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1 Abstract

A model for a CSTF with a cell recycle unit was identified in collaboration with Nestec
(Nestlé). Simulations of the model showed that it is possible to control the system in
order to concentrate the biomass to 10-13 g/l with an overall dilution rate set to 1 h'. The
bacterium studied was Lactobacillus johnsonii LJI which produces lactic acid from
lactose. The filter in the cell recycle unit was a cross-flow filter.

2 Introduction

Generally fermentation is referred to the production of alcohol or lactic acid from glucose
by microorganisms (also called the cells or the biomass) in a fermenter. The studied
bacterium LJ 1 produces lactic acid from lactose in an anaerobic process. There are many
different types of fermenters in which the fermentation can take place. In a Continuous
Stirred Tank Fermenter (CSTF), Figure 1, the fermentation can be maintained in
exponential growth for a long time.
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Figure 1. Schematic diagram of a Continuous Stirred-Tank Fermenter (CSTF). X, § and P are biomass,
substrate and product concentrations respectively. The input flow concentrations are indexed i. V is the
fermenter volume and F is the flow.

The mass balance for the biomass in a CSTF can be written as

FX, — FX + Vi =V% ey

where F is the flow, V the fermenter volume, X the biomass concentration [g/1] and ry the
growth rate [g/(I*hr)] of the cells. When the CSTF has reached steady-state conditions
the change of biomass concentration with time equals zero (dX/dt=0) and eq. (1) becomes

F I
=X 2
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If the input flow is sterile (X;=0) and the growth rate is written ry=11X, eq. (2) becomes
p=—=D 3

where D is called the dilution rate [h''] and u is called the specific growth rate.
Therefore, for a steady state CSTF with sterile feed, the specific growth rate [ is equal to
the dilution rate D. For more details, look in any biochemical engineering book, for
example Lee (1). The specific growth rate increases with an increase in the dilution rate
until it reaches a maximum value corresponding to the maximum specific growth rate
e, Which depends on the fermentation. If the dilution rate is increased beyond this
value the cells will be washed out of the fermenter since the cell generation is less then
the loss of cells with the outlet flow. The productivity is thus limited due to the loss of
cells. One way of improving the productivity of the fermenter is to recycle the cells by
separating them from the product stream using a filter. In this work a cross-flow filter
was used where a rotor creates large shear rates in the fluid near the membrane which
separate the cells. The shear field minimizes or prevents fouling of the filter. A CSTF
with a cell recycle unit is shown in Figure 2.
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Figure 2. A CSTF with a cell recycle unit. D is the overall dilution rate, D=D;+D,. S, is the substrate
concentration of the input flow. The bleed dilution rate is noted D, and the dilution rate from the filter is
called D,. The biomass, substrate and product concentrations are represented as X, S and P respectively. V
is the volume of the fermenter.

If all cells are recycled back into the fermenter the cell concentration will increase
continuously and a steady state will never be reached. Therefore, to be able to operate the
CSTF with cell recycle in a steady state mode, a bleed dilution rate D, from the fermenter
is needed. The dilution rate D, represents the dilution rate from the filter. The overall
dilution rate D is always equal to the sum of the two dilution rates leaving the system,
D=D,+D,.




The bleed ratio vy is defined as

r=7t )

When the bleed ratio y=1, the cells are not recycled and u=D =D, in steady-state.
However, when cell recycling is used, the bleed ratio yis less then one and pu=yD=D,.
Since the specific growth rate u is lowered with cell recycling, a higher overall dilution
rate D can be applied and thus higher productivities without washing out the fermenter.
Furthermore, high concentrations of lactic acid are growth inhibiting for the cells and
therefore is cell recycling a way to concentrate the biomass and eliminate the toxic
product. Normally it is the product from a fermentation what is aimed for in industry. But
Nestlé want the increase the concentration of the biomass since they want to add the
bacteria to their yogurts. The goal of this work was to show that it is possible to recycle
the cells in a CSTF with a cross-flow filter in order to increase the production of biomass.

