The definition of the two signals
ya(k) = (g-1)°y(k)

T2
wn(k) = (g + Du(k)
turns the difference equation that corresponds to Equation 4.35 into

ya(k) = —cg unn (k).

Since ygy; is supposed to be proportional to ug, their mean values are
subtracted before the gain is estimated with a linear regression.

—Cestimg — —0.85 (standard deviation 0.08)
—Ctheory§ = —0.71

Possible reasons for the 20% difference between the estimated and the
theoretical gain include friction between the ball and the plate, slipping
of the ball, unmodelled actuator dynamics and resonances in the camera
suspension. An extract of the signals ygy and —cestim g uale s depicted in

Figure 4.36.
Appendix D contains the MATLAB script for the identification.



Chapter 5

Robot Programming

For experimental purposes, the plate for the rolling ball was screwed to the
gripper of an industrial robot [2] like the one in Figure 5.1.

Figure 5.2 shows the robot part of the laboratory setup. The master
computer of the system is based on a Motorola 68040 microprocessor. Su-
pervision and safety functions are implemented on a Motorola 68030. Digital
signal processors (DSP) are used for low-level control and filtering of analog
sensor signals. The embedded computers are connected by a VME bus.?
Software cross-development in Modula-2 is hosted by a Sun workstation,
from where the object code is downloaded to the target via Ethernet.

The robot software for the Ball and Plate project was built on an existing
framework {10]. Position control for each joint of the robot was realized
with an inner velocity control. Figure 5.3 shows the cascade of two PID
controllers. Given a maximum rotational speed of 300°/s and a sampling
frequency of 4 kHz, the robot is so mmch faster than the dynamics of the
Ball and Plate system, that the parameters of the PID controllers for the
robot motion could be tuned independently of the control design for the
trajectory tracking of the ball.

An abstract model of the program in the master computer of the robot
is the finite state machine in Figure 5.4, Special attention was paid to guar-
antee a smooth transition from standby to run mode before the control loop
is entered. An emergency stop may be triggered either by the supervision
program or the user. Once back to standby mode, the program does not
need to be manually rerun if more experiments are to be carried out; the
system recovers automatically when the safety pad is pressed.

The two control signals for the two degrees of freedom of the plate are
computed in the PC. They are written to an analog interface [4] and trans-
mitted to the VME system. The D/A and A/D conversion has a resolution
of 12 bits on both sides. See Figure 5.5 for a sketch of the closed loop.

Y'YME is an acronym for Versatile Module Eurocard. The VME bus is widely used in
industrial, commercial and military applications.

66
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Figure 5.1: The industrial robot that serves as an actuator.
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Figure 5.2: Overview of the experimental robot system.
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Figure 5.3: Robot motion control with two cascaded PID controllers.
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Figure 5.4: Finite state machine representation of the robot.
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Figure 5.5 Sketch of the control loop for the Ball and Plate system.



Chapter 6

Conclusions

This chapter sums up the contributions of the thesis and propounds ideas
for future work.

Motivation

The Ball and Beam system had been used in several laboratory experiments
at the department, and it was natural to extend the motion of the ball to
two dimensions. A major goal of the project was to attain an eye-catching
demonstration object. Unlike the beam, a specially built plate process with
sensors and actors was not at hand. For the purpose of this project, a plate
was attached to an industrial robot. Instead of electrical measurement,
a video camera should provide information about the position of the ball.
Experience was to be gained from using computer vision in control processes.

Summary

An analog video camera was connected to a host computer with a dedicated
interface. After a first analysis of single pictures, a Windows application
was written to continuously acquire and process images of the ball on the
plate. Because of limitations in the frame grabber hardware, the feasible
sample rate turned out to be no more than 4 to 5 Hz.

Although a usable model of the Ball and Plate system was known, an
ezact physical model was derived to investigate the effects of simplifications.
The modelling of the Ball and Plate system showed that the equations of
motion for the two degrees of freedom are coupled and not mathematically
equivalent. Only when linearized are they decoupled and, not surprisingly,
equal to the equation of motion for a ball on a beam.

A comparison of various simulations with continuous-time controllers
suggested that a bandwidth of about 4 rad/s could be achieved for the
closed-loop system. The design of the digital controller included sampled-
data theory and was based on the discretized model of the plant rather than
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an emulation of an analog controller. Full state feedback with an estimator
was chosen as the control structure. An additional integrator needed to be
added to compensate for an actuator bias. The controller was implemented
on the same computer as the image acquisition. Hard restrictions resulting
from the inevitably low sampling frequency made the tuning a challenge.
Finally, the physical model was compared to the result of an identification
experiment.

Position control of the robot, and therefore the plate, was implemented
on a separate computer system. Thanks to the high performance of the
robot, its transient behaviour could be disregarded for the position control
of the ball.

The entire system was successfully demonstrated in diverse experiments.

Outlook

The limiting component in the present system is clearly the digitization
hardware for the video signals, i.e. the slow sample rate. While a faster
frame grabber would certainly bring substantial improvements, a digital
video camera would be a preferable solution.

Faster trajectories of the ball would on the one hand be fascinating, but
a constantly rolling ball also eliminates the problem of static friction and
thus enhances the tracking accuracy. Faster sampling would however be a
prerequisite.

A larger platform together with a higher bandwidth would expose the
inherent non-linearities and multiple-input multiple-output effects that the
mathematical model evinced. This would allow more advanced control de-
sign techniques to be tested for their aptitude.

Perhaps the most challenging endeavour would be to automate the fa-
mous labyrinth game, where a ball rolls on a plate with obstacles and holes.
By tilting the plate, the ball must be directed along a line without falling
into a hole. A commercially available toy set could be equipped with two
motors and a video camera mounted above.

The contribubions of this thesis will hopefully benefit further develop-
ment of precious control systems.



Appendix A

Moment of Inertia

The ball that is used in the experiment can be either homogeneously filled
or hollow. The moment of inertia is different for the two types of ball.

A.1 Solid Sphere
Tt is natural to use spherical coordinates as defined in Figure ATl

z = rcosgeosd
y = rsin¢gcosf
z=rsinf

We compute the Jacobian determinant
cospcosd —rsingcosd —7cos¢sind

= | singcosfd rcosgeosd —rsingsind =rZcosf
sin @ 0 rcos f

&z, y,2)

ar,0,9)

Figure A.1: Definition of spherical coordinates.
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to define the infinitesimal volume element
dp = v cos § df dg dr. (A1)

The volume of a solid sphere with radius £ is computed by integrating over
all three coordinates.

R 2z % 5 4 3
V:f d#:/ j /  cos§d dgdr = —TR (A.2)
v o Jo J-IT 3

If the sphere is rotated around the z-axis, then the distance of an arbi-
trary point in space from the rotational axis is

a = rcosf, (A.3)

Let m denote the mass and p the constant density of a rigid body. Then
the moment of inertia is defined as follows:

J-——f a2dm:pf a? dp. (A.4)
m Vv

Substituting Equations A.1 and A.3 into Equation A .4 yields
R p2a %
J:P/ f jz r4cos39d9dq’>dr:p§1R5.
0 Q _% 15

Then we use BEquation A.2 to express J.