3 Methods

3.1 CSTF

The enriched medium that the CSTF was fed with is given in Table 1. The fermentation
was performed under the anaerobic conditions given in Table 2. The inoculated cells
were prepared according to standard procedures at Nestlé. The base composition added in
order to have a constant pH is given in Table 3.

Medium components Concentration (g/l)
Peptone de fibrine N1 10

Yeast extract 15

Tween 80 1

Lactry 1

Lactose RAB 30

Table 1. Medium components

Reactor volume 351

Temperature 40°C

Stirring rate 100 rpm

pH 5.5

Inoculum 4%

Gas flow rate CO, 0.2 vvim
N, 0.2 vvin

Table 2. Fermentation conditions




Base components

H,O 32625 ¢
NaOH 391g
KOH 846 g

Table 3. Base components

A sketch of the CSTF is shown in Figure 3. The input signals to the controlling computer
system were the weight of the fermenter, pH, the dissolved oxygen (DO) and the gas
composition. The weight was measured and regulated by the pump P which pumped the
output flow in order to have a constant volume. Th pH was measured and regulated the
pump P2 which added base to the fermenter to keep a constant pH. The base added was
measured with a balance. The DO and gas compositions measurements were used to
make sure that the fermentation was performed under the given gas conditions. The input
flow was pumped by P3 in order to achieve the given dilution rate D.

Samples were taken from a CSTF at five different dilution rates : 0.2, 0.35, 0.5, 0.7, 0.9
h'. A rule of thumb says that a CSTF has reached a steady-state after 4 residence times 7
(t=D"). In order to confirm the steady-states, two samples for each dilution rate with an
hour interval were taken after 5 residence times. The different dilution rates were applied
in increasing order except for the dilution rate 0.2 h”', which was applied as the last
dilution rate. To have some data to validate the model, samples were taken during the
transient times of two step changes in the dilution rate: 0.2 —0.7 and 0.2 - 0.5 h™.

The biomass concentration was determined by centrifuging 2x40 ml fermentation broth at
5000 rpm for 15 min and washing twice with TS solution followed by drying at 110°C on
dried sea sand for 12 hr.

The lactose and lactic acid concentrations were determined with a HPLC (Hewlett
Packard Serie 1100). After the injection of the sample (20 pl), the separation of the
product was done on a Bio-Rad Aminex HPX-87H column (300x7.8 mm) using the
following conditions: Temperature 35°C, Eluent H,SO, (5 mM, flow rate 0.6ml/min), and
a refractometer detector.

The titre of the culture was supposed to be determined by estimating the colony forming
units (CFU) on MRS agar plates. Appropriate dilutions in sterile TS medium was
prepared and poured on the plates. But the plates were contaminated so therefore no
reliable conclusions could be made.
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Figure 3. A sketch of the CSTF
3.2 The cell recycle unit

The cross-flow filter used to separate the biomass was a Mini-DMF unit from Pall
Corporation. All the experiments were made with the rotor spinning at 2000 rpm. The
fluid used as the fermentation liquid was water with a 10 g/l concentration of baker’s
yeast. No lactose or lactic acid was added since the particles are to small to effect the
filter performance. A sketch of the cell recycle unit is shown in Figure 4.
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Figure 4. A sketch of the cell recycle unit

The fluid was pumped with an ALTIVAR 16 from the company SQUARE D. The pump
was controlled from a PC with LabVIEW, a graphical programming software. In Figure 2
showing a CSTF with a cell recycle unit there are two streams leaving the system, D, and
D, indicating that two pumps were needed for the cell recycle unit. However, only one
pump was needed since the pump controlling the bleed D, was integrated in the control of
the CSTF (Figure 3, pump PI). The dilution rate D, from the filter was measured by
taking the time derivative of the weight. The balance used was a TP4KD from OHAUS.

The dynamics of a process can be modeled properly if the input signal excites sufficiently
many modes of the process. A common way to obtain an input signal with many
frequencies is to use a Pseudo-Random Binary Signal (PRBS). It is called pseudo-random
because the signal is random within a defined period but in the next period the same
alterations are made. For more details, look for example in Ljung (3). The input signal
used for identification was a PRBS signal during two periods which altered the pump
frequency between 10 and 13 Hz with a maximum impulse length of 28 seconds.




4 Modeling

Generally there are two different ways to obtain a mathematical model of a process, from
prior knowledge, for example physical laws, or by doing experiments on the process. But
usually it is not possible to make a complete model using physical laws. So therefore the
approaches are often combined to determine some unknown parameters in the model.
This is called system identification. The model of the CSTF was determined by
formulating physical laws for the fermentation and then the unknown parameters were
identified by experiments. The cell recycle unit was modeled only by experiments since
no prior knowledge was given.

41 CSTF

The CSTF experiment was described with a model proposed by Taniguchi et al. (2). In
their work they modeled a cultivation of lactic acid producing bacteria in a fermenter
with cross-flow filtration. The model considers that the specific growth rate i is a
function of the product concentration P.

W(P) = Uy, €XP(—AP + ) (5)

In the proposed expression the parameters Aand ¢ depend on P but in this work the
model identification could be done with the parameters simplified to constants. The
exponential term in (5) models the growth inhibiting effect of the product concentration.
The following differential equations express the mass balance in a CSTF
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X and S are the biomass and substrate concentrations. The substrate concentration is
assumed not to be limiting the cell growth. The yield coefficients relating the substrate
consumption and product formation to the biomass concentration are termed Yy, and o.
Normally Yy is treated as a constant, but experiments at Nestlé had shown a dependency
on the dilution rate. The cell yield increased with the dilution rate. The parameters m and
B represent that even if the cells are not growing, (1(P)=0), there are still substrate
consumption and product formation. They are called the maintenance coefficient and the
non-growth associated production rate respectively.

There are 7 parameters in this model: u,,,, A and ¢ in eq. (5), Yy and m in eq. (7), et and
B in eq. (8). The maximum specific growth rate (1, the yield ¢ and the non-growth
associated production rate § were provided by Nestlé from previous experiments. A third




degree polynomial for Yy, was identified with least-square from the data provided. Nestlé
had used other expressions to model the specific growth rate i and the maintenance
coefficient m. Therefore, the three parameters A, ¢ and m had to be identified.

When doing an identification, a criteria is usually formulated to give a measurement of
how well the proposed model fits the experimental data. The criteria of least squares is
often used in identification problems. There are different versions but they are all based
on the minimization of the sum of the squares of the errors. This sum is often called the
loss function J (0)

4
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where 0is the unknown parameter vector, N is the number of samples, €, is the error
between the measured value y, and the estimated value ¥, at each sample k.

To be able to determine the unknown parameters, the identification was divided in two
steps. First, the parameters A and ¢ for the specific growth rate | in eq (5) were identified
by the least-squares method. Values for the product concentration P were taken from the
samples. The theoretical values of | at steady-states, i.e. [l equal the dilution rate D, eq.
(3), were used as the measured value y,.

With parameters A and ¢ fixed, the next step was to identify the value of parameter m in
eq. (7) by least-squares. Here the steady-state values of the term rS in eq. (7) were
calculated from the samples and the value of /i was set to the corresponding dilution rate.

4.2 The cell recycle unit

The identification procedure was different for the cell recycle unit since no prior
knowledge of the filter dynamics was given. There are many different identification
methods such as frequency and transient-response analysis, correlation and spectral
analysis and the general least-squares method to choose between. There is no method that
is better than all the others. In this work the general least-square method was used for the
cell recycle unit. A summarized description is given in Appendix 1

Let the system be described by

A(q“1 )y(t) = B(q‘l)u(t —n,)+(t) (10)

This input-output model is called an ARX model were AR refers to the autoregressive
part A(g”)y(t) and X to the extra input B(q™)u(t). The operators A(g™') and B(q™') are
polynomials in the backward-shift operator g/, g”'y(t)=y(t-1). The delay between the
input signal u and output signal y is called n,. The term £(¢) is a white noise disturbance,
which in the ideal state contains all frequencies.




However, a disadvantage with the ARX model is that the disturbance term &(z) in reality
may not be white noise. A C polynomial can be added to the model to compensate that.