8w dr o2 2
— __RS — WR3_ 2 — _R2
J=pgl =py RGO =0Vy
This is the moment of inertia of a solid sphere with mass m and radius R.
2 o2
J = ng (A.5)

A.2 Spherical Shell

Tet J denote the moment of inertia and m the mass of a spherical shell
with inner radius E; and outer radius ;. Then from the definition of the
moment of inertia we gather

JiJzﬁ‘Jl

m = My — M

(A.6)

where J; and J, are the moments of inertia and m; and msy the masses of
solid spheres with radii R, and K, respectively. Substituting Equation A5
for J; and Jp in Equation A.6, we compute the ratio

J . Jg - J1 _ %ng% - %mlR%

m Mg — My g — 11

(A7)
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Using equation A.2, we substitute m; = Vi = p%wR? into equation A.7T.

J 2 RS—RS
m 5 R3— R}
Provided the shell is sufficiently thin compared to its radius, it is legiti-
mate to use the limit Bq — Ra.

With the rule of Bernoulli-de ’'Hépital, this evaluates to

—5R}

2 Yim M m 2 2
b R —Rs L(R% — R'%) Ry —R; —BR% 3R

2
lim R% = —R%.
57, 1 3

_2
5 R,

‘We have found 7 5

Because of B — Ry, we can define B = Ry and solve the above limit for

J to get the moment of inertia of a thin spherical shell with mass m and

radius E. 9
J = ngz (A.8)



Appendix B

Unary Cross Product
Operator

The purpose of this appendix is to define a unary operator which turns the
left-hand side argument of the binary vector cross product operator into a
matrix, such that the vector cross product can be written as a product of a

matrix and a vector.
Definition 1 A matrix A is skew-symmeltric, if A=A

The subspace of all skew-symmetric n X 7 matrices is the Lie-Algebra
so(n) of the special orthogonal group SO(n), which is also called n-dimensional
rotation group. Its dimension follows immediately from the definition.

-1
dim(so(n)) = ﬂﬂ_Q___)
For the case n = 3, we have dim(so(3)) = 3.

Definition 2 We define the unary cross product operator (-), such
that for two vectors #,y € R3,

Zoy=x= XY

Theorem The mapping
R 50(3),z > &
is a linear isomorphism between two three-dimensional vector spaces. In
particular, this means that for every matrix A € 50(3), we can find a unique

vector a, such that @ = A.
Proof: Consider the skew-symmetric matrix A and the vectors a and b.

0 a1z 013 a1 by
A= — a2 0 ay3 a = az L= bg
—ay3 —az 0 az bs

T4
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We request that

A-b=axb
Tt follows that
aiz = —03
213 = &2
a9y — —a1.

This is a bijective mapping from a to A, which gives rise to the following
explicit definition of the binary cross product operator ()

L1 0 —&3 L2
“R¥is0(8), m= |z | E=| €3 0 -
I3 —&a 1 G



Appendix C

Smooth step functions

The function usually referred to as step function is the Heaviside function.
0 (t<0)
t) =
The derivative of this function is not steady. To circumvent numerical diffi-

culties when differentiating in SIMULINK, smoother step-like excitation func-
tions must be found.

C.1 Reach the Step Height in Finite Time

The first approach for the transient phase of the step was a cosine wave,
depicted in Figure C.1. T is the rise time.

0 (t < 0)
y(t) =< L(l-cosZt) (0<t<T)
1 (t>T)

Another possibility is a hyperbolic cosine, as in Figure C.2.

0 (t<0)

ylt) = oy (cosh 22ptlide - 1) (0<<3)
—WlTl)(cosh (2arsinh(1) (£ - 1)) ~2v2+1) (3<e<T)
1 (t>1T)

C.2 Reach the Step Height Asymptotically

The problem with step-like functions that reach the step height in a finite
time T is the vertex at ¢ = T which makes the second derivative unsteady.
The solution are functions that only reach the step height asymptotically.
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First-Order System

In the simplest case, we take the step response of a linear time-invariant
systemn with a single pole —1 /T in the left half-plane. 7' is the time constant

of the system.
y(t) =1 - 7

This function is analytic. However, from Figure C.3 we can see that the first
derivative is not steady at ¢ = 0.
Second-Order System with High Damping

To get a steady first derivative, we need a second-order system. We ask for
a characteristic equation with two roots —a and —b in the left half-plane.

(s+a)(s+b)=10 (C.1)

|

Figure C.2: Smooth step made of cosh{-), and its first derivative.
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This equation is commonly written with the damping ratio { and the un-
damped natural frequency wn.

s+ 2wps +wi =0 (C.2)

By comparing the coefficients of Equations C.1 and C.2, we can express

a=uwy(C+/(?-1)
b:wn(C“m)

For high damping (¢ > 1), we get two different real negative poles. The
step response

a and b by { and wy,.
(C.3)

bt —at

ae”® — be

y{t) =1-————
a-—-b

is depicted in Figure C.4. Note that the first derivative is steady as opposed

to the first-order system.
If we wish to define a single time constant 7 for a second-order system,

(C4)

similar to the first-order case, we need to compute the time when the tangent

-2 Q 2 4 ] ] 0 1 2 3 4 5 . & 7 8

Figure C.3: Step response of an asymptotically stable first-order system.

i

0.8}

[eX:]d

0.4

0.2

a 1 2 3 4 5 ) 7 a

Figure C.4: Step response of an asymptotically stable second-order system
with high damping (¢ = 1.4).
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through the inflection point reaches the step height. In order to do this, we
derive Equation C.4 twice.

i(t) = (e o)
(1) = bs(aet — be~)
The condition for the inflection point is (o) = 0. Solving for t yields i

loga —logh
0= " T -
a—-b

The tangent through the inflection point is defined by
2(t) = (to) t + d(to).
At the inflection point we have £ = ¢ and 2(t) = y{to), which leads to
d{to) = y(to) — §(to) 0.

The condition for our time constant 7' is z(T) = 1. Solving for T' yields

1 y(to)
T= TGl + to (C.5)

and expands to

a+b+ioga—1ogb
ab a—-b

Now we substitute Equations C.3 into Equation C.6 and solve for wy, to get

1 1 V1
o = ~(24+ og F VL ) (C.7)
NPV i SNV <
Given a time constant 7' and a damping ratio {, we compute the appropriate

natural frequency wy, as defined in Equation (.7 and then the real poles —a
and —b using Bquations C.3, as long as ¢ > 1 (high damping).

T = (C.6)

Second-Order System with Critical Damping

In the case of critical damping (¢ = 1), Equations C.3 show that both poles
are identical; they are located at —a in theleft half-plane. The corresponding

step response
y(t) =1 — e (1 + at)

is depicted in Figure C.5.

15¢ denotes the natural logarithm.
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Just Like we did for high damping, we defire the time constant T of the
system to be the time when the tangent through the inflection point reaches
the step height.

§(t) = ate
i(t) = a’e (1 — at)
The zero of the second derivative is
1
to = -
a

and with Equation C.5, the time constant eventually becomes T = 3/a,
which is equivalent to

@ = (C.8)

Equation C.8 specifies the double pole at —a, given a time constant T'.

Second-Order System with Low Damping

According to Equations C.3, low damping (¢ < 1) gives rise to a pair of
conjugate complex poles. They are typically written in terms of the common
real part —o and the damped frequency wy.

a=0}t jwy
b= o — juwa (C.9)

The characteristic equation of the system becomes
(s + o) +wj=0. (C.10)

By comparing the coefficients of BEquations C.2 and C.10, we can express
o and wy by { and wy,.
o = (wn

wy = /T € (C.11)

The step response

y(t) = L — e""H{coswat + L sin wqt)
wg

is depicted in Figure C.6.

The derivation of the time constant 7' follows the well-known patterm:
Find the zero of the second derivative and compute the time when the
tangent through the inflection point reaches the step height.

y(t) = {wy + :—Z)e“’t sin wgt

#(t) = (wa + g%)(wde“’t coswyt — oe 7% sinwgt)
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The inflection point is at

1 wy
ty = — arctan —

Wy
and Equation C.5 produces
20 1 Y
T = ——— + —arctan —. .
PR + o arctan — (C.12)

Finally, we substitute Equations C.11 into Equation C.12 and solve for wn.

1 1 V1-=?
Wy = —(2( t == arctan———wc;)
T Vv1i-¢ ¢
Given a time constant 7" and a damping ratio {, we compute the appropriate

natural frequency w, as defined in Equation (0.13 and then the complex poles
— o F juwy using Bquations C.11, as long as ¢ < 1 (low damping).

(C.13)

0.8 0.8

06F 06

0.4F

02r

0

-2 0 2 4 6

adr

02

7

a

Figure C.5: Step response of an asymptotically stable second-order system

with critical damping ({ = 1).
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Figure C.6: Step response of an asymptotically stable second-order system

with low damping (¢ = 0.7).
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Root Loci

The results for low, critical and high damping can be combined to express the
poles —a and —b in terms of the positive time constant T’ and all nonnegative
damping ratios (. Note that the poles are complex for low damping and real
for critical or high damping.

Ty5d (¢ —0)
_%(zu v arctan@)(gj:j\/l —T) (0< (<)
—a, b={ -3 (¢ = 1)
{4/ -1
—%(2C+ zﬁlogc—:ﬁ—z—:)(civcz -1) ((>1)
\ _OO)O (C - OO)
of| = )
0.6
2oz
04
08
-8

real part

Figure C.7: Poles of a second-order system for T =2sand 0 <( < 1.4

Althongh the second derivative of the step response of a second-order
system is still not steady at ¢ = 0, it is bounded. This is sufficient for exci-
tation functions of mechanical systems, where only the natural derivatives
velocity and acceleration occur.



Appendix D

MATLAB Source Code

D.1 Image Processing

findball.m

Corresponding code to the illustration in Figure 2.2, where we have no
previous knowledge about the position of the ball.

function pos=findball{image)

¥ Find the bzll on the image.
% The ball is preferably placed near the center of the plata.

1

A

% This function uses Line Search.

]

Y 3ee also trackball.

step=40; ¥ distance between two parallel lines

berder=60; ¥ arem near the sdge of the plate

threshold=1.5; ¥ parameter for the iinessarch algorithm (ball&beam)
color=90; % average value of = pixel that belongs to the ball
margin=20; % pixels with a value between color-margin and

%  colortmargin ars considered to be part of the ball
[height,width}=size(inage)
figure(i); hold off; <lf; imagesc(image); axis image; hold on;

step=round{step);
border=round(border);
halfstep=round(step/2);
halfheight=round(height/2);

Y Search from the left-hand side
Y - e i —
horizontal=1i:width-2#border; ', search interval
sig=1; % signature of offset
offsat=0;
max_offset=halfheight-border;
while offset<max_offset
vertical=haifheight+sig+offset
distance=linesearch(image, [verticaljborder], O, horizomtal, threshold)
if (distance>0)} & abs(imnga(vertical,bordar+distance+halfstap)—color)(margin
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left=[vertical;border+distance]
break;
end
if sig==-1, offset=offsettstep; and
sig=-sig;
and
if offsetdmax_offset, exror(’Did not find the ball.?); end

figure(1); hold on; plot(left(2),1aft(i),'¢1);

¥ Search from the right-hand side
§ Cmmmmmmmmmm e oo

distance=linesearch{image, [vertical;width-border], pi, horizontal, threshold)

if (@istance>0) & abs(image(vertical,width-border—distunce—halfstap)—color)<margin
right=[vertica1;width—barder-distance]

alse
error(’Did not find the ball.’);

end

figure(1); hold on; plot(zight(2),right(1),7%');

¥ Search from the upper-hand sids

vertical=1i:theight-2+boxder;

herizontal=round{ (left(2)+xight(2))/2)

distance=linesearch(image, [border;horizentall, pif2, vertical, threshold);

if (distance>0) & abs(image(border+distance+ha1fstap,horizontal)-colox)<margin
up=[bo:der+distance;hoxizontal]

else
orror(?Did not find the ball.’);

end

figure(i); hold om; plot(up(Q),up(i),’*’)}

¥ Search from the lower-hand side

distance=linesearch{image, [height—bordar;horizontal], -pif2, vertical, threshold)

if (distance»d) & abs(image(height—border—distance—halfstap,horizontal)-color)<margin
lou:[height—border—distance;horizontal]

olse
arror{?Did not Ffind the ball.’);

and

fignre(1); hold onj plot(Llow(2),lou(l), %)}
% Compute the center of the circle
R

p05=round((low+up)/2)

figure(1); hold en; plot(pos(Q),pos(i),’%r’);
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trackball.m

The rolling ball in Figure 2.3 is tracked on its moving path, which is defined
by its last two positions.

function pos=trackball(imags, lastpos)

¥ Find the ball on the image, provided its positions on the last two images.
Y, positions are stored in the columns of the matrix ’lastpes’, with the last
¥ position in the f£irst column, the second last position in the second column.