Alq)y(t) = B(q”')u(t—n,)+ C(q™Je(t) (11)

This model is called an ARMAX model where MA refers to the moving average
C(q”)e(x). A least-squares criterion can be obtained if the quantity to be minimized is
taken as the sum of squares of the prediction error. An ARX model allows analytical
solutions to the least-square criteria (9) but an ARMAX model demands the parameter
estimation to be solved numerically.

An open loop identification can be done for processes which are stable. If the process is
unstable the identification is usually done in closed loop. Since the cell recycle unit was
stable, the identification was made in open loop for both the ARX and the ARMAX
model. The determination of the model structure of the A,B and C polynomials are given
in Appendix 2.

5 Controller design

It is difficult to get online measurements of the concentrations in a fermenter. Therefore,
the control strategy was based on the product concentration P, since measurements of the
product concentration were intended to be obtained online via calculations. A relation can
be found between the base added to the fermenter in order to have a constant pH and the
product concentration. From the given desired biomass concentration the corresponding
product steady-state concentration was calculated via the model and set as the reference.

A block diagram of the control can be seen in Figure 5. Two RST controllers were used
in cascade. The first RST controller determines the control signal D, i.e. the dilution rate
from the filter. The second RST controller controls the pump in the Cell Recycle Unit
(CRU) in order to get D, equal to the D,setpoint

D,sp u=D, y=P
—>»()—» RST —VO? RST |—» CRU » CSTF >

' 1

Figure 5. Control strategy. Two RST controllers in cascade
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Both the fermenter and the cell recycle unit controller were designed with pole-
placement. RST controllers were used instead of PID controllers since a RST controller
has both feedback and feed forward control. A normal PID controller has only feedback
control. A RST controller uses polynomials to place the closed loop poles in model given
on an input-output form. Since the approach is taken from the literature (for example
Astrom (4)), only a summarized description is given here.

5.1 The fermenter controller

The model described by eq. (6)-(8) can be modified to include the filter with the filter
efficiencies d, O and 5,

%Zf_ = u(P)X - (D, +(1-3,)D,)X (12)
ﬁ:(DIJrSSDZ)(Sm —S)—[u—(lz—)—erjX (13)
dt X/s

((11—1: = (ap(P) +B)X — (D, +8,D, )P (14)

The filter efficiencies are defined in the interval O to 1 where the value 1 implies ideal
filtration and O no filtration. The filter efficiency for the cells is expressed as (1-8y) in eq
(12) since ideal filtration means that no cells are lost with the dilution rate D, from the
filter. The eq. (12) and (14) were linearized around the product concentration setpoint.
Since the substrate concentration does not affect the product concentration, eq. (13)
describing the substrate dynamics was neglected. The steady-state values can be derived
as

< (D, +8,D,)P (15)
(ow(P)+B)
w(P)=(D, +(1-84)D,) (16)

The variables with overbar represent steady-state values. Linearization of the model gives

X|_[an s ] X| 10y a7
P Ay aAn || P b,

y=[0 1][):1 (18)

P
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where the time-invariant parameters are

a,; =0
a, = —MJ,(I—))
a, =op(P)+p
e (19)
a,, =—(Aoy(P)X +D, +8,D,)
b, =8, X
b, =(1-8,)P

and X = (X -X),P=(P-P),D, =(D, - D,) are the discrepancies from the steady-states.
The above state-space system can be discretized and a discrete transfer function can be
obtained

A (a7 )y (1) =By (@7 Ju(t) + (1) (20)

In this case the output y(t) is the measured steady-state discrepancy P and u(t) is the
input signal discrepancy f)z.

The fermenter should however face the whole system including the dynamics of the cell
recycle unit. The achieved transfer function in (20) was therefore multiplied with the
closed loop transfer function H, .(q’) of the cell recycle unit to obtain a transfer
function H(q") of the whole system.

M

The notation with the operator q' will be omitted for brevity since in the following all
operators are also polynomials in q'. The control law

Ru=Tr-Sy (22)

where R,S and T are polynomials, can be used to obtain a desired closed loop system as
in Figure 6.