¥ This function uses Line Seanrch.
Y See also findball.

border=15; % area near the edge of the plate
threshold=1.6; ¥, parameter for the linesearch algerithm (balllbeanm)

Eheight,width]ﬂsiza(image)

figurs(1); hold of; clf; imagesc(image); axis image; hold on;
plot(lastpos(E,:),lastpos(l,:),’*r’);

4 Search in the direction the ball is suppesed fo roll

startpoint=[1astpos(1,2);lastpos(2,2)]
angleﬂatan2(lastpos(1,1)-1astpos(1,2),lastpos(2,1)~1astpos(2,2))

intervalﬂi:maxdist(imaga,sturtpoint,angle,border);
distance=linesemrch(imags, startpoint, angle, interval, threshold);
if distance>0
109=startpoint+round(distanca*[sin(nngla);cos(angla)])
else
error(’Did not find the ball.’);
end

figure(1); hold on; plot(lov(Z),lov(i),'*’);

Y% Search opposite to the ball’s rolling direction

startpoint=startpoint+round(length(interval)*[sin(angle);cos(angle)])
if angle<=0
angle=angle+pi;
alsa
angle=angle~pi;
end
distance=linesearch{image, startpoint, angle, interval, threshold) ;
if distance?d
up=startpoint+round(di5tance*[sin(ungle);cos(angle)])
alse
error{’Did not find the ball.’);
end

figure(i); hold om; plot(up(2),up(1),’*’);

¥ Search from the left-hand side when looking in the rolling direction
R
mean=round{{lowtup)/2};
if angle<=pi/2

angle=angle+tpi/2;
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alse
angle=angls-3+pi/2;
end
distance=maxdist{image,mean,angle border};
startpoint=mean+round(distance*Isin(angla);cos(angla}]}
if angle<=0
angle=angle+pi
alse
angle=angle-pi
end
intarval=i:maxdist(imaga,startpoint,angls,horder);
distance=linesearch{image, startpoint, angle, interval, threshold)
if distancer0
1eft=startpoint+round(distance*[sin(angle);cos(angle)])
else
error(?Did not fird the ball.?);
snd

figure(i); hold on; plot(left(Q),left(i),’*’);

¥ Seaxrch from the right-hend side when looking in the rolling direction

startpoint=sturtpoint+rcund(1angth(intarval)*[sin(angle);cos(&ngle)])
if angle<=0
angle=anglet+pi;
else
angle=angle-pi;
end
distance=linesearch(image, startpoint, engle, interval, threshold);
if distance>0
right=startpoint+round(distanca*[sin(angle);cos(angle}])
olse
error{’Did not £ind the ball.?);
end

figure(1); hold on;j plot(right(z),right(i),'t’);
% Compute the center of the circle

‘ll et et e 8 -

pos=round( (Lefs+right)/2)

figure(1); hold on; plot(pos{2),pos(1),’#r’);

% sub-function:

% Compute the distance te the border from s given point in a given direction

function dist=maxdis%(image,pos,angle,boxder)

[haight,ﬂidth]ﬂsiza(image);
sine=sin{angle);
casine=gos{angle);

if angle==0
dist=vidth-pos(2)-border;
elseif (angle==pi)|(angle==—pi)
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dist=pos(2)-border;

olseif angle==pi/2
dist=height-pos(i)-border;

alseif angle==-pi/2
dist=pos(1)-border;

and

if sine>0
vertical=height-pos{1i)-border;

alseif sine<0
vertical=pos(i)-border;

and

if cosine>0
horizontal=width-pos(2)-border;

elseif cosine<0
horizontal=pos(2)-border;

and

dist=min( vertical/abs(sine), horizontal/abs{cesine} J;
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quickfind.m
All pixels are thresholded to compute the center of the ball in Figure 2.5.

Y, Find the ball on the image.

% The algorithm is written in C style as a preparation for the online
% implementation, and then in Hatlab style to check the results.

%

¥ This script uses Global Search.

Y, Store the image in a one~dimensional axray

layer=imageG; % Green layex of RGB image
[height,width]ﬁsize(layar);
data=zeros{i,height+width);
i=1;
foxr row=1:height
for col=1:width
data(i)=layer(rew,c0l);
i=itl;
ond
end

¥ Find the centsr of the ball using pseudo C code
it et
indentrow=12; indentcol=18; Y the date is partly invalid
%  due to a hardware defect
threshold=120; Y used to determine whether or not
% a particular pixel belongs to the ball
xsum=0; ysum=0; H=0;
izi+tindentyrowkuwidth;
for row=itindentrow:height
i=i+indentcol}
for col=i+tindentcol:width
if data(i)<thzeshold
xsum=xsuntcol;
ysum=ysum+row;
H=H+1;
end
i=i+1;
and
end
c=xsum/¥-indentcol ¥ local coorxdinates
y=ysum/K-indentrow %

% draw
extract=1ayar(1+indentrow:height,1+indentcol:width);
ball=extract<thresheld;
figure; imagesc(ball);
hold on; plet(x,¥y,’*y’);

¥ Find the center of the ball using Matlab commands
e
[xsamp,ysamp]#meshgrid(i:size(axtract,2),1:size(axtract,1});
H_=sum(sum(ball)l;

x_=sum(sum(ball, +xsamp) }/H_

y_=sum(sum({ball. +ysamp)}/F_

Y draw
plot(x-,y_.’*w’);
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D.2 Controller Design

beamsim.m

The non-linear and the linearized continuous-time models of the Ball and
Beam system in Figure 4.1 are excited by smoothened rectangular and a

sine function.

m=0.01; Y mass (irrelevant for ths modal)

r=0.02; ¥ radius

J=2/3+m*r"2; Y moment of inertia of a hollow hall

£=9.81; % gravitational constant

e=msr~2/(mer~2+3); ! system constant

#=1003 Y cut—off frequency of approx. derivative (rad/s)

alpha=20; Y step of inclination angle

pos0=0.6; Y initial position

vel0=0; % initisl velocity

rise=0.1; % time for u to rise from 0 to alpha

sdur=1; ¥ duration of one step

fsize=15; Y, font size for figures

inputchoice = 3; Y} Choose the input here!  <-- &= &--

switch inputchoice

case 1 Y% L___

tu1=linspaca(0,rise,101);
tu2={rise+0.01):0.01i: (sdur);

tu=[tul tu2l?;

u=alphat[{1-cos(pi*tui/rise))/2 ones(size(tu2))1?;

hmmrmm IS T R

tul=linspace(0,rise,101);
tu2=(rise+0.01):0.01:(sdur—risa—0.01);
tu3=linspaca(sdur—rise,sdur,iOi);
tud=(sdur+0.01):0,01: {2%sdur);
tu=[tul tu2 tuld tudl’;
u=alpha*[(1~cos(pittui/rise))/2 ones{size{tu2)) ...