12
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Figure 6. Block diagram of the closed loop system.

The reference signal r is zero in this case since as mentioned above, y is the steady-state
discrepancy P. The desired closed loop characteristic polynomial A,, can be defined as

A, =AR+BS (23)

and thus can R and S be obtained from equation (23).

The closed loop polynomial A,, is chosen by specifying the roots (poles) which will in
turn define the desired closed loop response. The polynomial T is normally calculated to
get the right steady-state gain but since the reference signal r is zero in eq. (22), it has no
use.

Integral action was chosen by including (1-q") in the R polynomial. The coefficients in
the R, S, and T polynomials depend on the desired steady-state the filter efficiencies and
the dilution rate D since the linearization changes with them, and the desired closed loop
polynomial A,. An example of a pole-zero plot of the controller is shown in Figure 7
when the system was linearized around the product concentration 18 g/l, D=1, ideal filter
efficiencies and the closed loop poles placed as in Figure 8. The coefficients of the
controller polynomials are given in vector form in (24). The closed loop poles are also in
Table 4. Two rules of thumb were used to place the closed loop poles:

e Not too far from the real axis to get the response damped and not too close to 1to
avoid a to slow response

e Place the closed loop poles in order to have all the poles of the R polynomial on the
positive half of the unit circle to avoid a ripple (oscillations) in the control signal.

13




Pole-zero map
T

Imag Axis

- ; I i I
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Real Axis

Figure 7 A pole-zero plot for the fermenter controller when P,,=18 g/l, D=1, ideal filter efficiencies and
the closed loop poles placed as in Figure 8. x=poles and o=zeros

R=[1 -3.1065 4.0429 —2.8561 1.1883 03113 0.0464 —0.0039 0.0001]
S=[0.0785 —0.3192 0.5595 -0.5531 03378 —0.1307 0.0313 —-0.0042 0.0002] (24)
T=[0.000078 0 0 0 0 0 0 0 0]
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] Pole-zero map
T

Imag Axis

_1 i ] i L 1 1 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Real Axis

Figure 8 The closed loop poles for the whole system when the poles and zeros of the fermenter controller

is placed as in Figure 7

Closed loop poles
0.9147
0.876120.1389i
0.7197+0.2513i
0.5541+0.2934i
0.3821%0.2823i
0.2591£0.21551
0.1682+0.1342i
0.1298£0.05451
0.1121

Table 4 The closed loop poles in Figure 8.
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5.2 The cell recycle controller

The closed loop poles of the cell recycle unit were placed with the second RST controller.

Integral action was chosen by including (1-q") in the R polynomial. The polynomials R, S,
and T are given in (25) and the pole-zero plot of the controller is shown in Figure 9. The
closed loop poles were placed with the same rule of thumbs as with the fermenter
controller and they are shown in Figure 10. They are also given in Table 5.

R(q™)=1-1.1569q"" +0.3138q* - 0.1569¢

S(q7)=7.5740-12.3726q" +9.0516q " —2.5782q" (25)

T(q™')=1.6747

Pole-zero map
1

Imag Axis

-1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Real Axis

Figure 9. The pole-zero plot for the cell recycle controller. x=poles and o=zeros
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Pole-zero map

Imag Axis

1 1 1 1

-1 1 L 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Real Axis
Figure 10. Closed loop poles for the cell recycle unit
Closed loop poles
0.5971+0.0864i

0.4950+0.1493i

0.3457+0.1257i

Table 5. The closed loop poles in Figure 10.
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6 Robust control

6.1 The fermenter controller

The stability margins against an unstable response in closed loop can be calculated with
the aid of frequency analysis. The Nyquist plot of the open loop transfer function for the
whole system exemplified in chapter 5.1 is shown in Figure 11. The gain margin is 7.1
dB and the phase margin is 40.8° which allow some model uncertainty. A gain margin
between 4 dB and 12 dB and a phase margin between 30° and 60° are generally accepted
in practice. For more details, see Longchamp (5). The sensitivity function

5=
1+H,

(26)

where H, is the open loop transfer function, models the transfer function between a
perturbation on the output signal and the output. The sensitivity function curve of the
whole system is given in Figure 12. The sensitivity function shows the desired behaviour
with small values for high frequencies and big values for low frequencies since the

integrator rejects the low-frequency disturbances.
m

—

v/

-

Figure 11. The Nyquist plot of the whole system exemplified in chapter 5.1
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dB

Figure 12, The sensibility function S in eq. (26) of the whole system exemplified in chapter 5.1

6.2 The cell recycle controller

The Nyquist plot of the open loop transfer function of the cell recycle unit is shown in
Figure 13. The controller is given in (25). The gain margin is 11.6 dB and the phase
margin is 65.9° which are big margins. The controller could thus have a faster response
but this was not given a so high priority as for the fermenter controller since the cell
recycle controller had a sampling time in seconds and the fermenter controller a sampling
time in minutes. The sensitivity function is shown in Figure 14 which shows the same

desired behaviour as the fermenter controller.
im

Figure 13. The Nyquist plot of the cell recycle unit

Re
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Figure 14. The sensibility function of the cell recycle unit

7 Results and Discussion

7.1 Model identification

711 CSTF

The least-squares fit for the yield Yy, to the data provided by Nestlé is shown in Figure
15.

0.5 T T T T T T T

+———+ Data
e Model

0.45 N

0.4

0.35

Yxs (g/g)

0.3

0.25

0.2

0‘1 5 1 1 i 1 11 I I
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Dilution rate (1/hr)

Figure 15. The least-squares fit for the yield Yy
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The result of the identification of the parameters A and ¢ in eq. (5) for the specific growth
rate i is shown in Figure 16(top).At each sample, |l is put equal to the measured dilution
rate. The identification gave a good estimation of the specific growth rate. The
identification of the parameter m in the term rS in eq. (7) was more difficult. The result of
the identification is shown in Figure 16(bottom).

0.8 et Data
e &o——0o  Model 7
o6 .
2 0.4} .
0.2 B
0 i 1 1 1 1 i 1 1 1
0 1 2 3 4 5 6 7 8 g 10
5 T T T T T T T L T
4_
g
caf
@
2 b
1 | i 1 1 1 1 () i 1
0 1 2 3 4 5 6 7 8 9 10

sample nr

Figure 16(top). The least-squares fit for the specific growth rate L (bottom). The least-squares fit for the
term rS

The reason why the least-squares fit did not work properly was probably that the data
points acquired were to few. The measurement errors of the biomass concentration can be
seen in Figure 17 where the acquired data and the model are compared. The measurement
error is bigger for the biomass than for the substrate and product concentrations since the
evaluation of the samples contains more steps for the biomass than for the substrate and
product concentrations. The poor fit to the data made that there are steady-state errors for
the lactose concentration. But since the lactose concentration was not used in the
linearization of the model, the identification was left like this. The reason why the biggest
error is for the lowest dilution rate is that at lower dilution rates D, the term rS has higher
influence on the substrate consumption according to eq. (7). The parameters are given in
Table 6. "
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Identified parameters Parameters

provided by Nestlé
A 0.0796 Lmax 0.99 h'!
o 0.1529 o 2¢glg
m 1.1264 b B 1.4h"
Y45(D) 1.3339D°-2.4621D%*+1.6519D-0.0471 g/g

Table 6. The identified and provided parameters in the fermentation model
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Figure 17. Biomass, Lactose and Lactic acid verses time.