(1+cos (pit{tud-sdur+rise) /rise})/2 ~zares{siza{tud))]?;

h=-—- I S T,

h f.-1
$ui=linspace(0,rise,101);
tu2=(rise+0.01):0.01:{sdur-risa—0.01);
tuBﬂlinspaca(sduz—rise,sdur+risa,201);
tu4=(sdur+rise+0.01):0.01:(2*sdur—risa-0.01);
tu5=1inspace(2*5dur—rise,2*sdur,101);
tub=(2*sdur+0,01):0.01:{3*sdur);

tu=[tul $u2? tud tus tub tusl’;
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u=alphas[(1-ces(pirtui/rise}}/2 ones(size(tu2}) ...
cos(pi*(tud-sdurtriss) /rise/2) -ones{siza(tud)) ...
—(1+cos(pit(tu5-2*5d3x+rise)/rise))/2 zoros(size(tu8))l?;

case 4 % sine

omega=0.4; J frequensy (rad/s)
tu=01:Q,1:20%sdur;
u=a1pha*sin(omaga*tu+asin(posofalpha));

ond Yswitch

figure(1}; olf;

plot(tu,u,’k’);

set(gca,’FontSize’,fsize);

axis{[0 max(tu) -1.1*abs(alpha) 1.1+abs{alpha}]l);
+label(’time [s}?); ylabel(’angle [degl’’;

[t,x,y]=sim{ beamli’, tu);

figure(2); <lf;
plot(t,y(:,i),’k-’,t,y(:,z),’k——’);
set(gca,’FontSiza’,fsiza);

¢lapel( *time [s]?); ylabel{’position [ml?);
lsgend(’non—linear’,’linearized’,S);

figure(3d); clf;
plot(t,r(:,?),’k—’,t,x(:,s),’k——’);
set(gca,‘FontSize’,fsize);

xlabel(’time [s]?); ylabel{’velocity [m/s]*);
lagend(’non—linaar‘,’linaarized’,4);
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beamcontrsim.m

Different design methods for the continuous-time state feedback controller
in Figure 4.12 are presented. Time responses of both the non-linear and the
Linearized plant are computed for different position reference trajectories.
The closed-loop bandwidth is computed as well.

m=0,0%; Y% mass

r=0.02; Y radius

J=9/3*m*r"2; % moment of inertia for a spherical shell
g=9.81; Y, gravitational consvant

c=mir "2/ (mkr~2+1); % system constant

g=50; % cut—-off frequency of mpprex. derivative {(rad/s)

a=[0 1; 0 01;

B=[0; —o*gl;
c=[1 0l;
D=0;

refmax=0.1; Y% step or amplituds of position referencs
reffreq=0,6*2+pi; % frequency of sinuseid reference (rad/s)

pes0=0.4; ¥ initial pesition

vel0=0.0; % initial velocity

rise=0.1; ¥ time for ref to rise from 0 to refmax
sdur=2; Y% duration of one step

fsize=1ib; ¥ font size for figures

% Input

—

inputchoice = 8; /i Choose the input here! <-- <-- <--

sgiteh inputcheice
case O Y, Heaviside

£r=[0:0.01:sdur]l’;
Iaf=p050+refmnx*ones(size(tr));

case 1 % cos step

tri=linspace{0,rise,101);

tr2=(rise+0.01):0,01: (sdur);

tr=[trl tr2]?*;

ref=posOtrefmaxs[(i-cos(pixtri/zise))/2 ones (size(tT2})]7;

case 2} cosh step

D

ct=1/2/(sqre(2)-1);
¢2=2+asinh(1);

c3=¢2/rise;
tri=0:0.01:1/2%rise;
tr2=1/2%rise+0.01:0.01:xise;
tr3=rise+0.01:0,01:sdur;
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tr=[tri tT2 tr3]?;
refeposO+refmaxs[c1* (cosh(c3*tri)~1) ~olx (cosh{ca*tr2-c2)~245qrt {2)+1) ones(size{tz3))]’;

case 3 Y exp step {low damping)

zr=0.9;

anr=(2+zréatan({sqrt(1-zr°2)/zr) /sqrt{i-zr"2}) /rise;

SE=2THunr;

vdr=gnr*sqrs(l-zr~2);

tr=[0:0,01:sdur]?;
raf=poso+rafmax*(1~exp{-sr*tr).*(cos(wdr*tr)+sz/udr*sin(wdr¢tr)));

cass 4 ' exp step (critical damping)
[

ar=3/rise;

tr=[0:0.01:sdur]’;
raf=poso+refmnx*(1—exp(ﬂar#tr).*(1+arktr));

case 5 ' exp step (high demping)

D p—

2r=1.7;
wnr=(2*zr+log((zr+sqrt(zr“2-i))/(zr-sq;t(zr‘2—1)))/2/sqrt(zr“2—i))/rise;
ar=unr*(zrtsqrs(zc"2-1));

br=unr*(zr-sqrt(zr 2-1));

+1=[0:0.01:sdurl] ’;
refzposo+rsfmax*(1—(artexp(—brttr)—br*axp(-ar*tr)}/(ar—br));

case B J sin

$r=[0:0.01;sdur*2]?;
ref=po50+rafmax*(sin(reff:eq*tr));

end Ysuitch inputchoice

Y State Feedback

methodchoice = 4; Y Choese the method here! LE IR S S
svitch methodchoice
case 1 Y matural frequency (bandwidth) specification

wn=5,0276; Y% natural fregquency (rad/s)
z=0.7; Y% damping ratie

it z<=1
it =<0
display(’Damping must be non-negative.*)
Teturn;
alse Y 0<=z<=1
B=Z*WN]
b=wn*sqrt{1-2"2);
P=[-a+b%i, -a-b*i] % poles
ond %if
else ¥ z>1
a=z*wn;
beunxsqre{z"2-1);
P=[-a+b, -a-b] % poles
end Y%if
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K=acker(4,B,P) % feedback vector

case 2 ' ITAE sriterioen

Ymormmm

w0=4; Y, cutoff frequency
a=1/sqrt(2);

b=a;

p=[~atb*i, ~a-b*il*w0 % poles
K=acker(4,B,P} %, faedback vector

case 3 % Bessel polynomial
a=0.8660;
b=C,B6000;

p={-a+b*i, —a~b*i]*w0 | poles
E=acker(4,B,P) ¥ feedback vectoT

case 4 Y% LOQR

D
Q=10; Y weighting factor for y
R=1; Y% weighting factox for u

K=lqry(4,B,C,D,04,R) ¥ feesdback vector

ond ¥switch methodchoice

KOﬂi/dcgain(A-B#K,B,C,D) 4 static input filter

figure{i); olf; ¥ refersnce

plot(tx,ioo*ref,’k—’);

sa%(gca,’Fontsize’,fsize);

axis ([0 max{tr} 100+pos0-1,1+abs{100*refmax) 100*p050+1.iiabs(ioo*refmax)});
xlabel(’time [s]1?); ylabel(’reference [ocm]’);