The validation of the model is shown in Figure 18 during two stepchanges in the dilution
rate. Here the samples are taken during the transient start-up times. The stepchanges were
altered or ended before the system reached steady-state but the dynamics of the
fermentation was modeled satisfactory.
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Figure 18. Validation of the fermentation model on transients

7.1.2 The cell recycle unit

The output from an identification attempt with a PRBS signal is shown in Figure 19. The
plot shows that the filter has some initial dynamics. In the beginning, the output is
drifting downwards and stabilizes after about 10 minutes. The explanation for this
behaviour is that when the stable flow is reached, the drag force acting on the fouling
particles (the cells) is balanced by the lift force generated by the shear field near the filter
membrane. Both the final stable flux, as well as the time required to reach it are functions
of the fluid being filtered. In Figure 20, a PRBS run is shown with the data acquisition
started after 10 minutes. Since the data now had stabilized, an identification was done on
with the data set detrended around zero to get rid of the output offset.
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The result of the identification procedure described in Appendix 2 was that the ARMAX
model in eq (11) gave a smaller loss function than the ARX model in eq (10). The
number of parameters of the identified polynomials A, B and C are called n,, nyand n.
respectively and the delay is called n,. The identified model structure was

n, 3
Ny 1
N 3
ny 3

Table 7. The chosen number of parameters of the polynomials A,B, C and the delay #n,

The identified ARMAX model was

A(q")=1-1.7188q™" +1.1570q* - 0.2890q*
B(q')=0.012478 @7
C(q™)=1-0.8989q" +0.2359q " +0.0591q°

But as mentioned above, the model depends on which state the filter is in and on the fluid
being filtered. The model can thus change during the cell recycle. The B polynomial is
only a constant since the delay operator ¢ is included in the delay g™. In Figure 21 the
pole-zero plot of the identified model of the cell recycle unit is shown.
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Figure 21. The pole-zero plot of the identified cell recycle unit model
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To validate the model, step changes in the input signal are shown in Figure 22. The delay
between the input signal and the output signal and the steady-states were modeled
satisfactory. The disturbances on the measured signal can be due to air-bubbles and
uncertainty in the balance readings. An estimation of the time constant 7, for the process
to reach 66% of the stepchange gave 7,,=13 seconds.
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Figure 22. Measured and estimated output during stepchanges in the input signal for the cell recycle unit.

7.2 Simulations

A simulation for the whole system containing both the CSTF and cell recycle model is
shown in Figure 23. The setpoint for the product concentration, 18 g/l, and the other
conditions for the system are the same as in chapter 5.1. The cascade control was
simulated with a sample time of two minutes. The inner control loop was represented by
the closed loop transfer function of the cell recycle unit. Measurement noise of amplitude
0.1 was added to the simulation. The system started with a full cell recycle and when the
product concentration had reached the operating set point, the fermenter controller was
started. The result was that the biomass had been concentrated to ca 10 g/1.
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Figure 23. A simulation of the whole system containing both the CSTF and cell recycle model

The simulation in Figure 24 was made to evaluate how high cell concentration that could
be achieved of the system. The overall dilution rate D was restricted to 1 hr' since no
data for the yield Yy, was provided for higher dilution rates. The desired biomass
concentration was set to 13 g/l and the filter efficiencies were all put to 0.9 (1 means ideal
filtration, O no filtration). The plot shows that the controller manage to control the
biomass concentration to the desired setpoint and that the dilution rate D, can be
increased further to achieve higher biomass concentrations. But there is a trade off
between how high biomass concentration which can be achieved in the fermenter and
how much biomass which can be extracted from the system. If the aim is only to
maximize the biomass concentration, a total cell recycle can be done. But then the system
never reaches steady-state and no biomass is extracted from the system. Therefore a bleed
dilution rate D, is needed to be able to control the system and to have a production of
biomass.
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Figure (24). A simulation of the CSTF with the cell recycle unit. The desired biomass concentration was
13 g/l

The idea was that the product concentration would be measured online via calculations
on the base added. But the measured differences between the base added at different
product concentrations were to small or made no sense. The reasons for this could be that
the medium flow was not “neutralized” before added to the fermenter, the hysteresis in
the pH controller could be too big and that the base added was to strong. The pH
fluctuated between 5.46 and 5.52.