[t,x,y}=sim(’beamcontru’,max(tr));

figure(2); clf; % position

plot (t,100%y(:,1), %7, £,100%y(:,2), k==
set(gca,’FontSiza’,fsize);

xlabel{’time [s]'}; ylebel{’position [om3?);
legend(’non—linsar’,’1inaarized',4);

figure(3); cif; % alpha
if inputchoice <= &
plot(t,(iSO/pi)*y(:,E),’k—’, £, (180/pi)*y(:,4), k=1, +,zeros{sizalt)), 'k:’);
else ¥ inputcheice »=6
plot(t,(i&O/pi)*y(:,S),’k—’, %,{180/pi)*y(:,4) ,tRk="1);
end %if
sat(gca,’Fontsize’,fsize);
xlabel({ time [s]?); ylabel(’alpha [degl');
legend(’non-linaar’,’linsarized’,4);

figure(4); clf; ¥ alpha dot
yadot=zeros(length(t)-1,1);
y4dot=zaros{1ength(t)—1,1);
for index=1:length(t)-1
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y3dot (index)=( 7(index+1,3)-y{index,3) )/( t(index+1)-t(index) };
yadot (index)={( y(index+1,4)-y(index,4) )/{ t{index+1)-t (index} J;
and Yfor
plot (&(1:1length(t)-1),y3dot, 1x-1, t(1:length(s)-1),y4dot, k--");
set(gca,’Fontsize’,fsize);
¢label(’time [s}?); ylabel(’alpha deot {rad/s]');
legend(’non—linenr’,'linaarized’,4);

figure(5); clf; % Teference and position

plot(tr,100*xef, 'k:?, £,100%y{(:,1), k-, t,100%y(:,2), k=)
set(gca,’Fontsize’,fsize);

«label{ tima [s]?); ylabel(’position [em]’);
legand(’reference’,’non-linear’,’linearizad’,4);

Ro=A-B=EK;
Bo=B*+RO;

figure(B); clf; boda(A¢,Bc,C,D3;

set(gca,’FontSiza’,fsize);

{mag,phase,omagaO]ﬂbode(Ac,Bc,C,D);

[mag,phase,omega]=boda(kc,Bc,C,D,1, i
logspace(1ogio(min(omega0)),logio(max(omegao)),1000));

bupoint=10"(-3/20); % -3dB (bandvidth)

aux=mag-bupoint;

[minimum,index]=min(abs(aux));

bandyidth=omega(index) ¥ rad/s (without estimator)
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beamDcontrdesign.m

A digital full state feedback controller with an estimator and an additional
integrator is designed based on the discretized linear model of the plant.
Sensitivity and complementary sensitivity functions are considered as well
as the crossover frequency.

m=0.1; Y mass

r=0.027; Y, radius

J=2/5+#m*r-2; 7} moment of inertia of a solid ball
g=9.81; % gravitational constant
c=m*r~2/ (m*r~2+J); Y% system comstant

A=[c 1; 0 01;

B=[0; -c*gl;

c=11 0l;

D=0;

height = 0.1; % height of the step (m}
hw=0.,002; Y measurement noise (m)
pos0=0.4; % initial position (m}
vel0=0.0; % initial velocity (m/s)
poserr0=-0.01; } initial position errer (m)

velerrQ=-0.01; % initial velocity errer (m/s)

fsize=15; % Ffont size for figures

¥ Piscretizaticn

Ts=0.26;
[Phi,Gammal=c2d(4,B,Ts);
sys=ss(Phi,Gamma,C,D,T5);

PRiT=[Phi zeros{size{Gamma)); Ts*C 1l;
GammaIl=[Gamma; 0];

cI=[C 01;

DI=D;

sysI=ss(Phil ,Gammal,CI,DI,Ts};

Y State feedback

sfmethod = 1; % change method here

suitch sfmethod

casa 1 Y dominant second order poles
sn=4; Y, equivalent s-plane natural frequency (rad/s)
z=0.8; Y equivalent s-plane demping ratio
wi=0.2; % integrator pole

if z<=1
if z<0Q
display(’Damping must be non-negative,?)
return;
slse Y 0<=z<=1
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a=z*¥nj
b=wn+sqrt(1-z"2);
P=exp(Ts*[-atb*i, ~a-b*i, -wil); ¥ peles
end Yif
else % z>1
a=z*¥n;
bewn*sqrt(z"2-1);
p=exp(Ts*[-atb, —a-b, -uil); % poles
end Yif

K=acker{Phil,GammaI,P) % fesdback vector

case 2 Y ITAE criterion
w0=4; % equivalent s-plans cut-off frequency (rad/s)
a=0.,5210;
b=1.068;
wi=0.7081;

P=exp(Ts*[-atb+i, —a-b+i, -yil#*w0); ¥ poles
E=acker(Phil,Gammal,P) Y teedback vector

case 3 Y, Bessel polynomial
w0=4; ¥ equivalent s-plane cut-off frequency (rad/s)
a=0.7455;
b=0.T112;
vi=0.9420;

P=exp(Ts*[-at+b*xi, -a-b*i, ~uil+y0); 7 poles
K=acker(Phil ,Gammal,P) % feedback vector

case 4 % LQR
Q=10; ! weighting factor for y
R=1; Y% weighting factor fer u

K=1qry(sysI,Q,R} % feedback vector

case b Y deadbent
p=[o 0 01;
K=ncker (Phil,Ganzal,P)
end ¥switch

KO = 1/dcgain(ss(PhiﬂGamma*K(i:2),Gamma,C,D,Ts)); ¥ static input filbter

PhiCI=[Phi-Gamme+K(1i:2) —Gamme+K{3); Ts*C 11;
GammaCI={CGamma*K0; -Tsl;
sysC=ss(PhiCI,GammaCI,CI,DI,Ts);

damp{sysC)
wnat=damp(sysC); gnat=w¥nat{2); ¥ eguivalent s-plane natural frequency

[out,time,state]=step(sysC);
[out,time,state]=lsim(sysc,poso+height#ones(size(time}),[],[poso vel0 017);
in=K0* (posO+height}-Kstate’;

figure(1); clf;

hold oxr;
plot(tima,100*(poso+height)tonas(siza(time)),’k:‘);
stairs(time,100%0ut,’z’);

hold off;

set(gon, FontSize’ ,fsize);

xlabel(‘time [s17); ylabel{’positien [em]’};
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figure(2); <lf;

kold on;
plot(time,zeros(siza(tima)),‘k:’);
stairs(time,in*(180/p1i), b} ;

hold off;

set{gca, 'FontSize’ ,fsize);

xlabel{’time [s]*'}; ylabel{’angle [degl’};

% Bode diagram, using transformation z sxp{jtomegatTs)
[mag,phase,omega0i=bode (sysC);

figure{3); clf;
boda(sysC,{min(omega0) ,£loar (pi/Ts)}};
set(gca,’FontSiza’,fsize);

[mng,phase,omega}=bode(sysC. v
logspaca(logio(min(omegao)),loglO(max(omegaO)),1000));

bupeint=10~(-3/20); } -~3dB (bandwidth)

anx=mag-bwpoint;

[minimum, index]=min(abs{aux));

bandwidth=cmega(index) % rad/s (withoud estimator)

% Full Estimatorx

emethod=1; J change method hers

sw¥itch emethod

case 1
faster=1.5; % speed factor compared to state fesdback
wnE=faster+wnat; 7 equivalent s-plane matural frequency of estimator (rad/s)
zE=0.8; % equivalent s-plane demping ratio

if zE<=1
if zE<0O
display(’Dampirg must be non-negative.?!)
return;
alse ¥, 0<=zE<=1
aE=zE+wnE;
bE=wnE*sqrt (1-zE2)}
PE=exp{Ts*[~aE+bE*i, -aE-bE*i]); % poles
end if
else ¥ zE>1
aE=zE*wng;
bE=unB*sqrt (zE"2-1};
PE=exp({Ts*[-aE+bE, -aE-bE]lY; ' poles
end %if

case 2
PE=exp(Ts*[~0.5+vnat <2sgnat]); ¥ independent of state feedback

case 3
PE=[0Q 0]; ¥ deadbeat
end Yswitch

=acker(Pni’,c?,PE}? % estimator gain vector
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% Regulated Loop with Full Estimatoer

¥ states: position, velocity,
% position estimation errer, velocity estimation arrer

PhiR={Phi-Garma*K(1:2) Gamma+*K(1:2) ~Gamma*K{3);
zaros(size(Phi)) Phi~LxC zeres(size(Gamma))
Ts#C zeros{i,length(Pni)} 11;

GammaR=[Gamma+tK0; zeros{size(Gamma)); -Tsl;

CR=[C zeros(size(C)) 01;

DR=D;

sysRﬂss(PhiR,GammaR,CR,DR,Ts);

[outR,tima,stateRl=1sim(sysﬂ,posO+height*onas(size(tima)),[],
[posC vel0 poserr0 velerzO 013;
inR=KO*{posO+height)-K(1:2)*( stateR(:,1:2)-stateR{:,3:4) ) -K(3)*stateR(:,B)?;
Y state estimation = state - sstimation error

figure(d); clf;

hold omnj;

plot(tima,100*(?osc+height)*ones(size(tima)),’k:’);
stairs(time,100%0ut, *r=’);

stairs(time,100%outR, ’x-—*);

hold off;

sat(gca,’?ontSiza’,fsiza):

£label( time [s]?); ylabel{’positien [em]?);
1egand(’referance’,’vithout estimator’, ’with full estimator’,4);

figure(B); c¢lf;

hold onj

stairs(time,in*(180/pi), b-?};

stairs (time,inR* (180/pi), b--');

% plot(time,zeros(sizs(tima)),’k:’);

hold off;

set(goa, 'FontSize? ,fsize);

<labol(’time [s1?); ylabel{'angls [degl’);

legend (fwithout estimator’,’with full estimator’,4]);

Y% Hoise  y=Cxt¢

¥ ¢losed-loop tranmsfer function ¥w->u (with full estimator)
Phili=PhiR;

Gammal=[zeros{size (Gamma)); L; -Tsl;

cu=[-K(1:2) K(£:2) -K(3)];

DU=0;

sysU=ss(PhiU,GammaU,CU,DU,Ts);

% closed~loop transfer function w-2y (with full estimatoz)
PhiY=Phil;

GammaY=Gammal;

oY=[C zeros(size(C)) 0I;

DY=-1;

sst=ss(PhiY,GammaY,CY,DY,Ts);

noisel=50; ¥ number of iterations for noise
E=hw*randn(1angth(time),noisaﬁ);
ian=zeros(length(time),noisaH);
outh=zaros(1ength(tima),noiseH);
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for index=1i:noisel
[ian(:,indax),time]=lsim(sysU,w(:,indax),[], s
[0 G possxr0 velerzC 0]°);
and jfor

for index=t:noissll

[outRn(:,index),time]=lsim(sys¥,v(:,indax),[], Ve

[¢ 0 poserrd velerrd 01°);
end #fer

figure(6); clf;

hold om}

Y plot(time,zeros(size(time)d, k:’};

for index=1inoisel
stairs(tima,(inﬁ‘+inﬁw(:,indax))*(iBO/pi),’b-');

end Yfor

hold off;

set(gca,’?ontsiza’,fsize);

xlabel('time [s]’); ylabel{‘angle [degl’);

tigure(7); olf;

hold on;

plot(time,100*(poso+height)*ones(size(time)),’k:’);

for index=l:noisel
stairs(time,iOO*(outR+outh(:,indax)),’r-’);

end Yfor

hold off;

set(gca,’FontSize’,fsize);

xlabel{ time [s]?}; ylebel{’position [oml’);

Y% Full Compsnsator

PRAE=Phi-L+C;

% initial states zero!

Y initial states zero!

figure{8); clf; % settling time of astimation error is ‘faster?
Y, than settling time of closed leop step response
g P P P

initial(ss(PhiE,Gamua,C,D,Ts), (height 0]);
set(goa, 'FontSize’,fsize);

PRiEC=[Phi-Gamma*K(1:2)-L*C -Gamma*R(3); zeros{l,length(PRi))} 11;

GammaEC=[L; Tsl;

CEC+EK;

DEG=0;
sysEC=ss(PhiEG,GammaSC,CEC,DEC,TS);

damp(PhiEC} ! Compensator dynamics

% Sensitivity

PCuseries{sys,sysEC);
S=foedback{1,PC}; ¥ sensitivity
T=feedback(PC,1); ¥ complementary sensitivity

nyqfreg=floor( (1/Ts/2)*(2¥pid J;

tigure(8); clf;
bode{s,{0.1 nyqfreq});
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title(?Sensitivityt);

figurs(10}; clf;
pode(T,{0.1 nygfreq});
title( 'Complementary Semsitivity’);

int_pc={0.1 nyafreg};
int_5={0.1 0.81};
int_T={7 nyqfreql};

[mag_PC,phasa_PC,u_PC]3bode(PC,int_PC);
[mag_invs,phase#invs,w_inv5]=bode(inv(s),intds);
[mag_T,phase_T,H_T]ﬁboda(T,int_T);

mag_PC=reshape(20*logio(mag_PC},langth(mag“PC),i);
mag_inv8=rsshape(2otlog10(mag_invs),langth(mag_invs),1};
mag_T=reshapa(20tlogio(mag_T),length(mag_T),1);

w_DC=reshape (s_PC,length(w_PC),1);
g_invszrashape(w_invs,length(w_invs),1);
w_T=roshape(w_T,Tength(w.T),1};

figure{11); cl#; % loop shaping

semilogx (w_PC,mag_PC,'k-', w_invS,mag_invs, *k--*, . T,meg.T,'k-.%, ...
u_PC,zeros(size(w_PC)),’k:’);

x1abel (*frequency [rad/sl?); ylabel(’magnitude [dB]*);

[mag_PC_cross,phase“PC_cross,u_PC_cross] = ...
hode(PC,logspaca(logiO(max(v_invS)),loglO(min(u_T)),iOOO));
Dminimum,index]=min{abs(logio(mag_PC_cross)));
crossover=u_PC_craoss(index) ¥ rad/s
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identify.m

Input-output data for the identification was collected in a closed-loop exper-
iment. The model is presumed to be a double integrator and only the gain
is identified. Indices 1 and 2 denote the data for the two degrees of freedom
of the ball.