Conclusions

The simulations show that it is possible to concentrate the cells with cell recycling to 10-
13 g/l at an overall dilution rate D of 1 h'l. The identification of the CSTF model could
probably be more accurate with more data points. Since the model of the cell recycle unit
is changing with the filter performance, an online estimation of the model is preferred.
The controller for the cell recycle unit could then be an adaptive controller which is more
suitable with a changing process.
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9 Appendix

9.1 General least-square

In the general least-square problem the model value §(t) of the measured value y(z) can
be written as

}A’(t) = (P1(t)91 + (Pz(t)62 Tt Q, (t)en = (P(t)Te
0" =[6, 6, - 6,] (A1)

ot) =[@.() @,(t) 9, (1)]
where 6, are the unknown parameters, and ¢, are known functions. The variables ¢, are
called the regression variables or the regressors. Since the model value J(t) is linear in

the parameters and the least square criteria (9) is quadratic, the problem of minimizing
the loss function admits an analytical solution.
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Introduce the notation

Y(t) =[y() y@ - yOI
o' (1)

o(t)=| :

@' (t)

If the matrix ®"® is nonsingular the minimum is unique and given by
6=(07@) @'Y (A2)

Usually the regression variables are the input signals u(#) and output signal y(¢). If the
input signal contains sufficiently many frequencies, the matrix ®"® is nonsingular in eq.
(A2) and a least-square estimate of the parameters in the A and B polynomials can be
done. For more details, the reader is referred to any digital control book, for example
Astrom 4.

9.2 ldentification procedure for the cell recycle unit

To determine the global order N=max(n,, ng+n,-1), the models in eq (10) and (11) were
identified with the order n=n,=nz=n, with n in the interval of 1 to 10. The delay n, was
set to 1 which means that n equals the global order N. The estimated variance of & which
is called the loss function V verses the global order N is shown in Figure Al.
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Figure Al. Loss function V=variance of g verses global order N=max(n,, ng+n;-1)

From Figure Al it can bee seen that increasing the global order above N=3 does not
lower the loss function V much. The global order was therefore chosen as N=3. To be
able to determine the structure of the model, one of the orders or the delay was changed
and the others were set according to the global order.

To determine the delay n,, n, was fixed at n,=N, n.=1, and the models were identified
with 7, in the interval of 1 to N. The loss function V is shown in Figure A2 (a). For the
ARMAX model there is no big difference but to minimize the loss function for the ARX
model according to Figure A2 (a), n,=/ should be chosen. But a delay of one led to that
the first coefficients in the B polynomial became small compared to the coefficients in the
A polynomial. That means if a small change is done in the A polynomial, the parameter
estimation of the B polynomial becomes useless. Therefore the delay was increased to n,
=3 which increased the coefficients in the B polynomial. Furthermore, the control signal
was divided with a factor 100 during the identification in order to reduce the difference
between the coefficients in the A and B polynomials. Before presented in (27), the
identified B polynomial was divided with a factor 100 to compensate that.

A look at the pole-zero plot of the model can also be useful to determine the delay. There
is rule of thumb that says that if there are unstable zeros, the delay could be under-
estimated. On the other hand, if all the zeros are stable the delay could be over-estimated.
In Figure A2 (b) the pole-zero plot for the ARMAX model when n,=3 is shown.
Neglecting the zero in infinity, all zeros are stable and thus indicating that the delay could
be decreased. When the delay was decreased, a zero became unstable indicating that the
delay could be increased. But as mentioned above, the delay was chosen 7n,=3.
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(b)

Figure A2(a). Loss function V verses the delay n, (b) Pole-zero plot for ARMAX n;=3
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To determine the order of the A polynomial, n,, n, was fixed at the optimal vale 3, nc=1,
and the models were identified with n, in the interval of 1 to N. The loss function V' is
shown in Figure A3(a). The value of n, was set to 3 in order to minimize the loss

function.
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33




Since the order of the B polynomial ny=N-n,+1=3-3+1=1, there existed no more
alternatives than ny=1. The loss function is shown in Figure A3(b). The ARMAX model
was chosen since it gave a smaller loss function value. The loss function verses the order
of C polynomial n, can be seen in Figure A3(c). It was set to 3 in order to minimize the
loss function. The chosen orders of the polynomials and the delay are given in Table Al.

Ny 3
Ny 1
N 3
n, 3

Table A1. The chosen orders of the polynomials A,B ,C and the delay n,
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