% yi, ut, y2, u2 must be loaded into workspace

T=0.25;
sys=c2d( s£(1,[1 ©001), T );
{num,den}=tfdata(sys,*v?);

% pre—filter
cutoff=0.6; Y cutoff frequency for Butterworth filter,

¥ memsured as fractions of the Nyquist frequency
ordar=b;

c0=1/¢1+2/5) ¥ for a selid ball
§=9.81;

t=T+cumsum{ones (1,length(y1)-2));

ni=1; n2=40; % displayed date extract

fsize=15; % font size Ffor figures

y1b=idfils(y1’,order,cutoff);
ulb=idfilt(ul?,order ,outoff);

yifsfilter(den,1,yib); ylf=y1£(3:length(yl£));
nif=filter(num,1,utb); wif=ulf(3:Llength{ulf)};

yld=dtrend(yif);
uild=dtrend{ulf);

zi=[yid uld];

thi=arx(zl,[0 £ 03,0[3,T);
present{thi)
[A1,B1]=th2pely(thi)
ci=Bi/g

figure{1); <lf;

held on;
stairs(t(nl:n2),Al*yld(n1:n2)*100, ' k-=?);
stairs(t(nt:n2),Bi*uld(nl:n2}*100, 'k-?};
set(gca,'Fontsize’,fsiza);

¥label('tima [s]’); ylabel{’pesition [oml’);
legend('measured’, 'predicted’,4};

hold off;

box on;

y2b=idfilt(y2’,order,cutoff);
u2b=idfilt (u2?,order,cutoff);

yaf=filter(den,1,y2b); y2f=y2£(3:length(y2£));
n2f=filter{num,1,u2b); u2f=u2f{3:length(u2fl);

y2d=dtrend{y2£);
u2d=dsrend{u2f);
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z2=[y2d u2dl;

th2=arx(z2,[0 1 0],01,T);
present (th2)
[A2,B2]=th2pely{th2)
c2=B2/g

figure(2}); clf;

hold on;
stairs(t(nl:n2},A2*y2d{nl:n2)*100, 'k~~1};
stairs(t(ni:n2),B2+u2d(nl :n2)*100, k=133
set(gca, 'FontSize? ,£size) ]

xlabel{’time [s]?}; ylabel(’position [em]?};
legend{ measured’, 'predicted’,4);

hold off;

box on;

figure(3); ¢lf;

stairs(t(nl:n2}, (180/pi)*ui{niin2), ’k’);
set(goa, FontSize’ ,f5ize);

xlabel(?time [s]%}; ylabel(’angle [degl’);
box onj;

figure(4); olf;
stairs(t(ni:n2)},(180/pi)*u2(nl:n2),’k*};
set{gca, 'FontSize! ,fsize);
xlabei(?time [s8]?); ylebel(’angle [degl’);
box on;
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of Global Search, 5

of Line Search, 3
acquisition of images, 7
actuator error, 43
asynchronous acquisition, 7

bandwidth
of the closed-loop system, 38,
40, 42, 43
of the estimator, b4
of the plant, 47
Bessel polynomial, see pole selec-
tion
border of the plate, 3

center of the ball

computing of the, 3, b

C code for, 6

corapensator

with full estimator, 52

with reduced estimator, 61
complementary sensitivity, 53
constraint equation(s)

for a ball on a beam, 9

for a ball on a plate, 19

control law for state feedback, 38
' with additional integrator, 46,
50
with additional PI controller,
46, b8

with full estimator, b2

with reduced estimator, 61
control loop, 68
control structure

P controller, 36

PD coniroller, 36
PID cascade for the robot, 66
state feedback, 36
with additional integrator, 43,
46, b0, 58
coordinates, see frames of reference

damping ratio
of a second-order LTI system
critical, 79
high, 77
low, 80
deadbeat
control, 50
observer, 51
delay
computational, 57, 62
estimator with, b1
estimator without, 59
input, 58
differentiation
approximation of, 32
disturbance, 43, 63
rejection, 53
duality between equations of mo-
tiom, 30

edge detection, 3
equation(s) of motion
duality between, 30
for a ball on a beam, 18, 11
linearized, 10
for a ball on a plate, 20, 23
for small angles, 24
linearized, 25
with a reduced model, 28,
29
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estimator
full, 51
one-step prediction, 51
reduced, 60
without delay, 59
excitation function
Heaviside function, 76
persistent, 63
smoothened pulse, 32
smoothened square wave, 32
smoothened step, 32, 39

feedback, see control structure
filter

analog sensor signals, 66

anti-aliasing, 63

low-pass, 64

mean values, 65

prefilter, static, 38, 46, 51

to fix model parameters, 64
frame(s) of reference

global, 12

indices for, 14

focal, 12

transformation between, 12, 15

unit vectors of, 14, 26

Global Search, 2, 5

identification, 63
implementation
of an observer-based controller
with one-step prediction, 57
without delay, 62
ITAE criterion, see pole selection

Lagrange formalism for
Ball and Beam system, 10
Ball and Plate system
reduced model of, 29
Line Search, 2 _
linearized equations of motion, see
equations of motion
Ioad disturbance, 43
LQR, see pole selection
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measurement noise, 43, 53-55, 62
model
continuous-time, 36, 38
discrete-time, 47, 48
with input delay, 58
identification of, 63
of the Ball and Beam system,
8
of the Ball and Plate system
full, 12
reduced, 25
physical, 8
state-space, see state-space model
moment of inertia
for a hollow ball, 72
for a solid ball, 71

Newton-Euler formalism for
Ball and Beam system, 9
Ball and Plate system, 17

reduced model of, 26

noise, see measurement noise
observer, see estimator

P controller, see control structure
PD controller, see control struc-
fure
persistent excitation, 63
plant
bandwidth of, 47
discrete-time model of, 47
estimate states of, 51
nominal, 53
perturbed, 43
state-space model of, 38, 47,
58, 59
time response of, 31
transfer function of, 36, 48, 52
uncertainty, 53, 54
with input delay, 58
pole selection
Bessel polynomial, 40
ITAE criterion, 40
LQR, 42
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rise time, 39
with full estimator, b4
with reduced estimator, 61
prediction, one-step, 51
predictor, 64
prefilter, see filter
pulse, smoothened, 32

rise time
for pole selection, see pole se-
lection
of a second-order LTI system
finite transient phase, 76
first-order system, 77
second-order system, 77
robot, 66
control, 66
overview, 67
supervision of, 66
robustness, stability, 54

sampling frequency, 7, 47
sensitivity, b3
complementary, 53
sensor noise, see measurement noise
shift operator, 50
spin of the ball, 18, 25, 26
state feedback, see control struc-
ture
state-space model
of the plant, 38, 47
with additional integrator, 46,
50
with input delay, 58, 59
steady-state regulation error, 44
step, smoothened, 32, 39
synchronous acquisition, 7

threshold
for colour of pixels, 5
time-shift operator, 50
transfer function
from the disturbances to the
output, 43
of the closed-loop system, 53
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of the compensator, 52
of the plant, 36, 48, b2
transformation between frames of
reference, see frames of ref-
erence

uncertainty, plant, 53, b4
wave, smoothened square, 32

zero-order-hold, 47



